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Abstract

Location-aware applications are one of the biggest innovations brought by the smartphone era, and are effectively
changing our everyday lives. But we are only starting to grasp the privacy risks associated with constant tracking of
our whereabouts. In order to continue using location-based services in the future without compromising our privacy
and security, we need new, privacy-friendly applications and protocols. In this paper, we propose a new compact
data structure based on Bloom filters, designed to store location information. The Spatial Bloom Filter (SBF), as we
call it, is designed with privacy in mind, and we prove it by presenting two private positioning protocols based on
the new primitive. The protocols keep the user’s exact position private, but allow the provider of the service to learn
when the user is close to specific points of interest, or inside predefined areas. At the same time, the points and areas
of interest remain oblivious to the user. The two proposed protocols are aimed at different scenarios: a two-party
setting, in which communication happens directly between the user and the service provider, and a three-party setting,
in which the service provider outsources to a third party the communication with the user. A detailed evaluation
of the efficiency and security of our solution shows that privacy can be achieved with minimal computational and
communication overhead. The potential of spatial Bloom filters in terms of generality, security and compactness
makes them ready for deployment, and may open the way for privacy preserving location-aware applications.

Keywords: Location Privacy, Bloom Filters, Secure Multi-party Computation

1. Introduction

Positioning systems are becoming more precise and
more portable, and can now be easily embedded into
smartphones and other personal devices. The combi-
nation of different positioning sources, such as signal
strength for cellular phones, the visibility of wireless
networks and more traditional satellite-based sources
means that an address level precision can now be
achieved even in low-cost and low-power devices.
Satellite navigation and positioning systems are also
seeing renewed interest, after years of stagnation: the
deployment of a new global systems, Galileo, is cur-
rently being sponsored by the European Union, while
regional systems such as the Chinese BeiDou (cover-
ing most of Asia), or the projected IRNSS in India are
promising an even bigger increase in precision and ca-
pabilities.

The ability to know one’s position with a certain
degree of precision opened the way to the so-called
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location-aware applications, where users request per-
sonalized services based on their geographic position.
Location-aware applications and services are now ubiq-
uitous: from cell phone apps to intelligent car naviga-
tion systems, they are an integral part of our everyday
life. In order to perform their task, location-aware ap-
plications usually require the user to disclose her ex-
act position, in order to receive content and informa-
tion relevant to the user’s location. Examples of such
location-aware services are local advertising, traffic or
weather information, or suggestions about points of in-
terest (PoI) in the user’s surroundings [6]. Even existing
services are now improved by the addition of location-
based data: notable example are social networks [18] or
retail distribution [11].

The ability to track a user’s position raises however
deep privacy concerns, due to the sensitive nature of
location information. In fact, a number of potentially
sensitive professional and personal information about
an individual can be inferred knowing only her pres-
ence at specific places and times [1, 4]. Sensitive infor-
mation such as religious beliefs, sexual preferences or
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health conditions can be inferred by looking at the mo-
bility trace of an individual, when he attends service at
a church or a mosque, visits specific establishments or
the practice of a specialized doctor. Even anonymized
position data sets (not containing name, phone number
or other obvious references to the person) do not prevent
precise identification of the user: in fact, just four mo-
bility traces may be enough to identify her. The more
users disclose their data, the more providers are able to
profile them in an accurate way. This is for instance
the case discussed by Wicker in [45], where a mar-
keting company database model is used in conjunction
with anonymous mobile phone location traces. While
we have become so used to smartphones and location-
aware services that it would be very hard for a lot of us
to give up on them, it is also reasonable to predict that in
the coming years users will demand better privacy safe-
guards for their information with respect to the service
provider [40], and more specifically for location infor-
mation [24, 46]. The real challenge is therefore how to
protect the user’s privacy without losing the ability to
deliver services based on her location [35].

A common application scenario of location-based
services requires the service provider to learn when the
user is close to some sensitive or interesting locations.
This is the case, for instance, of “around-me” applica-
tions or security and military systems [6]. In this case,
the location of the user should be kept private for as
long as she is far from one of the areas of interest, and
get disclosed to the service provider only when she en-
ters one such area. A similar problem, known as private
proximity testing has been studied in privacy research
literature: Alice can test if she is close to Bob with-
out either party revealing any other information about
their location [30]. Narayanan et al. proposed a so-
lution based on location tags (features of the physical
environment) and relying on Facebook for the exchange
of public keys [30]. His protocol was later improved in
efficiency by Saldamli et al. [36]. Location tags and
proximity tests are also used in [19], as a way of pro-
viding local authentication, while [47] presents a secure
handshake for communication between the two actors
in proximity. The security of the basic proximity test-
ing protocol has been further improved in [31]. In [43],
Tonicelli et al. propose a solution for proximity test-
ing based on pre-distributed data, secure in the Univer-
sal Composability framework. Finally, the problem of
checking the proximity in a specific time is addressed in
[42].

In this paper we do not focus on proximity testing,
but on a broader and more general problem: testing in
a private manner whether a user is within one of a set

of areas of arbitrary size and shape. By solving this
problem and applying an intelligent conformation of ar-
eas, we can also solve the proximity testing problem (for
one or multiple points simultaneously), and we are ac-
tually able to identify with some precision the distance
of the user from the point of interest. Given the concep-
tual similarity of our problem with membership testing
in sets, we base our solution on a novel modification
of Bloom Filters (BF). Bloom filters are a compact data
structure that allows to compute whether an element is a
member of the set the filter has been built upon, without
knowledge of the set itself [2]. Bloom filters have al-
ready been used in privacy-preservation protocols, and
they are particularly suited to be used in conjunction
with the homomorphic properties of certain public key
encryption schemes [21].

1.1. Contribution

In this paper we propose a modification of Bloom fil-
ters aimed at managing location information, and we
present two private positioning protocols for privacy-
preserving location-aware applications. Although a pre-
liminary version of the data structure was presented by
Palmieri et al. in [34] (which forms the basis of the
current work), in this paper we analyze the security and
efficiency properties of the structure, and we provide a
much greater insight on the usefulness of the construc-
tion to actual application scenarios, also by means of
practical, real-world examples based on a test imple-
mentation.

The novel variant of Bloom filters we introduce,
which we call Spatial Bloom Filter (SBF), is specifically
designed to deal with location information. In particu-
lar, SBF combines multiple superimposed Bloom filters,
in conjunction with an ad-hoc spatial representation, to
provide a compact data structure for geographical infor-
mation. Similarly to the classic Bloom filters, SBFs are
also well suited to be used in privacy preserving applica-
tions, and we show this by presenting two protocols for
private positioning. The protocols allow secure com-
putation of location-aware information, while keeping
the position of the user private: the only information
disclosed to the provider is the user’s vicinity to spe-
cific points of interest or his presence within predefined
areas. At the same time, the areas of interest are not
disclosed to the user. Therefore, in both settings we do
not assume any trust between the parties. The first pro-
tocol is based on a two-party setting, where communi-
cation happens directly between the user of a location-
based service and the service provider. A more complex
scenario is defined in the second protocol, that involves



a three-party setting in which the service provider out-
sources to a third party the communication with the user.
Both protocols achieve secure multi-party computation,
where all parties have an interest in communicating, but
want to keep their information private. In some cases,
the privacy of the service provider can in fact be as im-
portant as that of the user: military and government ap-
plications are just the most immediate examples.

Following the definition of the spatial bloom filter
and of the private-positioning protocols, we discuss the
security and the computational cost of the proposed
schemes, as well the probabilistic and storage proper-
ties of the SBF. In order to prove the readiness of the
solution for actual deployment, we present the results
of a prototype implementation of the filter creation and
query routines. We base our tests on the geographic data
of two real geographical regions: the metropolitan area
of the city of Brussels, and Belgium. For both cases, we
estimate optimal sizes for the filter and values for other
important parameters.

Location privacy is a fundamental problem of the cur-
rent age, where ubiquitous computing and unified com-
munications are prevalent. The proposed solution is a
solid step in the direction of more privacy-friendly ser-
vices, and may enable privacy in both existing and fu-
ture applications.

