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Abstract 

 Shallow water sponges are known to be a prolific source of bioactive compounds and 

interesting enzymes. In particular shallow water sponges from temperate and warm 

environments have been investigated in the last couple of decades due to their easy 

accessibility. Sponges have been shown to harbour dense microbial communities, which 

were subsequently identified to be the source of most of the isolated bioactive compounds 

and enzymes. Marine sponges are widespread in our oceans, the biggest interconnected 

habitat on our whole planet. Sponges can be found not only in shallow water regions but 

also in the deep sea. The deep sea, comprising approximately anything deeper than 200 m 

with respect to sea level, makes up an immense area of the oceans, keeping in mind that the 

mean depth of the oceans is 3800 m. The biodiversity of the deep sea is hard to assess as 95% 

of the oceans are hypothesized to be unexplored, in this respect it is interesting to note that 

we have send more people to the moon than to the Marianas Trench, the deepest part of the 

oceans. Nonetheless already a few deep sea studies have changed our perception from a 

supposedly very hostile living environment, due to the huge pressure, low temperature and 

absence of sunlight to a treasure trove of to date largely unexplored marine life, especially 

with hot spots for living beings and biological diversity like hydrothermal vents, sponge and 

coral gardens. The marine life in the deep sea has in millions of years adapted to the 

aforementioned conditions and is therefore believed to be considerably different from other 

environments, therefore novel or considerably different chemistry particularly with respect 

to small molecules and novel modes of action for enzymes of industrial interest and 

antimicrobial compounds can be expected. 

The study presented here aims to provide a better understanding of the microbiota of 

deep sea sponges via applying different next generation sequencing approaches (MiSeq, 

PacBio, 454 pyrosequencing) as well as standard marine cultivation methods and various 

enzyme activity assays.  

In chapter two the metagenomes of three different deep sea sponge species (Inflatella 

pellicula, Stelletta normani and Poecillastra compressa) have been investigated for their potential 

to encode conserved domains of polyketide synthases and non-ribosomal peptide synthetase 

clusters. These clusters are involved in the production of secondary metabolites that are 
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beneficial to the sponges as defence mechanism, but could also be used in the 

pharmacological industry as novel drug leads for example as anticancer or antimicrobial 

medicines. A huge number of potentially novel adenylation and especially ketosynthase 

domains were oberverd in the metagenome of the investigated sponge species. Sequence 

similarities to domains from gene clusters known to be involved in the production of 

different classes of antibiotics and other bioactive compounds including lipopeptides, 

glycopeptides, macrolides and hepatotoxins have been identified.  

The next chapter studies a common marine microbial isolate that can be retrieved 

from various marine sources. The Pseudoalteromonas spp. isolates described herein have all 

been isolated from deep sea sponges (Inflatella pellicula, Sericolophus hawaiicus and Poecillastra 

compressa). The isolates were studied with respect to their biotechnological potential, with a 

particular focus on their enzymatic activity profiles and their potential for cold adaptation. 

Furthermore the whole genomes of these isolates and two reference strains were compared 

with a particular focus on genes potentially involved in symbiosis and secondary 

metabolism. The isolated Pseudoalteromonas spp. were shown to be cold adapted and to 

express various enzymatic activities, with only one activity being truly cold active. The 

genome comparison revealed an open pan-genome for all investigated isolates, but no 

enrichment in symbiosis related genes in the sponge isolates was observed. Nonetheless all 

the isolates harboured a highly conserved bacteriocin gene cluster with a tetratricopeptide 

repeat domain, which can be involved in host-association. 

Chapter four describes the screening and characterization of a novel cold-active 

esterase found via a function-based screening of a metagenomic fosmid library of the deep 

sea sponge Stelletta normani. Besides the enzyme defining activity parameters, the esterase 

was compared to other lipolytic enzymes and in situ docking studies were performed. The 

newly described esterase is part of the type IV hormone sensitive lipase family and is to the 

best of our knowledge the first truly cold active esterase of this family. The esterase is most 

active at alkaline pH, mimicking seawater conditions and displays a wide range of 

halotolerance; coupled with its cold activity this enzyme is potentially desirable for 

industrial applications in bioremediation and production of biodiesel. 
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1. Introduction 
 

1.1 Marine Sponges 

 Sponges are one of the oldest extant metazoans having branched off from other 

metazoans at least 640 million years ago (Yin et al., 2015). The phylum Porifera consist of 

approximately 8500 species, with over 80% belonging to the main group of Demospongiae 

(common sponges), the three other main orders are Calcarea (calcareous sponges), 

Hexactinellida (glass sponges) and Homoscleromorpha (encrusting sponges) (Van Soest et al., 

2012; Gazave et al., 2012; Morrow and Cárdenas, 2015). Sponges are either effective filter 

feeders (Bell, 2008; Hentschel et al., 2012) or carnivorous (Vacelet and Boury-Esnault, 1995). 

The sessile filter-feeder sponges have important functional roles in their ecosystem, usually 

categorized into three areas, first being impacts on substrate (bioerosion, reef creation, 

substrate stabilisation), second, bentho-pelagic coupling (carbon, silicon and nitrogen  

cycling and oxygen depletion) and third, associations with other organisms (sponges as 

settlement substrate, microhabitat, as releasers of chemicals) (Bell, 2008) (Figure 1). 

Generally their lifestyles can be divided into two different stages, one being motile as a 

larvae and then after settling onto a surface becoming sessile as adults (Ayling, 1980). 

 

Figure 1: Scheme of the roles of filter-feeding sponges in the ecosystem (Steinert et al., 2017). 
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1.1.1 Body plan of sponges 

 Filter-feeding sponges have a rather simplistic body plan and can be found in 

various shapes and colours. The outer wall (pinacoderm) is scattered with small pores 

(ostia), which draw in surrounding seawater for filtering and subsequently ejected from a 

large opening (osculum) (Hentschel et al., 2012). The directed water flow is generated by the 

movement of flagella from specialized cells (choanocytes), the water is channelled through 

aquiferous canals into chambers (choanocyte chamber) where it is filtered and the nearly 

sterile water is then expelled through the exhalant opening (osculum) (Reiswig, 1971; Wehrl 

et al., 2007). Sponges show impressive pumping capacities of thousands of litres of water per 

kilogram of sponge per day (Bell, 2008). Once the water has entered the sponge it is filtered 

in the choanocyte chambers and particulate matter and microorganisms are taken up by the 

amoebocyte cells (Figure 2).  

 

Figure 2: Simplified body structure of a filter-feeding sponge on the left, on the right zoom-

in on a choanocyte chamber, direction of water flow is indicated (Steinert et al., 2017). 

 

The microorganisms are either phagocytosed or passed on to the mesohyl tissue of 

the sponge, this mesohyl contains intact microbial cells (potentially symbiotic or 
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commensalistic), spicules (skeletal framework) and archeaocytes. The spicules are usually 

made up of silica and provide a skeletal framework for the sponge enabling a proper three-

dimensional structure (sponges can range in size from millimetres to meters) and rigidity 

towards external factors (currents, waves, etc.), as well as internal rigidity as sponges can be 

soft to fragile, but also rock hard. Spicules are very diverse and are used to identify sponges 

based on their shape and size (Uriz et al., 2003). In carnivorous sponges specialized spicules 

(anisochelae) are also used to trap respective food (small crustaceans) (Vacelet and Boury-

Esnault, 1995). 

 

1.1.2 Microbiome of sponges 

 Sponges harbour dense microbial communities of up to 38% of their biomass and can 

even be distinguished by the density of their bacterial population into high microbial 

abundance (HMA) and low microbial abundance (LMA) sponges. In HMA sponge species 

the bacterial population can reach a density of 108 – 1010 bacteria per gram of sponge tissue, 

whereas in LMA sponge species densities of 105 – 106 bacteria per gram of sponge are 

observed (Vacelet and Donadey, 1977; Hentschel et al., 2003; Hentschel et al., 2006). The 

association of microbes and sponges dates back more than 600 million years and is therefore 

one of the most ancient proven relationships between animals and microorganisms (Taylor 

et al., 2007; Wilkinson, 1984). The association between sponges and their microbiota seems to 

be quite unique and selective (especially for HMA sponges), leading to the proposal of 

specific microbiomes associated with sponges (Kennedy et al., 2014; Moitinho-Silva et al., 

2014). In this respect 7500 sponge-derived 16S rRNA gene sequences have been investigated 

for globally shared sponge-specific clusters, resulting in 173 monophyletic clusters found 

globally (Simister et al., 2012). Unfortunately, other studies have subsequently found that 

part of the sponge specific clusters can be found in very low abundances in different marine 

environments (Taylor et al., 2013; Thomas et al., 2016). Besides bacteria, archaea and eukarya 

are also associated with sponges (Hentschel et al., 2012). Archaea have been shown to 

dominate the microbial community of certain deep sea sponge species, making up 70% of 

the microbial community of the deep sea sponge Inflatella pellicula (Jackson et al., 2013). The 

types of associated microorganisms is extremely diverse and includes 47 prokaryotic phyla, 

such as Actinobacteria, Chloroflexi, Cyanobacteria, Proteobacteria (α, β, γ, δ) and several 
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candidate phyla, like Poribacteria, Tectomicrobia and the Sponge Associated Unclassified 

Lineage (SAUL) being the most prominent (Hentschel et al., 2012; Wilson et al., 2014). Besides 

bacteria, fungi are also commonly isolated from sponges and are investigated in respect to 

their biological activity producing secondary metabolites (Hoeller et al., 2000; Imhoff, 2016). 

Due to the filter-feeding nature of sponges, fungi are especially enriched in sponges as their 

numbers in ocean waters are usually quite low in comparison to bacteria. This leads also to 

the isolation of less common fungal genera like Beauveria, Botryosphaeria, Epicoccum, 

Tritirachium and Paraphaeosphaeria from sponges (Hoeller et al., 2000; Indriani, 2007; Paz et al., 

2010). 

 

1.1.2.1 Sponge symbionts 

 Sponge associated microorganisms are quite diverse and identifying them as true 

sponge symbionts is still a matter of debate and different genomic and metabolic features 

must be taken into account (Figure 4). Genomic features associated with sponge symbionts 

include, for example, an overrepresentation of genes containing ankyrin (AR) and 

tetratricopetide repeats (TPR) (Thomas et al., 2010). AR and TPR mediate protein-protein 

interactions in eukaryotes and these proteins are involved in different functional processes 

like transcriptional initiation, cell cycle regulation, cytoskeleton proteins, ion transport and 

signal transduction (Blatch and Lässle, 1999; Hryniewicz-Jankowska et al., 2002). AR proteins 

have been shown to mediate the uptake of bacterial cells into amoebal cells, which are 

functionally analogous to sponge amoebocytes (Reynolds and Thomas, 2016) and therefore 

play a key role in acquiring symbionts and distinguishing between symbionts and non-

symbionts. Another feature of the symbiotic community of a sponge is the ability to nitrify 

ammonia (Bayer et al., 2008; Thomas et al., 2010) and recently it has been shown that 

members of the symbiotic community are also involved in detoxification processes by 

mineralizing ubiquitous environmental toxins like arsenic and barium, which normally 

accumulate in higher trophic-level organisms (Keren et al., 2017). The candidate phylum 

Poribacteria, which is almost exclusively found in sponges has become a model 

microorganism for true symbionts in sponges (Fieseler et al., 2004; Siegl et al., 2011). This 

phylum is widespread across various sponge species (Demospongiae) from different oceans 
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(Lafi et al., 2009). Members of the phylum Poribacteria are able to form bacterial 

microcompartments and are rich in different types of eukaryotic-like protein domains, 

especially TPR, AR and low-density lipoprotein receptor repeats (Kamke et al., 2014). 

Besides Poribacteria, there is also the filamentous symbiont Entotheonella (phylum 

Tectomicrobia), which has been studied in depth for its potential to produce secondary 

metabolites and has been shown to be responsible for the production of nearly all bioactive 

compounds derived from the sponge Theonella swinhoei (Wilson et al., 2014). Besides its 

secondary metabolic potential this bacterium also contains eukaryotic-like proteins and is 

involved in the mineralization of arsenic and barium (Liu et al., 2016; Keren et al., 2017). 

 

Figure 4: Diagram of functions and functionalities provided by sponge associated and 

symbiotic microorganisms (Steinert et al., 2017). 
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1.1.2.2 Marine natural products from sponges and their microbiota 

Nearly 30% of all marine natural products discovered so far originate from sponges 

and their microbiota, making sponges the richest source of new marine natural products 

(Mehbub et al., 2014). Due to the sessile filter-feeding nature of sponges they rely solely on 

stored bioactive natural products (Unson et al., 1994) as a matter of defence when confronted 

by predators, these metabolites can be either cytotoxic, antibiotic or feeding deterrent 

(Proksch, 1994; Pawlik et al., 2002). More than 200 new compounds from sponges are 

reported each year (Laport et al., 2009). The identified natural products have a broad 

spectrum of biological activities, including antibacterial, anticancer, antifouling, antifungal, 

anti-inflammatory, antiviral, antiprotozoal, antihelminthic, immunosuppressive, 

neurosuppressive, neuroprotective and other bioactivities (Sipkema et al., 2005; Blunt et al., 

2016). Novel effective drug leads that can potentially be found in sponges are urgently 

needed to fight evolving infectious microorganisms, as well as fungal and viral diseases 

(Sagar et al., 2010). Furthermore other diseases like cancers are becoming more and more 

prevalent in our society and the marine environment continues to be screened as a source of 

novel anticancer agents, with sponges in particular being a promising source of novel agents 

(Bhanot et al., 2011). Promising natural products with anticancer activity from sponges are 

Discodermolide, Hemiasterlins A&B, modified Halichondrin B, KRN-700, Alipkinidine, 

Fascaphycins, Isohomohalichondrin B, Halichondrin B, Laulimalide/Fijianolide, 5-

Methoxyamphimedine and Variolin (Crews et al., 2003). More and more evidence is being 

gathered and it is already broadly accepted that most of the natural products isolated from 

marine sponges are actually produced by their microbiota (Piel et al., 2004). Many isolated 

bioactive compounds display strong structural similarity to complex polyketides and non-

ribosomal peptides, which are to date solely known from microorganisms, supporting the 

hypothesis of a bacterial origin for most of the compounds. Bioactive compounds produced 

by microbes are normally referred to as secondary metabolites; these are organic compounds 

that are not directly involved in primary cell functions, such as growth, development or 

reproduction. These metabolites are produced by specialized gene clusters, including 

polyketide synthases (PKS, type I, II, III), non-ribosomal peptide synthetases (NRPS), hybrid 

PKS-NRPS, terpene synthases and clusters involved in the biosynthesis of lantibiotics, 

nucleosides, bacteriocins, melanins, beta-lactams, phenols, alkaloids and many more. Most 
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notable in respect to natural product biosynthesis by a symbiont is the filamentous 

bacterium Entotheonella, isolated from the sponge Theonella swinhoei, whose genome was 

sequenced by single cell genomics. For almost all bioactive compounds found in the sponge 

Theonella swinhoei, including polytheonamides, onnamide-type compounds, keramamides, 

cyclotheonamides and proteusin biosynthetic genes encoding these compounds could be 

found in the Entotheonella genome (Wilson et al., 2014). Nonetheless there are a few 

exceptions like avarol, stevensine, crambesicidins and some brominated isoxazoline 

alkaloids that are known to be produced by the sponge itself and not its microbiota (Uriz et 

al., 1996; Andrade et al., 1999; Turon et al., 2000; Ternon et al., 2016). 

 

1.2 The need for novel antimicrobials 

Before the ‘antibiotic era’ infectious diseases such as tuberculosis, syphilis, cholera, 

smallpox, plague, mumps and many others had been major causes of death among the 

human population. The discovery of Penicillin by Alexander Fleming in 1928 (Fleming, 

2001) and of other antibiotics thereafter lead to a major increases in life expectancy and 

quality of life. These discoveries together with advances in healthcare (vaccination, 

antisepsis, public health measures and sanitation) in the early 1950s and in the next decades, 

in the so called “Golden era of antibiotic discovery”; resulted in infectious diseases stepping 

down from being the major cause of morbidity in the general population, relative to other 

diseases which became more prevalent due to lifestyle choices as well as the rise of life 

expectancy such as cardiovascular diseases, cancer, and stroke.  

Soon after the discovery of Penicillin, concerns were raised about the possible 

development of antibacterial resistance to the antibiotic (even from Alexander Fleming 

himself) (Levy, 2002). Unfortunately these fears have materialized to date, not only with 

respect to Penicillin but to a great extent with respect to virtually any antibiotic in medicinal 

use today (Brown and Wright, 2016). It is hypothesized that we live today in the ‘post 

antibiotic era’(Alanis, 2005), where the number of antibiotic-resistant pathogenic bacteria is 

rapidly increasing and infectious diseases are again becoming a more common cause of 

human death. Bacteria have proven to be very capable of adapting to the various antibiotics 

in current use and they acquire these adaptive traits via a variety of mechanisms involving 
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mutation, conjugation, transformation and transduction (Table 1). The rapid spread of 

resistance amongst opportunistic human pathogens to antimicrobials is a huge threat to the 

healthcare system and future development of the human population in general. 

Unfortunately we currently seem to be unable to keep pace with the ever evolving drug 

resistance amongst microbial pathogens. In fact we are even speeding up the process of the 

evolution of antibiotic resistance ourselves by misusing antimicrobials; particularly in the 

widespread and quite indiscriminate use of antibiotics in the agricultural/aquaculture areas 

(Davies and Davies, 2010). To date most of the antimicrobials in use have been isolated from 

microorganisms from terrestrial, temperate or tropical environments. In order to find novel 

bioactive compounds with new modes of action it is widely believed that microorganism 

from different environmental ecosystems (marine ecosystem, shallow water and the deep 

sea) and ecological niches (hydrothermal vents, saline brines sediments) need to be targeted. 

Table 1: Antibiotic families, mechanism of action and resistance mechanism (adapted from 

(Alanis, 2005; Davies and Davies, 2010) 

Antibiotic family Antibiotic target Resistance mechanism 

Beta-lactams Inhibition of cell wall synthesis 
Beta-lactamases, efflux, altered 

target 

Glycopeptides Inhibition of cell wall synthesis 
Reprogramming peptidoglycan 

biosynthesis 

Cyclic Lipopeptides Inhibition of cell wall synthesis Altered target 

Tetracyclines Inhibition of protein synthesis 
Monooxygenation, efflux, 

altered target 

Aminoglycosides Inhibition of protein synthesis 

Phosphorylation, acetylation, 

nucleotidylation, efflux, altered 

target 

Streptogramins Inhibition of protein synthesis 
C-O lyase, acetylation, efflux, 

altered target 

Oxazolidonones Inhibition of protein synthesis Efflux, altered target 

Macrolides Inhibition of protein synthesis 

Hydrolysis, glycosylation, 

phosphorylation, efflux, altered 

target 

Lincosamindes Inhibition of protein synthesis Nucleotidylation, efflux, altered 
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target 

Fluoroquinolones Inhibition of DNA synthesis 
Acetylation, efflux, altered 

target 

Rifamycins Inhibition of RNA synthesis 
ADP-Ribosylation, efflux, 

altered target 

Sulfonamides C1 metabolism Efflux, altered target 

Polymyxins Membrane disorganizing agents Efflux, altered target 

Nitroimidazole others Altered target 

Phenicols Inhibition of protein synthesis 
Acetylation, efflux, altered 

target 

Pyrimidines  C1 metabolism Efflux, altered target 

 

1.3 The marine habitat in respect to its biotechnological potential 

 The sheer size of the oceans and therefore the marine habitat, with all its unique 

niches is not only interesting with respect to a potential source of novel drug leads, but also 

for bioprospecting for novel enzymes and biocatalysts (Figure 5). Marine biocatalysts 

potentially offer novel properties like high salt tolerance, hyperthermostability, barophilicity 

and cold adaptivity, as well as novel chemical and stereochemical properties (Debashish et 

al., 2005; Trincone, 2011). The number and variety of enzymes studied from the marine 

environment is astonishing and includes proteases, peroxidases, chitinases, carbohydrolases 

(amylases, cellulases, xylanases), agarases, lipases, esterases and many more. The main 

practical applications for biocatalysts and marine enzymes are found primarily in five 

domains of industrial applications, those being chemistry, pharmacology, food, cosmetics 

and agricultural according to related patents from the period of 1973-2007 (Leary et al., 

2009). 
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Figure 5: Scheme of targets and approaches to exploit the marine biotechnological potential 

(Trincone, 2010). 

 

 Different niches for extremophiles in the marine environment include hydrothermal 

vents for (hyper-)thermophiles and the deep sea for psychro- and barophiles to name the 

most prominent (Mesbah and Sarmiento, 2016). Furthermore enzymes classified as 

acidophilic, alkaliphilic, endolith, metallotolerant, radioresistant and toxitolerant are highly 

sought after and can be widely found in the marine environment (Trincone, 2011; Selvin et 

al., 2012; Nigam, 2013; Dumorné et al., 2017) and are also referred to as extremozymes 

(Elleuche et al., 2014; Hough and Danson, 1999). Marine microorganisms able to grow at 

high temperatures are for example the archaeon Pyrococcus furiosus and the bacterium 

Thermotoga maritima. Both microorganisms have been exploited for their biocatalytic 

potential and especially an alcohol dehydrogenase from Pyrococcus furiosus and a glucoside 

hydrolase from Thermotoga maritima are of potential industrial interest, with both enzymes 

displaying, besides their thermostability, a high tolerance towards organic solvents (Goyal et 

al., 2001; Jiang et al., 2004a; Jiang et al., 2004b; Zhu et al., 2006).  

The contrast of hyperthermostability and cold adaptivity is also of interest for 

industrial applications. Cold active biocatalysts can be used as additives in food-, detergent 

industry and bioremediation processes. Psychrophilic enzymes are advantageous because 
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they help to reduce energy costs, as well as the risk of microbial contamination and chemical 

side reactions, additionally they possess high specific activity and low heat stability, 

allowing for easy inactivation (Cavicchioli et al., 2002; Trincone, 2011; Santiago et al., 2016;). 

Microorganisms from the marine environment known to encode cold active enzymes are for 

example Pseudoalteromonas arctica and Shewanella sp. G5. A cold-active esterase from 

Pseudoalteromonas arctica has been successfully cloned and characterized, and it shows a 

broad substrate specificity for short chain fatty acid esters and is also capable of hydrolysing 

medically relevant esters like the anti-inflammatory drugs naproxen, ketoprofen and 

ibuprofen (Al Khudary et al., 2010). From Shewanella sp. G5, which is able to use cellobiose as 

carbon source, a cold-active β-glucosidase with potential application in the winemaking 

industry has been reported (Cristobal et al., 2009; Cristóbal et al., 2016). 

 

1.3.1 Approaches to exploit biotechnological potential 

 The exploitation of the biotechnological potential of a given environmental sample 

depended for a long time on the cultivability of the relevant microorganisms. Cultivation 

approaches have therefore been continuously refined and have become more and more 

sophisticated, nonetheless approximately 99% of environmental microbes cannot currently 

be cultured under laboratory conditions (Handelsman, 2004; Singh, 2010). A rise in the use 

of metagenomics based strategies (a metagenome is defined as all the genomic DNA that is 

present in a given sample) has aimed to close this gap and besides investigating the 

biotechnological potential of particular environmental ecosystems has also provided insights 

into the relationships between microbes, between microbes and their environment and 

between microbes and their hosts (Streit and Schmitz, 2004; Kennedy et al., 2007; Jackson et 

al., 2015). Some metagenomic studies initially involve the creation of a metagenomic library, 

where the environmental DNA is subcloned into suitable vectors, fosmids or bacterial 

artificial chromosomes and subcloned into a host, with Escherichia coli being the most 

prominent host system employed. The analysis of the generated libraries can be generally 

distinguished into two types, involving either function-based or sequence-based 

metagenomic analysis (Venter et al., 2004; Uchiyama and Miyazaki, 2009;) (Figure 6). 

Function-based metagenomics rely on effective screening methods and are hampered by 
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insert-size and choice of library host, but the huge advantage is the chance of identifying 

completely novel functional enzymes (Kennedy et al., 2010; Kennedy et al., 2011). Sequence-

based metagenomics are either based on shotgun-sequencing of the partial or whole 

metagenome (no clone library required) (Schmeisser et al., 2003; Venter et al., 2004; Vieites et 

al., 2009) or by using PCR with degenerate primers for the gene of interest, colony blotting or 

radioactive probes (Schloss and Handelsman, 2003; Chen and Murrell, 2010). Major 

challenges of sequence-based metagenomic approaches lies in the amount of data generated 

by sequencing and by the low chance of identifying truly novel genes when using 

degenerate probes. 

 

Figure 6: Enzyme discovery pipeline for function- and sequence-based metagenomic 

approaches (Kennedy et al., 2010). 
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1.3.2 Shallow water environment 

 Shallow water habitats are more easily accessible than the deep sea, but can still 

require some sophisticated equipment, like self-contained underwater breathing apparatus 

(SCUBA) or remotely operated vehicles (ROV) to retrieve samples. The marine habitat is 

acknowledged as a really important resource of novel enzymes, biocatalysts and natural 

products, but nonetheless the rate of scientific research, and therefore publication and patent 

outputs is less than from other environments that have been studied (Figure 7)(Trincone, 

2010). 

 

Figure 7: Combined number of articles, reviews, patents, etc. containing the concepts of 

‘marine enzymes’, ‘marine natural product’ and ‘biocatalysis’ up to the end of 2009 

according to MEDLINE and CAPLUS searches (Trincone, 2010).  

 

 The range of enzymes described from the marine environments as outlined 

previously is tremendous and the most common type of biocatalysts are carbohydrate and 

protein degrading enzymes, as well as lipolytic hydrolases (Lee et al., 2010; Trincone, 2010; 

Trincone, 2011). 
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1.3.3 The ‘deep sea’ 

 The oceans account for 71% of the surface of our planet and is usually divided into 

coastal and shallow water regions and the ‘deep sea’, roughly anything deeper than 200 m, 

with over 50% of the oceans being below 3000 m (mean depths 3800 m), which makes the 

‘deep sea’ the biggest interconnected habitat on the entire planet (Ramirez-Llodra et al., 

2010). Due to the harsh conditions prevalent in this ecosystem, most notably high pressure, 

low temperature and the absence of sunlight it was long believed to be very hostile for living 

beings. In contrast, expeditions with remotely operated vehicles and manned submarines 

have shown a wealth of diversity, especially microbial diversity in this extreme environment 

(Sogin et al., 2006; Jørgensen and Boetius, 2007). In this respect hydrothermal vents within 

the ‘deep sea’ have been described in detail as hotspots for living beings and biological 

diversity  (Naganuma, 2000; Zierenberg et al., 2000; Flores et al., 2012; Yang et al., 2013a;  

Lossouarn et al., 2015;).  

 An example of an enzyme from the deep sea in industrial use is an α-amylase 

marketed by BASF Enzyme LLC as Fuelzyme®. The enzyme is marketed as having broad 

temperature and pH operating values and can be used for mash liquefaction in ethanol fuel 

production. In 2005, Ferrer et al. published a metagenomic study of a hypersaline deep-sea 

anoxic basin, where they identified five esterases and two out of the five were able to 

function under the harsh conditions of this environment (high salinity, high hydrostatic 

pressure, anoxia and a sharp chemocline). Furthermore, one of the esterases had a unique 

adaptive structure:function configuration, enabling it to display high catalytic activity under 

a wide range of physicochemical conditions (Ferrer et al., 2005). 

 

1.4. The pharmaceutical potential of cold environments 

Cold environments such as Arctic and Antarctic regions and the deep sea are richly 

populated by microbes which encounter the same selective pressures and/or even more than 

their counterparts from moderate or warm environments. Microbes from moderate and 

warm environments have been extensively studied for their ability to produce antimicrobial 

compounds, but this resource seems to be exhausted. Keeping in mind the rapid emergence 

of antimicrobial resistance, we need to look for new sources of antimicrobials. It is widely 
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believed that environmental conditions shape the chemistry and lifestyle of the native 

microbial communities, therefore the investigation of constantly cold environments might be 

advisable. Psychrophiles are an as of yet largely untapped source for novel or considerably 

different antimicrobial compounds. To date a sustained level of research has not focused on 

psychrophiles as a source of novel bioactive compounds, but with the ever growing need for 

new antibiotics due to the aforementioned ongoing threat of antimicrobial resistance; this 

will undoubtedly change in the future.  

