
Title Reordering all agents in asynchronous backtracking for
distributed constraint satisfaction problems

Authors Mechqrane, Younes;Wahbi, Mohamed;Bessiere, Christian;Brown,
Kenneth N.

Publication date 2019-09-20

Original Citation Mechqrane, Y., Wahbi, M., Bessiere, C. and Brown, K. N.
(2020) 'Reordering all agents in asynchronous backtracking
for distributed constraint satisfaction problems', Artificial
Intelligence, 278, 103169 (28 pp). doi: 10.1016/j.artint.2019.103169

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://www.sciencedirect.com/science/article/pii/
S0004370218303643 - 10.1016/j.artint.2019.103169

Rights © 2019 Elsevier B.V. All rights reserved. This manuscript
version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/ - https://
creativecommons.org/licenses/by-nc-nd/4.0/

Download date 2024-04-25 00:27:33

Item downloaded
from

https://hdl.handle.net/10468/11094

https://hdl.handle.net/10468/11094

Reordering All Agents in Asynchronous Backtracking
for Distributed Constraint Satisfaction Problems

Younes Mechqranea, Mohamed Wahbib,∗, Christian Bessierec, Kenneth
N. Brownb

aMohammed V University, Rabat, Morocco
bInsight Centre for Data Analytics, University College Cork, Cork, Ireland

cCNRS, University of Montpellier, Montpellier, France

Abstract

Distributed constraint satisfaction problems (DisCSPs) can express decision
problems where physically distributed agents control different decision variables,
but must coordinate with each other to agree on a global solution. Asynchronous
Backtracking (ABT) is a pivotal search procedure for DisCSPs. ABT requires
a static total ordering on the agents. However, reordering agents during search
is an essential component for efficiently solving a DisCSP. All polynomial space
algorithms proposed so far to improve ABT by reordering agents during search
only allow a limited amount of reordering. In this paper, we propose AgileABT,
a general framework for reordering agents asynchronously that is able to change
the ordering of all agents. This is done via the original notion of termination
value, a label attached to the orders exchanged by agents during search. We
prove that AgileABT is sound and complete. We show that, thanks to termina-
tion values, our framework allows us to implement the main variable ordering
heuristics from centralized CSPs, which until now could not be applied to the
distributed setting. We prove that AgileABT terminates and has a polynomial
space complexity in all these cases. Our empirical study shows the significance
of our framework compared to state-of-the-art asynchronous dynamic ordering
algorithms for solving distributed CSP.

Keywords: Distributed Constraint Reasoning, Asynchronous Backtracking,
Dynamic Variable Ordering.

1. Introduction

Distributed artificial intelligence involves numerous combinatorial problems
where multiple physically distributed entities, called agents, need to cooperate

∗Corresponding author
Email addresses: ymechqrane@gmail.com (Younes Mechqrane),

mohamed.wahbi@insight-centre.org (Mohamed Wahbi), bessiere@lirmm.fr (Christian
Bessiere), ken.brown@insight-centre.org (Kenneth N. Brown)

Preprint submitted to Elsevier October 22, 2019

in order to find a consistent combination of actions. Examples of such problems
are: traffic light synchronization [1], truck task coordination [2], target tracking5

in distributed sensor networks [3, 4, 5], distributed scheduling [6], distributed
planning [7], nurse shift assignment problem [8], distributed resource alloca-
tion [9], distributed vehicle routing [10], etc. In these problems agents have to
achieve the combination in a distributed way and without centralization. In
general, this condition is mainly motivated by privacy and/or security require-10

ments: constraints or possible values may be strategic information that should
not be revealed to other agents that can be seen as competitors. In addition,
in many distributed settings, gathering the whole knowledge into a centralized
agent may be impractical or its cost may be intolerable. In the field of multi-
agent coordination, the above-mentioned problems were formalized using the15

distributed constraint satisfaction problem (DisCSP) paradigm that allows a
distributed solving process.

A DisCSP is composed of multiple agents, each owning its local constraint
network. Variables in different agents are connected by constraints. The agent
community must assign a value to each variable so that all constraints are satis-20

fied. To achieve this, agents assign values to their own variables that satisfy their
own constraints; to satisfy constraints involving variables with other agents,
they must exchange messages about their decisions and revise those decisions
accordingly.