1.2. Related Works

With the recent introduction, and subsequent
widespread diffusion of location-based services (LBS),
the problem of preserving the privacy of the user with
regard to his position arose. An early solution address-
ing this problem was presented in [16] by Gruteser
and Grunwald, and consists in the application of k-
anonymity to LBS: the location trace for each person
should not be distinguished from at least k − 1 other
individuals, thanks to spatial and temporal cloaking of
location and timing information. This is just one of
the adopted metrics used to quantify privacy of a LBS.
A comprehensive discussion of those metrics, includ-
ing k-anonymity, is provided in [38], where the authors
propose to preserve privacy by applying a distortion
to the location information. Systems designed to pro-
tect location privacy are often referred to as location-
privacy protection mechanisms (LPPM). Possible at-
tacks to LPPM systems, and a proposal for a general
framework able to evaluate the effectiveness of such
systems is presented in [39].

While LBS’s vary widely in terms of goals, a good
number of them follow the model commonly known as
around-me service. Here the user wants to find points of

interests in his surroundings, based on his current posi-
tion [6]. In order to achieve such goal, a location query
is usually performed onto a remote server. In [20] the
authors discuss privacy preservation with regard to the
location queries used in this kind of service, and a tax-
onomy of location queries performed on the provider’s
server is also presented. A different privacy-preserving
framework for location-based queries is proposed in
[27]: the proposed solution relies on a trusted third party
connecting the client with server. The problem of k
nearest neighbor (k-NN) in location-based queries is ad-
dressed in a privacy-preserving manner in [26], where
the authors propose using homomorphic encryption.

While around-me applications are usually designed
for end-users, location privacy is also especially impor-
tant in military and other government settings [12]. In
[12] the protocol PRISM is presented. PRISM is de-
signed to achieve privacy-friendly routing in MANETs,
mainly for military purposes, using group signatures.
Possible attacks against routing protocols, aiming at un-
derstanding the source location are discussed in [25].
Another growing field for LBS is represented by social
networks. In [28] a flexible privacy-preserving loca-
tion sharing system for mobile online social networks
is discussed. Other sensitive applications requiring lo-
cation data are alerting systems. In this context, Ghinita
and Rughinis suggest that sensitive location information
should be disclosed only when some conditions are met,
such as when the user is within in some area of interests
[15]. We follow the latter approach in this paper.

Unlike a majority of works discussing privacy in
LBS, we do not focus on the protection of traces pro-
duced by the user’s movements over time, and the re-
lated correlation attacks. Instead, this work aims at pro-
viding a cryptographic primitive that natively enables
privacy in LBS, by preventing the creation of users’
location-traces at all. In fact, the user exact position
is generally concealed, and the service provider only
learns the user’s presence within a limited number of
areas of interest. Moreover, contrary to the standard ap-
proach of focusing on the privacy of the user only, our
solution is designed with both user’s and provider’s pri-
vacy in mind, as even areas of interest remain confiden-
tial.

1.3. Outline of the Paper
The paper is organized as follows: in Section 2 we

provide useful notions and definitions that will be used
later in the text, including the security model used in this
paper. In Section 3 we introduce a spatial representation
of Earth and we discuss how such a representation can
be used to represent position as elements of a set. We



also present an algorithm to calculate distance from a
point in the set-based setting. In Section 4 we define the
Spatial Bloom Filter and we discuss important proper-
ties of the primitive, including an analysis of false pos-
itive probabilities. In Section 5 we propose two differ-
ent protocols for the secure multi-party computation of
position information in sensitive location-aware appli-
cations. Then, we discuss how the proposed schemes
achieve private computation of location data without
implying trust between the parties, and we analyze the
security of the constructions. Two real-world examples
are presented in Section 6, and are used as benchmark
for a test implementation of the spatial bloom filters.
Conclusions and ideas for future work are in Section 7.

2. Preliminaries

We introduce in the following some useful notions
and definitions, that will be used later in the paper.

2.1. Bloom Filters

A Bloom Filter (BF) is a data structure that represents
a set of elements in a space-efficient manner [2]. A BF
generated for a specific set allows membership queries
on the originating set without knowledge of the set it-
self. The BF always determines positively if an element
is in the set, while elements outside the set are gener-
ally determined negatively, but with a probabilistic false
positive error.

Definition 1. We define a Bloom filter B (S ) represent-
ing a set S = {a1, . . . , an} ⊆ {0, 1}∗ as the set

B (S ) =
⋃

a∈S ,h∈H

h(a) , (1)

where H = {h1, . . . , hk} is a set of k hash functions such
that each hi ∈ H : {0, 1}∗ → {1, . . . ,m}, that is, the
hash functions take binary strings as input and output a
number uniformly chosen in {1, . . . ,m}.
A Bloom filter B (S ) can be represented as a binary vec-
tor b composed of m bits, where the i-th bit

b [i] =

{
1 if i ∈ B(S )
0 if i < B(S ) . (2)

The bloom filter is built as follows. Initially all bits
are set to 0. Then, for each element a ∈ S and for each
h ∈ H we calculate h (a) = i, and set the corresponding
i-th bit of b to 1. Thus, m bits are needed in order to
store b.

We test an element au against b to determine mem-
bership in S , that is, we verify whether au ∈ S if

∀h ∈ H, b [h(au)] = 1 . (3)

If any bit in b that corresponds to a value output by one
of the hash functions for au is 0, then au < S . If, instead,
all the hashes map to bits of value 1, then au ∈ S minus
a false positive probability p determined by the number
n of elements in S , the number k of hash functions in H
and the maximum possible value m output by the hash
functions (equal to the binary length of b) as follows:

p =

1 − (
1 − 1

m

)knk

≈
(
1 − e−

kn
m

)k
. (4)

This small false positive probability is due to the po-
tential collision of hashes evaluated on different inputs,
resulting into all bits associated to an element outside
the originating set having value 1. As such, it is deter-
mined largely by k: if k is sufficiently small for given m
and n, the resulting b is sufficiently sparse and collisions
are infrequent. If we consider the approximation in (4),
we can calculate the optimal number of hashes k as

opt (k) =
m
n

ln 2 , (5)

from which we can infer

m =

⌈
− n ln p

(ln 2)2

⌉
. (6)

However, the number of hashes also determines the
number of bits read for membership queries, the num-
ber of bits written for adding elements to the filter,
and the computational cost of calculating the hashes
themselves. Therefore, in constrained settings, we may
choose to use a less than optimal k, according to per-
formance reasons, if the resulting p is considered suffi-
ciently low for the specific application domain.

Bloom filter variants. Bloom filters have been extended
to support advanced features over time.

Some remarkable variants of Bloom filters are Count-
ing Bloom Filters, where the array of bits is replaced by
an array of counters [13] and d-Left Counting Bloom
Filters which basically pursue the same goal but save
twice the space [5]. These variants allow to imple-
ment a delete operation on the filter without recreating
it from scratch. Compressed Bloom Filters are designed
to control precisely the memory consumption through
a parameter z [29], while Dynamic Bloom Filters allow
to create new filters in real-time as the originating set



varies [17]. However, none of these variants is suitable
to store location data as multiple sets of areas nor to ef-
ficiently perform location queries upon them. The intu-
ition to embed distance evaluation between the elements
used to construct a Bloom filter was first presented in
[23]: the paper uses locality-sensitive hash functions,
and analyzes the performance under the Hamming met-
ric. This approach, however, is not applicable to a geo-
graphic set, as the distance information is not naturally
included in the value itself as it is in the case of ele-
ments that are numbers. The distance information needs
therefore to be calculated with respect to a geographical
representation, as we do in this paper.

Bloomier filters. Another variation of Bloom filters, the
Bloomier Filter [8, 7], deserves a particular mention: a
bloomier filter generalizes in fact a BF to store a binary
function f : S → [0, 1] instead of a set. Bloomier filters
thus allow to associate values with a subset of elements
of the filter. At first glance, a bloomier filter could be
mistakenly considered as very similar to the proposed
SBF. In order to properly show their different features,
we discuss relations of bloomier filters to the proposed
spatial Bloom filters in Section 4.