 

1.4.1 Bioactive compounds from cold environments 

While cold environments have to date been mostly overlooked in the search for new 

antimicrobials, nonetheless there are several studies focusing on the microbial diversity of 

cold environments which indicate a high level of diversity within these environments. It is 

widely believed that high levels of microbial diversity is indicative of high levels of potential 

antibiotic producing microbes, given that these compounds are likely to be advantageous for 

the producing organism; particularly in an environment where there is competition for 

resources. Furthermore given that marine microorganisms have survived under extremes of 

temperature, salinity, and pressure over many millions of years; then they are likely to have 

evolved to adapt to these extreme conditions and therefore potentially possess novel 

biochemistry. Thus due to the environmental differences between cold marine environments 

and temperate or tropic marine environments coupled with adaptive evolution it can be 

assumed that the bioactive compounds produced by microorganisms from these cold 

environments are likely to be quite different from many of the classes of antimicrobials 

currently in use. To date mostly large-scale and rather unspecific antimicrobial screens of 

microorganism retrieved from for example alpine sites, benthic mats from Antarctic lakes 

and sponges from deep-sea and arctic environments have been performed. Therefore more 

emphasis should be placed on finding new antimicrobials from these sources coupled to a 

more in depth analysis of the compounds/activities found, because to date only a few 

studies have concentrated on targeting antimicrobial activity in these environments, 

nonetheless most of them show promising results.  
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A comprehensive review on cold-water marine natural products was published in 

2007 by Lebar et al., covering most of the compounds identified up until 2005 from cold 

marine environments (Lebar et al., 2007). In this review natural products from microbes, 

bacteria, fungi, microalgae, macroalgae, sponges, corals, bryozoans, molluscs, tunicates and 

echinoderms living in cold marine environments were described. Furthermore Abbas and 

co-workers subsequently published a review on Arctic and Antarctic sponge secondary 

metabolites (Abbas et al., 2011). Thus only the more recent advances are mentioned 

subsequently, but recommend the interested reader to refer to the aforementioned 

publication if required. Furthermore a general article on marine natural products is typically 

published on an annual basis (Blunt et al., 2016), but typically no more than 3% of the 

compounds which are described are retrieved from cold or deep sea sources  and even less 

display antimicrobial activity.  

 

1.4.1.1 Synoxazolidinones 

Synoxazolidinones A and B (Figure 8) have been isolated from the ascidian Synoicum 

pulmonaria collected from the Norwegian coast in 2010 (Tadesse et al., 2010). These 

compounds constitute a novel family of brominated guanidinium oxazolidinones with 

activities against a range of Gram-positive bacteria, especially against methicillin-resistant 

Staphylococcus aureus (MRSA). Besides the Synoxazolidinones A and B the ascidian also 

produces Synoxazolidinones C and Pulmonarins, which are also brominated compounds, all 

of which display some kind of antimicrobial activity especially against micro- and 

macrofouling organisms in the water column and are therefore of industrial interest (Trepos 

et al., 2014). However one of the major bottlenecks in the use of bioactive compounds from 

natural resources for biopharmaceutical application is the quantities produced by the native 

strains; which are often quite low. Therefore the large-scale production of these compounds 

would need the harvest of huge amounts of ascidians to fulfil the required demands. 

Therefore the possibility of total chemical synthesis of Synoxazolidinones as described in 

Shymanska et al. would be required to allow large scale productions, thereby minimizing 

any potential detrimental environmental impact of large scale harvesting of ascidians  

(Shymanska et al., 2014). 
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Figure 8: Synoxazolidinones A and B (adapted from (Tadesse et al., 2010) and visualized 

with 2D Sketcher (https://web.chemdoodle.com/demos/sketcher/)) 

 

1.4.1.2 Microcins 

In 2010 a bacteriocin like compound named Serraticin A produced by a psychrophilic 

microorganism closely related to Serratia proteamaculans was isolated from a soil sample 

from Isla de los Estados, Argentinia and was termed to be the first cold-active compound 

with antimicrobial activity from S. proteamaculans, it was produced at 8°C (Sánchez et al., 

2010). The compound showed activity against an Escherichia coli and a Salmonella enterica 

strain. The mode of action was proposed to involve either blocking DNA replication or 

inhibition of the septation process. 

 

1.4.1.3 Lantibiotics 

Subtilomycin is a class I bacteriocin and was purified from a Bacillus subtilis strain 

isolated from the marine sponge Haliclona simulans collected on the west coast of Ireland 

(Phelan et al., 2013). The peptide shows very good activity against Clostridium sporogenes, 

good activity against Bacillus cereus, Bacillus megaterium, Listeria monocytogenes and Listeria 

innocua and also some activity against Staphylococcus aureus, a methicillin resistant S. aureus 

strain and a vancomycin resistant S. aureus strain. The bacteriocin also showed strong 

inhibitory activity against multiple Candida species (C. albicans, C. dubliniensis, C. lusitaniae 

and C. parapsilosis). Class I lantibiotics usually interfere with the cell membranes of its target, 

either by inhibiting membrane biosynthesis or pore forming (McAuliffe et al., 2001).  

 

https://web.chemdoodle.com/demos/sketcher/)
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1.4.1.4 Spirotetronate antibiotics 

Lobophorins are kijanimicin derivatives classified as medium-sized spirotetronates 

with a central ring system comprising of 13 carbon atoms (Vieweg et al., 2014). Kijanimicin 

itself is produced via a modular Type-I polyketide synthase and an operon involved in the 

attachment and intramolecular cyclization of glycerate units (Zhang et al., 2007).  In 2013 Pan 

and co-workers identified two new groups of compounds namely Lobophorins H and I from 

a Streptomyces sp. isolated from a south China deep sea sediment sample, retrieved from a 

depth of 2134 m (Pan et al., 2013).  Lobophorin H in particular showed potent activity against 

Bacillus subtilis (Figure 9), which was comparable to the activity of ampicillin; unfortunately 

the mode of action for Lobophorins has not yet been described. Furthermore the 

Lobophorins seem to be exclusively active against Gram positive bacteria and not against 

either Gram negative bacteria or fungi, but some of them do display antitumor activities 

against oral cancer cells (Cruz et al., 2015). Additionally the lobophorins and other 

kijanimicin derivatives seem to be widespread in nature, lobophorins H and I from deep sea 

sediment (Pan et al., 2013), lobophorins A and B from a tropical marine bacterium (Jiang et 

al., 1999) and kijanimicin from the soil actinomycete Actinomadura kijaniata (Zhang et al., 

2007). 

 

Figure 9: Lobophorin H (adapted from (Pan et al., 2013) and visualized with 2D Sketcher) 

 

In 2013 Wang and co-workers screened a large marine-derived library comprising of 

4024 bacterial and 533 fungal isolates for growth inhibition of the Bacille Calmette-Guérin an 

attenuated strain of the bovine tuberculosis bacillus Mycobacterium bovis (Wang et al., 2013). 
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Twenty seven of the screened abstracts (0.6%) showed inhibitory activity. One of the active 

extracts was from a south China deep sea sediment-derived actinomycete, Verrucosispora sp., 

which was retrieved from 2733 m below sea level. The marine actinomycete Verrucosispora 

sp. is also known to produce other bioactive compounds like proximicins A, B and C and 

thiocoraline A a cytotoxic thiodepsipeptide (Schneider et al., 2008; Wyche et al., 2011). 

Structural elucidation of the active fractions revealed the presence of three new abyssomicin 

polyketides (abyssomicin J, K and L) as well as four known abyssomicins (abyssomicin B, C, 

D and H), which were formerly also isolated from Verrucosispora sp. isolates. The newly 

isolated abyssomicin J (Figure 10) is a dimeric thioester which in contrast to other members 

of the abyssomicin family, which are typically monomeric small spirotetronates (central ring 

system C=11). Abyssomicins are of particular interest as novel antibiotics as they target the 

p-aminobenzoic acid biosynthetic pathway, which is involved in the synthesis of 

tetrahydrofolate; a pathway unique to multiple microorganisms, but not found in humans 

(Bister et al., 2004). 

 

Figure 10: Abyssomycin J (adapted from (Wang et al., 2013) and visualized with 2D 

Sketcher) 

 

1.4.2 Other bioactive compounds from cold environments 

The actinomycete genus Serinicoccus which was firstly discovered in 2004 from a deep 

sea sediment sample from the Indian ocean retrieved from a depth of 5368 m (Xiao et al., 

2011) and which currently contains only three species, all of whom were isolated from 

marine habitats; were recently reported to produce secondary metabolites and new indole 

alkaloids (Figure 11) with weak antimicrobial and cytotoxic activities (Yang et al., 2013b).  
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Figure 11: New Indole Alkaloid (adapted from (Yang et al., 2013b) and visualized with 2D 

Sketcher) 

 

Monanchocidins B-E (Figure 12) are unusual polycyclic guanidine alkaloids isolated 

from the marine sponge Monanchora pulchra collected near Urup Island by dredging, which 

displayed potent antileukemic activities (Makarieva et al., 2011), by inducing apoptosis 

(Guzii et al., 2010). Monanchocidin A overcomes drug resistance of cancer and tumor cell 

lines by inducing autophagy and lysosomal membrane permeabilization, making it a 

promising drug lead (Dyshlovoy et al., 2015). The Monanchocidins are part of the well-

known group of pentacyclic guanidine alkaloids with the first representative being 

Ptilomycin A (Ohizumi et al., 1996). Metabolites of this compound displayed a broad range 

of biological activities including antifungal, antimicrobial, antimalarial and many other 

properties. 

 

 

Figure 12: Monanchocidins B (top) and E (bottom) (adapted from (Makarieva et al., 2011) 

and visualized with 2D Sketcher) 

 

New antibacterial compounds namely ent-Eusynstyelamides D, E, and F (Figure 13) 

were isolated from the arctic bryozoan Tegella cf. spitzbergensis and represented the first 

report of compounds with antimicrobial activity from this organism (Tadesse et al., 2011) 
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with inhibitory activities against E. coli, S. aureus, P. aeruginosa and C. glutamicum strains. 

These Eusynstyelamides are brominated tryptophan derivatives which were first isolated 

from the Australian Great Barrier Reef ascidian Eusynstyela latericius (Tapiolas et al., 2009), 

which displayed strong neuronal nitric oxide synthase inhibitory capabilities, which could 

be of potential use in treating neuropathological disorders, such as stroke, Alzheimer’s 

disease, Parkinson’s disease and dementia, which are commonly associated with nitric oxide 

overproduction (Calabrese et al., 2000). 

 

Figure 13: Eusynstyelamides D, E and F (clockwise direction) (adapted from (Tadesse et al., 

2011) and visualized with 2D Sketcher) 

1.4.3 Uncharacterized compounds from cold environments 

Kim and co-workers isolated bioactive microorganisms from an arctic lichen 

collected in Spitzbergen (Kim et al., 2014). Lichens are a composite, symbiotic organism 

comprising of an algae or cyanobacteria and a filamentous fungi. They isolated five bacteria 

with antibacterial activity, which were closely related to either Sphingomonas sp. or 

Burkholderia sp. The isolates were active against Gram-positive (S. aureus, B. subtilis, M. 

luteus) as well as Gram-negative (E. coli, P. aeruginosa, E. cloacae) indicator strains in disk 

diffusion tests and minimum inhibitory concentration assays. 
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Lo Giudice and colleagues studied 580 bacterial isolates retrieved from various 

Antarctic marine sources, such as seawater, sediment and Antarctic fish intestine collected 

during four oceanographic campaigns for their antibacterial activities against terrestrial 

microorganisms (Gram-positive and Gram-negative strains as well as the eukaryotic fungus 

Candida albicans). Twenty two of the isolates showed varying degrees of antibacterial activity 

against E. coli, Proteus mirabilis, Micrococcus luteus and B. subtilis. The active microbial isolates 

were identified as belonging to two main phylogenetic groups one being Actinobacteria 

(Arthrobacter, Janibacter, Nesterenkomia and Rhodococcus sp.) and the other being γ-

Proteobacteria (Pseudoalteromonas and Pseudomonas sp.) by 16S rRNA gene sequencing 

analysis. Interestingly the γ-proteobacterial isolates only inhibited the Gram-negative 

indicator strains E. coli and P. mirabilis, whereas the activity displayed by the Actinobacteria 

was more widespread (Lo Giudice et al., 2007).  

In another study 132 bacterial isolates retrieved from three Antarctic sponges 

(Haliclonissa verrucosa, Anoxycalyx joubini and Lissodendoryx nobilis) were screened for 

antimicrobial activity against more than 70 different Burkholderia sp. strains and other 

indicator strains. Burkholderia besides the more common Pseudomonas aeruginosa is 

commonly connected to infections in Cystic fibrosis patients, but due to its resistance to 

most antibiotics it is very difficult to treat. Most of these isolates exhibited an ability to 

inhibit the growth of Burkholderia cepacia complex bacteria, but not other pathogenic bacteria, 

which indicates a very specific action against these types of bacteria. The retrieved bacteria 

belonged mostly to the Arthrobacter, Pseudoalteromonas, Psychrobacter, Shewanella and 

Roseobacter genera. The cause of action was believed to be due to the production of an array 

of volatile organic compounds (VOCs) produced by these isolates rather than by bioactive 

secondary metabolites, so no evidence was found for polyketide synthase genes and 

plasmid related sequences involved in the biosynthesis of the VOCs. Interestingly the array 

of VOCs produced, differed from isolate to isolate and corresponded to the range of 

observed antimicrobial activities (Papaleo et al., 2012). The aforementioned work lead to the 

sequencing and comparative analysis of three Arthrobacter (Orlandini et al., 2014) and three 

Psychrobacter strains (Fondi et al., 2014) which displayed good antibacterial activity against 

Burkholderia cepacia complex bacteria, but unfortunately none of the studies was able to 

provide further insights into the cause of antibacterial activity besides excluding known 
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secondary metabolite gene clusters, suggesting an unknown type of action and/or 

compound. 

A halophilic Antarctic Nocardioides sp. retrieved from Antarctic soil  has been 

investigated for the production of enzymes and antimicrobial properties following growth 

on different carbon sources (Gesheva and Vasileva-Tonkova, 2012). The bacterium displayed 

differential expression of hydrolytic enzymes and antimicrobial compounds in respect to the 

available carbon source, which highlights the importance of varying the growth condition in 

the laboratory to help unlock the ‘hidden’ potential from environmental isolates. The isolate 

displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, with the 

highest activity against S. aureus and Xanthomonas oryzae. The antimicrobial activity towards 

Xanthomonas oryzae is of special importance here as this bacterium causes bacterial blight in 

rice, one of the most harmful diseases of rice, therefore with the greatest economic impact. 

Further analysis suggested that glycolipids and/or lipopeptides could be responsible for the 

antimicrobial phenotype, depending on the carbon source on which the isolate was cultured. 

 In summary the marine environment is a promising resource for novel bioactive 

compounds as well as for novel biocatalysts. Molecules produced by microorganisms from 

this environment are likely to possess different biochemical characteristics and potential 

novel mode of actions from those produced by microorganism from terrestrial 

environments. This is likely due to the inherently different physiochemical characteristics 

encountered by these marine microorganisms relative to their terrestrial counterparts. Thus 

these novel bioactive compounds and/or novel biocatalysts are therefore of potential interest 

for both industrial and medical based applications. Of special interest in this respect is 

undoubtedly the deep sea, which is one of the least explored environments on our earth and 

one of the last remaining frontiers awaiting extensive scientific exploitation.  

 

* Parts of this introduction have been used in the book chapter:  

Borchert E, Jackson SA, O'Gara F, Dobson ADW: Psychrophiles: From Biodiversity to 

Biotechnology 2nd Edition 20017, Chapter 23: Psychrophiles as a source of novel 

antimicrobials. Springer Verlag, Berlin Heidelberg 
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2.1 Abstract 

Three different deep sea sponge species, Inflatella pellicula, Poecillastra compressa and 

Stelletta normani comprising of seven individual samples, retrieved from depths of 760 to 

2900 m below sea level, were investigated using 454 pyrosequencing for their secondary 

metabolomic potential targeting adenylation domain and ketosynthase domain sequences. 

The data obtained suggest a diverse microbial origin of nonribosomal peptide synthetases 

and polyketide synthase fragments, that in part correlates with their respective microbial 

community structures that were previously described and reveals an untapped source of 

potential novelty. The sequences, especially the ketosynthase fragments, display extensive 

clade formations which are clearly distinct from sequences hosted in public databases, 

therefore highlighting the potential of the microbiome of these deep sea sponges to produce 

potentially novel small molecule chemistry. Furthermore sequence similarities to gene 

clusters known to be involved in the production of many classes of antibiotics and toxins 

including lipopeptides, glycopeptides, macrolides and hepatotoxins were also identified. 

2.2 Introduction 

Marine sponges (Porifera) are important members of marine benthic communities in 

our oceans, and continue to attract attention due to their remarkably diverse bacterial, 

archaeal and eukaryotic microbial community structures (Webster and Taylor, 2012), and 

their importance as a source of novel natural products. Many of the sponge-microbial 

associates are symbionts involved in nutrient cycling and may also play a role in the 

sponge’s chemical defence mechanisms (Taylor et al., 2007; Bell, 2008; Webster et al., 2010; 

Hentschel et al., 2012). Sponges are typically sessile filter feeders, filtering large quantities of 

seawater which contains microbes and viruses that are potentially harmful to the sponge. 

Thus the ability of members of their microbial communities to produce secondary 

metabolites with the potential to augment the sponges own chemical defence mechanisms is 

likely to be advantageous. Sponges are one of the oldest extant metazoans on earth and 

appear to be obligatorily associated with their bacterial endosymbiotic communities. It is 

reasonable to expect divergent evolution of ancestral genes among these endosymbionts to 

the extent that the resulting gene products are likely to be significantly different to those of a 
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terrestrial origin. This is likely to be particularly true of the endosymbionts of deep-sea 

sponges which have been exposed to extremes of temperature, salinity and pressure for 

many millions of years. The adaptation of sponge endosymbionts to these extreme 

conditions can be expected to also have been facilitated by increased horizontal gene 

transfer frequencies that are known to be high amongst marine microbial communities, 

resulting in increases in the genomic flexibility within these bacterial populations (Penn et 

al., 2009; Sobecky and Hazen, 2009; McDaniel et al., 2010). 

Numerous studies have been undertaken to date to investigate the microbial ecology 

and the biological potential of marine shallow water habitats (Aylward et al., 2015). In 

marked contrast even though our oceans have a mean depth of 3800 m, with 50% being 

below 3000 m deep, deep-sea marine environments have only rarely been explored with 

respect to their potential to genetically encode secondary metabolites of clinical or industrial 

utility (Ramirez-Llodra et al., 2010). This lack of exploration is most likely due to the 

technical difficulties and costs associated with sampling at lower depths, with only 5% of the 

“deep sea” having to date been explored with remote instrumentation (Ramirez-Llodra et al., 

2010). Therefore it can be assumed that to date we have only “scratched the surface” of the 

true biotechnological potential of our oceans, particularly the deep sea.   

The identification of novel bioactive compounds and the metabolic potential of 

microbial communities from various terrestrial or marine habitats have mostly been 

investigated using a variety of different approaches including direct chemical extraction 

methods, enhancing cultivability of microorganisms (Sipkema et al., 2011), and testing of 

isolated microorganisms (Gurgui and Piel, 2010). Novel natural products from the marine 

environment include, for example, new antimicrobial agents (Jang et al., 2013), novel 

bioactive compounds (Reen et al., 2015), antifouling agents (Fusetani, 2011) and various 

enzymes of industrial interest (Satpute et al., 2010; Jackson et al., 2015). However the overall 

diversity of the secondary metabolite biosynthetic potential present within these 

environments is difficult to assess given that the majority of bacteria are not readily cultured 

using currently available microbiological methods (Uria and Piel, 2009).  

Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene 

clusters encode for modular arrangements of different enzymes that are able to extend, 
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modify, connect and alter a variety of substrates to produce unique compounds with specific 

enzymatic, chemical or antimicrobial properties (Hertweck, 2009; Khosla, 2009; Helfrich et 

al., 2014). Each PKS or NRPS gene cluster produces a specific secondary metabolite and the 

presence of diversity in these gene clusters is indicative of diverse secondary metabolism 

products. The conserved nature of PKS and NRPS allows the design of degenerate primers 

to target specific domains which these gene clusters have in common, such as ketosynthase 

domains in PKS or adenylation and condensation domains in NRPS clusters (Reddy et al., 

2012; Woodhouse et al., 2013; Charlop Powers et al., 2014). To assess these clusters and to 

help overcome the problems associated with  culture dependent approaches, efforts have 

focused on the analysis of community DNA  isolated directly from the environment in 

question, which can provide a means of exploring their secondary metabolic potential 

(Trindade-Silva et al., 2013; Woodhouse et al., 2013). Nonetheless, to date, only a few studies 

have been published which have investigated the secondary metabolic potential of a mixed 

microbial community using next generation sequencing (NGS) technologies. The resultant 

sequencing depths have the potential to reveal the entire secondary metabolomic potential 

of a microbial cohort, something not achievable prior to the advent of NGS. Previous NGS 

studies targeting secondary metabolism genes have focused on soils (Reddy et al., 2012; 

Charlop-Powers et al., 2014), and marine sponges (Woodhouse et al., 2013). NGS 

technologies have to date been primarily used to study microbial abundance via 16S rRNA 

gene sequencing (Sogin et al., 2006). In contrast, clone libraries, functional metagenomic 

libraries and comparable techniques have been used to target secondary metabolite gene 

clusters to estimate the potential of a given microbial community (Rocha-Martin et al., 2014). 

Reddy et al., 2012, investigated three geographically distinct soil samples and found 

comparably similar distribution of major bacterial phyla in those soils using 16S rRNA gene 

analysis, but almost completely distinct sets of secondary metabolite biosynthetic gene 

sequences. In that study they investigated the presence of specific parts of PKS, NRPS and 

PKS/NRPS hybrid clusters, namely the ketosynthase domain (KS) of Type I PKS and the 

adenylation domain (AD) of NRPS clusters. The primers they used were designed to 

amplify conserved regions of these domains, including the catalytic active site and yielded a 

PCR product of approximately 795 bp and 760 bp for AD and KS domains respectively 
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(Ayuso-Sacido and Genilloud, 2005; Schirmer et al., 2005), which correlates with the expected 

average size of 454 pyrosequencing reads. 

We have previously investigated the microbial diversity of the deep sea sponges 

Inflatella pellicula, Poecillastra compressa and Stelletta normani by 16S rRNA gene 

pyrosequencing and found that they contained diverse bacteria and archaea, with I. pellicula 

in particular being dominated by archaea (Jackson et al., 2013, Kennedy et al., 2014). Here we 

investigate the potential for secondary metabolite production of the microbiome of these 

deep sea sponges to produce novel natural products, utilizing 454 pyrosequencing, targeting 

PKS and NRPS gene clusters, using the aforementioned Reddy et al. PCR primer sets. We 

report that the microbial communities associated with these deep sea sponges do indeed 

harbor a wide variety of these genes. The results clearly show relatedness to genes that are 

involved in the synthesis of known classes of bioactive compounds, for example 

lipopeptides, glycopeptides, macrolides and hepatotoxins. However, and importantly, there 

is also a large proportion of comparably different sequences which are only distantly related 

to domains from known Type I PKS and NRPS sequences. 

2.3 Materials and methods 

2.3.1 Sample collection 

Sponge samples (n = 7) of the species Stelletta normani, Inflatella pellicula and 

Poecillastra compressa were collected in Irish territorial waters off the west coast of Ireland 

using the remotely operated vehicle (R.O.V.) Holland I during the Biodiscovery cruises 2010 

(2 x I. pellicula, 1 x S. normani and 1 x P. compressa) and 2013 (2 x S. normani and 1 x P. 

compressa) aboard the R.V. Celtic Explorer (Table 1). After collection the samples were rinsed 

with sterile artificial seawater (3.33% (w/v) Instant Ocean, Aquarium Systems) to remove 

exogenous materials and stored at -80°C until further processing.  
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Table 1: Sample collection data (*samples also used in Jackson et al. 2013 and Kennedy et al. 

2014 to generate 16S rRNA data) 

Sample ID latitude longitude Depths [m] 

I. pellicula* BD226 54.2419 -12.6938 2900 

I. pellicula* BD92 54.0015 -12.3100 748 

S. normani* BD243 54.0015 -12.3100 1350 

S. normani BDV1267 54.0500 -12.5333 2400 

S. normani BDV1379 53.9861 -12.6100 760 

P. compressa* BD130 54.0633 -12.4131 1469 

P. compressa BDV1346 54.0500 -12.5833 1250 

 

2.3.2 Metagenomic DNA extraction and purification 

Frozen sponge tissues of all samples were ground in a sterile mortar with a pestle 

under liquid nitrogen. The obtained ground tissue was suspended in lysis buffer (100 mM 

Tris, 100 mM EDTA, 1.5 M NaCl (w/v), 1% CTAB (w/v), 2% SDS (w/v) in a 1:5 ratio and 

subsequently incubated for two hours at 70°C (Kennedy et al., 2008). Solution was 

centrifuged until a clear solution was obtained. Afterwards DNA was precipitated using 0.7 

volumes Isopropanol for 30 min at room temperature., followed by centrifugation 6000g, 30 

min. Supernatant was discarded, pellet was washed with 70% Ethanol, centrifuged again, 

after supernatant removal air dried and finally resuspended in an appropriate amount of 

Tris-EDTA buffer (10mM Tris, 1mM EDTA, pH 8.0). The metagenomic DNA was then 

analyzed by gel electrophoresis, spectrophotometrically quantified (NanoDrop ND-1000) 

and stored at -20°C until usage.  

2.3.3 PCR amplicon generation 

Primer design was adapted from Reddy et al. (Reddy et al., 2012). In short, each 

primer consists of a 454 sequencing adaptor, a unique 10 bp identifier tag to allow for 

sequencing of different amplicons/genes in the same region of a 454 plate and degenerate 

target sequence to either amplify a fragment (approximately 795 bp) of a conserved region in 

NRPS adenylation domains (AD) or a fragment (approx. 760 bp) of a ketosynthase domain 

(KS) from type I polyketide synthases (PKS) (see S1 table). 
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For the amplification of AD gene fragments from seven samples three different PCR 

conditions were used. The first reaction mixture (50 µl) comprised of 10 ng DNA, 0.5 µM 

each primer, 200 µM deoxynucleoside triphosphate (dNTP), 1x Q5 reaction buffer (New 

England Biolabs) and 1 U Q5 Hot start DNA polymerase (New England Biolabs). PCR 

amplification conditions for mix one were 35 cycles of 98°C for 10 s, 70°C for 30 s, 72°C for 

30 s, followed by a final extension at 72°C for 3 min. The second mix contained 1x Phusion 

Buffer (New England Biolabs), 10 ng DNA, 200 µM dNTPs, 0.5 µM each primer and 1 U 

Phusion polymerase. PCR amplification from the second reaction mixture comprised 30 

cycles of 98°C for 10 s, 68°C for 30 s, 72°C for 30 s and a final extension step at 72°C for 5 

min. The third mix included 1x Failsafe Buffer E (Epicentre, FailSafe PCR System) 10 ng 

DNA, 200 µM dNTPs, 0.5 µM each primer and 2.5 U DreamTaq DNA polymerase 

(ThermoFisher Scientific). Third mix amplification was as follows: 35 cycles of 95°C for 60 s, 

60°C for 60 s, 72°C for 2 min and a final extension at 72°C for 10 min. 

