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ABSTRACT 

The pharmaceutical industry is undergoing a paradigm change with the advancement 

towards the Fourth Industrial Revolution. The manufacturing framework is moving 

from batch to continuous, which has been accompanied by the necessity of the 

implementation of process analytical technologies (PAT) for continuous process 

monitoring and control. There has also been a need to develop advanced quality 

approaches such as Quality by Design (QbD) and Quality by Control (QbC). Within 

these quality approaches, modelling has been used to expand knowledge related to 

raw material attributes and transformations that happen during the process, and to 

monitor and control process parameters. Besides the development of models for 

process and product transformations understanding and monitoring, predictive 

models have been an important advancement to reduce experimental cost during 

formulation development and process design. There are challenges that need to be 

addressed in order to complete the implementation of continuous process and 

advanced quality approaches in that pharmaceutical sector. It is necessary to extend 

the full mechanistic knowledge of processes, to develop data analysis and computer 

simulation, to expand the number of equipment and models to scale up solutions, 

and to upskill personnel to work with the technologies required.   

The general aim of this thesis was to increase understanding of pharmaceutical 

materials and processes by the development of PAT and models for quantitative 

characterization and prediction of drug substance and drug product critical 

properties. To achieve this aim, several specific objectives were established focused 

on different aspects of oral dosage form manufacture. 
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Initially, a PAT was developed to rapidly characterize microcrystalline cellulose (MCC) 

percentage crystallinity index. MCC crystallinity was determined from Raman 

spectral data. Then, MCC moisture sorption and moisture monolayer were 

determined from isotherms obtained using dynamic vapor sorption (DVS). A 

correlation between both attributes was investigated. However, it was not possible 

to confirm the relationship between the monolayer moisture sorption and the 

percentage crystallinity. A total of 30 commercial batches of MCC were used to 

design and validate the MCC crystallinity model. Furthermore, a web application, 

McCrystal, was designed to disseminate the model. Available at 

https://sspc.ie/mccrystal/. 

Secondly, a PAT was developed to determine the endpoint and monitor form changes 

during slurry co-crystallization. This PAT tool involved the application of in situ Raman 

spectroscopy combined with principal component analysis (PCA). An additional PAT 

tool was developed using Mid Infrared spectroscopy (MIRS) combined with 

multivariate curve resolution (MCR) in order to quantitatively evaluate phase purity 

of co-crystals produced by slow evaporation and slurry co-crystallization. The models 

developed were applied to different combinations of active pharmaceutical 

ingredients (APIs) and coformers, and were able to determine the co-crystallization 

endpoint for all systems where the solvents exhibited a weak Raman signal. 

Moreover, the phase purity for all co-crystals systems investigated was determined. 

The third challenge addressed by this study relates to particle-particle interactions in 

powder blends to predict the general behaviour of the blend when it is directly 

compressed into pharmaceutical tablets. Percolation threshold model was used to 
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determine a critical drug load, above which the powder blend behaves similarly to 

the drug substance. As a result, the formulation may show undesirable properties 

above the threshold, which can lead to non-compliance or process difficulties. The 

application of PCA to determine the critical drug loading was investigated. The 

predicted values of critical drug loading were confirmed by changes in powder 

flowability, tablet weight variation, and Raman spectroscopic analysis of drug 

distribution. PCA was not able to precisely predict the threshold, however, it aided in 

clarifying differences between the blends containing different ibuprofen loadings 

and different MCC grades. 

Expanding on the impact of critical drug loading on tablet critical quality attributes, 

the final objective was to investigate the impact of critical drug loads, determined 

from compaction data, on disintegration and dissolution performance. The 

application of novel process analytical technologies, in-process video microscopy 

(PVM) and focused-beam reflectance measurement (FBRM), to study tablet 

disintegration was also proposed and investigated in-depth. FBRM and PVM provided 

important information of tablet disintegration behaviour that cannot be captured by 

the traditional disintegration testing. The critical drug load predicted from 

compaction data was also relevant for disintegration and dissolution behaviour. 

Above the threshold drug loading, disintegration and drug release rates were 

decreased. A PCA model developed from Raman spectra acquired from tablet 

surfaces further supported the finding that blends manufactured with different 

grades of MCC differed more significantly above the critical drug load.  
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The work presented in this thesis is a contribution to solid dosage formulation design, 

co-crystallization understanding, tableting process scale up and scale down, and data 

handling. The models and PAT developed can be used to predict formulation 

performance, determine process parameters based on raw material critical 

attributes, determine process endpoint, and thoroughly assess final product critical 

quality attributes. 

 

Keywords: Pharmaceutical Technology, Quality by Design (QbD), Process Analytical 

Technology (PAT), Co-crystal, Tablet, Critical Material Attribute, Critical Quality 

Attribute. 
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HB  Hydrogen bonding to intermolecular interaction of API and coformer 
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MCR  Multivariate curve resolution 
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PCA  Principal Component Analysis 
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QbC  Quality by control 

QbD  Quality by design 

QbT  Quality by testing 

QTPP  Quality target product profile 

r  Pearson correlation coefficient 

RH  Relative humidity 
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S  Covariance matrix 

SEM  Scanning electron microscopy 

SNV  Standard Normal Variate 

T  Generic matrix of scores, tablet thickness  

Tf  Percolation threshold coefficient for tablets tensile strength 

TGA  Thermogravimetric analysis 

W Weight of moisture absorbed onto the surface of a solid per weight of 
the dry solid  

% CI  Percentage crystallinity index 

% w/w  Mass fraction 

�̅�  Arithmetic mean 

µm  Micron/micrometer 

X  Generic matrix of independent variables 

Xc Mass fraction, critical drug loading in the percolation threshold theory 

Y  Generic matrix of dependent variables 

ε  Porosity 

λ  Eigenvalues 

ρ  Relative density/occupation probability 

ρbulk  Powder bulk density 

ρc  Percolation threshold 

ρtablet  Tablet density 

ρtapped  Powder tapped density 

ρtrue  Powder true density 

Ρyield  Yield pressure 

σ   Standard deviation, compaction pressure 

σT  Tablet tensile strength 
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1.1 Background 

The Fourth Industrial Revolution, Industry 4.0, has been changing the dynamic of 

industrial production. According to Lasi et al (Lasi et al., 2014), the future of 

manufacturing systems will be technology-pushed and application-pulled. The 

physical world would be integrated with the virtual space by technologies such as 

Internet of Things (IoT) (Gubbi et al., 2013), Cyber-Physical Systems (CPS) (Lee et al., 

2015), and semantic machine-to-machine communication (Da Xu et al., 2018). Smart 

factories will be progressively more equipped with sensors and autonomous systems 

so that physical parameters will be digitally recorded and processed. In relation to 

automation and control, this means that computational models that contain 

statistical analysis can be used to interpret if processes are trending to achieve 

quality targets. If the production is not within designed spaces, signals can be 

automatically sent back to the process so that the necessary adjustments are 

implemented in every unit operation required. Thus, smart factories are 

characterized by increased efficiency, science-based approaches and continuous 

process verification and optimization. Thorough process understanding and big data 

analysis are seen as key to the transition towards smart factories (Da Xu et al., 2018; 

Spes and Levin, 2018).  

Pharmaceutical and biopharmaceutical manufacturers have been traditionally 

operating in batch processes that were controlled by rigid frameworks. In this 

approach, quality is ensured by testing the raw materials, the process parameters 

and the final product characteristics (Rantanen and Khinast, 2015). When defective 

products are detected, batches can be easily separated for disposal or reprocessing 
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(Crowley and Crean, 2015). This enabled batch production and a quality by testing 

(QbT) system to remain in place for many decades. Even though, this combination is 

known to be limited (Rantanen and Khinast, 2015; Rathore and Winkle, 2009). 

Product wastage is the main problem encountered in this approach, being reported 

to be as much as 50% of the product manufactured in some cases (Rathore and 

Winkle, 2009). Process understanding is not a priority under batch manufacturing 

and QbT. As a result, most of the data generated during the process is only used for 

compliance (Manzano and Langer, 2018). Delays in technological advances in the 

pharmaceutical and biopharmaceutical industries, has been attributed to this 

traditional approach and the regulatory agencies rigorous oversight of the sector. 

Both factors have contributed to the delay and cost of developing, implementing and 

validating new technologies within the sector (Rathore and Winkle, 2009).  

In recent years regulatory agencies acknowledged the advantages of encouraging 

innovative technological solutions and fundamental scientific work to guide 

pharmaceutical development (Rantanen and Khinast, 2015). Regulatory agencies 

have adopted guidelines for the implementation of well-established chemical 

engineering knowledge to pharmaceutical and biopharmaceutical manufacturing 

(International Council for Harmonisation, 2014, 2008, 2005a, 2005b). The published 

guidelines aim to increase safety and quality of medications, reduce manufacturing 

costs and implement more structured pharmaceutical development and 

manufacturing approaches (Rantanen and Khinast, 2015).  

Highlights of those guidelines include (i) migration from batch to continuous 

manufacturing, (ii) implementation of process analytical technologies (PAT) 
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combined with predictive models, and (iii) implementation of advanced quality 

approaches, namely quality by design (QbD) (Yu et al., 2014) and quality by control 

(QbC) (Su et al., 2019). Those three subjects are linked to each other. QbD principles 

are encouraged for both batch and continuous manufacturing processes (Potter, 

2009). However, continuous manufacturing has many advantages (see section 1.3) 

and is being supported by regulatory agencies. To enable the transition from batch 

to continuous processes, the application of QbD concepts and PAT is essential. 

Moreover, a new quality approach, QbC has been developed to address specific 

quality challenges of continuous manufacturing.  

Continuous manufacturing, advanced quality approaches and predictive modelling 

appear to be the basis of the advances towards Pharma 4.0 (De Matas et al., 2016; 

Steinwandter et al., 2019; Su et al., 2019). Thus, the focus of this thesis was the 

underlying science and the main techniques involved in QbD and QbC approaches 

with emphasis on control tools that could be applied to continuous manufacturing. 

PAT tools as well as formulation and process knowledge developed in this thesis 

addressed some of these challenges.  

1.2 Advanced quality approaches  

1.2.1 Overview 

A high-quality drug product was defined as being reliably available, not contaminated 

and to consistently deliver all characteristics stated in the label and clinical 

performance (Woodcock, 2004). A drug product is the final result of an extensive 

work that includes development, manufacture, and registration stages 
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(Steinwandter et al., 2019). Hence, in an optimal scenario, quality should be built in 

the entire drug product life cycle rather than in the final product only.  

In a control strategy point of view, the traditional quality by testing approach (Level 

3, Figure 1.1) is now considered obsolete and has been replaced by QbD. QbD has 

been encouraged by regulatory agencies for both batch and continuous processes 

(Yu et al., 2014). This means that control strategy is moving from Level 3 to Levels 2 

and 1, towards real-time control strategies upon flexible processes. Besides QbD, a 

new approach, known as QbC, has being developed (Nunes de Barros et al., 2017; 

Sommeregger et al., 2017; Su et al., 2019; Szilágyi et al., 2019). The concept of QbC 

emerged from the developments around the Level 1 control strategy proposed by Yu 

et al. (Su et al., 2019). Thus, QbC as a framework is intended for application to 

continuous manufacturing and aims to optimize the Level 1 of control strategy. 

 
Figure 1.1. Control strategy options (Yu et al., 2014). 

QbD and QbC entail widespread scientific understanding, especially extensive 

product and process knowledge (De Matas et al., 2016; Su et al., 2019). This is one 

important milestone to enable the features of Pharma 4.0 (Steinwandter et al., 
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2019). Product and process understanding has been defined as key factors to enable 

high-quality drug products manufacturing and excellence in clinical performance. Sun 

et al. indicated that the pathway to achieve pharma smart manufacturing is to invest 

in continuous processes ruled by quality approaches that emphasize predictive 

understanding and integrated active process control (Figure 1.2) (Su et al., 2019). 

QbD, QbC, and continuous manufacturing will be discussed in detail in the following 

sections. 

 
Figure 1.2. Progression of pharmaceutical quality approaches (Su et al., 2019). 

1.2.2 QbD approach to pharmaceutical development 

Quality by design was developed in 1992 (Juran, 1992). The main concept proposed 

was that most quality problems of a product were due to the way that the product 

was designed. The objectives of QbD include the achievement of meaningful product 

quality specifications, improvement of process capability, reduction of product 

variability and defects, and increase in product development and manufacturing 



 Chapter -1 

Ana Luiza Pinto Queiroz Page 34 

efficiency (Yu et al., 2014). QbD was developed further by the pharmaceutical 

industry and published by the International Council for Harmonization of Technical 

Requirements for Pharmaceuticals for Human Use as a series of guidelines: Q8 (R2) 

Pharmaceutical Development, Q9 Quality Risk Management, Q10 Pharmaceutical 

Quality System, Q11 Development and Manufacture of Drug Substance, and Q12 

Lifecycle Management (International Council for Harmonisation, 2014, 2008, 2005a, 

2005b). 

Pharmaceutical QbD is defined as “a systematic approach to development that 

begins with predefined objectives and emphasizes product and process 

understanding and process control, based on sound science and quality risk 

management” (International Council for Harmonisation, 2005a). Hence, quality is 

ensured when QbD elements are applied to guide the systematic understanding and 

control of the formulation and the manufacturing variables (Yu, 2008). The main 

elements of QbD are: 

 Quality Target Product Profile (QTPP): detailed information about the final 

product characteristics.  

 Critical Quality Attributes (CQA): physical, chemical, biological, or 

microbiological property or characteristic of the excipients, the drug 

substance, intermediates and drug product that should be within an 

appropriate limit, range, or distribution to ensure the desired product quality 

(CQAs for other delivery systems are out of the scope of this thesis).  

 Risk Assessment: used to identify which process parameters and material 

attributes influence product CQAs. 
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 Design Space: multidimensional relationship between the process inputs 

(material attributes and process parameters) and the critical quality 

attributes.  

 Control Strategy: a set of controls that ensure process performance and 

product quality. Controls can include parameters and attributes related to 

drug substance and drug product materials and components, facility and 

equipment operating conditions, in-process controls, finished product 

specifications, the associated methods, and frequency of monitoring and 

control. The development of these controls requires rich formulation, 

product and process understanding (International Council for Harmonisation, 

2008). 

1.2.3 QbC approach to pharmaceutical development 

The main concept of QbC is that high-quality products are obtained when the process 

is effectively controlled, especially when it is applied to continuous manufacturing 

(Nunes de Barros et al., 2017; Sommeregger et al., 2017; Su et al., 2019; Szilágyi et 

al., 2019). QbC is defined as “the design and operation of a robust manufacturing 

system that is achieved through an active process control system designed in 

accordance with hierarchical process automation principles, based on a high degree 

of quantitative and predictive product and process understanding” (Su et al., 2019). 

This approach includes many QbD elements, such as CQAs and critical process 

parameters (CPPs). However, QbD does not provide guidance on systematic 

quantitative procedures for the design of the suitable control architecture and 

methodology. Hence, QbC was developed to address this issue by providing a 
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framework to the implementation of efficient real-time process control, especially in 

continuous manufacturing (Su et al., 2019) 

The proposed framework (Figure 1.3) aims to facilitate the integration of hardware 

and software for control strategy implementation, especially to continuous 

manufacturing. D1 and D2 refer to an extensive raw material characterization and 

product design, respectively. D3 requires specific knowledge of the manufacturing 

process to produce the designed product. Subsequently the manufacturing process 

or pilot plant (P2) is configured with the corresponding control platform and PAT 

sensors (P1). A model library (S1) will be recorded and accessed by flowsheet 

simulation software (S2). This is an important advantage of QbC regarding storage 

and processing of the model of control strategy, as QbD does not provide guidelines 

for that. Simulations performed on S2 will allow continuous verification of the models 

by means of sensitivity analysis and system identification (C1). Subsequently, a 

control design and analysis (C2) will be performed. When the steady state operation 

is identified on C1, the control design and analytics constructs a state-space model, 

which is a set of differential and algebraic equations that represents the system. The 

models designed are then verified by C3, C4, and C5. This three-step verification will 

be performed in loop until the designed models meet real time release requirements 

(Su et al., 2017).  
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Figure 1.3. Quality by control framework (Su et al., 2017). 

Advancements in PAT tools and mechanistic understanding of processes are part of 

QbC framework. Thus, the objectives of this thesis aim to contribute to the 

development of QbC in the design of model-based process quality assurance in 

pharmaceutical process operations. 

1.3 Continuous manufacturing 

A proposed definition of a continuous manufacturing is “an industry with processes 

that are integrated, based on a systems approach, having model-based control, and 

making use of flow” (Badman and Trout, 2014). Continuous manufacturing has been 

indirectly discussed in previously published quality guidelines (International Council 

for Harmonisation, 2014, 2008, 2005a, 2005b). However, the International 



 Chapter -1 

Ana Luiza Pinto Queiroz Page 38 

Conference on Harmonization (ICH) has endorsed a new guideline (ICH Q13) to 

provide a basis for the implementation of continuous manufacturing, which is 

expected to be finalised in 2021 (International Council for Harmonisation, 2018). ICH 

Q13 aims to address technical and scientific requirements necessary to fulfill 

regulatory expectations regarding continuous manufacturing. 

Companies have been investing in continuous manufacturing and, as a result, a 

number of drug substances have been approved by FDA to be produced by 

continuous manufacturing, such as Orkambi (lumacaftor/ivacaftor) from Vertex in 

2015, Prezista (darunavir) from Janssen in 2016, Verzenio (abemaciclib) from Lilly and 

Symdeko (glasdegib) from Pfizer in 2018 (Su et al., 2019). The benefits of operating 

in a continuous manufacturing have been widely discussed and include the following 

(Badman and Trout, 2014; Crowley and Crean, 2015; S. L. Lee et al., 2015; Mascia et 

al., 2013; Nasr et al., 2017; Rogers and Jensen, 2019): 

 Reduction in manufacturing costs. Continuous manufacturing requires 

smaller equipment and infrastructure and allows reduction of unit 

operations. Continuous manufacturing can also enable end-to-end 

production. In other words, drug substance and drug product, that are 

currently often separately located, can be produced in the same facilities.  

 Increase in reliability and safety. For example, hazardous intermediates can 

be converted during production, in isolated systems. 

 Improved flexibility. For example, the amount of product manufactured can 

be changed by running the process for shorter or longer periods of time. 
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 Novel pathways that enable the production of Active Pharmaceutical 

Ingredients (APIs) or final drug products that are not otherwise accessible.  

 Built in quality throughout the process and reduced product time to market.  

The challenges to implement continuous manufacturing have also been discussed. It 

is important to note that continuous manufacturing is already common in other 

industry segments e.g., petrochemical and bulk chemical industries (Darby and 

Nikolaou, 2012; Lee et al., 2015). However, to enable continuous manufacturing in 

the pharma industry it is necessary to expand the full mechanistic knowledge of 

processes, develop modeling and computer simulations, expand the number of 

equipment to scale up solutions from bench to pilot and industrial scales. It is also 

necessary to develop advanced control strategies, such as QbD, and implement PAT 

for real-time control. Furthermore, addressing difficulties such as processing dry 

solids and solid-laden fluids, and multi-unit-operation connectivity would also be 

required (Baxendale et al., 2015; Mascia et al., 2013). Another challenge to 

implement continuous manufacturing is to ensure that there are personnel skilled to 

work with the technologies required (Badman and Trout, 2014; De Matas et al., 

2016). The skill set essential for continuous manufacturing includes chemical 

engineering, physical chemistry, flow chemistry, chemistry–process interface, and 

process-data science interface skills (Baxendale et al., 2015; Steinwandter et al., 

2019).  

The focus of this thesis was drug product manufacture. Solid oral dosage forms are is 

the most common dosage form for drug administration due to their its high degree 

of drug stability and dosage accuracy. Among solid dosage forms, tablets are the 
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most prevalent. Tablets can be manufactured by different processes, including wet 

granulation, dry granulation and direct compression. However, direct compression is 

the most direct route of manufacturing (Figure 1.4). Pharmaceutical companies have 

announced investments in research and development around small molecules to 

adjust APIs for continuous manufacturing of tablets using direct compression 

processes (Hausner, 2018; Nunes de Barros et al., 2017; Su et al., 2019). The smaller 

number of unit operations involved in this process facilitates the migration from 

batch to continuous manufacturing, the application of advanced quality control 

strategies, and usage of robust PAT and models for manufacturing control (Gohel and 

Jogani, 2005). In this thesis, models for prediction and process understanding that 

can be applied to continuous manufacturing related to tablet direct compression 

were investigated. 
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Figure 1.4. Direct compression, dry granulation and wet granulation tableting 

process (Gohel and Jogani, 2005). 

1.4 Process analytical technology  

A Process Analytical Technology is “a system for designing, analyzing, and controlling 

manufacturing through timely measurements i.e., during processing, of critical 

quality and performance attributes of raw and in-process materials and processes, 

with the goal of ensuring final product quality” (European Medicines Agency, n.d.; US 

FDA, 2004). PAT is used to improve understanding and control manufacturing 

processes and it is a broad field that includes process analysis, chemical engineering, 

chemometrics, knowledge and risk management, and process automation and 

control (Bakeev, 2010). Thus, PAT is a tool to enable continuous manufacturing and 

represent an important aspect of QbD and QbC (Page et al., 2015).  
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As per the definition published from the joint report of US FDA and EMA, PAT is not 

only used in process control strategy. The implementation of PAT results in a high 

degree of process understanding. PAT is used at different stages of manufacturing 

process which includes process development studies, before process, in process, 

after process and QbD (Pomerantsev and Rodionova, 2012). PAT used before a 

process to control raw material properties is an important part of PAT since 

properties of input material may tune process parameters. After process PAT refers 

to real-time release testing to confirm if the product has satisfactory quality. In QbD, 

PAT works to help build quality into the product throughout the entire lifecycle. In 

this case, QbD tools are used to define the design space and to reveal the sources of 

process variability. PAT is then placed to control the process within the defined 

design space (Pomerantsev and Rodionova, 2012).  

PAT technologies are reliant on mathematical and statistical models that are 

designed to interpret the signals generated by PAT instruments. Near infrared (NIR) 

(Reich, 2005), Raman spectroscopy (De Beer et al., 2011), and middle infrared (MIR) 

(Van Eerdenbrugh and Taylor, 2011) are the most commonly used PAT instruments 

(Figure 1.5) (Bakeev, 2010). Among numerous chemometric techniques used in PAT, 

multivariate data analysis represents the most applied model in PAT (Figure 1.6) 

(Esbensen and Swarbrick, 2019; Pomerantsev and Rodionova, 2012). The PAT models 

used in this thesis will be discussed in detail in the next sections.  
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Figure 1.5. Spectroscopic techniques used in PAT applications (Pomerantsev and 

Rodionova, 2012). 

 
Figure.1.6. Chemometric models used for PAT applications. Multivariate image 

analysis (MIA), multivariate statistical process control (MSPC), multiway (N-way), 
multivariate curve resolution (MCR), theory of sampling (TOS), design of 
experiments (DoE), partial least squares (PLS), and principal component 

analysis/soft independent modelling of class analogy (PCA/SIMCA) (Pomerantsev 
and Rodionova, 2012). 

1.5 Data analysis and models of control 

Mathematical models are ways to describe a system using mathematical language 

(Kourti et al., 2014). Modelling and big data analysis are key for pharmaceutical 

technological advancements. They appear in all quality approaches, represent a 
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fundamental part of PAT, and are the basis for the 4th industrial revolution (Sin et al., 

2009; Steinwandter et al., 2019; Yu et al., 2014). However, mathematical modelling 

is still in development in the pharmaceutical industry. There is an enormous amount 

of data being generated by sensors placed on processes. However, most of the data 

generated is still only used for compliance (Manzano and Langer, 2018). This gap is 

explained by the complexity of designing practical applications integrating big data 

from heterogeneous sources and the lack of skilled personnel to perform this work 

(Da Xu et al., 2018).  

Quantitative models are generally classified as mechanistic, empirical or hybrid. The 

information required and the overall understanding to derive the models decreases 

from the mechanistic to empirical approaches (Figure 1.7) (Chatterjee et al., 2017). 

 
Figure 1.7. Knowledge of process required in different model classes (Chatterjee et 

al., 2017). 

Empirical models are built based on data acquired from a process and not as much 

from an understanding of that process. Most of these models have a retrospective 
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character because they are based on historical data, and they are usually used to 

identify relationships between input and output variables (Djuris and Djuric, 2017). 

Multivariate empirical analysis such as Design of Experiments (DoE), and 

chemometric models such as Multivariate Curve Resolution (MCR), Partial least 

squares (PLS) and Principal Component Analysis (PCA) are examples of empirical 

models. The application of this class of model is extremely valuable for complex 

process understanding and control when representative data is available for design 

and validation. However, it has a limited application to new experimental or 

operational setups. In other words, an empirical driven model is only valid in the 

design space used to build the model. This problem can be solved by the addition of 

data collected in the new operational setup to the original model (Esbensen and 

Swarbrick, 2019). This class of models is typically used within PAT.  

Mechanistic models are based on physical/chemical laws e.g., conservation of 

energy, fluid flow, and mass balance. Thus, discrete element methods (DEM) 

(Ketterhagen et al., 2009), finite element methods (FEM) (Reddy, 1989), and 

computational fluid dynamics (CFD) (Anderson et al., 1995) simulations are examples 

of this class of models (Djuris and Djuric, 2017). Empirical models are derived from a 

high-level process understanding, and thus provide a very transparent 

representation of the underlying phenomenon (Chatterjee et al., 2017). Developing 

mechanistic models can be very complicated and encounter many difficulties. 

Besides the development of equations, it is necessary to associate parameters that 

represent the system accurately. Pharmaceutical in-line analytical measurement and 

data recording systems have yet to be greatly improved (Djuris and Djuric, 2017).  
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Hybrid models are the result of a combination between mechanistic and empirical 

models. They are usually applied to scale-up and to estimate properties such as 

compression and compaction parameters (Djuris and Djuric, 2017). Heckel, Kawakita, 

and Shapiro equations, and the Percolation Threshold model are examples of hybrid 

models.  

1.6 Mathematical models investigated in this thesis 

1.6.1 Principal component Analysis   

Principal component Analysis (PCA) (Pearson, 1901) is a statistical model used to 

reduce the number of variables, independent or correlated in a data matrix. The vast 

number of variables of the original data matrix is transformed into a new set of 

variables named principal components (PCs) that are ranked so that the first few PCs 

explains the most of the variability in the data (Joliffe and Morgan, 1992; Jolliffe, 

1982; Pearson, 1901). In other words, a small number of PCs is used to explain a large 

variability in the data. The optimal number of PCs depends on the objectives of the 

work. It is important to observe that even PCs that show low amounts of variability 

information may offer predictive value (Jolliffe, 1982). PCs are linear combinations of 

the original variables geometrically defined as orthogonal directions that maximize 

the variance of the data. Therefore, PCs do not hold a physical meaning. 

Besides the principal components, a PCA model also returns scores (T) and loadings 

(P) of a data matrix 𝑋 (Equation 1.1). The variability not explained by the PCs is given 

as the error E.  The data matrix is organized so that the observations e.g., time points 

or batches, are distributed in the 𝑛 rows and the variables in the 𝑝 columns. 
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X , =

x x … x
x x … x

⋮ ⋮ ⋱ ⋮
x x … x

  

𝑋 = 𝑇𝑃  + 𝐸 (Equation 1.1) 

The scores are new values assumed by the observations (samples or time points) in 

the new geometric space determined by the principal components i.e., by the new 

set of variables with reduced dimensionality (𝑘 < 𝑝). The scores are used to identify 

similarities among the observations. Loadings explain which variables are responsible 

for the similarity or dissimilarity among the observations identified in the scores plot. 

Scores and loadings should be analyzed together because they provide 

complementary information. 
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Figure 1.8. Matrix interpretation of principal component analysis. 

PCA can be performed by eigenvalue decomposition as described in the following 

steps (Rencher, 2003): 

Step 1: Determine the mean (�̅�) and the standard deviation (𝜎) of each variable. 

Equation 1.2 shows calculation of the mean and Equation 1.3 shows the calculation 

of the standard deviation of the jth variable. 

x =
1

n
x  (Equation 1.2) 
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σ =
1

n
x − x  (Equation 1.3) 

Step 2: Standardize the variables when the variables are not in the same scale. 

Equation 1.4 manipulates the variables, so they have a mean of zero and standard 

deviation of one-unit variance. The following steps considered 𝑥 ,  equal 

to 𝑥 . 

𝑥 , =
𝑥 − 𝑥

𝜎
 

(Equation 1.4) 

Step 3: Mean-centre the data. Shift of the data so the centre point is the centre of 

the swarm of point by making 𝑥 , = 𝑥 − �̅�   

Step 4: Calculate the covariance matrix (S) (Equation 1.5). The covariance matrix 

explains how the variables are related to each other. This results in a symmetric and 

non-negative matrix and the eigenvectors of S are orthogonal and the eigenvalues 

non-negative. 

S =
1

n − 1
X X =

⎣
⎢
⎢
⎢
⎡
s c … c

c s … c
⋮ ⋮ ⋱ ⋮

c c … s ⎦
⎥
⎥
⎥
⎤

 (Equation 1.5) 

Where the diagonal (𝑠 ) elements are the sample variances for each variable 

(Equation 1.6) and the off-diogonal elements (𝑐 ) are the sample covariances 

between pairs of variacles i and k (Equation 1.7). 
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s =
1

n − 1
(x − x )   (Equation 1.6) 

c =
1

n − 1
x − x x − x   (Equation 1.7) 

Step 5: Determine the eigenvalues (λ ) (Equation 1.8) and eigenvectors (a  , i = 1, 2, 

…, p) (Equation 1.9). There exists one eigenvalue for each eigenvector. Thus, each 

eigenvalue is the variance explained by the corresponding eigenvector. 

Geometrically, the eigenvectors are the directions of the axes of the most variance, 

therefore, they are the principal components. All the eigenvectors of a matrix are 

orthogonal to each other, which agrees with the definition of principal components. 

In Equation 1.8, I is an identity matrix i.e., the diagonal elements are equal to one 

and the off-diagonal elements are equal to zero. In Equation 1.9 a  represent the 

principal components (a  , i = 1, 2, …, p). 

det(S − λ I) = 0 (Equation 1.8) 

(S − λ )a = 0 (Equation 1.9) 

Eigenvectors can only be calculated for square matrices. Given a nxn matrix there are 

n eigenvectors. If the eigenvector is multiplied by a scalar, the eigenvector will have 

the length changed but the direction will remain the same. All the eigenvectors of a 

matrix are orthogonal to each other. 

Step 6: Convert the eigenvectors (a ) to unit vectors (𝑎 ) i.e., all the eigenvectors will 

have magnitude of 1. This is done using Equation 1.10 where ‖a ‖ is the magnitude 

of the eigenvector a . This conversion does not change eigenvector direction, it only 
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gives the simpler form of the eigenvector in order to avoid multiple solutions. In 

Equation 10, 𝑎  is the unit vector.  

a =
a

‖a ‖
 (Equation 1.10) 

Step 7: Rank the eigenvalues (λi) from highest to lowest in order to rank the principal 

components in order of significance. 

