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Abstract—The rise of Software Defined Networking (SDN)
presents an opportunity to overcome the limitations of rigid
and static traditional Internet architecture and provide services
like network layer multicast for live video streaming. In this
paper we propose mCast, an SDN-based architecture for live
streaming, to reduce the utilization of network and system
resources for both Internet Service Providers (ISP) and Content
Delivery Networks (CDN) by using multicast over the Internet.
We propose a communication framework between ISPs and
CDNs to enable mCast while retaining user and data privacy.
mCast is transparent to the clients and maintains the control of
CDNs on user sessions. We developed a testbed and performed
large scale evaluation and comparison. Results showed that
mCast can improve the video quality received by clients and,
for CDNs and ISPs in comparison to IP unicast, mCast can
decrease link utilization by more than 50% and network losses
to 0%.

I. INTRODUCTION

The proliferation of demand1 for high definition (HD),
Internet-based video streaming has resulted in frequent short-
lived events over the Internet, such as sports events, political
events and crowd-source streaming. Additionally latest social
trends have seen an extreme rise in individuals sharing live
videos with groups of audience located across the globe.
Services like Facebook Live2 and Twitch3 have changed the
norms of live streaming where, Twitch alone saw a peak of
over 2 million concurrent viewers in 2015. Consequently, a
very dynamic and flexible provisioning of network and system
resources has become a challenge.

Content providers usually have limited resources and they
rely on Content Delivery Networks (CDN), to distribute
streams globally. More than 60% of video traffic on Internet
passes through CDNs4. CDNs use IP unicast to deliver streams
to video clients. With IP unicast, the same stream is sent,
potentially, thousands of times in parallel to clients located
inside an Internet Service Provider’s (ISP) network. This
results in a wastage of system and network resources for both
the CDN and the ISP.

1https://goo.gl/Gpd56l
2https://live.fb.com/
3https://www.twitch.tv/year/2015
4https://goo.gl/ySYurJ

To save resources, instead of IP unicast, a CDN can use
either IP multicast or Application layer multicast (ALM) to
distribute live streams. In multicast a stream is sent to a group
of clients simultaneously in a single transmission, reducing
the consumption of resources. However, multicast is rarely
used in the Internet due to its rigid and static nature and
other limitations specific for the aforementioned multicast
approaches [1], [2].

Software-Defined Networking (SDN) is an emerging ap-
proach for network programmability, with the capacity to
initialize, control, change, and manage network behavior dy-
namically via open interfaces [3]. A logically centralized
controller, with a global view of network, can monitor every
traffic flow, make forwarding decisions and install efficient
rules at runtime. An SDN-based network possesses character-
istics that are needed to deploy multicast over the Internet and
are non-existent in a traditional IP network. The knowledge
and awareness of network nodes and clients by the controller
in SDN can be used to construct resource efficient trees in
an ISP. The flexibility provided by SDN at network layer and
the ability for inter-controller communication can be utilized
to develop a multicast service for inter-domain video traffic
coming from a CDN to an ISP network.

In this paper we propose mCast, a novel architecture for live
streaming that merges the flexibility and control of SDN with
resource efficiency of multicast to reduce inter-domain and
intra-domain traffic for both ISPs and CDNs. Our modular
architecture reduces the cost and complexity to implement
network layer multicast for ISPs and provides a dynamic and
scalable mechanism for multicast tree construction in real time.
CDNs have full control over their clients and they get all the
information necessary for management and billing.

The clients do not need to be modified because mCast
installs rules on the last hop to convert the stream back to
IP unicast, making the delivery transparent. These rules also
help to identify the amount of traffic that goes to each user.
The ISP can use this information to charge users based on
their own data plans. As such, mCast solves one of the main
problem of IP Multicast i.e. inability to bill users in a multicast
group based on their individual billing plans.



mCast employs agents in both the ISP and the CDN. These
agents are responsible for communication with each other as
well as the control plane of SDN in their respective domain.
A CDN can choose to switch from IP unicast to mCast when
doing so will reduce its overall cost. We propose a decision
model to help CDNs in making this decision. As ISPs are
economically driven and will charge CDNs for availing mCast
service, it is important for a CDN to know the exact cost to
serve a certain video stream.

Our decision model not only identifies various cost factors
but also presents them in quantifiable mathematical equations
and if a CDN chooses to use mCast, this model will help
the CDN to decide when switching to mCast will reduce the
total cost to serve a stream. Once the decision has been made,
CDN mCast Agent provides ISP mCast Agent with a list of
its clients that are watching the stream and can be served with
mCast. An ISP uses this information to construct a dynamic
multicast tree using our extension of Dijkstra’s Algorithm and
installs forwarding rules in runtime.