For the amplification of KS fragments from five samples only one PCR mix was 

employed, which is similar to the third mix from the AD amplification, except that buffer E 

was replaced with buffer F from the FailSafe PCR System. Conditions for amplification were 

as follows: 35 cycles of 95°C for 40 s, 50°C for 40 s, 72°C for 75 s and a final extension for 5 

min at 72°C (Brady et al. 2007). All samples were used for AD amplification, but only five for 

KS amplification (all three S. normani, one I. pellicula and one P. compressa (2010 Cruise) 

sample. 

 

2.3.4 Pyrosequencing and data processing 

The amplicons were gel purified and quantified using a spectrophotometer 

(NanoDrop ND-1000) and a fluorometer (Qubit™ Fluorometer Invitrogen). For library 

preparation, amplicons generated from all twelve samples were pooled in a single sample to 

a final concentration of 1.26 x 109 molecules/µl and pyrosequenced on 1/8th of a plate for a 

454 GS-FLX+ (Macrogen Inc.) sequencing run. The resulting sequences were quality filtered 

by removal of low quality (mean quality score below 25), short (less than 150 bp), 

homopolymer (limit of 6) and ambiguous reads (read contains more than 6 ambiguous 
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bases) and sorted by sample species using QIIME (Caporaso et al., 2010). MG-RAST (Meyer 

et al., 2008) was used to dereplicate the quality filtered reads, resulting in deletion of 56.9% 

of AD and 68.6% of KS sequences respectively. Manually constructed and publicly available 

reference sequence databases were used to sort/identify the quality filtered sequences using 

QIIME and NaPDos (e-Value Cutoff of 1e-5 and minimum match length of 100 aa) (Ziemert 

et al., 2012). Manually constructed reference databases were established by screening the 

NCBI database for primer targets and screening known secondary metabolites gene clusters 

for primer binding sites and by confirming that the adjacent sequences were either 

ketosynthase or adenylation domains. In this way each reference data set comprised 30 to 40 

unique sequences, which were then used in QIIME to pick reference OTUs 

(pick_open_reference_otus.py) using the UCLUST algorithm (Edgar, 2010) with pre-

clustering at 60% identity to the references. The resultant representative OTUs were 

analyzed using MEGA, iTOL (Letunic and Bork, 2007, 2011) and MG-RAST (Meyer et al., 

2008). The NaPDos tool was used to compare the obtained representative KS OTUs to 

sequences deposited in this database and to calculate phylogenetic trees, later visualized by 

iTOL. Representative sequences were also checked manually by using the BLAST algorithm 

against the NCBI database to exclude unwanted sequences, for example fatty acid 

production affiliated sequences, and to verify the AD and KS domain character of the 

sequence reads. The data (raw reads) is deposited in the NCBI Sequence Read Archive 

(SRA) database under the accession number SRP070811. 

2.4 Results: 

The 454 pyrosequencing resulted in 109,079 reads of which 57,993 passed quality 

filtering and were subsequently analyzed downstream. Of these 57,993 sequences, 2,385 

reads account for AD domain sequences and 55,608 reads for KS domain sequences. 

Dereplication using MG-RAST (Gomez-Alvarez et al., 2009) resulted in 15,865 unique 

sequences, 1,621 AD reads and 14,244 KS reads respectively. The average length of the 

remaining sequences after dereplication was 398±205 bp (AD) and 473±168 bp (KS). A 

breakdown of the numbers of sequences included for further analysis and the representative 

sequences are provided in Table 2. Chao1 and Shannon diversity estimates were calculated 

using QIIME with 3% divergence and are listed in Table 3 for each individual sample. 
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Table 2: Breakdown of retrieved sequences after quality control and number of picked 

reference OTUs 

Species 
No. of 

sequences 

Average 

length 

GC 

content 

No. of reads after 

dereplication 

No. of rep. 

OTUs 

I. pellicula AD 760 427 bp 66.1% 351 35 

P. compressa AD 688 249 bp 62.8% 664 14 

S. normani AD 937 485 bp 67.8% 606 31 

I. pellicula KS 10227 505 bp 53.1% 3125 72 

P. compressa KS 8167 467 bp 49.6% 2514 50 

S. normani KS 37214 485 bp 57.1% 8605 109 

 

Table 3: Chao1 and Shannon diversity indices 

Sample Chao1 Shannon 

I. pellicula A AD 4.0 0.87 

I. pellicula B AD 31.0 4.89 

P. compressa A AD 13.0 2.19 

P. compressa B AD 1.0 0 

S. normani A AD 12.33 2.95 

S. normani B AD 19.3 4.16 

S. normani C AD 8.0 2.88 

I. pellicula B KS 76.0 5.92 

P. compressa A KS 50.0 4.98 

S. normani A KS 56.12 5.08 

S. normani B KS 5.0 2.19 

S. normani C KS 59.13 5.70 

 

The taxonomic abundances were calculated by MG-RAST after dereplication of the 

quality filtered reads. The most dominant phylogenetic assignations in the AD sequences 

comprise of Proteobacteria, Cyanobacteria, Firmicutes, Actinobacteria, Verrucomicrobia and 

Chloroflexi (Figure 1). Proteobacteria account for 49% of the sequences from I. pellicula, 53% 

from P. compressa and for 43% from S. normani and is therefore the most abundant phylum 

contributing AD sequences in all three sponge species. A difference in the abundances is 

observable in the amount of cyanobacterial (0.87%) and Chloroflexi (7.82%) affiliated 

sequences in P. compressa in contrast to I. pellicula (14.7%, 2.14%) and S. normani (18.8%, 

2.23%) respectively. The KS sequences are dominated by Proteobacteria, Cyanobacteria, 

Firmicutes, Actinobacteria, Planctomycetes and Verrucomicrobia (Figure 2). The proteobacterial 
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KS sequences represent 38.63%, 28.94% and 37.26% of the sequences in I. pellicula, P. 

compressa and S. normani respectively. Observable differences are notable in the percentile 

distribution of Cyanobacteria (19.15% I. pellicula and 21.04% P. compressa in contrast to 8.34% 

in S. normani), Actinobacteria (8.53% in I. pellicula and 10.53% in S. normani in contrast to 

19.15% in P. compressa), Planctomycetes (1% in I. pellicula, 4.49% in P. compressa and 8.18% in S. 

normani), Firmicutes (4.65% I. pellicula and 4.79% P. compressa and 6.92% in S. normani) and 

Verrucomicrobia (1.38% I. pellicula, 2.44% P. compressa, 2% S. normani) derived KS sequences. 

 

 

Figure 1: Percental distribution 

of AD sequences. Barchart 

based on taxonomic 

identification of raw reads by 

MG-RAST after dereplication. 
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Figure 2: Percental distribution 

of KS sequences. Barchart based 

on taxonomic identification of 

raw reads by MG-RAST after 

dereplication. 

 

 

 

 

 

 

2.4.1 Inflatella pellicula 

The sponge samples from Inflatella pellicula yielded 351 AD sequences and 3,125 KS 

sequences after quality filtering and dereplication in QIIME and MG-RAST, resulting in 35 

and 72 merged unique representative sequences respectively.  Of the 35 AD sequences 18 

have a length over 190 bp (up to 697 bp) and were identified as true adenylation domain 

sequences by BLASTX searches. The predicted taxonomic origin of these sequences is 

diverse with similarities to genes from species including Clostridium sp., Pseudomonas sp., 

Sorangium cellulosum, Microcystis sp., Micromonospora sp., Streptomyces sp., Silvibacterium 

bohemicum, Nostoc sp., with Streptomyces sp., Microcystis sp. and Sorangium cellulosum being 

the most prominent origins (level of protein identity ranging from 40 to 60%). As can be seen 

from Figure 3 (I. pellicula tag is colored in red) the obtained reference sequences seem to be 

distantly related to adenylation domains from macrolides (Epothilone), lipopeptides 

(Daptomycin) and glycopeptides biosynthetic gene clusters (Vancomycin, Bleomycin, 

Balhimycin) and dissimilar to streptogramine (Pristinamycin), cyanoginosine (Microcystin), 

bacteriocin (Enterocin) or depsipeptide (Chondramides) biosynthetic genes (AD domains of 

compounds in brackets were used to construct the reference data set) (Figure 3).  
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Figure 3: Phylogenetic distribution of obtained reference AD sequences compared to a 

manually constructed reference sequence dataset. The alignment was performed in MEGA 

software using CLUSTAL W (Thompson et al., 1994) for nucleotide alignment. For 

phylogenetic tree construction the results were transferred to iTOL software. The sequences 

from P. compressa are blue coloured, from I. pellicula red coloured and from S. normani yellow 

coloured. The inner circle highlights the origin of different sequences, pale orange indicates 

populated only by reference sequences from the manually constructed reference dataset, 

green clades only comprise of sponge derived sequences and purple clades represent mixed 

clades. 

 

The KS sequences were not manually checked after reference sequence picking by 

QIIME, but rather a second quality control step was used by analyzing the sequences with 

the NaPDos database. This repository consists of 96 different PKS, NRPS and PKS/NRPS 

hybrid pathways with chemically characterized products. These pathways comprise 648 

reference sequences for KS and condensation domains as each pathway may contain several 
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KS or C domains (see S2 table, for alignment scores). The putative taxonomic origin of the 

KS domain sequences consists of Mycobacteria sp., Cylindrospermum sp., Lyngbya majuscula, 

Sorangium cellulosum, Paenibacillus sp., Candidatus Endobugula sertula , Burkholderia sp., 

Stigmatella aurantica, Streptomyces sp. and many more with uncultured bacteria of marine 

origin and cyanobacteria being the most prominent (protein identity levels varies from 40 to 

70%). Phylogenetic clustering (Figure 4) of the KS domain sequences (I. pellicula red) resulted 

in clade formation (purple sector, ‘mixed’) with reference KS sequences from known 

lipopeptide, macrolide biosynthetic genes and a large clade of diverse sequences which were 

unaffiliated (green sector, ‘sponge specific’) to a reference sequence.   
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Figure 4: Phylogenetic distribution of obtained reference KS sequences compared to 

reference sequences from NaPDos. The KS domain detection settings were set to minimal 

length of 100 aa and an e-Value Cutoff of 1e-5. For phylogenetic tree construction the results 

were transferred to the iTOL software. The sequences from P. compressa are blue coloured, 

from I. pellicula red coloured and from S. normani yellow coloured. The inner circle 

highlights the origin of different sequences, pale orange indicates populated only by 

reference sequences from the NaPDos database, green clades only comprise of sponge 

derived sequences (‘sponge specific’) and purple clades represent mixed clades. 4a shows 

the phylogenetic tree of all obtained reference KS sequences. 4b is a subtree of figure 4a 

displaying the three different kinds of observed clade formation. 4c shows a large clade 

solely made up of obtained reference KS sequences unrelated to references sequences from 

the NaPDos database. 

 

2.4.2 Poecillastra compressa 

The sponge samples from Poecillastra compressa yielded 664 AD sequences and 2,514 

KS sequences after dereplication, resulting in 14 and 50 merged unique representative 

sequences respectively. Of the 14 AD sequences only one was found to be a true adenylation 

domain with a considerable length (325 bp). The remaining 13 sequences comprised of short 

reads (120 to 160 bp) with similarities to elongation factors or hypothetical proteins. BLASTX 

search of the single AD sequence displayed a 51% protein identity to a protein from 

Streptomyces sp. and 39% identity to tyrocidine synthase 3 (tyrocidine is a cyclic decapeptide) 

from a Streptomyces sp. 
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Forty nine of the 50 KS domain sequences passed the second quality control step. 

BLASTX was used to investigate the taxonomic origin of these KS sequences, resulting in 

similarities to previously reported KS sequences from Lyngbya majuscula, Stigmatella 

aurantica, Mycobacterium sp., Chondromyces apiculatus, Sorangium cellulosum, Streptomyces sp., 

and Nannocystis pusilla.  The majority of these KS sequences displayed most similarity to 

Cyanobacteria and to KS sequences from uncultured bacteria of both soil and marine origin. 

Clustering of the KS sequences (P. compressa blue colored tag Figure 4) was performed with 

the NaPDos reference database and yielded clade formation to KS sequences from known 

bioactive compounds such as streptogramins, lipopeptides, polyethers, orthosomycin 

antibiotics and macrolides. Clades were also formed which were clearly distinct from the 

reference sequences (Figure 4); with protein identity levels ranging from 37% to 75%.  

2.4.3 Stelletta normani 

The sponge samples from Stelletta normani yielded 606 AD sequences and 8605 KS 

sequences after dereplication. This resulted in 31 and 109 merged unique representative 

sequences respectively and is therefore the most diverse of the three sample species. Five of 

the 31 AD domain sequences were discarded due to length restrictions (shorter than 180 bp). 

A BLASTX search was conducted to look for protein similarities and similarities were 

predominately found to proteins from Bacillus sp., Stigmatella aurantica, Hyella sp., Nostoc sp. 

and Microcystis sp., Cylindrospermum sp., Brevibacillus sp., Streptomyces sp., Planktothrix sp., 

Nitratireductor sp. and Methylobacter sp. When clustered with known AD domain sequences 

the obtained sequences (S. normani sequences tagged yellow, Figure 3) formed clades with 

genes that produce lipopeptides , glycopeptides  and with sequences derived from the beta-

methoxyacrylate inhibitor Melithiazol, with some sequences clustering apart from the 

reference sequence (Figure 3). 

The initial reference sequence picking via QIIME resulted in 109 sequences, of which 

55 passed the second quality filter step (NaPDos). BLASTX search of these sequences yielded 

similarities to proteins from Sorangium cellulosum, Amycolatopsis sp., Mycobacterium sp., 

Streptomyces sp., Scytonema sp., Lyngbya majuscula, Clostridium sp., Candidatus Thiomargarita 

nelsonii and to KS sequences from both uncultured soil and marine bacteria were observed. 

The KS sequences cluster with biosynthetic genes from lipopeptides, orthosomycin 
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antibiotic, macrolides and a large cluster of diverse sequences distantly related to KS 

sequences from gene clusters known to produce Jamaicamides and Melithiazol (Figure 4). 

 

2.5 Discussion: 

The secondary metabolomic potential of the microbiome of three different deep sea 

sponge species, Inflatella pellicula, Poecillastra compressa and Stelletta normani was investigated 

using 454 pyrosequencing; to detect the presence of PKS and NRPS gene cluster associated 

genes, targeting AD and KS domain sequences (Table 1). The use of a next-generation 

sequencing approach, circumvents the problems associated with the cultivation of bacteria 

from these sponges. This study supplements a previous 16S rRNA gene based approach we 

had employed to study the microbial ecology of these deep sea sponges (Jackson et al., 2013; 

Kennedy et al., 2014). Given that NGS analysis of marine sponge metagenomes result in the 

generation of large data sets (Table 2), it is therefore important that strict quality control is 

employed so as not to lead to incorrect interpretation of the data. To reflect this the number 

of raw reads used here has been reduced by approx. 85% in total, 46.8% after quality 

filtering and 38.5% after dereplication (using default parameters in QIIME and MG-RAST) 

(Table 2).  

 

Figure 5: Rarefaction curves of the obtained AD (a) and KS (b) sequences. This figure was 

generated using MG-RAST were the data was compared to the Non-Redundant Multi-Source 

Protein Annotation Database with a minimal identity Cutoff of 60% identity to account for the 

observed low identity to known sequences, maximal e-Value Cutoff of 1e-5 and a minimal 

alignment length Cutoff of 15 aa. 
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The resulting number of sequences in the final analysis while clearly not 

representative of the entire biosynthetic potential of the sponge microbial communities are 

nonetheless significant in that they indicate the presence of PKS and NRPS diversity within 

these deep sea sponges. Rarefaction curves indicate sufficient coverage, indicated by the 

plateau of the curve, for only one out of three sample species (Figure 5). The possibility 

exists, as previously alluded to in Brady et al. 2007 that the use of these degenerate primers 

may lead to the selective amplification of proteobacterial and actinobacterial AD and KS 

sequences. However, in this instance we feel that possible overrepresentation is likely to be 

marginal as we have previously reported that Proteobacteria and Actinobacteria account for a 

substantial portion of the microbial community of sponges and also of the communities in 

the deep sea sponges investigated here (Kennedy et al. 2014). In that study a 16S rRNA gene 

sequencing based approach was employed to investigate the microbial communities of four 

deep sea sponges and of the surrounding seawater, we found that the microbial community 

of those sponges comprise to a large extent of Proteobacteria (especially γ-Proteobacteria), 

Chloroflexi (Stelletta normani), Actinobacteria and Bacteroidetes. The predicted taxonomic 

sources of the KS and AD reads presented here are in the main part, well represented in the 

aforementioned 16S rRNA gene dataset as well as Firmicutes and particularly Cyanobacteria 

(Figure 1 and 2), with the most prominent phyla being Proteobacteria, Actinobacteria and 

Cyanobacteria. Furthermore Actinobacteria or more specifically Streptomyces (Chater et al., 

2010) and many classes of the diverse phylum of Proteobacteria are noted producers of potent 

secondary metabolites (Gerth et al., 1996; Wenzel and Müller, 2009). Though the proposed 

phyletic assignments of our KS and AD domain sequences are further validated by the 

observed similarities between the 16S rRNA gene data and the phylogenetic distribution of 

the KS and AD sequences, caution is required in the interpretation of these assignments. 

Putative taxonomic origins of functional genes are not fully reflective of the actual 

taxonomic source of these genes but are merely indications of sequence identity between a 

query sequence and its most similar sequence match.  Nonetheless the prominent occurrence 

of Cyanobacteria affiliated sequences is puzzling as this bacterial phylum is not present in the 

16S rRNA gene datasets and is not expected to be. Cyanobacteria rely on photosynthesis for 

energy generation which does not occur at depths greater than 200m. A possible explanation 

for this is a high rate of horizontal gene transfer of NRPS and PKS cluster affiliated 
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sequences, which is known to frequently occur in marine sponge metagenomes. PKS and 

NRPS gene clusters are also known to be also encoded on ‘genomic/pathogenicity islands’, 

that are rich in mobile genetic elements, therefore enhancing their potential transfer 

frequencies (Fischbach et al., 2008; Ridley et al., 2008; Ziemert et al., 2014).  

The phylogenetic trees constructed from the sequences obtained for AD and KS 

domain fragments clearly sheds further light on the hidden biological potential of microbial 

populations associated with these deep sea sponges. It is evident that a portion of the 

sequences, in particular the KS domain sequences form their own diverse clades which are 

clearly distinct from KS sequences from genes encoding known bioactive compounds 

(Figure 6). The use of the BLASTX algorithm was particularly illuminating when 

investigating these KS and AD sequences, given that the comparable long reads achieved 

with 454 pyrosequencing (up to 700 bp) allowed a more robust analysis to be performed. 

Many common ‘hits’ are similar to sequences of marine origin like KS sequences from 

uncultured bacteria identified from shallow water sponges or to Mycobacterium marinum, 

Cyanobacteria and Streptomyces sp.. Furthermore it is worth mentioning the occasional 

appearance of KS domain ‘hits’ with sequences from Sorangium cellulosum a myxobacteria 

inhabiting soil environments and the producer of Epothilone (Gerth et al., 1996). Other 

sequences showed similarities to genes from genera which are known to produce 

Hectochlorin, Jamaicamides, Gulmirecins (Schieferdecker et al., 2014)  and Nostophycin 

(Fewer et al., 2011) amongst others. Hectochlorin was first isolated from the marine 

cyanobacteria Lyngbya majuscula and is a product of a mixed PKS/NRPS pathway and 

displays potent antifungal and cytotoxic properties (Ramaswamy et al., 2007). The 

Jamaicamides are lipopeptides which are also of mixed PKS/NRPS origin. They are 

produced by the marine cyanobacteria Lyngbya majuscula and display sodium channel 

blocking capabilities (Edwards et al., 2004). The origin of the AD domain fragments is also 

quite diverse with the closest ‘hits’ being to AD genes from Brevibacillus, Streptomyces, 

Pseudomonas, Nostoc and Clostridium species. Actual ‘hits’ with known bioactive compounds 

for AD sequences comprise of similarities to the AD domain from the genecluster encoding 

Simocyclinone, an angucycline antibiotic with topoisomerase inhibitory activity (Flatman et 

al., 2005) and an AD domain from Microcystin which is an hepatotoxin produced by 

Cyanobacteria (Dawson, 1998). Furthermore, comparatively few AD domain fragments 
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(compared to KS sequences) were retrieved from the data (2,385 before and 1,621 sequences 

after quality filtering, Table 2), which may be due to a low abundance of this sequence type 

in deep sea sponges. The KS and AD domain fragment sequences can be distinguished by 

either clustering with reference sequences or by forming their own clades, which are only 

very distantly related to the database sequences used for comparison (Figure 3, 4). This is 

particularly true in the case of the KS sequences which make up a clade of sequences which 

are clearly distinct from KS sequences from genes involved in the synthesis of known 

bioactive compounds (Figure 4). These clades are very diverse, as is evident from the 

individual branch lengths in the phylogenetic tree (Figure 4a, b, c). Furthermore, the KS and 

AD sequences show similarities to genes linked to the production of a broad range of 

antibiotics and toxins of different groups. These include lipopeptides, glycopeptides, 

macrolides, streptogramins, depsipepdtides, cyanoginosines, bacteriocins and hepatotoxins. 

Thus while sequence similarity searches and sequence cladograms indicate degrees of 

similarity with known PKS and NRPS gene fragments, degrees of novelty or divergence are 

also very obvious (Figure 3, 4).  In particular the KS and AD gene fragments which have 

been identified here form clades which are clearly distinct from those of known antibiotic 

related gene clusters. This indicates that potential novel biodiversity with respect to marine 

natural products is likely to be present in these deep sea sponge microbiomes.  

In conclusion, this study reveals that PKS and NRPS affiliated domains are prevalent 

among the genomes of the members of the microbial communities of these deep sea 

sponges, which may potentially also be from symbiotic members of the community and 

therefore be sponge-specific. Nonetheless further research needs to be performed to allocate 

the biological potential identified here to whole gene clusters and possible gene products. 

The exploitation of this potential may however be difficult to achieve, particularly bearing in 

mind the difficulties in obtaining samples from these depths and the sample size 

requirements involved.  However given the potential biodiversity that we report here, with 

respect to natural product biosynthetic genes, such difficulties may be worth overcoming, 

particularly given the ongoing need for novel bioactive polyketides and nonribosomal 

peptides.   
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3.1 Abstract:  

The marine genus Pseudoalteromonas is known for its versatile biotechnological 

potential with respect to the production of antimicrobials and enzymes of industrial 

interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated 

from different deep sea sponges on the Illumina MiSeq platform. The isolates have been 

screened for various industrially important enzymes and comparative genomics has been 

applied to investigate potential relationships between the isolates and their host organisms, 

while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea 

environments. The genomes of the sponge associated Pseudoalteromonas strains contained 

much lower levels of potential eukaryotic-like proteins which are known to be enriched in 

symbiotic sponge associated microorganisms, than might be expected for true sponge 

symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, 

nonetheless the number of unique and accessory genes is quite large and defines the pan-

genome as open. Enzymatic screens indicate that a vast array of enzyme activities are 

expressed by the isolates including β-galactosidase, β-glucosidase and protease activities 

and further tests identified these activities to be both psychrophilic and mesophilic, as well 

as favoring alkaline pH conditions. 

 

3.2 Introduction 

The genus Pseudoalteromonas are a subgroup of Gram-negative Gammaproteobacteria 

with common features including, a requirement for Na2+ ions, motility and aerobic and 

chemoheterotrophic metabolism. The genus was first described by Gauthier and co-workers 

and separated from the genus Alteromonas (Gauthier et al., 1995). The genus can be divided 

into either pigmented or non-pigmented species, with members of the genus being known to 

possess the ability to produce a wide array of bioactive compounds. The pigmented species 

in particular are known to produce a range of antimicrobial and antifouling compounds 

which display activity against a broad spectrum of organisms and have as a result been 

widely investigated in the past (Holmström et al., 1996; Egan et al., 2002; Bowman, 2007; 

Fehér et al., 2010). While the non-pigmented species are typically not antimicrobial 



74 

 

producers, they are however versatile producers of an array of different extracellular 

enzymes that are of potential biotechnological interest (Cieśliński et al., 2005; Dobretsov et 

al., 2007; Mo et al., 2009; Oh et al., 2010; Yan et al., 2009). Pseudoalteromonas are one of the most 

frequently isolated bacteria from marine environments (Holmström and Kjelleberg, 1999) 

and are routinely found in association with various eukaryotic hosts in these environments 

such as tunicates (Holmström et al., 1998), algae (Egan et al., 2001), sponges (Ivanova et al., 

2002), mussels (Ivanova et al., 1998), pufferfish (Simidu et al., 1990) as well as algae and 

marine plants (Akagawa-Matsushita et al., 1992; Yoshikawa et al., 1997). They have also been 

isolated as free living in seawater (Bozal et al., 1997), sea ice (Bowman, 1998) and marine 

sediment (Qin et al., 2011). 

The deep oceans as an ecosystem are of growing interest to the scientific community. 

While the mean depth of the oceans is 3800 m, about 50% is deeper than 3000 m. With only 

5% of the ‘deep sea’ having to date been explored, it is clear that the biotechnological 

potential of this unique ecosystem has yet to be fully exploited (Borchert et al., 2016; 

Ramirez-Llodra et al., 2010; Sipkema, 2016). We have previously reported on the microbial 

biodiversity of deep sea sponges sampled at depths of between 760-2900 m below sea level, 

indicating that the microbial community structures of these sponges may represent an 

untapped source of potential microbial biodiversity (Jackson et al., 2013; Kennedy et al., 

2014). Bacterial and fungal communities from deep sea sediments also continue to receive 

attention, not only from an ecological standpoint (Xu et al., 2014), but also due to the ability 

of microorganisms isolated from this ecosystem to produce novel bioactive molecules (Li et 

al., 2016; Wu et al., 2016) and enzymes of biotechnological importance (Shao et al., 2015; Yang 

et al., 2016). Cold-active enzymes are of particular interest as they possess a range of 

structural features that promote flexibility at the active site, low substrate affinity and high 

specific activity at low temperatures. These characteristics are important in industrial 

biocatalysis, not only from an energy savings standpoint, but also due to the fact that 

reactions at low temperatures prevents undesirable chemical side reactions which can occur 

at higher temperatures; while also allowing rapid thermal inactivation of these enzymes, 

due to their thermolabile properties (Cavicchioli et al., 2002; Santiago et al., 2016).  

Pseudoalteromonas strains have previously been reported to produce a number of cold 

adapted enzymes including DNA ligase (Georlette et al., 2000), pectate lyase (Truong et al., 
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2001), β-galactosidase (Cieśliński et al., 2005), subtilase (Yan et al., 2009) and agarase (Oh et 

al., 2010), with enzyme production in Pseudoalteromonas haloplanktis TAC125 and other 

Pseudoalteromonas strains namely sp. ANT506, sp. ANT178, sp. KMM701 and sp. CF6-2 in 

particular being studied in more detail (Santiago et al., 2016; Yang et al., 2016). With this in 

mind, this study focused on the isolation and comparative genomics of three non-pigmented 

Pseudoalteromonas spp. isolated at different depths from both marine sponges and sediment; 

in an effort to assess their biotechnological potential. 

The genomes share a large pangenome and have a considerable number of unique gene 

clusters, but only a small number of genes are associated with potential host interaction in 

all the investigated genomes, irrespective of whether or not they have been isolated from 

sponges, from deep sea sediment or ocean water. Furthermore Pseudoalteromonas strains 

EB27, SK18 and SK20, isolated from deep sea sponges do not share a large number of genes 

that could be attributed to a symbiotic lifestyle.  While the strains displayed cold-adapted 

growth characteristics, they are unlikely to be true psychrophiles. The three strains did 

however display a number of interesting enzyme activities including β-glucosidase, protease 

and β-galactosidase activities and displayed properties that are favorable to industrial 

applications, such as alkaline pH optima and cold-adaptation.  