During the last two decades, many distributed algorithms have been designed25

for solving DisCSPs, among which Asynchronous Backtracking (ABT) is the
central one [11, 12]. ABT is an asynchronous algorithm executed concurrently
and autonomously by all agents in the distributed problem. Agents are not
required to wait for the decisions of other agents. ABT assumes a single static
total priority order on the agents. For a given agent, those agents that appear30

before it in the order are higher priority, while those that appear after it are lower
priority. When an agent performs an assignment, it sends out messages to lower
priority neighbors informing them about its new assignment. Each agent tries
to find an assignment satisfying the constraints with what is currently known
from higher priority neighbors, and whenever an agent detects a dead end, it35

determines a conflict set of assignments (called a no-good) that is responsible
for the inconsistency. Because a superset of a no-good cannot be a solution, the
generator of the no-good sends a message to the lowest priority agent involved
in the conflict set (i.e., the backtracking target) in order to revise its current
assignment.40

A strong weakness in ABT is the static order on the agents. It is known from
centralized CSPs that reordering variables dynamically during search dramati-
cally improves the efficiency of the search procedure [13, 14, 15]. Hence, several
extensions of ABT have been proposed to dynamically reorder variables during
search, leading to a more flexible exploration of the search space. Silaghi et al.45

[16] proposed asynchronous backtracking with reordering (ABTR). ABTR is an
asynchronous complete algorithm with polynomial space requirements where
abstract agents fulfill the reordering operation. Zivan and Meisels [17] proposed
dynamic ordering for asynchronous backtracking (ABT DO). Three different

2

ordering heuristics were proposed to reorder lower priority agents in ABT DO:50

random, min-domain [18] and no-good-triggered. The experimental results in
[17] show that no-good-triggered, where the generator of the no-good is placed
just after the target of the backtrack, is the best. Silaghi [19] has shown that
ABT DO, when used with no-good-triggered, is equivalent to ABTR when used
with the ABTR-db dynamic-backtracking self redelegation heuristic.55

While the above-mentioned algorithms have led to great improvement in
performance compared to ABT, they all share the same weakness. Whenever a
no-good is discovered, the agent that must change its assignment is that with
the lowest priority among the conflicting set, and no lower agent can be moved
to a position higher than this target of the backtrack. This restriction is a major60

source of inefficiency for these algorithms. If a bad variable assignment is made
high in the agents order, an exhaustive search of lower priority agents must be
performed before being able to reach back to the culprit variable.

A new kind of ordering heuristics for ABT DO is presented in [20, 21]. These
heuristics enable the reordering of agents that are higher than the backtracking65

target. The resulting algorithm is called ABT DO Retro. The degree of flexi-
bility of the heuristics ABT DO Retro can implement depends on the value of a
predefined parameter K that determines the no-good storage capacity. Agents
are limited to store no-goods with a size equal to or smaller than K. The space
complexity of ABT DO Retro agents is thus exponential in K.70

Finally, asynchronous weak commitment (AWC), proposed by Yokoo [22], is
the algorithm that has the highest degree of flexibility to reorder agents during
search. AWC dynamically reorders agents by moving the sender of a no-good
higher in the order than the other agents in the no-good. Thus, when a dead
end occurs, AWC is not committed to the current partial assignment of agents.75

It starts constructing a new partial assignment from scratch. AWC stores all
the abandoned partial assignments in order to ensure termination. AWC can
be seen as the special case of ABT DO Retro when K = n. AWC was shown to
outperform ABT on small problems [23]. However, AWC requires an exponential
space for storing all generated no-goods. This high space complexity prevents80

its use on larger problems.
All algorithms we discussed have shown empirically the benefit of reordering

agents during distributed asynchronous search. However, we observe that those
that allow the greatest flexibility (i.e., AWC and ABT DO Retro) pay it at the
cost of an exponential space complexity for storing no-goods.85