For CDNs and ISPs, keeping their network infrastructure
private is of utmost importance and they tend not to reveal
information such as network topology, available bandwidth,
or routing paths. We designed our framework in a way that no
such information needs to be disclosed. Both ISPs and CDNs
can manage their clients and network in their own way and
just share the identity of clients to be served with mCast. This
resolves any concern that a CDN might have in terms of user
or data privacy.

For evaluation we developed a large scale testbed with video
servers streaming real HD video content. We performed exten-
sive evaluation to show the feasibility, scalability, robustness
and gains of mCast. We compared mCast with standard IP
unicast and results showed that in similar network conditions
mCast, not only can save significant network and system
resources for ISPs and CDNs, but also delivers a better quality
of video to clients with lesser start-up delays and no dropped
packets.

The rest of this paper is structured as follows. In Section 2,
we discuss the existing literature and related work. In Section
3, we present the proposed architecture and decision model.
In Section 4, we present our testbed and evaluation results and
we conclude the paper in Section 5.

II. LITERATURE REVIEW

IP multicast does not provide CDNs with enough control
over clients because it lacks support for features [1] such
as group management, authorization, billing policies, data
privacy and security. These features are of crucial importance
to the business and financial model of CDNs and hence for
live streaming, CDNs do not adopt IP multicast. Also, ISPs
have well managed topologies with carefully planned routing
policies [4] and they avoid inter-domain IP multicast traffic
which is unpredictable and difficult to handle. Due to all of its
limitations, the use of IP multicast to deliver video has been
restricted to IPTV services within a single domain, where an

ISP can pre-configure the network with static routes to paying
customers.

Another approach to reduce resource consumption is overlay
multicast, also known as ALM. End devices organize them-
selves into an overlay topology and distribute the stream in
an efficient manner. Multicast is handled by end nodes rather
than routers. Although, ALM is not the ideal choice for CDNs,
as it propagates slowly and usually incurs additional latencies
[2], active involvement of end users does reduce the system
load for servers in CDN or content provider. On the other
hand, the situation further deteriorates for ISPs as additional
unicast flows are introduced by clients of ISPs to facilitate
ALM, consuming even more bandwidth than IP unicast. These
problems, along with the rising demand for HD streaming,
serves as an incentive, for CDNs and ISPs alike, to come up
with a better and more resource efficient system for delivering
live streams.

Over the past few years, research has been conducted
to improve the mechanism of IP multicast using SDN. For
example in [5], an SDN-based system is proposed that
allows fast failure recovery for IP multicast trees. In [6]
an approach is presented where a centralized SDN controller
manages IP multicast. All IGMP messages are sent to the con-
troller that calculates multicast groups and configures network
accordingly. While such solutions improve the management
of IP multicast, other issues such as handling inter-domain
traffic remain unaddressed. In Lcast [7], a network-layer
inter-domain multicast framework, is proposed that creates a
router overlay to connect multicast hosts in different domains.
Solutions, like Lcast, enable inter-domain multicast but fail to
present CDNs with enough control over clients to provide a
viable live streaming service.

A few SDN-based network layer multicast frameworks have
been proposed to offer content and/or network providers with
sufficient control to realize a video streaming service. In [8],
SDM is proposed to enable ISPs to support resource efficient
peer-to-peer streaming. A virtual peer is created inside an ISP
allowing an external streaming source to gain a presence. ISP
then distributes traffic to its clients using NAT-like rules. Other
works exploit Scalable Video Coding (SVC) [9] and Multiple
Description Coding [10] to divide a video stream in separate
flows and multicast groups and ensure a minimum quality for
users. These works give a very good idea of what SDN can
do to create dynamic networks, save network resources and
improve video quality. Our proposed architecture bears some
resemblance to SDM, with a key difference that we provide
a framework between ISPs and CDNs that can be used to
develop live streaming services with multiple video channels
and features like channel switching.

Other works propose some elaborate multicast routing algo-
rithms [11], [12] that can be used in SDN. SDN controller can
receive network statistics from all the network nodes and can
use this global information to construct efficient paths. These
SDN-based routing algorithms are complimentary to our work
and can be implemented in our architecture to obtain optimized
routing paths and construct optimal multicast trees based on



Fig. 1. Architecture of mCast.

the requirements of the underlying network.

III. PROPOSED ARCHITECTURE

Our proposed architecture for live streaming focuses on
two main goals: reducing the resource utilization in ISPs and
CDNs, and providing CDNs with full control over their clients
even when using multicast.