Bloom filter applications. Bloom filters and some of
their variants are used in various fields, including secure
communications, network security, and secure multi-
party computation [14].

Recently, a number of protocols and constructions for
privacy-preservation based on Bloom filters have been
proposed. Common application scenario for BFs are
networking protocols. In particular, several protocols
use them to perform message authentication [41] and
node authentication [37] efficiently. Anonymous data
transmission and anonymous route discovery was pro-
posed in [9], while in [32] the authors introduced a
system that uses BFs to prevent user movements detec-
tion based on to the tracking of RFID (Radio Frequency
Identification) tags. BFs have also be used to cope with
several kinds of malicious network behavior. A notable
example of such use is a Denial of Service attack: fil-
ters are used to store information of each packet passing
through a router, in order to enable tracebacking when
required [22]. A comprehensive survey on Bloom filters
variants, and their applications in network security was
recently published by S. Geravand and M. Ahmadi [14].

2.2. Cryptographic Primitives

In part of our construction we use the homomorphic
properties of encryption schemes. In general, a cipher

has homomorphic properties when it is possible to per-
form certain computations on a ciphertext without de-
crypting it and, therefore, without knowledge of the de-
cryption key. In particular, we say an encryption scheme
is additively homomorphic when a specific operation �
applied on two ciphertexts (Enc (p1) ,Enc (p2)) decrypts
to the sum of their corresponding plaintexts (p1 + p2):

Dec (Enc (p1) � Enc (p2)) = p1 + p2 . (7)

There is additive homomorphism also when an opera-
tion on a ciphertext and a plaintext results in the sum
of the two plaintexts. We have instead multiplicative
homomorphism between an encrypted plaintext and a
plaintext when an operation � results into the multipli-
cation of the two plaintexts:

Dec (Enc (p1) � p2) = p1 · p2 . (8)

An example of encryption scheme that is both addi-
tively and multiplicatively homomorphic is the Paillier
cryptosystem [33]. In this case, the product of two ci-
phertexts will decrypt to the sum of their corresponding
plaintexts (additive property), while an encrypted plain-
text raised to the power of another plaintext will decrypt
to the product of the two plaintexts (multiplicative prop-
erty).

Private Hadamard Product. The Hadamard (or entry-
wise) product of two vectors, one binary (owned by Al-
ice) and one composed of natural numbers (owned by
Bob), is performed in a privacy-preserving manner by
Algorithm 1. The algorithm is private with respect to
the input vectors, and only reveals the product vector to
Alice. The security of the algorithm is based on the en-
cryption of Alice’s vector using a public key encryption
scheme that is multiplicative homomorphic for opera-
tion �.

Algorithm 1 is analogous to the Secure Scalar Prod-
uct algorithm presented in [21], and the same security
considerations apply. A more conservative version of
the algorithm requires Bob to multiply a randomly cho-
sen prime number p, larger than any y ∈ Y, to each
value in the vector, before performing the homomorphic
multiplication. Alice can then obtain X · Y by calculat-
ing p using any greatest common divisor algorithm.

In general, we assume that the parties participating in
the proposed construction do not deviate from the pro-
tocol, but gather all available information in order to try
to learn private information of other parties. We are,
therefore, in the semi-honest setting.



Algorithm 1: Private Hadamard product of an
encrypted binary vector for a cleartext vector of
natural numbers

Input Alice: X = (x1, . . . , xn), X ∈ {0, 1}n.
Input Bob: Y = (y1, . . . , yn), Y ∈ Nn.
Output Alice: X · Y.

1 Alice generates a public and private key pair using a
multiplicative homomorphic encryption scheme, and
sends the public key to Bob.

2 Alice sends to Bob the ciphertext vector
E = (Enc (x1) , . . . ,Enc (xn)).

3 Bob computes the vector
C = (Enc (x1) � y1, . . . ,Enc (xn) � yn) and sends the
result to Alice.

4 Alice uses her secret key to decrypt C and obtains
D = Dec (C) = X · Y.

2.3. Privacy Definitions
As our construction relies on Bloom filters, the pri-

vacy model is defined accordingly. Given the nature
of Bloom filters (a data structure based on sets and
designed for membership queries), we propose a pri-
vacy model that is, in a similar way, based on sets and
aimed at preserving privacy in (location-based, that is,
geographical) membership queries. Location-privacy is
therefore evaluated according to two location-sets: the
first set contains a limited amount of regions monitored
by the provider while the second contains all of the re-
maining regions on the Earth’s surface.

Privacy Model. Given two sets of geographic regions
A and B, and a location-based protocol between a user
and a service provider, the user’s location remains
concealed to the provider while the user is in a region
contained in B. On the contrary, if the user is within a
region contained in A, the provider learns, at least, that
the user is in A, and, at most, the region in A in which
the user is, but never the user’s exact position.

In the following, we introduce the security model we
adopt for the proposed construction.

Security Model. We assume the parties are honest-but-
curious [10], that is, the parties will follow the protocol
but try to learn additional information about other par-
ties private data.

3. Spatial Representation

The construction we present in this paper is based on
a novel variant of BFs aimed at managing location in-
formation. Since BFs are constructed over finite sets of

0.001 degrees lng lat

equator 111.32 m ∼ 111.00 m
23th parallel N/S 102.47 m ∼ 111.00 m Cuba
45th parallel N/S 78.71 m ∼ 111.00 m Italy
67th parallel N/S 43.50 m ∼ 111.00 m Alaska

Table 1: Some reference values of accuracy using three decimal places
for coordinate representation.

elements, we need to represent location information –
that is, a geographical position – as an element that is
part of the finite and discrete set of all possible posi-
tions. Therefore, instead of considering a location as a
point, we divide Earth’s surface into a set of distinct re-
gions, and we identify a position as the corresponding
element in this set.

Considering that we can set the dimension of such
regions to an arbitrarily small size, there is no loss in
the precision of the location information. In particu-
lar, we do not use this approach in order to obfuscate
or partially hide an exact position: on the contrary, we
are interested in retaining a precision as high as the one
allowed by the location sensor used in the specific ap-
plication.

The most natural spatial representation for Earth is
the standard geographic coordinate system. In the geo-
graphic coordinate system every location on Earth can
be specified by using a set of values, called coordinates.
Standard coordinates are latitude, longitude and eleva-
tion. For the purposes of this work we focus on lon-
gitude and latitude only, as the combination of these
two components is enough to determine the position of
any point on the planet (excluding elevation or depth).
The whole Earth is divided with 180 parallels and 360
meridians; the plotted grid resulting on the surface is

λ
φ1

φ2

Figure 1: An example of the planet’s surface and the grid plotted on
it. φ1 and φ2 are longitude values while λ is a latitude value.
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∆3

Figure 2: An example of the area coverage algorithm applied to a point of interest of interest. After defining the grid (a), the Manhattan distance
from the center region is computed (b). Finally, each region is assigned to the right set (c). In this case, the maximum distance (σ) is 4, so we
assign the regions belonging to the distance classes 4 and 3 to ∆1, those belonging to the classes 2 and 1 to ∆2 and the sole region belonging to the
0 class to the set ∆3.

known as the graticule (Figure 1).
Longitude (lng) and latitude (lat) can be stored and

represented according to several formats. In the fol-
lowing we use the decimal degrees plus/minus format,
where latitude is positive if it is north of the equator
(negative otherwise), and longitude is positive if it is
east of the prime meridian (negative otherwise); for in-
stance, 31.456764°(lat) and −85.887734°(lng) are two
possible values.

Using a fixed precision in longitude and latitude (that
is, choosing a fixed number of decimal points for their
values) allows us to easily divide the planet’s surface
into a discrete grid. Since meridians get closer as they
converge the poles, as can be seen in Figure 1, the por-
tions of the Earth’s surface defined by such a grid have
varying areas depending on their position (Table 1). As
the Earth is a Geoid, the shapes deriving from this grid
are not exactly rectangles. However, for small areas, a
planar or flat surface for Earth is still sufficient, as the
local topography is far more significant than the curva-
ture. The construction proposed in the following is not
dependent on the size or shape of the regions. However,
for simplicity and consistency in the figures, we repre-
sent the regions as squares.

