
Title Compliance synthesis of a class of planar compliant
parallelogram mechanisms using the position space concept

Authors Hao, Guangbo;Yu, Jingjun;Liu, Yufei

Publication date 2018-06

Original Citation Hao, G., Yu, J. and Liu, Y. (2018) 'Compliance synthesis of a class
of planar compliant parallelogram mechanisms using the position
space concept', 2018 International Conference on Reconfigurable
Mechanisms and Robots (ReMAR), Delft, Netherlands, 20-22
June. doi:10.1109/REMAR.2018.8449882

Type of publication Conference item

Link to publisher's
version

10.1109/REMAR.2018.8449882

Rights © 2018, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-12-26 19:15:49

Item downloaded
from

https://hdl.handle.net/10468/7074

https://hdl.handle.net/10468/7074


 

 

 

 

Abstract— Compliant mechanisms can be reconfigured with 

variation of compliance performance, by changing the positions 

of each compliant module thereof within its position space. This 

paper synthesizes the compliance of two types of parallelogram 

mechanisms by changing the positions of compliant joints 

within their position spaces. Through analytical modelling, 

detailed analysis is implemented to uncover the influence of 

positions on compliance characteristics. Finally, some desired 

designs are presented. 

 

 

I. INTRODUCTION 

Compliant mechanisms uses their flexible members to 

transfer motion, load, and/or energy, which have gained 

increasing attentions in academia and industry [1-5]. 

Different from rigid-body mechanisms, the structure of a 

compliant mechanism can be reconfigurable through 

changing the positions of each (decomposed) compliant 

module thereof within its pre-determined position space [6-9], 

where the position space theory can be introduced through a 

discussion and mathematical derivation of relevant screw 

theory kinematics [8,9]. Each module can be an independent 

one or coupled with another when determining the position 

space [9]. The position-space-based approach reconfigures a 

compliant mechanism into sub-mechanisms that ultimately 

produce the same overall DOF (degrees of freedom, i.e. 

mobility). The position space method also considers the 

positions of each compliant joint/module relative to its 

adjacent compliant joint/module. The presentation of position 

spaces can offer an efficient and systematic method to arrange 

the relative positions between any two compliant 

joints/modules so that one can easily generate practical and 

useful configurations [6,7]. Benefits of reconfiguring a 

mechanism into a new shape/structure may include 

improvement of performances in parasitic motion, reduced 

 
*This research is supported by Visiting Scholar Foundation of Key 

Laboratory of Optoelectronic Technology and Systems (Chongqing University), 

Ministry of Education of China, which is much appreciated. This work was also 

partially supported by the China National Key Research and Development 

Program of China (Grant No. 2016YFE0125200 and 2016YFC0101100), and 

the China Fundamental Research Funds for the Central Universities (Grant No. 

106112015CDJXY120007). 

Guangbo Hao is with Key Laboratory of Optoelectronic Technology & 

Systems (Chongqing University), Ministry of Education, Chongqing, 400044, 

China, and with School of Engineering, University College Cork, Cork, Ireland 

Jingjun Yu is with Robotics Institute, Beihang University, Beijing,  100083 

China 

Yufei Liu is with Center for Intelligent Sensing Technology, College of 

Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China 

Corresponding authors: Guangbo Hao (G.Hao@ucc.ie); Yufei Liu 

(yufei.liu@cqu.edu.cn) 

lost motion, stress distribution, manufacturability, and 

compactness (or symmetry) [6-10]. Position spaces include 

translational and rotational cases, or single-DOF and 

multi-DOF cases as reported in [6-10].  

Synthesis can form a starting point for further nonlinear 

analysis and optimization. Figure 1(a) shows the hierarchy 

relation among type synthesis, position space based synthesis, 

and dimensional synthesis in designing compliant 

mechanisms. The position space based synthesis can provide 

an extra option of optimizing or synthesizing compliant 

mechanisms. In order to explain the position space concept 

better, Fig. 2(a) presents a generic 2-DOF (degree of freedom) 

serial compliant translational mechanism, composed of two 

parallelogram modules, modules 1 and 2. Let the output 

motion stage keep fixed, without changing the mobility of the 

system, module 1 can rotate about the fixed Y-axis while 

module 2 can rotate about the mobile X-axis (always parallel 

to the fixed X-axis), that is connected to module I. The 

position space of each translational module is illustrated as a 

circle, whose specific position is defined by a rotational angle 

variable. When the rotational angle of each module are given, 

the specific configuration of the system is obtained (four 

specific configurations shown in Fig. 1(c)). The designs in 

[11,12] actually use the specific configuration in the position 

space of two serial modules for high-payload applications. 