In this paper, we propose agile asynchronous backtracking, AgileABT,
a distributed constraint satisfaction framework that allows reordering of all
agents during search without requiring exponential space. Agents operate asyn-
chronously, and at any stage an agent may propose a reordering. Each proposal
must be associated with some auxiliary information, which we call a termination90

value. Agents accept or reject the suggested reordering using a priority rela-
tion over termination values. The termination values are mathematical objects
that could be simple scalar values, or could be more complex structures based
on the intrinsic properties of the proposed reordering. The general framework
AgileABT is instantiated by specifying a function used to compute new orders95

3

and their associated termination values together with the priority relation over
the computed termination values. If the priority relation is a well ordering, then
AgileABT is guaranteed to terminate; if the function used to compute new or-
ders and their associated termination values has polynomial space complexity,
then AgileABT has polynomial space complexity as well.100

The general framework AgileABT can be instantiated in several possible
ways. We only present some examples in this paper. In our examples, any
agent can propose a reordering of all other agents, including those appearing
before the backtrack target, provided that the termination value is improved
w.r.t. the priority relation over the termination values. As a consequence of105

this agile reordering capability, an agent is able to propose any other conflicting
agent as a backtracking target, provided that the target agent is the last among
the conflicting ones in the new ordering. These features are unique for a DisCSP
algorithm with polynomial space complexity. Our motivation was to study in
a distributed setting some of the most effective DVOs heuristics from central-110

ized CSP. We show how to implement the most common DVOs from CSP, and
we evaluate their performance on DisCSP benchmarks. Our empirical results
show that the DVOs implemented in AgileABT can offer orders of magnitude
improvement in both computation and messaging costs compared to the orig-
inal static ABT, and that they consistently outperform previous proposals for115

dynamic ordering in ABT.
The reminder of the paper is organized as follows. We give the necessary

background on distributed CSP and dynamic reordering materials in Section 2.
Section 3 introduces the general framework of Agile Asynchronous Backtrack-
ing, AgileABT and analyses its theoretical properties. Section 4 presents some120

instantiation examples of AgileABT and their proof of correctness. We report
our empirical results in Section 6. Finally, we conclude in Section 7.

2. Background

Constraint programming is one of the main fields in artificial intelligence
for studying combinatorial problems. Constraint Programming is based on ap-125

proaches to solving a generic problem definition (constraint satisfaction problem)
over a constraint network.

A constraint network is defined by a set of decision variables, their domain
of possible values, and a set of constraints. Constraints represent restrictions on
value combinations allowed for constrained variables. A solution is an assign-130

ment of values to decision variables that satisfies all the constraints. CSP is a
general framework that can formalize many real world combinatorial problems
whenever the knowledge about the whole problem is available for a (centralized)
solver.

2.1. Basic definitions and notations135

The distributed constraint satisfaction problem (DisCSP) consists in look-
ing for solutions to a distributed constraint network. A distributed constraint

4

a1

a2

a3 a4

a5x1

x2

x3 x4

x5

c 12

c13

c15

c
25

c34

c45

A= {a1, . . . , a5}
X = {x1, . . . , x5}
D= {D1, . . . , D5},
where Di = {1, 2, 3, 4}
C= {c12, c13, c15, c25,

c34, c45}

c12 : x1 6=x2

c13 : x1 6=x3

c15 : x1 6= |x5−2|
c25 : x2 6=x5

c34 : x3 < x4

c45 : x4 ≥ x5

Figure 1: The constraint graph of a DisCSP instance of 5 agents/variables and 6
constraints.

network has been defined in [11] as a tuple (A,X ,D, C), where A is a set of m
agents {a1, . . . , am}, X is a set of n variables {x1, . . . , xn}, where each variable
xi is controlled by one agent in A. D= {D1, . . . , Dn} is a set of n domains,140

where Di is the initial set of possible values to which variable xi may be as-
signed. During search, values may be pruned from the domain. At any node,
the set of possible values for variable xi is denoted by Dc

i and is called the
current domain of xi. Only the agent which controls a variable has knowledge
of its current domain and can assign it a value. C is a set of constraints that145

specify the combinations of values which may be assigned simultaneously for the
variables they involve. A constraint may involve variables from several agents.
For this paper, we restrict our attention to binary constraints (i. e., constraints
that involve two variables). A constraint cij ∈ C between two variables xi and
xj is a subset of the Cartesian product of their domains (cij ⊆ Di ×Dj). Each150

agent ai only knows constraints involving its variables, denoted by Ci. When
there exists a constraint between two variables xi and xj , these variables are
called neighbors. The set of neighbors of a variable xi is denoted by Γi. The
connectivity between the variables can be represented with a constraint graph,
where vertices represent the variables and edges represent the constraints [24].155