In real applications, the precision in decimal points

∆

Figure 3: A sample area covered by an arbitrary grid.

for longitude and latitude should reflect the expected er-
ror of the device or sensor used for learning the loca-
tion information. The precision and accuracy of mobile
devices in determining their geographic position were
proved to vary considerably depending on the context
(urban areas, rural areas, etc.) [44].

In a detailed experiment on the accuracy of GPS sen-
sors installed on mobile devices, Blum et al. show that
the location is reported with a precision varying from 10
to 60 meters, depending on the device orientation and
type, and, in cities, on the surrounding buildings [3].
Hence, when designing a system based on mobile de-
vices it would reasonable to consider regions with sides
tens of meters long.

For the purpose of this work we choose to consider
the grid defined by longitude and latitude values with
a precision of three decimal point places. This grid di-
vides Earth’s surface in a number of regions. We define
the set of all regions as follows.

Definition 2. We define E as the set of all regions in
which Earth’s surface is divided by the grid defined by
the circles (called parallels) of latitude distant multiples
of 0.001◦ from the equator and the arcs (called merid-
ians) of longitude distant multiples of 0.001◦ from the
Prime Meridian.

The sides (in meters) of a region of side 0.001 degrees
in terms of longitude and latitude vary depending on its
position on the globe. Table 1 contains some reference
values.

3.1. Areas and Points of Interest (AoI & PoI)

The purpose of this paper is to present a method
able to preserve both user’s and provider’s privacy in
location-aware applications. We imagine a scenario in



which the provider of such an application wants to be
notified of the presence of the user in one of a prede-
fined set of areas of interest (AoI). The areas of interest
are selected by the provider, and each is composed of
an arbitrary number of regions in E, defined above. An
area of interest may, for instance, represent a sensitive or
interesting location for the purposes of the application.
A number of concentric AoI around a point of interest
(PoI) can be used to detect the user’s vicinity to the PoI.
A point of interest is a point on Earth’s surface (at a spe-
cific latitude and longitude) whose position is deemed as
significant by the provider; the point lies in one region
in E, and therefore, in the following, we identify a point
of interest with the region containing it. In the follow-
ing we present two approaches for selecting the regions
of E in order to compose an area of interest, based on
the provider’s goals. Although both of them are used in
this paper, for example purposes, as strategies to select
the areas of interest by the service provider, we stress
here that our construction is independent of the strategy
used, and therefore can accommodate any other set se-
lection mechanism. The first strategy assumes that the
provider wants to select an arbitrarily shaped area of in-
terest, and follows naturally from the idea of detecting
the presence/absence of a person in this given zone. In
order to do that, the provider of the service defines an
area of interest by selecting a subset of E (Figure 3).
The regions in the AoI need not to be contiguous, and
there is no limitations in shape or size of the AoI. The
set containing all of these regions is defined as ∆. A sec-
ond approach is instead to monitor the user by detecting
his proximity to a PoI as he approaches it. We achieve
this goal without knowing the user’s exact location by
defining several concentric areas of interest around the
PoI to be monitored. In the example shown in Figure
2 we use three AoI for this purpose, but this parameter
can take any value deemed useful.

Let c be the PoI (having coordinates lngc, latc) and let
r be the range we are interested to monitor users around
the center itself. First of all we choose a region such
that it is the element of E that contains the point c. Then
a number of adjacent elements (all belonging to E) are
added in order to form a grid, until the circle of cen-
ter c and radius r is completely included in the grid, as
shown in Figure 2a. Now let us label each region with
its distance from the center region, using the standard
Manhattan distance (Figure 2b). Assume that σ is the
maximum distance value in the generated grid; we need
to discuss two cases. If (σ + 1) mod 3 = 0, we assign
to the set ∆3 each region labeled from 0 to q − 1, where
q = (σ + 1)/3. Similarly, we fill the set ∆2 with each
square labeled from q to 2q− 1 and the set ∆1 with each

Algorithm 2: Area coverage (for d sets).
Input: c, r, E, d;
Output: S̄ = ∆1 ∪ ∆2 ∪ · · · ∪ ∆d;

// Grid generation: define a grid S̄
composed of contiguous elements of E
that completely covers the circle of
center c and radius r (Figure 2a).

1 S̄ ← ∅;
2 Define the circle Cr of center c and radius r;
3 Find δc, the element in E which contains c;
4 S̄ ← S̄ ∪ {δc};
5 Starting from those elements of E contiguous to
δc, insert in S̄ each element of E completely or
partially covered by Cr;
// Distance evaluation: for each δ ∈ S̄,

compute the Manhattan distance from
the central element (Figure 2b).

6 Assign to the element δc the label 0;
7 For each δ ∈ S̄ , compute the Manhattan distance

from δc and assign the result to δ as label;
8 Let σ be the greatest computed distance;
// Area definition: pack each δ ∈ S̄ in d

concentric areas, equally assigning
the number of labels to each area
(Figure 2c).

9 Partition S̄ in σ + 1 subsets S̄ [i] such that S̄ [i]

contains the regions labeled with i;
10 q← b(σ + 1) /dc;
11 m← (σ + 1) mod d;
12 for j← 1 to d do
13 if m , 0 then
14 ∆ j ← S̄ [σ−q,σ];
15 σ← σ − (q + 1);
16 m← m − 1;

else
17 ∆ j ← S̄ [σ−q+1,σ];
18 σ← σ − q;

end
end

19 return ∆1, ∆2, . . . , ∆d;

square labeled from 2q to σ. If 3 does not divide σ + 1
exactly (i.e. (σ + 1) mod 3 , 0) some rounding is re-
quired; we could for instance assign the first remaining
class to ∆1 and the second optionally remaining class to
∆2 (Figure 2c). In that case, given q = b(σ + 1)/3c, the
procedure can be formalized assigning each region la-
beled from 0 to q − 1 to the set ∆3, each region labeled
from q to 2q to the set ∆2 and each region labeled from
2q + 1 to σ to the set ∆1. A generalization of this pro-
cedure for an arbitrary number of sets is formalized in
Algorithm 2.



4. Spatial Bloom Filter

After defining a spatial representation E of Earth’s
surface and providing a way to identify geographical ar-
eas (and points) as elements of a subset of E, we can use
a set-based data structure like the Bloom filter to encode
this information. However, the original definition of BF
proves to be quite inefficient for this task, as it would be
possible to encode only one area for each BF.

In the following we define a novel data structure
called Spatial Bloom Filter. A spatial Bloom filter can
be used, likewise the original BF, to perform member-
ship queries on the originating set of elements without
knowledge of the set itself. Contrary to the BF, how-
ever, a spatial Bloom filter can be constructed over mul-
tiple sets, and querying a spatial Bloom filter for an el-
ement returns the identifier of the specific set among all
the originating sets in which the element is contained,
minus a false positive probability (of assigning the el-
ement to the wrong set). Similarly to a classical BF,
there is also a false positive probability that querying a
SBF with an element outside the originating sets returns
a positive result (wrongly assigning the element to one
of the originating sets).

Before presenting the SBF formally and in order to
better understand its construction, it is meaningful to de-
note that it holds an insightful property concerning false
positives. Specifically, the probability of false positives,
that is, the probability that an element is wrongly recog-
nized as belonging to a specific originating set, depends
on the order in which the sets have been encoded in the
filter: a false positive can occur either when an element
outside the originating sets is recognized as being part
of one, or when an element that is part of an originating
set is recognized as being belonging to a different one
(sets are disjoint). The latter case, however, can only
happen if the wrongly recognized set has been encoded
later than the actual originating set.

This fundamental property allows to define an order
of priority for the different originating sets, thus reduc-
ing the error probability for elements (areas) deemed
more important. Considering the strategies described
in the previous section for selecting areas of interests,
this property is particularly useful when using SBFs to
store location information. In the example presented in
Section 3.1, for instance, we used a set of three different
areas S = {∆1,∆2,∆3}. Assuming the provider would
prefer a more accurate monitoring of the area’s central
region, we assigned the highest label value (3) to the
inner area. In the following we generally consider the
sets as already ordered by priority, meaning that set ∆2
is considered as having higher priority than ∆1.