 

3.3 Materials and Methods  

3.3.1. Sponge collection and isolation of microorganisms 

The sponges (Poecillastra compressa, Inflatella pellicula and Sericolophus hawaiicus) used for 

the isolation of microorganisms have been collected of the west coast of Ireland during the 

Biodiscovery cruises 2010 and 2013 by the remotely operated vehicle Holland I on board the 

R.V. Celtic Explorer. The sponges were rinsed directly after collection with sterile artificial sea 

water (3.33% (w/v) Instant Ocean, Aquarium Systems) to remove any exogenous material 

and were subsequently stored at -80°C until further processing. The isolation of 

microorganisms was performed as follows; small sponge pieces were macerated with a 

sterile razor blade and serially diluted with artificial seawater and plated onto SYP-SW 

plates (10g/l starch, 4g/l yeast extract, 2g/l peptone, 33.3g/l artificial sea salt, 1.5% agar). The 
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plates were inspected daily for colonies and incubated for four weeks at 28°C. All colonies 

were restreaked until pure cultures were obtained. 

 

 

3.3.2. Enzyme activity plate screenings 

 The pure cultures were tested for different enzyme activities. All screenings were 

carried out at 28°C and incubated for three to four days.  

 Protease screening was carried out using SYP-SW plates supplemented with 2% skim 

milk (Sigma-Aldrich), a clear halo around the colonies after incubation indicates a possible 

protease activity. Positive colonies were further tested on SYP-SW plates supplemented with 

40 ng/ml X-Gal to differentiate between true protease activity and β-glucosidase/β-

galactosidase activity, a blue colour change of the colony would indicate that it is rather the 

latter activity. 

 Cellulase activity was tested using SYP-SW plates supplemented with 0.1% Ostazin 

brilliant red hydroxyethyl-cellulose (OBR-HEC; Slovak Academy of Science, Institute of 

Chemistry); clear halos around colonies indicate cellulase activity. 

 Lipase activity was investigated via adding 1% tributyrin (Sigma-Aldrich) to the 

SYP-SW plates, again a clear halo around the colonies indicates a lipase or esterase activity. 

 

3.3.3. Enzyme assays and growth characterization 

 Native enzyme assays for β-glucosidase and protease activity were carried out with 

aliquots of overnight cultures from the respective Pseudoalteromonas sp. isolates. β-

glucosidase assays were carried out by adding 150 µl of overnight culture to 1350 µl 0.1 M 

potassium phosphate buffer solution (pH 8.5, pH 6.0 and 7.0 gave little to no detectable 

activity) and 22.5 µl 0.1 M p-nitrophenyl-β-D glucopyranoside as substrate, incubated for 1.5 

h at different temperatures and absorbance at 420 nm was measured subsequently. The β-

galactosidase assay followed a similar protocol as the β-glucosidase assay, besides that the 

substrate was substituted with 45 µl 0.05 M p-nitrophenyl-β-D galactopyranoside. For the 

protease assay 150 µl overnight culture were added to 250 µl 2% azocasein solution (0.1 M 

Tris-HCl, pH 8.0) followed by incubation for 1 h at different temperatures, then 900 µl 10% 

trichloroacetic acid were added and incubated for 15 min at room temperature to stop the 
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reaction and afterwards centrifuged for 10 min at max. speed. 600 µl of the supernatant were 

combined with 700 µl 1 M NaOH and the absorbance was measured at 440 nm.  

 Overnight cultures incubated at 28°C and 180 rpm were diluted the next day in 30 ml 

marine broth (Difco marine broth 2216) to an optical density at 600 nm of 0.05 and 

subsequently incubated at different temperatures (4°C , 23°C , 28°C , 37°C) in shaking 

incubators. The growth was monitored hourly by measuring the optical density at 600 nm. 

The specific growth rate (mu) and the generation/doubling time (tgen) was calculated using 

the formula mu=(ln(X1)-ln(X0))/(t1-t0) and tgen=(0.693/mu)*60, with X0 being the optical density 

at the beginning of the exponential growth phase (approximate OD600 of 0.15), X1 a time 

point within the exponential growth phase (OD600 between 0.15 and 1.0) and t the time 

passed between X0 and X1 in hours. 

 

3.3.4. Genomic DNA isolation and sequencing 

Genomic DNA isolation was carried out by processing a 10ml overnight culture (SYP-

SW medium, 28°C, 180 rpm), after centrifugation the media was removed and 2 ml lysis 

buffer (2% SDS, 1% CTAB, 100 mM Tris, 100 mM EDTA, 1.5 M NaCl, pH 8.0) were added 

and incubated in a water bath at 70°C with occasional mixing for two hours. The cell lysate 

was centrifuged until a clear lysate was obtained, 0.7 volumes of Isopropanol were 

subsequently added to precipitate the genomic DNA (30 min, room temperature). After 

centrifugation the supernatant was discarded and the obtained pellet was washed with 70% 

ethanol, then centrifuged again and after supernatant removal, air dried and finally 

resuspended in an appropriate amount of Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 

8.0). DNA quality was assessed by running 5 µl DNA on an agarose gel resulting in a high 

molecular weight band. Purity of DNA was measured on a NanoDrop ND-1000 

Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA was quantified 

with a Qubit dsDNA HS assay (Thermo Fisher Scientific) prior to preparing genomic 

libraries with the Nextera XT DNA Library Prep Kit (Illumina, San Diego, USA) according to 

the manufacturer’s instructions. Final libraries were barcoded with Nextera XT indices, 

assessed on a Bioanalyzer High Sensitivity DNA chip (Agilent Technologies, Santa Clara, 

CA, USA) and sequenced together on an Illumina MiSeq platform using paired-end 300 bp 

chemistry. Raw sequence data was quality trimmed using Trimmomatic version 0.36 (Bolger 
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et al., 2014) removing short reads and trimming both ends of reads containing low quality 

bases. Quality trimmed reads were assembled using SPAdes version 3.7.0 (Bankevich et al., 

2012) in paired-end mode with default settings. Full length 16S rRNA gene sequences were 

predicted using RNAmmer (Lagesen et al., 2007). (the genomes are deposited in the NCBI 

database under the accession numbers MTQB00000000, MTQC00000000, MTQD00000000) 

 

3.3.5. Genome analysis and comparison  

The draft genomes were annotated using the RAST pipeline (Aziz et al., 2008; Brettin et 

al., 2015; Overbeek et al., 2014). The genomes of Pseudoalteromonas haloplanktis TAC125 

(Médigue et al., 2005) and Pseudoalteromonas sp. SM9913 (Qin et al., 2011) were used as 

reference genomes for comparison and annotated again in the same manner as the newly 

isolated Pseudoalteromonas spp. to rule out annotation biases between different software 

packages. Genome comparison was carried out by using the BPGA pipeline (Chaudhari et 

al., 2016) and manually screening the genomes for enzymes of industrial interest. The 

genomes were screened for secondary metabolite gene clusters using antiSMASH (Blin et al., 

2013; Medema et al., 2011; Weber et al., 2015). 

 

3.4 Results 

3.4.1. Enzymatic activity profile 

The three Pseudoalteromonas spp. isolates displayed a range of different enzyme activity 

profiles (Table 1). The Poecillastra compressa isolate EB27 (retrieved from a depth of 1480 m) 

displayed the greatest range of different activities, with the most prominent being β-

glucosidase, protease and cellulase activity. SK20 (Inflatella pellicula, 2900 m) exhibited strong 

β-galactosidase activity and SK18 (Sericolophus hawaiicus, 2129 m) displayed high levels of 

protease activity. All of the isolates displayed some lipolytic activity. EB27 and SK18 also 

displayed low levels of amylase activity. 
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Table 1: Enzyme active profile of the Pseudoalteromonas sp. Isolates based on plate 

screenings. Activity is depicted as ‘X’ and intensity (size of halo) is indicated by the number 

of ‘Xs’, with ‘X’ low activity and ‘XXX’ describing highest activity. (Glc = β-glucosidase, Gal 

= β-galactosidase) 

Isolate ID Sponge Depth [m] Cellulase Lipase Protease β-Glc/Gal 

EB27 Poecillastra compressa 1480 XX X XXX XXX (Glc) 

SK18 Sericolophus hawaiicus 2129 - X XXX - 

SK20 Inflatella pellicula 2900 - X - XXX (Gal) 

 

Based on the strong protease and β-glucosidase activity in EB27 and the protease and β-

galactosidase activity in SK18 these activities were further characterized. Native assays were 

performed under different temperatures and pH conditions; to provide an insight into the 

general biochemical characteristics of the enzymes produced by these deep sea 

microorganisms. Both β-glucosidase and protease activity was markedly affected by pH, 

with optimal activity being observed at pH 8.5, with a complete loss of activity being 

observed at a lower (pH 6.0) or only slight activity at neutral pH (data not shown). All 

assays were subsequently conducted at pH 8.5. The temperature dependency of the 

enzymes was assessed, with β-glucosidase activity in EB27 being observed over a wide 

temperature range. Maximum activity was observed at 23°C, with lower levels being 

observed at 37°C and 4°C respectively (Figure 1). β-glucosidase activity was also observed 

over a wide temperature range in both SK18 and SK20 albeit that the levels of activity were 

lower. 
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Figure 1: β-glucosidase activity of all isolates in native activity assays at different 

temperatures (n=3, pH 8.5). (Barchart with integrated box-whisker plots, green 

colored Q3 and red colored Q1) 

 

 Protease activity was also assessed in both EB27 and SK18, with activity in EB27 in 

particular being observed over a wide temperature range from 4°C to 55°C. Protease activity 

in EB27 was highest at 37°C with good levels of activity still being observed at both 45°C 

and 55°C. The highest level of protease activity in SK18 was also observed at 37°C, but as 

with EB27, good levels of activity were also observed at higher temperatures (Figure 2).  

 

 

 

Figure 2: Protease activity assay of the isolates EB27 and SK18 at different 

temperatures (n=3, pH 8.0). (Barchart with integrated box-whisker plots, green 

colored Q3 and red colored Q1) 
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β-galactosidase assays were performed at a range of different temperatures ranging 

from 4°C, to 55°C for EB27 and SK20 (Figure 3). The highest activity was observed at 45°C 

for both strains, but with SK20 displaying higher activity at temperatures above 28°C. Thus 

interestingly despite the fact that these enzymes are produced by Pseudoalteromonas strains 

which were isolated from depths ranging from 1480 and 2900 metres, where temperatures 

are typically on average around 2°C; β-glucosidase, β-galactosidase and protease activity in 

these strains are not all cold adapted. 

 

 

Figure 3: β-galactosidase assay of the isolates EB27 and SK18 at different temperatures (n=3, 

pH 8.5). ((Barchart with integrated box-whisker plots, green colored Q3 and red colored Q1) 

 

 

To assess the general temperature-growth profile of the three isolates we performed 

growth experiments at different temperatures (4°C, 23°C, 28°C and 37°C) and calculated the 

growth rate and doubling time (Table 2). The specific growth rate ranged from 0.28 for SK18 

(doubling time 159.36 min) to 0.5 for EB27 (doubling time 88.3 min) at 4°C to the optimal for 

EB27 at 23°C 1.03 (doubling time 40.6 min) and for SK18 and SK20 at 28°C being 2.08 and 

1.41 respectively (doubling times of 20 and 29.5 min). The growth rate declined slowly for 

SK18 and SK20 at 37°C, 1.46 and 0.9 and for EB27 being 0.82. 
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Table 2: Growth characteristics (specific growth rate and generation time) of the 

Pseudoalteromonas sponge isolates at different temperatures (n=3), including standard errors. 

ID 
4°C 

mu; tgen [min] 

23°C 

mu; tgen [min] 

28°C 

mu; tgen[min] 

37°C 

mu; tgen[min] 

EB27 0.54±0.15 ; 88.3±20.01 1.03±0.05 ; 40.6±2.1 0.98±0.04 ; 42.46±1.84 0.82±0.09 ; 51.39±6.75 

SK18 0.28±0.06 ; 159.36±12.75 1.76±0.095 ; 23.8±1.24 2.08±0.013 ; 20±0.13 1.46±0.16 ; 29.04±2.9 

SK20 0.29±0.02 ; 144.92±31.2 0.99±0.08 ; 42.36±3.56 1.41±0.01 ; 29.5±0.24 0.9±0.14 ; 48.66±7.29 

 

We decided to sequence the genomes of these three Pseudoalteromonas strains in an 

attempt to gain a better understanding of their biotechnological potential based on these 

preliminary extracellular enzyme profiles, together with the fact that other Pseudoalteromonas 

strains such as Pseudoalteromonas haloplanktis strains TAC125, TAE79, Sp22b and AS-11 have 

all been shown to produce a large number of biotechnologically important biocatalysts 

(Pulicherla KK and KRS, 2013). In addition representatives of the genus Pseudoalteromonas 

have also been shown to produce a broad array of bioactive molecules such as antibiotics, 

antitumor agents and toxins/antitoxins (Bosi et al., 2017; Holmström and Kjelleberg, 1999; 

Isnansetyo and Kamei, 2003; Sannino et al., 2017; Xie et al., 2012). 

 

3.4.2 Genome sequencing and assembly 

 The three Pseudoalteromonas genomes were sequenced on the MiSeq platform and the 

coverage obtained ranged from 196x to 230x. The number of identified coding DNA 

sequences (CDS) ranged from 3582 to 4012, with EB27 having the largest genome of 4.56 Mb 

and 4012 CDS and SK18 the smallest genome with 3.98 Mb and 3582 CDS (Table 3). The 

sequencing results fall within the size range of known Pseudoalteromonas spp. genomes 

(Pseudoalteromonas haloplanktis TAC125 3.85 Mb (Médigue et al., 2005) to Pseudoalteromonas 

atlantica T6c 5.1 Mb (Grigoriev et al., 2012; Nordberg et al., 2014)), and do not appear to 

display any unusual patterns which may relate to their host sponge origin, like genome size 

or differing GC content.  
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Table 3: Genome sequencing statistics and genome features of reference strains. (CDS, 

coding DNA sequences, N50 weighted median length of the sequences making up 50% of 

genome size) 

ID 
Genome size 

[Mb] 

GC 

content 

N50 

[kb] 
Contigs CDS 

No. of 

RNAs 
Coverage 

TAC125 3.85 40.1% n/a n/a 3473 134 n/a 

SM9913 4.04 40.3% n/a n/a 3699 87 n/a 

EB27 4.56 39.1% 216.9 114 4012 136 196x 

SK18 3.98 40.2% 156.5 115 3582 110 213x 

SK20 4.15 40.3% 98.5 213 3811 139 230x 

 

3.4.3 Genome comparison 

 The BPGA pan-genome pipeline was used to compare the whole genome sequences 

(Figure 4)(Chaudhari et al., 2016). Pseudoalteromonas haloplanktis TAC125 was used as a 

reference strain representing a shallow water isolate and Pseudoalteromonas sp. SM9913 was 

used as a deep sea reference strain as it had been retrieved from a deep sea sediment sample 

(1855 m) (Médigue et al., 2005; Qin et al., 2011). A phylogenetic comparison of the 16S rRNA 

gene of the isolates, reference strains and a number of relevant type strains defined our 

isolates as true Pseudoalteromonas spp. (Figure 5). The 16S rRNA gene from the strains used 

for the whole genome comparison in this study were identified from the respective genomes 

by RNAmmer (Lagesen et al., 2007). A pan-genome analysis, based on the comparison of all 

translated protein sequences; was then performed. The number of translated protein 

sequences present ranged from 3422 for Pseudoalteromonas haloplanktis TAC125 to 3941 for 

Pseudoalteromonas sp. EB27, with 2482 of these proteins being orthologs; making up 72.5% of 

the smallest genome and 62.9% of the largest genome. The number of unique proteins or 

paralogs is quite large ranging from 308 to 809. The sponge isolates share only 10 protein 

clusters not found in the free living reference strains TAC125 and SM9913. These clusters 

include genes potentially encoding cation efflux proteins, integrases, recombinases and 

proteins potentially involved in multidrug resistance and which may play a role in helping 

the Pseudoalteromonas strains adapt to life inside the sponge and in helping them cope with 

other microorganisms inhabiting the sponge. For example recombinases and integrases are 

known to mediate horizontal gene transfer, which is believed to play a key role in the 
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genomic evolution of symbionts (Fan et al., 2012). When comparing the individual isolates to 

the reference strains, EB27 shared 183 clusters with TAC125 and only 28 with SM9913, while 

SK18 shared 14 clusters with TAC125 and 75 clusters with SM9913. In addition SK20 shared 

60 clusters with TAC125 and 120 clusters with SM9913. 

 

 

 

Figure 4: Whole genome comparison of translated non redundant protein clusters from all 

three isolates and the two reference genomes (generated with (Bardou et al., 2014)). Green 

coloured is Pseudoalteromonas haloplanktis TAC125, blue coloured Pseudoalteromonas sp. 

SM9913, light red coloured is SK18, yellow coloured is SK20 and orange coloured is EB27. 

 

 The distribution of the protein clusters of orthologous groups (COG) affiliated with 

biological functions can be seen in Figure 6 (generated with (Chaudhari et al., 2016)). The 

unique genes as mentioned earlier make up in total approximately 8.5% to 20% per genome. 

The potential function of these genes appears to be widespread and affiliated with many 

different cellular functions such as signal transduction mechanisms, cell wall, membrane 

and envelope biogenesis, recombination and repair and many with only general or 

unknown function, so that no obvious pattern is evident. The accessory genes appear to be 

affiliated with several functions such as signal transduction mechanisms, defense 

mechanism and proteins with either an as yet unknown function or only a general 

prediction, but again no obvious link with a specific function. The core genome mainly 
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contributes towards cell cycle control, cell division, chromosome partitioning, translation, 

ribosomal structure, biogenesis and nucleotide transport and metabolism (Figure 6). 

According to the COG distribution the KEGG distribution of the translated genomes can be 

found in the supplementary file 1. 

 

 

 

Figure 5: Phylogenetic comparison of the isolates investigated and reference strains (marked 

in red are the isolates that are used for this study. Maximum likelihood bootstrap consensus 

tree from 1000 repli cates, calculated with MEGA6.0 (Tamura et al., 2013) and visualized 

with iTOL (Letunic and Bork, 2007, 2011)). 
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Figure 6: Cluster of orthologous groups (COG) distribution of the core, accessory and 

unique genes of the five investigated Pseudoalteromonas genomes (generated with 

(Chaudhari et al., 2016)). 

 

The pan-genome analysis revealed an open pan-genome for the five Pseudoalteromonas 

isolates investigated here. Therefore the number of dispensable or accessory genes is orders 

of magnitude larger than the size of the core genome and increases with the number of 

additional genomes (Figure 7), as defined by (Medini et al., 2005). For the five genomes the 

pan genome contains 6077 genes and the core genome is made up of 2482 genes. This is in 

line with recent findings for other non-pigmented Pseudoalteromonas spp. (Bosi et al., 2017).  
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Figure 7: Core vs. pan-genome size plot generated with BPGA (Chaudhari et al., 2016). 

 

 The genome sequences were then manually screened for genes encoding enzymes of 

potential industrial interest and were found to be quite rich in potential lipases/esterases and 

proteases and to contain a relatively small number of potential β-galactosidase, β-

glucosidase and cellulase genes (Table 4). The number of potential genes encoding these 

enzyme activities does not however reflect the phenotypes seen in the plate screening assays 

(Table 1). For example the presence of β-glucosidase genes does not necessarily lead to a 

positive phenotypic assay for this enzyme activity, all investigated Pseudoalteromonas strains 

contain at least two β-glucosidase genes, except TAC125, but only EB27 displays this 

enzyme active in the plate screenings. However the increased number of potential β-

glucosidase and cellulase encoding genes in the genome of EB27 may account for the 

positive screening results in the plate assays for these enzyme activities. 
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Table 4: Abundance of genes encoding for enzymes of potential industrial interest 

ID Lipase/Est. β-galactosidase Protease β-glucosidase Cellulase 

TAC125 49 0 35 0 2 

SM9913 67 0 42 2 3 

EB27 69 1 48 4 5 

SK18 63 0 39 2 3 

SK20 56 1 40 2 3 

  

Given the good levels of β -galactosidase activities we observed at a range of different 

temperatures in both EB27 and SK20 (Figure 3) and given that only one β-galactosidases 

gene was present in each genome then we reasoned that these genes are likely to be 

responsible for the observed activity. We phylogenetically compared the β-galactosidases 

from EB27 and SK20 with other β-galactosidases from different bacterial strains, including 

cold active enzymes from Pseudoalteromonas haloplanktis TAE79 (Hoyoux et al., 2001) and 

Arthrobacter sp. (Coker et al., 2003) (Figure 8). Interestingly the β-galactosidase genes from 

our two isolates SK20 and EB27 are closely related to a lacZ gene from Pseudoalteromonas 

haloplanktis TAE79 which was found to be cold-adapted, protein sequence alignments 

indicate protein identity levels of 99% for SK20 and 92% for EB27.   
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Figure 8: Phylogenetic tree of different family 2 β-galactosidase genes, levels of protein 

identity [%] to the β-galactosidase genes from SK20 and EB27 are given in the table. 

Mesophilic β-galactosidase genes are colored in green, true cold-adapted β-galactosidase 

genes are colored in blue and the genes written in black have not been investigated for 

optimal temperature to date. The tree was generated with the maximum-likelihood method 

and 500 bootstrap replicate. 

 

 

Deferred antagonism based antimicrobial assays were also performed in an effort to 

determine whether the three Pseudoalteromonas strains displayed any bioactivity against 

clinically relevant pathogens. The isolates were grown on both low and rich nutrient media 

and then overlaid with a number of clinically relevant test strains such as Escherichia coli 

12210, Staphylococcus aureus NCD0 949, Bacillus subtilis 1E32, Pseudomonas aeruginosa PA-O1, 

Acinetobacter johnsonii WH00185, Enterobacter faecium NCIMB 11508, Klebsiella pneumonia 

NCIMB 13218 and Enterobacter aerogenes NCIMB 10102 in soft LB-agar. No bioactivity was 

observed, despite the fact that all three Pseudoalteromonas genomes contained at least one 

potential bacteriocin gene cluster (EB27 contained two bacteriocin gene clusters), with SK18 

and EB27 also containing potential arylpolyene and siderophore encoding gene cluster 

(Table 5).   
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Table 5: Abundance of secondary metabolite gene clusters 

ID Bacteriocin Arylpolyene Siderophore 

TAC125 1 1 - 

SM9913 1 - 1 

EB27 2 1 - 

SK18 1 1 1 

SK20 1 - - 

 

In addition when TAC125 and SM9913 were subsequently analysed, one potential 

bacteriocin gene cluster was found to be present and highly conserved between the different 

isolates and the reference genomes (Figure 9). This gene cluster consists of 13 different genes 

with an average total size of 10.8 kb, except in SK20 which only consists of seven genes with 

a total of 6.1 kb (Figure 9). In addition to the conserved bacteriocin gene cluster that can be 

found in all isolates, EB27 has a second small bacteriocin gene cluster spanning 10 kb, which 

is considerably different from the other clusters and is not a reduced form of the conserved 

cluster as in SK20. 

 

 

 

Figure 9: Organization of the Bacteriocin gene clusters found in the investigated genomes 

(adapted from antiSMASH (Blin et al., 2013; Medema et al., 2011; Weber et al., 2015)). Red 

coloured genes are biosynthetic genes, blue coloured transport-related genes, green coloured 

regulatory genes and grey coloured other/unidentified genes. The red arrow points add the 

gene containing a tetratricopeptide repeat. 
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Given that these Pseudoalteromonas spp. had been isolated from different sources such as 

sponges (EB27, SK18, SK20), deep sea sediment (SM9913), as well as from open Antarctic 

seawater, we decided to investigate the presence of potential eukaryotic-like proteins such 

as ankyrin-repeats (ANK) and tetratricopeptide repeats domain-encoding proteins (TRP) 

which are known to be enriched in symbiotic sponge associated microorganisms (Reynolds 

and Thomas, 2016) (Table 6). The genomes of all isolates contain a small number of genes 

with ankyrin and tetratricopeptide repeats, which are present at much lower levels than 

might be expected from a true sponge symbiont such as Poribacteria sp. which contain at 

least 23 genes with tetratricopeptides repeats in its genome (Siegl et al., 2011). 

 

Table 6: Abundance of genes suggested being involved in a symbiotic relationship 

ID 
Ankyrin 

repeats 

Tetratricopeptide 

repeats 

Nitrite 

reductase 
Proteases Sulfatases Peptidases 

TAC125 2 2 1 35 0 58 

SM9913 1 2 0 42 1 63 

EB27 2 2 3 48 0 65 

SK18 1 2 0 39 1 63 

SK20 1 2 0 40 1 58 

 

3.5 Discussion 

Pseudoalteromonas spp. are known to be multitalented with respect to the production of 

enzymes of industrial interest; with for example agarases (Oh et al., 2010), galactosidases 

(Cieśliński et al., 2005), proteases (Lee et al., 2002), subtilases (Yan et al., 2009) and 

phospholipases (Mo et al., 2009) from this genus being described. Furthermore some isolates 

are also able to produce acidic exopolysaccharides involved in biofilm formation (Bartlett et 

al., 1988) as well as antimicrobial compounds (Longeon et al., 2004; Zhang and Enomoto, 

2011). In general the Pseudoalteromonas genus can be divided into pigmented and non-

pigmented species, with the first producing mostly antimicrobial and antifouling 

compounds and the latter being more versatile in the production of different enzymes 

(Bowman, 2007). The Pseudoalteromonas spp. isolates described herein are naturally non-
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pigmented and are therefore no exception to the aforementioned general classification as 

they produce a variety of different enzymes, but display no antimicrobial activity under the 

assay conditions tested, but interestingly they do possess potential bacteriocin and 

siderophore gene clusters in their genomes (Table 5, Figure 9). 

Having isolated a number of Pseudoalteromonas strains from deep sea sponges we 

decided to employ a number of approaches including plate screening, whole genome 

sequencing and comparative genomics in an attempt to identify genes encoding enzymes 

with potentially biotechnologically relevant properties. The isolates were found to be cold 

adapted rather than true psychrophiles according to the observed growth rates and 

doubling times at various temperatures (Table 2). The isolates grew best at 23°C and 28°C 

with doubling times ranging from 20 to 40 minutes, compared to a generation time of 20 

minutes at 37°C for the mesophilic E. coli K-12 strain MG1655 (Sezonov et al., 2007), which 

shows that our isolates are able to achieve similar growth rates to E. coli already at room 

temperatures, supporting the feasibility to use Pseudoalteromonas as an expression system for 

cold adapted enzymes as demonstrated by Papa et al., 2007. The isolates displayed a number 

of different enzyme activities including, β-glucosidase, β-galactosidase, protease, and lipase 

activities (Table 1). We further characterized the β-glucosidase, β-galactosidase and protease 

activities to investigate possible cold adaptation due to the deep sea origin of the isolates 

(Figure 1, 2, 3). The protease and β-galactosidase activities were found to be in the 

mesophilic range, and to be slightly alkaline-active in nature, being optimally active at 

temperatures between 37°C to 45°C and at a pH of 8.5 (Figure 2, 3). Proteases have an  

important role in industrial biotechnology, particularly in the detergent, food and 

pharmaceutical areas. They also find utility as antifouling compounds, with proteases from 

a deep sea sediment isolated Pseudoalteromonas sp. inhibiting larval attachment of the 

bryozoan Bugula neritina (Dobretsov et al., 2007).  

A β-galactosidase gene was identified in both SK20 and EB27 and following 

construction of a phylogenetic tree with relevant closely related β-galactosidases (Figure 8), 

were found to be closely related to the lacZ gene from Pseudoalteromonas haloplanktis TAE79 

(92% to 99% protein identity). However in contrast to the P. haloplanktis LacZ protein which 

has been reported to be cold active (Hoyoux et al., 2001), the β-galactosidase activity 
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encoded in the genomes of the SK20 and EB27 isolates appears to be mesophilic in nature, 

with an optimal temperature of 45°C. 

Good levels of β-glucosidase activity were observed in EB27, at temperatures ranging 

from 4°C to 37°C, with optimal activity at 23°C at a pH of 8.5 (Figure 1). While β-

glucosidases are typically involved in important processes in bacteria such as degradation of 

cellulose and other carbohydrates for nutrient uptake, there is an increased interest in their 

use in the conversion of lignocellulosic biomass into reducing sugars for ethanol production. 

