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Research highlights:

o A systematic approach to model compliant mechanisms is proposed.
. An XYZ compliant parallel mechanism is modelled using the proposed approach.
. FEA simulations and experimental tests are conducted.

Abstract

Numerous works have been conducted on modelling basic compliant elements such as wire beams, and closed-form analytical
models of most basic compliant elements have been well developed. However, the modelling of complex compliant mechanisms is
still a challenging work. This paper proposes a constraint-force-based (CFB) modelling approach to model compliant
mechanisms with a particular emphasis on modelling complex compliant mechanisms. The proposed CFB modelling approach
can be regarded as an improved free-body-diagram (FBD) based modelling approach, and can be extended to a development of
the screw-theory-based design approach. A compliant mechanism can be decomposed into rigid stages and compliant modules. A
compliant module can offer elastic forces due to its deformation. Such elastic forces are regarded as variable constraint forces in
the CFB modelling approach. Additionally, the CFB modelling approach defines external forces applied on a compliant
mechanism as constant constraint forces. If a compliant mechanism is at static equilibrium, all the rigid stages are also at static
equilibrium under the influence of the variable and constant constraint forces. Therefore, the constraint force equilibrium
equations for all the rigid stages can be obtained, and the analytical model of the compliant mechanism can be derived based on
the constraint force equilibrium equations. The CFB modelling approach can model a compliant mechanism linearly and
nonlinearly, can obtain displacements of any points of the rigid stages, and allows external forces to be exerted on any positions
of the rigid stages. Compared with the FBD based modelling approach, the CFB modelling approach does not need to identify the
possible deformed configuration of a complex compliant mechanism to obtain the geometric compatibility conditions and the
force equilibrium equations. Additionally, the mathematical expressions in the CFB approach have an easily understood physical
meaning. Using the CFB modelling approach, the variable constraint forces of three compliant modules, a wire beam, a four-
beam compliant module and an eight-beam compliant module, have been derived in this paper. Based on these variable constraint
forces, the linear and non-linear models of a decoupled XYZ compliant parallel mechanism are derived, and verified by FEA
simulations and experimental tests.

1 Introduction

Compliant mechanisms have no traditional sliding and rolling joints, and they transmit or transform displacements, forces and
energy by means of the elastic deformations of their compliant members [1-7]. Compared with traditional rigid-body mechanisms,
compliant mechanisms have the following main advantages: reduced number of parts, decreased assembly requirements, reduced
product weight, no friction, no need for lubrication and no backlash [1-7]. Therefore, they are gaining more and more attention in
a variety of applications such as micro- and nano-manipulation, high precision alignment, MEMS sensors and actuators, energy
harvesting, medical devices, adjustable mounting and consumer products [8-14].

In order to obtain relationships between geometric parameters and motion characteristics (such as cross-axis coupling,
parasitic motion, lost motion and drive stiffness) of a compliant mechanism to offer design insights, it is essential to obtain the
analytical model of the compliant mechanism [14, 15]. Numerous works have been conducted on modelling compliant
mechanisms [5, 15-26]. There are two main approaches of dealing with such modelling: one is the free-body-diagram (FBD)
based modelling approach [16], the other is the energy-based approach using virtual work principle [27]. Compared with the FBD
based modelling approach, the energy-based approach can simplify modelling process of compliant mechanisms through ignoring
some internal variables, but the ignored internal variables may be needed to estimate the motion characteristics of the compliant
mechanisms [28]. Awtar [29] also claimed that it was very difficult to derive an inverse relationship using the energy based
approach. Therefore, the basic principle of the FBD based modelling approach is followed in this paper.

This paper proposes a constraint-force-based (CFB) approach of modelling compliant mechanisms, which can be regarded as
a development of the FBD based modelling approach. The proposed CFB modelling approach can model a compliant mechanism
linearly and nonlinearly, with consideration of all applied external forces. Compared with the FBD based modelling approach, the
CFB modelling approach does not need to identify the possible deformed configuration of a compliant mechanism to obtain the
geometric compatibility conditions and the force equilibrium equations. Moreover, the mathematical expression in the CFB
modelling approach has an easily understood physical meaning.

In the CFB modelling approach, a compliant mechanism is decomposed into rigid stages and compliant modules [30, 31], and
the compliant modules are regarded as multi-DOF (degree of freedom) or multi-DOC (degree of constraint) springs. A deformed
compliant module stores potential energy which can offer elastic forces to the connected rigid stages. Such elastic forces are
termed variable constraint forces in this paper, because the elastic forces vary with the deformation of the compliant modules.
Additionally, this paper regards the external forces exerted on a compliant mechanism as constant constraint forces, because the
external forces are independent of the deformation of the compliant mechanisms. If a compliant mechanism is at static equilibrium,
the rigid stages are at static equilibrium under the influence of the variable constraint forces and the applied constant constraint



forces. Therefore, the constraint force equilibrium equations for the rigid stages can be represented by the associated variable and
constant constraint forces. The analytical model of the compliant mechanism can be further derived based on the constraint force
equilibrium equations.

In this paper, compliant modules are divided into two types, basic compliant modules and non-basic compliant modules. If a
compliant module contains only one basic compliant element, the compliant module is a basic compliant module; otherwise, the
compliant module is a non-basic compliant module. A wire beam, a sheet beam, a short beam, a notch hinge and a split tube are
basic compliant modules [32]. A non-basic compliant module is composed of several basic compliant modules in a serial, parallel
or hybrid configuration. The variable constraint force of a basic compliant module can be derived from its force-displacement
relationship. Note that this paper does not consider how to obtain force-displacement relationships of basic compliant modules.
The variable constraint force of a non-basic compliant module can also be derived from the force-displacement relationship of the
non-basic compliant module, if this force-displacement relationship is already known. If the force-displacement relationship of the
non-basic compliant module is not known, the non-basic compliant module should be further decomposed into basic compliant
modules or other non-basic compliant modules whose force-displacement relationships are known. Taking the XYZ compliant
parallel mechanism (CPM) shown in Fig. 1(a) that is proposed in [17] for example, the XYZ CPM can be decomposed into three
effective non-basic compliant modules, Leg-X, Leg-Y and Leg-Z, as shown in Fig. 1(b). Each of the legs can also be decomposed
into an actuated module (AM) and a passive module (PM), as shown in Fig. 1(c). It can be seen from Fig. 1(c) that the AM and
PM can also be further decomposed into basic compliant modules, wire beams. The variable constraint forces of Leg-X, Leg-Y
and Leg-Z can be obtained from their own force-displacement relationships, or derived based on the variable constraint forces of
the AMs and PMs. The variable constraint forces of the AM and PM can be obtained from their own force-displacement
relationships, or derived based on the variable constraint forces of the wire beams.