Definition 3. Let S = {∆1,∆2, . . . ,∆s} be a set of areas
of interest such that ∆i ⊆ E and S is a partition of the
union set S̄ =

⋃
∆i∈S ∆i. Let O be the strict total order

over S for which ∆i < ∆ j for i < j. Let also H =

{h1, . . . , hk} be a set of k hash functions such that each
hi ∈ H : {0, 1}∗ → {1, . . . ,m}, that is, each hash function
in H takes binary strings as input and outputs a number
uniformly chosen in {1, . . . ,m}. We define the Spatial
Bloom Filter (SBF) over (S ,O) as the set of pairs

B# (S ,O) =
⋃
i∈I

〈i,max Li〉 , (9)

where I is the set of all values output by hash functions
in H for elements of S̄

I =
⋃

δ∈S̄ ,h∈H

h (δ) , (10)

and Li is the set of labels l such that:

Li = {l | ∃δ ∈ ∆l,∃h ∈ H : h(δ) = i} . (11)

A spatial Bloom filter B# (S ,O) can be represented as
a vector b# composed of m values, where the i-th value

b# [i] =

{
l if 〈i, l〉 ∈ B# (S ,O)
0 if 〈i, l〉 < B# (S ,O) . (12)

In the following, when referring to a SBF, we refer to
its vector representation b#.

A SBF is built as follows. Initially all values in b# are
set to 0. Then, for each element δ ∈ ∆1 and for each
h ∈ H we calculate h (δ) = i, and set the i-th value of
b# to 1 (that is, to the label of ∆1). We do the same for
the elements belonging to the set ∆2, setting b# [i] to 2.
We proceed incrementally until all sets in S have been
encoded in b#. We observe that, following Definition 3,
should a collision occur, the label with higher value is
the one stored at the end of the process. Thus, values in
the filter corresponding the elements in ∆s will never be
overwritten. This procedure is formalized in Algorithm
3 and depicted in Figure 4.

The verification process shall check whether an ele-
ment δu is contained in a set ∆i ∈ S . Hence we verify
whether δu ∈ ∆i if

∃h ∈ H : b# [h(δu)] = i and ∀h ∈ H, b# [h(δu)] ≥ i .
(13)

The procedure is described in Algorithm 4.
In practice, if any value of b# in a position that corre-

sponds to the output of one of the hash functions for δu

is 0, then δu < S̄ . If all the hashes map to elements of
value i, then δu ∈ ∆i minus a false positive probability
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S BF : 0 0 0 0 0 0 0 0 0 0

∆1

∆1 : 1 0 1 0 1 0 1 0 0 1

∆2

∆2 : 1 2 1 0 2 0 1 0 2 1

∆3

∆3 : 1 3 1 0 2 0 1 3 2 3

Figure 4: Areas ∆1, ∆2 and ∆3 are used to construct a SBF. Three hash
functions are used to map each element into the filter. Only the first ten
elements of the SBF are shown. In a, two elements belonging to ∆1
are processed by the hash functions, resulting in six 1 value elements
to be written into the SBF. The first element collides as highlighted.
This kind of collision is the same that may occur in a classic Bloom
Filter. After each element in ∆1 is processed, the algorithm processes
elements in ∆2 (b) and finally in ∆3 (c). Note that the collisions in b
and c are different from the previous one and are SBF specific. Areas
marked with a greater label are assumed to be more important from
the provider point of view and overwrite elements of lower value on
collision.

which is discussed in the following. The same applies
if at least one hash maps to an element of value i and
the remaining hashes map to elements of value > i. In
fact, since when a collision occurs the highest value is
stored, a lower value could be overwritten.

Similarly to the case of the original Bloom filter (Sec-
tion 2.1), a false positive probability p exists when de-
termining whether an element belongs to the set S̄ or
not. In the case of a spatial Bloom filter B# (S ,O), how-
ever, the probability p can be split into several probabil-
ities pi, each one subset-specific. Specifically, pi is the
probability that an element δ is wrongly recognized as
belonging to the set ∆i, while either δ < S̄ or δ ∈ ∆ j,
with j < i. For instance, a false positive assigned to
the set ∆s occurs if each hash collides with a value s in
b#. As stated in (4), for a classical BF the false positive
probability can be approximated as(

1 − e−
kn
m

)k
. (14)

Thus, adjusting the exponent with the subset-specific

Algorithm 3: Spatial Bloom Filter construction.
Input: ∆1, ∆2, . . . , ∆s, H;
Output: b#;

1 for i← 1 to s do
2 foreach δ ∈ ∆i do
3 foreach h ∈ H do
4 b# [h (δ)]← i;

end
end

end
5 return b#;

Algorithm 4: Spatial Bloom Filter verification.
Input: b#, H, δu, s;
Output: ∆i;

1 i = s;
2 foreach h ∈ H do
3 if b# [h (δu)] = 0 then
4 return f alse;

else
5 if b# [h (δu)] < i then
6 i← b# [h (δu)];

end
end

end
7 return ∆i;

number of elements, we can denote this probability as
follows:

ps ≈
(
1 − e−

k|∆s |
m

)k
. (15)

Similarly, we can compute the probability to wrongly
assign an element to the set ∆s−1 considering all of the
possible collisions with elements belonging to ∆s and
∆s−1, excluding those deriving from collisions with ele-
ments belonging to ∆s entirely. Hence

ps−1 ≈
(
1 − e−

k|∆s∪∆s−1 |
m

)k
− ps . (16)

We can proceed likewise to the last set:

p1 ≈
(
1 − e−

k|S̄ |
m

)k
− ps − ps−1 − · · · − p2 . (17)

It follows that p1 + p2 + · · ·+ ps = p, where p is the same
false positive probability provided in (4) if |S̄ | = n.

In the following we assume that the possibility of
false positives among sets (that is, having elements in
S̄ assigned to the wrong set) is deemed as generally ac-
ceptable when using a SBF.



Let us finally note that a SBF bears some resemblance
to a bloomier filter [8, 7], a variant of the classical
Bloom filter used for storing binary functions instead of
sets. We could in fact define the originating sets through
a function, and build the corresponding bloomier filter.
However, in the case of a spatial Bloom filter we have
an error probability between different ∆’s, but we know
exactly whether a δ ∈ S or not. A bloomier filter, in-
stead, would behave in the opposite way: the function
always outputs the correct ∆, but there exists a probabil-
ity that a δ < S will be wrongly recognized as belonging
to one ∆. Considering location-aware applications, we
deem an error in positioning over two contiguous areas
of interest as acceptable, while mistakenly recognizing
a position outside the areas of interests (even by far) as
inside as much more problematic. Therefore, we be-
lieve that the proposed spatial Bloom filters are better
suited to be used in the location-aware context, while
bloomier filters might still be useful in specific applica-
tion scenarios.

5. Private Positioning Protocols

A major feature of SBFs is that they allow private
computation of location based information. We show
this by providing two protocols based on spatial Bloom
filters that address the problem of location privacy in
a location-aware application. In general, a location-
aware application is any service that is based on (partial)
knowledge of the geographic position of the user. In
this work, however, we focus on applications in which
the service provider has an interest in learning when the
user is within an area (or close to a point) of interest.
The security discussion in the following is based on the
privacy definition we provide in the preliminaries (Sec-
tion 2).