Inspired by the above idea, Refs. [13-15] have synthesized 

translational joints and tip-tilt-piston mechanisms by defining 

a set of parameters under a framework of the position space.  

With the similar motivation, this paper aims to implement 

compliance synthesis of a class of planar compliant 

parallelogram mechanisms, including the parallelogram 

mechanism using identical short-beam hinges and the one 

using identical cross-axis joints. The results of synthesis in 

this paper intend to confirm the optimal configuration as well 

as to reveal the influences of positions of hinges/joints upon 

compliance performance characteristics.  

This paper is organized as below. Sec. 2 proposes the 

design of a generic parallelogram mechanism using 

short-beam hinges. Its compliance modelling and analysis are 

detailed in Sec. 3. Sec. 4 models and analyzes an improved 

parallelogram mechanism using cross-axis joints. Finally, 

conclusions are drawn in Sec. 5 with the presentation of some 

desired designs. 
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Figure 1. Illustration of position space using a two-DOF serial translational 

mechanism 

II. DESIGN OF A PARALLELOGRAM MECHANISM WITH THE 

GENERIC ARRANGEMENT OF HINGES 

In this section, a parallelogram mechanism with the 

generic arrangement of four short-beam hinges is presented as 

shown in Fig. 2. Each short-beam hinge can be regarded a 

revolute joint about its center, the position space of which can 

be illustrated as a circle with its center located at the beam 

center [8, 9], as shown in Fig. 2(a). 

In the parallelogram, the crank link’s length is determined 

by H and the coupler link’s length is denoted by W. Each 

crank is the leg and the coupler is the motion stage. The 

horizontal translation of the motion stage is the desired 

primary motion with others as the undesired parasitic 

motions. All hinges are identical with its length of L, its 

in-plane thickness of T, and its out-of-plane thickness of U. A 

global coordinate system O-XYZ is defined at the center of the 

parallelogram mechanism. Two leg coordinate systems 

(O1-X1Y1Z1 and O2-X2Y2Z2) are defined as shown in Fig. 2. 

Two local coordinate systems for two hinges in Leg 1 are also 

defined at own stiffness centers, also centers of the short 

beams (Fig. 2(c)). 

Two legs are symmetrical with respect to the X-axis. Here, 

the distance of centers of two hinges in vertical direction 

(X-axis) is H (H≥L for the same plane arrangement of beams), 

and that in the horizontal direction (Y-axis) is W. In each leg, 

the position of each hinge can be rotated about its center based 

on the position space concept as illustrated in Fig. 2(a). As 

shown in Fig. 2(b), two rotational variables/angles (α and β) 

are used to define any positions of two hinges in leg 1, and two 

rotational variables (˗α and ̠ β) are used to define the positions 

of two hinges in leg 2. 

III. COMPLIANCE MODELLING OF THE GENERIC 

PARALLELOGRAM MECHANISM 

This section models the compliance matrix of the generic 

parallelogram mechanism based on the linear modelling 

method. Each hinge’s compliance matrix, with respect to its 

local coordinate system as shown in Fig. 2(c), is written below 

[16] 
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            (1)  

where a=12 and d=12/(T/L)2. E is the Young’s modulus of 

material, under the assumption of planar stress. I=UT3/12, 

which is the second moment inertia of area of the uniform 

cross section of the hinge.  

Using Equation (1), we can derive the compliance matrix 

of each hinge in Leg 1 under a new coordinate system (at the 

same hinge center) with axes parallel to these in the global 

coordinate system O-XYZ: 
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which are both the rotational transformation matrices to 

covert the compliance matrix of each hinge from its local 

coordinate system to the new coordinate system. The two 

rotational matrices determine the specific rotational position 

of each hinge in its position space.  

We can further obtain the compliance matrix of each 

hinge with regard to Leg 1’s coordinate system O1-X1Y1Z1 as 

below, using the results in Eq. (2): 

    
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where  
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, 

which are the two locational transformation matrices between 

the hinge center and the leg center. 