Step 8: Choose the number of PCs and create the feature vector A i.e., a matrix 

containing the principal components (eigenvectors). 

Step 9: Compute the scores matrix (T) i.e., recast the data along the principal 

components axes using dot product (Equation 1.11), where X is the standardized, and 

mean centred data matrix, and A is a matrix containing all the principal components 

chosen in the previous step in column mode. This is the actual dimensionality 

reduction step. The score matrix defines the location of the orthogonal projection of 

the original observations in the latent subspace (Tauler et al., 2009). 

T = X ∙ A (Equation 1.11) 

Step 10: The loading matrix is composed by eigenvectors corresponding to the largest 

eigenvalues of the covariance matrix of the data set. The loading vectors define the 

directions of highest variability of the new latent subspace (Tauler et al., 2009) and 

the loadings can be described as the directional coefficients that compose each PC 

i.e., loadings are the elements of an eigenvector (Esbensen and Swarbrick, 2019). 

Practical issues of PCA are as follows: 

 Principal components do not hold physical meaning. 
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 PCA is too expensive for applications with extremely big data (e. g. extensive 

web data). 

 PCA is based on linearity, thus it does not work well for a data set that has a 

manifold structure. 

 PCA projects the data to a lower dimension data set. Therefore, if the dataset 

has outliers or special cases of interest, this information would be lost.  

 PCA does not recognize class labels, therefore when the classes are known, 

an additional step is necessary in order to highlight the different classes e.g., 

name the scores by the class to which they belong. Alternatively, if the classes 

are not previously known, clustering algorithms can be applied to the PCA 

scores in order to determine groups that are statistically significantly different 

from each other.  

 PCA is an unsupervised algorithm, thus, the direction of maximal variance is 

not necessarily the one that makes the best separation of classes. The analyst 

has to choose carefully the PCs that best describe the phenomenon studied.  

 Loadings plot helps the analyst to verify the reasons for the separation 

obtained from the model (i.e. observed in the PCA scores plot), however the 

results must be also supported by physicochemical knowledge. 

1.6.2 Partial least squares regression 

Partial least squares regression (PLS) is a multivariate regression model used to 

correlate information in one data matrix of independent variables (X) to the 

information in a matrix of dependent variables (Y) (de Jong, 1993). Similarly to PCA, 

PLS regression captures the maximum variance within X. However, PLS also captures 
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the maximum variance in Y, and calculates the maximum correlation between X and 

Y. As a result, in the future, if only X is known, Y can be predicted. 

Considering X a mean-centered n x m matrix and Y a mean-centered n x p matrix, PLS 

is derived from a covariance matrix of X and Y, S(X,Y), determined by Equation 1.12. 

The correlation between X and Y is determined by equation 1.13 (Ng, 2013). 

S (X, Y) =
1

n − 1
X Y (Equation 1.12) 

𝑐𝑜𝑟𝑟(𝑋, 𝑌) = 𝑣𝑎𝑟(𝑋) ∙ 𝑐𝑜𝑣(𝑋, 𝑌) ∙ 𝑣𝑎𝑟(𝑌) (Equation 1.13) 

There are different algorithms from which PLS can be determined. In this study, an 

orthogonalized PLSR algorithm for one Y-variable from the software the Unscrambler 

(CAMO Analytics, 2011) was used.  

1.6.3 Multivariate Curve Resolution 

Multivariate Curve Resolution (MCR) (Lawton and Sylvestre, 1971; Martens, 1979) is 

a group of algorithms developed to implement constraints on loadings and scores so 

that they have an exact physical interpretation and explain the variance in the data 

(De Juan and Tauler, 2006; Mendieta et al., 1998). MCR decomposes the data matrix 

(X) into a matrix of the variation among the observations, named concentration 

profiles (C), a transpose variance matrix associated with the variation among the 

variables, named spectra profiles (ST), and a matrix of residuals not explained by the 

model (E) (Equation 1.14). As a result, the spectra fingerprint of the single 

components of a mixture are extracted. The model fit is given by the percentage lack 
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of fit (%LOF) (Equation 1.15), where 𝑥  is an element of X and 𝑒  is the respective 

residual. Ideally, %LOF should be close to zero. 

X=CST+E (Equation 1.14) 

% 𝐿𝑂𝐹 = 100 ∙
∑ 𝑒

∑ 𝑥
 (Equation 1.15) 

Juan, Jaumot and Tauler, 2014 listed and compared the main MCR algorithms 

available and discussed the benefits of the algorithm Multivariate Curve Resolution-

Alternating Least Squares (MCR-ALS) (De Juan et al., 2014). MCR-ALS is an iterative 

algorithm that performs alternating optimization in each iterative cycle. The 

algorithm is based as follows (Esbensen and Swarbrick, 2019; Tauler, 1995): 

Step 1: Determine the number of compounds in the data matrix e.g., using PCA or 

previous knowledge about the system. 

Step 2: Determine the initial estimate. The initial estimate can be a pure spectra of 

some of the compounds that is known, any other information that is available, 

or the initial estimate can be mathematically determined by local rank map 

methodologies (Booth, 2005; De Juan et al., 2014). The local rank algorithms 

screen the profiles in order to identify “windows” i.e., regions from which 

chemical information can be obtained such as selective information regions, 

zero-concentration regions, and regions of (A-1) components. The algorithm 

will correctly determine the initial guess if the following theorems are true 

(Manne, 1995): 
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I. The concentration profile of a compound can be determined if all the 

interfering compounds that are identified inside of the concentration window 

the given compound can be also identified outside that window. 

II. The spectrum profile of a compound can be determined if there is a sub 

window where no other component information is present. 

Step 3: Use the initial estimate ST to calculate C (or C to calculate ST) under the 

applicable constraints. 

Step 4: Recalculate ST using C determined in step 3 (using Equation 1.12, with data 

matrix=X). 

Step 5: Apply Equation 1.12 i.e., multiply C and ST from steps 3 and 4 in order to 

calculate the estimated data matrix X. 

Step 6: Repeat steps 3, 4, and 5 until convergence i.e., until the fit between two 

consecutive iterations fall below a previously determined threshold or until 

a previously determined number of iterations are reached.  

The ALS optimization is performed in each cycle for spectra and for concentration 

profiles estimations, therefore, a sensible initial guess is required in order to shorten 

the iteration process and guide the convergence to an accurate solution (Mendieta 

et al., 1998). The set of constraints is what avoids ambiguities inherent to curve 

resolution due to the fact that different C and ST type matrixes can represent the data 

set with the same quality of fit. However, they show different profiles with different 

shape (rotational ambiguity, mathematically given by Equation 1.16, where T is the T 
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PCA matrix of scores) or different magnitude (intensity ambiguity) (Esbensen and 

Swarbrick, 2019). 

𝑋 = 𝐶𝑆 = 𝑋(𝑇𝑇 )𝑆 = (𝐶𝑇)(𝑇 𝑆 ) = 𝐶 𝑆  (Equation 1.16) 

The constraints applied to MCR model for optimization can be divided into (1) 

mathematical conditions, (2) natural constraints, and (3) process constraints (Figure 

1.9).
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Figure 1.9. Multivariate Curve Resolution workflow.
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Mathematical conditions 

1- Correspondence of species: useful when data matrices from several different 

samples are modelled together. Correspondence of species is used to 

determine the presence or absence of components in the analysed samples 

and it is also used to reduce ambiguity. 

2- Local rank: it is usually applied to concentration profiles in order to avoid 

ambiguity. This constraint identifies zones of the profile (windows) where 

there is absence of components. The windows can be determined by local 

rank analysis methods e.g., EFA. When only one component is observed in a 

certain window of the profile the selectivity constraint can be applied i.e., 

there is only one component and therefore it is possible to select the spectra 

of that region as the initial guess of a pure component. When some 

components are observed in a zone of the profile, an internal local rank can 

be applied.  

3- Model constraints: proper for multiset data matrices. It can be understood as 

the applications of conditions of trilinearity, multilinearity, or factor 

interaction. 

Natural constraints 

1- Non-negativity: suitable for all concentration profiles and can be used for 

spectra that do not show values in the negative region. Thus, it cannot be 

applied to derivative spectra. It forces the profiles to be formed by null or 

positive values. Non-negative least-squares or fast non-negative least-

squares. 
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2- Closure: it is appropriate when the mass balance conditions are true.  

3- Known pure spectral concentration profiles: it forces the spectrum of a 

component to be equal to a certain known predefined shape.  

4- Unimodality: employed when there is the presence of a single peak or a 

consistent increasing or consistent decreasing profile. It is not applicable 

when different batches are being compared as screening studies. 

Process constraints 

1- Hard modelling: constrain concentration profiles by setting physicochemical 

parameters. 

2- Correlation constraint: it is used to predict concentrations in unknown 

samples when internal univariate calibration models are available. 

1.6.4 Heckel model 

Heckel model is commonly used for interpretation of the relationship between 

relative density and applied pressure (Ilkka and Paronen, 1993). It describes the 

densification of the powder density under pressure as a first-order kinetics process 

(Patel et al., 2006). According to its differential form (Equation 1.17), the higher the 

porosity (𝜀), which is directly related to the density, the more the porosity decreases 

due to the application of pressure (𝜎).  

−
𝑑𝜀

𝑑𝜎
= 𝑘 ⋅ 𝜀 (Equation 1.17) 

The relation between relative density and porosity is known as 𝜌 = 1 − 𝜀 

(Leuenberger and Leu, 1992). Rewriting Equation 1.17 for relative density and 

integrating, the following linear correlation is obtained: 



 Chapter -1 

Ana Luiza Pinto Queiroz Page 59 

Ln
1

1 − ρ
= K ⋅ σ + A (Equation 1.18) 

where ρ is the tablet relative density, σ is the compaction pressure, A is a constant 

that represents the degree of packing that can be achieved by rearrangement of 

particles i.e., before considerable inter-particle bonding take place, and K is a 

constant related to the ability of the powder to undergo plastic deformation. 

1.6.5 Percolation threshold  

Percolation threshold theory can be used in pharmaceutical formulation design to 

determine a concentration range where the property analysed undergoes a sudden 

change, which can be observed as an edge of failure of formulation processability or 

CQAs. From this theory it is possible to predict the blends that would present 

suboptimal properties and thereby determine an optimum drug concentration range 

to achieve blends designs that are robust with respect to those properties. 

Percolation threshold theory is mathematically described by the power law of 

Equation 1.19. 

𝑋 = 𝑘 ∙ (𝜌 − 𝜌 )  (Equation 1.19) 

where 𝑋 is one property observed e.g., tablet strength, drug release, compactibility 

or electrical conductibility (Fuertes et al., 2006; Gonçalves-Araújo et al., 2008; Guyon 

et al., 1987; Hwang et al., 2017). The constant 𝑘  is a proportionality constant or 

scaling factor, ρ is the occupation probability, 𝜌  represents the percolation 

threshold and q is a critical exponent, also known as percolation coefficient. 
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Since the interest of this thesis is to work with tensile strength, the power law of 

percolation threshold (Equation 1.19) can be rewritten as Equation 1.20. 

𝜎 = 𝑘 ⋅ [𝜌 − 𝜌 (𝐴𝐵)] (Equation 1.20) 

Where 𝜎  is the tensile strength (Equation 1.21), 𝑇  is the percolation coefficient 

when is calculated for tensile strength, 𝜌 (𝐴𝐵) is the percolation threshold, and 𝜌 is 

the tablet relative density (Equation 1.22).  

Tensile strength can be calculated using Equation 1.25. 

𝜎 =
2 ⋅ 𝐻

𝜋 ⋅ 𝐷 ⋅ 𝑇
 (Equation 1.21) 

In which T is thickness, D is diameter, and H is hardness. 

𝜌 =
𝜌

𝜌
 (Equation 1.22) 

Tablet density,𝜌 , is obtained dividing tablet weight by tablet volume and 𝜌  

can be measured using a gas displacement pycnometer.  

Thus, Equation 1.20 can be applied by performing the linear fit  

𝜎 = 𝑎 ⋅ 𝜌 + 𝑏, in which tensile strength (𝜎 ) and tablet relative density (𝜌) are 

values obtained empirically, Tf can be found in the literature or determined using a 

modified Heckel Model, and 𝜌 (𝐴𝐵) = −𝑏/𝑎. 

1.6.5.1 Determination of the percolation coefficient using modified Heckel 

Model 

Heckel equation is valid only when 𝜀 «𝜀  i.e., at high pressures, not in the vicinity of 

bulk porosity (Kuentz and Leuenberger, 1999). Critical porosity (𝜀 ) is the maximum 
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porosity of a powder bed. There is no rigid structure existing above𝜀 . If 𝜀 ≥𝜀 there 

is a fluid with particles moving without resistance. On the other hand, percolation 

threshold applies for lower pressure, under which there is a rearrangement of the 

particles inside the die. In order to modify Heckel equation so that it can be used for 

𝜀 <𝜀  or 𝜌 > 𝜌  i.e., under low pressures, a new parameter, 𝑋  (Equation 1.23), was 

introduced so that Equation 1.24 is obtained (Kuentz and Leuenberger, 1999). In 

Equation 1.24, 𝜀  is porosity, 𝜎 pressure, and 𝑞 is the generic percolation threshold 

coefficient. 

X =
c

(ε − ε)
 (Equation 1.23) 

−
𝑑𝜀

𝑑𝜎
∙

1

𝜀
=

𝑘

(𝜀 − 𝜀)
 (Equation 1.24) 

Rewriting the last equation for relative density (𝜌, 𝜌 = 1 − 𝜀) and performing the 

integration, Equation 1.25 is obtained. This mathematical transformation was 

described in details by (Kuentz and Leuenberger, 1999). 

𝜎 =
1

𝑐
𝜌 − 𝜌 − (1 − 𝜌 ) ⋅ 𝐿𝑛

1 − 𝜌

1 − 𝜌
 (Equation 1.25) 

Equation 1.25 was simplified using Taylor expansion (Kuentz and Leuenberger, 2000). 

As a result, Equation 1.26 was obtained. This equation is only valid in the vicinity of 

the percolation threshold, 𝜌 . 

𝜎 =
1

2𝑘

(𝜌 − 𝜌 )

1 − 𝜌
 (Equation 1.26) 

Isolating (𝜌 − 𝜌 ) in Equations 1.20 and 1.26 and then matching them, the Equation 

1.27 is obtained. 
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𝜎 = 𝑘 ⋅ 𝑃  (Equation 1.27) 

Thus, the percolation coefficient 𝑇  can be determined by the exponential fit of 

Equation 1.27, where 𝑘  is a constant, P is the experimental compaction pressure, 

and 𝜎  is the tensile strength of tablets compacted at each compaction pressure.  

1.6.5.2 Percolation threshold and critical mass fraction  

Modelling percolation depends on the dimensionality of the cluster and the system. 

A tablet is a 3-D system and, in order to best fit the percolation theory, it is considered 

as a binary system, even though the blend has more than two substances 

(Leuenberger and Ineichen, 1997). In this case, there are three percolation 

thresholds: 𝜌 (𝐵) the percolation threshold of the API, and 𝜌 (𝐴) the percolation 

threshold of the excipient and 𝜌 ,  the total percolation threshold. Moreover, the 

tableting process can be divided into two stages to simplify.  

The first stage is when the blend is made by creating weak-bond percolation which 

corresponds to the vicinity of the relative density (𝜌 ≈𝜌 ) (Leuenberger and Leu, 

1992; Sharma et al., 2014). The pressure in this phase is low and the porosity is just 

smaller than the critical porosity (Kuentz et al., 1999). When this simplification is 

made, many properties can be described by a straight line. The second stage occurs 

when the compaction happens forcing the blend to undergo deformation and/or 

fracture. This phase happens under higher pressure and the compaction process can 

be considered as a two-dimensional process due to a uniaxial compression where the 

stress is transmitted from particle to particle (Sharma et al., 2014). This stage is more 

complex to calculate. Fortunately, for some properties it is possible to consider the 
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entire process happening as the first stage, so that the property can be approximated 

by a straight line. This approach works for tensile strength (σT) for microcrystalline 

cellulose compacts (Kuentz and Leuenberger, 2000). 

Tensile strength can be explained with a law of percolation theory for a blend in 

which one component dominates the overall strength of the tablet (Kuentz and 

Leuenberger, 2000). For each ρ defined empirically, there is a corresponding 𝜎  

calculated. Therefore a straight line equation (𝑦 = 𝑎. 𝑥 + 𝑏) is observed ( 𝑦 = 𝜎 / , 

𝑥 = 𝜌, −𝐾𝜌 = 𝑏 and 𝐾 = 𝑎).  

𝜎 / = 𝑎 ⋅ 𝜌 + 𝑏 (Equation 1.28) 

The percolation threshold is calculated where 𝜎 / = 0 i.e., Equation 1.29. 

𝜌 (𝐴𝐵) =
−𝑏

𝑎
 (Equation 1.29) 

The values of the percolation threshold of each blend, ρc (AB), are then used to obtain 

two other percolation threshold values 𝜌 (𝐴) and 𝜌 (𝐵) (Equation 1.30). While 

𝜌 (𝐵) represents the minimum relative density, or solid fraction, above which there 

is a change in tensile strength behavior, 𝜌 (𝐴) is related to the dilution capacity of 

substance A. Thus, 𝜌 (𝐴) provides the fraction of substance B that could be loaded 

into the blend with substance A in such a way that substance A still leads the overall 

properties of the blend. 

𝜌 (𝐴𝐵) = 𝑋 ∙ 𝜌 (𝐴) + (1 − 𝑋 ) ∙ 𝜌 (𝐵) (Equation 1.30) 
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A dilution capacity model was applied in order to express the 𝜌 (𝐴) in terms of mass 

fraction (Xc), Equation 1.31 (Kuentz and Leuenberger, 2000). This conversion was 

performed as dilution capacity which is a useful parameter to consider when 

designing a pharmaceutical tablet formulation. 

𝑋 = −
𝜑

2
±

𝜑

2
− ∅ (Equation 1.31) 

In which ϕ and φ are parameters dependent of the true density of substances A and 

B respectively and calculated using Equations 1.32 and 1.33, respectively.  

∅ =
𝜌 (𝐴)

𝜌 (𝐴) + 𝜌 (𝐵)
 (Equation 1.32) 

𝜑 =
−2 ∙ 𝜌 (𝐴) ∙ 𝜌 (𝐴) − 𝜌 (𝐵)

𝜌 (𝐴) ∙ [𝜌 (𝐴) + 𝜌 (𝐵)]
 (Equation 1.33) 

1.7 Background to aspects of pharmaceutical development investigated in this 

thesis 

1.7.1 Raw material CQAs variability 

ICH Q11 highlights the importance of linking material attributes and process 

parameters to CQAs as part of the QbD approach (International Council for 

Harmonisation, 2012). Raw material attributes has been considered by many authors 

as a potential source of process variability and an important aspect of pharmaceutical 

manufacturing to be investigated within the QbD framework (Burke and Zylberberg, 

2019; Kushner IV, 2013; Kushner et al., 2011; Mockus et al., 2015; Stauffer et al., 
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2019, 2018; Thoorens et al., 2014). The effects of raw material variability on a process 

is also important based on the QbC approach.  

In this thesis, microcrystalline cellulose (MCC) (Figure 1.10) was used as a case study 

excipient for the development of models to quantitatively determine raw material 

variability and its impact on processes. MCC is one of the most commonly used 

excipients in solid dosage pharmaceutical formulations (Thoorens et al., 2014). MCC 

is inert to most pharmaceutical formulations, has high compactability and some 

lubricant functionality, and therefore it is widely used as bulking agent for tablet and 

capsules formulations (Rowe et al., 2009; Thoorens et al., 2015, 2014). MCC also acts 

as an effective tablet disintegrant (Järvinen et al., 2013). Besides being used in 

pharmaceutical formulations as binder and filler, MCC is used in other industries as 

fat replacement and stabilizer in food products, as rheology control agent in 

cosmetics, and as composite in biodegradable polymers and wooden products (Gibis 

et al., 2015; Terinte et al., 2011; Thoorens et al., 2014; Vonbehren et al., 2010; Yang 

et al., 2018).  

MCC is obtained by acid hydrolysis of wood or cotton cellulose followed by rinsing 

and drying (Sun, 2008). Microcrystalline cellulose is a semi-crystalline material with 

inherent variable crystallinity due to raw material source and variable processing 

conditions (O’Regan, 2018). Due to its natural origin, batches of microcrystalline 

cellulose can show significant variability in properties such as crystallinity, moisture 

content, surface area, porous structure and molecular mass (El-Sakhawy and Hassan, 

2007). The different drying processes used to produce MCC are also causes of 

variability in physicochemical properties of MCC (Sinha et al., 2018). When MCC is 
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used as a component of solid dosage formulation, batch variability can affect the final 

product CQAs e.g., tablet hardness and dissolution rates (Thoorens et al., 2014).  

 
Figure.1.10. Chemical structure of microcrystalline cellulose. 

1.7.2 Active pharmaceutical ingredient engineering 

More than 35% of frequently prescribed APIs are classified as poorly water soluble 

according to the Biopharmaceutics Classification System (International Council for 

Harmonisation, 2019) (Wu and Benet, 2005). A poorly water soluble drug substance 

is not well absorbed after oral administration, which results in reduced drug 

bioavailability and efficacy (Vasconcelos et al., 2007). In the aspect of manufacturing, 

many APIs are not suitable for direct compression with many others not being 

suitable in high-dose formulations (Leane et al., 2018; Patel et al., 2006; Sun et al., 

2017). API engineering approaches have an important role to play in order to address 

these and other issues that prevent APIs being commercialised or require drug 

products manufactured through high-cost processes. Examples of API engineering 

are solvation, hydration, salting, polymorphism, and co-crystallization (Vishweshwar 

et al., 2006). 

Co-crystallization is a crystal engineering approach that has been used to improve 

API solid state properties (Vishweshwar et al., 2006). Co-crystallization emerged in 
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recent years and has been widely investigated to enable drug substances to be 

manufactured for oral administration with high-level bioavailability (Goud et al., 

2012; Qiao et al., 2011; Remenar et al., 2003; Rodrigues et al., 2018a; Shan et al., 

2014; Silva Filho et al., 2018; Trask et al., 2005). The European Medicine Agency 

defined co-crystals as “homogenous (single phase) crystalline structures made up of 

two or more components in a definite stoichiometric ratio where the arrangement 

in the crystal lattice is not based on ionic bonds (as with salts)” (European Medicines 

Agency, 2015). Co-crystal can be formed by an API and a coformer, by a co-crystal 

and a nutraceutical molecule, or by two APIs (Rodrigues, 2019).  A coformer is a 

pharmaceutical substance that meets safety and quality standards (European 

Medicines Agency, 2015). A nutraceutical molecule is a substance that is part of a 

food and shows medical or health benefits (Schultheiss et al., 2010). 

The development of new co-crystals is an area in significant development. Entresto® 

and Odomzo® from Novartis, and Steglatro®, Segluromet® and Steglujan® from Merk 

are among the marketed products containing co-crystals (Rodrigues, 2019). In this 

thesis, PAT tools and models that yield product and process understanding and 

process control during co-crystal formation were investigated.  

1.7.3 Tablet manufacturing  

Solid oral administration is the preferable route of drug delivery due to high stability, 

small bulk, accurate dosage and easy production (Patel et al., 2006; Rathbone et al., 

2003; Vasconcelos et al., 2007). Tablet manufacturing through granulation involves 

blending the API with excipients to form denser and larger particles. The larger 

particles produced show improved tableting performance (Mangal and Kleinebudde, 
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2018). There are different granulation operations such as high shear and fluidized 

bed, which are employed in wet granulation processes. There are also dry 

granulation processes, such as roller compaction. Roller compaction is considered 

the most suitable granulation process when granulation must be performed in 

continuous manufacturing (Betz et al., 2003). When tablets are produced by direct 

compression the powder blend does not need to be pre-processed. That is why tablet 

direct compression has been researched for the implementation of continuous 

manufacturing and advanced quality approaches (Engisch and Muzzio, 2014; 

Hausner, 2018; Järvinen et al., 2013). 

Direct compression is the simplest tablet manufacturing system. In this process, 

powder blends of API and excipients are directly compacted into tablets (Figure 1.11) 

(Gohel and Jogani, 2005). This process has the total operation units reduced, which 

decrease production costs and time to market (Mangal and Kleinebudde, 2018).  

 

Figure 1.11. Flowchart of a direct compression process. 

In this context, compaction is the unit operation in which pressure is applied to a 

powder bed so that a coherent compact is formed (Patel et al., 2006). This is a critical 

unit operation because it determines physical and mechanical properties of tablets, 

such as hardness, friability and density. Those properties are discussed in the next 

section. 

Raw material Blending Compaction Final product
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Powder blends containing high-dose, poorly compressible APIs may exhibit 

compaction problems such as capping, lamination, sticking and picking (Patel et al., 

2006). Those problems are expected to increase as the API dosage is increased (Teng 

et al., 2009). Percolation threshold is a hybrid model that has been investigated to 

predict the levels of high-dose poorly compressible drug in solid dosage formulations 

that can be direct compacted with optimal process performance and product quality 

(Leane et al., 2018, 2015; Leu and Leuenberger, 1993) (See section 1.6.1). 

Risk assessment, as part of the control strategy, requires the identification of 

potentially risky effects of critical material attributes (CMAs) and process variables 

on product CQAs. Yu, L. X. et al. listed input materials, process parameters and quality 

attributes that are typically relevant to tableting (Table 1.1) (Yu, 2008). From those, 

content and uniformity of mass, strength (hardness/friability), disintegration and 

dissolution are generally considered tablet physicochemical CQAs (FDA, 2015, 2012; 

International Council for Harmonisation, 1999). Case studies were designed in this 

thesis to investigate the effects of input material (excipient and formulation) 

attributes listed by Yu L.X. et al. on the CQA attributes outlined above. 
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Table 1.1. Input materials, process parameters and quality attributes that are 
typically relevant to tableting. Adapted from (Yu, 2008) 

Input material attributes Quality attributes 

Particle/granule size and distribution Tablet appearance 
Fines/oversize Tablet weight 
Particle/granule shape Weight uniformity 

Cohesive/adhesive properties 
Hardness/tablet breaking force/tensile 
strength 

Electrostatic properties Thickness/dimensions 
Hardness/plasticity Tablet porosity/density/solid fraction 
Bulk/tapped/true density Friability 
Viscoelasticity Tablet defects 
Brittleness Moisture content 
Elasticity Disintegration 
Solid form/polymorph Dissolution 
Moisture  
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1.8  Aims and objectives 

The overall goal of this thesis is to increase understanding of pharmaceutical 

materials attributes and processes performance. For that intensive characterization 

of CMAs, interactions between API and excipient, and CQAs were investigated. PATs 

are designed for quantitative characterization and for predicting drug substance and 

drug product critical properties in order to support the overall goals of this thesis. 

Different aspects of pharmaceutical manufacturing were used as case studies and 

the following objectives were established and split into the following chapters: 

Chapter 2 

 To develop a PAT technique to quantify variability in MCC crystallinity batch 

to batch. 

 To develop a PAT tool to predict MCC moisture sorption based on the output 

of the PAT technique to determine MCC crystallinity. 

Chapter 3 

 To develop PAT tools for co-crystallization process control. 

 To develop PAT tools to quantitatively evaluate co-crystal purity. 

Chapter 4 

 To predict blend direct compression behavior using percolation threshold 

model and multivariate analysis. 

Chapter 5 

 To investigate tablet dissolution behavior through the application of PAT tools 

for tablet characterization and disintegration analysis. 
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Chapter 2 - Investigating variability in 

microcrystalline cellulose using Raman 

spectroscopy  
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2.1 Abstract 

Microcrystalline cellulose (MCC) is a semi-crystalline material with inherent variable 

crystallinity due to raw material source and variable manufacturing conditions. MCC 

crystallinity variability can result in downstream process variability. The aim of this 

study was to develop models to determine MCC crystallinity index (%CI) from Raman 

spectra of 30 commercial batches using Raman probes with spot sizes of 100 µm (MR 

probe) and 6 mm (PhAT probe). MCC moisture sorption is critical for several industrial 

processes. Thus, the relationship between %CI and moisture content for those MCC 

batches was also investigated. A principal component analysis model separated 

Raman spectra of the same samples captured using the different probes. The 

differences were attributed to the larger sampling area and depth of the PhAT probe. 

The %CI was determined using a univariate model based on the ratio of the peaks at 

380 and 1096 cm-1. The univariate model was adjusted for each probe. The %CI was 

also predicted from spectral data from each probe using partial least squares 

regression models, where Raman spectra and univariate %CI were the dependent 

and independent variables, respectively. A web application, MCCrystal, containing all 

the models developed was developed and is available at https://sspc.ie/mccrystal/. 

A correction between %CI and moisture sorption behaviour could not be established. 
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2.2 Introduction 

Microcrystalline cellulose is widely used and has diverse applications across different 

industry sectors. MCC is used as a binder and filler in pharmaceutical formulations, a 

fat replacement and stabilizer in food products, a rheology control agent in 

cosmetics, and as a component of biodegradable polymers and wooden products 

(Gibis et al., 2015; Terinte et al., 2011; Thoorens et al., 2014; Vonbehren et al., 2010; 

Yang et al., 2018). The most common source of MCC is wood. Cellulose chains are 

present in wood pulp in the form of packed layers that are held together by lignin, 

and strong hydrogen bonds (Thoorens et al., 2014). MCC is obtained by purification 

of wood pulp using mineral acid solution i.e., acid hydrolysis, followed by rinsing and 

drying. The presence of hydroxyl groups in the product of this purification process 

and the relatively large surface to volume ratio of micro fibrils give rise to MCC’s 

hygroscopic character (Sun, 2008). 

MCC has an atypical semi-crystalline structure and its attributes can vary between 

suppliers and batches. Batch to batch variability can be caused by different factors, 

such as wood source (hard or soft wood), climate differences from region to region, 

harvesting time, the process of pulp delignification, hydrolysis reaction time, and the 

process of drying (O’Regan, 2018). The term crystallinity index (%CI) refers to the 

percentage by weight occupied by the crystallites (Foster et al., 2018). During 

depolymerization (hydrolysis) the acid preferentially attacks the amorphous regions 

of the pulp (Landín et al., 1993) and increases percentage crystallinity. 

MCC crystallinity has been reported to influence its behaviour during processing.  

Tabletability was investigated with differences observed between batches with 
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substantial differences in crystallinity. Suzuki and Nakagami used a rod mill to reduce 

crystallinity of a MCC batch from an initial %CI of 65%. A reduction in tabletability 

was observed for batches with a %CI below 12%, and an increase in dissolution rate 

was observed for acetaminophen tablets produced with MCC that had a %CI less than 

26% (Suzuki and Nakagami, 1999). The crystallinity of MCC has also been shown to 

influence water sorption (Amidon and Houghton, 1995; Bolhuis and Chowhan, 1996; 

Nokhodchi, 2005). Increased water sorption was observed with decreased MCC 

crystallinity, as moisture sorption occurs predominantly in amorphous regions which 

are more hydrophilic than the crystalline regions (Mihranyan et al., 2004; Segal et al., 

1959; Suzuki and Nakagami, 1999).  