While at least two other types of enzymes are also required for the complete degradation of 

cellulose, namely the endoglucanases and cellobiohydrolases; β-glucosidases are mostly 

attributed as being the rate limiting enzyme in these processes (Sørensen et al., 2013). They 

also find industrial applications in wine making where they play a key role in the enzyme 

mediated release of aromatic compounds from glycosidic precursors present in fruit juices, 

musts and fermenting products. They are also used in flavour enhancement to improve the 

organoleptic properties of citrus fruit juices to reduce bitterness (Singh et al., 2016). While the 

majority of β-glucosidases currently in use are mostly fungal in origin, bacterial derived 

enzymes are receiving increased, recent interest particularly for biofuel production 

applications (Singh et al., 2016). Furthermore enzymes from Pseudoalteromonas have proven 

useful in the hydrolysis carbohydrates from algal biomass under alkaline conditions, which 

is uncommon for terrestrial β-glucosidases and could be used for biofuel production from 

marine sources ( Matsumoto et al., 2003; M. et al., 2014; Singh et al., 2016). 

As mentioned earlier, members of the genus Pseudoalteromonas are routinely isolated 

from a variety of different marcoorganisms. While they have also been isolated from sea 

water and sediment, they are usually found in association with macroorganisms (Bowman, 

2007; Offret et al., 2016). With this in mind we investigated the genomes of our three deep 

sea sponge associated Pseudoalteromonas strains, together with two free living isolates for the 

presence of potential symbiosis genes, such as genes mediating microbe-host interactions 

(genes containing eukaryotic-like domains, like ankyrin and tetratricopeptide repeats) or 

those that may be beneficial in the acquisition or production of nutrients such as proteases, 

sulfatases or peptidases for the host or the symbiont (Siegl et al., 2011; Kamke et al., 2012).  

While the genomes of the sponge associated and free living Pseudoalteromonas sp. isolates 

were rich in proteases and sulfatases, they lacked large numbers of genes encoding potential 
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ankyrin and tetratricopeptide repeats (Table 6). Interestingly one of the genes which did 

contain a tetratricopeptide repeat is part of the conserved bacteriocin gene cluster that is 

found in all isolates (Figure 9), which provides some limited evidence of potential microbe-

host interactions. In this respect it is known that some bacteriocins are involved in mediating 

microbe-host interactions via biofilm formation on which a host can settle (Shikuma et al., 

2014). However the lack of appreciable numbers of genes containing eukaryotic-like 

domains amongst the genomes of the Pseudoalteromonas sponge isolates appears to suggest 

that they may not form a true symbiotic relationship with their host. These Pseudoalteromonas 

isolates may however be indirectly beneficial to the sponge by breaking down 

polysaccharides or other nutrient containing materials and thereby making these available 

to both themselves and to the sponge; by functioning as either a commensal or transiently 

associated microbe.  

The pan genome of the investigated isolates is open and each genome contains 8.5% to 

20% unique genes and the core genome comprises of 2482 genes (Figure 5), whereas the 

whole pan genome comprises of 6077 genes. The possible functions of the translated genes 

have been investigated, by assigning them to clusters of orthologous function. The 

distribution of the unique, accessory and core genes is widespread across different biological 

functions and no obvious pattern is evident, besides core functions that seem to be 

conserved in all genomes such as cell cycle control, cell division, chromosome partitioning, 

translation, ribosomal structure, biogenesis and nucleotide transport and metabolism 

(Figure 6).  

Thus in conclusion following a comparative genomic analysis of non-pigmented sponge 

associated Pseudoalteromonas sp. isolated from different depths and free-living 

Pseudoalteromonas sp. we have demonstrated that these strains share a large open pan-

genome and possess a considerable number of unique genes which is in line with results of 

other genome comparison of non-pigmented Pseudoalteromonas spp. (Bosi et al., 2017). We 

were unable to obtain definitive evidence based on these genome comparisons that non-

pigmented Pseudoalteromonas spp. form true symbiotic relationships with deep sea sponges. 

While these non-pigmented strains do not appear to produce antimicrobial compounds; 

they do however produce a wide variety of different degradative enzymes, such as 

proteases, lipases, β-glucosidases and β-galactosidases. These enzymes appear to possess 
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specific industrially important characteristics such as cold-adaptation and activity in the 

alkaline pH range and are therefore likely to be of interest to different industrial 

applications. Heterologous expression of these genes in suitable host systems such as 

Escherichia coli may prove useful in their future characterization and in providing sufficient 

quantities for laboratory scale application studies.  
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4.1 Abstract 

Esterases catalyze the hydrolysis of ester bonds in fatty acid esters with short-chain 

acyl groups. These type of enzymes have numerous industrial applications, particularly in 

the food, detergent and paper industries; as well as in the production of biodiesel and 

environmental applications for the degradation of lipid wastes and in bioremediation. Due 

to the widespread applications of lipolytic enzymes, there continues to be an interest in 

novel esterases with new properties. Marine ecosystem has long been acknowledged as a 

significant reservoir of microbial biodiversity and in particular of bacterial enzymes with 

desirable characteristics for industrial use, such as for example cold adaptation and activity 

in the alkaline pH range. Given that the vast majority of microorganisms from marine 

environments are not as yet culturable using standard laboratory conditions, we applied a 

functional metagenomic approach to exploit the enzymatic potential of one particular 

marine ecosystem, the microbiome of the deep sea sponge Stelletta normani. Screening of a 

metagenomic library from this sponge resulted in the identification of a number of lipolytic 

active clones. One of these encoded a highly, cold-active esterase 7N9, and the recombinant 

esterase was subsequently heterologously expressed in Escherichia coli. The esterase was 

classified as type IV lipolytic enzyme, belonging to the GDSAG subfamily of hormone 

sensitive lipases. Furthermore the recombinant 7N9 esterase was biochemically 

characterized and in silico docking studies have been performed. The enzyme is most active 

at alkaline pH (8.0) and displays salt tolerance over a wide range of concentrations. The 

docking studies supplement the biochemical characterization and confirming its activity 

towards short-chain fatty acids while as well highlighting the specificity towards certain 

inhibitors, furthermore the structural difference to a closely related mesophilic esterase is 

elaborated. 

 

4.2 Introduction: 

Metagenomic based approaches have proven extremely useful as a means of 

discovering microbial enzymes with entirely new biochemical properties, thereby exploiting 

the microbial diversity of a variety of different environmental ecosystems (Kennedy et al., 
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2011). These approaches are typically employed to help overcome the problem of cultivating 

bacteria from various different environments, where typically only 0.001% to 1% of bacterial 

isolates can be recovered and grown under standard laboratory conditions (Bernard et al., 

2000). Bioprospecting for novel enzymes with interesting biotechnological applications 

using metagenomics based approaches particularly from extreme environments such as 

acidic, cold, hot and hypersaline environments has proven to be particularly successful 

(Mirete et al., 2016). Nevertheless it is clear that relative to the number of metagenomic 

sampling sites that have been reported to date that up until now we have largely under 

sampled many of these with respect to enzyme discovery (Ferrer et al., 2016). Thus a large 

part of the microbial biodiversity present in the earth’s biosphere has yet to be explored or 

exploited for novel enzymes (Alcaide et al., 2015b).   

The impetus to explore novel environments for new industrial enzymes comes from 

the need to meet the ongoing global demand for these enzymes which in 2014 was estimated 

to have a value of  around $4.2 billion, and which is expected to reach nearly $6.2 billion by 

2020 (Singh et al., 2016). The deep oceans are one part of the earth’s biosphere which has to 

date received little attention. With mean depths of 3800 m and 50% of the oceans being 

deeper than 3000 m, the ‘deep sea’ constitutes not only a potential large resource from a 

microbial biodiversity perspective, but also a very unique environment; with temperatures 

ranging from 2-3oC and a salinity of about 3.5% together with hundreds of bars of 

hydrostatic pressure (Wirsen and Molyneaux, 1999). Thus microbial communities which 

have adapted to these extremes of temperature, salinity, pressure and low levels of light are 

likely to possess novel biochemistry; and have enzymes that may be uniquely suited to 

many industrial processes (Alcaide et al., 2015a). In addition seawater samples are an 

extremely rich source of potential biocatalytic biodiversity when one considers that with 

bacteria capable of achieving densities of up to 106 per milliliter of seawater (Azam, 1998), 

and assuming that there are approximately 3000 genes in a single genome and that 40% of 

these genes have catalytic activity then there may be as many as 3 × 109 genes mediating up 

to 1·2 × 109 putative reactions in a milliliter of seawater (Dinsdale et al., 2008; Vieites et al., 

2009). Thus although the deep sea is likely to be a rich source of microbial biocatalytic 

biodiversity, very few studies have to date attempted to access or exploit this biodiversity; 
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most likely due to both the technical difficulties and costs associated with sampling at lower 

depths.  

Lipolytic enzymes can be classified into eight different families and numerous 

subfamilies (Arpigny and Jaeger, 1999). The overall three-dimensional structure of all lipases 

and esterases is defined by a characteristic α/β-hydrolase fold (Ollis et al., 1992), with ‘true 

lipases’, members of family I; also having a characteristic lid and possessing characteristic 

interfacial activation properties (Arpigny and Jaeger, 1999). Furthermore lipolytic enzymes 

can be categorized as either lipases (triacylglycerol hydrolases, EC 3.1.1.3) or esterases (EC 

3.1.1.1) corresponding to their specific hydrolytic activity, where lipases hydrolyze long-

chain acyl groups to fatty acids and acylglycerols and esterases hydrolyze ester bonds of 

fatty acid esters with short-chain acyl groups (Verger, 1997). The industrial applications of 

lipolytic enzymes are wide ranging and include applications in the detergent industry, 

biodiesel production, food industry, pulp and paper industry, fats and oils production via 

transesterification, as well as environmental applications for the degradation of lipid wastes 

(Panda and Gowrishankar, 2005; Jegannathan and Nielsen, 2013; Sharma and Kanwar, 2014; 

Sasso et al., 2016; Ramnath et al., 2017; Rao et al., 2017). Lipolytic enzymes from Burkholderia 

are for example interesting in biodiesel production, as they can be used for 

transesterification of waste oils with short chain alcohols in the presence of high levels of 

methanol (Sasso et al., 2016). Furthermore lipolytic enzymes can be used for bioremediation 

of environmental hazards (oil spills), which is important in conjunction with the exploitation 

of new and remote sources of oils, especially in the cold environments (Yang et al., 2009).  

We have previously studied the microbial biodiversity of a number of deep sea 

sponges sampled at depths between 760-2900 m below sea level, and the sponge species 

Stelletta normani in particular (Kennedy et al., 2014). S. normani appears to possess a very 

diverse microbial community, comparable to high microbial abundance sponges from 

shallow water habitats (Jackson et al., 2013; Kennedy et al., 2014). Furthermore the microbial 

community structures of deep sea sponges appear to possess a huge potential secondary 

metabolite biodiversity (Borchert et al., 2016). With this in mind we set out to assess the 

biocatalytic potential of the metagenome of the deep sea sponge S. normani using a 

functional metagenomic based approach. The S. normani metagenomic fosmid library was 
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found to express a large number of lipolytic activities, from which we subsequently 

characterized a cold-active esterase from the hormone sensitive lipase family IV. Cold-active 

enzymes possess unique biochemical properties that are of particular interest for industrial 

biocatalysis. These include low substrate affinity, thermolability and high specific activity at 

low temperatures, which can together help achieve saving in energy costs and in reducing 

undesirable chemical side reactions, as well as allowing rapid thermal inactivation 

(Cavicchioli et al., 2002; Santiago et al., 2016). Other ‘cold-active’ lipolytic enzymes from 

family IV have previously been described, but these usually possess higher optimal 

temperatures (35-50°C) (Fu et al., 2011; Hårdeman and Sjöling, 2007), whereas the here 

described esterase has a high activity at 4-40°C, identifying it at truly ‘cold-active’. In 

addition this work also broadens the description of members of the lipolytic enzyme family 

IV, as thermophilic and mesophilic enzymes of this family have to date been already 

described (Rhee et al., 2005).  

 

4.3 Materials and Methods: 

4.3.1 Sponge sampling and metagenomic library preparation 

The sponge Stelletta normani was sampled in Irish territorial waters off the west coast 

of Ireland (Latitude 53.9861, Longitude -12.6100) from a depth of 760m with the help of the 

remotely operated vehicle (ROV) Holland I abroad the R.V. Celtic Explorer during a 

Biodiscovery cruise in 2013. The sponge sample was rinsed with sterile artificial seawater 

[3.33% (w/v) Instant Ocean, Aquarium Systems] and stored at -80°C until further processing. 

The total metagenomic DNA was extracted as described in (Kennedy et al., 2008). In 

brief, the sponge tissue was ground under liquid nitrogen using a sterile pestle and mortar. 

The obtained sample was suspended in lysis buffer [100 mM Tris, 100 mM EDTA, 1.5 M 

NaCl (w/v), 1% CTAB (w/v), 2% SDS (w/v)] in a 1:5 ratio and then incubated for 2 h at 70°C. 

This solution was then centrifuged until a clear solution was obtained, which was 

subsequently used to precipitate the dissolved metagenomic DNA with 0.7 volumes of 

isopropanol for 30 minutes at room temperature. The precipitation mixture was centrifuged 
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at 6000 x g for 30 minutes, followed by a washing step with 70% ethanol and the obtained 

DNA pellet was air dried, before resuspending in a suitable amount of Tris-EDTA buffer (10 

mM Tris, 1 mM EDTA, pH 8.0). 

The metagenomic DNA was size-separated using pulse field-gel-electrophoresis and 

the size fraction of ~40 kb was cloned into the fosmid Copy Control pCCERI (derivative of 

pCC1FOSTm) vector for metagenomic library construction. The insert harbouring fosmids 

were packaged into lambda phages and used to transfect E. coli TransforMaxTm EPI300Tm 

cells. In total a library of approximately 14,000 clones was generated from the obtained 

metagenomic DNA and this library was plated onto agar Q-Tray plates containing 1% 

tributyrin. Positive clones were selected for sequencing on the PacBio platform (Beckman 

Coulter Genomics). 

 

4.3.2 Fosmid sequencing, assembly and annotation 

The lipase harbouring fosmid was sequenced on the PacBio platform, by Beckman 

Coulter Genomics; it was assembled manually from the quality filtered and preassembled 

reads according to overlapping regions. The assembled fosmid was annotated using the 

BASys online pipeline (Van Domselaar et al., 2005) and all gene annotations were confirmed 

by BLAST searches (BLASTX) against the NCBI non redundant protein sequence database.   

 

4.3.3 Cloning, expression and purification 

The full length esterase was amplified using primers incorporating enzyme 

restriction sites and allowing in-frame cloning into the pBAD/mycHIS-A overexpression 

vector (Invitrogen). Forward primer f7N9 

(TATATACCATGGCTAGTCCTGAGCTCGATACGG) incorporates an NcoI restriction site 

(underlined) at the start codon (italics) of the gene. Reverse primer r7N9 

(ATATATAAGCTTGCCAGTGTGCTTTTTAATGAACTCC) incorporates a HindIII 

restriction site replacing the stop codon of the esterase gene. The amplified PCR product and 

pBAD/mycHis-A were digested with NcoI and HindIII and subsequently an overnight 
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ligation was carried out at 4°C at a 10:1 ratio insert to plasmid. Two µl of the ligation 

reaction were added to 50 µl TOP10 chemically competent cells (ThermoScientific) and the 

transformation was carried out according to the manufacturer’s guidelines. The 

transformation mixture was plated in different amounts on LB plates containing 50 µg/ml 

ampicillin, 0.2% arabinose and 1% tributyrin. 

Pre inoculum was prepared by inoculating a loop full of culture (E.coli TOP10 

bearing pBAD/mycHIS-A vector with esterase insert) in 3ml of LB broth supplemented with 

50 µg/ml ampicillin and incubated at 37°C in a shaking incubator overnight. Next day 10 ml 

of LB broth was inoculated with 100 µl of the pre inoculum and 50 µg/ml of ampicillin 

following incubation at 37°C in a shaking incubator until it reached the mid log phase of 

growth. Then sterile 0.2% arabinose was added to the culture for dose dependent induction 

and the culture was then further incubated overnight under the same conditions. The next 

day protein expression was confirmed by performing SDS-PAGE. 

The esterase enzyme was purified from the overnight culture using the Ni-NTA spin 

column obtained from Qiagen. Enzyme purification steps were followed as described in the 

Ni-NTA spin kit hand book (Under Native condition). 5 ml of overnight culture was used 

and centrifuged at 4000 x g for 15min in 4°C. The pellet was resuspended in 630 µl of lysis 

buffer (NPI-10) (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) and 70 µl of 

lysozyme (10mg/ml) was added and kept on ice for 30 min. After this the lysate was 

centrifuged at 12000 x g for 30 min at 4°C and the supernatant was collected. The Ni-NTA 

column was equilibrated with 600 µl of NPI-10 buffer, centrifuged at 890 x g for 2 min at 

4°C. 600 µl of the supernatant from the previous step was loaded onto the pre-equilibrated 

Ni-NTA spin column and then centrifuged at 270 x g for 5 min at 4°C, the flow through was 

collected. The column was washed twice with 600 µl of NPI-20 (50 mM NaH2PO4, 300 mM 

NaCl, 20 mM imidazole, pH 8.0) buffer by centrifuging the column at 270 x g for 2min at 

4°C. Protein was eluted in two fractions by adding 300 µl of NPI-500 (50 mM NaH2PO4, 300 

mM NaCl, 500 mM imidazole, pH 8.0) buffer twice to the column and centrifuged at 890 x g 

for 2 min at 4°C. The eluted fractions were then checked on SDS-PAGE. 
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4.3.4 Biochemical characterization of recombinant esterase 

The pH stability of the esterase enzyme was evaluated at different pHs ranging from 

5-10. Cell free supernatant solution and pH buffer were added together in a 1:1 ratio and 

incubated at 37°C for 1 h.  The temperature stability of the esterase was analysed by keeping 

the cell free supernatant at different temperatures (4°C, 20°C, 25°C, 30°C, 37°C and 40°C) for 

1 h. The halotolerance was assessed at sodium chloride concentration ranging from 1% to 

24%. The enzyme activity was then tested colorimetrically. For this substrate solutions were 

prepared comprising of solutions A and B, A comprised of 40 mg p-nitrophenyl palmitate 

dissolved in 12 ml of isopropanol and B comprising 0.1 g of gum arabic, 0.2 g Sodium 

deoxycholate, 500 µl Triton X-100 dissolved in 90 ml 50 mM Tris-HCl buffer pH 8. Solutions 

A and B were mixed in a 1:20 ratio. For each assay 100 µl substrate solution, 50 µl Glycine-

NaOH buffer and 10 µl enzyme sample were mixed and pipetted into a microtiter plate, 

incubated for 45 min at 37°C, and then the absorbance at 410 nm was measured and plotted 

against a p-nitrophenyl standard curve (Mobarak-Qamsari et al., 2011). 

 

4.3.5 Effect of metal ions on enzyme activity 

The effect of different metal ions (Ag+, Cu2+, K+, Co2+, Mg2+ and Ba2+, as well as the 

heavy metal ions Hg+ and Pb2+) on the enzyme activity was tested by adding different 

concentrations (1, 2, 3, 4 and 5 mM) of the metal ions to the cell free supernatant following 

incubation for 1 h at room temperature and subsequently measuring the esterase activity 

colorimetrically. 

 

4.3.6 Docking in silico analysis  

The esterase sequence obtained from the PacBio whole fosmid sequencing was 

subjected to BLAST searches at NCBI and a query coverage of 99% of the sequence with 66% 

identity to the bacterial hormone sensitive lipase E40 (PDB ID: 4xvc) was obtained. The E40 

crystal structure was used as a template for homology modelling using Modeller 9.10 (Webb 

and Sali, 2016) and five models were generated. All the models were stereochemically 
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optimized by Ramachandran plot and one model was selected for further docking studies 

(http://mordred.bioc.cam.ac.uk/~rapper/rampage.php). Quality control of the obtained 

model was performed by using ERRAT (Colovos and Yeates, 1993) and VERITY-3D (Bowie 

et al., 1991; Lüthy et al., 1992) from the SAVeS 4.0 software 

(https://services.mbi.ucla.edu/SAVES/).  The known inhibitors and substrates were docked 

against the esterase model in silico by using Ligprep and Glide (Friesner et al., 2004) from the 

Maestro Schrödinger software package (Maestro, 2016). 

 

4.3.7 Enzyme kinetics 

Different concentrations of various substrates, pNPP (p-nitrophenyl palmitate), 

pNPM (p-nitrophenyl myristate), pNPL (p-nitrophenyl laurate), pNPC (p-nitrophenyl 

caprate), pNPB (p-nitrophenyl butyrate) and pNPA (p-nitrophenyl acetate) from 0.1 mM to 

2.0 mM were added to the column purified enzyme sample. Based on these values from 

microplate-readings at 410 nm, Vmax and Km values were calculated and Michaelis-Menten 

plots were generated. 

 

4.4. Results 

4.4.1 Metagenomic library construction and screening for esterase clones 

A metagenomic library was constructed from the marine sponge Stelletta normani. 

The sponge had been collected by an ROV from a depth of 760m. Metagenomic 

DNA was extracted and size selected for ~40 kb DNA fragments following pulse-

field and subsequently concentrated using an Amicon centrifugal concentrator. The 

library which was constructed using the fosmid vector pCCERI (Selvin et al., 2012) 

contained approximately 14,000 clones which were screened for lipase activity 

(Figure 1A). High throughput plate screening using 1% tributyrin resulted in the 

initial identification of 31 positive clones (data not shown). From amongst the 20 

http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
https://services.mbi.ucla.edu/SAVES/
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most highly active clones, the 7N9 fosmid was chosen as it displayed the highest 

level of activity and it was subsequently sequenced using the PacBio system. 

 

Figure 1: Metagenomic library, cloning and purification of 7N9 esterase. A) 

Metagenomic library of Stelletta normani plated onto 1% tributyrin agar, B) Lipase 

activity of cloned Escherichia coli clones containing 7N9 esterase harboring pBad plasmid 

C) Restreak of active clones. D) SDS-PAGE analysis of the expression and purification of 

7N9 esterase, first lane marker, lane 1 induced (0.02% arabinose) E. coli culture with 

empty pBAD expression vector, lane 2 uninduced E. coli culture with pBAD harbouring 

7N9, lane 3 induced (0.02% araboinose) E. coli with pBAD harbouring 7N9, lane 4 partial 

purification using Ni-NTA resin of 7N9 esterase. 

 

4.4.2 Fosmid sequencing and esterase identification 

The sequenced fosmid comprised of 41,407 bp and contained 65 coding DNA sequences 

of which 31 were annotated by BASys (Table 1). A contig (contig 30,107 to 30,997, bah, Table 

1) was identified as containing an ORF encoding a gene with putative esterase function 

(Figure 2). The putative esterase ORF, named 7N9, was found to comprise 296 amino acids, 

with a GC content of 60.5% and was annotated as an acetyl-hydrolase. BLASTX comparison 

subsequently classified the esterase as part of the alpha/beta hydrolase family. The enzyme 

showed highest homology (66%) to an esterase of the bacterial hormone sensitive lipase 

family (E40), which was itself isolated from marine sediment (Li et al., 2015a). The E40 

esterase is part of the GDSAG motif subfamily within the lipase family IV, phylogenetic 
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comparisons (Figure 3) and multiple sequence alignments (Figure 4) indicate that the 7N9 

esterase is part of the same subfamily of lipolytic enzymes as it also contains the 

characteristic GDSAG motif (hormone sensitive family, Hsl). Furthermore the esterase also 

contains the highly conserved His-Gly-Gly (HGG) motif, which together with the GDSAG 

motif involved in the oxyanion hole formation (Mohamed et al., 2013; Ramnath et al., 2017). 

Table 1: Record of the annotated genes on the fosmid.  

Start End Gene COG Protein Function 

2756 1041 mfd COG1197 Transcription-repair-coupling factor 

3147 2800 mfd COG1197 Transcription-repair-coupling factor 

4933 5304 proB COG0263 Glutamate 5-kinase 

5291 5863 proB COG0263 Glutamate 5-kinase 

5752 6057 proB COG0263 Glutamate 5-kinase  

6180 6515 proA COG0014 Gamma-glutamyl phosphate reductase 

6718 7389 proA COG0014 Gamma-glutamyl phosphate reductase 

8918 8535 dxs COG3958 Putative transketolase C-terminal section 

8532 7969 dxs COG3958 Putative transketolase C-terminal section 

9412 8918 tktB COG3959 Putative transketolase N-terminal section 

9849 9409 tktA COG3959 Putative transketolase N-terminal section 

12922 13854 ydcC - Uncharacterized protein in dhlA 3'region 

16056 16493 repE - Replication initiation protein 

17273 18265 sopA COG1192 Protein sopA  

18118 18447 sopA - Protein sopA 

18447 19196 sopB COG1475 Protein sopB  

24901 24095 aacC4 COG2746 Aminoglycoside N(3')-acetyltransferase IV 

25302 25640 traJ - Protein traJ 

26297 25602 cat - Chloramphenicol acetyltransferase 

26313 26903 resD - Resolvase 

27262 26915 betA COG2303 Choline dehydrogenase 

27470 27988 baiF COG1804 Bile acid-CoA hydrolase 

27989 28825 baiF COG1804 Bile acid-CoA hydrolase  

28911 29732 mutM  COG0266 Formamidopyrimidine-DNA glycosylase 

30107 30997 bah COG0657 Acetyl-hydrolase 
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32466 32627 mutB COG1884 Methylmalonyl-CoA mutase large subunit 

32678 33205 mutB  COG1884 Methylmalonyl-CoA mutase large subunit  

34009 34956 acoA  COG1071 
Acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit 

alpha  

35222 35545 pdhB COG0022 Pyruvate dehydrogenase E1 component subunit beta 

35536 36117 acoB COG0022 
Acetoin:2,6-dichlorophenolindophenol oxidoreductase subunit 

beta  

37965 37342 ysgA COG0412 Putative carboxymethylenebutenolidase  

 

 

Figure 2: Annotated map of the sequenced fosmid bearing the cold active esterase (map 

generated by BASys (Van Domselaar et al., 2005)). The fosmid backbone starts at 16,5 kbp 

and ends at approximately 26,5 kbp. The esterase encoding gene is encircled in red. 
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Figure 3: Phylogenetic comparison of the cold active esterase and other representative 

sequences of different lipase families. The phylogenetic tree was built by the neighbor 

joining method and bootstrap analysis with 500 replicates was conducted, reference 

sequences from lipase family VII are used as outgroups. 
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Figure 4: Multiple sequence alignment of most closely related esterase sequences. The 

conserved GDSAG (GXSXG) and HGG motifs are shown in the black boxes (Alignment was 

produced with Clustal Omega (Li et al., 2015b; McWilliam et al., 2013; Sievers et al., 2011) and 

MEGA6 (Tamura et al., 2013)). Red colored are small hydrophobic and aromatic amino acids, 

blue are acidic amino acids, magenta are basic amino acids and green are hydroxyl, 

sulfhydryl, amine amino acids and glycine. (*) indicate a fully conserved residue, (:) indicate 

a group of strongly similar residues and (.) indicates conservation of a group of weakly 

similar residues. 

 

4.4.3 Cloning, expression and purification of recombinant 7N9 esterase. 

The 7N9 esterase gene was PCR amplified, cloned into the pBAD/mycHIS-A vector, 

transformed into TOP10 E. coli cells and transformants were tested for esterase activity on 

1% tributyrin plates (Figure 1B, 1C). Purification of the protein was performed by using the 

His-tag and a Ni-NTA resin column approach, with the tag being fused to the protein while 

transforming it into to the expression vector. The ORF encoding the esterase resulted in a 
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protein of a calculated mass of 31.7 kDa with a theoretical pI of 4.59 and approximately 34 

kDa including the fused His-tag and myc-epitope. 