The variable constraint forces and the constant constraint forces, in the CFB modelling approach, are all represented by
wrenches in the screw theory, which may extend the CFB modelling approach to a development of the screw-theory-based design
approach reported in [33]. In the screw-theory-based design approach, compliant modules are regarded as constraints represented
by wrenches [33-38]. The wrenches can represent the directions and positions of the constraints of the compliant modules, while
the exact values of constraint forces are not taken into account. In other words, the screw-theory-based design approach is actually
the method of arranging the directions and positions of compliant modules under the design requirements. In the screw-theory-
based design approach, the constraint force provided by a compliant module is always represented by binary number zero or one
[30]. A constraint force equals zero if the associated direction is a DOF direction; otherwise equals one. However, the CFB
modelling approach not only takes the direction and position of the constraint of a compliant module into account, but also
represents the exact constraint forces produced by the compliant module. Therefore, a compliant mechanism with specific
characteristics can be designed through arranging the associated compliant modules using the CFB modelling approach, based on
the variable constraint forces produced by the compliant modules. It is well known that the freedom and constraint topology
(FACT) approach also offers a set of geometric entities which describe the possible permitted directions and positions of
compliant modules for designing compliant mechanisms [39-41]. Compliant modules in the CFB modelling approach can be basic
and non-basic compliant modules, while compliant modules in the FACT approach are mainly basic wire beams. Therefore, an
appropriate process of designing a compliant mechanism can be to design the non-basic compliant modules using the FACT
approach, and to arrange the directions and positions of the non-basic compliant modules in the compliant mechanism using the
CFB modelling approach.

The CFB modelling approach can be used to model any compliant mechanisms. Without loss of generality, the compact and
decoupled XYZ CPM shown in Fig. 1(a) is modelled using the CFB modelling approach in this paper. This XYZ CPM can be
decomposed into two types of non-basic compliant modules (AMs and PMs, as shown in Fig. 1(c)), and the basic compliant
module of the non-basic compliant modules is a wire beam with uniformed cross section. In this paper, the variable constraint
force of the wire beam is derived first from its force-displacement relationship. Furthermore, the variable constraint forces of the
two types of non-basic compliant modules are obtained based on the variable constraint force of the wire beam. Finally, the
analytical model of the XYZ CPM is obtained using the derived variable constraint forces of the non-basic compliant modules.
The modelling of the XYZ CPM not only shows the procedure of the CFB modelling approach, but also demonstrates the
derivation of variable constraint forces of basic and non-basic compliant modules. Therefore, following the process of this
modelling example, any other compliant mechanisms can be modelled using the CFB modelling approach. In addition, the derived
analytical model of the XYZ CPM is also verified by FEA simulations and experimental tests.

The remainder of this paper is organized as follows. Section 2 reviews the background theories. The variable constraint force
of a basic compliant module, a wire beam, is derived based on the force-displacement relationship in Section 3. The CFB
modelling approach is proposed in Section 4, followed by case studies in Section 5. The FEA and experimental tests are carried
out in Section 6. Finally, the conclusions are drawn in Section 7. Note that constraint forces (variable constraint forces and
constant constraint forces) can also be classified into translational constraint forces and rotational constraint forces. In this paper,
the translational constraint forces are normalized by EI/L?, and the rotational constraint forces are normalized by EI/L. Here E is
the Young’s modulus, | is the moment of inertia of cross-section area of a beam, and L is the beam’s length. In addition, all
parameters in terms of geometric length are normalized by the beam’s length L.



2 Constraint Forces in Screw Theory

A constraint force can be represented by a screw vector termed a wrench [33]. A wrench can also be represented as a wrench
line, with location, orientation and pitch, where the pitch refers to the coupling between the translational constraint force and the
rotational constraint force. A translational constraint force can restrict all translations along the wrench line in the two possible
opposite directions, and a rotational constraint force can restrict all rotations about the wrench line in the two possible opposite
directions. Therefore, a constraint force can be represented by a wrench, as written in Eq. (1) [35].

[fi rx fj+qu]T force and moment

f
C:L} =[A Al q=0, pure force 1)
[0 1-j]T —0, pure moment

where {'is a wrench. f and 7 are two three-dimensional vectors which represent translational and rotational constraint forces,
respectively. r is a location vector which points from the origin of the coordinate system to a point on the wrench line. The pitch is
defined by g=(f-)/(f-f). Here j, termed direction coefficient, equals £1, which indicates the two possible opposite directions of a
wrench.

In a coordinate system O-XYZ, the unit wrenches along and about the three axes are defined as principal wrenches [33, 34],
which are shown in Eq. (2) and Fig. 2(a). Each of the unit wrenches is along or about one of the six directions in the coordinate
system, and the magnitude of the unit wrench is one.

¢,13,.0.0,0,0,01",¢, 50, },,000,0] £, 50,0, ,.0.0,0] ¢, 50,0,0,},,0.0]' ¢, 0,0,00,,,0] .£,5[0,0,0,0,0,j,]' )

where the subscripts tx, ty and tz indicate the translations along X-, Y- and Z-axes, and the subscripts rx, ry and rz indicate the
rotations about X-, Y- and Z-axes, respectively. The non-zero element in each of the principal wrenches equals +1, which
represents the two possible opposite directions of the principal wrench.

Any one wrench can be demonstrated as a specific combination of the principal wrenches, as illustrated in Eq. (3) and Fig. 2(b)
[42].

. . . . . .7
é‘:ktxé‘tx +kw§ty +ktz§u +eré‘rx +kry§w+krzCrZ :l:ktx th ' kty Jty ’ ktz Jtz ' er er ' kry er ' krz Jrz (3)

where ku, Kiy, Kiz, Kix, Kry @nd ky, are constraint coefficients, which are defined in [30]. When using Eqg. (3) to represent only
directions of DOC and DOF, a constraint coefficient equals one if the associated constraint is infinitely large, but equals zero if
the associated constraint is infinitely small. In other words, if a constraint coefficient equals one, the direction associated with the
constraint coefficient is a DOC direction; otherwise it is a DOF direction. However, if using Eq. (3) to illustrate the exact
constraint forces produced by a compliant module, the constraint coefficients should be assigned exact values [42]. Additionally,
Jo Jtys Jtzs Joxo Jry @nd iz are direction coefficients.
3 Variable Constraint Force of Basic Compliant Module

As mentioned in Section 1, in order to use the proposed CFB modelling approach to model a complex compliant mechanism,
the variable constraint forces of the associated basic compliant modules of the complex compliant mechanism should be obtained
first, based on the force-displacement relationships of the basic compliant modules. In this section, the variable constraint force of
a basic compliant module, a wire beam with uniformed cross section as shown in Fig. 3, is derived from its force-displacement
relationship.

Suppose that wrench ¢, represents the variable constraint force of the wire beam in the coordinate system Op-XpYpZp. A
displacement vector, &, is used to indicate the displacements of the beam’s free tip center along and about the three axes of the
coordinate system [33, 43]. The wrench ¢, and the displacement vector &, can be written as below.