We consider that both ISP and CDN are SDN-enabled. The
growth of SDN in market and industry is on the rise. SDN
is already transporting 23 percent of traffic in data centers,
growing to 44 percent by 2020 [13]. A 2016 survey indicates
that 75% of the respondents had either implemented SDN
in their network or were planning to do so5. Generally, we
believe that ISPs and CDNs would implement SDN for various
use cases such as efficient resource utilization and ease of
management.

In our architecture, we exploit flexible data forwarding and
mangling capabilities of SDN. This is essential for an ISP
to take advantage of the routing capabilities of SDN. For
a CDN, the SDN controller can be replaced by a server,
capable of communicating with an ISP and managing clients
on its own. However we used SDN for the CDN to show how
two controllers can communicate and manage their underlying
networks more efficiently.

A. Architecture Overview

Figure 1 illustrates key mCast architectural elements in
application, control, and data planes6. At the data plane, SDN
switching nodes are used to forward user data within ISP and
CDN networks, according to mCast control plane functions.
mCast employs agents in both ISP and CDN networks to
perform application plane functions. The role of these archi-
tectural elements is detailed below.

mCast CDN Agent: This component has three main func-
tions: monitor the client requests, classify clients and trigger
mCast. In a standard IP unicast streaming service, a request
handler receives channel requests, authenticates clients and
responds with the IP and port address of the streaming server.

5https://goo.gl/CEyzBs
6https://www.opennetworking.org/sdn-resources/sdn-definition

A client can then send a content request to the streaming
server.

mCast CDN Agent extends a standard request-handler in
traditional CDN systems to enable efficient content delivery
using multicast. A standard request handler authenticates con-
tent requests and forwards legitimate content requests to their
corresponding severs according to the CDN policy. mCast
extensions include request classifier and multicast management
functions. The request classifier identifies users located in a
single ISP while watching the same content. Such classifica-
tion can be performed using geo-location databases. Once a
group of clients satisfy a pre-specified criterion (discussed in
Section 3D), the request classifier triggers mCast handler to
start multicast operation.

The multicast management functions include interfacing
with: mCast ISP agent to request mCast service and share
client details; mCast CDN routing module to install routing
entries for multicast and; mCast streaming server to improve
the resource utilization by aggregating a group of flows into
a single flow as detailed below.

mCast ISP Agent: ISP plays a passive role in mCast, as in,
it does not trigger the mCast request. To be the trigger, an ISP
would need to perform deep packet inspection and decoding to
identify what streams are watched by clients and whether they
are served from the same CDN. As CDNs are a better judge
of their clients, it is simpler and less resource consuming if a
CDN triggers mCast request.

This component represents the application plane module
at the ISP and holds key importance in mCast architecture.
It performs two main functions, interfacing with CDN and
orchestrating multicast operations in the ISP. It receives ses-
sion aggregation requests from CDN including source and
destination addresses and port numbers for every user session
intended for multicast. Note that such information is used
to identify the target users in the ISP network and ensure
transparency for end clients.

Upon reception of such requests from CDN, mCast ISP
agent first creates an identifier for the mCast stream composed
of an IP address and a port number, denoted as V(IP, Port). Then,
it instructs the mCast ISP routing module to create a multicast
tree for the intended users starting at the ISP gateway. Once
a tree is successfully constructed, ISP Agent shares V(IP, Port)
with CDN Agent which uses it to configure CDN network for
mCast delivery.

As users join or leave the session, mCast CDN agent
informs the ISP agent to dynamically update routing entries
in the ISP switching nodes. Such interaction is not possible
in traditional switching nodes due to the lack of a centralized
control as in SDN.

mCast Enabled Streaming Server: This server typically
listens for content requests and streams the requested content
using RTP/UDP/IP unicast sessions. To support mCast, the
server implements an API to communicate with mCast CDN
agent. Over such an interface, the server would be instructed
to pause transmission for a group of sessions and alternatively
send the content to the provided destination address and



port V(IP, Port). To avoid packet losses, the new connection is
activated before terminating the old unicast sessions. While
this sequence ensures no packet loss, it may lead to duplicate
packets at the client. However these packets would be ignored
by the client after inspecting the RTP header.

mCast CDN Routing Module: The routing module is
programmed to forward content requests to the request handler
for authentication. Once authenticated, the routing module is
provided a target server to forward connection requests using
its predefined routing policy (e.g., shortest path or least loaded
path). In the presence of mCast agent, it is consulted before
proceeding with the default routing. If the multicast criteria
is satisfied, multicast routing is activated and the new content
request is served through the new multicast stream.

mCast ISP Routing Module: This module identifies the
routes of different flows from the ISP gateway to their end
points. Due to the global view of SDN controller, a typical
topology manager in SDN is aware of all of its network nodes
and clients. mCast ISP Routing module probes the topology
manger to obtain a graph representation for ISP network. It
also communicates the estimated routes to the flow manager
that interfaces with the switching nodes. The ISP routing
module implements the ISP routing policy and is extended
by an additional function to support multicast routing, which
is triggered by the mCast ISP agent. The mCast ISP agent
also dynamically instructs the routing module to update video
multicast trees as clients leave and join.