A solution is an assignment to each variable of a value from its domain, satis-
fying all constraints. In order to propagate constraints locally, we assume that
each agent in the system knows the initial domain of each neighbor and keeps
a local copy of that domain.

For simplicity purposes, we assume each agent controls exactly one variable160

(m=n), so we use the terms agent and variable interchangeably and do not
distinguish between ai and xi. For the rest of the paper we consider a generic
agent ai ∈ A. Agent ai stores a unique total order on agents, i.e. a vector of
n agents IDs, denoted by λi. λi is called the current order of ai. We denote
by λi[k] (∀k ∈ 1..n) the ID of the agent located at position k in λi. Agents165

appearing before agent ai in λi are the higher priority agents denoted by λ−i
and conversely the lower priority agents λ+i are agents appearing after ai in
λi. The order λi divides the set Γi of neighbors of ai into higher priority
neighbors Γ−i , and lower priority neighbors Γ+

i . Figure 1 presents an example

5

of a DisCSP instance. This problem consists of 5 agents with the following170

domains ∀i ∈ 1..5, Di = {1, 2, 3, 4} and 6 constraints among these agents c12:
x1 6= x2, c13: x1 6= x3, c15: x1 6= |x5 − 2|, c25: x2 6= x5, c34: x3 < x4, and
c45: x4 ≥ x5. Figure 1(left) shows the constraint graph representation of this
instance. Agent a1 knows three constraints C1 = {c12, c13, c15} and ignores the
other constraints.175

To solve a DisCSP, agents assign values to their variables and exchange
messages to satisfy constraints with variables owned by other agents. Each
agent maintains a counter, and increments it whenever it changes its value.
The current value of the counter tags each generated assignment.

Definition 1. Given a DisCSP defined by the network (A,X ,D, C), an assign-180

ment for an agent ai ∈ A is a tuple (xi, vi, ti), where vi ∈ Di is the value to
which variable xi is assigned, and ti ∈ N is the timestamp tagging the assigne-
ment. Given two assignments (xi, vi, ti) and (xi, v

′
i, t
′
i), if vi 6= v′i then ti 6= t′i

by construction. If ti > t′i, (xi, vi, ti) is said to be more up to date than
(xi, v

′
i, t
′
i). Two sets of assignments are compatible if every common variable185

is assigned the same value in both sets.

Definition 2. The agent-view of an agent ai, AV , stores the most up to
date assignments received from other agents. It is initialized to the set of empty
assignments. AV − denotes the locally stored assignments of higher agents w.r.t.
the current order λi stored by agent ai.190

During search agents can infer inconsistent sets of assignments called no-
goods. Agents use these no-goods to justify value removals.

Definition 3. A no-good ruling out value vi from the initial domain of a
variable xi, ngd[xi 6=vi], is a clause of the form [xj = vj ∧ . . . ∧ xk = vk] →
xi 6=vi, meaning that the assignment xi = vi is inconsistent with the assignments195

xj = vj ∧ . . . ∧ xk = vk. The left hand side (lhs) and the right hand side (rhs)
are defined from the position of →. We say that a no-good is compatible with
an agent-view AV if its lhs is compatible with AV .