é‘b :kob-tx é‘ob-tx +k0b-ty¢0b-ty +kob-tz ob-tz +kob-rx cob-m +k0b-ry¢ob-ry +kob-rz é‘ob-rz

. . . . . . T
:|: kob-tx Job-tx ' kob-ty Job-ty’ kob-tz Job-tz 1 kob-rx Job-rx ' kob-ry Job-ry' kob-rz Job-rz :| (4)
T
:|: é/b-tx N4 bty ? (b-tz 1o gb-ry ) gb-rz :|
T
é:b :|: é:b-tx ' gb-ty ' é:b»tz ' é:b-rx ’ gb»ry ' écb-rz :| (5)

where hx, Cotys Co-tzr Co-x Cory @Nd Corz @re the components of the wrench ¢y, which represent the variable constraint forces along
and about the Xy-, Yp- and Zp-axes of the coordinate system Op-XyYnZy, respectively. Kop-tx, Kob-tys Kob-tz, Kob-rx, Kob-ry @nd Kon-rz are
the constraint coefficients, {op-tx, {ob-ty, Cob-tzr Sob-rx, Cob-ry AN Sob-rz @re the principal wrenches of the coordinate system Op-Xp Y, Zb,
and job-tx, Job-tys job-tzs Job-rxs Job-ry &N Job-r; are the direction coefficients. &o-tx, Go-tys Co-tz, Co-rxr Co-ry @N Co-rz @re the displacements of the
beam’s free tip center along and about the three axes of the coordinate system Op-XpYsZp.

If the displacement of a beam’s free tip center is &, due to the influence of an applied force s, the relationship between the &
and the ¢y is the force-displacement relationship of the beam. The nonlinear force-displacement relationship of a wire beam has
been developed in [27], which is very accurate (for medium motion ranges, i.e., deflection is less than 0.1% of wire beam’s length)
but complicated. When the rotations of a wire beam are much smaller than the translations, a simplified force-displacement
relationship of the wire beam has been proposed in [18]. The simplified force-displacement relationship proposed in [18] is



adopted in this paper, therefore, the derived variable constraint force of a wire beam is valid for modelling translational compliant
mechanisms. The simplified force-displacement relationship is rewritten, as shown in Eq. (6).

{bf-m tb2 n é:b-ty gb-rz é:b-rz Sgb-ty 1 1§bf-tx fb-rz é‘bf-u §b-ty be-fx gb-fy é‘bf-tx é:b-rz éff-tx gb-rz {Sf-u §b-ty
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where ty is the thickness of the beam (square cross section). 6,~0.84375/(1+z,), here z4 is the Poisson's ratio of the material. (r-x,
Ciotys Cio-tzy Cio-x Cho-ry @N Co-rz @re the components of the force vector ¢w, which represent the forces along and about the Xp-, Y-
and Zy-axes of the coordinate system Op-Xp Y2y, respectively. It can be seen from Eq. (6) that the applied force vector ¢ is the
function of the ty, dy and the entries of the displacement vector &. So the force vector i can be written as

{bf:KBeam (éb’tb'5b):[KB»tx (fhltbfgb)r KB-ty (é:b’th'5b)' KB»IZ (5bvtb15b)l KB»rx (fhltbvgb)v KB-ry (é:hrtbl 511)- KB-rz (é:b’tb' 5b ):|T (7)

where Kgeam(+) is @ 6x1 variable matrix (vector), whose components are six functions, Kg.i(+), Kety(+), Ke-tz(+), Kg-x(+), Key(*)
and Keg.z(+). The six functions can be obtained based on Eq. (6), so that the values of the six functions are -, (fo-tys Co-tzy Co-rxs Co-
ry and (i-rz, respectively. When the beam is at a static equilibrium status, the wrench ¢ is the reaction force of {u. According to
Newton's third law, it can be derived that {y=— ur. Therefore, the wrench ¢, can be written as

Cb:_ Kgeam ((:Wth'ab) (8)

Suppose that all rotational displacement components in & are much smaller than the translational displacement components,
Equation (9) can be obtained based on Egs. (6) and (7).
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where Kgeam-L 1S the linear stiffness matrix of the wire beam, and Kgeam-ni(+) iS @ nonlinear stiffness variable vector about the t,, dp
and the entries of the displacement vector &,

In this section, the variable constraint force of a wire beam is obtained. In a similar way, the variable constraint forces
produced by other basic compliant modules can also be derived based on their force-displacement relationships.

4 CFB Modelling Approach
According to Eg. (1), any force can also be written as a wrench, which can also be represented as the combination of the
principal wrenches in the coordinate system. Therefore, a constant constraint force can be written as



FCC :[ fCCftX ' fcc—ty’ fCCflz ' fCCfFX’ fcc—ry' fCC*I’Z ]T (10)
where F is a wrench of a constant constraint force, while fectx, fec-ty, fec-tzy fecm fecry, @and fec.r, are the components of F¢c along and
about the three axes of the coordinate system. Different from variable constraint forces, each of the six components of a constant
constraint force always has only one specified direction.

If a rigid body is balanced under the influence of n compliant modules and m external forces, the constraint force equilibrium
equation for the rigid stage can be written as

n m

z (Tvc-i é‘vc-i )+Z(ch-j Fcc-j ):0 (1 1)

i=1 j=1

where wrenches {i-i (i=1, 2, 3 ... n) and wrenches Fc (j=1, 2, 3 ... m) are the variable constraint forces of the n compliant
modules and m constant constraint forces applied on this rigid stage, respectively. Ty (i=1,2, 3 ... n) and Teej(j=1, 2, 3 ... m) are
transformation matrices, which can transform all the constraint forces to any one of the coordinate systems. Based on [34], if a
wrench in a coordinate system ‘A’ is represented as {, , the wrench can be described as Tala in a coordinate system ‘B’. Here T,,
as written in Eq. (12), is the transformation matrix from the coordinate system ‘A’ to the coordinate system ‘B’.

. R,, 0 0 -d, d,
a| DR,, R,, where D= d, 0 -d, (12)
-d, d 0

where the sub-matrix Rxyz is a 3x3 rotation matrix, and the sub-matrix D is a 3x3 location skew-symmetric matrix. The entries dx,
dy and d; in the sub-matrix D are the coordinates of the origin of the coordinate system ‘A’ in the coordinate system ‘B’.

A compliant mechanism can be decomposed into rigid stages and basic compliant modules. When a compliant mechanism is
at static equilibrium under the influence of a series of external forces (or constant constraint forces), all the rigid stages of the
compliant mechanism are also at static equilibrium under the influence of the constant constraint forces applied and the variable
constraint forces of the basic compliant modules. As studied in Section 3, the variable constraint forces of the basic compliant
modules can be derived based on the force-displacement relationships of the basic compliant modules. Therefore, the constraint
force equilibrium equations for all the rigid stages can be represented by the variable constraint forces and the constant constraint
forces. Moreover, the analytical model of the compliant mechanism can be calculated based on the constraint force equilibrium
equations.