Although the main focus of the paper is to present the
architecture and components essential for realizing a live
streaming service using inter-domain multicast, we developed
an extension of Dijkstra’s algorithm to implement on the
mCast ISP Routing Module. As the architecture of mCast is
modular, to implement any other tree construction algorithm,
mCast Routing Module can be replaced with that algorithm
without modifying rest of the modules in the architecture. As
part of our future work we plan to look specifically on the tree
construction algorithms and either propose or identify from
existing work [11], [12], an optimal multicast tree construction
algorithm.

In our extension of Dijkstra’s algorithm, When the mCast
ISP Routing Module receives a request from mCast ISP Agent,
it calculates the shortest path for the first client. Then it sets
the weight of all involved edges to zero before calculating the
shortest path for the next client. This prioritizes the used edges
and paths over others and reduces link stress in the network.
The process is repeated until a path is determined for all the
clients. This information is then passed on to the mCast Flow
Manager.

mCast Flow Manager: A Flow Manager in an ISP installs
rules on SDN-enabled switches based on the information that
it receives from the Routing Module. mCast Flow Manager
installs multicast entries in network nodes with higher priority
than IP unicast, ensuring that clients are served with mCast
whenever possible. In addition, mCast Flow Manager installs
transparency rules on the egress switch. Before forwarding
a packet to the client, this rule modifies the V(IP, Port) to

Fig. 2. Important message exchanges to establish mCast.

the IP and Port address of the video client, so the client
receives the packet just as it would in IP unicast, hence the
transparent delivery. These rules also help the ISP to identify
the amount of traffic that goes to each user. An ISP can use this
information to charge users based on their individual billing
plans.

B. Functional Description

Figure. 2 illustrates the exchanged message-sequence be-
tween different components to setup mCast. In this section,
we explain these messages and give an overview of mCast
operations. For simplicity of illustration, we consider that all
the requests belong to a single ISP. The same operations would
be applied to clients belonging to a different ISP.

Pre-setup: We use our decision model (Section 3D) as the
criteria to initiate mCast. CN represents the client that satisfies
the decision model. Any client that joins the stream before
CN, is served with IP unicast. For these clients, the mCast
CDN routing module installs unicast rules for the client and
forwards the request to the streaming server which sends a
unicast stream to the client.

When a content request is received from CN, along with
sending a unicast stream to CN, CDN requests mCast service
from ISP and sends a list of clients to be served with mCast.
The list includes full tuples i.e. server’s address S(IP, Port) and
the client’s address C(IP, Port). ISP mCast Agent receives this
request and assigns a virtual IP and port V(IP, Port) to the
video stream. ISP can choose an address from a pool of IPv4
addresses that it reserves for mCast service. It can then use
port numbers to distinguish streams, allowing up to 65535
streams per address.

Registration and Delivery: List of clients and V(IP, Port) are
passed to the mCast ISP routing module. The mCast Flow
Manager then installs rules on the switches to: forward the
traffic coming for V(IP, Port) to the switches in mCast tree and;
on egress switch replace V(IP, Port) with C(IP, Port) and the source
with S(IP, Port).



The SDN controller then informs the CDN mCast Agent
which sends a message to the streaming server to terminate
IP unicast streams of accepted clients and replace them with
a single stream destined for V(IP, Port). As the ISP network is
all set up for mCast, when the single stream from the server
enters the ISP ingress switch, it is sent only once on every
link on the tree until it reaches all the clients.

New Client Requests: When the CDN receives a new
content request from a client, instead of sending that request to
the server, it is first sent to the ISP. The port number S(IP, Port)
is set to the one at which the client made the request i.e. the
listening port of the server. ISP adds this client to the mCast
tree by installing or modifying forwarding rules and the client
starts receiving the stream instantly and transparently.