A range of techniques has been utilised to determine MCC crystallinity. 

Diffraction techniques are most widely reported, employing the Segal peak 

height method (Segal et al., 1959), peak decomposition or deconvolution (Lanson 

1997; Park et al. 2010; Ahvenainen et al. 2016, Yao et  al. 2020), and Rietveld 

refinement based methods (Madsen et al. 2011; Ling et al. 2019). Other 

spectroscopic techniques proposed include Fourier transform infrared (Liu and Kim 

2015), solid state NMR (Atalla and Vanderhart 1984; Harris et al. 2012; Wickholm et 

al. 1998), and Sum frequency generation (Ling et al. 2019). Raman spectroscopy, the 

focus of this study, has been investigated to determine cellulose crystallinity. An 

initial Raman approach for quantifying MCC crystallinity employed relatively weak 

bands at 1462 and 1481 cm-1 (CH2 bending modes) in conjunction with spectral 

deconvolution (Schenzel et al., 2005). Two further methods were proposed 

employing bands at 380 and 93 cm−1 (Agarwal et al., 2018, 2010). The 93 cm−1 method 
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is advantageous compared to the 380 cm-1 method as it differentiates crystalline and 

organized cellulose and an aggregated form which is not crystalline. However, the 93 

cm−1 method requires an FT-Raman instrument with 1064 nm excitation to avoid 

Rayleigh scattering that masks the sample Raman scattering at 93 cm−1. 

The quantification of cellulose crystallinity using Raman spectroscopic analysis has 

primarily employed Raman instruments with laser spot sizes between 50 μm and 1 

mm and limited depth of penetration (Agarwal et al., 2018, 2010; Foster et al., 2018). 

The irradiation area of such instrumental setups results in a limited area being 

sampled. Therefore, analysis requires the acquisition of multiple spectra across a 

number of locations to obtain a representative profile of the sample. Reduced depth 

of penetration also results in spectra that focus on surface spectral features. To date 

Raman probes with larger laser spot sizes and depth penetration, designed for non-

contact analysis of solids, have not been applied to the quantification of cellulose 

crystallinity. It was hypothesised the larger sample volume irradiated using these 

probes would reduce the requirement for multiple spectra acquisition and surface 

mapping. Contact probes are usually used for suspensions/solutions and the probe 

window of a contact probe is in contact with the suspension. Non-contact probes are 

usually used for solid samples and the probe window needs to be placed at the 

minimum distance specified by the equipment supplier. 

The objective of this study was to demonstrate the capability of Raman spectra 

acquired using non-contact Raman probes to predict the %CI of commercial MCC 

batches. Raman spectra acquired for 30 commercial MCC batches, using two probes 

with spot sizes of 100 µm (MR probe) and 6 mm (PhAT probe), were used to develop 
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models to determine %CI. The relationship between MCC %CI and moisture sorption 

behaviour was also investigated. 

2.3 Materials 

Thirty batches of microcrystalline cellulose were studied. Samples comprised MCC 

manufactured by 3 different suppliers; 25 batches from Dupont Nutrition & 

Biosciences, 4 batches from JRS Pharma, and 1 batch from Asahi Kasei 

Corporation. All MCC grades analysed compiled with USP/NF, Ph.Eur and JP 

pharmacopeia. Wood pulp was confirmed as the botanical source for 29 of the 30 

batches analysed, for one batch the botanical source could not be confirmed.    

2.4 Methods 

2.4.1 Milling standards to produced reference amorphous 

Milling was performed in order to obtain amorphous reference spectra. Prior to 

milling, the samples were kept in the oven at 40 °C for 24 hours. To produce 

amorphous reference materials for each batch 1 g of MCC was milled at 25 Hz in an 

oscillatory ball mill, Mixer Mill MM400 (Retsch GmbH, Germany), in order to 

decrease the crystallinity (Mattonai et al., 2018). All samples were milled for 90 min 

to replicate the methodology of previous studies (Agarwal et al., 2010). A break of 15 

minutes was performed after every 30 min of milling 

operation.  Samples of 7 batches were confirmed to be amorphous after 90 min 

milling by powder X-Ray diffraction (PXRD). These batches included MCC batches 
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from each supplier and each grade. PXRD diffractograms of these batches before and 

after ball milling are included Fig. S2-S8 in the supplemental material.  

2.4.2 Powder X-ray diffraction  

Powder X-Ray Diffraction (PXRD) analysis was performed using a Stoe Stadi MP 

diffractometer operating in transmission mode, with a tube voltage of 40 kV and 

current of 40 mA, using Cu Kα1 monochromated radiation (1.5406 Å) and a gas-filled 

PSD detector. MCC powder samples were held between acetate foils and the 

diffraction was recorded over 5 to 45° 2θ in steps of 2° 2θ at 90 sec/step.    

2.4.3 Preparation of pellets for Raman spectroscopy 

Cylindrical, flat, 13 mm diameter, 250 mg pellets were produced using an Atlas 15T 

Manual Hydraulic Press (Specac Ltd, Orpington, UK). Three tonnes force were applied 

for a duration of 30 seconds. Two pellets were produced for each batch; one from 

the powder as received and one from the corresponding ball milled sample. 

2.4.4 Raman spectroscopy 

Raman spectra for each pellet were acquired using two different probes. The first 

was a MR probe connected to a RamanRxn™ instrument (Kaiser Optical Systems Inc., 

Ann Arbor, USA), with nominal laser beam diameter at a focal position of 100 μm. 

The exposure time set was 60 s, using a laser power of 785 mW, over the range 200-

1500 cm-1, and analysis was performed in triplicate. The second was a PhAT probe 

connected to a RamanRxn2PhATTM instrument (Kaiser Optical Systems Inc., Ann 

Arbor, USA), with nominal laser beam diameter at a focal position of 6 mm. The 

exposure time was set to 15 s, using a laser power of 785 mW, over the range 200-
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1500 cm-1, and analysis was performed in duplicate. Moreover, while the MR probe 

is primarily a surface technique, the PhAT probe has a collection zone depth of 

around 2 mm.  

In addition to the sample Raman fingerprint, the spectra obtained contained a 

background contribution that may be caused by fluorescence or thermal fluctuations 

on the Charge Coupled Device (CCD detector) (Bocklitz et al., 2011; Gautam et al., 

2015). The fluorescence background was removed by pre-processing. The spectra 

underwent a baseline subtraction of an interpolated linear fit between the anchor 

points fixed on the X axis: 1500, 1200, 952, 857, 743, 632, 550, 260, and 200 cm-1 

(Figure 2.1). The intensity differences observed between the spectra were removed 

by standard normal variate (SNV). This normalization consisted of subtracting each 

spectrum from the mean and dividing the result by the spectrum standard deviation. 

 

Figure2.1. Representation of the interpolation between the 9 anchor points 
defined. The baseline was obtained by subtracting the line interpolated between 
the 9 points (red) from the spectra (black), and it was performed individually for 

each spectrum. 
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2.4.5 Univariate determination of crystallinity index  

Crystallinity index was calculated according to the method proposed by Agarwal et 

al., which is based on the ratio between the intensity of the peaks at 380 cm-1 and 

1096 cm-1 deconvoluted from a reference amorphous spectrum (referred to 

henceforth as the “380-method”) (Equation 2.1) (Agarwal et al., 2010). 

Deconvolution is required because cellulose Raman spectra are composed of the 

amorphous and crystalline spectra superimposed (Agarwal et al., 2010). 

Deconvolution in this study refers to the extraction of the amorphous and the 

crystalline spectral contributions from the actual measured spectrum. The ratio of 

these peaks was compared to other peaks ratios and showed efficiency and great 

sensitivity to cellulose crystallinity changes (Agarwal et al., 2018, 2010). 

%𝐶𝐼 =

𝐼 − 𝐼 _
𝐼 − 𝐼 _

− 0.0286

0.0065
 

(Equation 2.1) 

𝐼  and 𝐼 _  are the intensities at the Raman shift 380 cm-1 of the commercial 

batch as received and its corresponding amorphous sample, respectively. 𝐼  and 

𝐼 _  are the intensities at the Raman shift 1096 cm-1 of the commercial batch as 

received and its amorphous corresponding sample, respectively.  

The spectra of corresponding amorphous samples were obtained by ball milling a 

sample of the batch (section 2.4.1), pressing the powder into a pellet (section 2.4.2), 

and acquiring spectra of the pellet. Following the method previously reported by 

Agarwal et al (Agarwal et al., 2010), each Raman spectrum was pre-processed and 

peak normalized by equalizing the intensity values at Raman shifts above 857 cm-1 to 

the intensity at 857 cm-1 (Agarwal et al., 2010). The resulting spectrum was 
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considered to represent the amorphous contribution to the Raman spectra of the 

sample as received (Agarwal et al., 2010). Thus, in Equation 2.1, 𝐼 _  and 𝐼 _  

are equal to the intensity of the peaks at 380 cm-1 and 857 cm-1 in the spectrum of 

the milled sample, respectively. 

2.4.6 Correction of 380-method due to Raman instrument-dependence  

The 380-method (Equation 2.1) was developed using the Raman instrument RFS-100 

(Bruker Inc.) (Agarwal et al., 2010). Crystallinity values determined by the 380-

method show instrument-dependence and therefore a set of calibration samples 

have to be prepared and analysed on each instrument employed (Foster et al., 2018). 

A calibration study was therefore performed to correct this methodology for the 

Raman instruments used in the current study i.e., the MR and the PhAT probes 

connected to a RamanRxn™ and a RamanRxn2PhATTM), respectively. A single MCC 

batch was randomly chosen to create the calibration set. The crystallinity of this 

batch, referred to as “control”, was determined by PXRD (Equation 2.2) in triplicate.  

%𝐶𝐼 =  
(𝐼 . − 𝐼 . )

𝐼 .
 (Equation 2.2) 

The %𝐶𝐼  is the PXRD crystallinity index, I200 is the intensity at 22.6o 2 theta 

representing the crystalline peak, and I18.7 is the baseline intensity at 18.7o 2 theta 

corresponding to the amorphous scatter (Segal et al., 1959). PXRD diffractograms 

were measured in transmission mode using a D8 ADVANCE (Bruker AXS Inc., GmbH, 

Germany) using Cu Kα (λ = 1.5406 Å) radiation. The samples were analysed over the 

2 theta range 3.5 to 45 in steps of 0.5 ° at 1.7 sec per step. A representative 

diffractogram is shown in Figure 2.2. 
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Figure 2.2. Representative PXRD diffractogram of microcrystalline cellulose. 

Binary mixtures of control (MCC as received, prior to ball milling) and amorphous 

(MCC ball milled) were prepared at a total mass of 0.50 ± 0.03 g. The blends analysed 

contained 83%, 72%, 58%, 44%, 33%, and 22% w/w of control sample. The 100% 

control and the 100% amorphous samples were also used in the calibration. The 

theoretical crystallinity index (%𝐶𝐼 ) of each blend prepared was calculated from 

%𝐶𝐼 , correcting for amorphous content using Equation 2.3. 

%𝐶𝐼 =
%𝐶𝐼 ⋅ 𝑚

𝑚
 

(Equation 

2.3) 

where 𝑚  is the mass in gram of the control and 𝑚  is the total mass of the 

blend (grams of control plus amorphous MCC). 

The values of the theoretical crystallinity indexes determined by PXRD (Equation 3) 

were plotted against the peak ratio of the Raman wavenumbers 380/1096 cm-1 after 

amorphous contribution subtraction. A linear regression between the theoretical % 

CI and the ratio 380/1096 cm-1 was obtained for each instrument and the linear 

0

10

20

30

40

50

60

70

2 6 10 14 18 22 26 30 34 38 42 46

In
te

ns
ity

2θ



 Chapter -2 
 

Ana Luiza Pinto Queiroz Page 83 

equation obtained was used to determine the % CI by the 380-method for all other 

batches. 

2.4.7 Principal Component Analysis 

Principal component analysis (PCA) was performed in order to identify differences 

between the Raman spectra obtained for the 30 commercial batches of MCC 

investigated. Unscrambler® X 11.0 software (CAMO software, Norway) was used to 

perform the analysis on the treated (baseline corrected and normalized) Raman 

spectra. The algorithm NIPALS and cross validation were performed with 29 

segments determined so that spectra of the same batch acquired using both probes 

were kept within the same segment to avoid overfitting. A total of 145 spectra were 

used to build the PCA model. These spectra were acquired for the 30 different 

batches using two different probes. 

2.4.8 Partial least squares Regression 

Two partial least squares regression models were built using Unscrambler® X 11.0 

software (CAMO software, Norway) aimed at predicting the crystallinity index from 

Raman spectral analysis of the 30 commercial MCC batches. One model was built 

using the treated (baseline corrected and SNV) Raman spectra acquired using the MR 

probe and another model using the treated spectra acquired using the PhAT probe. 

The intensity of the treated Raman spectra between 1500-250 cm-1 were used as X 

variables. For both models, the Y variable was the % CI determined by the 380-

method. The algorithm Kernel was used. A total of 24 batches were used to calibrate 
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the model and 6 batches were used to validate the model. The number of spectra 

used were 85 and 60 for MR probe and PhAT probe models, respectively. 

2.4.9 Determination moisture monolayer  

A commonly used approach to quantify moisture content in hydrated polymers is % 

loss on drying. However, strongly associated water molecules are not accurately 

quantified by this technique (Agrawal et al., 2004) and ambient humidity influences 

the moisture content quantified by % loss on drying. Therefore, dynamic vapour 

sorption (DVS) was applied to provide a more in-depth analysis of moisture sorption 

behaviour of MCC across a range of relative humidity.  

A Dynamic Vapour Sorption, DVS Intrinsic® (Surface Measurement Systems, London, 

UK) system was used to quantify the equilibrium moisture sorption of all MCC 

samples. Samples were analysed over relative humidity range of 0-90 % RH with a 10 

% relative humidity (RH) stepwise humidity change for both sorption and desorption 

cycles (n=2). The sample weight was maintained between 10-15 mg. All samples were 

analysed at 25 C, with 5 s data collection intervals and a total flow rate of 200 sccm 

(standard cubic centimetre per minute). The actual humidity values were controlled 

to ± 0.5 % of the target RH and the mass change in samples was recorded every 

minute. Initially a drying step was completed at 0% RH for six hours. Equilibrium 

moisture sorption was deemed to have been achieved when the total mass change 

was < 0.002 %/min for greater than 10 min. When the equilibrium condition was met, 

the RH was automatically increased/decreased by 10 % RH until a 

sorption/desorption cycle of 0-90-0 % RH was completed.  
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Moisture monolayer value was determined using the Guggenheim, Anderson and de 

Boer (GAB) sorption isotherm (Blahovec and Yanniotis, 2008; Timmermann, 2003). 

The GAB equation (Equation 2.4) was converted to a second-order polynomial 

equation (Equation 2.5). The monolayer moisture sorption value was calculated by 

fitting the isotherm sorption values obtained for each batch to Equation 2.5 using R 

studio software (Agrawal et al., 2004) 

𝑊 =
𝑊 ⋅ 𝐶 ⋅ 𝐾(𝑃 𝑃⁄ )

[1 − 𝐾(𝑃 𝑃⁄ )][1 − 𝐾(𝑃 𝑃⁄ ) + 𝐶 ⋅ 𝐾(𝑃 𝑃⁄ )
 (Equation 2.4) 

𝑃 𝑃⁄

𝑊
= 𝛼

𝑃

𝑃
+ 𝛽(𝑃 𝑃⁄ ) + 𝛾 (Equation 2.5) 

where W is the weight of moisture per weight of dry solid absorbed by the MCC 

sample at a particular relative pressure (P/Po), Wm is the weight of vapour per weight 

of dry solid assumed to be associated with all primary binding sites, and Cg and K are 

constants related to free energy of sorption. The constants α, β and γ values in 

Equation 2.5 are determined from quadratic regression analysis and used to calculate 

Wm using the following equation (Equations 2.6). 

𝑊 =
1

𝛽 − 4𝛼𝛾
 (Equation 2.6) 

2.4.10 Correlation of DVS moisture monolayer and crystallinity index 

A Pearson correlation (Benesty et al., 2009) between moisture monolayer and % CI 

for each batch was performed in order to investigate if the layer of water tightly 

bound to the MCC structure (moisture monolayer obtained by fitting the GAB 

equation to DVS isotherms) can be predicted from the crystallinity index determined 
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using the 380 method. Two linear equations were built; one fitting to the moisture 

monolayer and % CI determined using the MR probe, and a second fitting to the 

moisture monolayer and the %CI determined using the PhAT probe. PLS models were 

also investigated. The intensity of the treated Raman spectra between 1500-250 cm-

1 were used as X variables. For both models, the Y variable was the moisture 

monolayer determined by GAB equation applied to the DVS isotherms. The algorithm 

Kernel was used. A total of 24 batches were used to calibrate the model and 6 

batches were used to validate the model. The number of spectra used were 85 and 

60 for MR probe and PhAT probe, respectively. 

2.4.11 Shiny web application 

A web application, MCCrystal, was built using ‘shiny’ (Chang et al., 2019) version 1.4.0 

in R (R Core Team, 2019) using the development environment RStudio (RStudio 

Team, 2019). This application was built to facilitate the dissemination of the models 

developed in this study. The web application framework for R was developed in tab 

set panels using the package ‘shinydashboard’ (Chang and Borges Ribeiro, 2018) 

version 0.7.1. The package ‘RcppArmadillo’ (Eddelbuettel and Sanderson, 2014) 

version 0.9.800.3.0 was used to manipulate matrices, graphics were built using the 

package ‘ggplot2’ (Wickham, 2016) version 3.2.1, the spectra were normalized using 

the package ‘prospectr’ (Stevens and Ramirez-Lopez, 2013) version 0.1.3, and 

manipulated using the package ‘spectrolab’ (Meireles et al., 2018) version 0.0.8. 

Spectra baseline correction i.e., linear interpolation between predetermined points, 

was performed using the package ‘spftir’ (Pozo Valenzuela and Rodriguez-

Llamazares, 2016) version 0.1.0. Principal component analysis was performed using 
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‘pracma’ (Borchers, 2019) version 2.2.9. Partial least squares regression was 

performed using the package ‘PLS’ version 2.7.2 (Mevik and Wehrens, 2015). The 

package ‘basicTrendline’ (Mei and Yu, 2018) version 2.0.3 was used to plot the 

trendline between %CI determined by the univariate model (380-model) and the PLS 

model. MCCrystal can be accessed at https://sspc.ie/mccrystal/. 

2.5 Results 

2.5.1 Raman spectra fluorescence background removal 

Prior to designing models to predict MCC %CI from Raman spectra, it was necessary 

to remove spectral interference. Fluorescence background, baseline shifts and 

intensity differences were observed (Figure 2.3). The baseline subtraction method 

developed eliminated the fluorescence background and SNV eliminated intensity 

differences observed between the spectra. All spectra used in this study were 

baselined and SNV normalized accordingly. 
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A 

B 

C 

Figure 2.3. Spectra acquired by the PhAT probe (A) raw spectra exhibiting the 
fluorescence background and intensity shifts, (B) spectra following baseline 
transformation, and (C) spectra following SNV and baseline transformation. 
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2.5.2 Principal component analysis 

A PCA model was used to explore spectral differences due to the probe set-up used. 

For this purpose, the model was built from treated spectra (baseline and SNV) 

acquired using both MR and PhAT probes. The scores plot (Figure 2.4a) shows a clear 

separation of the samples into two groups based on the spectra acquired using either 

the MR probe or the PhAT probe. The Raman shifts that lie within the upper and 

lower bounds of the correlation loadings plot are the regions where the variability 

was modelled by that principal component (Figure 2.4b and 2.4c). Variability in the 

regions containing the peaks at 380 and 1096 cm-1 are captured by the PCA model. 

Spectral comparisons showed that the peak intensity at 1096 cm-1 is higher and at 

380 cm-1 is lower for the PhAT probe in comparison to the MR probe. Figure 2.5 

provides representative spectra for a single batch highlighting that differences in 

intensities were observed for spectra acquired using the different probes, and these 

differences could not be removed by baseline correction or SNV. This is a strong 

indication that the %CI determined using spectral data from a MR probe cannot be 

compared to the crystallinity index determined using spectra data from a PhAT 

probe.   
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A 

 

B 

 

C 

 

Figure 2.4. (A) PCA scores plot, (B) correlation loadings of the first principal 
component and (C) correlation loadings of the second principal component of the 
model built using spectra of 30 MCC batches acquired with MR (n= 85 spectra) and 

PhAT (n= 60 spectra) probes. 
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Figure 2.5. Spectra acquired using MR and PhAT probes after baseline correction 
and SNV normalization for a sample of single batch. 

2.5.3 Development of specific 380-method equations for MR and PhAT Raman 

instruments 

Linear regression plots of theoretical crystallinity index determined from PXRD (%CIT) 

and the ratio between the Raman intensities at 380 and 1096 cm-1 showed 

correlation for spectra acquired using both the MR and PhAT probes. Pearson’s r 

values of 0.960 and 0.986 for the MR probe and PhAT probe, respectively were 

obtained (Figure 2.6). Differences in the linear relationship can be explained by the 

capacity of each probe to capture the intrinsic crystallinity heterogeneity of MCC 

samples. A PhAT probe averages a larger area (12.57 mm2) in comparison to a MR 

probe (7.85 x 10-3 mm2). Thus, the PhAT probe was able to capture a more 

representative measurement of the sample. This may explain why the PhAT probe 

showed a marginally better correlation to the theoretical crystallinity index, %CIT. 

Replicate spectra acquired by the PhAT probe also provided more consistent peak 

ratio values for the same sample. Figure 2.6 contains replicates (n=3 for MR probe 
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and n=2 for PhAT probe) and it was clear that the replicate PhAT probe measurement 

deviated less than the MR probe measurements.  

 

Figure 2.6. Correlation between the ratio of the Raman intensities at 380 and 1096 
cm-1, and the theoretical crystallinity index determined using PXRD. Pre-treated 

spectra obtained for blends using MR and PhAT probes were used. 

Based on the correlations shown in Figure 2.6, specific 380-method equations were 

proposed for MR and PhAT instrumental systems, Equations 2.7 and 2.8, respectively. 

%𝐶𝐼 =

𝐼 − 𝐼
𝐼 − 𝐼 _

+  0.0124

0.0050
 

(Equation 2.7) 

%𝐶𝐼 =

𝐼 − 𝐼 _
𝐼 − 𝐼 _

+ 0.0128

0.0043
 

(Equation 2.8) 

2.5.4 Determination of MCC crystallinity indices for commercial batches 

The %CI for a set of 30 commercial batches was determined using the corrected 380-

method (Equations 2.7 and 2.8) applied to spectral data acquired using the MR and 
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PhAT probes, respectively. Amorphous spectra were obtained for each MCC batch 

with both probes. From the processed amorphous spectra from each 

batch obtained using the MR probe (n=70) and PhAT probe 

(n=55), an averaged amorphous spectrum was generated for both probes. The 

averaged intensities and standard deviations for the peaks of interest for the MR 

probe averaged amorphous spectrum were 𝐼 _  (0.627 ± 0.246) and 𝐼 _  (-

0.886 ± 0.042) and for the PhAT probe averaged amorphous spectrum were 

𝐼 _  (1.194 ± 0.277) and 𝐼 _ (-0.907 ± 0.022). These averaged amorphous 

spectra were used in the determination of %CI for each batch. The % CI values 

obtained for all MCC batches investigated are shown in Figure 2.7.  

 

 

Figure 2.7. Crystallinity index (%CI) determined for commercial batches using 
spectra obtained for pellets and different probes (MR probe n = 3, and PhAT probe 

n = 2, using Equation 2.7 and 2.8, respectively). 
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2.5.5 Partial least squares regression models 

A PLS model was built as an alternative to the 380-method in order to avoid having 

to undertake milling and spectra deconvolution steps. Agarwal et al. also used a PLS 

model to determine %CI (Agarwal et al., 2010). However, the present study involved 

a greater number of MCC batches and reflects the variability across commercial 

batches, while the study published by Agarwal et al. included several blends of 

commercial batches as received and their reference milled sample, at different mass 

fractions. 

Statistically significant PLS models were determined for both probes (Table 2.1, 

Figures 2.8 and 2.9). The optimal number of factors for both models was considered 

to be three, which represented 97.82 % of variance for the MR probe data and 98.57 

% of the variance for PhAT probe data. The variability captured by the first factor of 

both models included the Raman shifts known to be correlated to MCC crystallinity 

(and used to calculate MCC crystallinity by the 380-method), which was not 

surprising because the independent variable used to build the model was the %CI 

from the 380-method. This can be seen in the correlation loadings where the Raman 

shifts that fall within the upper or lower outer lines are the Raman shifts used by that 

factor to build the model (Figures 2.8 B-D, and 2.9 B-D).  
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Table 2.1. Summary statistics of the Partial least squares Regression models. N is the 
Number of factors, RMSEC is the Root Mean Square Error of Calibration, RMSEP is 
the Root Mean Square Error of Prediction. 

Statistical descriptors MR probe PhAT probe 

Number of calibration samples 67 48 

Number of validation samples 18 12 

Optimal number of factors 3 3 

N 1 2 3 1 2 3 

RMSEC 1.928 1.101 
0.92

2 
1.683 

1.45
9 

0.89
6 

RMSEP 1.594 1.093 
1.05

2 
1.779 

1.91
7 

1.31
9 

Explained variance (Calibration) 
(%) 

90.47 96.89 
97.8

2 
94.97 

96.2
2 

98.5
7 

Explained variance (validation) (%) 91.66 96.08 
96.3

7 
95.02 

64.2
2 

97.2
6 

Bias 
-

0.760 
-

0.277 
0.39

6 
-

0.271 
0.13

8 
0.43

1 
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A  

  

B  

  

C  

  

D  

  
Figure 2.8. (A) Values of crystallinity index (%CI) predicted by the Partial least 

squares Regression model vs Reference values for the MR probe and considering 
three factors, and (B, C, and D) correlation loadings of factors 1, 2, and 3, 

respectively, obtained from the model designed using baselined and normalized 
spectra. The further the correlation loading is from the zero, the stronger the 

Raman shift contributed to explain the variability encountered by the factor. In blue 
are the calibration and in red the validation sets. 
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A  

  

B  

  

C  

  

D  

  
Figure 2.9. (A) Values of crystallinity index (%CI) predicted by the Partial least 

squares Regression model vs Reference values for the PhAT probe and considering 
three factors, and (B, C, and D) correlation loadings of factors 1, 2, and 3, 

respectively, obtained from the model designed using baselined and normalized 
spectra. The further the correlation loading is from the zero, the stronger the 

Raman shift contributed to explain the variability encountered by the factor. In blue 
are the calibration and in red the validation sets. 

The scores plot of the PLS models was used to investigate spectral differences 

between batches of different average particle size and grades. However, the model 

was not able to separate the batches by average particle size nor grade i.e., the PLS 

model was not able to identify patterns in the Raman spectra to cluster the batches 

in groups of the same average particle size nor groups of the same grade (Figure 

2.10).  
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A B 

C D 

E F 

Figure 2.10. Scores plots of factors one and two highlighted by (A and B) average 
particle size for the calibration set, (C and D) manufacturer for the validation set, (E 

and F) manufacturer for the calibration set for the MR and PhAT probes, 
respectively. 
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2.5.6 Relationship between %CI and monolayer moisture content 

Finally, a correlation between MCC sample crystallinity index and moisture 

monolayer values of all 30 batches was investigated. The set of samples used in this 

study was not sufficient to build a predictive linear regression model. Pearson’s 

correlation coefficients of -0.459 and -0.476 were obtained using the PhAT probe and 

MR probe, respectively (Figure 2.11). PLS models (Raman spectra as independent 

variable, moisture monolayer as dependent  variable) and correlation models 

(between %CI and the moisture absorbed at different relative humidity, determined 

using DVS) were also investigated, and they showed similarly poor correlations 

between %CI and moisture sorption. Among the batches analysed, two batches 

showed greater %CI and lower moisture monolayer in comparison to the other 

batches (~1.5 and 1.7 mM/g). These samples contributed to an increase in the 

correlation coefficient value. 

 

Figure 2.11. Correlation between crystallinity index (%CI) determined from Raman 
spectra acquired using a PhAT and a MR probe.  
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2.6 Discussion 

It is challenging to determine the properties of microcrystalline cellulose compared 

to other materials. MCC shows great variability due to its natural source i.e., wood 

pulp, and the different processes from which the commercial grades are produced, 

especially different drying processes. As a result, there is a lack of standards and 

references and most techniques give relative results (Foster et al., 2018). In this study 

the application of two models to determine the crystallinity index of MCC commercial 

batches was investigated. Both models showed predictive power.  

The crystallinity of MCC was firstly determined using the 380-method proposed by 

Agarwal et al. (Agarwal et al., 2010). A calibration curve was developed and used to 

correct the model for each instrument employed in this study (MR and PhAT probes, 

Kaiser Optical Systems Inc., USA). This modification was previously performed for a 

different instrument (Foster et al., 2018). Reference amorphous spectra for each 

batch were produced and an averaged spectrum (n=30 batches) was determined for 

each probe. As a result, the production of a reference amorphous material and 

spectral subtraction for new batches are no longer required for future analysis. The 

time for analysis was shortened and milling and PXRD analysis steps (required to 

confirm that the sample is indeed amorphous) can be eliminated from the analytical 

procedure.  

Crystallinity of MCC was also determined by partial least squares regression models. 

The crystallinity values used in this regression analysis were those determined using 

the established 380-method. The ability of the models to predict crystallinity from 

Raman spectra were 97.82 % for MR and 98.57 % for PhAT probes and the predicted 
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values for the test set showed a small prediction error (RSMEP equal to 1.0522 and 

1.3189 for MR and PhAT probe, respectively). The correlation loadings showed that 

the main wavenumbers used to build the model were 380, 437, 458, 521, 1,096, 

1,120, 1,330, 1,340, 1,380, and 1,475 cm-1. Those wavenumbers were correlated to 

a change in cellulose crystallinity due to contributions from OH rocking and bending, 

CH and CH2 bending, CO and COC stretching, CH wagging, and anhydroglucose ring 

stretching, twisting, and torsion modes (Agarwal et al., 2010). The models built may 

be used to rapidly determine crystallinity for future MCC batches without the 

necessity to produce an amorphous reference spectrum. A PLS model had been 

previously used to predict crystallinity (Agarwal, 2019; Agarwal et al., 2010), 

however, the model was built with only ten samples (a control, 4 mixtures, 3 samples 

milled during different times and 2 commercial MCC grades). The present study 

investigated thirty MCC commercial batches including ones with different particle 

sizes (from 50 to 180 µm average particle size) and MCC grades. Thus, the present 

study confirmed the finding of the previous study reported by Agarwal et al. and 

enriched the validation of the models by investigating the variability encountered in 

commercial grades of MCC.  