 

4.4.4 Docking studies of different substrates and inhibitors 

The model of the E40 esterase was used as a template to generate a 3D model of 

esterase 7N9 and stereo chemical optimization was performed using Ramachandran 

plotting. When comparing to the template (E40; Pdb id: 4xvc) there is a slight variation in 

our models CAP and catalytic domain. The template (Pdb id: 4xvc) contains a CAP domain 

at Met1–Ile45 and a catalytic domain at Gln46–Gly297. Residues Gly76 and Gly77 within the 

conserved HGG motif comprise the oxyanion hole that is involved in substrate binding for 

HSL esterases. The catalytic triad composed of residues Ser145, Glu239, and His269 is below 

the oxyanion hole. In contrast in our model the CAP domain is located at Met1–Lys45 and 

the catalytic domain at Thr46–Gly296 and the catalytic triad is composing of the residues 

Ser144, Glu238, and His268 located below the oxyanion hole (Figure 5). The model was 

subsequently used to dock different substrates and inhibitors (Supplementary file 1.1). 

Docking scores indicate a high specificity for the substrate pNPA (Figure 6) and the inhibitor 

Phenylmethansulfonic acid (Table 2). Phenylmethansulfonic acid is also able to covalently 

bind to the nucleophilic Ser145 of E40. In the supplementary file 1.2 and 1.3 3D binding 

models of the esterase and the different substrates and inhibitors can be found. 
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Figure 5: Domain architecture of the 7N9 esterase. Highlighted in red is the CAP domain, 

magenta colored is the catalytic triad Ser144, Glu238 and His268, yellow is the oxyanion hole 

comprising of residues Gly76 and Gly77 and light blue is the catalytic domain. 

 

 

Figure 6: 3D docking Model of the most preferred substrate, 4-nitrophenol acetate. The 

catalytic site residues of 7N9 are highlighted in magenta and the substrate is placed in the 

centre.  
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Table 2: Docking scores of different substrates and inhibitors with the esterase model. 

Name 
Docking 

Score 
Name 

Docking 

Score 

4-methylumbelliferone -6.092 Phenylmethanesulfonic acid -5.998 

4-Nitrophenyl acetate -5.961 
5-Carbamoyl-2H-1,2,3-triazole-4-

diazonium 
-4.676 

Tributyrin -5.379 Isoxazole -4.380 

4-Nitrophenyl 

phosphate 
-4.873 Oleic acid -1.926 

Triacetin -4.361 Triacsin C -1.664 

methyl laurate 0.253   

 

 

4.4.5 Biochemical characterization of the recombinant esterase 7N9 

4.4.5.1 Substrate specificity 

The 7N9 esterase was found to have a higher specificity towards short chain fatty acids 

(Table 3). Fatty acid substrates ranging in carbon chain length from 16 (pNPP) to two 

(pNPA) carbon atoms were assessed; with a Vmax for pNPP being 1.507 mM/ml/min and Km 

0.6275 mM, while pNPA had a Vmax of 2.731 mM/ml/min and a Km 0.1674 mM. 

Table 3: Substrate specificity of the esterase 

Substrate V max [mM/ml/min] Km [mM] 

pNPP 1.507 0.6275 

pNPM 1.515 0.4768 

pNPL 1.596 0.4229 

pNPC 2.653 0.2506 

pNPB 2.722 0.1992 

pNPA 2.731 0.1674 

 



121 

 

4.4.5.2 Temperature dependency 

The activity of the enzyme was assessed at different temperatures ranging from 4°C 

to 60°C (Figure 7). The enzyme displayed the highest activity at 4°C and 20°C with activity 

declining thereafter and no activity at 60°C, identifying it as a cold-adapted type of hormone 

sensitive esterase.  

 

 

Figure 7: Temperature dependency of the esterase 7N9. The temperature dependency of the 

esterase 7N9 activity was tested at 4, 20, 25, 30, 37, 40 and 60°C. The values displayed are the 

means and standard deviations of triplicate measurements. 

 

4.4.5.3 pH dependency 

The pH dependency of the esterase was tested at different pHs ranging from 5 to 10. 

Optimal activity was achieved at pH 8.0, higher and lower pHs lead to a decline in activity, 

nonetheless activity is seen for all pH values investigated (Figure 8). Interestingly the 

optimal observed pH is in line with normal pH conditions encountered in seawater, where 

the pH ranges from 7.5 to 8.4 (Chester R and Jickells TD, 2012). 
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Figure 8: pH dependency of esterase activity. The effect of different pH levels on the activity 

of the esterase 7N9 was tested, investigated were the pH values 5, 6, 7, 8, 9 and 10. The 

values displayed are the means and standard deviations of triplicate measurements. 

 

4.4.5.4 Effect of metal ions on enzyme activity 

The effect of different concentrations (1-5 mM) of various metal ions (Ag+, Cu2+, K+, 

Co2+, Mg2+ and Ba2+, as well as the heavy metal ions Hg+ and Pb2+) on enzyme activity was 

tested. Increasing activity was observed with increasing concentrations of Cu2+, Ag+ and Ba2+; 

while a decrease in activity was observed for K+, Mg2+, Co2+ and the heavy metals Hg2+ and 

Pb2+ (Figure 9). The increase in Pb2+ concentration having the most detrimental effect on 

esterase activity, with only residual activity remaining at elevated levels of this heavy metal 

ion.  
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Figure 9: Effect of different concentrations of different metal ions onto the activity of the 

esterase. The inhibitory and beneficial effects of various metal (Ag+, Cu2+, K+, Co2+, Mg2+ and 

Ba2+) and heavy metal ions (Hg+ and Pb2+) at concentrations ranging from 1 to 5 mM on the 

esterase activity were tested. The values displayed are the means and standard deviations of 

triplicate measurements. 

 

4.4.5.5 Halotolerance 

The halotolerance of the esterase activity in 7N9 was then investigated, by measuring 

activity at different percentages of sodium chloride, ranging from 1% to 24% (Figure 10). 

Good levels of activity were observed over the range of sodium chloride concentrations up 

to 16%, with still 87% of relative activity at that concentration and a more rapid decline 

thereafter. The overall salt concentration of sea water is typically around 3.5% (Chester R 

and Jickells TD, 2012) and therefore falls within the range of optimal activity of the enzyme. 
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Figure 10: Halotolerance of the esterase activity. Sodium chloride concentrations from 1% to 

24% were tested for their effect on the activity of the esterase 7N9. The values displayed are 

the means and standard deviations of triplicate measurements. 

 

4.5 Discussion 

The ever increasing demand for novel biocatalysts has resulted in the development 

of a range of different approaches to explore and exploit the genetic resources in various 

environmental ecosystems. One approach which has been successfully employed to this end 

is metagenomics which helps facilitate access to genetic resources from uncultured 

microorganism (Kennedy et al., 2011; Baweja et al., 2016; Parages et al., 2016). Marine 

environments in particular are proving particularly interesting as a source for novel 

microbial biodiversity, with numerous examples of metagenomics based approaches being 

employed to identify novel biocatalysts with potential biotechnological applications 

(Kodzius and Gojobori, 2015; Popovic et al., 2015).  In this study a gene encoding a novel 

psychrophilic esterase (7N9) from the hormone sensitive lipase (Hsl) family IV was 

identified following the functional screening of a deep sea sponge Stelletta normani 
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metagenomic library and the recombinant enzyme has been biochemically characterized. 

Functional screening of marine sponge and sediment metagenomics libraries have resulted 

in the discovery of a variety of novel lipases including the recent reports of a cold-active salt 

tolerant esterase from artic sediment (De Santi et al., 2016); and a high organic solvent 

tolerant and thermostable esterase from marine mud (Gao et al., 2016). The 7N9 esterase was 

identified as the most active fosmid clone of 20 lipase active clones following the initial 

screening of approximately 14,000 clones, from the metagenomics library.   

Following sequencing of the 7N9 harbouring fosmid (Figure 2) the esterase was 

heterologously expressed in Escherichia coli and the recombinant 7N9 protein was 

subsequently biochemically characterized. The esterase was found to be closely related to 

the E40 esterase (66% amino acid homology), which was itself isolated via a functional 

metagenomic approach from marine sediment retrieved from a depth of 154 m in the South 

China Sea (Li et al., 2012; Li et al., 2015a). 7N9 and E40 both possess the two highly conserved 

GDSAG and HGG motifs which group them into the correspondent subfamily of lipase 

family IV (Mohamed et al., 2013; Ramnath et al., 2017) (Figure 4). In contrast however the 

7N9 esterase has a much lower optimal temperature (20°C) than the E40 esterase (45°C) and 

is therefore the first truly cold-adapted esterase in this lipase subfamily. As both enzymes 

were retrieved from metagenomic libraries one cannot say with certainty from what type of 

microorganism these esterases may have been isolated, but phylogenetic comparison and 

protein homology suggest a close relatedness to hypothetical proteins from the marine 

symbiont Candidatus genus Entotheonella (Figure 3 and 4). Interestingly a novel 

carboxylesterase Est06, isolated from a forest soil metagenomics library has also recently 

been reported to share 61% similarity with a hypothetical protein from Candidatus 

Entotheonella sp. TSY1 (Dukunde et al., 2017). This talented bacterium is known to produce 

the majority of all known secondary metabolites found in the sponge Theonella swinhoei 

(Wilson et al., 2014). 

The 3D model of the 7N9 esterase was calculated using the 3D crystal structure of the 

closely related E40 esterase (Li et al., 2015a) as template and subsequently in silico docking 

studies with different substrates and inhibitors were performed. Esterase 7N9 was found to 

have subtle differences in its CAP and catalytic domain when compared to E40 esterase.  
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This structural differences may contribute towards the different substrate specificities and 

the different temperature activity profiles which we have observed. Our 7N9 esterase was 

most catalytically active with pNPA (p-nitrophenylacetate) as a substrate, whereas E40 was 

found to be more active on pNPB (p-nitrophenylbutyrate). The in silico docking studies 

confirmed the high specificity towards short chain fatty acids (Figure 6), as well as towards 

the inhibitor Phenylmethansulfonic acid, which is most likely able to bind covalently to a 

serine residue (Table 2).  

The recombinant 7N9 esterase was biochemically characterized with respect to its 

temperature and pH activity profiles, together with its halotolerance and the effect of metal 

ions on activity was also assessed.  The enzyme can be classified as cold-active and slightly 

alkaliphilic, as highest activity was observed in the range of 4°C to 20°C and at pH 8.0 

(Figure 7, 8). Metal ions were found to have a marked effect on the activity of the enzyme 

(Figure 9), with for example increases in the heavy metal ion Pb2+ concentration from 1 to 5 

mM resulted in a decrease in enzyme activity of almost 30%. In contrast increasing the Ba2+ 

concentration from 1 to 5 mM resulted in a 25% increase in enzyme activity. In total the 

metal ions Cu2+, Ag+ and Ba2+ were found to have a positive effect on enzyme activity at 

concentrations ranging from 1 to 5 mM while the addition of Hg2+, Pb2+, Mg2+, K+ and Co2+ 

had detrimental effects (Figure 9).  

Metal ions are known to have an effect on enzyme activity (Colak et al., 2005) and 

therefore must be taken in account when enzymes for certain tasks are needed. 

Environmental increases in metal ions like Cu2+ and Pb2+ are known to be associated with oil 

spills (Moreno et al., 2011) and are therefore of interest to the here investigated esterase to 

evaluate its use in potential oil removal applications. On the one hand Cu2+ ions increase the 

enzyme activity, but Pb2+ is detrimental on the other hand. Furthermore, oil spills in cold 

environments are becoming more abundant due to the increased industrial exploitation of 

these environment; thus specialized bioremediation strategies will be required to treat these 

spills in the future (Yang et al., 2009). In addition in respect to oil spills and oil, saline 

industry wastewaters a certain halotolerance is also beneficial, as those wastewaters can 

contain up to 14% (w/v) sodium chloride (Margesin and Schinner, 2001). The halotolerance 

of the enzyme was assessed in the range of 0% to 24%, the enzyme losses in the range from 
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1% to 16% sodium chloride concentration only 13% of its activity towards higher salt 

concentrations (Figure 10) and therefore coupled with its cold activity and metal ion 

presence responsiveness it is potentially well suited for bioremediation processes in cold 

environments. 

Thus in conclusion a metagenomic fosmid library from the deep sea sponge Stelletta 

normani was successfully functionally screened for novel lipolytic enzymes. We describe 

here a novel truly cold active esterase of the GDSAG subfamily of the hormone sensitive 

lipase family IV. The gene encoding the lipolytic function was identified by sequencing the 

harboring fosmid and successfully cloned into an overexpression vector and is 

heterologously expressed in Escherichia coli. The recombinant esterase is most active against 

short chain fatty acid like p-nitrophenylacetate. It displays close structural relatedness to a 

previously described esterase (E40) isolated from a marine sediment sample, despite its 

different physicochemical properties. Optimal enzyme activity is achieved at low 

temperatures (4°C to 20°C), at an alkaline pH (pH 8.0) and salt concentrations only have a 

minor influence on activity levels, resembling native physiological conditions of the 

environment from which the initial deep sea metagenomic sample was retrieved.  
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Chapter 5 

5. General discussion   

5.1 Secondary metabolites from deep sea sponges  

 The results of the study conducted and presented in chapter 2 indicate a comparable 

secondary metabolomic potential in deep sea sponges to that of shallow water sponges, 

highlighting their future potential in biotechnology and the wider health care sector. The 

applied 454 pyrosequencing approach employed here, using degenerate primer pairs 

targeting adenylation (AD) and ketosynthase (KS) domains of nonribosomal peptide 

synthetases and polyketide synthase gene clusters yielded a large number of potentially 

novel domains of these types and therefore indicates the presence of a potential “treasure 

trove” of novel secondary metabolites in the microbiome of deep sea sponges. Sequence 

similarities to gene clusters known to be involved in the synthesis of many different classes 

of antibiotics and toxins production genes were observed, for example these included 

lipopetides, glycopeptides, macrolides, streptogramins, depsipeptides, cyanoginosines, 

bacteriocins and hepatotoxins. An attempt was also made to affiliate the retrieved sequences 

to potential microbial producers. To achieve this the sequences were uploaded to MG-RAST 

(Meyer et al., 2008) and subsequently compared to a previous 16S rRNA microbiome 

sequencing study of these deep sea sponge species (Kennedy et al., 2014). The affiliations of 

the AD and KS domain sequences appeared to be reasonable for large majorities of the 

generated data sets, as highly abundant phyla like Proteobacteria and Actinobacteria were 

identified; which is well in line with the huge secondary metabolite potential connected to 

these phyla (Gerth et al., 1996; Wenzel and Müller, 2009; Chater et al., 2010). Nonetheless and 

unexpectedly another bacterial phylum, Cyanobacteria, was identified as a prominent 

contributor of both AD and KS domains. Cyanobacteria are known producers of secondary 

metabolites, such as for example jamaicamides (Edwards et al., 2004) and hectochlorin 

(Ramaswamy et al., 2007), but all members of this phylum rely on photosynthesis for energy 

production, which is most unlikely to take place in the deep sea. A high rate of horizontal 

gene transfer and the common localization of PKS and NRPS gene clusters on 

‘genomic/pathogenicity islands’ which are rich in mobile genetic elements may account for 
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the observed phenomena (Ridley et al., 2008; Ziemert et al., 2014). Due to the high horizontal 

transfer rate of secondary metabolite gene clusters a taxonomic identification can be more 

informative if accompanied by other approaches such as 16S rRNA sequencing, nonetheless 

the true origin of a specific cluster most likely remains hidden. The high rate of horizontal 

gene transfer of secondary metabolite gene clusters is well illustrated by the example of the 

pederin type of biosynthetic gene cluster which is known to be distributed widely in nature 

from beetles to sponges (Piel et al., 2005). Pederin activity was first reported in 1919 from the 

beetle Paedarus fuscipes (Netolitzky, 1919; Frank and Kanamitsu, 1987) and 33 years later it 

was isolated by collecting 25 million specimens of the beetle and subsequently got its name 

Pederin (Narquizian and Kocienski, 2000). Derivatives of Pederin were later described from 

different marine sponges, like Mycalamide A&B from a marine sponge in New Zealand 

(Perry et al., 1990), Onnamides from a Japanese sponge Theonella sp. (Matsunaga et al., 1992; 

Kobayashi et al., 1993) and Theopederin A-E from the same Theonella sponge species 

(Fusetani et al., 1992) (Figure 1). 

 

 

Figure 1: Pederin and its derivatives. Pederin is produced in the beetle Paedarus fuscipes, 

while Mycalamide D, Theopederin D and Onnamide A are representatives of secondary 

metabolites isolated from marine sponges (Theonella, Mycale). 

 

 To verify the secondary metabolite potential of deep sea sponges and to get more 

accurate insights into the actual microbes harbouring these clusters would require the use of 
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metagenomic fosmid or bacterial artificial chromosome clone (bac) libraries. These libraries 

prepared from deep sea sponge metagenomic DNA could be screened with PCR probes for 

specific AD and KS domains identified in this study and fosmids/bacs carrying these 

domains could be subsequently sequenced in their entirety to gain more information. 

Furthermore standard microbial cultivation approaches and screening for antimicrobial 

activities could also be applied, but bearing in mind the overall low numbers of microbes 

that can currently be cultured from environmental samples and the likelihood of even lower 

numbers of being able to be cultured from deep sea source; may render this approach 

undesirable. 

 In total the AD domains appeared not to be as abundant as the KS domains (1621 

versus 14244), however one must also bear in mind that KS sequences are closely related to 

fatty acid synthases and sponges are known to be rich in these type of genes.  Therefore one 

must be careful not to make definitive assumptions based on the numbers obtained. To 

circumvent this problem the sequences were further compared to reference database of true 

secondary metabolite affiliated AD and KS sequences, leading to the identification of 48 

unique AD and 175 unique KS domains. Furthermore it should be noted that a rarefaction 

curve plateau was reached for only one of three of the sponge species analysed, indicating 

that deeper sequencing would be required to obtain a more complete overview of the true 

secondary metabolite potential of these sponges.  

Following further analysis of an OTU network generated from the KS sequences of 

some individual sponge samples (Figure 2), remarkably only a small number of sequences 

were shared among the sponges and even among the same sponge species. This indicates 

the uniqueness of each sponge sample taken as it appears that each sponge has a large 

unique set of secondary metabolite genes, while only having a small set of shared genes. If 

this is a general trend in sponge microbiome secondary metabolite production then this 

needs to be further evaluated. It would be reasonable to assume that the differences 

observed may be as a result of depth or location dependent effects; as these sponge samples 

have been collected from different locations and depths. In any case these trends further 

highlight the potential of these deep sea sponge metagenomes as a good source of novel 

bioactive compounds, nonetheless it should also be remembered that it is extremely difficult 

and indeed expensive to retrieve samples from deep sea environments. 
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Figure 2: OTU network of representative ketosynthase sequences from individual sponge 

samples. The red circle indicates the ‘core/unique’ ketosynthase sequences of a given sponge 

sample. Sequences represented outside the circles are shared among the different sponge 

samples. 
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5.2 The significance of the genus Pseudoalteromonas spp. 

 The genus Pseudoalteromonas spp. can generally be divided into pigmented and non-

pigmented strains. In the study presented in chapter three, non-pigmented 

Pseudoalteromonas spp. isolated from deep sea sponges were investigated with respect to 

their potential biotechnological applications. In addition a comparative genomic approach 

was applied to identify similarities and potential differences between free-living and host-

associated Pseudoalteromonas strains. The isolates displayed various enzymatic activities and 

some of these (β-glucosidase, β-galactosidase and protease) were more closely investigated 

for their optimal temperature ranges. Somewhat surprisingly the targeted enzyme activities 

yielded different temperature optima, with only one being cold-adapted (β-glucosidase, 

23°C optimal). A possible explanation for this observation could be that there is only a 

selective pressure for the β-glucosidase activity to be cold-adapted and the two other 

activities are not important for the strain in the conditions they are likely to encounter in the 

deep sea or perhaps there may be no selective pressure for protease and β-galactosidase 

activity. β-glucosidases are typically involved in the degradation of cellulose the most 

abundant polysaccharide on the planet (Klemm et al., 2005) and act in conjunction with 

cellobiohydrolases and endoglucanases to achieve this. This type of enzyme is therefore 

likely to be important for marine Pseudoalteromonas species to increase the range of nutrient 

sources available to them and aid in their survival in the harsh deep sea environment. In an 

effort to gain further insights into the biotechnological potential of the isolates their genomes 

were sequenced and annotated. Subsequently four different putative β-glucosidase genes 

were identified in the most active isolate (EB27) and one of these genes was successfully 

subcloned and heterologously expressed in Escherichia coli.  The recombinant β-glucosidase 

enzyme displayed the same optimal temperature pattern as the cultured isolate (data not 

shown in chapter 3). The β-galactosidase genes from SK20 and EB27 were further 

investigated and were found to be closely-related (99% and 92% protein identity) to a cold 

active β-galactosidase from Pseudoalteromonas haloplanktis (Hoyoux et al., 2001). Attempts to 

subclone these β-galactosidase genes however proved unsuccessful. The number of protease 

genes in the genomes of the investigated genomes was quite high (39 to 48) and therefore it 

was difficult to pinpoint one specific gene as being responsible for the observed phenotype.  
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β-glucosidases, β-galactosidases and proteases were targeted initially, because all of 

these enzymes have certain applications in different industries (bioremediation, paper, pulp 

industry, winemaking, etc.) and there is an ongoing need for cold active enzymes from each 

of these enzyme classes. The most obvious reason to use cold adapted enzymes is to reduce 

costs via obtaining good reaction speeds at lower temperatures. Secondly enzymes can be 

used as biocatalysts in various chemical synthetic reactions, therefore reducing the amount 

of chemicals used and therefore making industrial processes more environmentally friendly. 

Furthermore more specific advances of cold adapted enzymes are their structural flexibility, 

promoting low substrate affinity and high specific activity (at low temperatures), reducing 

undesirable chemical side reactions that usually occur at higher temperatures and also 

facilitating an easy thermal inactivation of these enzymes, as they are normally thermolabile 

(Cavicchioli et al., 2002; Santiago et al., 2016). 

 The genomes of the three isolates and two reference strains were also compared at a 

whole genome level, because non-pigmented Pseudoalteromonas spp. have been described as 

being phylogenetically shallow, but we see a huge variability in plate based screenings for 

enzymatic activities. The genome comparison revealed that besides their phylogenetic 

shallowness the individual isolates each possess a huge number of unique genes, defining 

their overall pan-genome as open, consequently have a huge intraspecies genetic variability 

(Bosi et al., 2017). The genomes shared 63% to 73% of all genes present and the number of 

unique genes per genome ranged from 8.5% to 20%, while approximately 20% to 25% of the 

genes were not annotated by the annotation pipeline (RAST) employed (Aziz et al., 2008; 

Overbeek et al., 2014; Brettin et al., 2015) and were marked as ‘hypothetical’ or ‘unknown’. 

Remarkably only ten genes are shared solely between the sponge isolates, including 

multidrug resistance genes, integrases, recombinases and cation efflux systems. This rather 

small number of in this case ‘sponge isolate specific’ genes renders a specific host adaptation 

or host-associated lifestyle of these isolates unlikely. In addition to this a conserved 

bacteriocin gene cluster was found in all isolates and the free living reference strains used, 

which contains a tetratricopeptide repeat (TPR) domain. Proteins containing TPR motifs can 

be found in virtually any type of organisms from bacteria to fungi to insects and plants and 

even in animals (Blatch and Lässle, 1999; Jernigan and Bordenstein, 2015). They mediate 

protein-protein interactions while being involved in many different cellular functions. 
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Besides cellular functions they are also believed to be involved in symbiosis (Siegl et al., 

2011; Reynolds and Thomas, 2016) and in bacterial mediated mammalian infection  

(Groshong et al., 2014). Bacteriocins on the other hand are antimicrobial compounds which 

are produced as a means of defence or for communication purposes and differ from 

traditional antimicrobial compounds in their relatively narrow killing spectrum and are 

normally only active against bacteria that are closely related to the producing strain (Riley 

and Wertz, 2002). Furthermore bacteriocins encoding phage tail-like structures, especially 

from Pseudoalteromonas spp., have been associated with microbe-host interaction. These 

bacteriocins enable larvae of for example the tubeworm Hydroides elegans to settle onto a 

biofilm of Pseudoalteromonas luteoviolacea and trigger metamorphosis of the larvae (Shikuma 

et al., 2014). This connection between the TPR domain and larvae settlement inducing 

capabilities of bacteriocins may indicate some kind of host-association characteristics for  

Pseudoalteromonas spp., but in general this cannot really be regarded as ‘true symbiosis’, and 

further work would need to be conducted to link this particular gene cluster found in the 

studied isolates with a role in host symbiosis. Nonetheless also Pseudoalteromonas spongiae, a 

sponge isolated Pseudoalteromonas spp. is able to induce larvae settlement in the marine 

tubeworm Hydroides elegans, its larvae settlement capabilities have not been tested with 

sponge larvae to date (Huang et al., 2007).  

 In conclusion Pseudoalteromonas spp. are very versatile organisms to study being 

quite different from each other and are particularly interesting for its bioactivities (especially 

pigmented strains) and for enzymatic activities (especially non-pigmented strains) for 

industrial applications even considering that they are commonly isolated from cold-

environments. In this respect a recent study Bosi et al., 2017 where they compared on a large 

scale Pseudoalteromonas genomes from pigmented and non-pigmented strains highlighted 

the fact that HGT events are very common across Pseudoalteromonas spp. isolates, explaining 

to some extent the huge genomic variability found in the genus. They also reported the 

presence of at least one bacteriocin gene cluster in all investigated genomes and it might be 

interesting to evaluate the presence of a TPR domain in these clusters. Future research into 

the genus of Pseudoalteromonas spp. as model organisms for the expression of cold active 

enzymes (Papa et al., 2007), for bioactive compounds (Bowman, 2007; Fehér et al., 2010; 

Offret et al., 2016) and enzymes with new biochemical traits (Yan et al., 2009; Al Khudary et 
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al., 2010; Yang et al., 2016) is highly promising and many more discoveries from this rather 

young genus (Gauthier et al., 1995) can be expected in the near future. 

 

5.3 Metagenomic approaches to identify novel lipolytic enzymes 

 The true biotechnological potential of a given environmental sample is often quite 

difficult to assess and while a number of different approaches are available, each and every 

one of these has its own unique limitations. Cultivation of microbes from environmental 

samples is often used to isolate novel microorganisms, allowing them to be subsequently 

studied for various traits, such as for example secondary metabolite production, expression 

of enzymatic activities and adaptation to environmental stresses. Unfortunately it is now 

well established that only a very small proportion (0.1%-1%) of all microbes in any given 

environmental sample can be cultivated (Bernard et al., 2000). With the rise of next 

generation sequencing technologies the sequencing of whole metagenomes, which allows 

the analysis of metagenomic DNA from all organisms in an environmental sample, has 

become increasingly affordable (Escobar-Zepeda et al., 2015). The bottleneck to this approach 

is the wealth of data generated and the required time-consuming bioinformatics involved to 

decipher the information gained and to translate it into applicable knowledge. The obvious 

advantage is that problems associated with cultivation based approaches can to some extent 

become circumvented, as genomes from uncultivable microorganisms can be identified and 

investigated, nonetheless this is a pure in silico lead approach and preferably needs in vitro 

validation. Functional metagenomics based approaches provide a mechanism whereby 

genes identified in silico can be functionally expressed in a heterologous system, allowing for 

the heterologous protein to be biochemically characterised. For example Escherichia coli is 

routinely used as a heterologous host enabling the expression of a wide variety of 

metagenomic DNA from various environmental samples and their subsequent screening for 

the desired phenotypic trait (Schloss and Handelsman, 2003; Handelsman, 2004; Uchiyama 

and Miyazaki, 2009; Simon and Daniel, 2011). When coupled with a robust and high-

throughput screening regime, this approach is an extremely effective way of isolating novel 

enzymes from otherwise inaccessible microbes. In addition, one of the major advantages of 

functional based metagenomics based approaches is that they have the potential to identify 

entirely new classes of genes encoding either known or indeed novel functions (Kennedy et 
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al., 2011). However despite the success of functional metagenomics for the discovery of new 

enzymes, the approach can be limited to some extent by the ability of metagenomic clones to 

produce active enzymes. As previously mentioned many functional metagenomic 

approaches rely on the use of E. coli as a host to express metagenome encoded proteins. 