Client Leave Requests: When a client decides to switch
channel or terminate the service, it sends a leave request to
the CDN. The CDN mCast agent receives this request, updates
the client’ state and also informs the ISP. The mCast Routing
module in ISP updates the mCast tree by traversing backwards
from the egress switch and removing mCast entries, until it
reaches a node that serves more than one client. As clients
joining and leaving can result in unoptimized multicast paths,
a global update of mCast tree can be scheduled, to optimize
the routing paths based on the currently joined clients.

C. Performance Analysis

We measure the performance of mCast with the consumed
network and system resources. For IP unicast, the bandwidth
consumed in the network increases linearly with every new
client, regardless of the number of shared links in the network.
mCast uses network layer multicast and avoids duplication of
traffic over any link. As the number of clients increases in the
network, the amount of bandwidth consumed at a link stays
constant. This reduces the amount of bandwidth consumed
when one or more shared links exist in the network. This also
avoids bottleneck links when a large number of clients share
a link, as the bandwidth consumption per link is independent
of the number of clients in mCast.

The system resources consumed in an SDN network include
the flow entries or rules installed at switches and the messages
shared, between SDN controller and the switches, to install
these flow entries. For a single live stream, mCast installs
only one entry per switch. When a new client joins mCast,
the SDN controller sends a message to the switches on the
path to this client and further actions are added to the flow
entry. Depending on the approach used by an ISP, mCast
offers savings in system resource consumption, for example
when an ISP implements service differentiation [14]. Instead
of having one rule at entry and exit point of each tunnel for
a live streaming service, mCast will install only one rule per
switch in the network, saving the system resources.

Other ISPs will save system resources by mCast, as the
number of packets to be processed by a switch will be very
low in comparison to IP unicast and hence the processing cost
and time will be reduced. This is reflected in our evaluation
results, where we can see that for a large number of clients,

when IP unicast overloads a switch’s processing capability,
mCast maintains a very low CPU consumption.

D. Decision Model for mCast

As ISPs are economically driven and will charge CDNs for
availing mCast service, it is important for a CDN to know the
exact cost to serve a certain video stream. In this section,
we identify various cost factors and present an optimized
mathematical cost model for the decision of switching from
unicast to multicast for a specific stream. The model is a
distinct complementary contribution. mCast does not rely on
it however if a CDN chooses to use mCast, this model will
help the CDN to decide when switching to mCast will reduce
the total cost to serve that stream.

Two main factors that add up to the cost for a CDN serving
a channel to N clients are: the load on servers or power
consumption P (N) and the outgoing traffic or bandwidth
consumption B(N). For P (N), we use the Power model
from [15] which states a linear increase in power consumption
with the increasing number of clients. The maximum power
consumed by a server when fully utilized is represented
byPmax. An idle server consumes approximately 70% of Pmax
while the remaining 30% increases linearly with the number
of clients. From this model we derive our equation for the total
power consumed by all the servers to serve N clients that are
watching a particular channel. If one CDN server can support
No number of clients then to serve N number of clients with
IP unicast P (N) will be

P (N) = Pmax

(
0.7

⌈
N

No

⌉
+ 0.3

N

No

)
. (1)

As an example, if there are 1200 clients (N ) watching a
channel and one server can support 500 clients (No) then we
need three servers, where two servers are fully utilized and
the third one consumes 70% of Pmax for running idle and an
additional 12% to serve 200 clients. The total power consumed
can be found by substituting N and No in Equation 1, yielding
P (N) = 2.82Pmax.
B(N) is the Internet transit cost that a CDN will have to

pay to the Internet Exchange Point (IXP) for serving a channel
to N clients. Transit volume is the amount of traffic that goes
out of a network domain. Internet transit is typically metered
and priced in $/Mbps. The industry standard to measure transit
cost is the 95th Percentile method. In this method, a network
can avail of pricing discounts by relying on commit volume.
Commit volume is a certain volume of traffic that network
domains can agree in advance to pay for, regardless of the
actual volume that they consume. Let VT be the 95th percentile
transit volume and VC be the commit volume that the CDN
committed to an IXP, [16] models the transit cost as

Transit cost = max(VTST , VCSC), (2)

where SC , the single unit price for commit volume is lower
than ST , the single unit price for transit volume. We use this
model to calculate B(N). Further details of this model can be
found in [16].