If a compliant mechanism is decomposed into rigid stages and non-basic compliant modules, the non-basic compliant modules
can be regarded as sub-compliant mechanisms. The sub-compliant mechanisms can be analytically modelled based on the
approach detailed above, and then the variable constraint forces of the sub-compliant mechanisms can be derived from the
analytical model. Therefore, the compliant modules, in the CFB modelling approach, can be basic compliant modules and non-
basic compliant modules. In practical use, the CFB modelling approach usually decomposes a complex compliant mechanism into
non-basic compliant modules, and the variable constraint force of each of the non-basic compliant modules is derived via further
decomposing the non-basic compliant module into basic compliant modules.

Note that if all the nonlinear contributions in the variable constraint forces are not considered and the transformation matrices
are derived based on the undeformed configuration of a compliant mechanism, the linear analytical model of the compliant
mechanism can be obtained; otherwise, the nonlinear analytical model of the compliant mechanism can be derived.

X

5 Case Studies

In this section, an XYZ CPM, as shown in Fig. 1(a), is modelled using the CFB modelling approach. It can be seen from Fig.
1(c) that the XYZ CPM can be decomposed into PMs and AMs. Each of the PMs is a four-beam non-basic compliant module, and
each of the AMs is an eight-beam non-basic compliant module. The variable constraint forces of the four-beam and eight-beam
non-basic compliant modules are derived in Sections 5.1 and 5.2, and then the XYZ CPM is modelled based on the derived
variable constraint forces in Section 5.3.

5.1 Variable Constraint Force of the Four-Beam Non-Basic Compliant Module

One of the four-beam non-basic compliant modules (or the PMs as shown in Fig. 1(c)) is shown in Fig. 4. Suppose that the
thickness of the mobile top plate is tiny compared with the length of the beams. Four wrenches, i (i=1, 2, 3 and 4), are used to
represent the variable constraint forces of the four beams in the local coordinate systems Omi-Xi YmiZni (i=1, 2, 3 and 4),
respectively. Note that the local coordinate systems are placed at the tips of the four beams, Om1, Oz, Ons and Oms Shown in Fig.
4, respectively. If the displacement of the four-beam non-basic compliant module is & in the global coordinate system, the
displacements, &mi, Of the tips of the four beams can be written as

& Twn] € 1=12,3and 4, respectively (13)

where Tai-n (i=1, 2, 3 and 4) are the transformation matrices from the local coordinate systems Ogi-X#i Y1iZi to the global
coordinate system On-XmYmZmn, respectively. When the rotational displacements of the top plate are tiny compared with the
translational displacements, the transformation matrices can be obtained as shown in Eq. (14) based on Eq. (12).
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where Wy, is the width of the square mabile plate of the four-beam non-basic compliant module. ts, is the thickness of the beam (in
this example, all beams have the same thickness, i.e. tm1= tm2= tms= tms=tm). Based on Eq. (8), the variable constraint forces
produced by the four beams can be obtained, as shown in Eq. (15). The variable constraint force, ¢, of the four-beam non-basic
compliant module is the vector sum of the variable constraint forces of the four beams, which can be written as Eq. (16) according
to Eq. (11).

i = Kaeam (Eiis ti+ O ) 1=1,2,3and 4, respectively (15)

gfb:i(bei-fb(fbi ) (16)

i=1
Combining Egs. (9) and (13) — (16), the variable constraint force of the four-beam non-basic compliant module can be derived.
Suppose that the rotational displacements of the four-beam non-basic compliant module about the Xs-, Y- and Zg-axes are much
smaller than the translational displacements along the Xt-, Y- and Zg-axes, the components, (ro-tx, Cio-tys Cio-tzy Cio-rxs Cio-ry @NA Coerz,
of the wrench ¢ can be simplified, as shown in Eq. (17). For convenience, Eq. (17) can also be rewritten as Eq. (18). If Fr, isa
force to balance the variable constraint force ¢m, Fm can be written as Eq. (19), which is the force-displacement relationship of the
four-beam non-basic compliant module.
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where ds=1/(1+un,), here u, is the Poisson's ratio of the material (in this example, all beams are made of the same material, i.e.
O1=0m2= Om3=dma=0m). When only linear part in Eq. (9) is considered (i.e. Kgeam(&b, th, 0b)=Kgeam-LEb), o Can be simplified as
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where Kegeam-L 1S the linear stiffness matrix of the four-beam non-basic compliant module.



5.2 Variable Constraint Force of the Eight-Beam Non-Basic Compliant Module

Each of the eight-beam non-basic compliant modules (or the AMs shown in Fig. 1(c)) can be decomposed into one mobile
rigid stage (MRS) and two four-beam non-basic compliant modules (termed as CM-1 and CM-2), as shown in Fig. 5(a). The CM-
1 and the CM-2 have the same dimension. In this example, the eight-beam non-basic compliant module is decomposed into two
four-beam non-basic compliant modules, because the variable constraint force of the four-beam non-basic compliant module has
been obtained in Section 5.1.

A coordinate system Oen-Xep YenZen is defined as the global coordinate system, which is located at the center of the MRS.
Coordinate systems Oep1-Xeb1Yep1Zeb1, Oebz-Xen2 Y enaZehz and Oeni-Xent Y eniZebt are defined as the local coordinate systems. The
global and local coordinate systems can be seen in Fig. 5(b). The origin of the coordinate system, Oen-XebYenZen, iS at the center of
the MRS, and the coordinate systems, Oen1-Xeb1 Yen1Zen1, Oev2-Xen2 Yen2Zeb2 aNd Oent-XenrY eniZens, are placed at the centers of the
three surfaces of the MRS, respectively. Note that the global coordinate system is fixed to the BSs, and the local coordinate
systems are fixed to the MRS.

The displacement vector, &, of the MRS in the global coordinate system is written in Eq. (21), and the displacement vectors
of the CM-1 and CM-2 are represented as & in the local coordinate system Oep1-Xen1 YeniZens and &, in the local coordinate
system Oep2-Xen2 Yen2Zen2, respectively. The displacement vectors & and & are shown in Eq. (22).