The protocols we present are designed for a secure
multi-party computation setting, where the user and the
service provider are mutually distrusting, and therefore
do not want to disclose private information to the other
party. In the case of the user, private information is his
exact location. The service provider, instead, does not
want to disclose the monitored areas. We address this
problem by providing a scheme that allows the provider
of a service to detect when the user is within an area
of interest, without requiring the user to reveal his exact
position to the provider. At the same time, the privacy of
the provider is also guaranteed with respect to the areas
of interest. The privacy benefits for the user are dou-
ble: first and foremost, the relative location is only re-
vealed when the user is within predetermined areas, and

remains private otherwise. Secondly, even when pres-
ence in an area is detected, only this generic informa-
tion is learned by the provider, and not the actual posi-
tion. Following the area coverage mechanism proposed
in Section 3.1, for instance, the provider learns the dis-
tance from the central area to a certain extent, while
the direction from which the user approaches it stays
private. Dividing the area around the point of interest
in a different manner may reveal instead the direction
but conceal the distance within the area range. More-
over, should the provider decide maliciously to monitor
a wide zone (such as a nation or a large urban area) by
considering each included region in E as a single area,
the filter would increase significantly in size: this would
be immediately evident to the user (beside becoming
unpractical due to the abnormal size). Therefore, a sim-
ple sanity check on the size of the filter will effectively
prevent this deviation from the protocol.

In the following we discuss two different settings:
in the first setting the user communicates directly with
the service provider, who computed beforehand a spa-
tial Bloom filter relative to the areas he is interested in
monitoring. In the second setting, instead, the service
provider computes the SBF, but communication with the
user is handled by a third party, to which the provider
outsources the task. In both setting, no trust is implied
among the parties, including the third party, and we as-
sume the parties do not collude with each other. We
work in the honest-but-curious setting, as defined in the
preliminaries (Section 2).

5.1. Two-party Scenario
In the two-party scenario the communication happens

between the service provider Paul and the user Ursula.
We assume the user has access to a positioning system
that allows her to determine her geographic position.
Ursula is interested in using a location-aware service
provided by Paul, but she does not want to disclose her
exact position. Paul, on the other hand, wants to learn if
Ursula is close to some points of interest or is within an
area of interest, but he does not want to share with her
these locations. Since the two parties are mutually dis-
trusting, this is a secure multi-party computation prob-
lem.

We propose Protocol 1, that addresses the problem
securely by disclosing only the identifier i of the area
∆i in which the user is. Intuitively, the protocol works
as follows. Paul creates a SBF for the points and areas
of interest as described in the previous sections. He en-
crypts the filter (by encrypting each value therein) with
an encryption scheme that allows the private Hadamard
product defined in Algorithm 1, and sends it to Ursula.



Protocol 1: Two-party private positioning proto-
col between service provider Paul and user Ur-
sula.

Before any communication, the provider selects the
areas of interest ∆1, . . . ,∆s ⊂ E. Then, he selects the
desired false positive probability p, and determines k
and m according to (5) and (6) respectively. Finally,
following the notation of Definition 3, the provider
computes the spatial Bloom filter b# over S̄ using
Algorithm 3.

1 The service provider Paul generates a public and
private key pair using a multiplicative homomorphic
encryption scheme, and sends the public key to the
user Ursula.

2 Paul sends to Ursula the encryption of the
precomputed SBF Enc

(
b#

)
, the set of k hash

functions H, the value m and the conventional grid E.
3 At regular time intervals, or when required by the

specific application, Ursula determines her
geographic position and selects the corresponding
grid region eu ∈ E. Then, following Algorithm 3 and
using the values and functions shared by Paul, she
builds a spatial Bloom filter b#

u over {eu} and counts
the number z of values equal to 1 therein.

4 Ursula computes e# = Enc
(
b#

)
� b#

u using the
homomorphic properties of the encryption scheme
(Algorithm 1). Then she applies a random
permutation to the values in the filter, and sends z
and the result to Paul.

5 Paul decrypts e# and counts all non-zero values. If
the resulting number is < z, Ursula’s position is
outside of the areas on which the SBF was built.
Otherwise, the value i, corresponding to area ∆i

identifying Ursula’s position (minus error probability
pi), is the smallest non-zero value in Dec

(
e#

)
.

Ursula creates a SBF for the set composed only of her
position in the grid. The filter is binary, since 0’s and
1’s are the only possible values in a filter with only one
point of interest. Then Ursula computes the entrywise
homomorphic product of the received SBF with the one
she just computed: this way, only the values of the en-
crypted filter corresponding to a 1 in her filter are pre-
served, while the others take value 0. Then she shuffles
the values in the resulting encrypted filter and sends the
randomly ordered filter back to Paul.

Security Definition. In a two-party setting implement-
ing Protocol 1, the computation is achieved privately
if at the end of the protocol execution Paul learns only
i ∈ {1, . . . , s}, and Ursula learns nothing.

In the following we analyze the security of the pro-
tocol with respect to the above definition. In order to
quantify the information learned by Paul during the pro-
tocol execution, we introduce an arbitrarily small secu-
rity parameter E. Then, we prove that the probability of
Paul learning useful information is upper-bounded by
the chosen E.

Security Analysis. As stated in the security definition,
a successful execution of Protocol 1 should guarantee
three conditions: correctness of the result for Paul, pri-
vacy for Ursula’s position and privacy of the areas en-
coded in the filter by Paul. We discuss the three condi-
tions in the following.

The protocol ends correctly if the number of non-zero
values read in the decrypted e# by Paul is < z in case
Ursula is outside the areas of interests; in case Ursula is
within an area, the protocol ends correctly if the number
of non-zero values is equal to z, and the area is identified
by the smallest non-zero value, minus error probability
pi. The former case is always true, for the properties of
Definition 3, as explained in Section 4. In the latter case,
the false positive probability pi for each area i is deter-
mined by Paul according to (17) during filter creation.
It is therefore Paul himself who decides the correctness
bounds of the protocol.

The second condition (Ursula’s privacy) is respected
if Paul learns only in which (predefined) area the user
is, and not her exact position at the end of the protocol.
If the user is outside the areas of interest, the provider
should learn nothing. Ursula encodes her position in b#

u
at step 3 of the protocol, and sends the encrypted filter
e# = Enc

(
b#

)
� b#

u back to Paul after performing a ran-
dom permutation on the order of its values. The homo-
morphic properties of a public key encryption scheme
guarantee that Paul can only learn a number of values
from b# that corresponds to non-zero values in b#

u [21].
At the same time, the random permutation prevents him
from understanding to which position in b# each of these
values corresponds to, therefore making it impossible
to reconstruct Ursula’s filter based on the order of ele-
ments. If the number of non-zero values is z, and all
take the value i corresponding to an area of interest,
Paul only learns the area of interest. In case, instead,
some values are > i for some of the positions on the
grid within the area of interest, then Paul learns the area
of interest ∆i and a pattern of values. The same applies
in case Ursula is outside of any area of interest, but the
decryption of e# reveals a number of non-zero values
w < z. In the following we focus on the latter scenario,
as a potential attack exploiting the pattern information
could reveal the user’s position even when she is outside



the areas of interests. In fact, if the pattern is unique for
a position on the grid, Paul may be able to learn Ursula’s
position by performing an exhaustive search on all the
possible positions on the grid: given the irreversibility
of (spatial) Bloom filters, the complexity of the attack is
linear to the number of such positions. We prevent this
attack by having each pattern shared by at least a possi-
ble positions: in which case we achieve a-anonymity for
the user’s position even in case of an exhaustive search.
We define an arbitrarily small security parameter ε, and
we consider the privacy condition to be met if the prob-
ability of Paul learning Ursula’s position is 1

a < ε. For
each number w ∈ {1, . . . , z} of non-zero values obtained
by Paul, we can estimate the value of a based on the
number of possible positions in E and the number of ar-
eas of interest s. In particular, we calculate the number
of possible patterns for a given w as the combinations

with repetitions of length w,
(
s + w − 1

w

)
. Based on this,

we can estimate the average value ā for the different a’s
of all possible combination with repetitions to be

ā =
|E|∑k

w=1

(
s + w − 1

w

)
+ 1

, (18)

if we assume a linear distribution of the values {1, . . . , s}
over the filter. The security condition is hence met if
1
a < ε for all a’s relative to any possible w. We note,
from the formula above, that this mostly depends on the
number of areas of interest s and, on a lesser extent, on
the number of hashes k (since z ≤ k). These two values
can therefore be tuned in order to achieve the desired
security parameter ε, as both values are selected before
the creation of the filter. Considering the order of mag-
nitude of |E|, which is 1012, an appropriately built fil-
ter can satisfy a security parameter ε = 10−6 for most
values of k and s. Thanks to the fine grained nature
of the grid, even geographically limited settings which
restricts the area of potential positions of the user can
achieve reasonable security margins (ε ≈ 10−3): in fact,
small areas of a few square kilometers already include
several millions possible positions (Section 3).