Each value removal from Di is justified by a no-good. The current domain
Dc
i of a variable xi contains all values from the initial domain Di that are not200

ruled out by a no-good. The initial domain size of ai is denoted by di while its
current domain size is denoted by dci (i. e., dci = |Dc

i | and di = |Di|).
Let Λi be the conjunction of the left-hand sides of all no-goods ruling out

values from Di, i.e. Λi =
∧

vi∈{Di\Dci }
lhs(ngd[xi 6=vi]). When all values of a

variable xi are ruled out by no-goods (Dc
i = ∅), these no-goods are resolved,205

producing a new no-good from the conjunction of their left-hand sides (Λi)
meaning that at least one of the variables in Λi needs to change its value. There
are clearly many different ways of representing Λi as a no-good. In standard
backtracking search algorithms (like ABT), the variable that has the lowest
priority in the current order among the conflicting variables must change its210

value. We will see later how our framework relaxes this restriction. Let xt

6

a1 a2 a3 a4 a5

x1 x2 x3 x4 x5

c12

c13

c15
c25

c34 c45

c12 c13 c34
c15
c25
c45

Figure 2: The directed acyclic constraint graph of the DisCSP instance in Figure 1
induced by λ= [1, 2, 3, 4, 5].

be that variable that must change its value, i.e. to be put in the rhs of the
new no-good. The variable xt is called the backtracking target. The new no-
good, ngd[xt 6=vt], is obtained from Λi by setting xt 6=vt in the rhs and all other
assignments in Λi in the lhs, i.e. ngd[xt 6=vt] : [Λi \ (xt = vt)]→ xt 6=vt. The new215

generated no-good will be used as justification for removing the value vt of the
variable xt once sent to agent at.

The variables in the lhs of a no-good must precede the variable on its rhs in
the current order because the assignments of these variables have been used to
filter the domain of the variable in its rhs. These ordering constraints induced220

by a no-good are called safety conditions in [25].

Definition 4. A safety condition is an assertion xj ≺ xk meaning that xj
must precede xk in the ordering. We say that a no-good is coherent with an
order λi if all agents in its lhs appear before its rhs in λi.

For example, the no-good [xj = vj ∧ xk = vk] → xi 6=vi implies that xj ≺ xi225

and xk ≺ xi, that is xj and xk must precede xi in the variable ordering (i. e.,
xj , xk ∈ λ−i).

2.2. Asynchronous Backtracking - ABT

The first complete asynchronous search algorithm for solving DisCSPs is
asynchronous backtracking (ABT) [26, 12]. In ABT, agents act concurrently230

and asynchronously, and do not have to wait for decisions of others. However,
to be complete, ABT requires a total priority ordering on agents (λi). The
priority order of agents is static and uniform across the agents. The required
total ordering on agents in ABT induces a directed acyclic constraint graph
where constraints are represented by directed links according to the total order235

among agents. Hence, a directed link between each two constrained agents is
established. ABT performs asynchronous search based on this structure. The
agent to which the direct link arrives is the agent evaluating the constraint
represented by that link. Consider the instance of Figure 1 and a lexicographic
ordering on agents λ= [1, 2, 3, 4, 5]. The ordering λ induces the acyclic constraint240

graph shown in Figure 2. Constraints are represented by directed links from
higher to lower priority neighbors. Agent a2 evaluates constraint c12 because

7

it has a lower priority than a1 in λ, a3 evaluates c13, a4 evaluates c34, and a5
evaluates constraints c15, c25, and c45.

In ABT, each agent ai tries to find an assignment satisfying the constraints245

with what is currently known from higher priority neighbors Γ−i . When an
agent ai assigns a value to its variable, it sends out messages to lower priority
neighbors Γ+

i informing them about its assignment. When no value is possible
for a variable xi, ai resolves its no-goods producing a new no-good ngd[xt 6=vt]
from Λi. Next, agent ai reports the resolved no-good ngd[xt 6=vt] to agent at.250

ABT computes a solution (or detects that no solution exists) in a finite time.
Furthermore, in ABT, each agent ai, stores in its agent-view, AV , the most

up to date assignments that it believes are assigned to higher priority neighbors.
To stay polynomial in space, agent ai only keeps one no-good per removed value.
When two no-goods eliminating the same value are possible, the no-good with255

the highest possible lowest variable involved is selected (HPLV heuristic) [27].
By doing so, when an empty domain is found, the resolved no-good contains
variables as high as possible in the ordering, so that the backtrack message
is sent as high as possible, thus saving unnecessary search effort [12]. In the
following, vi will represent the current value assigned to xi and ti the counter260

tagging vi. ti is used for the timestamp mechanism of generated assignments.
ABT agents exchange the following types of messages:

• ok? message used to notify its recipients of a new assignment of the
sender.