é:s:b :|: éeb-tx ’geb-ty véeb-tz ’ geb»rx ’ geb»ry véeb-rz :IT (2 1)

feblz[Tebl-eb ]T éeb and febZ :[TebZ-eb ]T feb (22)

Where Ceb-tx, Ceb-tys Cob-tzr Ceb-rxs Ceb-ry AN Eeb-rz are the displacements of the MRS along and about the Xey-, Yeb- and Zep-axes of the
global coordinate system. Tepi-eb and Tenz-en, Obtained based on Eq. (12) and shown in Eq. (23), are the transformation matrices
from the local coordinate systems Oep1-Xeb1 Yen1Zebr aNd Oep2-Xeb2 YenaZeh2 t0 the global coordinate system Oeb-Xen Y evZeh,
respectively. The transformation matrix from the local coordinate system Oen-XenrY eniZent t0 the global coordinate system is Tept.eb,
which is also illustrated in Eq. (23). Note that the effect of the MRS’s rotations on the transformation matrices is ignored, because
the rotational displacements are much smaller than the translational displacements of the MRS.
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where Wy, is the edge length of the MRS. Based on Eq. (18), the variable constraint force offered by the CM-1 and CM-2 can be
obtained, as shown in Eq. (24).
Capr = Krpeam (feblvwem'temv 5eb1) and Capr = Krgeam (é:ehz 1 Wep Lo 5eb2) (24)
In this example, the CM-1 and CM-2 have the same dimension and material, SO Wep1=Web2=Web, ten1=ten2=ten and den1=den2=0eb.
Furthermore, Equation (25) can be derived on the basis of Eq. (11).
Ceb:Tebl»eb ent Tep.enCere (25)
Combining Egs. (17), (18) and (22) — (25), the variable constraint force, {u, of the eight-beam non-basic compliant module
can be obtained. Because the rotational displacements of the MRS are tiny compared with the translational displacements, the ey
can be simplified as shown in Eq. (26), which can also be rewritten as shown in Eq. (27). If a force F¢y, is applied on the eight-
beam parallel compliant module in the local coordinate system Oepi-XenrYeniZebs, t0 balance the e, the force-displacement
relationship of the eight-beam non-basic compliant module can be represented as shown in Eq. (28).

geéeb-lx (129592th +35 (5t92b +3§eb-ty +3§eb-tz ))

B 26
o 1752 +3£2 -
o (6 (432, +35) &1, +T0&,, (B, 46, +5 )1+ Wy &y, (12985, +35 (K], +6&,., ))) (26b)
eb-ty — 175t:b +3C§ezb—tx
_ 24 (Web eb-rx (129§§b-tx +35 (5tezb 68y ))_2 (3 (438, +35) &5, +35 (5t€2b 6wy +5) S )) (26c)
Co™ 17562 4382
. 6(L75(Wyy +1) 13 +3(430, +8) 22, ) Gy ~E )
4‘eb-rx = (2 6d)

CATSA3E, | 1, (18web (430,,48) £, +35(10( (305, +3W,, +4) 1 ~3W, b +305, J3W, (6W,,+1) £y +3W,, (6W,, 1) 5, ))



—4 6§eb-tx ( (43Web +8) feb X +35 (Stezb 3Webteb +3W ) eb X +35( W, eb +1) tezb +(6Web +1) feb-tz ))
Conry = 1750 53 (26e)
Stay 38 | £,y (30885 +175( (0 +4) t ~3W 1, +307 ) )
4 é:eb-rz (35913 ezb-tx +175 ((5eh +4) tezb _3Webteb +3Web )
Ceb-rz = W 2 2 (26f)
Sty +3%e0nc | 465, (3(43web +8) &5, ,,—35 (55, ~3Wyy by, +3WS, ) &y, +35(5(Wyy +1) 5, +(6W,, +1) £, ))
T
é‘eb = KEEseam (é:eb ' Web’teb ’ é:eb ):_ [geb ! é’eb-ty' é’eh-tz ’ :eb-rx ) geb»w ) geb-rz :| (27)
[ ebf- eb] KEBeam (éeb ! Web ! teb ) 6eb ) (28)

When only linear part of the variable constraint force of the four-beam non-basic compliant module is considered (i.e.
Krgeam(&o, th, Ob)=Krgeam-LErp @S Shown in Eq. (20)), e can be simplified as shown in Eq. (29).
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where Kegeam-L 1S the linear stiffness matrix of the eight-beam non-basic compliant module.

5.3 Modelling of an XYZ CPM

The XYZ CPM (as shown in Fig. 1(a)) is modelled using the CFB modelling approach in this section, based on the variable
constraint forces of the four-beam and eight-beam non-basic compliant modules (PMs and AMSs) derived in Sections 5.1 and 5.2.
As shown in Fig. 1(c), the MRSs (mobile rigid stages) of the eight-beam non-basic compliant modules are also the actuated stages
(ASs) of the XYZ CPM.

The defined coordinate systems are demonstrated in Fig. 6. The global coordinate system Om-XmYmZm is fixed to the ground,
and the other local coordinate systems are fixed to the connected rigid stages, respectively. Each of the local coordinate systems
can translate with the connected rigid stage, but cannot rotate with the connected rigid stage. When the XYZ CPM is at the
undeformed configuration, the positions of the local coordinate systems are defined as the original positions of the local
coordinate systems. Compared with these original positions, the displacements of the origins of the local coordinate systems Opmx-
xpmepmepmx, Opmy'xpmprmymey, Ome_xmeYmemeZy Oasx'xastastasx, Oamx'xameameamx, Opax'xpaxYpaprax, Oasy'xasyYasyZasy,
Oamy-Xamy Y amyZamy, Opay-Xpay Y payZpays Oasz-Xasz Y aszZasz, Oamz=Xamz Y amzZamz, N0 Opaz-Xpaz Y pazpaz are represented as displacement
vectors Eomx, Epmys Comzs Casxs Samxs Cpaxs Casys Camys Epays Caszy Camz, N Epaz, When the XYZ CPM is at a deformed configuration.
Additionally, the displacement of the top center of the MS is represented as & in the global coordinate system.

Based on Eg. (12), the associated transformation matrices are defined as Tpmx-m, Tpmy-m, Tpmz-m, T pax-pmxs T pay-pmy, T paz-pmzs T pmx-
paxs Vpmy-pays ¥pmz-pazs T pax-asxs | pay-asys Vpaz-aszy |amx-asx, Tamy-asy @8N0 Tamz-asz. The subscript of each of the transformation matrices
shows the associated coordinate systems and the transformation between them. For instance, the subscript ‘pmx-m” in Tpmxm
indicates that Tomxm is the transformation matrix from the coordinate system Opmx-Xpmx Y pmxZpmx t0 the coordinate system Op-
XmYmZm. After deformation of the XYZ CPM, the transformation matrices can be written as Egs. (A.1) — (A.15) in Appendix A.
Note that all the tiny displacements such as the parasitic rotations in the transformation matrices are ignored.

On the basis of the conditions of geometric compatibility [17], Equation (30) can be obtained. It can be seen that &mx, &amy and
&mz are also the deformation displacements of the AM-X, AM-Y and AM-Z, respectively. In addition, the deformation
displacements of the PM-X, PM-Y and PM-Z can also be derived, which can be represented as &omx-pax, Epmy-pay @Nd Eomz-paz N the
coordinate systems Opmx-Xpmx Y pmxZpmx, Opmy-Xpmy Y pmyZpmy aNd Opmz-Xopmz Y pmzZpmz, respectively (these three coordinate systems
are at their original positions). The &mx-pax, pmy-pay aNd Eomz-paz CaN be seen in Eq. (31).

pmx I: pmx-m :| ém ' fpmy [ pmy-m :| gm ' épmz :|:Tpmz-m :|T fm (303.)
amx [ amx-asx ] 5 and é: |: pax-asx j|T é:as>< (30b)
amy |: amy-asy :' ‘fasy and fpay ‘: pay- asy:l é:asy (300)



é:amz [ amz-i asz] 5332 and épaz |:Tpaz-asz ]T é:asz (30d)
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é:me»pax:é:pmx _|: pmx- anJ é:lnax ! é:pmy pay umy |: pmy- pay} pay and é:pmz-paz:‘flnmz_[-I—me»paz:| ‘fpaz (31)

Suppose that the thickness of the beams and the edge length of the rigid stages are identical, which are represented as t and w,
respectively. Additionally, v is the Poisson ratio of the material, and 0=1/(1+v). Based on Egs. (18) and (27), the variable
constraint forces offered by the AM-X, AM-Y, AM-Z, PM-X, PM-Y and PM-Z can be written as shown in Eq. (32).