In this study Raman probes that can scan large surface areas and give an averaged 

spectrum in a short time were used (1 min for MR probe and 15 sec for PhAT probe). 

Previous studies used Raman spectra of microscopic surface areas (Agarwal, 2019; 

Agarwal et al., 2010; Foster et al., 2018). The PhAT probe used in the present study 

acquires spectra from an area of 12.57 mm2 and the MR probe from an area of 7.85 

x 10-3 mm2. A PhAT probe also has a depth of analysis of approximately 2 mm. Thus, 
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less replicates are necessary to achieve a representative sample when a PhAT probe 

is used. As a result, Raman spectrum containing more averaged information of the 

overall semi-crystalline structure of MCC samples is obtained. Comparing the PhAT 

and the MR probes, the larger coverage area of the PhAT probe resulted in better fits 

for both the 380-method and PLS models. This was quantified by Pearson’s 

coefficients obtained from the calibration of the 380-method (Figure 6, Pearson’s-r 

of 0.986 and 0.960 for PhAT and MR probes, respectively) and the PLS model 

(correlation of 0.986 and 0.978 for PhAT and MR probes, respectively). LaPlant and 

Zhang also observed that in comparison to the MR probe, the PhAT probe gave more 

consistent and representative results in a study of polymorphic content in a drug 

product (LaPlant and Zhang, 2005). In the current study, variability observed 

between duplicate values determined using the PhAT probe was greater than when 

using the MR probe, for a number of the commercial samples. A possible explanation 

may be due to spectra being acquired on the same surface of the pellet (top surface) 

for the MR probe, while for the PhAT probe one spectrum was acquired on the top 

surface and another was acquired on the bottom surface of the pellet. The difference 

in %CI due to the differences in the positions from which the Raman spectra were 

may be due to the characteristic of uniaxial compression, which does not hold a 

homogeneous stress distribution in the interior of the pellet (Takeuchi et al., 2004).  

It is important to also emphasis the limitations of quantifying the %CI of cellulose 

materials, including MCC, using the Raman spectroscopy. Key 

limitations include the lack of 100% crystalline or amorphous 

cellulose standards or references and the need to adjust model parameters for each 
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instrumental set-up by calibration against diffraction 

data. Therefore, the %CI determined by Raman analysis is dependent on 

the diffraction analysis methodology. In this study, a simplistic approach was 

undertaken which mimicked that of Agarwal et al. 2010. The %CI of calibration set 

samples were determined using the Segal peak height method and theoretical 

%CI values were determined based on the %CI of a single MCC batch. It is 

proposed that an improvement to this approach should include a wider 

calibration set of samples in the calibration study to improve model robustness. It is 

also important to extend the diffraction methodologies employed to measure %CI of 

the calibration sample set. Advancement from the Segal peak height method during 

calibration, towards more advanced methods such as decomposition or 

deconvolution of peak area during calibration (Lanson 1997; Park et al. 2010; 

Ahvenainen et al. 2016, Yao et  al. 2020), and Rietveld refinement based methods 

(Madsen et al. 2011; Ling et al. 2019) could further improve the models proposed in 

this study. The respective strengths and limitations of more commonly diffraction 

method discussed by French 2020, as are standards for conducting crystallographic 

work to study cellulose crystallinity (French 2020).   

It was not possible to establish a relationship between MCC moisture monolayer and 

calculated crystallinity. Moisture monolayer was determined from DVS moisture 

sorption isotherms and used to build a regression model with crystallinity 

determined by the univariate 380-method. Moisture monolayer was also used as a 

response variable in a PLS model in order to investigate if moisture monolayer could 

be predicted from Raman spectra. Neither of the models, univariate or multivariate, 
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showed a relationship between the moisture monolayer and crystallinity (or Raman 

wavenumbers related to changes in cellulose crystallinity). The relationship between 

moisture sorption and crystallinity observed by other authors (Awa et al., 2015; 

Mihranyan et al., 2004) was not conclusively confirmed for the set of commercial 

grades analysed in this study (correlation coefficients of -0.459 and -0.476 were 

obtained using moisture monolayer and the %CI determined using Raman spectra 

collected using a PhAT probe and MR probe, respectively). This may be due to the 

range of crystallinity values within the set of samples studied which did not result in 

a large variability in the moisture monolayer values measured. The finding of this 

study indicates that moisture sorption of MCC commercial grades may depend not 

only on crystallinity, but also on other structural factors such as surface area and pore 

volume, as suggested by Mihranyan et al. (Mihranyan et al., 2004). 

A R Shiny web application was designed (i) to perform baseline correction and SNV 

normalization, (ii) to predict MCC crystallinity using the 380-method for the MR and 

the PhAT probes, (iii) to predict MCC crystallinity from PLS models, and (iv) to perform 

PCA from Raman spectra within the range of 1500 to 250 cm-1. This application was 

developed based on the knowledge generated in this study. Thus, baseline 

correction, SVN normalization, and the PCA model can be applied to Raman spectra 

of microcrystalline cellulose obtained using different Raman instruments. However, 

the prediction of the crystallinity index can only be undertaken if a MR or a PhAT 

probe was used to acquire the Raman spectra. Even if those Raman instruments are 

used, results should be evaluated with caution since different units of a same 

instrument design might require instrument-specific correction of the model. 



 Chapter -2 
 

Ana Luiza Pinto Queiroz Page 105 

2.7 Conclusions 

Crystallinity index was determined for 30 commercial batches of microcrystalline 

cellulose using two different models i.e., 380-method and PLS regression. Both 

models showed adequate predictive power. However, the development of the PLS 

model takes substantially less time for analysis because it eliminates the need for 

milling and deconvolution of the spectra of the milled sample into amorphous and 

crystalline contributions before the actual %CI determination. For these models a 

general reference amorphous Raman spectrum was proposed for each instrument. 

Spectral comparison and principal component analysis showed that values of 

crystallinity index were relative to the instrument used to acquire the Raman spectra. 

Also, larger laser spot sizes give more reproducible and representative information 

on the overall crystallinity of the sample. The crystallinity index values obtained with 

either model depend on the XRD methodology and calibration sample set employed 

during calibration. The methodology presented can be further advanced by 

employing a broader sample set and more advanced XRD methodologies to measure 

microcrystalline cellulose crystallinity during calibration of the model. A web 

application, MCCrystal, was developed which facilitates the use of the predictive 

models developed in this study to measure MCC crystallinity. It was not possible to 

establish a regression model to predict moisture monolayer from crystalline indices 

determined from the Raman spectra, indicating that in addition to crystallinity, other 

structural properties such as pore volume and surface area need to be considered in 

predicting MCC moisture monolayer.  
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3.1 Abstract 

Multivariate Curve Resolution (MCR) was used to determine the phase purity of 

pharmaceutical co-crystals from mid infrared spectra. An in-silico coformer screening 

was used to choose one of ten potential coformers. This analysis used quantum 

chemistry simulation to predict which coformers are thermodynamically inclined to 

form co-crystals with the model drug, hydrochlorothiazide. The coformer chosen was 

nicotinamide. An experimental solvent screening by ultrasound assisted slurry co-

crystallization was performed to evaluate the capacity of the MCR method to 

determine phase purity. Afterwards, slurry and slow evaporation co-crystallizations 

were performed at 10, 25, and 40 °C using 7 solvent systems, and two levels of 

agitation for the evaporation co-crystallization (on and off). MIR analysis of the 

products of these co-crystallisations were used to develop an MCR model to 

determine co-crystal phase purity. Loadings related to component 1 of the MCR 

model correlated with the MIR spectra of a reference co-crystal. MIR, PXRD and DSC 

were used to assess the reference co-crystal form and phase purity. Experimental 

design (DoE) was used to investigate the effect of solvents, temperature, and 

agitation on the purity of co-crystals produced by slurry and evaporation. Principal 

component analysis of on-line Raman spectra captured the co-crystal formation 

process and allowed to determine slurry co-crystallization endpoint. The MCR phase 

purity model developed from MIR spectra was employed to determine co-crystal 

phase purities of products. DoE revealed that evaporation co-crystallization with 

agitating at 65 rpm formed co-crystals with greater phase purity. The optimal 

temperature varied with the solvent used.  
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3.2 Introduction 

Co-crystallization is a crystal engineering approach that has been used to enhance 

mechanical and physicochemical properties and chemical stability of drugs 

(Rodrigues et al., 2018a; Sun, 2013). According to the European Medicines Agency 

(EMA), pharmaceutical co-crystals are “homogenous (single phase) crystalline 

structures made up of two or more components in a definite stoichiometric ratio 

where the arrangement in the crystal lattice is not based on ionic bonds (as with 

salts)”. The components of a co-crystal may, nevertheless, be neutral as well as 

ionized (European Medicines Agency, 2015). Also, co-crystals differ from solvates 

because all the molecules in co-crystals are solid at ambient temperature, while in 

the solvates at least one component is liquid at ambient temperature. There are also 

co-crystals solvates in which the solvent is trapped in the crystal lattice during co-

crystallization (Sarraguça et al., 2015). During crystal engineering development, 

modelling tools such as quantum chemistry simulation have been used to predict the 

propensity of co-crystal formation, preferably to those other crystal structures 

(Loschen and Klamt, 2015). The crystal structure of the predicted product is then 

confirmed experimentally using analytical techniques such as X-ray powder 

diffraction (XRD) and vibrational spectroscopy (Datta and Grant, 2004). 

The nature of the interaction and the molecular structure of API and coformer are 

different from that observed for the starting material (Ross et al., 2016). Therefore, 

the most relevant advantage of co-crystallization to the pharmaceutical industry is 

that critical material attributes such as flowability, compressibility, compactability, 

and solubility can be designed to improve drug processability and bioavailability. 



 Chapter -3 
 

Ana Luiza Pinto Queiroz Page 109 

Also, co-crystallization processes can be designed to be scalable and can be 

performed in continuous manufacturing plants within a quality by design framework 

(Rodrigues et al., 2018a). Rodrigues et al. described and compared several co-

crystallization methods reported to date, such as isothermal slurry, slow evaporation, 

spray drying, neat grinding, freeze drying, and hot melt extrusion. Solvent-based 

methods are the most common co-crystallization approaches deployed at laboratory 

scale and they are also reportedly used in industrial scale in continuous 

manufacturing (Zhao et al., 2014). This can be explained by the fact that solvent-

based procedures are relatively simple, as are the apparatus required to perform 

them.  

Solid-state analysis must be employed in order to be able to determine co-crystal 

phase purity,  since most solvents, including water can destroy the non-covalent 

bonds in co-crystals (Chi et al., 2013). Instead, a variety of combined solid-state 

techniques are used, with particular emphasis on crystallographic and vibrational 

spectroscopy methods (Emami et al., 2018). Vibrational spectroscopic techniques are 

the most commonly used for in-line and on-line process monitoring because they are 

rapid, non-destructive and the spectroscopic techniques can be built into the 

manufacturing process by means of immersion probes, flow-through cells, and 

quartz windows (Pomerantsev and Rodionova, 2012). Spectroscopic techniques can 

assess differences between crystalline forms, crystalline form transformations, 

differences between amorphous and crystalline forms and between anhydrous and 

hydrate forms (Erxleben, 2016). Thus, vibrational spectroscopic techniques are of 

great interest when it comes to the development of process analytical technology for 

co-crystal phase purity control. In this paper, phase purity relates to the lack of solid 
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phases other than a specific co-crystal e.g., co-crystal (pseudo)polymorphs or starting 

materials and/or their (pseudo)polymorphs. The spectroscopic techniques most used 

for industrial process control and product characterization applications are near-

infrared spectroscopy (NIR), Raman spectroscopy and mid-infrared spectroscopy 

(MIR) (Pomerantsev and Rodionova, 2012). The application of those techniques to 

co-crystal production has also been investigated. Table 3.1 shows studies in which 

vibrational spectroscopic techniques were applied to monitor and control co-

crystallization processes (in-line and online) and to characterize co-crystals (offline). 
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Table 3.1 Application of vibrational spectroscopic techniques to co-crystallization 
process monitoring and co-crystal characterization. NIR = near-infrared spectroscopy 
and MIR = mid-infrared spectroscopy. 

Technique 
References 

On-line In-line Offline 
NIR (Silva et al., 2017) (Kelly et al., 

2012; Markl et 
al., 2013; 

Sarraguça et al., 
2016) 

(Gagniere et al., 2012; Kelly 
et al., 2012; Sarraguça and 

Lopes, 2009; Silva et al., 
2017) 

MIR (Ishihara et al., 
2019) 

(Gagniere et al., 
2012) 

(Alshahateet, 2010; 
Mittapalli et al., 2019; Zhao 

et al., 2014) 
Raman (Inoue et al., 

2017; Otaki et al., 
2018; Sheng et al., 

2016; Tanaka et 
al., 2019) 

(Kojima et al., 
2010; Lee et al., 

2014; Soares and 
Carneiro, 2017, 

2013) 

(Aher et al., 2010; Markl et 
al., 2013; Powell et al., 

2015) 

NIR, 
Raman and 
MIR 

- - (Goud et al., 2012; 
Rodrigues et al., 2018b) 

NIR and 
Raman 

- (Islam et al., 
2015) 

(Allesø et al., 2008) 

NIR and 
MIR 

(Sarraguça et al., 
2014) 

- (Sarraguça et al., 2014) 

MIR and 
Raman 

(Powell et al., 
2016) 

(Bian et al., 
2013; Du et al., 

2017) 

(Barmpalexis et al., 2018; 
Basavoju et al., 2006; Childs 
and Hardcastle, 2007; Du et 

al., 2017; Emami et al., 
2018; Powell et al., 2016) 

Multivariate analysis methods such as principal component analysis (Pearson, 1901) 

can be used to investigate co-crystal phase purity from a reference co-crystal 

spectrum (Rodrigues et al., 2018b). However, during the co-crystal development, 

products of sufficient purity may not be available to obtain a high-quality reference 

spectrum. Multivariate Curve Resolution (MCR) (Lawton and Sylvestre, 1971; 

Martens, 1979) is a group of algorithms developed to implement constraints on 
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loadings and scores obtained from a matrix decomposition. That means that loadings 

have an exact physical interpretation i.e., spectra of different components of a 

mixture. The scores also assume a physical meaning, the concentration of the 

component in the mixture. The loadings also explain the variance in the data (De Juan 

and Tauler, 2006; Mendieta et al., 1998). Thus, MCR can potentially be used to 

extract the spectrum corresponding to co-crystal present in a mixture.  

De Juan et al. listed and compared the main MCR algorithms available and discussed 

the benefits of the algorithm Multivariate Curve Resolution-Alternating Least 

Squares (MCR-ALS) (De Juan et al., 2014). MCR-ALS is an iterative algorithm that 

performs alternating optimization by applying constraints in each iterative cycle. The 

constraints applied to MCR model for optimization can be divided into (i) 

mathematical conditions, (ii) natural constraints, and (iii) process constraints. De 

Juan et al. provides a detailed explanation of these constraints (De Juan et al., 2014). 

There is a small number of publications in which MCR and MCR-ALS were applied to 

co-crystallization. Co-crystal concentration estimation (Mazivila et al., 2019; Mazivila 

and Olivieri, 2018), co-crystal formation (Inoue et al., 2017; Ishihara et al., 2019; 

Soares and Carneiro, 2013), and polymorphism (Lukin et al., 2017; Soares and 

Carneiro, 2017) were investigated for different co-crystals. However, co-crystal 

phase purity was only investigated applying MCR-ALS to PXRD and Raman spectral 

data. Substances that present weak Raman signals are usually analysed using MIR 

(Abbas et al., 2012). Fluorescence is frequently observed during acquisition of Raman 

scattering. Since fluoresce has much stronger intensity, the Raman signal can be 

masked. This problem can be diminished with increase in the laser wavelength or 

using Coherent Anti-stokes Raman Scattering (CARS) (Alula et al., 2018; Paudel et al., 
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2015; Rodrigues et al., 2020). Alternatively, MIRS can be used. Determination of co-

crystal phase purity applying MCR to MIR spectral data has not been investigated to 

date without a reference spectrum.  

The overall aim of this study was to use MCR-ALS to determine co-crystals phase 

purity using MIR spectra, and apply the methodology developed to establish a co-

crystallization process design space. For that end, hydrochlorothiazide (HTZ) was 

used as model drug. The co-crystallization of this API has been well studied by 

Rodrigues et al. (Rodrigues et al., 2019, 2018b). Hydrochlorothiazide is a poorly 

water-soluble drug substance chemically classified as a thiazide, a diuretic class 

mainly used in the treatment of hypertension and is a good candidate to produce co-

crystals with improved solubility. An in-silico study was performed to determine the 

best coformer for the experimental co-crystallization. Afterwards, the ability of MCR 

to determine co-crystal phase purity model was investigated by applying the model 

to MIR data from a screening slurry co-crystallization. 

3.3 Materials and methods 

3.3.1 In-silico coformer screening 

Quantum chemistry simulations were performed to select one coformer to be 

investigated experimentally, and to generate thermodynamic understanding of the 

co-crystal formation. Propensity for co-crystallisation of an API molecule with 10 

potential coformers was estimated using fluid phase thermodynamic modelling 

accessible in the COSMOthermX computational platform, version 19.0.1 

(COSMOlogic GmbH & Co. KG Imbacher, Germany). COSMOS-RS thermodynamics 

used in this contribution is based on the statistical physics of interacting molecular 
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surface segments. The polar and hydrogen bond interaction energies are quantified 

based on the surface screening charge densities, which result from a quantum 

chemical continuum solvation calculation (Abramov et al., 2012). 

COSMO-RS (COnductor like Screening MOdel for Real Solvents) was employed to 

predict propensity for co-crystal formation assuming that more negative the excess 

enthalpy (which reflects stronger intermolecular interactions between the active 

pharmaceutical ingredient (API) and the coformer), the higher the probability of 

forming a co-crystal. The model considers a fluid phase only, thus a long-range order 

and specific packing within a crystal phase is not considered here (Sinnecker et al., 

2006). 

The API molecule investigated was hydrochlorothiazide and the coformers were 

mannitol, caffeine, para-aminobenzoic acid, malic acid, arginine, tromethamine, 

adenine, citric acid, tryptophan, and nicotinamide. To prepare input structures for 

the coformer screening, molecular geometry of the API and all the considered 

coformers were optimized using quantum chemistry TURBOMOLE software 

(COSMOlogic GmbH & Co. KG Imbacher, Germany). All the compounds were 

modelled as neutral molecules, so no extra charge or charge separation was 

considered. For that, the Density Functional Theory level BP-TZVPD-FINE was used. 

This level uses a Becke–Perdew (BP) functional (Becke, 1988) and a triple-z valence 

polarized basis set (TZVP) (Schäfer et al., 1994) with a fine grid marching tetrahedron 

cavity (FINE) and delivers the best quality results. However, it demands the most 

computational power (Paduszyński, 2017). The optimised geometries, along with the 

charge density maps of the API and the coformer molecules were then used to 
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predict propensity for co-crystal formation with the proposed coformers in the ratios 

1:1 and 1:2. 

3.3.2 Materials  

Hydrochlorothiazide (HTZ) ≥ 99.0% and nicotinamide (NCT) ≥ 99.5% were obtained 

from Sigma-Aldrich, USA. The analytical grades of the following solvents were used 

in this study: chloroform (CF) (Sigma-Aldrich, Portugal), methanol (MeOH) and 

acetone (Ace) (VWR Chemicals, France), acetonitrile (ACN) (Fisher Scientific, UK), 2-

propanol (iPro) and and Ethyl acetate (EtOAc) (Sigma-Aldrich, USA), and ethanol 

(EtOH) (Chem-Lab, Belgium). 

3.3.3 Methods 

3.3.3.1 Experimental solvent screening 

Solvent and ratio screenings was performed to produce co-crystals with varying 

phase purities. This analysis produced data for the development of models to predict 

phase purity and optimal ratio of co-crystal formation. The API:coformer ratios 

investigated were 1:1 and 1:2. Co-crystallization was performed by ultrasound 

assisted slurry co-crystallization in a well plate. Five different solvents were used in 

the screening study: methanol, ethanol, acetone, 2-propanol, and acetonitrile.  

3.3.3.2 Reference co-crystal preparation  

One gram of hydrochlorothiazide and the equivalent amount of coformer 

(stoichiometric ratio of 1:1) were weighted. The powder blend was then dissolved in 

50 ml of acetone at 40 °C. Solvent was left to evaporate at 25 °C using a water bath 



 Chapter -3 
 

Ana Luiza Pinto Queiroz Page 116 

with a thermostat (microprocessor control MPC, Huber Kältemaschinenbau AG, 

Germany) without agitation. The reference co-crystal was characterized by X-ray 

diffraction and differential scanning calorimetry.  

3.3.3.3 Laboratory-scale co-crystallizations 

3.3.3.3.1.1 Experimental design 

Full factorial design of experiments was performed to determine the design space of 

the laboratory-scale co-crystallization. The specific aim of this analysis was to 

investigate how the co-crystal phase purity was affected by different solvent choices, 

temperature and, for evaporation co-crystallization, the presence or absence of 

agitation. The three factors of the model were agitation (2 levels), solvent (7 levels), 

and temperature (3 levels) (Table 3.2). A reduced fifth model was fit to the designed 

experiments using the phase purity obtained from the MCR model as response. The 

results of the experimental trials were analyzed using Analysis of Variance (ANOVA). 

Design-Expert® DOE Software (Stat-Ease Inc., Minneapolis, USA) was used to perform 

the DoE. 

Table 3.2. Experimental design factors for the determination of the co-crystallizations 
design space. EtOH = ethanol, MeOH = methanol, ACN = acetonitrile CF = chloroform, 
Ace = acetone, DCM = dichloromethane, EtOAc = ethyl acetate. *For evaporation co-
crystallization only 

Factor 1 Factor 2 Factor 3  

Temperature 

(°C) 
Solvent System 

Agitation 

(rpm)* 
 

10; 25; 40 
EtOH; MeOH; ACN; CF:Ace 1:1; DCM:Ace 1:1; 

EtOAc:Ace 4:1; DCM:Ace 1:1 
0; 65  
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3.3.3.3.1.2 Solvent evaporation co-crystallization 

Approximately 300 mg of HTZ with the corresponding stoichiometric ratio in mass of 

coformer was added to 100 mL beakers followed by the addition of 50 mL of solvent. 

The systems were agitated until reaching complete dissolution on a stirrer table 

(RSLAB-5C 10-chanel analogical stirrer table with heating option) at room 

temperature.  

The flasks were then transferred to water bath (Huber K15 Bath with MPC Controller, 

Heating/Cooling recirculating Unit) with temperature controlled with or without 

agitation (see Table 3.2) to allow solvent evaporation. The powder obtained was kept 

on a hot plate at 30 °C for 3 hours prior characterization in order to ensure total 

solvent release. 

3.3.3.3.1.3 Co-crystallization in slurry 

3.3.3.3.1.4 Determination of slurry co-crystallization endpoint 

The endpoint of the co-crystallization in slurry was determined by a PCA model of 

Raman spectra obtained during online monitoring. Approximately 600 mg HTZ and 

the corresponding amount of coformer (ratio 1:1) were added to a glass flask 

followed by the addition of 20 mL of solvent (MeOH, EtOH, Ace, EtOAc, DCM, ACN or 

CF) and a magnetic stirrer. The flask was sealed and placed on a stirrer table (RSLAB-

5C 10-chanel analogical stirrer table with heating option) where the system was kept 

under agitation at 120 rpm for five days. Raman spectroscopy was used to monitor 

the co-crystallization process online. Co-crystallization endpoint was considered the 
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time point at which the scores of the first principal component of PCA achieved 

steady state.   

3.3.3.3.1.5 Slurry co-crystallization 

Approximately 300 mg of HTZ and the corresponding amount of coformer (ratio 1:1) 

were added to a 100 mL Erlenmeyer flask followed by the addition of 10 mL of solvent 

and a magnetic stirrer. The flask was sealed and transferred to the water bath (Huber 

K15 Bath with MPC Controller, Heating/Cooling recirculating Unit) with temperature 

control, and with or without agitation (Table 3.2) for 120 hours. The flasks were then 

unsealed and left in a fume hood at room temperature to allow solvent evaporation. 

The powder obtained was kept on a hot plate at 30 °C for 3 hours prior to 

characterization in order to ensure total solvent release.  

In a slurry co-crystallization, the slurry is normally filtered at the end point in order 

to isolate the solids. However, the goal of these experiments was to produce co-

crystals with different purities in comparison to evaporation co-crystallization. 

Hence, at the end of the slurry co-crystallization, filtration was not performed, and 

solvent was evaporated at room temperature.  

3.3.3.4 Characterization techniques 

3.3.3.4.1.1 Mid infrared spectroscopy  

The co-crystals produced were characterized by mid infrared spectroscopy (MIR). 

Spectra (n=5) were acquired using a Frontier Spectrometer (PerkinElmer, UK) 

equipped with an attenuated total reflectance (ATR) accessory (PerkinElmer, UK). 

The co-crystal samples were placed directly on the crystal of the ATR accessory and 
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each spectrum was the resultant of 32 accumulations at a resolution of 4 cm-1 over 

the range 4000-600 cm-1. The background spectrum was acquired for the crystal 

following cleaning.  

3.3.3.4.1.2 Raman spectroscopy 

For online monitoring a Raman spectrometer equipped with a probe (i-Raman® Plus 

BWS415-785H, BW Tek, USA) was used. Raman spectra were acquired every 20 min, 

with exposure time of 20 seconds, 2 accumulations, and laser power of 785 mW at 

100% over the range 300-1800 cm-1. The probe was placed perpendicular to the flask 

containing the sample. The flask and the end of the probe were inserted in a bespoke 

black box of polylactic acid constructed in-house to avoid external light interference. 

The system was kept under agitation at 120 rpm and at the temperature of 40 °C on 

a stirrer table (RSLAB-5C 10-chanel analogical stirrer table with heating option).  

3.3.3.4.1.3 X-ray diffraction 

X-ray diffraction patterns and DSC thermograms were collected for the isolated pure 

reference co-crystals for phase purity characterization. Powder X-ray analysis was 

performed in reflection mode using a benchtop X-ray diffraction (XRD) instrument 

Rigaku Miniflex II (Rigaku, Tokyo, Japan) equipped with a Cu Kα X-ray source and 

Haskris cooling unit (Grove Village, IL, USA). The samples were front-loaded by gently 

pressing using a glass slide on a zero-background silicon sample holder. The PXRD 

patterns were recorded for a 2θ ranging from 3 to 40 degrees with a step-size of 0.05 

degrees per second. 
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The experimental X-ray diffractogram collected was compared with the simulated 

theoretical diffractogram generated from a Crystallographic Information File (CIF) of 

hydrochlorothiazide-nicotinamide co-crystal (CCDC ref. code PIRXUL) using Mercury 

software v. 3.10.3. 

3.3.3.4.1.4 Differential scanning calorimetry 

A TA Instruments DSC Q1000 differential scanning calorimeter and thermal analysis 

controller (TA Instruments, New Castle, DE, USA) was used to determine the enthalpy 

and the melting point of the reference co-crystal. Approximately 2–3 mg of co-crystal 

was heated at a heating rate of 10 °C/min from 25 to 275 °C. Nitrogen was used to 

purge the system at 50 ml/min. 

3.3.3.5 Data Analysis 

3.3.3.5.1.1 Principal Component analysis 

PCA was performed as an exploratory technique in the screening experiments and to 

analyze the Raman spectra from the online monitoring. The raw spectra were pre-

treated by mean centering and Standard Normal Variate (SNV). PCA was performed 

using the algorithm Nonlinear Iterative Partial least squares (NIPALS). Internal cross-

validation was performed by categorical variable (solvent type), so that every 

segment had one solvent missing. The optimal number of components was 

determined by the minimal number of components that resulted in a minimal 

residual variance. 

PCA was performed using the software Matlab 8.3 (MathWorks, Natick, USA) and the 

PLS Toolbox version 7.5 (Eigenvector research Inc., Wenatchee, USA). 
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3.3.3.5.1.2 Multivariate Curve Resolution 

MCR decomposes the data matrix (X) i.e., the table containing one MIR spectra per 

line, into a matrix of the variation among the spectra, named concentration profiles 

(C), a transpose variance matrix associated with the variation among the variables, 

named spectra profiles (ST), and a matrix of residuals not explained by the model (E) 

(Equation 1). As a result, it is possible to extract the spectra fingerprint of each single 

component of a mixture. 

X = C ∙ S + E (Equation 3.1) 

MCR-ALS applies constraints to optimize MCR results. PCA was used to determine 

the number of components and the spectra were pre-processed by Standard Normal 

Variate (SNV). A constraint of non-negativity was applied to the concentration 

profiles using fasternnls algorithm(Lawson and Hanson, 1995). No spectral 

estimation was used.  

MCR loadings obtained were compared to the spectra of a reference co-crystal and 

to spectra of the reference starting materials. The aim of this analysis was to identify 

which components loading represented the co-crystal information and which 

components loading represented unreacted individual components information. In 

other words, it was necessary to investigate if the model expressed the co-crystal 

information as loadings of component 1 or of component 2. For that, Pearson 

correlation analysis (Ntschi and Bolboac, 2006) was performed between the 

spectrum obtained from the MCR i.e., MCR loadings, and the average spectrum of a 

reference co-crystal (n=5), using Origin data analysis and graphing software 
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(OriginLab, USA). Spectral analysis was also performed to support the statistical 

analysis. 

Equation 3.2 was used to calculate percentage phase purity (% phase purity). 

MCRconc,x is concentration (obtained by MCR) of the component that holds the co-

crystal information, and MCR , + MCR ,  is the sum of the 

concentrations (obtained by MCR) of the 2 first components. The component that 

holds the co-crystal information was the component which the loadings had the 

greatest Pearson correlation coefficient with the spectra of a reference co-crystal. 

% phase purity =  
100 ∙  MCR ,  

MCR , + MCR ,
 (Equation 3.2) 

Values of phase purity obtained with ratios 1:1 and 1:2 were compared to determine 

which ratio produces the co-crystal with higher purity. The optimum ratio for co-

crystal formation should show greater phase purity. Another indication for the 

optimum ratio for phase purity is the component explained variance. The optimum 

ratio should show the greatest percentage variance explained by the component that 

holds the co-crystal information. 

MCR-ALS was performed using the software Matlab 8.3 (MathWorks, Natick, USA) 

and the PLS Toolbox version 7.5 (Eigenvector research Inc., Wenatchee, USA). 