• ngd message used to report a no-good to its receiver agent, requesting the265

removal of its value.

• adl message used to request the addition of a link to the receiver.

• stp message used to inform all agents to stop the search meaning that the
problem is unsolvable because an empty no-good has been generated.

The pseudo-code of ABT executed by every agent ai ∈ A is presented in270

Figure 3. In the main procedure ABT(), each agent assigns a value to its variable
and informs its lower priority neighbors Γ+

i (assignVariable() call, line 2).
Then, it loops for processing the received messages (lines 3 to 9).

Procedure assignVariable is used by agent ai to select a consistent value
for xi from its current domain Dc

i (chooseValue call, line 15). During this275

process, some values from Dc
i may appear as inconsistent. Thus, ai removes

inconsistent values from Dc
i and stores the no-goods justifying their removals

(line 18). To ensure a polynomial space complexity, agents keep only one no-
good per removed value. If chooseValue finds a consistent value, it is assigned
to xi and agent ai notifies all its lower priority neighbors (Γ+

i) about its new280

assignment through ok? messages (line 22) after incrementing the tag counter
ti. Otherwise, agent ai must identify the subset of higher agents’ assignments
responsible for the failure, i.e. its domain wipe-out (procedure backtrack()

call, line 23).

8

procedure ABT()

01. initialize();
02. assignVariable();
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. ok? : processOk(xs, v

′
s, t
′
s);

07. ngd : processNgd(as, ngd[xi 6=v′i]);
08. adl : processAdl(as, v

′
i);

09. stp : end← true;

procedure initialize()

10. vi ← nil; ti ← 0; end← false;

11. Γ−i ← Γi ∩ λ−i ;

12. Γ+
i ← Γi ∩ λ+

i ;

function chooseValue()

13. foreach (v′i ∈ Dc
i) do

14. if (isConsistent(v′i, AV
−)) then

15. xi ← v′i;
16. return(true);

17. else
18. store ngd[xi 6=v′i] from constraints;

19. return(false);

procedure assignVariable()

20. if (chooseValue()) then
21. ti ← ti+1;

22. sendMsg:ok?〈xi, vi, ti〉 to Γ+
i ;

23. else backtrack();

procedure checkAgentView()

24. if (¬isConsistent(vi, AV −)) then
25. assignVariable();

procedure updateAgentView(S)
26. foreach (〈xj , v′j , t′j〉 ∈ S) do
27. if (t′j ≥ tj) then
28. AV [j]← 〈xj , v′j , t′j〉;
29. remove incompatible no-goods;

procedure processOk(〈xs, v′s, t′s〉)
30. updateAgentView(〈xs, v′s, t′s〉);
31. checkAgentView();

procedure backtrack()

32. Λi ← resolveNogoods();
33. if (Λi = ∅) then
34. end← true;
35. sendMsg:stp〈〉 to {A \ ai};
36. else
37. Let xt be the lowest agent in Λi;
38. ngd[xt 6=vt]← {Λi \ xt} → xt 6=vt;
39. sendMsg:ngd〈ngd[xt 6=vt]〉 to at;
40. updateAgentView(〈xt, nil, tt〉);
41. checkAgentView();

procedure processNgd(as, ngd[xi 6=v′i])
42. checkAddLink(lhs(ngd[xi 6=v′i]));
43. if (compatible(ngd[xi 6=v′i], AV −)) then
44. store ngd[xi 6=v′i];
45. if (vi = v′i) then
46. checkAgentView();

47. else if (vi = v′i) then
48. sendMsg:ok?〈xi, vi, ti〉 to as;
procedure processAdl(as, v

′
i)

49. Γi ← Γi ∪ {as};
50. if (vi 6= v′i) then
51. sendMsg:ok?〈xi, vi, ti〉 to as;
procedure checkAddLink(S)
52. updateAgentView(S);
53. ∆←

{
j | 〈xj , vj , tj〉 ∈ S ∧ j /∈ Γi

}
;

54. Γi ← Γi ∪∆;
55. foreach (〈xj , vj , tj〉 ∈ S s.t. j ∈ ∆) do
56. sendMsg:adl〈xj , vj , tj〉 to aj ;

Figure 3: The ABT algorithm running by agent ai.