é‘amx = KEBeam (famx 1 Wl t' é‘) 1 é‘amy = KEBeam (é:amy 1 W' t’ 6) 1 {amz = KEBeam ((:amz ‘W't‘ 5)

{pmx = KFBeam (Epmx-pax W, t’ 5) ! {pmy = KFBeam (é:pmy-pay W, t’ 5) ! {pmz = KFBeam (é:pmz-paz W, t' é‘)

where Samx, Samy, Camz, $omx, Spmy @Nd {pm: are the variable constraint forces of the AM-X, AM-Y, AM-Z, PM-X, PM-Y and PM-Z
In the Coordlnate SyStemS Oamx'Xameameamx, Oamy'xamyYamyZamy, Oamz‘xamzYamzZamz, Ome'XmeYmemeX7 Opmy'xpmprmymey and
Opmz-XpmzY pmzZpmz, respectively. In addition, the {omx, {omy and {ome can also be represented in the coordinate systems Opax-
KpaxY paxpaxs Opay-Xpay Y payZpay aNd Opaz-Xpaz Y pazpaz, respectively, which can be written as {pmax, {pmay and {pmaz, as shown in Eq.
(33).
Comax = Tomcapx Spme 1+ Spmay = Tomy-apy Spry and —— (33)

The actuation forces acting on the three ASs and the load force exerted on the MS are defined as constant constraint forces,
Fasx, Fasy, Fasz and F, in the coordinate systems Oasx-Xasx Y asxZasxs Oasy-Xasy Y asyZasy, Oasz~Xasz Y aszZasz a0 Om-XinY mZm,
respectively. The constant constraint forces can be written in Eq. (34) based on Eg. (1).

(32)

T T
Fasx [fasx-tx’ fasx-ty’ fasx-tz’ fasx»rxl fasx-ry’ fasx-rzj| asy [fasytx' fasy'[yl fasytz' fasyrx’ fasyry' fasy rz:| ’

Fasz :|: fasz-tx' fasz»ty’ fasz-tz' fasz-rx’ fasz-ry' fasz-rz :lT ' I:m :|: fm-tx’ fm-tyl fm-tz’ fm»rx’ fm-ryl fm-rz :'T

Based on Eq. (11), the force equilibrium equations for the ASs and MS can be written in Eq. (35).
F +Tam>< asx {amx Tapx -asx {pmu :0
Py Tampasy Camy + TapyasyC pmay =0

amy-asy’ apy-asy
F*T, +T,

amz-asz camz apz-asz é'pmaz =0

Fot Tl Tomend,

pmx-m'=pmx pmy-m’= pmy TDmZ mcpmz
If combining Egs. (17), (18), (26), (27), (A.1) — (A.15) and (30) — (35), the force equilibrium equations of the XYZ CPM can
be obtained, which are elaborated in Egs. (B.1) — (B.60) in Appendix B. The nonlinear force-displacement relationship of the
XYZ CPM can be calculated from the force equilibrium equations using commercial software MATHEMATICA. If only linear
parts of the variable constraint forces of the PMs and AMs are considered, and let the primary translation displacements in the
transformation matrices (in Appendix A) be zero, the linear model of the XYZ CPM can be derived, as shown in Eqg. (36).

QE V ( mx asx+meF;sy+szI:;isz )
=V, (W60 +F)
(W@’ +F,, )
V.(

W.én+F,)

(34)

(35)

(36)
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where
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The following results can be derived from the linear and nonlinear analytical models of the XYZ CPM (the linear analytical
model is valid for very small motion range): (a) the displacements of the MS under the influence of specific external forces, (b)
the displacements of the AS-X, AS-Y and AS-Z under the influence of specific external forces, (c) the lost motions between the
displacements of the MS and the displacements of the AS-X, AS-Y and AS-Z, (d) the actuation stiffness along the Xm-, Y- and
Z-axes, and (e) the relationships between the displacements and the geometric parameters. In addition, the analytical models can
also be employed to optimize XYZ CPM as studied in [31]. The motion performance analysis of the XYZ CPM will be our future
work.

VAUl

T

6 FEA Simulations and Experimental Tests
In this section, a series of FEA simulations and experimental tests are carried out to validate the linear and nonlinear analytical
models of the XYZ CPM.

6.1 FEA Simulations

For the FEA model of the XYZ CPM, let the beam’s length, L, be 50mm, the beam’s thickness, t, be 1mm, the edge’s length,
w, of the rigid stages be 25mm, the Poisson’s ratio, », be 0.33, and the Young’s modulus, E, be 6.9x10°Pa. Commercial software,
COMSOL MULTIPHYSICS, is selected for the nonlinear FEA simulations, using the 10-node tetrahedral element and extra fine
meshing technology (maximum element size 3.5 mm, minimum element size 0.15 mm, maximum element growth rate 1.35,
curvature factor 0.3, and resolution of narrow regions 0.85). The XYZ CPM is actuated by three linear translational actuators
without considering the mass of the XYZ CPM. Therefore, the constant constraint forces, Fasx, Fasy, Fasz and Fm, can be simplified,
as shown in Eq. (37).

Fao] s 0.0, 0,0, 0], Fy =l £, 0,0,0,0, O]T  Fod fone 0,0,0,0, 0] and F,=[0, 0, 0, 0, 0, 0]' (37)

a

In order to achieve a +0.1L motion range per axis (the motion range can be considered as an medium large motion range
compared with the length of the beam [44]), the actuation force per axis varies from —40N to +40N. The designed XYZ CPM has
an isotropic configuration, so the model, associated with the motions of the MS and AS-X, is validated under the following
conditions: () fasxux varies from —40N to +40N when fasy.x=0 and fasz-=0, (b) fasx-tx varies from —40N to +40N when fasy.x=40N
and fasz-x=0, and (C) fasx-tx varies from —40N to +40N when fasy-x=40N and fasz.x=40N. The nonlinear FEA results, nonlinear
analytical results and linear analytical results can be seen in Figs. 7 and 8.