3.4 Results 

3.4.1 In-silico coformer screening  

In order to aid selection of a model co-crystal system for this study, the propensity 

for co-crystallisation of hydrochlorothiazide was assessed computationally 
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considering 10 different coformers at two API:coformer molar ratios: 1:1 and 1: 2 

(Table 3.3). Excess enthalpies (Hex), Gibbs free energies of mixing (Gmix) and 

contributions from hydrogen bonding to intermolecular interaction of API and 

coformer (HB) were computed using fluid phase thermodynamic modelling 

framework implemented in COSMO-RS. The model assumes that the interactions in 

the crystal are similar to those in a virtual supercooled liquid. Thus, the strength of 

the interactions in the co-crystal, as compared with the pure reactants, can be 

estimated via the mixing enthalpy (or equivalently the excess enthalpy) of the API-

coformer with given stoichiometry; Gibbs free energy of mixing and the contribution 

of H-bonding to the mixing energy are other descriptors of the mixing efficiency. It is 

generally assumed that the higher (more negative) values of Hex, Gmix, and HB, the 

stronger the interaction between API and coformer, and higher propensity for 

forming co-crystal. The computed values of Hex, Gmix, and HB are relatively higher for 

the compounds possessing carboxyl groups (COOH), such as malic acid, citric acid, 

and tryptophan, suggesting that the mixing between API and coformer is not 

thermodynamically preferred. On the other hand, the negative values of Hex, Gmix, 

and HB were computed for caffeine, arginine, tromethamine, adenine, nicotinamide, 

and mannitol indicating stronger API-solvent interaction, and suggesting overall 

higher propensity for co-crystallisation. The computations also suggest that for those 

coformers the 1:1 molar ratio is preferred (more negative values) over the 1:2 ratio.  
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Table 3.3. Propensity for solvate formation computed with COSMO-RS fluid phase 
thermodynamics modelling at 1:1 and 1:2 API to coformer molar ratio. Hex, Gmix, 
and HB given in (kcal/mol). 

Coformer 
Ratio 1:1 Ratio 1:2 

Hex Gmix HB Hex Gmix HB 

Caffeine -1.514 -0.723 -1.363 -1.349 -0.64 -1.237 

Arginine -1.009 -0.796 -0.856 -0.989 -0.756 -0.849 

Tromethamine -0.717 -0.471 -0.69 -0.669 -0.425 -0.661 

Adenine -0.635 -0.62 -0.57 -0.614 -0.572 -0.557 

Nicotinamide -0.435 -0.564 -0.426 -0.411 -0.503 -0.422 

Mannitol -0.168 -0.206 -0.186 -0.138 -0.189 -0.163 

Para-

aminobenzoic 

acid 

0.148 -0.311 0.025 0.137 -0.232 0.063 

Malic acid 0.148 -0.26 0.077 0.139 -0.281 0.021 

Citric acid 0.22 -0.236 0.143 0.201 -0.216 0.123 

Tryptophan 0.273 -0.151 0.069 0.249 -0.139 0.058 

Comparing the results from the experimental screening (Rodrigues et al., 2020; 

Rodrigues et al., 2018b) with the in-silico results some differences can be discussed. 

From the experimental screening the coformers caffeine, adenine and tryptophan 

did not form a cocrystal, and the cocrystallization with arginine was inconclusive. 

Additionally, except for the cocrystal with nicotinamide, all the cocrystals obtained 

were in the ratio of 1:2. The difference between the in-silo studies and the 

experimental screening can be due to the approximations made in the in-silico 

studies, or by experimental factors. It is well known that different co-crystallization 

methods, different solvents, and experimental conditions such as temperature can 

affect the co-crystallization output. However, since the main objective of the work 

was to use multiple curve resolution to determine co-crystal phase purity, we 
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decided to use the coformer in which the experimental results were in accordance 

with the in-silico studies. Therefore, nicotinamide was the coformer chosen to be 

further investigated in this study due to its relatively high negative values of mixing 

enthalpy/energy computed for the co-crystal of nicotinamide and 

hydrochlorothiazide. Also, the reference co-crystal HTZ-NCT had already been 

successfully produced and extensively characterized (Rodrigues et al., 2019). 

Therefore, the models produced in this study can be validated with the knowledge 

about this co-crystal already available in the literature. The chemical structure of HTZ 

and the coformer investigated in this study along with the structure of the 1:1 co-

crystal synthon are shown in (Figure 3.1). 

 

Figure 3.1. Chemical structure of hydrochlorothiazide and nicotinamide – top, and 
3D representation of the co-crystallisation reagents and the final co-crystal synthon 

present in the crystal lattice of the HTZ-NCT 1:1 co-crystal – bottom. H-bonds 
(NH…O=S and NH…O=C) between the coformer and the API molecule shown as 

black dots. 
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3.4.2 Reference co-crystal characterization 

Phase purity of the reference co-crystal obtained was confirmed by comparing the 

XRD pattern of the prepared co-crystal with the simulated XRD derived from single 

crystal data (Figure 3.2). The small intensity differences between the experimental 

and the theoretical diffractograms, and the noise observed in the experimental 

diffractogram can be related to the nature of the sample (powder vs. single crystal) 

and the XRD instrument resolution. However, all peaks predicted in the theoretical 

diffractogram were observed in the experimental diffractogram. The differential 

scanning calorimetry endotherm obtained (Figure 3.3) was comparable to the 

endotherm published for this co-crystal (onset x of 173.65 °C and temperature peak 

at 174.55 °C) , an additional small endotherm was observed in the present study and 

by Sanphui and Rajput (Sanphui and Rajput, 2014). This was attributed to a small 

amount of non-co-crystallized material present in the final product. However, none 

of the other characterization techniques showed any presence of unreacted 

components. Therefore, this additional broad endothermic peak can also be due to 

co-crystal degradation.   
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Figure 3.2. PXRD diffractograms of the prepared co-crystal (experimental) and 
the simulated XRD derived from single crystal data (theoretical) for the co-crystal of 

hydrochlorothiazide and nicotinamide, stoichiometric ratio 1:1. 

 

Figure 3.3. Differential scanning calorimetry endotherms of HTZ 1:1 NCT reference 
co-crystal.  

3.4.3 Experimental screening experiments 

The spectra of all products of the experimental solvent screening were used to 

calculate the MCR models. An MCR model was produced for each ratio, using MIR 
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spectra of the co-crystals produced to predict phase purity. The total percentage 

variance explained by 2 components were 99.82% for the model of ratio 1:1 and 

99.89% for the model of ratio 1:2.  

Pearson correlation was used to compare the spectra of hydrochlorothiazide, 

nicotinamide and co-crystal ratio 1:1 with the loadings of each component, for each 

model. MCR loadings of HTZ:NCT 1:1 showed that component 1 had the strongest 

correlation and carried most of the reference co-crystal spectral information (Table 

3.4). Component 2 also showed a significant correlation coefficient with the spectra 

of the reference co-crystal. Phase purity of co-crystals obtained using this ratio was 

high for all solvents, except for MeOH. The phase purity of samples used to build the 

model may have resulted in component 2 also holding co-crystal information. For the 

ratio 1:2, loadings of component 1 showed co-crystal information, while component 

2 showed a greater correlation to NCT. This shows that the co-crystal was formed in 

the ratio 1:1, hence, there was excess of NCT which was captured by the component 

2. 
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Table 3.4. Pearson correlation coefficient for MCR model loadings correlated with 
the MIR spectra of the reference co-crystal produced at the ratio of HTZ:NCT 1:1 and 
reactants (HTZ and NCT). The closer the coefficient is to 1 the stronger the 
correlation. 

Model component 

(% variance explained) 
HTZ:NCT 1:1 Co-crystal HTZ NCT 

HTZ:NCT 1:1 Comp. 1 (78.80%) 0.9994 0.8963 0.7351 

HTZ:NCT 1:1 Comp. 2 (21.02%) 0.9560 0.8734 0.8187 

HTZ:NCT 1:2 Comp. 1 (80.56%) 0.9992 0.9019 0.7286 

HTZ:NCT 1:2 Comp. 2 (19.33%) 0.8995 0.7766 0.9497 

Spectral analysis confirmed the MCR models results. MIR spectral analysis showed 

that component 2 of HTZ:NCT 1:1 ratio was somewhat similar to those observed in 

the co-crystal spectra, however it showed a different peak in the region of 3429-3389 

cm-1, and significant differences in intensity in the regions of 1800-1600 cm-1, 1500-

1350, 1295-1175 cm-1, and 1139-1060 cm-1 (Figure 3.4). Component 2 of HTZ:NCT 1:2 

ratio was also similar to NCT spectra, however, it showed peaks (3462-3422 cm-1) and 

patterns (1551-1489 cm-1, and 1350-100 cm-1) somewhat similar to the observed in 

the co-crystal spectra (Figure 3.5). This may indicate that the co-crystal was formed, 

however there is unreacted NCT. The above differences highlight that these MCR 

loadings for component 2 may carry some co-crystal information, but they also 

contain information related to one the reactants indicating some phase impurity. 

MCR loadings that carry the greatest co-crystal information (component 1 of each 

ratio) showed good semblance to the reference co-crystal MIR spectrum; presence 

of different peaks or significant intensity differences were not observed. 
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Figure 3.4. MIR spectrum of the HTZ:NCT 1:1 reference co-crystal (average n=5), 
MCR loading plots from the samples produced with the stoichiometric ratio of 

HTZ:NCT 1:1, NCT MIR spectrum (average n=5), and HTZ MIR spectrum (average 
n=5). 



 Chapter -3 
 

Ana Luiza Pinto Queiroz Page 131 

 

 

Figure 3.5. MIR spectrum of the HTZ:NCT 1:1  reference co-crystal (average n=5), 
MCR loading plots from the samples produced with the stoichiometric ratio of 

HTZ:NCT 1:2, NCT MIR spectrum (average n=5), and HTZ MIR spectrum (average 
n=5). 



 Chapter -3 
 

Ana Luiza Pinto Queiroz Page 132 

MCR scores of component 1 for co-crystal systems, prepared at both ratios in a range 

of solvents, were used in Equation 3.2 to determine phase purity. Greater phase 

purity was obtained using the ratio of HTZ:NCT 1:1, except when ACN and MeOH was 

used as solvent (Figure 3.6). The percentage variance explained by the component 

that represents the co-crystal information was similar to both ratios, around 80%. 

However, greater purity was reached using the ratio 1:1. 

 

Figure 3.6. Percentage phase purity calculated using Equation 2 for screening 
samples produced with the stoichiometric ratio of HTZ:NCT 1:1 and HTZ:NCT 1:2. 
IPro = 2-propanol, ACN = acetonitrile, EtOH = ethanol, MeOH = methanol, Ace = 

acetone. 

3.4.4 Laboratory scale co-crystallization 

Prior laboratory scale co-crystallization of NCT:HTZ 1:1 co-crystals, it was necessary 

to determine the slurry co-crystallization time. Slurry experiments were performed 

and monitored by Raman spectroscopy. PCA of Raman spectra acquired was used to 

determine the co-crystallization endpoint for all solvents investigated. The results 

showed that for complete co-crystal formation the endpoint was dependent on the 

solvent used (Table 3.5). The PCA model was able to identify the transition of 
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intermediate forms to co-crystal formation. That was observed for the CF solvent 

system, in which an intermediate may have been formed at 40 h and transformed 

into the co-crystal 10 hours later (Figure 3.7a). After the co-crystal formation, further 

transformations were not observed up to 120 h for all the solvents investigated. Thus, 

slurry co-crystallization time used for the scale up experiments was 120 h to 

standardize the time across the different solvents and ensure completion of co-

crystal formation. The abrupt shifts observed may be due to the formation of bonds 

as the co-crystal is formed, since those bonds have strong Raman shifts. 

Table 3.5. Endpoint of NCT:HTZ 1:1 co-crystal formation for different solvents used 
in slurry co-crystallization at room temperature. Endpoint was determined by PCA of 
Raman spectra acquired online. EtOH = ethanol, MeOH = methanol, Ace = acetone, 
EtOAc = ethyl acetate, DCM = dichloromethane, CF = chloroform, and ACN = 
acetonitrile. *Solvent showed overwhelming Raman signal; therefore, no spectral 
differences were captured during the time analyzed and it was not possible to 
monitor the process using Raman spectroscopy 

Solvents Endpoint (h) 

EtOH * 

MeOH 110 

Ace * 

EtOAc 3 

DCM 65 

CF 45 

ACN 60 
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Figure 3.7. (A) Online multivariate Raman tracker of slurry co-crystallization from 
ethyl acetate, at room temperature, and (B) Raman spectra acquired after 14h and 

82h. 
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Figure 3.8. (A) Online multivariate Raman tracker of slurry co-crystallization from 
dichloromethane, at room temperature, and (B) Raman spectra acquired after 25 h, 

60 h and 86 h. 
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Figure 3.9. (A) Online multivariate Raman tracker of slurry co-crystallization from 
chloroform, at room temperature, and (B) Raman spectra acquired after 30 h, 46 h 

and 109 h. 
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Figure 3.10. (A) Online multivariate Raman tracker of slurry co-crystallization from 
acetonitrile, at room temperature, and (B) Raman spectra acquired after 13 h and 

80 h. 
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Figure 3.11. (A) Online multivariate Raman tracker of slurry co-crystallization from 
methanol, at room temperature, and (B) Raman spectra acquired after 27 h and 

119 h. 

3.4.4.1 Co-crystallization design space 

Response surface models were developed to investigate solvent effect and find the 
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crystals with high phase purity. A full-factorial DoE was performed for both semi-

slurry (21 runs) and evaporation (42 run) co-crystallization processes (Table 3.6). 

Phase purity was calculated using data from the MCR model developed, Equation 2. 

Phase purity values determined for the semi-slurry were lower than those obtained 

for the evaporation co-crystallization for each corresponding solvent and 

temperature for a number of systems investigated (Figure 3.12). 

Table 3.6. Design of Experiment of laboratory scale evaporation and slurry co-
crystallizations. MeOH = methanol, Ace = acetone, DCM = dichloromethane, EtOAc = 
ethyl acetate, ACN = acetonitrile, iPro = 2-propanol, and EtOH = ethanol. 

Slurry Evaporation 
F-1 F-2 Response F-1 F-2 F-3 Response 
T 

(°C
) 

Solvent  
System 

Phase 
purity 

(%)  

T 
(°C
) 

Solvent 
System 

Agitatio
n 

(rpm) 

Phase 
purity 

(%) 

10 CF:Ace 1:1 67.30 10 DCM:Ace 1:1 65 85.83 

40 Ace 73.65 10 DCM:Ace 1:1 0 94.83 

25 
EtOAc:Ace 

4:1 
73.29 25 EtOH 0 41.02 

40 CF:Ace 1:1 70.58 25 Ace 0 95.01 

10 DCM:Ace 1:1 68.36 25 DCM:Ace 1:1 65 99.83 

25 MeOH 3.91 40 MeOH 0 77.89 

25 EtOH 53.72 40 ACN 65 92.01 

25 DCM:Ace 1:1 75.59 25 DCM:Ace 1:1 0 93.34 

10 
EtOAc:Ace 

4:1 
70.69 10 Ace 65 84.84 

10 EtOH 68.28 40 
EtOAc:Ace 

4:1 
65 93.60 

10 MeOH 55.16 25 Ace 65 70.68 

25 ACN 70.14 10 CF:Ace 1:1 65 86.35 

40 ACN 70.36 25 MeOH 65 76.62 

40 DCM:Ace 1:1 71.13 40 Ace 0 95.46 

10 CAN 67.79 10 MeOH 0 5.23 
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40 EtOH 30.01 40 EtOH 0 58.08 

25 Ace 77.16 10 EtOH 0 73.88 

40 
EtOAc:Ace 

4:1 
70.24 10 

EtOAc:Ace 
4:1 

65 82.80 

25 CF:Ace 1:1 78.41 25 CF:Ace 1:1 65 99.12 

10 Ace 75.95 40 CF:Ace 1:1 0 72.47 

40 MeOH 76.57 25 
EtOAc:Ace 

4:1 
0 99.00 

- - - 25 MeOH 0 56.26 

- - - 40 DCM:Ace 1:1 65 93.39 

- - - 40 Ace 65 95.40 

- - - 10 CF:Ace 1:1 0 89.39 

- - - 40 DCM:Ace 1:1 0 91.30 

- - - 25 ACN 65 97.86 

- - - 10 Ace 0 88.93 

- - - 40 MeOH 65 95.31 

- - - 40 EtOH 65 93.64 

- - - 25 ACN 0 95.57 

- - - 10 ACN 65 88.09 

- - - 25 
EtOAc:Ace 

4:1 
65 100.00 

- - - 40 
EtOAc:Ace 

4:1 
0 90.20 

- - - 10 
EtOAc:Ace 

4:1 
0 87.23 

- - - 25 EtOH 65 68.09 

- - - 10 EtOH 65 71.71 

- - - 10 MeOH 65 33.74 

- - - 40 CF:Ace 1:1 65 85.50 

- - - 10 ACN 0 78.05 

- - - 40 ACN 0 89.23 

- - - 25 CF:Ace 1:1 0 94.78 
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Figure 3.12. Comparison of co-crystal phase purity determined using MIR spectra 
and results of MCR model (Equation 2) for the system HTZ:NCT 1:1, at 25ºC. (n=5). 
EtOH = ethanol, MeOH = methanol, Ace = acetone, EtOAc = ethyl acetate, DCM = 

dichloromethane, and ACN = acetonitrile. 

Overall, agitation optimized the evaporation co-crystallization process (Figure 3.13). 

The optimal conditions for evaporation co-crystallization observed were the 

following. The solvent systems ACN, CF:Ace 1:1, and DCM:Ace 1:1 produced the co-

crystals with greatest phase purities at all temperatures investigated (Figure 3.13a). 

At 40 °C EtOAc:Ace 4:1, Ace and EtOH also produced co-crystal with high phase 

purity. Methanol and ethanol showed considerably lower co-crystal phase purity in 

comparison with the other solvent systems. There was a statistically significant 

association between the response variable and the factors (F-value of 9.88 and p-

value less than 0.0001). Adjusted r2, predicted r2 and adeq. precision were found to 

be 0.7055, 0.5187 and 15.49, respectively, indicating that the model could be used 

to navigate the design space. The internally studentized residuals was normally 

distributed. 
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The DoE model of slurry co-crystallization also showed a statistically significant 

association between the response variable and the factors. (F-value of 5.30 and p-

value of 0.025). Adjusted r2, predicted r2 and adeq. precision were found to be 

0.7505, -5.467 and 10.10, respectively, indicating that the model could be used to 

navigate the design space. However, additional runs would be required if the model 

was to be used for predictions. The internally studentized residuals were normally 

distributed. The solvent systems Ace and DCM:Ace 1:1 produced co-crystals with 

greater phase purities (Figure 3.14). This was represented in the contour plot of the 

design space in which the relative purity obtained using those solvent systems fell 

within the same contour level for all temperatures. The solvent system CF:Ace 1:1 at 

the temperatures of 25 °C and 10 °C also produced co-crystals with great phase 

purities. Solvents EtOH and MeOH showed the lowest phase purity, similarly to 

evaporation co-crystallization. 
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Figure 3.13. DoE contour plots of evaporation co-crystallization (A) with agitation of 
65 rpm and (B) without agitation. Solvent indexes are 1 = Ace, 2 = ACN, 3 = CF:Ace 
1:1, 4 = DCM:Ace 1:1, 5 = EtOAc:Ace 4:1, 6 = EtOH, 7 = MeOH. Temperature in °C. 
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Figure 3.14. DoE contour plots of slurry co-crystallization. Solvent indexes are 1 = 
Ace, 2 = ACN, 3 = CF:Ace 1:1, 4 = DCM:Ace 1:1, 5 = EtOAc:Ace 4:1, 6 = EtOH, 7 = 

MeOH. Temperature in °C.  

3.5 Discussion 

This study addressed challenges of co-crystallization monitoring and co-crystal phase 

purity control. Quantum chemistry simulation was used for in-silico screening and 

selection of a coformer that was thermodynamically inclined to form a co-crystal with 

hydrochlorothiazide. All coformers screened had been previously investigated 

(Rodrigues et al., 2019, 2018b; Sanphui et al., 2015; Sanphui and Rajput, 2014). 

Interestingly, the relatively unfavourable mixing enthalpies/energies predicted in this 

study for the co-crystallisation of HTZ with malic and citric acids successful confirm 

the findings of a previous study that reported very low phase purity for products of 

such co-crystallizations (Rodrigues et al., 2018b). The co-crystal, HTZ-NCT ratio 1:1 

was selected based on the quantum chemistry simulations was hydrochlorothiazide 
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that revealed high negative values of mixing enthalpy/energy computed for this 

system. The main goal of this study was the development of a model to predict co-

crystal phase purity. Thus, the model co-crystal was also chosen based on the depth 

of characterization and the information available to confirm and validate the 

predictions.  

A novel methodology was developed to quantify co-crystal phase purity using MIR in 

combination with MCR-ALS without a reference spectrum. Soares and Carneiro 

(2013, 2017) used Raman and MCR-ALS to investigate co-crystallization, however, 

initial estimates of both the pure substances and the co-crystal were used (Soares 

and Carneiro, 2017, 2013). In this study, the MCR-ALS model was performed without 

any initial estimate. The co-crystal spectra obtained from the model was later 

compared with reference substances: the co-crystal, and the physical mixture of drug 

and coformer, to confirm that the model was able to extract the co-crystal spectra 

without the initial estimates. 

Another novel finding of the MCR model designed was the determination of the 

statistically optimal ratio of co-crystal formation. This includes the combined analysis 

of the percent variance captured by the two components of the MCR model and 

Pearson Correlation coefficient analysis (Table 3.4). This methodology was also 

confirmed by spectral analysis. 

Comparison of MIR spectra of the reference co-crystals, HTZ, coformer and MCR 

loadings highlighted differences in regions related to co-crystal formation. Key 

differences were observed in the spectral regions related to O‒H and N‒H stretching. 
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HTZ co-crystals were reported to involve the primary and secondary sulfonamide 

groups from HTZ (Rodrigues et al., 2019; Silva et al., 2017).  

HTZ:NCT co-crystals were reported to be formed due to hydrogen bonding between 

the NH of sulfonamide group of HTZ and the NCT carbonyl group (Rodrigues et al., 

2019). Formation of new bands was observed in the region of OH stretch (peaks 

centered at 3440 and 3190 cm-1), NH stretch of primary amine (3374 cm-1), and 

C=O/C=C stretching (1654 cm-1). Peaks in typical regions of S=O stretching were also 

observed, with new peaks forming at 1324, 1303, 1268, and 1076 cm-1. Therefore, 

the results obtained in this study are in agreement with those previously reported in 

the literature. 

In this study, the application of Raman combined with PCA was used as a non-contact 

and non-destructive PAT tool to quantify co-crystals formation and co-crystallization 

endpoint. MIR spectroscopy combined with MCR-ALS was shown to be a useful PAT 

tool to determine co-crystallization endpoint and quantify co-crystal phase purity 

(Mazivila et al., 2019). Substances that show weak MIR signal may have strong Raman 

signal (Larkin, 2017). Thus, Raman is a complementary technique to MIR, and the PAT 

tool developed in this study is complementary to the PAT tool developed by Mazivila 

et al. Fluorescence problems frequently encountered when Raman is used, are not 

observed when MIR is used (Rodrigues et al., 2019). The decision about which 

methodology should be used is dependent on the properties of the solvent and the 

substances used to produce the co-crystal. PCA of Raman spectra acquired online 

also showed whether the co-crystal formation happens via intermediate formation, 

as shown in Figure 3.7a in which co-crystals of NCT:HTZ 1:1 appeared to form an 
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intermediate when chloroform was used. Ishihara et al. (2019) showed that MIR and 

MCR were also able to investigate intermediate formation (Ishihara et al., 2019). 

Again, this shows that MIR and Raman spectroscopy can be used as complementary 

techniques to investigate co-crystallization process.  

The final contribution of this study to the scientific development of co-crystallization 

processes was the comparative investigation between evaporation and slurry 

methodologies. Overall, evaporation co-crystallization produced co-crystals with 

greater phase purity than the slurry technique. This finding agrees with the study 

reported by previous studies that revealed that evaporation always shows greater 

yield if the drug and the coformer have similar solubility values (Rodrigues et al., 

2018a; Rodrigues et al., 2020; Rodrigues et al., 2018b). The design of experiments 

also confirmed this finding. According to the results of the DoE model, DCM:Ace 1:1 

was the only solvent system that produced co-crystal with the greatest purity in both 

slurry and evaporation co-crystallization, at all temperatures. Thus, co-crystals 

produced using DCM:Ace 1:1 could be used as a reference system for comparison of 

both techniques. In the evaporation co-crystallization with agitation the phase 

purities obtained using this system were 85.83, 99.83, and 93.39 % at 10, 25, and 40 

°C, respectively. In the slurry co-crystallization the phase purities obtained at the 

same temperatures were considerably lower (i.e. 68.36, 75.59, and 71.13 % at 10, 25, 

and 40 °C, respectively). It is very difficult to discuss how the solvent affects co-

crystallization outcome. There are several factors that can contribute to the co-

crystal purity which is also dependent on the co-crystallization technique. For solvent 

evaporation co-crystallization, the choice of solvent is always dependent on the 
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solubility of each component in the solvent. Furthermore, the two components need 

to have a similar solubility in the solvent. In this way the phase diagram is symmetric, 

and it would be easier to obtain a pure co-crystal by solvent evaporation (Aitipamula 

et al., 2014; Sarraguça et al., 2016). Since normally, the co-former and API have 

different solubilities in a pre-determined solvent a mixture of solvents is usually used, 

as was in the case of this work in which the highest purity was obtained by a mixture 

of acetone and dichloromethane. Also, it is important that the solvent has a low 

vapor pressure to be able to evaporate at low temperatures. For slurry co-

crystallization other physicochemical properties might be important such as polarity, 

dielectric constant, surface area, among others. An extensive and detailed analysis 

relating the physicochemical properties of the solvents and the purity of the 

cocrystals must be done to be able to define a systematic approach to solvent type 

co-crystallizations. 

3.6 Conclusions  

An MCR model was developed to determine co-crystal phase purity and identify the 

stoichiometric ratio for the formation of co-crystals. MCR-ALS was able to extract the 

spectrum of the co-crystal from a complex mixture i.e., non-reacted starting material 

mixed with co-crystals, even though a reference co-crystal spectrum was not 

provided, and determine the phase purity of co-crystallization products. Phase 

purities determined showed to be dependent on the solvent. The ratio of co-crystal 

formation determined by the MCR model proposed revealed that 1:1 was the optimal 

ratio, which is in accordance with the literature. A design space was determined by 

DoE using the % phase purity as response variable. The % phase purity obtained using 
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the proposed model coupled with MCR. The response surface models showed that 

in addition to the solvents, the process employed (evaporation versus slurry) also 

affects phase purity. In this study, co-crystals produced by evaporation co-

crystallization with agitation of 65 rpm showed greatest phase purity.  
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4.1 Abstract 

Percolation theory provides a statistical model which can be used to predict the 

behaviour of powder blends based on particle-particle interactions. The aim of this 

study was to investigate if percolation theory could be used to predict the drug 

loading concentration of pharmaceutical tablets, and the relative density of a blend, 

above which tablet tensile strength is reduced, resulting in the production of 

unsatisfactory products.  The model blend studied contained ibuprofen as the API, 

which exhibits poor flow and compressibility, and microcrystalline cellulose (MCC) as 

the excipient, which exhibits good flowability and compressibility. Two MCC grades 

with differing physical properties were investigated, Vivapur® 102 (air streamed 

dried quality), and Emcocel® 90 (spray dried quality) to test the theory. Blends 

containing 2.5 to 40 % w/w of ibuprofen were compacted at a range of pressures and 

the values of the powder true density, compaction pressure, tablet envelope density, 

and tablet tensile strength were used to calculate the percolation thresholds 

mathematically. The drug loading threshold values predicted with the model (19.08% 

w/w and 17.76% w/w respectively for Vivapur® 102 and Emcocel® 90) were found to 

be in good agreement when compared to experimental data and the percolation 

threshold was visually confirmed using Raman imaging. The capability of multivariate 

analysis to predict the drug loading threshold was also tested. Principal component 

analysis was unable to identify the threshold. However, it provided an overview of 

the changes of the analysed properties as ibuprofen drug loading increased. It was 

also able to identify differences between blends containing Vivapur® or Emcocel®. In 

conclusion, percolation theory was able to predict the maximum acceptable drug 
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loading for this binary system of API and excipient. This methodology could be 

employed for other binary systems to predict maximum drug loading potential 

without the need for time consuming and expensive tablet production. 

4.2 Introduction 

Multi-component powder blends are critical components of numerous process trains 

across a wide variety of manufacturing sectors. Solid dosage forms manufactured 

from powder blends compose a large proportion of pharmaceutical production 

(Järvinen et al., 2013) Pharmaceutical powder blends are composed of a drug 

substance (active pharmaceutical ingredient) and inactive excipients to aid 

processing, stability and delivery (Leane et al., 2015). Drug load is an important factor 

to be considered during the design of these blends. The higher the drug load, the 

higher the probability of the drug’s properties impacting the blend’s 

manufacturability and finished dosage form properties. For instance, Wenzel et al. 

showed how the increase of drug load negatively affected granulation, compression, 

tablet disintegration and dissolution (Wenzel et al., 2017). In contrast to a gradual 

change in blend properties with increasing drug load, a threshold drug concentration 

was proposed, referred to as the percolation threshold (Leane et al., 2015). It is 

proposed that issues can be expected to occur in manufacturability and drug product 

quality above the percolation threshold concentration of drug (Leane et al., 2018, 

2015). Within a QbD pharmaceutical approach, the percolation threshold model can 

aid identification of a threshold drug loading. The formulation should contain drug 

loadings below the percolation threshold to ensure critical quality attributes 
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compliance. Knowing the percolation threshold drug level can aid robust formulation 

development by maintaining the drug below this threshold.  

Percolation is a geometrical-statistical theory that includes two model types: (i) 

lattice model, and (ii) continuum model. The lattice percolation model has been 

previously reported in the literature as appropriate to model tablet tensile strength 

for systems containing microcrystalline cellulose (Kozicki, 2007; Kuentz and 

Leuenberger, 2000, 1998; Leuenberger, 1999). In a lattice model, percolation 

threshold is described the random occupation of a lattice of one substance by 

particles of a second substance (Leuenberger, 1999). Consider initially a matrix of A 

being percolated by particles of B. As the concentration of B increases in the system, 

a threshold concentration will be reached, and a property phase transition will be 

noticed. Above this threshold the system is a matrix of B percolated by particles A. 

The property phase transition occurs because of the formation of clumps of particle 

B that are connected or close enough to each other in such a way that they are linked 

across the entire volume of the tablet, forming an infinite cluster i.e., a drug cluster 

that spans throughout the entire volume of the tablet. When this cluster is formed 

properties of the blend may undergo significant changes (Leuenberger, 1999). This 

theory can be extrapolated to the random distribution of a group of substances A in 

a lattice formed by a group of substances B (Leuenberger et al., 1992). In this case, 

the substances that form the group A need to have at least one similar property and 

at the same time this property must be dissimilar to the substances of group B. For 

example, in a tablet blend, drug substance and excipients that have poor flow could 
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be grouped together as A, while all the substances within the formulation that have 

good flow would belong to group B.  