We represent the volume consumed by N clients by
V (N) and hence B(N) = max(V (N)ST , V (N)SC). If a
CDN chooses the first method i.e. transit volume then V (N)
increases linearly with the number of clients and can be
calculated as V (N) = αNBi, where Bi is the average bit-
rate of channel i and α > 1 accommodates for the variable
video bit-rate and helps avoiding large queuing delays. With
VC = 0, B(N) = αNBiST

If a CDN uses the second method i.e. commit volume to an
IXP then the cost for VC is a fixed value and does not vary with
the number of active clients. To get an estimate of the cost for
N clients watching a single channel, we divide the cost equally
among all active clients. Let Xi be a client watching a channel
i at the average bit-rate Bi, then V (N) = NBi/

∑
XiBi. This

represents the portion of the cost for N clients. With VT = 0,
B(N) = VCSCNBi/

∑
XiBi. Combining these two results

and substituting in Equation 2 gives us

B(N) = max

(
αNBiST ,

VCSCNBi∑
XiBi

)
. (3)

In general, CDNs use the second method i.e. commit volume
to an IXP as this more predictable. The total cost that a CDN
will incur to stream a channel to N clients using IP unicast is
denoted by U(N) and equals to

U(N) = P (N) +B(N). (4)

With VT = 0, substituting Equations 1 and 3 in Equation 4
gives us

U(N) = Pmax

(
0.7

⌈
N

No

⌉
+ 0.3

N

No

)
+
VCSCNBi∑

XiBi
. (5)

Now we calculate the cost to serve a single channel to N
clients using mCast. For mCast, the outgoing traffic from a
CDN server and the load on it is independent of the number
of clients and is equal to the cost of one client i.e. U(1). In
addition, CDN will have to pay a certain charge to the ISP for
availing mCast service. An ISP can charge CDN with either
a variable-rate based on the number of clients that joined a
particular stream or a flat-rate based on an estimated value.
This charge provides an extra incentive for ISPs to use mCast
because in addition to saving resources, an ISP can increase
its revenue by using mCast. This charge should represent the
cost that an ISP incurs to provide mCast service and is mainly
based on forwarding data to the clients that are in the multicast
tree.

Because mCast avoids packet duplication on any link in
the ISP topology, once a link is added to the tree to serve a
client, the cost to serve any additional clients over that link is
essentially zero. This means that once all the links in the ISP
topology have been traversed and added to the multicast tree,
an ISP will incur no additional cost for the increasing number
of clients. Probabilistically, such a situation occurs with just a
fraction of the total number of clients that an ISP can serve. As
mentioned in [17], an ISP that can serve 100,000 clients can
have all of its links, added in the multicast tree, with just 500
randomly distributed clients. Hence, an ISP can charge CDN

a geometrically decreasing cost for every client that joins the
stream. Therefore the total cost M(N) that a CDN will have
to pay for N clients using mCast will be

M(N) = U(1) + C
1− rN

1− r
, (6)

where C is an initial cost that an ISP charges CDN and r is
the ratio for decreasing cost of every new client. Note that the
small increment for every new client, regardless of no increase
in the link cost, is justified by other minor costs that an ISP
incurs such as number of forwarding entries and actions in
the network nodes; managing clients and multicast trees; and
interacting with the CDN.

A business model of a CDN for live streaming involves
individual clients where serving each client incurs some cost
on the CDN as discussed above. To minimize the total cost
for the duration of the stream, a CDN should switch to mCast
when the cost for mCast becomes lower than IP unicast. i.e.

M(N) < U(N). (7)

For stability, only those clients should be considered for
initiating mCast that have been watching a particular channel
for a certain amount of time. The clients with very dynamic
behavior such as the ones which are switching channels should
be ignored. This will also keep the cost to minimum when an
ISP is charging CDN with variable-rate based on the number
of clients that joined a particular stream.

IV. EVALUATION AND RESULTS

Our performance evaluation is based on real-testbed im-
plementation. The main goal of the testbed is to show the
feasibility, scalability, robustness and gains of mCast. While
comparison with IP unicast is straightforward, we evaluate IP
unicast to set a benchmark for various performance metrics.
We first present our testbed setup and then present our perfor-
mance evaluation results.

A. Experimental Setup

Figure. 3 illustrates our testbed setup in Mininet7. We
consider two separate SDN-based domains, for ISP and CDN,
connected over a high speed link. For the CDN, we used a
tree topology with a depth and fan-out equal to one. For the
ISP domain, we used two real residential ISP topologies from
Topology Zoo database8 including KREONET (approximately
a STAR topology) and AT&T network (a MESH topology),
to show that the potential of mCast is independent of the
underlying network. Since topology zoo information does not
include link rate, we set the internal link bandwidth to 200
Mbps.