 

 

 

 

 

 

Figure 2. A parallelogram mechanism with lumped compliance 

 

Based on the compliance rule of serial systems, Leg 1’ 

compliance matrix with respect to its own coordinate system 

(O1-X1Y1Z1) is obtained: 

Leg1 O11 O12C C C                             (4) 

Leg 2’ compliance modelling is similar to Leg 1’s as 

shown above. Similar to the process of obtaining Eq. (2), we 

have the following compliance matrices for two hinges in Leg 

2 considering the generic rotational positions: 
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With respect to Leg 2’s coordinate system O2-X2Y2Z2, Eq. 

(5) can be transformed as 

(a) Parallelogram mechanism 

with straight hinges 

 

(b) Schematic diagram with generic 

arrangement of hinges 

 

(c) Local coordinate systems for two hinges in Leg 1: 

bottom hinge on the left, top hinge on the right 
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Then, Leg 2’s compliance matrix with respect to its own 

coordinate system (O2-X2Y2Z2) is obtained as: 

Leg2 O21 O22C C C                                (7) 

On the basis of Eqs. (4) and (7), the stiffness matrix of 

each leg are obtained: 

1
Leg1 Leg1

1
Leg2 Leg2
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                             (8) 

Finally, the stiffness matrix of the parallelogram 

mechanism (with regard to the global coordinate system 

O-XYZ) is derived in terms of the stiffness rule of parallel 

systems 
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The inversion of Eq. (9) yields the following symmetrical 

matrix: 
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where the entry in the first row corresponds to the undesired 

translation along the X-axis, and the entries in the second row 

correspond to the desired translation along the Y-axis, the 

entries in the third row correspond to the undesired rotation 

about the Z-axis. 

Using the normalization method [17], the 

dimensionless/normalized compliance entries are represented 

below, so that they can be compared each other: 
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where H is the characteristic length for normalization. 

In the following, three cases are discussed for the 

modelling results using the following parameters: L = 5 mm; 

T = 1 mm; H = 35 mm; W = 20 mm; U = 10 mm; E = 69 GPa. 

It is noted that if β=α=0 and H=L, the generic 

parallelogram mechanism reduces to the classic leaf-type 

parallelogram mechanism with distributed compliance. 

 

(1) Case I: β=−α 

Under case I, a simple diagonal compliance matrix can be 

symbolically derived as below, which shows no parasitic 

motion accompanying the primary motion: 
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(12a) 

In Eq. (12a), there are 7 geometrical parameters, L, H, W, 

T, U, α and β, which affect the compliance entries. Equation 

(12a) shows that the parameter H only affects Cs22, and the 

parameter W only influences Cs33.  

In this paper, we focus on studying on influence of the 

position parameters (α and β) of two hinges. Figure 3 shows 

the ratios of dimensionless compliance entries (desired one 

divided by undesired one). c22/c11 periodically changes with α 

ϵ[0, 2π) as described in Fig. 3(a), where the maximal 

(optimal) value occurs at α=0 or π and the minimal one occurs 

at α=π/2, or 3π/2. The maximal ratio in Fig. 3(a) is as large as 

3750, and the minimal one is lower than 200. Similarly, 

c22/c33 also periodically varies with α as shown in Fig. 3(b). 

The maximal c22/c33 value is larger than 300 occurring at α=0 

or π; and the minimal one is lower than 20 occurring at α=π/2, 

or 3π/2.  It is revealed that in the domain close to α=π/2 or 

3π/2, the compliance ratio is nearly constant. 

The above analysis results confirm that the 

conventional/normal configuration (with α=β=0) is the 

optimal one. Although in this section the objective is to design 

a 1-DOF compliant translational joint, the modelling result 

can be used to guide the design of a multi-DOF compliant 

joint through optimize all geometrical parameters. 

 

(2) Case II: β=α 

Under case II, a diagonal compliance matrix cannot be 

obtained and its symbolic expression (as shown in Eq. (A.1)) 

can not reduce to the form as neat as Eq. (12a). Figures 4(a) 

and 4(b) show the similar findings of compliance ratios as 

shown in Fig. 3. However, the parasitic motion entry c23 

appears as shown in Fig. 4(c), in the order of 10-4 (rad). 



 

 

 

 

(a) 

 

(b) 

Figure 3. Case I compliance results for the parallelogram mechanism affected by 

position angle 

 

(3) Case III: β≠α 

Under case III where β≠α, the influence of α on the 

compliance ratio is investigated considering a specific value 

of β as shown in Figs. 5(a) and (b). It is clear that the 

compliance ratio at β=0 is the best, but has the largest regular 

fluctuation over α. The parasitic motion entry is shown in Fig. 