One of the critical quality attributes to consider during the development of a tablet 

blend for compaction is the tablet’s tensile strength. Tensile strength is defined as 

the resistance of a material to undergo fracture under tension (Fell and Newton, 

1970). It is considered a key physical property to ensure the quality of manufactured 

tablets. Tablets are required to have a minimum value of tensile strength to remain 

intact throughout downstream processing and handling. On the other hand, an 

increase in tensile strength can lead to an increase in the dissolution time (Bi et al., 

1999). The application of the percolation threshold model to tablet tensile strength 

provides valuable information in relation to blend design. The main input of this 

model is the tablet relative density, which replaces ρ in Equation 1.19. Tablet relative 

density is a parameter that is related to a number of individual raw material 

characteristics, process parameters and many subsequent tablet physical properties. 

The inclusion of tablet relative density makes this model a highly practical theory.  

Percolation thresholds have been estimated graphically in a number of previous 

studies; for binary blends of MCC and mannitol (Pérez Gago and Kleinebudde, 2017), 

for binary blends at different size ratios and for different grades of HPMC blended 

with hydrocortisone (Mohamed et al., 2015), and for complex blends of mefenamic 

acid and a range of excipients (Kimura et al., 2007). Kuentz and Leuenberger 

proposed a mathematical approach in which the percolation threshold of a blend of 

microcrystalline cellulose and paracetamol was modelled (Kuentz and Leuenberger, 

2000). The authors recommended additional investigation to confirm their findings. 
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However, there are limited publications in which the percolation threshold is 

predicted mathematically in the field of pharmaceutical sciences. Busignies et al. 

(Busignies et al., 2007) showed that if the mathematical approach is selected, it is 

necessary to begin with modelling the percolation coefficient in order to be able to 

model the percolation threshold for each specific formulation, as the percolation 

coefficient did not seem to be universal.  

The aim of this study was to define the percolation coefficient for a blend comprising 

MCC/ibuprofen based on a modified Heckel equation (Leuenberger, 1999). Having 

determined the percolation coefficient for the blend, Equation 1.19 was then 

employed to calculate the respective percolation thresholds. The blend considered 

contained a model drug, ibuprofen, and a commonly used excipient, MCC. These 

binary blend components were selected because ibuprofen exhibits poor flowability 

and compressibility and is prone to capping (Al-Karawi et al., 2018; Nokhodchi et al., 

1995; Rasenack and Mü, 2002). MCC is a widely used excipient due to its good 

flowability, high dilution potential and compactibility (Thoorens et al., 2014). 

Therefore, the contrasting properties qualifies the combination of these substances 

as an appropriate case to apply the percolation model. Particle pore and particle 

shape can have significant impact on percolation threshold (Lin and Chen, 2018; 

Meyer et al., 2015; Nigro et al., 2013), therefore, two MCC grades with differing 

particle properties were investigated in this study: Vivapur® 102, an air streamed 

dried grade, and Emcocel® 90, a spray dried grade. Raman image analysis of 

compacted blends was employed to visually determine whether an infinite cluster of 

drug particles could be detected on the surface of tablets prepared above the 
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percolation threshold. Properties of the powder blends and the tablets 

manufactured were investigated using univariate and principal component analysis 

(PCA) analysis to determine properties which are diminished above the percolation 

threshold and investigate if PCA is able to identify the critical concentration related 

to the percolation threshold.  

4.3 Materials and methods 

4.3.1 Materials  

Microcrystalline cellulose (Vivapur® 102, and Emcocel® 90) was supplied by JRS 

PHARMA Gmbh+Co. KG, Germany. Ibuprofen was obtained from Kemprotec Ltd., 

United Kingdom.  

4.3.2 Methods 

4.3.2.1 Powder characterization 

4.3.2.1.1.1 Surface area 

MCC samples were degassed for 3 h, at 120 oC and ibuprofen samples for 24 h, at 40 

oC in a FlowPrep 060 sample degas system (Micromeritics, USA). The mass of each 

sample was between 0.4 - 0.6 g. Surface area was determined using a Gemini VI 

surface area and pore size analyser (Micromeritics, USA). The modelling equation 

applied was the Brunauer Emmett-Teller equation (BET) (Brunauer et al., 1938). 

Liquid nitrogen at - 196 oC kept isothermal conditions and N2 was the absorbate gas 

utilized. The analysis was carried out in triplicate.  
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4.3.2.1.1.2 Laser diffraction particle sizing  

Particle size distribution was measured using a particle Mastersizer 3000 size 

analyzer (Malvern Panalytical, UK). A dry powder method was employed. Laser 

obscuration was controlled to a maximum of 5 %, and the feeding was set to a rate 

of 20 % for MCC and 35 % for ibuprofen, both at 1.5 bar. The height of the feeder 

was set to 2.5 cm. Measurements were taken for a period of 10 seconds, in triplicate.  

4.3.2.1.1.3 Thermogravimetric analysis 

Microcrystalline cellulose moisture content was quantified using thermogravimetric 

analysis (TGA) (TA Q500 TGA, TA instruments, USA). N2 was used as the controlled 

atmosphere. Samples between 5 - 7 mg were loaded on the platinum pan. A ramp 

operation module was set up following a heating rate of 10 oC/min up to 270 oC. The 

weight loss measured was assumed to be moisture loss as no other thermal events 

occur in MCC between 0°C and 120°C as confirmed by differential scanning 

calorimetry (DSC).  

4.3.2.1.1.4 Morphology 

MCC morphology was characterized using a Malvern Morphologi G3® particle 

characterization system (Malvern Instruments, Malvern, UK). This instrument allows 

characterization of the shape, form and size of particles. A sample volume of 7 mm3 

was automatically dry dispersed by the Sample Dispersion Unit (SDU) which injects 

compressed air for 20 ms at 1 bar through the sample, onto a glass plate. A settling 

time of 60 seconds was held between the air injection and presentation of the sample 

for analysis. Malvern Morphologi G3® recorded individual pictures of particles and 
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these images were acquired over 3 circular areas of the plate. The size parameters 

analysed were circle equivalent (CE) diameter, length and width, and the shape 

parameter analysed was aspect ratio. CE diameter is the corresponding diameter of 

a circular particle with the same area as the particle analysed. Aspect ratio is given 

by dividing width by length for each particle. Particles with an aspect ratio below 0.5 

were classified as needle shaped. 

4.3.2.1.1.5 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was used to obtain images of Vivapur® and 

Emcocel®. A JSM-5510 SEM, (Jeol, UK) was used with heated tungsten. The 

morphology and particle size of the samples were measured using an electron beam 

source. The voltage was constant at 3 kV. Samples were gold coated in SEM gold 

coater (Jeol, UK) prior to analysis to prevent charging of the samples by the SEM 

electron beam. A coating time of approximately 45 seconds was used to deposit a 

thin layer onto the samples. 

4.3.2.2 Blend preparation  

Binary blends of ibuprofen and Vivapur®, and ibuprofen and Emcocel®, were 

prepared at concentrations between 2.5 and 40 % w/w ibuprofen in MCC. A total of 

300 g of each formulation was blended in Cube Mixer KB, ERWEKA (Universal Gear 

UG, Germany) at 30 rpm for a duration of 30 min.   
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4.3.2.3 Blend characterization 

4.3.2.3.1.1 Bulk and tapped densities 

Bulk and tapped densities were calculated as outlined in the European 

Pharmacopoeia (Ph Eur 9.0) (Council of Europe, 2019). A 100 ml cylinder was filled 

up to the mark with powder of a known mass, and the bulk density (ρbulk) was 

calculated by dividing the mass of the powder by the volume of the cylinder. The 

loaded cylinder was then placed in an SVM 122/222 tapped density tester, (Erweka 

GmbH.). The cylinder was tapped 500 and 750 times which compacted the powder 

by removing air from voids within the sample. The tapped density (ρtapped) was 

calculated by dividing the powder mass by the final volume that the powder occupied 

in the graduated cylinder.  

4.3.2.3.1.2 True and relative densities 

The true density (ρtrue) of materials was measured using a helium pycnometer 

Accupyc 1330 microprocessor-controlled gas pycnometer (Micromeritics, USA). The 

jar volume was 11.2 cm3 and weight of the samples was 2 g. The results presented 

are the average of ten measurements. The relative density of powder blends (ρrelative) 

was calculated by dividing ρbulk from Powder Flow Tester by ρtrue. 

4.3.2.3.1.3 Flowability and compressibility 

Flowability was determined by the calculation of the Hausner ratio (HR) (Equation 

4.1) using the tapped and bulk densities determined (Council of Europe, 2019).  



 Chapter -4 
 

Ana Luiza Pinto Queiroz Page 160 

𝐻𝑅 =
𝜌

𝜌
 (Equation 4.1) 

Hausner ratio measures the loose and dense packing conditions to which the powder 

is subjected (Council of Europe, 2019, Santomaso et al., 2003). 

Powder flowability classification was also determined using an annular shear cell 

tester, Powder Flow Tester (PFT), Brookfield Engineering Laboratories, Inc., USA. This 

methodology is considered to be a more consistent and reliable method to 

determine powder flow compared to the Hausner ratio. The Hausner ratio can be 

variable depending on the procedure employed (Liu et al., 2008; Santomaso et al., 

2003; Yu et al., 2012). A vane lid was used in order to perform a standard flow 

function test. The cell volume of 43 cm3 was chosen and the mass to fill up the cell 

varied from 14 to 16 g across the different formulations. The major principal 

consolidation stresses were defined in a geometric progression that resulted in 

values of between 0.02 to 6.07 KPa for MCC and 0.02 and 2.98 KPa for ibuprofen. The 

maximum principal consolidation stresses were chosen based on earlier literature 

(Liu et al., 2008; Yu et al., 2012). 

Compressibility was determined for each blend using the same set up as the 

flowability test, however the consolidation stresses were approximately between 

0.02 and 25.5 KPa and a flat lid was used. The results were expressed as bulk density 

vs. major principal consolidation stresses (McGlinchey, 2005).   
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4.3.2.4 Direct compression 

The formulations were directly compacted to form cylindrical and flat tablets with 8 

mm diameter and weight of 270 ± 10 mg in a ten-station rotary tablet press (Riva™ 

Piccola, Argentina), at a speed of 20 rpm. The relative air humidity was 50 ± 5%. The 

compaction of each blend was performed under 14 different compaction pressures, 

between approximately 20 and 400 MPa. After compaction the tablets were stored 

for 48 hours under ambient conditions before further analysis.  

4.3.2.5 Tablet characterization  

Tablets’s hardness, weight, thickness and diameter were measured using a semi-

automatic tablet testing system, SmartTest 50 (Sotax, Switzerland) (N=20 per blend). 

Tablet envelope density, (ρtablet) was obtained by dividing tablet weight by tablet 

volume. Tablet relative density, ρ, was calculated by dividing the tablet envelope 

density by the true density obtained from the annular shear cell tester for the 

respective powder formulation, according to Equation 1.23. 

Tablet porosity was determined using Equation 4.2. Tablet envelope density was 

determined dividing the mass by the volume of each tablet. The blend true density 

values were previously determined. 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 100 × 1 −
𝑡𝑎𝑏𝑙𝑒𝑡 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑏𝑙𝑒𝑛𝑑 𝑡𝑟𝑢𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 (Equation 4.2) 
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4.3.2.6 Heckel analysis  

The Heckel model was used to calculate the constant K according to Equation 1.18. 

Then the yield pressure (𝑃 ) for each blend was obtained from 𝑃 =

1 (3 ∙ 𝐾)⁄ .  

4.3.2.7 Percolation coefficient and percolation threshold 

Tablet tensile strength was determined for all blends produced at each compaction 

pressures using Equation 1.21. Percolation coefficient (Tf) was modelled using 

Equation 1.27. The percolation threshold, ρc (AB), as a critical solid fraction, was then 

determined by the linear correlation between tablets relative density (ρ) and 𝜎 , 

expressed by Equations 1.28 and 1.29, for each blend. Finally, the dilution capacity 

model of Equation 1.31 was applied in order to express the 𝜌 (𝐴) in terms of mass 

fraction (Xc). Substances A and B were MCC and ibuprofen, respectively. 

4.3.2.8 Raman spectroscopy  

Raman imaging was carried out using a RA802 Pharmaceutical Analyser (Renishaw, 

UK) using a 785 nm line-focussed laser. First, reference spectra of air stream dried 

MCC, spray dried MCC, and ibuprofen were acquired. Then, tablets of the blends of 

ibuprofen and MCC were screened using the StreamLineTM fast imaging method that 

acquired around 76,000 spectra over the entire surface of each tablet, with a pixel 

size of 10 µm/20 µm and area of 8.3 mm x 8.3 mm. Those spectra were averaged to 

a single resulting spectrum. The total time of measurement for each individual tablet 

was 15 min. Images of the drug distribution on the surface of the tablet were 

generated by non-negative least squares (NNLS) component analysis.  
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4.3.2.9 Multivariate analysis 

PCA was performed to investigate whether this technique could distinguish the 

behaviour of the blends below and above the percolation threshold, and, also to 

determine if there are differences between blends containing Vivapur® compared to 

those containing Emcocel®. Principal component analysis (PCA) was performed using 

Origin data analysis and graphing software (OriginLab, USA). The algorithm used was 

the singular value decomposition with full cross validation for all the blends and for 

the placebos of both grades of MCC. Three replicates of each blend were input into 

the model. The first was the mean value of each predictor, the second is the mean 

minus its standard deviation and the third is the mean plus its standard deviation. 

The optimal number of components was three, which explained 95.51% of the 

variance in the total data input. The results were represented graphically by bi-plots 

i.e., scores and loadings plotted in one single graphic. The scores represent the 

distance of each sample from the mean of all samples along each PC, therefore, 

blends (scores) located in close proximity are similar. The loading plot explains which 

variables are responsible for grouping the samples by similarity, if the grouping 

occurs. 

4.4 Results 

4.4.1 Powder characterization  

The particulate and bulk properties of both MCC grades and ibuprofen are 

summarised in Table 4.1. Particle size distribution determined using laser diffraction 

particle size analysis showed that Vivapur® had a slightly greater volume of particles 
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with a larger particle size in comparison to Emcocel® (Figure 4.1a) and hence a larger 

D50 value (Table 4.1). A second particle size analysis method, the Morphologi G3® 

which determines particle size distribution and shape using statistical image analysis, 

clearly showed that the Vivapur® sample contained a greater percentage of particles 

with a larger circle equivalent (CE) diameter in comparison to Emcocel® (Figure 4.1b). 
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Table 4.1. Particulate and bulk powder properties of Vivapur®, Emcocel®, and 
ibuprofen. Average values are shown ± standard deviation. 

Property Emcocel® Vivapur® Ibuprofen 

D10 (μm) (n=5) 30.0 ± 0.25 31.1 ± 0.30 16.5 ± 0.08 

D50 (μm) (n=5) 111.6 ± 0.73 118.0 ± 1.60 54.9 ± 0.21 

D90 (μm) (n=5) 236.8 ± 1.55 240.0 ± 2.17 129.0 ± 1.09 

Surface area (m2/g) (n=3) 1.32 ± 0.01 1.37 ± 0.01 0.22 ± 0.02 

True density (g/cm3) (n=10) 1.58 ± 0.00 1.57± 0.00 1.12 ± 0.00 

Bulk density (g/cm3) (n=3) 0.33 ± 0.00 0.31 ± 0.00 0.36 ± 0.01 

Relative density 0.21 0.20 0.32 

Tapped density (g/cm3) (n=3) 0.43 ± 0.01 0.40 ± 0.00 0.57± 0.01 

Hausner Ratio 1.32 

(easy flowing) 

1.32 

(easy flowing) 

1.58 

(cohesive) 

Flow function coefficient (n=3) 7.0 ± 0.91 

(easy flowing) 

6.9 ± 0.00 

(easy flowing) 

3.9 ± 0.11 

(cohesive) 
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Figure 4.1. Particle size distribution of Emcocel® and Vivapur® samples measured by 
(a) Malvern Mastersizer 3000 and (b) Morphologi G3. 

Despite containing larger particles, as shown by laser diffraction particle sizing and 

CE, Vivapur® sample was also determined to have a significantly higher surface area 

in comparison to Emcocel®. An inverse relationship between particle size and surface 

area was not observed as MCC has a highly porous structure, as observed in the SEM 

images (Figure 4.2). According to (Thoorens et al., 2014) approximately 90-95% of its 

surface is internal, therefore there is no relationship between particle size and 
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surface area.  A pronounced difference in the morphology between the two grades 

of MCC was also observed when the aspect ratio was analysed by the Morphologi 

G3®. The percentage of needle shaped particles of Vivapur® sample was 51%, while 

for Emcocel® sample this value was 34%. The model drug, ibuprofen, showed 

dissimilar properties to microcrystalline cellulose samples, exhibiting a smaller 

particle size distribution and surface area (Table 4.1, Figure 4.1a). 

 

 

Figure 4.2. SEM images of (a) Vivapur® and (b) Emcocel®. 
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The true, bulk, tapped and relative densities of both MCC samples were similar (Table 

4.1). Figure 4.3a shows that both MCC samples displayed similar powder 

compressibility with increase in consolidating stress. In comparison to MCC, the 

relative density and compressibility of ibuprofen was greater. Compressibility as a 

function of tapped and bulk density confirmed the findings. Both MCC grades 

exhibited good flowability, as expressed by Hausner ratio and flow function 

coefficient (Table 4.1). Ibuprofen was classified as cohesive when expressed by 

Hausner ratio and by flow function coefficient (Carr, 1965; Thomas and Schubert, 

1979). Ibuprofen/MCC blends were characterized in terms of density, flow and 

compressibility properties (Table 4.2, Figure 4.3b, 4.3c). It was observed that an 

increase in drug content resulted in increased bulk and relative density and poorer 

flow properties, as indicated by the blend Hausner ratio and powder flowability 

classification.   
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7  

 

Figure 4.3. Plot of bulk density of (a) ibuprofen, Emcocel® and Vivapur®, blends of 
(b) Emcocel®, and blends of (c) Vivapur ® under increasing consolidating stresses. 
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4.4.2 Blend behaviour during tableting 

Ibuprofen/MCC blends with ibuprofen content between 0 % and 30 % w/w were 

compacted and tensile strength calculated with respect to compaction pressure. 

Formulations containing 40% w/w ibuprofen/MCC could not be tabletted due to poor 

flow from the hopper and incomplete filling of dies. Tabletability profiles (Figure 4.4) 

showed that both microcrystalline cellulose grades formed tablets with high tensile 

strength, even at low compaction pressures. As ibuprofen concentration was 

increased, a drop in tablet tensile strength was observed.  
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Figure 4.4. Tabletability profiles of ibuprofen/MCC blends (a) Vivapur® and (b) 
Emcocel®. N=20, y-error bars indicate standard deviation. 

Tablet weight variability, expressed as % relative standard deviation (%RSD), 

increased for blends with 20 % w/w ibuprofen and above (Figure 4.5). Increase in 

weight variability was attributed to a deterioration in blend flow and this behaviour 

is in agreement with blend flow behaviour measured for these blends (Table 4.2). 
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Figure 4.5. Tablet weight variation expressed as percent relative standard deviation 
(%RSD) (n=280 individual tablet weights). 
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Table 4.2. Blend density, compressibility, and flow properties. 
Emcocel® 

Ibuprofen 

(% w/w) 

Bulk density 

(g/cm3) 

Tapped density 

(g/cm3) 

True density 

(g/cm3) 

Relative density 

(g/cm3) 
Hausner Ratio Flow character 

2.5 0.34 0.43 1.52 0.22 1.26 Easy flowing 

5 0.34 0.45 1.51 0.23 1.30 Easy flowing 

10 0.34 0.44 1.49 0.23 1.28 Easy flowing 

15 0.35 0.46 1.47 0.24 1.32 Easy flowing 

20 0.35 0.47 1.45 0.24 1.36 Cohesive 

30 0.35 0.49 1.38 0.25 1.39 Cohesive 

Vivapur® 

Ibuprofen 

(% w/w) 

Bulk density 

(g/cm3) 

Tapped density 

(g/cm3) 

True density 

(g/cm3) 

Relative density 

(g/cm3) 
Hausner Ratio Flow character 

2.5 0.33 0.42 1.53 0.22 1.27 Easy flowing 

5 0.33 0.43 1.52 0.22 1.30 Easy flowing 

10 0.33 0.43 1.48 0.22 1.30 Easy flowing 

15 0.32 0.44 1.47 0.22 1.34 Easy flowing 

20 0.34 0.46 1.45 0.23 1.36 Cohesive 

30 0.33 0.46 1.40 0.24 1.40 Cohesive 
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4.4.3 Percolation threshold modelling 

Compaction pressures between 20 MPa to 60 MPa were selected to model 

percolation as the rearrangement of the particles inside the die, the phenomenon of 

interest, occurs at lower pressures. The modified Heckel model proposed by (Kuentz 

and Leuenberger, 1999) was applied for each ibuprofen/MCC blend and the 

respective percolation coefficient calculated (Table 4.3). No significant difference 

was observed between the percolation coefficients determined for blends prepared 

from Vivapur® and Emcocel® (t-value = 0.78, p-value of 0.449, p-value > 0.05). 

Therefore, the global mean of the individual percolation coefficients was calculated 

(𝑇 =3.5 ± 0.2) and used to determine the percolation threshold. 

Table 4.3. Percolation coefficient (Tf) values calculated for each Ibuprofen/MCC 
blend. r refers to Pearson’s correlation coefficient.  

Ibuprofen  

(% w/w) 

Vivapur® Emcocel® 

Tf r Tf r 

0% 2.96 0.997 3.23 0.996 

2.5% 3.23 0.996 3.29 0.979 

5% 3.57 0.994 3.81 0.995 

10% 3.52 0.996 3.80 0.996 

15% 3.51 0.996 3.67 0.998 

20% 3.62 0.997 3.66 0.995 

30% 3.70 0.997 3.41 0.998 

 

The linear correlation of Equation 1.28 is shown in Figure 4.6. The percolation 

threshold, ρc (AB), was determined for each blend according to Equations 1.28 and 
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1.29, using the empirical coefficient of 3.5 (Figure 4.7, Table 4.4). The minimum 

relative density required to produce tablets with significant strength, 𝜌 (𝐵), and 

solid fraction 𝜌 (𝐴) related to the dilution capacity of substance A (MCC) were 

calculated by fitting the mass fraction of MCC. 

Table 4.4. Critical solid fraction, ρc (ab), for each blend with increase in Ibuprofen 
concentration. r refers to Pearson’s correlation coefficient. 

MCC 

mass fraction 

Emcocel® Vivapur® 

ρc (AB) r ρc (AB) r 

1.000 0.156 1.000 0.169 1.000 

0.975 0.208 1.000 0.224 1.000 

0.950 0.211 1.000 0.233 1.000 

0.900 0.234 1.000 0.270 1.000 

0.850 0.247 1.000 0.292 1.000 

0.800 0.271 1.000 0.276 0.999 

0.700 0.318 1.000 0.351 1.000 
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Figure 4.6. Linear correlation between tablets relative density (ρ) and 𝜎 , as 
represented by Equation 1.27. 
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Figure 4.7. Relationship between blends percolation threshold, pc (AB), and 
microcrystalline cellulose mass fraction, as represented by Equation 1.30. 

Table 4.5 lists the value of 𝜌 (𝐵) expressed by the threshold relative density where 

there is a change in tensile strength behaviour. The values of 𝜌 (𝐵) were 0.646 and 

0.704 for blends of Emcocel® and of Vivapur®, respectively. Plots of tensile strength 

vs. relative density of all blends were investigated and confirmed the existence of the 

change in tablet strength behaviour at the predicted relative density of approx. 0.70. 

This behaviour is shown for selected blends in Figure 4.8.  
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Table 4.5. Comparison between theoretical (Kuentz and Leuenberger, 1998) and 
empirical percolation and mass fraction parameters modelled. r refers to Pearson’s 
correlation coefficient. 
  Emcocel® Vivapur® 

Percolation coefficient 
3.5 

(empirical) 
2.7 

(theoretical) 
3.5 

(empirical) 
2.7 

(theoretical) 

pc(A) 0.180 0.267 0.200 0.288 

pc(B) 0.646 0.698 0.704 0.736 

r -0.970 -0.970 -0.938 -0.934 

% critical mass fraction 17.76 23.54 19.08 24.68 
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Figure 4.8. Tensile strength of Vivapur®/ibuprofen blends at different relative 
densities. A change in tensile strength behaviour was predicted to occur in the 

point of intersection of two linear fits, for each blend. 
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Finally, the critical mass fraction (Xc) was calculated from 𝜌 (𝐴) using Equation 1.31. 

The Xc values obtained for Emcocel® and Vivapur® were 17.76 % w/w and 19.08 % 

w/w ibuprofen, respectively. The percolation thresholds and the critical mass 

fractions were also calculated by applying a theoretical value of percolation 

coefficient previously published (𝑇 = 2.7) (Guyon et al., 1987) to the Equation 1.27. 

This theoretical percolation coefficient was proposed for binary mixtures in which 

one of the substances compacts well and the second is poorly compactable, which 

would apply to the ibuprofen/MCC blends. A comparison of percolation threshold 

values obtained using the empirical value and theoretical value is reported in Table 

4.5.  

4.4.4 Properties behaviour above and below the thresholds  

Raman imaging showed how ibuprofen and MCC particles were distributed at the 

surface of the tablets (Figure 4.9). At drug concentrations below 15 % w/w drug the 

drug was distributed within a MC matrix. Significant sized clusters were observed at 

the concentration of 15 % w/w. However, they do not form a complete pathway able 

to link the entire surface of the tablet. At 20 % w/w a phase transition was noticed. 

As predicted by the percolation threshold model, there was an infinite cluster of 

ibuprofen particles at the surface at drug concentrations of 20 % w/w ibuprofen. The 

properties of the blend are majority ruled by material that forms an infinite cluster 

i.e., by the ibuprofen above the threshold and by MCC below the threshold.  
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Figure 4.9. Raman imaging of (a) Emcocel® and ibuprofen and (b) Vivapur® and ibuprofen blends. The areas in blue correspond to the excipient 
particles while the areas in white to API particles. The percentage express the % w/w of ibuprofen in the blend with MCC. 
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PCA summarised the experimental data collected during the development of the 

model, classified the samples into different groups, and identified the variables 

responsible for the variance between the samples. Initially the data was grouped into 

three groups (i) Microcrystalline cellulose, which comprises the placebo samples, (ii) 

Blends Above Threshold (concentrations of > 20 % w/w API), and (iii) Blends Below 

Threshold (concentrations of < 20 % w/w API). In Figure 4.10a, scores of blends above 

the percolation threshold showed negative correlation to tensile strength (TS) 

loadings for all the pressures, therefore, above the threshold lower strength tablets 

were observed. In contrast, Hausner ratio (HR) and compressibility (ΔBD) showed a 

positive correlation to blends above the threshold, which means high compressibility 

and poor flowability. These relationships in compressibility and flowability 

highlighted by PCA, was also noted by univariate analysis of data (Table 4.2). Low 

porosity (Po) at different compaction pressures and true density (TRD) showed to be 

highly correlated with Blends Above Threshold, which highlights that tensile strength 

was not improved with the reduction of porosity for the blends studied. The 

confidence interval of the groups Blends Below Threshold and Blends Above 

Threshold overlapped. This showed that PCA was not able to precisely predict a 

threshold drug concentration. Placebo samples showed a clear clustering 

represented by the group Microcrystalline cellulose. The separation of the placebo 

from the blends was explained mainly by the higher tensile strength and lower values 

of tapped (TAD), bulk (BD) and relative (RD) densities.  

Figure 4.10b shows the second data grouping, which provides an overview of the 

differences between blends prepared with Vivapur® and blends prepared with 
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Emcocel®. PC-3 differentiated these blends, to some degree (Figure 4.10b). There is 

an overlap between the groups for a selection of samples with < 10% ibuprofen 

loading and interestingly blends with different grades of MCC separate from one 

another at higher drug loadings. This is surprising and may highlight that despite both 

MCC grades exhibiting similar properties, at high drug loadings their interaction with 

the drug differs in the blend resulting in small differences in density parameters. 

Overall, Emcocel® blends had slightly higher porosity and tensile strength. They also 

showed slightly higher tapped, relative and bulk densities, and were less 

compressible than those containing Vivapur®.  
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Figure 4.10. Principle component Bi-plot (scores and loadings) for (a) PC-1 vs. PC-2 
and (b) PC-2 vs. PC-3, eigenvalues of 11.36, 2.71, and 1.17 for PC-1, PC-2, and PC-3, 
respectively. The ellipses around each group represents a 95% confidence interval. 

The squares represent the scores while the arrows represent the loadings. 
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4.5 Discussion 

The percolation coefficient value determined in this study (𝑇 = 3.5) was higher than 

the theoretical coefficient (𝑇 = 2.7) published by (Guyon et al., 1987). According to 

(Busignies et al., 2007), the percolation coefficient is dependent on the excipient and 

does not present a universal character. Thus, a difference between theoretical and 

empirical percolation coefficients was expected to occur. Other empirical strength 

percolation coefficients available in the literature are 𝑇 = 3.2 for paracetamol and 

MCC (Avicel PH101) (Kuentz and Leuenberger, 2000), 𝑇 = 2.1 for Lactose, 𝑇 = 3.8 

microcrystalline cellulose, and magnesium stearate (Busignies et al., 2007), 𝑇 = 4.6 

for lactose powder, and 𝑇 = 6.6 for lactose granules (Leuenberger and Ineichen, 

1997), and , 𝑇 = 3.89 for colloidal silica (Ehrburger and Lahaye, 1989). The percolation 

threshold coefficient has not been published for ibuprofen/MCC blends. Moreover, 

it was observed that other coefficients reported in the literature follow the same 

trend of being slightly greater than the theoretical coefficient. 

In this study the percolation coefficient was modelled from compaction pressure and 

tensile strength, which can be easily measured. Also, the coefficient calculated could 

be generalised for both grades of MCC, as there was no statistically significant 

difference between the values calculated. This shows that the coefficient model is 

robust, and the resulting value did not vary for blends of the same substances, even 

though there may exist morphological differences (particle size and shape). 

The percolation threshold determined for the binary blends with Vivapur® 102 and 

Emcocel® 90 differed marginally, with values of 0.1884 and 0.1718, respectively. 

Percolation theory explains that the threshold is a range of values close to the 
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modelled percolation threshold, but it is not possible to determine how close (Kuentz 

and Leuenberger, 2000). Therefore, the slight difference in pc between different MCC 

grades may be negligible. The critical mass fraction calculated using the theoretical 

coefficient resulted in higher values, 23.54 % w/w and 24.68 % w/w for blends of 

Emcocel® and of Vivapur®, respectively. However, the flow behavior and Raman 

imaging showed experimentally that the threshold happens between 15 % and 20 % 

w/w ibuprofen. The Raman technique used gave information on the drug distribution 

on the tablet surface. In future studies it would be useful to consider techniques such 

as 3D tomographic technologies e.g., X-ray Computational Tomography or a 3D 

Raman model to confirm whether the infinite cluster observed on the surface 

extended throughout the structure. Overall, ideally, the coefficient should be 

calculated for each powder blend, rather than considered as a theoretical universal 

value. 