Finally, the privacy of the service provider, that is, the
secrecy of the areas encoded in the filter, is ensured by
the encryption of the filter itself. Ursula, in fact, never
learns the cleartext of the filter, as she is able to per-
form the multiplication of step 4 in the encrypted do-
main thanks to the homomorphic properties of the pub-
lic key encryption scheme.

Protocol 2: Three-party private positioning pro-
tocol among provider Paul, third party Olga and
user Ursula.

Before any communication, the provider selects the
areas of interest and creates the corresponding spatial
Bloom filter similarly to Protocol 1.

1 The service provider Paul generates a public and
private key pair using a multiplicative homomorphic
encryption scheme, and sends the public key to the
third party Olga.

2 Paul sends to Olga the encryption of the
precomputed spatial Bloom filter Enc

(
b#

)
and the

value m. Then, Paul sends to the user Ursula the set
of k hash functions H and the conventional grid E.

3 At regular time intervals, or when required by the
specific application, Ursula determines her
geographic position and selects the corresponding
grid region eu ∈ E. Then, she computes the values
{v1, . . . , vk} where vi = hi (eu), and sends them to
Olga.

4 Olga receives the values from Ursula and builds b#
o,

by assigning b#
o [vi] = 1 for every vi ∈ {v1, . . . , vk}.

Then, she calculates z as the number of 1’s in b#
o.

5 Olga computes e# = Enc
(
b#

)
� b#

o using the
homomorphic properties of the encryption scheme
(Algorithm 1). Then she applies a random
permutation to the values in the filter, and sends z
and the result to Paul.

6 Paul decrypts e# and counts all non-zero values. If
the resulting number is < z, Ursula’s position is
outside of the areas on which the SBF was built.
Otherwise, the value i, corresponding to Ursula’s
area ∆i (minus error probability pi), is the smallest
non-zero value in Dec

(
e#

)
.

5.2. Three-party Scenario
In the three-party scenario the communication does

not happen directly between the service provider and the
user (Protocol 2). The service provider is responsible
for creating and managing the filter, but the verification
of user values and therefore all direct communication
with the user is outsourced to a third party, whom we
call Olga. We introduce the third party in order to de-
crease the computation and communication burden im-
posed on the user Ursula. In fact, while it is reason-
able to assume that the service provider has adequate
resources in terms of computational power and band-
width to manage filters of big size, the same assumption
can not be made for the user, who might be constrained
to the limited resources of a mobile device such as a
smartphone. Therefore, we offload all onerous tasks to
the provider and the third party, who is also assumed to



be communication and computationally capable.

Security Definition. In a three-party setting implement-
ing Protocol 2, assuming that no information other
than the one implied by the protocol is shared between
the parties (parties do not collude), the computation is
achieved privately if at the end of the protocol execution
Paul learns only i ∈ {0, . . . , s}, while Olga and Ursula
learn nothing.

Security Analysis. The security of the three-party pro-
tocol follows that of the two-party protocol above. The
introduction of the third party means however that the
user sends her unencoded hash values to the third party,
who performs the private Hadamard product. This ex-
poses the user to an attack on the spatial Bloom filter
by the third party. While Bloom filters have proved
to be irreversible, an exhaustive search may reveal to
Olga the input used to produce the received hash out-
puts. This attack, however, assumes knowledge of E
by Olga. The conventional grid E represents in fact the
coding scheme (or ordering) of the elements on the ge-
ographical grid: that is, which value is to be given as
input to the hash functions for each position. Since this
information is not required by Olga for the execution of
the protocol, the user and the provider can agree on an
encoding scheme (which can simply be a random order-
ing of the geographical grid elements) unknown to the
third party, thus preventing her from running a search
attack. We note that the same goal can also be achieved
by using keyed hash functions, which would however
require a key exchange between the two parties.

A second threat to which the user is exposed is due to
the deterministic nature of the hash results for the same
input. In fact, the third party may easily know if the user
is revisiting the same grid position twice by comparing
the hash digests. In settings in which this is considered
unacceptable, a temporal-based variation of the above
encoding of the geographical grid can be used.

6. Evaluation

In this section we provide an in depth evaluation of
several SBF properties. First, we analyze the com-
putation and communication overhead of the solution.
Then, we analyze how the probability of false positives
changes for different values of k (the number of hash
functions). Finally, we discuss the density of the filter,
which has significant implications on the value of the
security parameter ε.

The computational complexity for the insertion and
the verification of a single element in a SBF is linear in

the number k of hash functions used for the filter. The
private Hadamard product has instead a computational
cost linear to the length of the filter m.

In the following we provide an estimation of the
communication overhead, and we evaluate the compu-
tational cost required for an execution of the protocol
(Table 2). While being a generally compact data struc-
ture, a SBF built over a significantly large number of
sets can require a sizable amount of memory. While
m bits are needed to store a classical Bloom filter b, a
SBF needs more bits due to the labeling of subsets ∆.
More precisely, in order to store b#,

(blog2 sc + 1
)

m bits
are needed. Depending on the number of areas and the
desired error probability, a SBF could require a storage
space (and communication cost when transmitted) not
suitable for constrained scenarios, as in the case of mo-
bile devices: in this case, the use of the second proto-
col, involving a third party, can significantly reduce both
the communication and the computational load on the
user’s device. For instance, let us consider hash func-
tions with a 16-bit digest (i.e. m = 216) and an area of
interest divided into six sub areas. Since s = 6, a SBF
built on these functions needs

(blog2 6c + 1
)

216 bits, re-
sulting in a data structure of approximately 24 KB. Us-
ing the second protocol, the communication is reduced
to just 160 bits, assuming a number of hash functions
k = 10. The computationally intensive operations to be
performed by each party, and the communication costs
are summarized for both protocols in Table 2. These re-
sults indicate that SBF’s can be adopted in most circum-
stances and real-world scenarios, either with direct com-

Brussels city Belgium

Region extension 161.28 Km2 30 536 Km2

δ50th per region 20 958 3 965 715

Monitored areas 15 1023

Area extension 0.25 Km2 1 Km2

δ50th per area 33 130

Monitored δ50th 495 (2.4%) 132 990 (3.3%)

Hashes 2 - 30 2 - 70
(false positives)

SBF1 SBF2 SBF3 SBF1 SBF2 SBF3

Hashes 10 10 10 10 10 10
(security analysis)

Hash mapping 213 214 215 221 222 223

Binary SBF size 4 KB 8 KB 16 KB 2.5 MB 5 MB 10 MB

Table 3: SBF evaluation examples.



User Provider Third party

Comp. 1 SBF-insertion, 1 decryption,
(2-p) 1 Private Hadamard Product 1 match count

Comp. k hashes 1 decryption, 1 SBF-completion,
(3-p) 1 match count 1 Private Hadamard Product

Comm. O (m) O (m)
(2-p)

(blog2 sc + 1
)

m
(blog2 sc + 1

)
m

Comm. O (
log2 m

) O (m) O (m)
(3-p) k

(blog2 mc + 1
) (blog2 sc + 1

)
m k

(blog2 mc + 1
)

+
(blog2 sc + 1

)
m

Table 2: Computation and communication load for stakeholders.

munication between the user and the service provider, or
through the use of a third party.