It can be seen from Fig. 7 that the nonlinear analytical results match the FEA results well, and the linear analytical results have
small difference compared with the FEA results within small motion ranges. For the translations of the MS, the difference
between the FEA results and the nonlinear results is less than 3.25% in the translations along the Xm- and Yn-axes (Figs. 7(a) and
7(b)), and less than 4.92% in the translation along the Zm-axis (Fig. 7(c)). The difference between the FEA results and the linear
results is less than 6.59% in the translations along the Xu- and Ym-axes (Figs. 7(a) and 7(b)), and less than 13.48% in the
translation along the Zn-axis (Fig. 7(c)). For the results of the MS’s rotations about the Y- and Zn-axes, as shown in Figs. 7(e)
and 7(f), the maximum difference between the FEA results and the nonlinear results is less than 2.7% under all the conditions,
while the maximum difference between the FEA results and the linear results is about 16.3%. Compared with the FEA results, the
linear and nonlinear results of the rotations about the Xy-axis, as shown in Fig. 7(d), have larger difference, because the results (in
the order of 10~ rad) shown in this figure are comparable to the simulation accuracy and the analytical approximations. However,
the analytical results of the rotations about the Xn-axis still have similar trends as that of associated FEA results.

Figure 7(a) also shows that the translations of the MS along the X-axis among the different conditions have small differences,
which means that the translation of the MS along the X-axis is almost decoupled from the translations of the MS along the other
two directions. Figures 7(b) and 7(c) illustrate that the translations of the MS along the Y- and Zn-axes are insensitive to the
force along the Xm-axis, which also validates the cross-axis decoupling motion characteristics. Other motion characteristics, such
as lost motion and actuation stiffness, of the X'YZ CPM can also be captured from the linear and nonlinear models, which are not
detailed in Fig. 7.

Figure 8 illustrates that the nonlinear analytical results of the AS-X’s translations have small difference compared with the
FEA results, which are less than 2.74% in the translation along the Xn-axis (Fig. 8(a)), less than 5.33% in the translation along the
Ym-axis (Fig. 8(b)), and less than 4.55% in the translation along the Zn-axis (Fig. 8(c)). But the linear results have a little larger
difference compared with the FEA results, because the linear results cannot capture the elastokinematic effects [16]. For the
rotations of the AS-X, the maximum difference between the FEA results and the analytical results occurs in the rotations about the
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Xm-axis (Fig. 8(d)) mainly due to their tiny values (in the order of 10°° rad) which are close to the simulation accuracy and the
analytical approximations, but the nonlinear analytical results have similar trends as the FEA results. The parasitic rotations of the
AS-X about the Yn- and Zn-axes can be seen from Figs. 8(e) — 8(f), showing that the nonlinear results have maximum about 7%
difference compared with the FEA results. Figure 8(a) also shows that the translation of the AS-X along the Xn-axis in the
different conditions is almost decoupled from the primary translations of the AS-Y and AS-Z.

The small difference between the nonlinear results and FEA results mainly arises from the approximation in deriving the
analytical model as well as the errors of the FEA simulations. The FEA simulations have errors, especially when the results are
close to the relative repair tolerance of the software (108 mm for the simulations in this paper). The linear analytical results, with
a particular emphasis on the results in terms of the primary translations, also have acceptable differences within small motion
ranges compared with the FEA results.

6.2 Experimental Tests

The assembled prototype of the XYZ CPM (as shown in Fig. 9) is made of Aluminum 99.5, whose Yield strength is
approximately 105MPa. Additionally, the Poisson’s ratio, Young’s modulus and geometric dimensions are the same as the values
in the FEA simulation in Sec. 6.1. The maximum motion range per axis should be less than 0.634mm (about 5N actuation force
per axis) as calculated in Eq. (38) based on [45]. The following conditions are considered in this experimental validation: (a) fasx-ix
varies from 0 to 5N when fasy-=0 and fas;-x=0, (D) fasx-tx Varies from 0 to 5N when fasy.x=4.2826N and fasz-1x=0, and (C) fasx1x Varies
from O to 5N when fasy.=4.2826N and fas;.«=—4.890N.

Motion Range<0.1667 2% =0.1667x 105MPa o 634mm
6.9x10° Pax{ MM (38)
50 mm

The displacements of the MS along the Xi- and Ym-axes are measured by two digital dial gauges with 0.001mm resolution.
The actuation forces are conducted by mass blocks, the mass of which are measured by an electronic scale with 0.001g resolution.
Note that the displacements of the MS along the Xm,- and Y n-axes are measured not on the top center of the MS but on the
surfaces as shown in Fig. 9. Additionally, only the rotational displacement of the MS about the Zn-axis is considered in this
experimental test. A low-cost method of measuring this tiny rotational displacement is figured out in this paper, the principle of
which is indicated, as shown in Fig. 10.

As shown in Fig. 10, the rotation angle can be calculated as shown in Eq. (39). If dny are much smaller than Dy g, Equation (39)
can be simplified to Eq. (40).

a1, 5 =arctan [dLB_&”X] (39)
LB~ “ny
o g =arctan (dLE)ﬂ] (40)
LB

In this experimental test, the rotational displacement of the MS about the Zy-axis is obtained based on the equation above.
More specifically, as shown in Fig. 11(a), a laser pointer is fixed on the MS, so the laser pointer has the same displacements as the
MS. At a long distance away from the laser pointer (6800mm in this case), a screen shown in Fig. 11(b) is pasted onto a wall. At
first, let the laser beam be vertical to the screen, and mark the position of the original laser spot on the screen using a HD camera,
as shown in Fig. 11(b). When the MS moves to new positions under actuation forces, the HD camera records the new positions of
the laser spots. Therefore, a series of pictures of the laser spots, such as the pictures shown in Figs. 11(c) — 11(h), are obtained.
The positions of the laser spots on the pictures are figured out using image processing function of MATLAB software. Based on
the positions and Eq. (40), the rotational angles of the MS about the Zn-axis are obtained over the different conditions.

Figure 12(a) shows that the translations of the MS along the X-axis in the different conditions. The nonlinear analytical results
have tiny difference compared with the FEA results (less than 2.73%), and have acceptable small difference compared with the
experiment results (less than 8.98%). It can be seen from Figs. 12(c) and 12(d) that the nonlinear analytical results have small
differences compared with the FEA results and the experiment results, the maximum difference is about 2.79%. Figure 12(b)
shows that the analytical results have larger difference compared with the FEA results and the experiment results, because the
displacements shown in this figure are close to the manufacture and experiment errors and the simulation accuracy. However, the
analytical, FEA and experiment results have the similar trends.