Each domain is managed by a separate python-based Ryu
controller9 over which control and application planes are
implemented. We considered OpenFlow 1.3 protocol for the
SDN southbound interface. We implemented mCast CDN

7http://mininet.org/
8http://www.topology-zoo.org/
9https://osrg.github.io/ryu/



Fig. 3. Experimental Setup

Agent as a separate module running over the CDN controller.
We implemented mCast ISP Agent as a web server using a
RESTful API. CDN can communicate with ISP using HTTP
requests that are received by the RESTful API in mCast ISP
Agent and passed to the SDN controller of ISP using Web
Server Gateway Interface (WSGI).

We used two open source videos ”Big Buck Bunny” (bbb)
and ”Sita Sings the Blue” (sstb) to be streamed from the
CDN. We encoded the raw videos using JSVM framework10.
We encoded nine minutes of each video at 1920x1080 HD
resolution with a Group of Picture (GOP) size of eight at
a frame rate of 25 fps, yielding an approximate bitrate of
2 Mbps.

We used C++ implementation of video client and server
from the scalable video evaluation framework (SVEF)11. How-
ever, we modified the server implementation to act as a live
streaming server that is capable of dynamically streaming the
content to more than one client as it receives content requests.
Additionally, we implemented an API for the interaction
between content servers and the mCast CDN agent. We took
advantage of the simple client implementation, that postpones
video decoding to a post processing phase, to increase the
number of clients to 1000. Each client was randomly attached
to one of the ISP switches and requested one of the two
available streams according to a uniform distribution at a
random time.

Our key performance metrics include link utilization and
dropped network packets. We also capture the percentage of
decodable frames and start-up delays as an application layer
metric. To analyze the cost of using mCast, we measured the
number of additional Open-Flow rules and messages generated
when using mCast instead of IP unicast. The shown results
represents the average of five runs of experiments.

B. Results

We evaluated our architecture with extensive tests and
calculated various network and application metrics to show the
benefits of our proposed architecture and the cost to achieve
it.

10https://goo.gl/fti0bu
11http://svef.netgroup.uniroma2.it/

Fig. 4. Link Utilization (%) vs Number of clients

1) Dropped network packets and video frames: In Table I
we present results for STAR topology and in Table II we show
the results for MESH topology. The results can be understood
better by splitting them in two parts: when the system is
not overloaded i.e. less than 600 clients and when it gets
overloaded i.e. more than 600 clients. In the first case, IP
unicast resulted in congestion in the network due to high
bandwidth consumption with increasing number of clients.
mCast reduced the consumed bandwidth by avoiding packet
duplication and hence avoided congestion. This can be seen
with zero packet loss when using mCast.

For more than 600 clients, the network switches and stream-
ing servers became overloaded and a lot clients failed to
connect to the server. These failures were due to overloaded
Mininet and Open vSwitch as shown by the CPU Utilization
in Table I and Table II . Real network switches have far more
capacity than Mininet but the number of clients are also far
higher. This testing scenario is shown to represent situations
where the number of clients is high enough to surpass system
resources.

In case of mCast, the load on network switches decreased
significantly due to no packet duplication. Similarly the load
on servers reduced, as only one stream was transmitted for
one video channel regardless of the number of clients. Conse-
quently all the client requests and traffic was handled perfectly
with all the clients connecting to the servers and no packet loss
in the network. This shows the robustness of mCast when the
system resources are limited.

Similar trends can be seen with video packets at the appli-
cation layer of the receiving clients. We calculated the total
number of video frames dropped by all the clients throughout
the streaming duration. The frames that were received by a
client but had errors or lost dependencies were also considered
dropped. These packets are actual representative of the number
of frames that are not decodable and will result in a decreased
quality for the user. As the results show, mCast provides a
better video to users by avoiding congestion in the network
and eliminating the dropped video packets and un-decodable
frames.

2) Link utilization and bandwidth consumption: We deter-
mine link utilization as the percentage of link capacity of all



TABLE I
RESULTS OF EXPERIMENTS FOR STAR TOPOLOGY

Clients Failed Client Connections Network Packet Loss (%) Video Frame Loss (%) Open vSwitch CPU Util. (%)

Unicast mCast Unicast mCast Unicast mCast Unicast mCast
200 0 0 0.33 0 1.22 0 16.67 4.92
400 0 0 3.41 0 5.98 0 31.42 6.68
600 56 0 23.56 0 38.78 0 68.14 10.15
800 470 0 1.33 0 2.52 0 86.45 11.88
1000 844 0 0.64 0 1.75 0 96.58 14.72

TABLE II
RESULTS OF EXPERIMENTS FOR MESH TOPOLOGY

Clients Failed Client Connections Network Packet Loss (%) Video Frame Loss (%) Open vSwitch CPU Util. (%)

Unicast mCast Unicast mCast Unicast mCast Unicast mCast
200 0 0 0.37 0 1.38 0 15.93 6.24
400 0 0 5.62 0 9.10 0 31.51 9.55
600 191 0 13.02 0 22.91 0 72.91 12.04
800 677 0 5.61 0 9.10 0 94.11 13.94
1000 938 0 1.15 0 3.88 0 99.63 18.17

the links in an ISP network, utilized over a given amount
of time. We measured link utilization against the number of
clients that were actively receiving a video stream (Figure 4).
We compared the results of mCast and IP unicast for both
STAR and MESH ISP topologies.