In order to discuss the security properties and the
false positive probability, we introduce two examples
based on actual geographical regions: the metropolitan
area of the city of Brussels, first, and the whole country
of Belgium, second. These two examples let us pro-
vide insight in the usefulness of the proposed solution
in real-world settings, and for realistically sized regions.
In order to perform the tests, we implemented a proto-
type, but fully functional version of the filter creation
and query routines. Using that, we construct a set of
test filters of different sizes for the different parameters.
The details of the two experiments are summarized in
Table 3. As the mentioned areas are located across the
50th parallel North, we approximate each element δ ∈ E
to a 70 × 110m rectangle (as described in Section 3 and
Table 1). Such a rectangle covers an overall surface of
0.0077 Km2. For the purpose of these examples we will
refer to this kind of rectangles as to δ50th. In the first
example, the provider needs to monitor 15 critical areas
within the Brussels city region. This region measures
approximately 161 Km2 and thus needs a total of 20958
δ50th to be fully covered. We assume that the 15 areas
which the provider monitors within this region are 0.25
Km2 each, resulting in approximately 33 δ50th needed
for any single area. The second example focuses in-
stead on a larger region, namely the country of Belgium.
Its area is approximately 30000 Km2. Here we assume
1023 monitored areas covering 1 Km2 each. Therefore,
around 130 δ50th are needed in order to cover each of
them.

We start the analysis of the filters by calculating the
false probability function for the areas of interest en-
coded in the filters, with respect to the number k of hash
functions used. For this calculation we use, in the case
of the first example, an SBF with m = 8192 (that is,
a total size of 4 KB) and we test the value of k start-

ing from 2 hash functions and up to 30. For the sec-
ond example we use instead a filter of 5MB of size and
m = 4194304, which we plot for k between 2 and 70.
Results are presented in Figure 5. As evident from the
graphs, the optimal number of k lies in between 8 and
13 for the first case and between 9 and 40 for the second
example. Therefore, we choose a value of k = 10 for
our following analysis.

It is remarkable to note that the area considered more
sensitive (the one labeled with the highest value follow-
ing our assumption) almost always holds a smaller false
positives probability (actually a really small one) with
respect to the other regions. In general, pi < p j for
i > j. However, this property may not stand true when
the filter is exceedingly dense: this condition is reached
when the filter is too small in size or when the number
of hashes is too high. This complex phenomenon surely
deserves attention and could be further studied. For the
purpose of this paper, it is sufficient to note that a SBF
can be tuned through m and k in order to meet the given
application requirements.

Having determined the value of k, we proceed to cre-
ate a number of test filters of different sizes, in order to
evaluate their density. We study the density of a filter
by looking at the δ’s outside the areas of interest. In a
filter of infinite length, querying the filter over a δ < S
should result in k zero values. In general, the shorter the
filter, the more the occurrences in which a δ < S will
result in a number of non-zero values being returned.
In the chart shown in Figure 6, three filters of different
sizes are built for each example, and the number of δ’s
resulting in exactly vi non-zero values are plotted. In-
tuitively, the larger the filter, the lower the number of
occurrences for high values of vi. This has strong im-
plications on the privacy properties of the filter: if we
consider a δ < S resulting in 0 non-zero values, a per-
son standing in that region will have (v10)-anonymity.
The anonymity of a person in an area resulting in 1 non-
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Figure 5: False positives probability reported varying the number of hash functions following the examples provided in Table 3. Each plotted
function represents the false positives probability for a specific area ∆i. Figure 5a, related to the Brussels city region, reports functions for all of the
15 monitored areas while, for ease of reading, Figure 5b, related to Belgium as a whole, reports just a few functions among the existing 1023.
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Figure 6: Density of three sample filters used to run the examples provided in Table 3. For each SBF we show the distribution of zero-values among
the mapped elements δ50th. Figure 6a refers to the Brussels region while Figure 6b refers to Belgium as a whole.

zero value will have an anonymity of v9 divided by the
number of combinations with repetitions with w = 1
on average, as explained in Section 5, and so on. We
conclude that the filters of larger sizes in the examples
are providing effective anonymity in most cases, namely
85% and 58% for the first and second examples respec-
tively, and a lower anonymity grade in the rest of the
areas. By increasing the size of the filter to 23 = 8 times
that of the presented examples (S3), we reach in both

cases effective anonymity for the filters in 99.999% of
the cases. We can scale exponentially higher by sim-
ply increasing the size of the filter further. This is pic-
tured in Figure 7, where the plotted function represents
the probability of an area δ < S to show a unique pat-
tern in the filter, and therefore being identifiable by a
honest-but-curious provider. We consider patterns to be
identifiable for any vi≥2. A probability close to 0 de-
notes therefore a high privacy guarantee, while lower
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Figure 7: Probability of patterns that could lead to the identification of the position of the user when outside an area of interest by an honest-but-
curious provider, with respect to the hash mapping m. Figure 7a is relative to Brussels, while Figure 7b to Belgium (see Table 3). The size of the
filter is linear to the hash mapping, as per the communication cost formula in Table 2.

probabilities mean a weaker privacy property. As evi-
dent from the graphs, in the case of the Brussels area,
any hash mapping m ≥ 218 will provide a probability
of identifying patterns close to 0, while in the case of
Belgium this is true for values of m ≥ 226.

7. Conclusions

In this paper we present a novel privacy-preserving
primitive, the Spatial Bloom Filter (SBF). Based on the
classical Bloom filter, the SBF extends it by allowing
multiple different sets to be encoded in a single fil-
ter. Spatial Bloom filters are particularly suited to store
location information, when such information is repre-
sented in a set-based format: in order to show this, we
provide a spatial representation system for geographic
areas, which allows us to encode positioning informa-
tion (such as the one produced by GPS devices) into an
SBF.

A main characteristic of spatial Bloom filters is to al-
low privacy-preserving location queries. In particular,
we can encode into an SBF a list of sensitive areas and
points located in a geographic region of arbitrary size.
In many applications, such as law enforcement surveil-
lance, military tracking or even location-based advertis-
ing, a service provider is interested in detecting the pres-
ence of a user within predetermined areas of interest, or
his proximity to points of interest. In order to avoid
constant tracking, however, the provider should be noti-
fied only when the current location of a user lies within

those areas, and not otherwise. At the same time, the
provider might have an interest in keeping the location
of these sensitive areas hidden from the users (imagine,
for instance, a tracking system for convicts sentenced
to house arrest, or the surveillance of military bases).
This is a typical secure multi-party computation prob-
lem: different players want to compute cooperatively
the result of a function, but without disclosing their in-
puts to each other. Thanks to the properties of spatial
Bloom filters, we can build a private location protocol
that solves this problem.

In this paper we propose two privacy-preserving
protocols for location-based services based on spatial
Bloom filters. The protocols use the homomorphic
properties of a public key encryption scheme (such
as Paillier’s cryptosystem) in order to guarantee both
user’s and provider’s privacy: the provider only learns in
which (predefined) area the user is, but not his exact po-
sition, and only if the user is within those areas; the user
learns nothing. In the first protocol, the user communi-
cates directly with the service provider. The second pro-
tocol, instead, provides an alternative for users unable
to perform complex computational tasks (this might be
the case, for instance, of embedded devices with limited
capabilities). In the latter protocol most of the computa-
tion is outsourced to a third party, but without assuming
any trust. In the paper we prove the security of both
protocols, and we show the results of a test implemen-
tation, which allows us to establish the security margins
of the construction. The results highlight the flexibility



of spatial Bloom filters: we can in fact satisfy any de-
sired privacy bound by calibrating the parameters of the
filter, as shown in Figures 5 and 7. We test the imple-
mentation using two real geographic areas: the city of
Bruxelles, and Belgium. In the first case, the size of the
filter can be as small as a few KB’s, while the whole
Belgium can be covered with just a few MB’s. This re-
sults open the way to actual implementation of privacy-
preserving protocols in location-aware applications, and
address for the first time the problem of location privacy
in the secure multi-party computation setting.

Finally, in the discussion of the bounds to the den-
sity of spatial Bloom filters we pointed out that, in some
limited and specific cases, the most sensitive areas in the
filter may not hold the smallest false positives probabil-
ity when the filter is exceedingly dense. We suggest a
study of this phenomenon as future work, investigating
the mathematical properties of the SBF primitive and
focusing on the study of the number of hashes, the di-
mension of the filter, the number of areas and, in gen-
eral, on SBF tuning and optimization.
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