Blends below the critical mass fraction (≤ 15 % w/w) showed good powder 

flowability, which is characteristic of microcrystalline cellulose. On the other hand, 

blends above the critical mass fraction (≥ 20 % w/w) presented cohesive character, 

as the ibuprofen powder. Raman images were used to investigate ibuprofen domains 

in the tablets and showed for the first time ever, the visualization of the phase 

transition predicted for tablets using the percolation threshold model. For the blends 

analysed, this phase transition was observed between the mass concentrations of 

15-20 % w/w, because an infinite cluster consisting of ibuprofen domains connected 

to each other was observed at the concentration of 20 % w/w.  
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When the critical concentration has been estimated graphically (Kimura et al., 2007; 

Mohamed et al., 2015; Pérez Gago and Kleinebudde, 2017), it was a retrospective 

methodology and had to be modelled for data from more complex analysis e.g., 

dissolution. This more complex analysis would also include failure systems (above the 

threshold) that would need to be carried out unnecessarily. Due to advances in data 

processing software packages since the earlier paper (Kuentz and Leuenberger, 2000) 

it is no longer challenging to model the percolation threshold mathematically. The 

advantage of modelling the percolation threshold mathematically is that this is a 

predictive tool. Flowability behaviour and tablet tensile strength could be predicted 

in this study based on a simple model that was only dependent  on compaction 

pressure, tensile strength, and relative density. The other numerous characterization 

techniques used in this study had the aim to prove the values modelled and 

investigate differences between the two different grades of MCC; they are not 

necessary for the percolation threshold model. Therefore, the percolation threshold 

model shown in this study represents a simplified mathematical predictive tool that 

can easily be applied for different formulations.  

Principal Component Analysis was not able to identify a clear threshold level with 

increasing drug loading. However, PCA was able to summarize all the data collected 

and aided in clarifying differences between the blends according to the drug loading, 

and differences between the blends containing Vivapur® and the blends containing 

Emcocel®. Low porosity strongly and negatively correlated to blends with high drug 

loading which confirms that the porous regions present in the MCC placebo matrix 

were occupied by particles of ibuprofen as drug was introduced. The explained 
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variance of PC-3 (7.61 %) showed that the PCA model only captured a small 

difference between Vivapur® and Emcocel® blends. The most expressive differences 

between these two groups along PC-3 were bulk, tapped, and relative densities, 

which are related to the morphological differences between both grades of MCC, 

captured in the SEM and Morphologi G3® analysis.    

4.6 Conclusions 

In this study a percolation coefficient for an ibuprofen/MCC combination was 

successfully modelled and the value obtained (𝑇 = 3.5) was consistent with earlier 

reported values for similar drug/excipient combinations. Dilution capacities of 19.08 

% w/w and 17.76 % w/w ibuprofen were calculated for both Vivapur® and Emcocel® 

blends, respectively. A change in blend behaviour above the threshold value was 

confirmed by experimental flow data. Also, Raman imaging confirmed the presence 

of infinite clusters of drug particles on the tablet surface above the threshold value.  

The minor differences in physical properties between MCC grades did not result in 

significantly different dilution capacities. PCA of the data was not able to identify a 

clear threshold level with increasing drug loading. The modelling approach used in 

this study can be applied to early formulation development studies to identify 

optimal drug loading for robust pharmaceutical blend processing. 
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5.1 Abstract 

The study presented was conducted to determine whether a percolation threshold 

value, determined in Chater 4 for ibuprofen/ microcrystalline cellulose (MCC) blends 

using percolation theory and compression data (Queiroz et al., 2019), could also be 

observed during tablet disintegration and dissolution. The influence of MCC grade 

(air stream dried versus spray dried) on tablet disintegration and dissolution was also 

investigated. Complementary to conventional disintegration and dissolution testing, 

Raman imaging determined drug distribution within tablets, and in-line particle video 

microscopy (PVM) and focused-beam reflectance measurement (FBRM) monitored 

tablet disintegration. Tablets were prepared containing 0 to 30% w/w ibuprofen. 

Raman imaging confirmed the percolation threshold by quantifying the number and 

equivalent circular diameters of ibuprofen domains on tablet surfaces. Across the 

percolation threshold a step change in dissolution behaviour occurred, and tablets 

containing air stream dried MCC showed slower disintegration rates compared to 

tablets containing spray dried MCC. Dissolution measurements confirmed 

experimentally a percolation threshold in agreement with that determined using 

percolation theory and compression data. An increase in drug domains, due to 

cluster formation, and less efficient tablet disintegration contributed to slower 

ibuprofen dissolution above the percolation threshold. Slower dissolution was 

measured for tablets containing air stream dried compared to spray dried MCC. 
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5.2 Introduction 

Disintegration and dissolution behaviours are critical quality attributes assessed to 

evaluate drug release performance (Dressman and Krämer, 2005; Huang et al., 2011; 

Nickerson et al., 2018). Disintegration is often the rate determining step for drug 

release, particularly for poorly water soluble drugs (Caramella et al., 1988). 

Disintegration is the mechanical fragmentation of the compressed tablet into small 

granules or agglomerates. Disintegration is initiated by liquid penetration in the 

porous of the compact. Swelling is one of the most accepted disintegration 

mechanisms, which is characterized by an enlargement of the particles that builds up 

pressure to fragment the tablet matrix (Markl and Zeitler, 2017). The bonding 

mechanism during compression and the bonding surface area have a direct impact 

on tablet disintegration. Swelling depends on an optimal tablet porosity, such that 

the liquid can enter the tablet matrix, however, the void spaces are too large to 

suppress the swelling action of disintegrants (Desai et al., 2016). 

The application of modelling approaches to enhance product knowledge has been 

motivated by quality guidelines as an alternative to iterative testing approaches 

during formulation development (International Council for Harmonisation, 2012, 

2008, 2005a, 2005b; Kimura et al., 2013). The percolation threshold model has been 

used to explain how particle-particle interactions of drug and diluents alters 

dissolution performance of formulations containing different drug loadings (Bonny 

and Leuenberger, 1993, 1991, Kimura et al., 2007, 2013; Stillhart et al., 2017; Wenzel 

et al., 2017).  
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Previous studies determined the percolation threshold value from disintegration and 

dissolution experimental data (Kimura et al., 2007; Stillhart et al., 2017; Wenzel et 

al., 2017). These studies experimentally determined critical loadings at which 

disintegration times undergo a step change. These were then assumed to be the 

percolation thresholds. However, Kimura, Betz and Leuenberger, 2007 

recommended further studies to investigate if the change in disintegration behaviour 

was linked to the formation of the infinite cluster described by the percolation 

threshold theory (Kimura et al., 2007). Since these earlier studies, technological 

advancements have provided novel techniques to study drug distribution in tablets 

and tablet disintegration behaviour. These techniques can be key to providing data 

to support the percolation threshold concepts and the findings of previous studies. 

Spectral imaging techniques have been used to provide in-depth information related 

to drug distribution in pharmaceutical tablets. These techniques can be used to 

investigate the cluster formation predicted by the percolation theory. Fourier 

transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and Raman 

spectroscopy are the main techniques employed (Chan et al., 2005; Kazarian and 

Ewing, 2013; Miller and Havrilla, 2005; Zhang et al., 2005). Among those, 

advancements in Raman instruments has enabled the technique to rapidly map drug 

distribution in tablets. Raman imaging instruments have been designed to capture 

rich spectroscopic data which can be translated to provide high-resolution chemical 

information for tablets (as low as 1 µm per pixel) and require short acquisition times 

(approx. 15 min for a tablet of 13 mm diameter) (Ali et al., 2013). 
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Focused Beam Reflectance Method (FBRM) and in-line Particle Video Microscopy 

(PVM) are innovative techniques that can give real-time in-situ information regarding 

disintegration and dissolution performance of tablets. FBRM has been used to 

monitor the rate and the degree of change in the number of particles and particle 

structures in a process (Barrett et al., 2011; Gregory, 2009; Simon et al., 2019; Zhong 

et al., 2020). Measurement of the solid particles using FBRM is performed without 

the need for sampling and performing off-line analysis. The system gives particle 

count, dimension and shape information in real time by monitoring changes in the 

system as they occur (Barrett and Glennon, 1999). PVM provides real-time images of 

the system allowing the user to visually track changes in the solids over time (Barrett 

and Glennon, 2002). Alternatively, automatic algorithms of image analysis can be 

coupled to it. The imaging window measures an area of approximately 800 µm by 

1100 µm. PVM also records a Relative Backscatter Index (RBI) trend which can be 

used to track changes in the shape and size of solid particles as well as changes in the 

solids concentration (Werner et al., 2017). RBI is comparable to turbidity monitoring. 

Increased RBI indicates a larger amount of solids (Hartwig and Hass, 2018). As tablet 

disintegration progresses the number of particles in the slurry increase as larger 

particles fragment. Therefore, as disintegration proceeds, more particles are 

captured in the image and the RBI increases. 

FBRM and PVM techniques are commonly used in crystallization studies (mass 

transfer from solution to solid phase) (Barrett et al., 2011; Hartwig and Hass, 2018; 

Jiang et al., 2014; Liu et al., 2011; Mitchell et al., 2011; Simon et al., 2019; Simone et 

al., 2015). FBRM has also been utilized in previous studies for investigating tablet 
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disintegration and dissolution (Coutant et al., 2010; Han et al., 2009; Menning, 2016; 

Metzler et al., 2017). PVM has the potential to monitor tablet disintegration and 

dissolution because changes in particle size and shape in suspension are key features 

observed during tablet disintegration and dissolution. 

The aim of this study was to investigate if a step change in disintegration and 

dissolution behaviour was observed for tablets produced with drug loadings below 

and above a predetermined percolation threshold. The percolation threshold of 

these systems was determined in an earlier study using the physical principles of 

blending and compaction (Queiroz et al., 2019). The model system investigated was 

tablets produced from binary blends of microcrystalline cellulose (MCC) and 

ibuprofen (IBU) at a range of ibuprofen mass loadings. Tablets were prepared with 

two different MCC grades; one spray dried and one air stream dried. The percolation 

threshold values determined were 19.08% w/w and 17.76% w/w IBU for blends with 

air stream dried MCC and spray dried MCC, respectively (Queiroz et al., 2019). A 

secondary study aim was to determine if the grade of MCC altered any changes in 

disintegration and dissolution behaviour observed.  

In the context of the previous and the present study, percolation threshold is a 

geometric phase transition in which the concentration of ibuprofen particles is high 

enough to form a cluster that spans throughout the entire volume of the tablet. 

When this ibuprofen particle cluster is formed, it is anticipated that a step change in 

properties of the blend will occur. For example, a reduction in flow, compaction and 

dissolution would be anticipated with ibuprofen particle cluster formation, as 

ibuprofen has poor flowability and compressibility properties compared to MCC (Al-
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Karawi et al., 2018; Liu et al., 2008), and is considerably more hydrophobic (Kawabata 

et al., 2011). 

In addition to traditional pharmacopeial disintegration and dissolution techniques, 

process analytical technologies (FBRM and PVM) were employed to better 

understand tablet disintegration behaviour, and hence its influence on drug 

dissolution. Building on the application of Raman imaging to qualitatively identify 

clusters of ibuprofen particles (Queiroz et al., 2019), the present study demonstrated 

how Raman spectroscopy can be used to quantitatively determine the size and the 

number of ibuprofen clusters formed on tablets surfaces and hence confirm the 

percolation threshold determined from compaction data. The MCC grades studied, 

have similar specifications; average particle size of 130 µm determined by laser 

diffraction, and similar bulk density (0.28–0.33 g/mL for the air stream dried and 

0.25–0.37 g/mL for the spray dried). Queiroz et al. confirmed similarities in particle 

size distribution between grades by dry powder, laser diffraction analysis. Particle 

analysis employing an image analysis technique, identified morphological differences 

between MCC grades: the air stream dried grade contained a greater number of 

particles with needle shaped geometry, while the spray dried grade contained a 

greater number of spherical-shaped particles (Queiroz et al., 2019). 

5.3 Materials 

Emcocel®90 (spray dried) and Vivapur®102 (air stream dried) were supplied by JRS 

Pharma (Weissenborn, Germany) and ibuprofen by Kemprotec (Cumbria, UK). The 

two MCC products studied were medium size standard grades with theoretical bulk 

density of 0.28 - 0.33 g/mL for the air stream dried and 0.25 – 0.37 g/mL for the spray 
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dried MCC. A range of particulate and bulk powder properties of the batches of 

ibuprofen, air stream dried MCC and spray dried MCC used in this study had been 

previously determined in Chapter 4 (Table 4.1). Other materials used such as buffer 

components and HPLC mobile phase were all supplied by Sigma Aldrich, Ireland. 

5.4 Methods 

5.4.1 Tablet manufacture and characterization 

Binary blends of MCC and IBU were prepared containing a range of IBU 

concentrations: 2.5, 5, 7.5, 10, 12.5, 15, 20, and 30 % w/w. Each blend, total weight 

300 g, was prepared using a cube mixer KB 15 (Erweka, Heusenstamm, Germany) at 

30 rpm for a duration of 30 min. Tablets were prepared according to section 4.2.2.4. 

However, the tablet hardness was controlled to 120 ± 10 N, tablet weight variation 

to 270 ± 10 mg, the room air humidity to 50 ± 5 % and temperature to 19 ± 2 °C. The 

tablets were characterized according to the methods described in section 4.2.2.5. 

5.4.2 Raman imaging analysis of tablet surface 

Tablets had theirs Raman imaging acquired and then cut in horizontal and vertical 

layers. Raman imaging analysis of those segments were also performed. Drug and 

excipient distributions on external surfaces and surfaces of internal sections of 

tablets were investigated by Raman imaging analysis using a RA802 Pharmaceutical 

analyser (Renishaw, New Mills, UK) as described in section 4.2.2.8. Domains of each 

substance were determined based on the reference spectra acquired for the pure 

substances. Domains of each substance in the generated images were analysed using 

Particle Analysis in Renishaw’s WiRE software. This software resolves the image 
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domains and determines particle metrics. The numbers of domains of ibuprofen on 

the entire surface of each tablet and their average equivalent circle diameters were 

determined. 

Raman imaging also gives an averaged spectrum of the surface of the tablet. The 

spectra of the tablets were used to build a PCA. Unscrambler X (Camo Analytics, Oslo, 

Norway) was used to perform the PCA with full cross validation, using the algorithm 

Singular Value Decomposition (SVN). 

5.4.3 Disintegration analysis 

In vitro disintegration time was determined in water at 37 °C ± 2 °C, using a tablet 

disintegration tester ZT42 (Erweka, Edison, USA) which complies with Ph. Eur. 2.9.1 

(Disintegration of tablets and capsules) (Council of Europe, 2019). Each tablet was 

placed inside of one basket which were continuously and automatically agitated 

vertically in the disintegration medium. The disintegration process was observed 

until the tablets disintegrated into small enough particles that could escape the 

basket so that no substantial material remained in the basket. Analysis was 

performed in triplicate. 

5.4.4 FBRM and PVM analysis 

FBRM (FBRM G600) and PVM (PVM V19) (Mettler Toledo, Leicester, England) were 

used to monitor tablet disintegration using a Mettler Toledo EasymaxTM 102 system. 

The disintegration medium was phosphate buffer (pH 7.2). The system used 

consisted of 100 mL glass vessels with automated internal temperature and agitation 

control. System specific PTFE (polytetrafluoroethylene) lids allowed for integration 
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of the FBRM and PVM probes. A visual check of the system was possible through an 

inspection window at the front of the system. 

The working volume of the system was 50 mL. Experiments were performed at 37 °C 

and the agitation rate was 250 rpm using an upward pumping, pitch blade impeller 

for 30 minutes after the tablet was added to the vessel.  The powder or tablet was 

added to the glass vessel under agitation. PVM and FBRM monitoring was performed 

throughout the duration of the experiment; FBRM data was recorded every 2 

seconds and two PVM images were recorded every second.  

5.4.5 Dissolution studies 

The dissolution studies were carried out using a DT 600 dissolution tester of Ph. Eur. 

2.9.3 (paddle) (Erweka, Edison, USA). A volume of 500 mL of phosphate buffer pH 7.2 

equilibrated at 37 ˚C was used as the dissolution medium and the paddle rotation 

was kept at 50 rpm. Solubility of ibuprofen in the given conditions is 3.74 mg/ml 

(Dabbagh and Taghipour, 2007). The experiment was conducted using sink 

conditions; the theoretical concentration of Ibuprofen in the dissolution medium 

following complete dissolution of 30 % w/w ibuprofen tablets was 0.16 mg/ml. 

Following addition of the tablet sample to the dissolution medium, samples of      0.5 

ml volume were withdrawn at 1, 5, 15, 30, 60 and 120, 180, and 240 min intervals in 

order to determine the dissolution profiles. An additional sample was taken at the 24 

h time point to determine the total amount of drug in each tablet tested. At the 24 h 

time point the tablet had completely disintegrated and complete IBU dissolution was 

assumed. 



 Chapter -5 
 

Ana Luiza Pinto Queiroz Page 199 

All samples were filtered using 0.45 µm filter and 0.5 mL of fresh, pre-warmed 

medium was immediately added to the system in order to correct the volume to the 

sample volume withdrawn. Samples were analysed by HPLC. The % cumulative 

amount IBU released was calculated and plotted against time.  

HPLC analysis was performed using an Agilent 1200 series HPLC system with an 

UV/Vis detector (Agilent Technologies, Santa Clara, USA). A reversed-phase column 

(Gemini C-18, 250 × 4 mm x 5 μm, Phenomenex Ltd. UK), mobile phase of acetonitrile 

and water (60:40, pH adjusted to 2.5) at a flow rate of 1.5 ml/min and injection 

volume of 20 μL were employed. The wavelength for Ibuprofen detection was set at 

215 nm and retention time was 7 min. 

5.5 Results 

5.5.1 Tablet Characterisation  

The average content of ibuprofen was determined for all tablets analysed and 

compared to the theoretical content (Table 5.1). Greatest variance between actual 

and theoretical content was measured for the 30 % w/w ibuprofen loading. Drug 

content uniformity was also determined with the percentage relative standard 

deviation less than 7 % for all drug loading. Tablet porosity was also determined 

(Table 5.1) as it can influence tablet disintegration and dissolution (Ibrahim, 1985; 

Yassin et al., 2015). Porosity of tablets decreased as ibuprofen content increased. The 

porosity of tablets containing spray dried MCC was slightly greater than tablets 

containing the air stream dried MCC at all drug loadings except for 15%.
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Table 5.1. Tablet ibuprofen theoretical and average actual content ± % relative standard deviation (n=5), blend true density and tablet porosity. 
* Values obtained from Table 4.2. 

Theoretical drug 

concentration 

(% w/w) 

Theoretical drug 

content 

(mg) 

Air stream dried MCC Spray dried MCC 

Actual drug content 

(mg) 

Porosity 

(%) 

True 
density* 

(g/cm3) 

Actual drug content 

(mg) 

Porosity 

(%) 

True 
density* 

(g/cm3) 

2.5 % 6.75 6.63 ± 2.60 % 30.3 1.53 6.82 ± 1.57 % 32.3 1.52 

5 % 13.50 13.40 ± 2.21 % 30.9 1.52 13.17 ± 2.79 % 31.1 1.51 

10 % 27.00 27.33 ± 2.81 % 28.5 1.48 27.06 ± 1.38 % 29.7 1.49 

15 % 40.50 41.68 ± 1.78 % 28.6 1.47 41.94 ± 5.02 % 28.5 1.47 

20 % 54.00 54.13 ± 4.26 % 26.1 1.45 55.04 ± 2.01 % 28.4 1.45 

30 % 81.00 78.33 ± 6.77 % 23.1 1.40 85.34 ± 2.00 % 24.10 1.38 
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5.5.2 Raman imaging analysis of tablet surface 

Raman spectroscopy did not show differences between the characteristic bands of 

the MCC tablets (air stream dried and spray dried MCC only), indicating similar 

chemical identity of microcrystalline cellulose between grades. In respect to the 

ibuprofen loading, spectral peaks related to ibuprofen increased in intensity when 

ibuprofen loading was increased (Figure 5.1).  
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A 

B 

Figure 5.1. Average Raman spectra of the surface of (A) Spray dried MCC (Emcocel®) 
and (B) Air stream dried MCC (Vivapur®) tablets containing a range of ibuprofen 

loadings: (a) 30 %, (b) 20 %, (c) 15 %, (d) 12.5 %, (e) 10 %, (f) 7.5 %, (g) 5 %, (h) 2.5 
%, and (i) 0 % ibuprofen w/w. Vertical lines indicate characteristic peaks of 

ibuprofen. 

Raman images for tablets of all drug loadings were shown in Figure 4.9. In this study 

the number of ibuprofen domains on surfaces of each tablet was determined from 

these Raman images, as described in section 3.2. The number of ibuprofen domains 
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decreases for the tablets with drug loading above 15 % w/w (Table 5.2), despite an 

increase in the overall intensity peaks related to ibuprofen (Figure 5.1). Above the 

percolation threshold the domains of ibuprofen start to connect to the neighbouring 

ibuprofen domains. Thus, one single domain with larger area is counted, instead of 

numerous smaller neighbouring domains. In the case of the compacted tablets, it 

results in a change in the drug distribution from dispersion of drug particles in a 

matrix of MCC (large number of small drug domains) to distribution of MCC in a 

matrix of drug (smaller number of larger drug domains). The resulting larger domains 

were characterized by continuously increased equivalent circular diameter of 

ibuprofen domains with a more pronounced increase between the concentrations of 

15% and 20% w/w ibuprofen (Table 5.2). These results build on the results in the 

earlier study which qualitatively confirmed the percolation threshold values 

determined by visual appearance, which can be subjective. In this study the 

quantitative data obtained related to the number and size of ibuprofen domains 

provides a less subjective confirmation of the percolation threshold value. 
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Table 5.2. The number of ibuprofen domains (N) and the equivalent circular diameter 
(ECD) of ibuprofen domains on the surface of Air stream dried MCC and Spray dried 
MCC tablets containing a range of ibuprofen loadings (2.5 to 30% w/w ibuprofen). 
The number of domains and the equivalent circular diameter values were 
determined from images generated using Raman image analysis. 

% w/w 

Ibuprofen 

Air stream dried MCC Spray dried MCC tablets 

N 

ECD of ibuprofen 
domains 

(μm) 

N 
ECD of ibuprofen domains 

(μm) 

2.5 % 158 69.2 130 62.0 

5 % 264 70.4 218 59.6 

7.5% 264 76.7 343 74.4 

10 % 462 79.5 475 71.8 

12.5% 377 74.3 469 77.1 

15 % 513 90.5 483 88.6 

20 % 377 103.5 376 103.4 

30 % 112 153.7 72 138.9 

PCA of Raman spectra of the surface of tablets showed that the first principal 

component (PC-1) captured the effect of drug loading i.e., what blend behaviours 

change as the drug loading increases, while the second principal component (PC-2) 

captured variability within the samples due to both MCC grade and due to ibuprofen 

drug loading. The scores plot showed samples that are similar or different from each 

other i.e., samples geometrically located at distance are dissimilar to each other 

while neighbouring samples are similar (Figure 5.2a). PC-1 and PC-2 explained 88% 

and 7% of the variance captured by the model, respectively. Raman shifts of 93, 

142.8, 639, 748, 835, 1184, 1209, and 1610 cm-1 were the variables that mostly 

contributed to discriminating the samples along the first component of the model 
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(PC-1) (Figure 5.2b). Those bands are characteristic of ibuprofen (Sütő et al., 2016) 

and they were not observed in the spectra of the tablets containing pure MCC (Figure 

5.1). As stated previously, these peak heights increased with the increase in drug 

loading. The PCA model showed that tablets containing air stream dried MCC differed 

from tablets containing spray dried MCC along PC-2. Loadings of PC-2 contained 

peaks assigned to both ibuprofen and MCC. PC-2 also showed a general upwards 

shifting of the baseline with reduction in Raman shift. Both chemical and physical 

attributes of the tablets may explain this variability in Raman spectra. Differences in 

tablet porosity was observed with increase in drug loading and between MCC grades 

(Table 5.1). Raman spectra can show stronger intensities for more compacted (less 

porous) samples due to an increased number of scattering molecules that will 

produce a Raman signal (Gómez et al., 2019). The upwards shift may also be due to 

Raman fluorescence, which is a material-dependent phenomenon; fluorescence is 

phenomena intrinsic to MCC. Microcrystalline cellulose is known to be fluorescent 

mainly due to the presence of lignin (Castellan et al., 2007). Variance related to 

ibuprofen peaks (e.g., at the shifts 835 and 1610 cm-1) and the main characteristic 

Raman bands assigned to cellulose (e.g., at 1096 cm-1 and within the region 275-550 

cm-1) (Wiley and Atalla, 1987) are also present in the loadings of PC-2. The region of 

275-550 cm-1 is known to hold crystallinity information of cellulosic materials 

(Agarwal et al., 2010). Thus, the separation of the samples along PC-2 may be an 

indication that the differences between the spray dried and the air stream dried MCC 

grades included crystallinity, lignin content, and compact density. The spectral 

comparison between the air stream and the spray dried samples is available in Figure 

5.3.  
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A 

 
B 

 
C 

 

Figure 5.2 (A) Scores plot and (B and C) loading plots of the principal component 
analysis of Raman spectra acquired from Spray dried MCC (Emcocel®) and Air 

stream dried MCC (Vivapur®) tablets and tablets containing a range of ibuprofen 
loadings (2.5 % to 30 % w/w ibuprofen). PC-1 and PC-2 are the first and the second 

principal components, respectively.  
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Figure 5.3.Raman spectra of compacts (A) of spray dried microcrystalline cellulose 
(Emcocel®), and air stream dried microcrystalline cellulose (Vivapur®), and (B) of 

tablets containing 30 %w/w ibuprofen/microcrystalline cellulose. 

5.5.3 Disintegration and dissolution studies 

Tablet disintegration using Ph. Eur. 2.9.1 disintegration apparatus showed that all 

tablets had completely disintegrated in less than 5 min. Differences between tablets 

containing different drug loadings or MCC grades could not be accurately determined 

by the Ph. Eur. 2.9.1 apparatus. The tablets investigated contain a high percentage in 
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mass of MCC, which is highly hygroscopic and a noted disintegrant (Rowe et al., 

2009). Thus, disintegration happened fast independently of the MCC grade.  

The results of the Ph. Eur. 2.9.3 dissolution study showed that increased ibuprofen 

concentration had a negative impact on the dissolution behaviour of Ibuprofen/MCC 

tablets (Figure 5.4). The effect of ibuprofen loading on drug dissolution was evident 

for ibuprofen concentrations above the percolation threshold, 20 and 30% w/w of 

ibuprofen; time to achieve 100% ibuprofen release increased significantly (Figure 

5.5). Tablets containing the air stream dried MCC required statistically significantly 

longer durations to achieve 100% ibuprofen release for all drug loadings, in 

comparison to tablets containing the spray dried MCC. Tablets containing 30% w/w 

IBU and air stream dried MCC did not reach 100% release in 240 min. Complete 

release was confirmed after 24h. It is also interesting to note that an increase in time 

to reach 100% cumulative ibuprofen release was observed between 2.5 and 5% drug 

loading (air stream dried MCC) and 2.5 and 7.5% drug loading (spray dried MCC) 

(Figure 5.5). This change in dissolution behaviour was not related to a percolation 

threshold of ibuprofen in the MCC matrix but may have resulted due to other factors 

such as differences in porosity and particulate bonding disintegration behaviour 

(Desai et al., 2016) and hence dissolution. 
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Figure 5.4 Dissolution profiles of tablets containing (A) Air stream dried MCC 
(Vivapur®) and (B) Spray dried MCC (Emcocel®) and different ibuprofen w/w 

loadings (2.5 to 30% w/w). Dissolution was performed in phosphate buffer pH 7.2 at 
37oC. Average values shown with y-error bars indicating standard deviation, n= 5. 
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Figure 5.5 Time to reach 100% ibuprofen release during dissolution of tablets 
containing Spray dried and Air stream dried MCC and different ibuprofen w/w 

loadings (2.5 to 30% w/w). Tablets containing air stream dried MCC and 30% w/w of 
ibuprofen did not reach 100% release in 240 min. However, the complete release 

was confirmed after 24h. Dissolution was performed in phosphate buffer pH 7.2 at 
37oC. Average values shown with y-error bars indicating standard deviation, n= 5. 

5.5.4 FBRM monitoring 

FBRM was used as a PAT tool to determine if tablet disintegration played a role in the 

differences observed between dissolution of tablets containing air stream dried and 

spray dried MCC grades with increasing drug loading. Two aspects were investigated: 

the differences among tablets below and above the percolation threshold and the 

differences between both MCC grades. This analysis was complementary to the 

pharmacopoeial disintegration test which was not able to capture differences 

regarding these two aspects. As mentioned previously, FBRM gives particle count, 

dimension information in real-time (Barrett and Glennon, 1999). It was hoped that 

the ibuprofen clusters observed in the tablets by Raman imaging could be observed 

in the disintegration medium and potentially explain the differences in dissolution 
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observed between tablets containing spray dried and air stream dried MCC grades at 

different drug loadings.  

Initially, disintegration monitored by FBRM was performed using spray dried and air 

stream dried MCC tablets without ibuprofen to determine differences in 

disintegration due to MCC grade. Both tablets displayed very similar behaviour with 

a sharp increase in particle counts upon addition of the tablet to the phosphate 

buffer pH 7.2. Figure 5.6 shows that the counts vs time profile for the two MCC grades 

were very similar, indicating that the tablets disintegrated at the same rate. 

 

Figure 5.6. Focused Beam Reflectance Measurement (FBRM) counts 1-1000 µm 
versus time for tablets containing air stream dried and spray dried MCC in 

phosphate buffer pH 7.2, and temperature of 37 °C. 

Figure 5.7 shows the FBRM total counts vs time for ibuprofen tablets added to the 

disintegration medium for the first 30 minutes. All tablets show a rapid increase in 

counts for the first 5 minutes approximately, indicating that, as with the tablets of air 

stream dried and spray dried MCC without ibuprofen, tablet disintegration began 
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immediately upon addition of the tablet to the medium for all ibuprofen loadings. A 

similar profile is seen for each tablet of spray dried MCC regardless of ibuprofen 

loading. The counts increased sharply in the first 30 seconds after addition to the 

medium and then continued to increase at a slower rate for the following minutes. 

Overall, air stream dried MCC tablets showed a less consistent total counts versus 

time profile for different drug loadings in comparison to spray dried MCC tablets. 

When the different ibuprofen loadings were compared, the loadings of 20 % and 30 

% w/w ibuprofen showed reduced total counts profiles compared to lower drug 

loadings. The total counts profiles for tablets containing air stream dried MCC was 

also lower in comparison to tablets containing spray dried MCC, for all ibuprofen 

loadings (Figure 5.8). These differences were more pronounced above the 

percolation threshold > 15% ibuprofen. 
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Figure 5.7. Focused Beam Reflectance Measurement (FBRM) total particle counts 
(counts 1-1000 µm) versus time for tablet containing (A) Spray dried MCC and (C) 
Air stream dried MCC and different ibuprofen w/w loadings (2.5 to 30% w/w) in 

phosphate buffer pH 7.2 and temperature of 37 °C. 
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Figure 5.8. Focused Beam Reflectance Measurement (FBRM) total counts over time 

for Air stream dried MCC (Vivapur®) and Spray dried MCC (Emcocel®) tablets 
containing ibuprofen (A) 7.5 %, (B) 15 %, (C) 20 %, and (D) 30% w/w in phosphate 

buffer pH 7.2 and temperature of 37 °C. 