5(c). It can be observed that at β=π/4 c23 is not less than zero, 

with a periodic change. c23 at β=π/2 is nearly same as that at 

β=0, throughout the range of α. 

One can prove mathematically that under the same α, β=β0 

and β=β0+π (any value of β0) will obtain the same compliance 

matrix of the parallelogram mechanism. If β=π or 0, the 

compliance matrix, using the assigned parameters above, is 

expressed as below: 

 

 

 

 

   

 

   

 

 

 

2

2

2

2 2

2

2 2

s

11061cos 119861
0 0

138000 3cos 922

7461cos 1118386 cos sin1 6
0

34500 57512cos 1213 12cos 1213

cos sin 12cos 136 1
0

575 1150012cos 1213 12cos 1213

C





  

 

  

 











 
 
 
 
 

  
 








 
   

(12b) 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4. Case II compliance results for the parallelogram mechanism affected 

by position angle 

 

It is also interesting to know that Ref. [18] also discussed 

the influence of the flexure hinge orientation in the 

parallelogram mechanism with lumped compliance, which 

can be explained using our position-space framework. Note 

that the work in [18] does not include parameter synthesis.  

 



 

 

 

  

(a) 

 

(b) 

 

(c) 

Figure 5. Case III compliance results for the parallelogram mechanism affected 

by position angle 

 

IV. COMPLIANCE MODELLING OF AN IMPROVED 

PARALLELOGRAM MECHANISM USING CROSS-AXIS JOINTS 

This section presents an improved parallelogram 

mechanism using cross-axis joints instead of the short-beam 

hinges, which is shown in Fig. 6. All cross-axis joints are 

identical. An extra angle parameter (γ) is introduced to denote 

the angle of two beams in a cross-axis joint. 

The compliance modelling process of the improved 

parallelogram mechanism is exactly same as the one shown in 

Fig. 1, except there is a need of modifying the following 

matrices for two cross-axis joints in each leg. 
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Using the results in Eqs. (13) and (14) to replace C11, C12, 

C21 and C22 in Section 3, we can derive the compliance matrix 

of the improved parallelogram mechanism. We will also 

analyze three cases as discussed below. 

 

Figure 6. Schematic diagram of the improved parallelogram mechanism  

 

(1) Case I: Any α, any β under |γ|=π/2 

Under case I, a simple symbolic solution of the compliance 

matrix is obtained in Eq. (15), which is a diagonal matrix. 

Interestingly, the rotational parameter α or β in this 

compliance matrix vanishes, meaning that the compliance 

performance keeps unchanged in the whole position space of 

cross-axis joints (Fig. 7). It, however, remains unknown if 

other indices such as stress distribution change over α. 
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Equation (15) shows that the parameter H only affects Cs22, 

and the parameter W only influences Cs33.  

 

(a) 

 

  (b) 

 

(c) 

Figure 7. Comparison of Cases I and II of the improved parallelogram 

mechanism 

 

(2) Case II: β=−α and |γ|≠π/2 

Under case II, there is no simple symbolic solution to be 

shown. Cases I and II are compared in Fig. 7. c22/c11 (or 

c22/c33) at γ=π/4 is same as that at γ=3π/4, throughout the 

range of α. However, c23 at γ=π/4 is opposite to that at γ=3π/4, 

with a magnitude in the order of 10-5 rad. When α=0 or π, the 

compliance ratio is the optimal, where c22/c11 is larger than 

2000 and c22/c33 is larger than 160. When α=π/2 or 3π/2, the 

compliance ratio is the worst, with c22/c11 larger than 700 and 

with c22/c33 larger than 60.  

 

(a) 

 

(b) 

 

(c) 

Figure 8. Comparison of Cases I and III of the improved parallelogram 

mechanism 

 

 



 

 

 

(3) Case III: β=α and |γ|≠π/2 

Under case III, a symbolic solution of the compliance 

matrix can not be shown as well. Case I and Case III are 

compared in Fig. 8. It is shown in case III that either the 

compliance ratio and the parasitic motion entry change 

periodically, the result at γ=π/4 has a π/4 phase delay 

compared to that at γ=3π/4. 