The rotations of the MS about the Z-axis in the different conditions are illustrated in Fig. 13. It can be seen that the nonlinear
analytical results match the FEA results well, and the maximum difference is less than 5.2%. The difference between the nonlinear
analytical results and the experiment results is a little larger mainly due to the manufacture and experiment errors, but the
nonlinear analytical results and the experiment results follow the similar trends. The difference among the FEA, analytical and
experiment results arises mainly from the following issues: FEA simulation error, manufacture error, assembly error, experiment
error, and data processing error (i.e. the positioning errors of the laser spots on the screen identified using MATLAB image
processing function).
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7 Conclusions

This paper has proposed a CFB modelling approach for modelling compliant mechanisms. The CFB modelling approach
decomposes a compliant mechanism into rigid stages and compliant modules. The compliant modules can be basic compliant
modules and non-basic compliant modules. The derivation of the variable constraint forces produced by the basic compliant
modules and non-basic compliant modules was detailed in this paper. External constraint forces such as actuation forces were
defined as constant constraint forces. The constraint force equilibrium equations of a balanced compliant mechanism can be
represented by such variable constraint forces and constant constraint forces, and then the analytical model of the compliant
mechanism can be derived from the constraint force equilibrium equations. In this paper, the variable constraint force of a wire
beam was obtained, which was used to derive the variable constraint forces of a four-beam non-basic compliant module and an
eight-beam non-basic compliant module. Furthermore, an XYZ CPM was analytically modelled based on the derived variable
constraint forces of the two types of non-basic compliant modules using the CFB modelling approach. The analytical model of the
XYZ CPM was also validated by both FEA simulations and experimental tests.

The proposed CFB modelling approach is an improvement of the FBD-based modelling approach and a development of
screw-theory-based design approach. The mathematical expressions in the CFB modelling approach have an easily understood
physical meaning, and dynamic effects of a compliant mechanism can also be considered in the CFB modelling approach. Unlike
the screw-theory-based design approach, the CFB modelling approach can take the exact constraint forces of compliant modules
into account.

The CFB modelling approach can be further extended to an approach for optimizing compliant mechanisms. Each compliant
module in a compliant mechanism has a great number of possible permitted positions, and the set of all the possible permitted
positions is the position space of the compliant module in the compliant mechanism. Based on this position space concept, a
compliant mechanism can be reconfigured into a series of new compliant mechanisms. If a compliant mechanism termed
‘Compliant Mechanism-Original’ is modelled using the CFB modelling approach, the compliant mechanisms reconfigured from
the Compliant Mechanism-Original can also be modelled easily, via only modifying the transformation matrices. On the other
hand, a compliant mechanism with desired motion performance can be obtained through optimizing the transformation matrices
(the same as optimizing the positions of the compliant modules). Therefore, the CFB modelling approach can also be easily
employed to optimize compliant mechanisms.
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Appendix A: Transformation Matrices for the XYZ CPM Modelling
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where w is the edge length of the rigid stages. &m-, mty and &mt, are the three of the six entries of &y, which are used to represent
the translations of the MS along the Xim-, Ym- and Zm-axes, respectively. Easxux, Casy-tx and Easz-tx are the X-direction translational
displacements of the AS-X, AS-Y and AS-Z in their own local coordinate systems, respectively. The translations of the MS and
the X-axis translations of the AS-X, AS-Y and AS-Z are the primary translations of the XYZ CPM. The other translations and
rotations of the MS, AS-X, AS-Y and AS-Z are the parasitic motions of the XYZ CPM. The parasitic motions are much smaller
than the primary translations, so the parasitic motions are not taken into account in the transformation matrices. If let the primary
translations, &m-, m-ty, Emetzy Casxtr Casy-tx N Casz-tx, N the transformation matrices be zero, the transformation matrices above can
be simplified to linear transformation matrices of the XYZ CPM corresponding to the un-deformed configuration of the XYZ
CPM.

Appendix B: Nonlinear Constraint Force Equilibrium Equations of the XYZ CPM
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Fig. 1 Decomposition of an XY Z compliant parallel mechanism (CPM): (a) the XYZ CPM, (b) three effective non-basic compliant
modules, Leg-X, Leg-Y and Leg-Z, of the XYZ CPM, and (c) non-basic compliant modules, PMs and AMs, of the XYZ CPM (MS and
BS represent motion stage and base stage, respectively)
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Fig. 2 Principal wrenches and their linear combination in the coordinate system O-XYZ: (a) principal wrenches, and (b) linear
combination of the principal wrenches

Fig. 3 A wire beam, its local coordinate system and the principal wrenches of the local coordinate system
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Fig. 4 lllustration of the four-beam non-basic compliant module (or one of the PMs shown in Fig. 1(c)), the global coordinate system Os,-
XY Z, and the local coordinate systems Ofo1-Xio1 Y 1 Ztb1, Otb2-Xto2Y tr2Zb2, Ofoz-Xtb3Y 03Zb3, Otoa-XioaY tpaZfba

(a) (b)

Fig. 5 The decomposition of the eight-beam non-basic compliant module and the defined coordinate systems: (a) the decomposition of
the eight-beam non-basic compliant module, and (b) the defined coordinate systems
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Fig. 6 Coordinate system demonstration: (a) all the coordinate systems; (b) the coordinate systems, Om-XmY mZm, Opmx-XpmxY pmxZpmxs
Opmy-XpmyY pmyZpmy and Opmz-XpmzY pmzZpmz, fixed on the MS; (c) the coordinate systems, Oasx-XasxY asxZasx, Oamx-Xamx Y amxZamx and Opax-
Xpax Y paxZpax fixed on the AS-X; (d) the coordinate systems, Oasy-XasyY asyZasy, Oamy-XamyY amyZamy and Opay-Xpay Y payZpay, fixed on the AS-
Y; and (e) the coordinate systems, Oasz-XaszY aszZasz, Oamz-Xamz Y amzZamz @8N Opaz-Xpaz Y pazZpaz, fixed on the AS-Z
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Fig. 7 Comparison of FEA, nonlinear and linear results in terms of the MS’s motion: (a) translations along the Xm-axis in the different
conditions, (b) translations along the Y m-axis in the different conditions, (c) translations along the Zn-axis in the different conditions, (d)
rotations about the Xn-axis in the different conditions, (e) rotations about the Y n-axis in the different conditions, (f) rotations about the
Zp-axis in the different conditions
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Fig. 8 Comparison of FEA, nonlinear and linear results in terms of the AS-X’s motion: (a) translations along the Xy;-axis in the different
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Fig. 10 Principle of measuring the small rotation angle of the MS
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Fig. 11 MS’s rotation angle measrement: (a) XYZ CPM experimental test system, (b) screen and image capture facilities, and (c)—(h)
captured images of the laser spots at different positions when fasy.tx=0 and fasz-=0
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Fig. 12 Comparison of analytical results, FEA results and Experimental results with regard to the translations of the MS along the X-

and Y-axes: (a) translations along the Xm-axis in the different conditions, (b) translations along the Y m-axis when fasy..x=0 and fasz.=0, (C)
translations along the Y m-axis when fasy.x=4.28N and fas;.=0, and (d) translations along the Yy-axis when fasy.x=4.28N and fas;.=4.89N
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Fig. 13 Comparison of analytical results, FEA results and Experimental results in the different conditions with regard to the rotation of
the MS about the Z-axis: (a) when fay.x=0 and fas;-.=0, (b) when fasy.=4.28N and fas;x=0, and (c) when fasy-=4.28N and fasz-x=4.89N
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