As expected, in case of IP unicast the link utilization in-
creased linearly with the number of clients. Duplicate packets
passed through same link for each client, increasing the link
utilization linearly, until congestion occurs and the links are
saturated. As in MESH topology, a stream has to traverse
more links to reach the client, link utilization in MESH was
higher than that of STAR topology. For mCast, the amount of
traffic generated in ISP over a certain link remains constant
avoiding any bottlenecks in the network. For a large number
of clients, IP unicast overloaded network nodes and content
servers, resulting in clients failing to connect to the servers.
This adds unreliability to both the network and the streaming
service. In mCast, such situation did not occur as the content
server was not overloaded even when the number of clients
was very large i.e. 1000.

In addition to the decrease in intra-domain bandwidth
consumption and link utilization, it is also important to notice
that in mCast, the stream enters the ISP network only once.
Inter-domain traffic is usually more expensive and valuable
for both ISPs and CDNs. Using mCast, for a 1000 client, this
traffic got reduced to just one stream in mCast from a 1000
streams in IP unicast.

3) Start-up Delays: Start-up delay is the time a client has
to wait from sending a content request until it starts receiving
the stream. We measured start-up delays for 600 clients in
STAR topology for unicast and mCast. For IP unicast, the
client request goes to the streaming server which establishes
a connection and starts streaming. For mCast, this request
is intercepted by mCast CDN Agent which requests ISP to

Fig. 5. Cumulative Distribution Function of Start-up Delays

deliver stream to the client and only if ISP fails to do so, does
the request goes to the streaming server.

We plot the results (Figure 5) as Cumulative distribution
function (cdf) with delays in ms. As results show, the delay
for mCast stayed below 200ms while in unicast, it went up
to 1140 ms. This is due to the load on the server and the
network, in case of unicast. As mCast eliminates these loads,
the requests get responded very quickly which is shown in the
results. The decreased start-up delays along with no dropped
packets improves the video quality significantly and enhances
the overall user experience.

4) OpenFlow rules and messages: Results showed that
mCast can drastically decrease the network resource consump-
tion for both ISPs and CDNs. However to setup mCast, extra
OpenFlow rules and messages are needed in the network.
The goal of mCast is to minimize all types of resource
consumption, therefore we designed mCast in a way as to
minimize the number of OpenFlow rules and messages needed.
The number of OpenFlow rules (Figure 6) depends on the
number of switches involved in mCast. For every switch,



Fig. 6. Number of OpenFlow rules vs Number of clients

mCast needs only one extra rule per stream to match the
incoming packet’s destination IP and port with V(IP, Port) and
forward it on the relevant physical ports. The mCast rule at
egress switch has additional actions to modify the destination
IP and port to the client’s address before forwarding. In
OpenFlow 1.3 these actions can be defined in one OpenFlow
rule.

To add every client, the SDN controller calculates the path
for that client based on the mCast tree and then sends an
OpenFlow message to all the switches that need to add or
modify their rules. While these control messages cause an
overhead for the mCast service, these packets are usually very
small and the overhead caused is negligible in comparison to
the amount of bandwidth saved due to the data packets.

V. CONCLUSION

In this paper, we proposed mCast as a novel scalable
architecture for live streaming. mCast provides a framework
for communication between ISPs and CDNs. The CDN sends
only one copy for a video channel towards the ISP leading
to a significant reduction in CDN egress link. Additionally,
ISP reduces the bandwidth utilization by significantly reducing
redundant transmission in its network. mCast is transparent
to the client and maintains the CDN control on the content
distribution. We presented a decision model that can be used
by CDNs to determine when switching to mCast can be
profitable for them. We performed a large scale evaluation
with up to 1000 clients, emulated in Mininet. Our results
show that mCast decreases link utilization by more than 50%
in comparison to IP unicast. Additionally, it reduces start-up
delays to less than 200 ms and eliminates video frame loss
which is up to 39% in case of IP unicast.
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