Due to the variability in the total number of counts for each tablet a relative increase 

in FBRM counts was measured for each tablet to enable comparison between tablets 

behaviour during the disintegration process. Figure 5.9 shows the time required to 

reach 50, 60, 70, 80, 90% total counts. All tablets were tracked for 30 minutes. Thus, 

100% was considered the total counts at 30 min for each tablet. After 30 minutes the 

disintegration process for all tablets was considered complete. The overall trend 
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showed a longer time for tablets containing air stream dried MCC compared to spray 

dried MCC, indicating a slower disintegration rate. 

A 

 

B 

 

Figure 5.9. Time to reach percentage of total counts measured by FBRM for tablets 
during disintegration containing (A) Spray dried MCC and (B) Air stream dried MCC 
and different ibuprofen w/w loadings (2.5 to 30% w/w) in phosphate buffer pH 7.2 

at 37oC. Percentages expressed relative to total counts at 30 mins considered 100%.  
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An indication of particle size distribution during disintegration was obtained from the 

FBRM chord length distributions and square weighted chord length distributions 

(SQWT). Representative tablets with 12.5, 15 % w/w, and 30 % w/w ibuprofen 

loadings after 5 minutes of dissolution are shown in Figure 5.10. These distributions 

are automatically generated for the user by the iC FBRM software. The CLD is 

comparable to a particle size distribution. It is the number of chord lengths recorded 

in the measurement scan time vs the chord length. The SQWCLD is useful for visual 

comparison of systems by emphasising differences in the coarse counts (100 – 1000 

µm). This is achieved by applying a channel (size intervals or bins) specific weight wi 

to counts ni. The weighted channels yi are obtained via: 

𝑦 = 𝑤 ∙𝑛  (Equation 5.1) 

The weights wi are obtained from the channel midpoints Mi via: 

𝑤 =
𝑀

∑ 𝑀
∙ 𝑁 (Equation 5.2) 

Where γ is 2 for the square weight, N is the number of channels, which was 90 in this 

study, i = 1, 2, …, N and j =1, 2, …, N. 
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Figure 5.10. Focused Beam Reflectance Measurement (FBRM) chord length 
distributions and square weighted chord length distributions for Emcocel® (spray 

dried MCC) and Vivapur® (air stream dried MCC) tablets with ibuprofen loading (A) 
12.5 %, (B) 15%, and (C) 30 % w/w, 5 minutes after addition to the disintegration 

medium, phosphate buffer pH 7.2 and temperature of 37 °C. 
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Coarse counts account for a much larger proportion of the mass of material 

compared with fine counts (1-10 µm). While the CLDs for both systems have a similar 

shape profile, the increased number of total counts and shorter chord length counts 

was evident for the spray dried compared to the air stream dried MCC. Fine counts 

may be related to disaggregation of MCC particles during disintegration. MCC is 

composed of cellulose fibrils agglomerated into larger particles (Queiroz et al., 

2019.). Therefore, particle disaggregation during disintegration can result in smaller 

particle sizes observed in the buffer compared to the particle size distribution 

reported for dry MCC particles (Table 4.1). When the square weighted CLDs are 

compared there is a distinct shift to the right for air stream dried, highlighting the 

increased particle size present 5 minutes after the tablet addition to the buffer. An 

increase in fine counts (1-10 µm) in the CDL present in the spray dried MCC system 

suggested that tablets of the spray dried MCC disintegrated more effectively than 

tablets of the air stream dried MCC at a 30 % w/w ibuprofen loading. For loading 

below the percolation threshold, a similar trend was seen although the shift to the 

right for air stream dried in the square weighted CLD is less pronounced. This is 

exemplified by 12.5 % w/w ibuprofen tablets in Figure 5.10. 

The plots of chord length distributions at different time points during disintegration 

for all tablets were generated and selected profiles shown in Figure 5.11. The 

increase in counts over time happens similarly across all chord lengths for a same 

tablet i.e., the distribution did not show a shape change at different time points. 

Interestingly, the increase in count is clearly more significant up to 5 min. After 5 

minutes, the change chord length distributions were comparatively small. 
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Figure 5.11. Focused Beam Reflectance Measurement (FBRM) chord length 
distributions for tablets with ibuprofen loadings of 12.5 %, 15%, and 30 % w/w and 

(A, C, and D) Spray dried MCC (Emcocel®) and (B, D, and F) and Air stream dried 
MCC (Vivapur®), respectively, at different times after addition to the disintegration 

medium, phosphate buffer pH 7.2 and temperature of 37 °C. 

Based on the results shown in Figure 5.11, the greatest degree of disintegration 

occurred in the first 5 minutes, the cumulative drug release at 5 min was plotted 
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against drug loading to investigate the differences in drug release below and above 

the threshold during tablet disintegration (Figure 5.12). Similar graphical approaches 

have been previously used to determine the percolation threshold from 

disintegration and dissolution (Kimura et al., 2007; Wenzel et al., 2017). Cumulative 

ibuprofen release decreased sharply from 2.5 to 15% w/w of ibuprofen loading. 

However, at drug loadings above the reported percolation threshold (20% w/w and 

30% w/w ibuprofen) the reduction in drug release with increase in drug loading was 

decreased. Tablets containing the air stream dried MCC showed significantly lower 

drug release for all drug loadings in comparison to tablets containing the spray dried 

MCC. These findings confirmed a step change in drug dissolution behaviour at drug 

concentrations above and below the predicted percolation threshold following tablet 

disintegration.  
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A 

 

B 

 

Figure 5.12. Estimation of percolation threshold based on the dissolution 
cumulative release of ibuprofen from the tablets containing (A) Air stream dried 
MCC and (B) Spray dried MCC, at 5 min of dissolution. The time of 5 minutes was 

chosen to represent the differences in behaviour during disintegration. 

5.5.5 PVM analysis 

PVM analysis was performed to provide real-time images of particles in dissolution 

medium during tablet disintegration. Besides the images, PVM relative backscatter 

index was used as a quantitative measure of disintegration. Initially, images were 
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collected using the PVM probe for ibuprofen powder and both MCC only tablets in a 

buffer. The ibuprofen particles had a distinct rod-shaped habit (Figure 5.13a). 

Dispersed ibuprofen powder was present as both discrete particles and aggregates. 

The ibuprofen particles appeared to be between 100 and 300 µm in length and 30 

and 50 µm in width. When compared with the particle size for the dry powder from 

laser diffraction (Table 4.1), where the D50 was 55 µm, it appears that larger 

ibuprofen particles in the PVM images may be aggregated. PVM images of the 

disintegrated spray dried MCC tablet (Figure 5.13b) indicated that fine material was 

present along with uniform distinct particles having a rough surface. Images of 

disintegrated air stream dried MCC tablets (Figure 5.13c) are similar to spray dried 

MCC. These images would support the presence of fine particles observed during 

FBRM analysis, Figures 5.10 and 5.11. These appeared to be rod shaped particles 

present which are similar in appearance to the ibuprofen particles. 

A B C

Figure 5.13. PVM images of (A) ibuprofen powder, and (B) Spray dried MCC 
(Emcocel®) and (C) Air stream dried MCC (Vivapur®) particles following tablet 

disintegration in phosphate buffer pH7.2 and temperature of 37 °C. 
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Side by side comparison of PVM images of disintegrated tablets containing spray 

dried and air stream dried MCC with equivalent ibuprofen loading showed that it is 

difficult to distinguish definite differences between the two systems. One difference 

noted was that air stream dried tablets showed more elongated particles (Figure 

5.14). There are rod shaped particles present in the air stream dried suspension 

(Figure 5.13), hence it was not possible to distinguish whether this rod-shaped 

material following the 15% w/w ibuprofen tablet disintegration is ibuprofen or MCC. 

Relative Backscatter Index (RBI) measured by PVM is the relationship between the 

incident and the detected light. As disintegration progresses the number of particles 

in the media increases due to fragmentation of larger particles to smaller particles 

and RBI increases. The change in the PVM RBI versus time during disintegration does 

indicate differences for tablets containing 20% and 30% ibuprofen loading tablets 

compared to tablets containing lower ibuprofen loadings (Figure 5.15). For ibuprofen 

loadings below the percolation threshold the RBI for both spray dried and air stream 

dried MCC tablets was similar. The air stream dried MCC tablets with a 20 and 30% 

w/w ibuprofen had a significantly lower final RBI during disintegration compared to 

air stream dried MCC (Figure 5.15d). 
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A B

Figure 5.14. Representative PVM images of particles following disintegration of (A) 
Spray dried MCC and (B) Air stream dried MCC tablets with a 15 % w/w ibuprofen 

loading in phosphate buffer pH7.2 and temperature of 37 °C. 



 Chapter -5 
 

Ana Luiza Pinto Queiroz Page 225 

A B 

 
C D 

Figure 5.15. Relative Backscatter Index (RBI) vs time following disintegration of Spry 
dried MCC (Emcocel®) and Air stream dried MCC (Vivapur®) tablets (A) 0% w/w, (B) 
15% w/w, (C) 20% w/w and (D) 30% w/w ibuprofen in phosphate buffer pH7.2 and 

temperature of 37 °C. 

5.6 Discussion 

The research presented was conducted to determine whether a percolation 

threshold value, previously determined for ibuprofen/MCC blends using percolation 

theory and compression data (Queiroz et al., 2019) could also be observed during 

tablet disintegration and dissolution data. Previous studies determined a percolation 

threshold value experimentally from disintegration and dissolution data (Kimura et 

al., 2007; Stillhart et al., 2017; Wenzel et al., 2017). For ibuprofen/ MCC blends, the 
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existence of a percolation threshold was predicted mathematically and confirmed 

experimentally from blend properties and a compaction behaviour perspective 

(Queiroz et al., 2019). In the present study, disintegration and dissolution 

experiments were carried out to confirm experimentally whether the percolation 

threshold, previously predicted for ibuprofen/ MCC blends, causes a step change in 

tablet disintegration and dissolution behaviour. 

Dissolution testing confirmed the presence of the percolation threshold in the region 

previously reported. A change in behaviour above the percolation threshold was 

observed during dissolution; % drug released at 5 min during the tablet disintegration 

process (Figure 5.12), and in relation to the time to achieve complete dissolution 

(Figure 5.5). Blends above the percolation threshold showed slower dissolution 

profiles. Kimura, Betz and Leuenberger, 2007 also revealed a decreased 

disintegration performance above the critical loading of a poorly water-soluble drug. 

In the case of tablets containing MCC and ibuprofen, it was hypothesised that the 

connected MCC particles would form the water-conducting clusters promoting 

disintegration. Above the threshold predicted a continuous cluster of ibuprofen 

particles is formed. Relative to MCC, ibuprofen is poorly water soluble, and the 

formation of continuous ibuprofen clusters would decrease disintegration. Thus, the 

explanation for the reduction in dissolution above the percolation threshold can be 

attributed to the combined effect of decreased drug surface area to mass due to the 

presence of continuous clusters evidenced by Raman imaging and a change in the 

disintegration process. 

In this study, Raman imaging and image domain analysis were combined to confirm 

percolation threshold in pharmaceutical tablets. The methodology developed 
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confirmed the percolation threshold previously predicted for the binary blend 

investigated (Queiroz et al., 2019) by an increasing number of drug clusters up to the 

percolation threshold and reduction above due to the formation of continuous 

clusters. For the drug loading above 15%, the number of ibuprofen domains 

dramatically decreased, and their equivalent circle diameter increased which 

confirms the cluster formation and would contribute to a slower rate of ibuprofen 

dissolution due to a reduced surface area to mass ratio.  

The influence of the presence of continuous ibuprofen clusters on tablet 

disintegration was difficult to establish by pharmacopoeial disintegration testing. 

However, the use of FBRM and PVM to interrogate the tablet disintegration process 

with respect to drug loading demonstrated a change in behaviour above the 

percolation threshold, particularly for tablets containing air stream dried MCC 

(Figures 5.8 and 5.15). In this study, the dissolution of the disintegrated particles 

could not be monitored by FBRM nor PVM due to similarity in morphology of the 

disaggregated MCC particles and ibuprofen particles (Figure 5.14) and the insoluble 

nature of MCC in the disintegration medium. However, it may be possible to monitor 

drug dissolution for formulations with high drug loadings and soluble excipients, such 

as lactose, using PVM and FBRM techniques. 

The secondary objective of this study was to investigate the influence of MCC grade 

on disintegration and dissolution behaviour relative to the percolation threshold. 

Despite the MCC grades having similar bulk properties, the interaction of each grade 

with the model drug ibuprofen resulted in differing dissolution behaviour. In all cases, 

the tablets containing the air stream dried grade showed slower disintegration and 

dissolution rates. Air stream dried MCC tablets showed a reduction in disintegration 
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rate above the percolation threshold value while spray dried MCC did not (Figure 5.7 

and 5.15). Air stream dried MCC tablets displayed slower dissolution rates (Figure 

5.5) across all drug loading.  

The mechanistic explanation for the differences in disintegration and dissolution 

behaviour observed between MCC grades investigated is unclear. Raman image 

analysis showed similar distribution and size of ibuprofen clusters for both tablets 

containing both MCC grades (Table 5.2). However, tablet porosity differed between 

MCC grades, with tablets produced from the air stream dried MCC grade being 

slightly less porous (Table 5.1). Tablet porosity is a function of drug loading and for 

blends of poorly compressible drugs with MCC porosity is reduced above the 

percolation threshold value. Porosity is also a dependent on the grade of MCC 

(Queiroz et al., 2019). MCC samples with less dense crystalline regions were reported 

to swell more as they are more accessible for the water molecules, and the cohesive 

forces between the chain segments are weaker, in comparison to the crystalline 

domains (Desai et al., 2016; Schott, 1992). Therefore, differences in MCC crystallinity 

could also contribute to differences in tablet disintegration behaviour. Further 

studies are required to determine the exact mechanisms causing the reduced 

dissolution rates for tablets containing air stream dried MCC compared to the spray 

dried grade.  

It was challenging to discriminate between the effects of tablet porosity and 

percolation threshold in relation to tablet disintegration. The compaction 

parameters and bonding mechanism of particles during compaction directly impact 

tablet porosity, the ingress of the disintegration medium, MCC swelling and hence 

tablet disintegration (Yassin et al., 2015). Despite confounding variation observed in 
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tablet porosity in this study, a clear step change in dissolution behaviour was 

observed for tablets with drug loadings above the percolation threshold.  

5.7 Conclusions 

Dissolution data showed that a percolation threshold value previously determined 

for ibuprofen/MCC binary blends, from compaction data, translated to tablet 

dissolution data. Slower ibuprofen dissolution behaviour was observed for tablets 

above the predetermined percolation threshold. This confirmed the presence of the 

percolation threshold and its relevance to dissolution studies. In addition, slower 

dissolution was observed for all tablets containing an air stream dried MCC grade, 

compared to a spray dried MCC grade. FBRM and PVM showed less efficient 

disintegration above the percolation threshold for tablets containing air stream dried 

MCC. The results experimentally demonstrate that both larger drug domains, 

quantified by Raman imaging, and a less efficient tablet disintegration measured by 

FBRM and PVM (in the case of air stream dried MCC) contributed to slower ibuprofen 

dissolution profiles above the percolation threshold.
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6.1 General Discussion 

The technological advances of the 4th industrial revolution have brought 

opportunities for process development and knowledge growth in the pharmaceutical 

sector. One important innovation is the adoption of continuous manufacturing. 

Technologies that can support the understanding, design, operation, and control of 

continuous processes must be developed in order to progress towards Pharma 4.0 

and implement advanced quality approaches. 

The overall aim of this thesis was to increase understanding of pharmaceutical 

materials attributes and processes performance by (i) characterization of CMAs, 

API/excipient interactions, and CQAs, and (ii) the development of descriptive and 

predictive models and PAT tools applied to tableting and co-crystallization process 

development and monitoring.  

The focus of this thesis was to address challenges around direct compression, which 

is the preferential process for continuous tableting manufacturing. Three main stages 

of the process were investigated; raw material characterization and variability were 

investigated in Chapters 2, 4, and 5, crystal engineering process development and 

process characterization was investigated in Chapter 3, and process characterization 

and analysis of the impact of constituent raw material attributes on process 

performance was investigated in Chapters 4 and 5 (Figure 6.1).  



 Chapter-6 

Ana Luiza Pinto Queiroz Page 232 

 

Figure 6.1. Tablet direct compression (DC) scheme.  

6.2 Knowledge related to Microcrystalline Cellulose variability 

Microcrystalline cellulose is important excipient used in most solid dosage 

formulations. However, it is necessary to improve knowledge about MCC CMAs in 

order to control the effects of MCC CMA on process and product performance (Foster 

et al., 2018; Rowe et al., 1994; Shi et al., 2011; Trache et al., 2016). Several MCC 

attributes were investigated in this thesis (Table 6.1). 
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Table 6.1. Microcrystalline cellulose attributes investigated in this thesis.  
Material attribute Model Chapter 

Crystallinity by Raman PLS, univariate model 2 

Moisture sorption by DVS GAB equation 2 

Moisture sorption by TGA LOD - 4 

 Surface area BET 4 

Laser diffraction particle size - 4 

Morphology and particle size by 
morphology G3 

- 4 

Morphology and particle size by SEM - 4 

Bulk, tap, true and relative densities - 4 

Flowability Hausner ratio 4 

Flowability by Powder Flow Tester (PFT) - 4 

Compressibility, tabletatibility and 
Compactability 

Compaction triangle 4 

Yield pressure Heckel equation 4 

Capacity of dilution of ibuprofen Percolation threshold 
theory 

4 

Disintegration  - 5 

Disintegration and dissolution of ibuprofen - 5 

Knowledge related to MCC batch-to-batch, supplier to supplier and grade to grade 

variability was obtained by investigating MCC moisture sorption and crystallinity 

variability in Chapter 2. Raman spectroscopy was used with a univariate model that 

is a function between the ratio of the peaks at 380 and 1096 cm-1, and with partial 

least squares regression model, to provide a PAT tool to determine the MCC 
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crystallinity index. The PAT tool designed was packaged into a free online calculator, 

MCCrystal. This work is a further development of the work developed by Agarwal et 

al. (Agarwal, 2019; Agarwal et al., 2018, 2010). The contributions of this thesis to the 

previous work were the application of the models to 30 commercial grades of MCC, 

which proved the efficiency of those models to commercial grades, and the 

development of an online, free access, PAT tool that can be used by other academics 

and industry personnel. 

A range of MCC crystallinity was noted between samples. While variability in 

moisture sorption behaviour was also noted between samples, a PAT tool to predict 

MCC moisture sorption based on crystallinity of MCC could not be designed. A 

correlation between moisture sorption and crystallinity index was investigated. 

However, it was not possible to build a model with predictive power. It was found 

that for the set of 30 MCC commercial batches investigated, moisture sorption was 

not solely dependent on the crystallinity index of the sample. Mihranyan et al. 

suggested that moisture sorption in MCC may be also dependent  on other structural 

attributes such as pore volume and surface area (Mihranyan et al., 2004).  

Excipient variability has been highlighted by many authors as a critical part of the 

design and control strategies of new drug products (Badawy et al., 2016; Kushner IV, 

2013; Kushner et al., 2011; Narang, 2015; Zarmpi et al., 2020). In Chapters 4 and 5, 

the impact of excipient variability on tablet CQAs was highlighted by investigating 

two different MCC grades. One grade was air stream dried and the second spray 

dried. Grades had similar average particle size distribution determined by laser 

diffraction, but different morphology determined by image analysis. Tablets were 



 Chapter-6 

Ana Luiza Pinto Queiroz Page 235 

prepared from binary blends of MCC with ibuprofen. The use of PAT tools to 

determine tablets CQAs was proposed and compared to traditional methodologies. 

The PAT tools used, PVM and FBRM, are widely used to track in-process particle 

changes (Barrett et al., 2011; Gregory, 2009; Simon et al., 2019; Zhong et al., 2020). 

However, they have not been used to monitor disintegration and dissolution 

behaviours. Both traditional testing and tests assisted by PAT tools showed that the 

morphological differences due to grade-to-grade variability resulted in significant 

differences in tablet dissolution. The PAT tools, PVM and FBRM, provided more 

sensitive information regarding tablet disintegration compared to the traditional 

disintegration test. The study highlights the applicability of those PAT tools to identify 

differences in the disintegration of immediate release tablets. Furthermore, 

disintegration is a limiting step to dissolution. Therefore, in Chapter 5, the 

disintegration differences observed using the PAT tools indicated that dissolution 

differences could be expected. Indeed, significant dissolution differences were 

confirmed by traditional dissolution testing with HPLC analysis of the % cumulative 

drug release.  

The impact of MCC grade variability on formulation processability during tableting 

was also investigated in Chapter 4. This contrasts with Chapter 5 where the effect of 

MCC grade variability on tablet CQAs (hardness, disintegration, and dissolution) was 

evident. The air stream dried MCC grade showed considerably lower tablet 

dissolution rates in comparison to the air stream dried MCC. The differences 

observed were attributed to the minor differences in tablet solid fraction or porosity, 
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which directly affects the rate at which water enters through the tablet matrix and 

hence disintegration (Yassin et al., 2015). 

6.3 Knowledge related to physical drug-excipient interactions 

The interaction between drug and excipient was investigated in Chapters 3 and 4. In 

Chapter 4 drug-excipient interactions at a particle level in a blend containing 

ibuprofen and MCC were investigated using Percolation Threshold modelling and 

Raman imaging. The Raman imaging instrument used a short time for analysis i.e., 

approximately 15 minutes for each tablet with a diameter of 10 mm. The use of this 

instrument provides a fast and detailed analysis of tablets. Raman imaging, used here 

as an analytical technique, provided important formulation information, such as the 

measurement of drug distribution, and indirectly percolation threshold. Moreover, it 

is not necessary to perform any further analysis, the instrument generates all the 

information necessary for those applications during analysis. Other authors have 

investigated the percolation threshold of MCC (Kozicki, 2007; Kuentz and 

Leuenberger, 2000, 1998; Leuenberger, 1999). However, in this thesis, the critical 

exponent of the percolation power law was determined for the first time for the 

binary blend of MCC and ibuprofen. An accurate prediction of the threshold from 

compaction data was obtained using the percolation power law only because the 

coefficient has been determined as the initial step. The effects of the particle-particle 

interactions between ibuprofen and MCC on tablet CQAs disintegration and 

dissolution were investigated in Chapter 5. A step change in dissolution behaviour 

was noted across the percolation threshold determined. 
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In Chapter 3, drug-excipient interactions at a molecular level were investigated. API, 

hydrochlorthiazide, and several coformers were investigated in silico using quantum 

chemistry and thermodynamics simulations, and experimentally with a range of 

spectroscopic techniques, DSC and PXRD. The type of simulation used was proven to 

have good predictive power for cocrystal screening using excess/mixing enthalpy of 

supercooled API-coformer blends (Loschen and Klamt, 2015). The coformers 

screened had been previously investigated experimentally (Rodrigues et al., 2019, 

2018b; Sanphui et al., 2015; Sanphui and Rajput, 2014). The simulations performed 

in this thesis agreed with the experimental results obtained by these authors.  

6.4 Development of descriptive and predictive models and PAT tools 

Descriptive models are models used for process understanding. PAT-based models 

were designed to support analytical procedures and for process monitoring in 

Chapters 2, 3, and 5 (Table 6.2). Other types of models were applied to support 

process design: percolation threshold was used for tablet binary formulation design 

in Chapter 4, DoE was used for co-crystallization design in Chapter 3, COSMO-RS 

theory was used in Chapter 3 to screen for suitable coformers in early-stage co-

crystallization design, and the Heckel model was used to generate knowledge on 

blend processability in Chapter 4. The models were classified as mechanistic, hybrid 

or empirical (Table 6.3). 
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Table 6.2. Process analytical technology instruments and models used in the different 
case studies of this thesis. 

Application 
PAT 

instrument 
Model Chapter 

Determine critical drug loading in tablet 
formulation 

Raman PCA 5 

Determine cocrystal optimal ratio MIR MCR 3 

Determine co-crystal phase purity MIR MCR 3 

Determine slurry co-crystallization end 
time 

Raman PCA 3 

Determine co-crystallization 
mechanism 

Raman PCA 3 

Determine tablet CQAs (disintegration 
profile) 

FBRM and 
PVM 

- 5 

Determine MCC CMA (crystallinity) 
Raman PCA and 

PLS 
2 

 
 
Table 6.3. Classification of the models used in this thesis within the groups 
mechanistic, hybrid, or empirical. 

Mechanistic Hybrid Empirical 
COSMO-RS theory Heckel PLS 

Simulation of theoretical PXRD Percolation threshold theory PCA 
380-method  MCR 

  DOE 
  GAB equation 

The models investigated in this thesis provided significant knowledge about materials 

and processes studied when used individually or in combination. In Chapter 3, for 

example, COSMO-RS theory was used for early-stage process design aiming to select 

appropriate coformers and solvents. Next, MCR was used to determine relative 

phase purity. Subsequently, a DOE model used the relative phase purity from the 

MCR model as response variable to define optimal process parameters (temperature 
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and agitation for each solvent). Finally, PCA was also performed in the same study to 

define a process parameter (slurry co-crystallization end time). 

The impact of choice of PAT probe was also investigated in this thesis. In Chapter 2, 

the results showed that Raman instruments with larger laser diameter provided a 

more representative information of the overall structure of the batch, averaging out 

localised variability. Smaller laser diameters could predict crystallinity from Raman 

spectra if a larger number of spectra are averaged. However, Raman instruments 

with larger laser diameter require less replicates, which greatly reduces time for 

analysis. In contrast, in Chapters 4 and 5 a Raman instrument with higher resolution, 

RA802 Pharmaceutical Analyser, was used to map ibuprofen distribution and 

quantitatively and qualitatively determine drug percolation threshold in a binary 

ibuprofen/MCC tablet. The imaging method involved the acquisition of around 

76,000 spectra over the entire surface of each tablet, with a pixel size of 10 µm/20 

µm. 

The main benefits of PAT-based methods used in this thesis were: 

 All techniques used are non-destructive, and they do not interfere on process 

transformations when they are used in situ. 

 The analysers can be used in situ to generate information on process 

transformation during the entire duration of the process e.g., Raman and PCA 

used in Chapter 3 to determine co-crystallization end point. 

 PAT based methods provided information that may not be captured by 

traditional techniques e.g., in Chapter 5 PVM and FBRM showed 
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disintegration nuances to which traditional tablet disintegration techniques 

were not sensitive. 

On the other hand, PAT models are data driven. This means that the model is built 

from experimental data and a design space is defined. Thus, the model cannot be 

applied for processes that are outside that design space, for example, for a different 

instrument. In this study, in Chapter 2 the constant values for the univariate linear 

model previously published for this technique (Agarwal et al., 2018) were specific to 

the instrument used and had to be redetermined in this study. Thus, a celebration of 

the model to the new design space had to be performed. 

A direct comparison between a univariate and a multivariate model was investigated 

in Chapter 2. The advantage of using the univariate model (380-method) is that it is 

simple enough to perform the linear regressions required to calibrate the model to 

the Raman instrument used and to calculate the crystallinity by the ratio of the peaks. 

However, milling the sample and Raman spectra deconvolution are required which 

makes the workflow tedious. On the other hand, by performing a PLS regression 

model deconvolution is discarded. Thus, milling a sample for calibration or for each 

batch analysed is not necessary. PLS regression models are rather simpler to be 

performed and have a much shorter time to analysis in comparison with the multi-

steps 380-method. Although, PLS regressions entails the usage of a multivariate 

analysis software or development of a code in a programming language such as 

Python or R. 
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6.5 Strengths and Limitations of the thesis 

6.5.1 Strengths  

 The effects of critical material attributes on the critical quality attributes were 

investigated in depth through a case study including intensive material, 

formulation, and product characterisation. Detailed scientific knowledge was 

developed on the relationship between MCC grade, percolation threshold of 

blends and tablet dissolution behaviour, and the effect of MCC variability on 

tablet disintegration and dissolution. 

 PAT tools were compared against traditional analytical techniques for a wide 

range of applications. 

 A wide range of modelling approaches were investigated. These included 

mechanistic, hybrid models and empirical models. 

 Rapid methods to determine a range of behaviours related to pharmaceutical 

dosage form manufacture and performance have been developed 

6.5.2 Limitations 

 Blends of ibuprofen and microcrystalline cellulose were used to investigate 

whether percolation threshold can predict the critical drug loading 

concentration and relative density of pharmaceutical tablets. However, 

commercial tablet formulations are composed of more complex blends with 

several ingredients. Thus, it would be valuable to apply the knowledge 

developed in this study to commercial tablet formulations. 
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 All models were developed for offline and retrospective usage, although online 

monitorization of processes with feedback control would have had a higher 

impact for industrial applications. 

 A wide range of PATs, models and unit operations were investigated prohibiting 

more in-depth investigation of each subject area. 

6.6 Recommendations for future work 

Based on the findings of this thesis the following work is suggested: 

 Further investigate the relationship between MCC CMAs e.g., crystallinity and 

moisture sorption. 

 Investigate how CPPs can be controlled based on the knowledge of the variability 

of MCC CMA. For example, how wet massing in a wet granulation tableting 

process can be controlled based on MCC crystallinity.  

 Investigate the application of percolation threshold model to multicomponent 

oral dosage form formulations.  

 Use particle modelling tools such as Monte Carlo simulation to estimate 

percolation threshold for complex formulations.   

 Investigate the application of Raman as a PAT tool to monitor tablet disintegration 

and dissolution.  
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6.7 Conclusions 

Extensive knowledge about tablet direct compression was produced: traditional 

techniques for determination of raw material and products characterization were 

critically investigated and alternative technologies were proposed when suitable, 

and percolation threshold model was used to predict formulation behaviour during 

tableting in pilot scale, disintegration, and dissolution. 

Different PAT tools were successfully designed: Raman with PLS to determine 

microcrystalline cellulose crystallinity index; MIR with MCR to determine optimal 

ratio of co-crystal formation and co-crystal phase purity; Raman with PCA to 

determine co-crystallization endpoint and in-process changes; Raman and PCA to 

identify differences between tablets produced with different grades of MCC; and 

PVM and FBRM provided information on tablet disintegration that traditional testing 

was not able to capture. 

Mechanistic and hybrid models were developed to support process design: 

percolation threshold theory was used to determine a critical threshold above which 

disintegration and dissolution showed a significant decrease; DOE was used to 

determine the optimal conditions to obtain the high purity co-crystals; and quantum 

chemistry models were used as an in silico coformer screening, which reduced time 

and cost of performing experimental screenings. 
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