 

V. CONCLUSION 

Utilizing the position space concept, this paper carries out 

a comprehensive compliance synthesis of a class of planar 

compliant parallelogram mechanisms, including the generic 

mechanism composed of short-beam hinges and the improved 

one composed of cross-axis joints. Analytical models have 

been derived to identify the influence of rotational positions 

on the compliance characteristics of the mechanism.  

This paper presented the modelling results based on the 

linear modelling method, thus only the instantaneous 

kinetostatic characteristics have been captured, and those 

nonlinear characteristics such as the parasitic translation 

(along the X-axis) accompanying the primary motion (along 

the Y-axis) were not covered. Note that although the position 

space was defined for each of the short-beam joints in the 

parallelogram mechanism, the modelling results in this paper 

are still valid for the parallelogram mechanisms with 

distributed compliance. 

Considering the linear compliance characteristics as the 

task in this paper, we can conclude the following: a) the first 

parallelogram (Fig. 2) has the best performance if |α|=0 or π 

and |β|=0 or π; b) the second parallelogram (Fig. 6) has an 

unchanged performance under |γ|=π/2 despite the change α 

and β, and the second parallelogram has the best performance 

if |α|=|β|=0 or π and |γ|≠ π/2. Figure 2(a) shows the 

parallelogram mechanism with normal arrangements of 

beams (i.e., α=β=0). Figure 9(a) shows the parallelogram 

mechanism with inverted arrangements of beams (i.e., 

α=β=π). Figure 9(b) shows the parallelogram mechanism 

with inverted arrangements of half number of beams and 

normal arrangements of half number of beams (i.e., α=π and 

β=0). Figure 10 shows several typical configurations of the 

improved parallelogram mechanism under γ=π/2. It is 

interesting to learn that in Fig. 9(a) all compliant beams 

undergo tensile forces when the motion stage is imposed a 

compression force, and that in Fig. 9(b) two beams suffer from 

compression forces and two beams suffer from tensile forces 

no matter whether the motion stage is compressed or not. 

Several compound designs composed of non-identical legs in 

parallel are shown in Figs. 9(c), 9(d) and 9(e) where beams in 

each leg either are normally arranged (Fig. 2(a)) or inversely 

arranged (Fig. 9(a)).  These compound designs can alleviate 

buckling effect for any directional axial force exerted on the 

motion stage. We should point out that the designs in Figs. 

9(b) and 9(e) may produce a load-independent primary 

stiffness in the lateral direction, which is independent of the 

axial force on the motion stage. Because there are always half 

number of beams undergoing compression forces (reducing 

the primary stiffness) and half number of beams undergoing 

tensile forces (increasing the primary stiffness), the overall 

change of primary stiffness is zero. 

 

(a) Design with α=β=π 

 

(b) Design with α=π and β =0 

    

(c) A compound design I with two different legs 

 

(d) A compound design II with three legs 

   

(e) A compound design II with two pairs of legs 

 
Figure 9. Different parallelogram mechanisms  

 



 

 

 

                   

(a) Design with γ=π/2, α= π/2, β=0 

   

(b) Design with γ=π/2, α=0, β= π/2 

  

(c) Design with γ=π/2, α= π/2, β= π/2 

     

(d) Design with γ=π/2, α= π/4, β= π/4 

   

(e) Design with γ=π/2, α=7π/4, β= 3π/4 

   

(f) Design with γ=π/2, α=3π/4, β=3π/4 

 
Figure 10. Several improved parallelogram mechanisms under |γ|=π/2 

 

For more extensive applications, the position space should 

be combined with the stress distribution/motion range to 

determine the optimal design, in addition to considering the 

stiffness/compliance performance. Moreover, the position 

space method can be used to interpret the emerging good 

designs. For example, a parallelogram mechanism composed 

of four identical trapezoidal joints (with remote rotation 

centers), as shown in Fig. 11, can be reconfigured to the 

design reported in [19] with the elimination of coupled 

parasitic translation. This is done by rotating each joint half 

circle (similar to Fig. 9(a)) followed by nonlinear parametric 

modelling and analysis.  

The future work is to synthesize other diverse types of 

compliant mechanisms such as the revolute joint (Fig. 12) 

using the similar idea presented in this paper, with a 

particular focus on nonlinear stiffness and motion 

characteristics. 

 

 

Figure 11. A parallelogram mechanism with trapezoidal joints 

 

 

Figure 12. A revolute joint with two pairs of trapezoidal joints in parallel: one 

pair being normally arranged and another pair being inversely arranged 
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