While a large number of genes derived from Enterobacteriaceae can readily be expressed in 

common E. coli host systems, many genes from more distantly related organisms may not be 

expressed. This can occur for example due to the promoter regions of these genes not being 

recognized by the E. coli transcriptional machinery or due to differences in codon usage; 

being expressed at low levels. Even where transcription and translation of foreign genes 

results in efficient protein expression, additional problems can occur when proteins need to 

be post-translationally modified or exported for activity. For these reasons, the availability 

of suitable heterologous expression hosts remains one of the main barriers to functional 

metagenomic based screening (Coughlan et al., 2015; Mirete et al., 2016). This is highlighted 

by our attempt to subclone and heterologously express five different protease genes (data 

not shown) from the afore mentioned sequenced Pseudoalteromonas sp. isolates (Chapter 3). 

While successful cloning of the protease genes was confirmed via gel electrophoresis for at 

least three of the proteases no phenotypic activity was observed, which is therefore most 

likely due to inefficient protein expression or missing post-translational modifications.  

In chapter 4 a functional metagenomic approach was employed to investigate the 

biotechnological potential of the microbiome of the deep sea sponge Stelletta normani. A 

metagenomic fosmid library comprising of 14,000 clones with an average insert size of 

approximately ~35-40kb was constructed and screened for various enzymatic (protease, 

cellulase, lipase and amylase activity) and antimicrobial (antibacterial and antifungal) 

activities. Remarkably a high prevalence for lipolytic clones was observed, with more than 

30 positive clones being found. Four of the most active lipase fosmid clones were chosen for 

sequencing in an attempt to identify the gene responsible for the phenotype. The gene from 

the most active fosmid clone was subsequently chosen for heterologous expression in the 

pBAD overexpression system in Escherichia coli. The gene showed close relatedness (66% 

protein identity) to a formerly identified esterase (E40) of the hormone-sensitive lipase 

family (Hsl) IV from another marine metagenomic library (Li et al., 2015); with both esterases 

sharing the HGG and GDSAG motif of the GDSAG subfamily of the type IV Hsl family. 
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Furthermore the gene was closely related (61% protein identity) to sequences related to the 

metabolically versatile bacterium Entotheonella TSY1 and TSY2. This to date uncultured, 

symbiotic Gram-negative δ-proteobacterium is known for its secondary metabolite potential 

and detoxifying capabilities (Wilson et al., 2014; Liu et al., 2016; Keren et al., 2017). 

Biochemical investigation revealed that our esterase is distinctly different from the 

aforementioned esterase E40, particularly with respect to its substrate specificity, 

temperature activity profile and halotolerance profile. The herein newly described esterase 

7N9 is most active towards short-chain fatty acids (C2), is truly cold-adapted, with peak 

activity from 4°C to 20°C. It also displayed a wide halotolerance, losing only 12% of its 

activity when the salt concentration is increased from 0% to 10%. The esterase E40 was 

reported to be most active towards fatty acids with a side chain length of four carbon atoms, 

its optimal temperature is approximately 45°C and it is most active at a salt concentration of 

3%, with rapid decline thereafter (Li et al., 2015). Moreover the crystal structure of E40 (Li et 

al., 2015) and Ramachandran plotting (Figure 3) were  used to predict a 3D structure for 7N9 

and subsequently perform in silico docking studies with several substrates and inhibitors. 

Figure 3: Ramachandran plot of 7N9 esterase with E40 esterase as template. Black 

dots within blue areas indicate residues in favoured regions (98% of all dots) and black dots 

in beige regions indicate allowed regions (2%). 

 

 The in silico docking studies confirmed the preference of 7N9 for short-chained fatty 

acids and showed high docking scores for the inhibitor phenylmethanesulfonic acid. This 

inhibitor is known to be able to bind covalently to the active site serine residue, confirming 

the likely involvement of this residue in the reaction mechanism of the esterase (Selvin et al., 

2012). The esterase 7N9 described in chapter 4 is a novel truly cold active and halotolerant 
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enzyme identified via a metagenomic approach from a deep sea sponge sample. The 

properties of this esterase make it suitable for industrial processes and environmental 

recovery projects. Possible applications of this type of enzyme may be in the bioremediation 

of oil spills and especially its cold adaptation is here of major importance, as the prevalence 

of oil spills in cold environments are becoming more abundant due to the increased 

industrial exploitation of these environments and search for new oil reservoirs in remote 

locations (Yang et al., 2009).  
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5.4 Conclusions and future prospects 

 This thesis aimed to broaden our understanding of deep sea microorganisms and 

their relationship to sponges, while investigating the secondary metabolite potential for 

novel drug leads and the biochemical characteristics of deep sea enzymes and consequential 

providing input for future exploitation efforts of the deep sea environment. The secondary 

metabolite potential in the microbiome of deep sea sponges revealed here is notable and 

justifies further exploration, nonetheless it can be only regarded as a glimpse or “snap shot” 

of the true potential of deep sea sponges as more sponge samples would need to be 

investigated together with more deep sequencing, using other sequencing platforms and 

various other degenerate primer pairs, to allow an appreciation of the total extent and 

complexity of all the secondary metabolite gene clusters present in this ecosystem. 

Furthermore besides next generation sequencing approaches to target certain domains of 

secondary metabolite biosynthetic gene clusters other approaches would also need to be 

employed to get a better understanding of the entire gene clusters surrounding these 

domains to assess both their potential novelty and products produced from the clusters.  

This could be achieved through the screening of metagenomic libraries with probes 

generated for interesting domains obtained by NGS approaches. If an interesting secondary 

metabolite gene cluster is identified in a metagenomic library or a silence cryptic gene 

cluster in a bacterial genome the entire gene cluster could be subcloned via transformation-

associated recombination (TAR) cloning into a suitable bacterial or yeast expression system 

to facilitate overexpression and subsequent biochemical characterization (Ongley et al., 

2013). Such TAR cloning based approaches have already successfully been used to subclone 

biosynthetic gene clusters from the obligate marine actinomycete Salinispora (Bonet et al., 

2015; Tang et al., 2015).  

Additionally the aforementioned high likelihood of horizontal gene transfer of 

natural product gene clusters should be monitored if further samples and results become 

available, to be able to estimate more precisely the true potential of the microbiome of deep 

sea sponges. The different enzymatic activities described from Pseudoalteromonas spp. 

isolates and from the metagenomic screening of environmental DNA from the deep sea 

sponge Stelletta normani has shed light on the possible applications of enzymes from the 

deep sea for industrial purposes, as some of them possess useful traits such as cold 
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adaptation and halotolerance. Desirable enzymatic activities from the isolated 

Pseudoalteromonas spp. would be worth further investigation, particularly the cold active β-

glucosidase already subcloned into Escherichia coli. β-glucosidases are key enzymes in the 

breakdown of cellulose, one of the most abundant polysaccharides on the planet and can be 

used for various applications. β-glucosidases are normally the rate limiting enzyme in 

cellulose breakdown catalysing the final step where cellobiose and other oligosaccharides 

are converted to glucose, because unfortunately it is itself inhibited by glucose (Xiao et al., 

2004), therefore screening for novel β-glucosidases and tailoring these enzymes for increased 

performance is important (Sørensen et al., 2013). Due to its oligosaccharide reducing 

capabilities β-glucosidases are used for various different industrial applications such as 

hydrolysis of bitter compounds in juice and wine, release of aromatic compounds from 

fruits and fermenting products and other food related applications (Singh et al., 2016). 

Besides food flavour applications this type of enzyme is also important in the production of 

biofuels, as it can be used in the conversion of lignocellulosic substrates to fermentable 

sugars (Li et al., 2013). 

Thus the results presented here form a good basis for future studies on not only the 

secondary metabolite potential of the microbiota of deep sea sponge, but also of their 

potential role in host-microbe association/relations particularly in relation to marine 

invertebrates in the deep sea environment as well as the potential of deep sea bacteria to 

produce enzymes of industrial interest with sought after biochemical traits.  
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7. Appendix 

7.1 Supplementary material Chapter 2 

S1 Table: Primers used in this study 

AD Sequence Sample 

A16A3F 
CGTATCGCCTCCCTCGCGCCATCAG TCACGTACTA 

GCSTACSYSATSTACACSTCSGG 
BD243 

B16A7R CTATGCGCCTTGCCAGCCCGCTCAG TCACGTACTA SASGTCVCCSGTSCGGTAS 
 

A19A3F 
CGTATCGCCTCCCTCGCGCCATCAG TGTACTACTC 

GCSTACSYSATSTACACSTCSGG 
BD130 

B19A7R CTATGCGCCTTGCCAGCCCGCTCAG TGTACTACTC SASGTCVCCSGTSCGGTAS 
 

A50A3F 
CGTATCGCCTCCCTCGCGCCATCAG ACTAGCAGTA 

GCSTACSYSATSTACACSTCSGG 
BD226 

B50A7R CTATGCGCCTTGCCAGCCCGCTCAG ACTAGCAGTA SASGTCVCCSGTSCGGTAS 
 

A62A3F 
CGTATCGCCTCCCTCGCGCCATCAG TACGTCATCA 

GCSTACSYSATSTACACSTCSGG 
BD92 

B62A7R CTATGCGCCTTGCCAGCCCGCTCAG TACGTCATCA SASGTCVCCSGTSCGGTAS 
 

A47A3R 
CGTATCGCCTCCCTCGCGCCATCAG TGTGAGTAGT 

GCSTACSYSATSTACACSTCSGG 
BDV1267 

B47A7R CTATGCGCCTTGCCAGCCCGCTCAG TGTGAGTAGT SASGTCVCCSGTSCGGTAS 
 

A15A3F 
CGTATCGCCTCCCTCGCGCCATCAG ATACGACGTA 

GCSTACSYSATSTACACSTCSGG 
BDV1379 

B15A7R CTATGCGCCTTGCCAGCCCGCTCAG ATACGACGTA SASGTCVCCSGTSCGGTAS 
 

A52A3F 
CGTATCGCCTCCCTCGCGCCATCAG AGTATACATA 

GCSTACSYSATSTACACSTCSGG 
BDV1346 

B52A7R CTATGCGCCTTGCCAGCCCGCTCAG AGTATACATA SASGTCVCCSGTSCGGTAS 
 

KS 
  

A38KSiF 
CGTATCGCCTCCCTCGCGCCATCAG TACACGTGAT 

GCIATGGAYCCICARCARMGIVT 
BD243 

B38KSiR 
CTATGCGCCTTGCCAGCCCGCTCAG TACACGTGAT 

GTICCIGTICCRTGISCYTCIAC  

A41KSiF 
CGTATCGCCTCCCTCGCGCCATCAG TAGTGTAGAT 

GCIATGGAYCCICARCARMGIVT 
BD130 

B41KSiR 
CTATGCGCCTTGCCAGCCCGCTCAG TAGTGTAGAT 

GTICCIGTICCRTGISCYTCIAC  

A70KSiF 
CGTATCGCCTCCCTCGCGCCATCAG TGAGTCAGTA 

GCIATGGAYCCICARCARMGIVT 
BD92 

B70KSiR 
CTATGCGCCTTGCCAGCCCGCTCAG TGAGTCAGTA 

GTICCIGTICCRTGISCYTCIAC  

A60KSiF 
CGTATCGCCTCCCTCGCGCCATCAG CTACGCTCTA 

GCIATGGAYCCICARCARMGIVT 
BDV1267 

B60KSiR 
CTATGCGCCTTGCCAGCCCGCTCAG CTACGCTCTA 

GTICCIGTICCRTGISCYTCIAC  
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A37KSiF 
CGTATCGCCTCCCTCGCGCCATCAG TACACACACT 

GCIATGGAYCCICARCARMGIVT 
BDV1379 

B37KSiR 
CTATGCGCCTTGCCAGCCCGCTCAG TACACACACT 

GTICCIGTICCRTGISCYTCIAC  

 

S2 Table: Sequence alignment output of KS sequences with NaPDos database 

Query id Database match id 
% 

id. 

align 

length 

e-

value 
pathway product class 

New.CleanUp.ReferenceOTU0_IpB.KS

_8412 
StiE_Q8RJY2_1KSB 47 208 

2.00E-

44 
stigmatellin 

modul

ar 

New.ReferenceOTU0_PcA.KS_7856 
CurA_AAT70096_

mod 
54 90 

1.00E-

32 
curacin KS 

New.ReferenceOTU0_PcA.KS_7856 
CurA_AAT70096_

mod 
37 83 

1.00E-

32 
curacin KS 

New.CleanUp.ReferenceOTU1_PcA.K

S_6826 
StiG_Q8RJY0_1KSB 63 105 

6.00E-

55 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU1_PcA.K

S_6826 
StiG_Q8RJY0_1KSB 68 68 

6.00E-

55 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU103_PcA.

KS_6079 
StiC_Q8RJY4_1KSB 68 139 

2.00E-

49 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU103_PcA.

KS_6079 
StiC_Q8RJY4_1KSB 66 29 

2.00E-

49 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU103_PcA.

KS_6079 
StiC_Q8RJY4_1KSB 53 17 

2.00E-

49 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU104_PcA.

KS_4856 

CurL_AAT70107_m

od 
75 135 

8.00E-

41 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU106_PcA.

KS_3967 

EpoE_Q9L8C6_1m

od 
58 203 

4.00E-

57 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU106_PcA.

KS_3967 

EpoE_Q9L8C6_1m

od 
81 16 

4.00E-

57 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU11_PcA.

KS_8003 

CurA_AAT70096_

mod 
51 128 

4.00E-

44 
curacin KS 

New.CleanUp.ReferenceOTU11_PcA.

KS_8003 

CurA_AAT70096_

mod 
85 26 

4.00E-

44 
curacin KS 

New.CleanUp.ReferenceOTU11_PcA.

KS_8003 

CurA_AAT70096_

mod 
45 40 

4.00E-

44 
curacin KS 

New.CleanUp.ReferenceOTU113_PcA.

KS_4694 
CALO5_12183629_i 57 197 

1.00E-

56 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU113_PcA.

KS_4694 
CALO5_12183629_i 69 29 

1.00E-

56 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU116_PcA.

KS_4922 

MtaB_Q9RFL0_1KS

B 
76 29 

2.00E-

13 
myxothiazol KS1 

New.CleanUp.ReferenceOTU116_PcA. MtaB_Q9RFL0_1KS 54 28 2.00E- myxothiazol KS1 
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KS_4922 B 13 

New.CleanUp.ReferenceOTU122_PcA.

KS_6145 

MtaB_Q9RFL0_2KS

B 
65 104 

1.00E-

55 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU122_PcA.

KS_6145 

MtaB_Q9RFL0_2KS

B 
82 39 

1.00E-

55 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU122_PcA.

KS_6145 

MtaB_Q9RFL0_2KS

B 
62 40 

1.00E-

55 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU127_PcA.

KS_6364 
StiG_Q8RJY0_1KSB 61 157 

1.00E-

64 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU127_PcA.

KS_6364 
StiG_Q8RJY0_1KSB 63 30 

1.00E-

64 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU127_PcA.

KS_6364 
StiG_Q8RJY0_1KSB 65 31 

1.00E-

64 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU131_PcA.

KS_7377 

EpoE_Q9L8C6_1m

od 
47 159 

4.00E-

30 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU134_PcA.

KS_6272 

EpoD_Q9L8C7_2m

od 
47 232 

5.00E-

52 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU136_PcA.

KS_8120 

MxaB_Q93TX0_1KS

B 
61 163 

2.00E-

49 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU136_PcA.

KS_8120 

MxaB_Q93TX0_1KS

B 
63 19 

2.00E-

49 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU138_PcA.

KS_5049 
StiG_Q8RJY0_1KSB 50 165 

6.00E-

42 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU138_PcA.

KS_5049 
StiG_Q8RJY0_1KSB 59 39 

6.00E-

42 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU139_PcA.

KS_6442 

MtaB_Q9RFL0_2KS

B 
54 89 

4.00E-

42 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU139_PcA.

KS_6442 

MtaB_Q9RFL0_2KS

B 
59 56 

4.00E-

42 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU139_PcA.

KS_6442 

MtaB_Q9RFL0_2KS

B 
46 35 

4.00E-

42 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU153_PcA.

KS_6288 

TylGIII_O33956_1

mod 
57 75 

1.00E-

29 
tylosin 

modul

ar 

New.CleanUp.ReferenceOTU153_PcA.

KS_6288 

TylGIII_O33956_1

mod 
68 34 

1.00E-

29 
tylosin 

modul

ar 

New.CleanUp.ReferenceOTU19_PcA.

KS_4305 

CurJ_AAT70105_m

od 
63 181 

3.00E-

64 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU19_PcA.

KS_4305 

CurJ_AAT70105_m

od 
52 40 

3.00E-

64 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU2_PcA.K

S_6820 

EpoD_Q9L8C7_4m

od 
78 80 

2.00E-

55 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU2_PcA.K

S_6820 

EpoD_Q9L8C7_4m

od 
56 71 

2.00E-

55 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU2_PcA.K

S_6820 

EpoD_Q9L8C7_4m

od 
72 25 

2.00E-

55 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU21_PcA. EpoD_Q9L8C7_4m 61 177 7.00E- epothilone modul
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KS_2730 od 51 ar 

New.CleanUp.ReferenceOTU25_PcA.

KS_8098 

MycAIII_Q83WE8_

1KSB 
53 45 

9.00E-

09 
mycinamicin 

modul

ar 

New.CleanUp.ReferenceOTU29_PcA.

KS_5493 

EpoD_Q9L8C7_4m

od 
67 199 

2.00E-

72 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU34_PcA.

KS_7090 
StiH_Q8RJX9_1KSB 44 212 

8.00E-

42 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU37_PcA.

KS_7809 

EpoD_Q9L8C7_3m

od 
53 90 

3.00E-

46 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU37_PcA.

KS_7809 

EpoD_Q9L8C7_3m

od 
64 74 

3.00E-

46 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU40_PcA.

KS_6246 

KirAII_CAN89632_

5T 
46 168 

1.00E-

51 
kirromycin trans 

New.CleanUp.ReferenceOTU40_PcA.

KS_6246 

KirAII_CAN89632_

5T 
53 55 

1.00E-

51 
kirromycin trans 

New.CleanUp.ReferenceOTU41_PcA.

KS_7883 
Stro2780_2 45 147 

4.00E-

26 
salinilactam 

modul

ar 

New.CleanUp.ReferenceOTU41_PcA.

KS_7883 
Stro2780_2 71 17 

4.00E-

26 
salinilactam 

modul

ar 

New.CleanUp.ReferenceOTU42_PcA.

KS_5408 
StiA_Q8RJY6_1KSB 70 117 

8.00E-

43 
stigmatellin KS1 

New.CleanUp.ReferenceOTU43_PcA.

KS_5085 

SpnA_Q9ALM6_1K

SB 
66 134 

1.00E-

46 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU48_PcA.

KS_6738 

TylGI_O33954_2mo

d 
71 134 

6.00E-

78 
tylosin 

modul

ar 

New.CleanUp.ReferenceOTU48_PcA.

KS_6738 

TylGI_O33954_2mo

d 
77 75 

6.00E-

78 
tylosin 

modul

ar 

New.CleanUp.ReferenceOTU49_PcA.

KS_7041 

EpoF_Q9L8C5_1mo

d 
78 59 

9.00E-

24 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU50_PcA.

KS_8029 

EpoE_Q9L8C6_1m

od 
60 213 

3.00E-

66 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU51_PcA.

KS_6732 

JamE_AAS98777_K

S1 
59 126 

4.00E-

63 
jamaicamide KS 

New.CleanUp.ReferenceOTU51_PcA.

KS_6732 

JamE_AAS98777_K

S1 
75 60 

4.00E-

63 
jamaicamide KS 

New.CleanUp.ReferenceOTU58_PcA.

KS_7548 
StiE_Q8RJY2_1KSB 58 142 

1.00E-

51 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU58_PcA.

KS_7548 
StiE_Q8RJY2_1KSB 62 32 

1.00E-

51 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU58_PcA.

KS_7548 
StiE_Q8RJY2_1KSB 67 21 

1.00E-

51 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU6_PcA.K

S_5303 

LipC_ABB05104_1

KSB 
70 150 

8.00E-

60 
lipomycin 

modul

ar 

New.CleanUp.ReferenceOTU61_PcA.

KS_6415 
ChlB1_AAZ77673_i 54 120 

5.00E-

46 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU61_PcA. ChlB1_AAZ77673_i 74 43 5.00E- chlorothricin iterativ
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KS_6415 46 e 

New.CleanUp.ReferenceOTU61_PcA.

KS_6415 
ChlB1_AAZ77673_i 67 27 

5.00E-

46 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU62_PcA.

KS_4285 

AveA3_Q9S0R4_3

mod 
54 135 

6.00E-

49 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU62_PcA.

KS_4285 

AveA3_Q9S0R4_3

mod 
65 54 

6.00E-

49 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU62_PcA.

KS_4285 

AveA3_Q9S0R4_3

mod 
81 21 

6.00E-

49 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU64_PcA.

KS_6418 
NosB_Q9RAH3_H 63 178 

1.00E-

61 
nostopeptolide 

hybrid

KS 

New.CleanUp.ReferenceOTU64_PcA.

KS_6418 
NosB_Q9RAH3_H 67 30 

1.00E-

61 
nostopeptolide 

hybrid

KS 

New.CleanUp.ReferenceOTU66_PcA.

KS_6004 

JamK_AAS98782_

mod 
67 220 

2.00E-

69 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU67_PcA.

KS_4944 

JamE_AAS98777_K

S1 
62 163 

1.00E-

57 
jamaicamide KS 

New.CleanUp.ReferenceOTU68_PcA.

KS_6006 

CurI_AAT70104_m

od 
59 192 

8.00E-

61 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU69_PcA.

KS_8131 

JamL_AAS98783_m

od 
58 158 

2.00E-

44 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU69_PcA.

KS_8131 

JamL_AAS98783_m

od 
68 22 

2.00E-

44 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU73_PcA.

KS_7226 
ChlB1_AAZ77673_i 53 152 

3.00E-

49 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU73_PcA.

KS_7226 
ChlB1_AAZ77673_i 57 35 

3.00E-

49 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU78_PcA.

KS_4842 

VicC_BAD08359_1

KSB 
72 65 

2.00E-

30 
vicenistatin 

modul

ar 

New.CleanUp.ReferenceOTU78_PcA.

KS_4842 

VicC_BAD08359_1

KSB 
79 28 

2.00E-

30 
vicenistatin 

modul

ar 

New.CleanUp.ReferenceOTU79_PcA.

KS_4095 

ChlA2_AAZ77694_

2KSB 
64 211 

3.00E-

72 
chlorothricin 

modul

ar 

New.CleanUp.ReferenceOTU81_PcA.

KS_3207 

JamK_AAS98782_

mod 
64 123 

6.00E-

46 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU81_PcA.

KS_3207 

JamK_AAS98782_

mod 
84 19 

6.00E-

46 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU86_PcA.

KS_5188 

PimS1_Q9X993_3K

SB 
50 208 

2.00E-

46 
pimaricin 

modul

ar 

New.CleanUp.ReferenceOTU90_PcA.

KS_7319 

SpnD_Q9ALM3_3K

SB 
67 98 

5.00E-

61 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU90_PcA.

KS_7319 

SpnD_Q9ALM3_3K

SB 
61 87 

5.00E-

61 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU92_PcA.

KS_6863 

SpnD_Q9ALM3_1K

SB 
69 213 

3.00E-

70 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU95_PcA. EpoC_Q9L8C8_H 62 159 3.00E- epothilone hybrid
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KS_4447 61 KS 

New.CleanUp.ReferenceOTU95_PcA.

KS_4447 
EpoC_Q9L8C8_H 58 24 

3.00E-

61 
epothilone 

hybrid

KS 

New.CleanUp.ReferenceOTU95_PcA.

KS_4447 
EpoC_Q9L8C8_H 52 27 

3.00E-

61 
epothilone 

hybrid

KS 

New.CleanUp.ReferenceOTU96_PcA.

KS_3644 

MxaB_Q93TX0_1KS

B 
50 132 

1.00E-

51 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU96_PcA.

KS_3644 

MxaB_Q93TX0_1KS

B 
68 53 

1.00E-

51 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU96_PcA.

KS_3644 

MxaB_Q93TX0_1KS

B 
44 27 

1.00E-

51 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU100_SnC.

KS_3847 

PikAII_Q9ZGI4_1K

SB 
57 179 

1.00E-

49 
pikromycin 

modul

ar 

New.CleanUp.ReferenceOTU115_SnC.

KS_27131 

ChlA5_AAZ77698_

1KSB 
64 203 

7.00E-

74 
chlorothricin 

modul

ar 

New.CleanUp.ReferenceOTU118_SnA.

KS_20033 

TetE_BAE93730_3

mod 
74 76 

3.00E-

45 
tetronomycin 

modul

ar 

New.CleanUp.ReferenceOTU118_SnA.

KS_20033 

TetE_BAE93730_3

mod 
61 77 

3.00E-

45 
tetronomycin 

modul

ar 

New.CleanUp.ReferenceOTU118_SnA.

KS_20033 

TetE_BAE93730_3

mod 
73 15 

3.00E-

45 
tetronomycin 

modul

ar 

New.CleanUp.ReferenceOTU118_SnA.

KS_20033 

TetE_BAE93730_3

mod 
75 12 

3.00E-

45 
tetronomycin 

modul

ar 

New.CleanUp.ReferenceOTU123_SnC.

KS_9934 

AveA2_Q9S0R7_3

mod 
57 164 

6.00E-

50 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU133_SnA.

KS_26669 

CurI_AAT70104_m

od 
59 179 

5.00E-

50 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU135_SnC.

KS_6797 

SpnD_Q9ALM3_3K

SB 
68 144 

2.00E-

55 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU135_SnC.

KS_6797 

SpnD_Q9ALM3_3K

SB 
72 18 

2.00E-

55 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU138_SnC.

KS_32467 

JamM_AAS98784_

H 
60 100 

2.00E-

56 
jamaicamide 

hybrid

KS 

New.CleanUp.ReferenceOTU138_SnC.

KS_32467 

JamM_AAS98784_

H 
67 64 

2.00E-

56 
jamaicamide 

hybrid

KS 

New.CleanUp.ReferenceOTU138_SnC.

KS_32467 

JamM_AAS98784_

H 
50 24 

2.00E-

56 
jamaicamide 

hybrid

KS 

New.CleanUp.ReferenceOTU144_SnA.

KS_31766 

CurI_AAT70104_m

od 
65 143 

2.00E-

52 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU149_SnA.

KS_20234 
CALO5_12183629_i 54 218 

3.00E-

60 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU161_SnC.

KS_33548 

AveA4_Q9S0R3_2

mod 
64 120 

9.00E-

42 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU161_SnC.

KS_33548 

AveA4_Q9S0R3_2

mod 
85 13 

9.00E-

42 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU165_SnC. ChlB1_AAZ77673_i 60 94 9.00E- chlorothricin iterativ
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KS_34237 47 e 

New.CleanUp.ReferenceOTU165_SnC.

KS_34237 
ChlB1_AAZ77673_i 66 47 

9.00E-

47 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU165_SnC.

KS_34237 
ChlB1_AAZ77673_i 43 54 

9.00E-

47 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU166_SnC.

KS_32005 

EpoD_Q9L8C7_4m

od 
62 152 

5.00E-

63 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU166_SnC.

KS_32005 

EpoD_Q9L8C7_4m

od 
64 47 

5.00E-

63 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU178_SnC.

KS_27407 
StiE_Q8RJY2_1KSB 49 188 

3.00E-

40 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU179_SnA.

KS_20095 

JamK_AAS98782_

mod 
52 183 

8.00E-

47 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU179_SnA.

KS_20095 

JamK_AAS98782_

mod 
89 9 

8.00E-

47 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU180_SnC.

KS_23940 

FurC1_ABB88521_

KSB 
67 90 

6.00E-

37 

5-alkenyl-3,3(2h)-

furanone 

modul

ar 

New.CleanUp.ReferenceOTU180_SnC.

KS_23940 

FurC1_ABB88521_

KSB 
83 23 

6.00E-

37 

5-alkenyl-3,3(2h)-

furanone 

modul

ar 

New.CleanUp.ReferenceOTU203_SnC.

KS_18676 
StiE_Q8RJY2_1KSB 50 210 

3.00E-

52 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU204_SnC.

KS_22809 

EcoE_AAX98188_3

KSB 
65 195 

4.00E-

73 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU204_SnC.

KS_22809 

EcoE_AAX98188_3

KSB 
57 23 

4.00E-

73 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU217_SnC.

KS_13158 

JamE_AAS98777_K

S1 
58 95 

8.00E-

28 
jamaicamide KS 

New.CleanUp.ReferenceOTU219_SnC.

KS_31427 

AveA4_Q9S0R3_2

mod 
51 156 

1.00E-

33 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU221_SnA.

KS_26896 

JamE_AAS98777_K

S1 
57 191 

7.00E-

58 
jamaicamide KS 

New.CleanUp.ReferenceOTU221_SnA.

KS_26896 

JamE_AAS98777_K

S1 
72 18 

7.00E-

58 
jamaicamide KS 

New.CleanUp.ReferenceOTU223_SnC.

KS_28590 

LipC_ABB05104_1

KSB 
68 115 

5.00E-

58 
lipomycin 

modul

ar 

New.CleanUp.ReferenceOTU223_SnC.

KS_28590 

LipC_ABB05104_1

KSB 
63 60 

5.00E-

58 
lipomycin 

modul

ar 

New.CleanUp.ReferenceOTU225_SnC.

KS_31358 

CurJ_AAT70105_m

od 
60 155 

2.00E-

60 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU225_SnC.

KS_31358 

CurJ_AAT70105_m

od 
59 61 

2.00E-

60 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU230_SnC.

KS_17755 

JamE_AAS98777_K

S1 
52 203 

3.00E-

59 
jamaicamide KS 

New.CleanUp.ReferenceOTU230_SnC.

KS_17755 

JamE_AAS98777_K

S1 
55 20 

3.00E-

59 
jamaicamide KS 

New.CleanUp.ReferenceOTU232_SnA. TylGIII_O33956_1 53 188 2.00E- tylosin modul
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KS_34475 mod 46 ar 

New.CleanUp.ReferenceOTU232_SnA.

KS_34475 

TylGIII_O33956_1

mod 
82 33 

2.00E-

46 
tylosin 

modul

ar 

New.CleanUp.ReferenceOTU235_SnC.

KS_14184 
StiG_Q8RJY0_1KSB 72 87 

7.00E-

38 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU235_SnC.

KS_14184 
StiG_Q8RJY0_1KSB 71 21 

7.00E-

38 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU236_SnC.

KS_8939 

EpoD_Q9L8C7_4m

od 
55 230 

9.00E-

65 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU239_SnC.

KS_25668 

CurA_AAT70096_

mod 
69 68 

3.00E-

42 
curacin KS 

New.CleanUp.ReferenceOTU239_SnC.

KS_25668 

CurA_AAT70096_

mod 
52 86 

3.00E-

42 
curacin KS 

New.CleanUp.ReferenceOTU239_SnC.

KS_25668 

CurA_AAT70096_

mod 
69 16 

3.00E-

42 
curacin KS 

New.CleanUp.ReferenceOTU240_SnC.

KS_23492 

AveA4_Q9S0R3_2

mod 
76 137 

2.00E-

62 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU240_SnC.

KS_23492 

AveA4_Q9S0R3_2

mod 
68 28 

2.00E-

62 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU246_SnC.

KS_28319 

SpnA_Q9ALM6_1K

SB 
65 134 

3.00E-

45 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU254_SnA.

KS_34590 
ChlB1_AAZ77673_i 51 173 

3.00E-

45 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU254_SnA.

KS_34590 
ChlB1_AAZ77673_i 56 36 

3.00E-

45 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU254_SnA.

KS_34590 
ChlB1_AAZ77673_i 73 11 

3.00E-

45 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU257_SnA.

KS_35444 
LnmJ_AF484556_4T 56 63 

2.00E-

25 
leinamycin trans 

New.CleanUp.ReferenceOTU257_SnA.

KS_35444 
LnmJ_AF484556_4T 51 37 

2.00E-

25 
leinamycin trans 

New.CleanUp.ReferenceOTU257_SnA.

KS_35444 
LnmJ_AF484556_4T 71 17 

2.00E-

25 
leinamycin trans 

New.CleanUp.ReferenceOTU257_SnA.

KS_35444 
LnmJ_AF484556_4T 38 32 

2.00E-

25 
leinamycin trans 

New.CleanUp.ReferenceOTU258_SnC.

KS_36616 
StiF_Q8RJY1_1KSB 53 92 

1.00E-

24 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU262_SnA.

KS_21832 
CALO5_12183629_i 64 81 

6.00E-

27 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU262_SnA.

KS_21832 
CALO5_12183629_i 69 13 

6.00E-

27 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU264_SnA.

KS_20245 

JamE_AAS98777_K

S1 
63 84 

6.00E-

21 
jamaicamide KS 

New.CleanUp.ReferenceOTU266_SnC.

KS_29268 
ChlB1_AAZ77673_i 61 180 

2.00E-

59 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU271_SnC. AveA4_Q9S0R3_2 60 108 3.00E- avermectin modul
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KS_7918 mod 39 ar 

New.CleanUp.ReferenceOTU271_SnC.

KS_7918 

AveA4_Q9S0R3_2

mod 
86 21 

3.00E-

39 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU272_SnC.

KS_11826 

EpoD_Q9L8C7_4m

od 
62 133 

2.00E-

48 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU275_SnA.

KS_12135 

MtaB_Q9RFL0_1KS

B 
56 109 

3.00E-

49 
myxothiazol KS1 

New.CleanUp.ReferenceOTU275_SnA.

KS_12135 

MtaB_Q9RFL0_1KS

B 
56 48 

3.00E-

49 
myxothiazol KS1 

New.CleanUp.ReferenceOTU275_SnA.

KS_12135 

MtaB_Q9RFL0_1KS

B 
38 65 

3.00E-

49 
myxothiazol KS1 

New.CleanUp.ReferenceOTU276_SnC.

KS_25657 

JamE_AAS98777_K

S1 
42 161 

4.00E-

35 
jamaicamide KS 

New.CleanUp.ReferenceOTU276_SnC.

KS_25657 

JamE_AAS98777_K

S1 
58 33 

4.00E-

35 
jamaicamide KS 

New.CleanUp.ReferenceOTU277_SnC.

KS_16211 

AveA4_Q9S0R3_3

mod 
65 213 

2.00E-

73 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU278_SnC.

KS_36608 

AveA4_Q9S0R3_2

mod 
46 194 

3.00E-

33 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU281_SnC.

KS_19700 

AveA2_Q9S0R7_4

mod 
79 150 

2.00E-

58 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU30_SnA.

KS_23211 
StiG_Q8RJY0_1KSB 66 106 

2.00E-

59 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU30_SnA.

KS_23211 
StiG_Q8RJY0_1KSB 57 84 

2.00E-

59 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU300_SnC.

KS_12556 

AveA4_Q9S0R3_2

mod 
82 57 

8.00E-

34 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU300_SnC.

KS_12556 

AveA4_Q9S0R3_2

mod 
71 35 

8.00E-

34 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU38_SnC.

KS_26004 

EpoD_Q9L8C7_4m

od 
66 168 

3.00E-

63 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU47_SnC.

KS_9398 

JamE_AAS98777_K

S1 
51 165 

2.00E-

47 
jamaicamide KS 

New.CleanUp.ReferenceOTU48_SnC.

KS_36821 

CurL_AAT70107_m

od 
56 148 

8.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU48_SnC.

KS_36821 

CurL_AAT70107_m

od 
57 49 

8.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU51_SnC.

KS_16295 

JamE_AAS98777_K

S1 
57 149 

5.00E-

61 
jamaicamide KS 

New.CleanUp.ReferenceOTU51_SnC.

KS_16295 

JamE_AAS98777_K

S1 
49 63 

5.00E-

61 
jamaicamide KS 

New.CleanUp.ReferenceOTU55_SnC.

KS_22107 
StiG_Q8RJY0_1KSB 57 157 

4.00E-

75 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU55_SnC.

KS_22107 
StiG_Q8RJY0_1KSB 75 67 

4.00E-

75 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU57_SnC. Stro2778_1 67 89 1.00E- salinilactam modul
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KS_26481 58 ar 

New.CleanUp.ReferenceOTU57_SnC.

KS_26481 
Stro2778_1 52 106 

1.00E-

58 
salinilactam 

modul

ar 

New.CleanUp.ReferenceOTU57_SnC.

KS_26481 
Stro2778_1 71 17 

1.00E-

58 
salinilactam 

modul

ar 

New.CleanUp.ReferenceOTU65_SnC.

KS_28498 
ChlB1_AAZ77673_i 60 181 

4.00E-

69 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU65_SnC.

KS_28498 
ChlB1_AAZ77673_i 62 45 

4.00E-

69 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU88_SnC.

KS_31623 

EpoD_Q9L8C7_4m

od 
60 143 

2.00E-

59 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU88_SnC.

KS_31623 

EpoD_Q9L8C7_4m

od 
58 57 

2.00E-

59 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU90_SnC.

KS_12662 

MtaD_Q9RFK8_1K

SB 
51 175 

1.00E-

52 
myxothiazol 

hybrid

KS 

New.CleanUp.ReferenceOTU90_SnC.

KS_12662 

MtaD_Q9RFK8_1K

SB 
88 16 

1.00E-

52 
myxothiazol 

hybrid

KS 

New.CleanUp.ReferenceOTU92_SnC.

KS_17813 

AveA4_Q9S0R3_2

mod 
56 171 

5.00E-

60 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU92_SnC.

KS_17813 

AveA4_Q9S0R3_2

mod 
71 45 

5.00E-

60 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU99_SnC.

KS_31079 

SpnC_Q9ALM4_2K

SB 
60 142 

4.00E-

55 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU99_SnC.

KS_31079 

SpnC_Q9ALM4_2K

SB 
68 34 

4.00E-

55 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU101_IpB.

KS_8118 
StiE_Q8RJY2_1KSB 59 129 

1.00E-

58 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU101_IpB.

KS_8118 
StiE_Q8RJY2_1KSB 68 60 

1.00E-

58 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU108_IpB.

KS_6810 

EcoA_AAX98184_2

KSB 
82 28 

2.00E-

17 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU108_IpB.

KS_6810 

EcoA_AAX98184_2

KSB 
53 32 

2.00E-

17 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU108_IpB.

KS_6810 

EcoA_AAX98184_2

KSB 
50 20 

2.00E-

17 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU108_IpB.

KS_6810 

EcoA_AAX98184_2

KSB 
59 17 

2.00E-

17 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU111_IpB.

KS_7399 
LnmJ_AF484556_2T 54 79 

1.00E-

36 
leinamycin trans 

New.CleanUp.ReferenceOTU111_IpB.

KS_7399 
LnmJ_AF484556_2T 44 77 

1.00E-

36 
leinamycin trans 

New.CleanUp.ReferenceOTU111_IpB.

KS_7399 
LnmJ_AF484556_2T 71 17 

1.00E-

36 
leinamycin trans 

New.CleanUp.ReferenceOTU112_IpB.

KS_4072 

SpnD_Q9ALM3_3K

SB 
70 93 

1.00E-

61 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU112_IpB. SpnD_Q9ALM3_3K 51 117 1.00E- spinosad modul
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KS_4072 SB 61 ar 

New.CleanUp.ReferenceOTU113_IpB.

KS_5760 

CurJ_AAT70105_m

od 
54 167 

2.00E-

35 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU115_IpB.

KS_6919 

EpoE_Q9L8C6_1m

od 
58 160 

4.00E-

42 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU115_IpB.

KS_6919 

EpoE_Q9L8C6_1m

od 
48 23 

4.00E-

42 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU120_IpB.

KS_7317 

MxaB_Q93TX0_1KS

B 
58 162 

6.00E-

61 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU120_IpB.

KS_7317 

MxaB_Q93TX0_1KS

B 
65 43 

6.00E-

61 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU120_IpB.

KS_7317 

MxaB_Q93TX0_1KS

B 
73 11 

6.00E-

61 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU122_IpB.

KS_3399 
Sare1246_1 63 107 

1.00E-

45 
rifamycin 

modul

ar 

New.CleanUp.ReferenceOTU122_IpB.

KS_3399 
Sare1246_1 78 36 

1.00E-

45 
rifamycin 

modul

ar 

New.CleanUp.ReferenceOTU125_IpB.

KS_5475 

MtaE_Q9RFK7_1KS

B 
59 209 

3.00E-

68 
myxothiazol 

modul

ar 

New.CleanUp.ReferenceOTU133_IpB.

KS_10209 
StiG_Q8RJY0_1KSB 60 195 

6.00E-

61 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU136_IpB.

KS_8219 
StiG_Q8RJY0_1KSB 51 196 

1.00E-

42 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU14_IpB.K

S_9834 
StiE_Q8RJY2_1KSB 50 110 

3.00E-

37 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU14_IpB.K

S_9834 
StiE_Q8RJY2_1KSB 58 52 

3.00E-

37 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU14_IpB.K

S_9834 
StiE_Q8RJY2_1KSB 42 24 

3.00E-

37 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU141_IpB.

KS_4989 

CurM_AAT70108_

mod 
75 122 

4.00E-

63 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU141_IpB.

KS_4989 

CurM_AAT70108_

mod 
47 74 

4.00E-

63 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU15_IpB.K

S_7033 

CurI_AAT70104_m

od 
63 146 

5.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU15_IpB.K

S_7033 

CurI_AAT70104_m

od 
44 41 

5.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU151_IpB.

KS_3662 
CALO5_12183629_i 50 217 

1.00E-

53 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU154_IpB.

KS_8928 
NosB_Q9RAH3_H 73 123 

4.00E-

75 
nostopeptolide 

hybrid

KS 

New.CleanUp.ReferenceOTU154_IpB.

KS_8928 
NosB_Q9RAH3_H 58 96 

4.00E-

75 
nostopeptolide 

hybrid

KS 

New.CleanUp.ReferenceOTU155_IpB.

KS_5402 

EpoD_Q9L8C7_3m

od 
56 115 

7.00E-

55 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU155_IpB. EpoD_Q9L8C7_3m 69 77 7.00E- epothilone modul
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KS_5402 od 55 ar 

New.CleanUp.ReferenceOTU164_IpB.

KS_8206 

JamL_AAS98783_m

od 
59 180 

4.00E-

46 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU168_IpB.

KS_4544 

MxaC_Q93TW9_3K

SB 
55 110 

2.00E-

33 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU170_IpB.

KS_6099 
StiB_Q8RJY5_1KSB 50 105 

2.00E-

49 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU170_IpB.

KS_6099 
StiB_Q8RJY5_1KSB 57 81 

2.00E-

49 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU176_IpB.

KS_8873 

JamK_AAS98782_

mod 
50 216 

2.00E-

52 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU177_IpB.

KS_5623 
StiG_Q8RJY0_1KSB 59 195 

1.00E-

53 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU177_IpB.

KS_5623 
StiG_Q8RJY0_1KSB 73 15 

1.00E-

53 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU181_IpB.

KS_2713 

SpnC_Q9ALM4_2K

SB 
61 49 

1.00E-

32 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU181_IpB.

KS_2713 

SpnC_Q9ALM4_2K

SB 
74 34 

1.00E-

32 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU181_IpB.

KS_2713 

SpnC_Q9ALM4_2K

SB 
64 36 

1.00E-

32 
spinosad 

modul

ar 

New.CleanUp.ReferenceOTU183_IpB.

KS_8569 

CurJ_AAT70105_m

od 
48 196 

3.00E-

33 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU184_IpB.

KS_8894 

CurK_AAT70106_

mod 
64 112 

6.00E-

44 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU184_IpB.

KS_8894 

CurK_AAT70106_

mod 
37 52 

6.00E-

44 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU186_IpB.

KS_6682 

JamK_AAS98782_

mod 
67 127 

1.00E-

60 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU186_IpB.

KS_6682 

JamK_AAS98782_

mod 
62 86 

1.00E-

60 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU187_IpB.

KS_7576 

CurI_AAT70104_m

od 
71 89 

1.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU187_IpB.

KS_7576 

CurI_AAT70104_m

od 
69 39 

1.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU187_IpB.

KS_7576 

CurI_AAT70104_m

od 
48 61 

1.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU187_IpB.

KS_7576 

CurI_AAT70104_m

od 
50 18 

1.00E-

53 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU188_IpB.

KS_7041 
JamJ_AAS98781 51 108 

2.00E-

53 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU188_IpB.

KS_7041 
JamJ_AAS98781 49 73 

2.00E-

53 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU188_IpB.

KS_7041 
JamJ_AAS98781 62 40 

2.00E-

53 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU191_IpB. LipA_ABB05102_1 54 71 1.00E- lipomycin modul
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KS_7271 KSB 12 ar 

New.CleanUp.ReferenceOTU20_IpB.K

S_9626 

FurD2_ABB88522_

KSB 
59 169 

2.00E-

55 

5-alkenyl-3,3(2h)-

furanone 

modul

ar 

New.CleanUp.ReferenceOTU204_IpB.

KS_7291 

CurI_AAT70104_m

od 
71 85 

4.00E-

32 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU205_IpB.

KS_7293 

EpoE_Q9L8C6_1m

od 
49 94 

3.00E-

22 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU205_IpB.

KS_7293 

EpoE_Q9L8C6_1m

od 
75 16 

3.00E-

22 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU205_IpB.

KS_7293 

EpoE_Q9L8C6_1m

od 
36 191 

2.00E-

18 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU206_IpB.

KS_5133 
StiA_Q8RJY6_1KSB 65 207 

2.00E-

71 
stigmatellin KS1 

New.CleanUp.ReferenceOTU211_IpB.

KS_6536 

CurA_AAT70096_

mod 
68 209 

2.00E-

69 
curacin KS 

New.CleanUp.ReferenceOTU211_IpB.

KS_6536 

CurA_AAT70096_

mod 
73 11 

2.00E-

69 
curacin KS 

New.CleanUp.ReferenceOTU213_IpB.

KS_2471 

PimS2_Q9EWA1_2

KSB 
62 199 

2.00E-

65 
pimaricin 

modul

ar 

New.CleanUp.ReferenceOTU215_IpB.

KS_788 

JamM_AAS98784_

H 
73 41 

7.00E-

14 
jamaicamide 

hybrid

KS 

New.CleanUp.ReferenceOTU223_IpB.

KS_9401 
StiG_Q8RJY0_1KSB 66 121 

1.00E-

57 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU223_IpB.

KS_9401 
StiG_Q8RJY0_1KSB 59 54 

1.00E-

57 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU23_IpB.K

S_8804 
StiI_Q8RJX8_1KSB 44 224 

4.00E-

39 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU230_IpB.

KS_8268 

MxaD_Q93TW8_1K

SB 
60 127 

9.00E-

39 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU230_IpB.

KS_8268 

MxaD_Q93TW8_1K

SB 
91 11 

9.00E-

39 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU234_IpB.

KS_4135 

JamL_AAS98783_m

od 
66 80 

7.00E-

61 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU234_IpB.

KS_4135 

JamL_AAS98783_m

od 
64 67 

7.00E-

61 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU234_IpB.

KS_4135 

JamL_AAS98783_m

od 
40 63 

7.00E-

61 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU234_IpB.

KS_4135 

JamL_AAS98783_m

od 
82 22 

7.00E-

61 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU237_IpB.

KS_5662 
CALO5_12183629_i 55 196 

4.00E-

67 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU237_IpB.

KS_5662 
CALO5_12183629_i 71 31 

4.00E-

67 
calicheamicin 

iterativ

e 

New.CleanUp.ReferenceOTU239_IpB.

KS_7627 

MxaB_Q93TX0_1KS

B 
67 144 

1.00E-

61 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU239_IpB. MxaB_Q93TX0_1KS 55 38 1.00E- myxalamid modul
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KS_7627 B 61 ar 

New.CleanUp.ReferenceOTU239_IpB.

KS_7627 

MxaB_Q93TX0_1KS

B 
57 21 

1.00E-

61 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU24_IpB.K

S_9898 

AveA2_Q9S0R7_4

mod 
69 157 

1.00E-

57 
avermectin 

modul

ar 

New.CleanUp.ReferenceOTU241_IpB.

KS_8150 

EcoA_AAX98184_2

KSB 
49 220 

2.00E-

48 
eco-02301 

modul

ar 

New.CleanUp.ReferenceOTU243_IpB.

KS_7133 

JamK_AAS98782_

mod 
49 72 

1.00E-

43 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU243_IpB.

KS_7133 

JamK_AAS98782_

mod 
65 46 

1.00E-

43 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU243_IpB.

KS_7133 

JamK_AAS98782_

mod 
58 57 

1.00E-

43 
jamaicamide 

modul

ar 

New.CleanUp.ReferenceOTU248_IpB.

KS_3755 

EpoE_Q9L8C6_1m

od 
64 112 

3.00E-

58 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU248_IpB.

KS_3755 

EpoE_Q9L8C6_1m

od 
57 49 

3.00E-

58 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU248_IpB.

KS_3755 

EpoE_Q9L8C6_1m

od 
52 46 

3.00E-

58 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU251_IpB.

KS_9798 

CurI_AAT70104_m

od 
59 161 

4.00E-

55 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU251_IpB.

KS_9798 

CurI_AAT70104_m

od 
73 30 

4.00E-

55 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU254_IpB.

KS_5431 
StiC_Q8RJY4_1KSB 64 173 

2.00E-

56 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU258_IpB.

KS_8813 

MxaB_Q93TX0_1KS

B 
69 80 

3.00E-

62 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU258_IpB.

KS_8813 

MxaB_Q93TX0_1KS

B 
61 90 

3.00E-

62 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU258_IpB.

KS_8813 

MxaB_Q93TX0_1KS

B 
43 46 

3.00E-

62 
myxalamid 

modul

ar 

New.CleanUp.ReferenceOTU259_IpB.

KS_9796 
ChlB1_AAZ77673_i 65 139 

6.00E-

60 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU259_IpB.

KS_9796 
ChlB1_AAZ77673_i 66 41 

6.00E-

60 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU27_IpB.K

S_5488 
LnmJ_AF484556_2T 47 135 

1.00E-

31 
leinamycin trans 

New.CleanUp.ReferenceOTU28_IpB.K

S_8803 
LnmI_AF484556_2T 64 108 

4.00E-

29 
leinamycin trans 

New.CleanUp.ReferenceOTU28_IpB.K

S_8803 
LnmI_AF484556_2T 64 14 

4.00E-

29 
leinamycin trans 

New.CleanUp.ReferenceOTU38_IpB.K

S_9035 

LipD_ABB05105_2

KSB 
61 71 

1.00E-

35 
lipomycin 

modul

ar 

New.CleanUp.ReferenceOTU38_IpB.K

S_9035 

LipD_ABB05105_2

KSB 
79 58 

1.00E-

35 
lipomycin 

modul

ar 

New.CleanUp.ReferenceOTU4_IpB.KS EpoC_Q9L8C8_H 64 141 1.00E- epothilone hybrid
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_8418 47 KS 

New.CleanUp.ReferenceOTU45_IpB.K

S_5599 
Sare1250_2 51 102 

4.00E-

23 
rifamycin 

modul

ar 

New.CleanUp.ReferenceOTU46_IpB.K

S_5452 

EpoD_Q9L8C7_4m

od 
66 219 

7.00E-

81 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU47_IpB.K

S_9400 

EpoD_Q9L8C7_4m

od 
69 48 

3.00E-

16 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU48_IpB.K

S_5455 

JamE_AAS98777_K

S1 
57 142 

1.00E-

61 
jamaicamide KS 

New.CleanUp.ReferenceOTU48_IpB.K

S_5455 

JamE_AAS98777_K

S1 
61 62 

1.00E-

61 
jamaicamide KS 

New.CleanUp.ReferenceOTU5_IpB.KS

_9568 
NosB_Q9RAH3_H 51 193 

1.00E-

48 
nostopeptolide 

hybrid

KS 

New.CleanUp.ReferenceOTU52_IpB.K

S_6840 
StiE_Q8RJY2_1KSB 50 181 

1.00E-

46 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU52_IpB.K

S_6840 
StiE_Q8RJY2_1KSB 55 29 

1.00E-

46 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU6_IpB.KS

_4876 

EpoD_Q9L8C7_4m

od 
66 192 

2.00E-

69 
epothilone 

modul

ar 

New.CleanUp.ReferenceOTU62_IpB.K

S_9351 

JamE_AAS98777_K

S1 
47 225 

7.00E-

46 
jamaicamide KS 

New.CleanUp.ReferenceOTU70_IpB.K

S_7847 
ChlB1_AAZ77673_i 56 153 

2.00E-

49 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU70_IpB.K

S_7847 
ChlB1_AAZ77673_i 77 35 

2.00E-

49 
chlorothricin 

iterativ

e 

New.CleanUp.ReferenceOTU71_IpB.K

S_8182 
StiC_Q8RJY4_1KSB 69 144 

4.00E-

57 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU71_IpB.K

S_8182 
StiC_Q8RJY4_1KSB 77 13 

4.00E-

57 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU78_IpB.K

S_8907 
StiG_Q8RJY0_1KSB 46 151 

4.00E-

30 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU78_IpB.K

S_8907 
StiG_Q8RJY0_1KSB 39 150 

1.00E-

19 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU79_IpB.K

S_5779 
StiD_Q8RJY3_1KSB 51 126 

7.00E-

35 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU79_IpB.K

S_5779 
StiD_Q8RJY3_1KSB 60 42 

7.00E-

35 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU79_IpB.K

S_5779 
StiD_Q8RJY3_1KSB 38 130 

5.00E-

15 
stigmatellin 

modul

ar 

New.CleanUp.ReferenceOTU81_IpB.K

S_5588 

MxaF_Q93TW6_1K

SB 
66 82 

3.00E-

41 
myxalamid KS1 

New.CleanUp.ReferenceOTU81_IpB.K

S_5588 

MxaF_Q93TW6_1K

SB 
71 62 

3.00E-

41 
myxalamid KS1 

New.CleanUp.ReferenceOTU86_IpB.K

S_6372 

CurI_AAT70104_m

od 
69 189 

7.00E-

65 
curacin 

modul

ar 

New.CleanUp.ReferenceOTU89_IpB.K EpoD_Q9L8C7_4m 73 164 1.00E- epothilone modul
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ar 

New.CleanUp.ReferenceOTU97_IpB.K

S_3095 
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6.00E-

52 
curacin KS 

New.CleanUp.ReferenceOTU97_IpB.K

S_3095 

CurA_AAT70096_
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64 45 

6.00E-

52 
curacin KS 

New.CleanUp.ReferenceOTU97_IpB.K

S_3095 

CurA_AAT70096_

mod 
63 41 

6.00E-

52 
curacin KS 

New.CleanUp.ReferenceOTU97_IpB.K

S_3095 

CurA_AAT70096_

mod 
67 27 

6.00E-

52 
curacin KS 

 

7.2 Supplementary material Chapter 3 

 

 

Supplementary figure 1: KEGG distribution of the proteins identified by BPGA from the 

five investigated Pseudoalteromonas sp. genomes. 
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7.3 Supplementary material Chapter 4 

 

7.3.1 3D binding models: Substrates 

 

4-Methylumbelliferone 

 

4-Nitrophenyl acetate 
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4-Nitrophenyl phosphate 

 

Triacetin 
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Tributyrin 

 

Methyl laurate 
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7.3.2 3D binding models: Inhibitors 

 

 

Phenylmethansulfonic acid 

 

Oleic acid 
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Triacsin C 

 

5-Carbamoyl-2H-1,2,3-triazole-4-diazonium 
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Isoxazole 

 