Whenever agent ai receives an ok? message from a higher agent as, it285

processes it by calling procedure processOk(〈xs, v′s, t′s〉), line 6. The agent-view
of ai is updated (updateAgentView call, lines 28 and 30) only if the received
message contains an assignment more up to date than that already stored for the
sender as (lines 27 to 28). Next, all no-goods that become incompatible with the
agent-view of ai are removed (line 29). Then, a consistent value for ai is searched290

if necessary after the change in the agent-view (checkAgentView call, line 31).
In procedure checkAgentView(), agent ai checks whether its current assignment
(vi) is consistent with assignments of higher priority neighbors, i.e. AV −. If
it is not the case, agent ai seeks a new consistent value (assignVariable call,

9

line 25).295

When every value of variable xi is forbidden by a stored no-good, procedure
backtrack() is called. The first step of this procedure is to determine the
set Λi of variable assignments responsible for the failure. If Λi is empty, then
the DisCSP has no solution. Agent ai sends stp messages to all agents and
terminates its execution (lines 33 to 35). Otherwise, agent ai selects the variable300

xt that has the lowest priority among the variables in the conflicting set Λi to be
the backtracking target, generating a new no-good, ngd[xt 6=vt] (lines 37 to 38).
The generated no-good is sent in a ngd message to the agent at owning the
variable xt, line 39. Then, the assignment of xt is deleted from the agent-view
(updateAgentView call, line 40). Finally, a new consistent value is selected305

(checkAgentView call, line 41).
Whenever agent ai receives a ngd message, procedure processNgd is

called, line 7. In this procedure, agent ai calls procedure checkAddLink (line 42)
in order to update its agent-view with the newer assignments contained in the
left hand side of the received no-good (updateAgentView call, line 52) and to re-310

quest the establishment of new links with non-neighbors agents owning variables
on the the left hand side of the received no-good (lines 53 to 56). Then, agent ai
checks if the received no-good is compatible with its agent-view (Definition 3).
The no-good is accepted only if it is compatible with the assignments of higher
priority agents, i.e. AV − (line 43). An accepted no-good is stored in order to315

justify the removal of the value on its rhs (line 44). If the current value of ai is
the same as the rhs of the accepted no-good then a new consistent value for ai
is searched (checkAgentView call, line 46). If the no-good is not accepted, it is
discarded, but if the value in its rhs was correct, ai re-sends its assignment to
the no-good sender (as) through an ok? message (lines 47 and 48).320

When a link request is received, agent ai calls procedure processAdl in order
to include the sender in Γi (line 49). Afterwards, agent ai sends its assignment
through an ok? message to the sender of the request if its value is different
from that included in the received adl message (lines 50 and 51).

It has been proven in [28, 12] that ABT is sound, complete and terminates.325

2.3. Set Theory

Let S be a set and ≺ be a relation on S. (S,≺) is a total ordering if and
only if for all a, b in S, either a ≺ b or b ≺ a or a = b.

Definition 5. We say that ≺ well-orders S, or (S,≺) is a well-ordering, iff
(S,≺) is a total ordering and every non-empty subset of S has a ≺-least element,330

i.e. for every B ⊆ S, B 6= ∅, there exists a ∈ B such that for every b ∈ B we
have a � b.

Well-orders have the following interesting property.

Proposition 1 ([29]). An ordered set is well ordered if and only if it does not
include an infinite decreasing sequence.335

10

3. The General Framework AgileABT

In this section, we propose agile asynchronous backtracking (AgileABT),
a general framework for reordering agents asynchronously. In AgileABT, all
agents start with the same order. Then, agents are allowed to change the order
asynchronously. There is one major issue to be solved for allowing agents to340

asynchronously propose new orders. The agents must be able to coherently
decide which among different orders to select. We propose to establish a priority
relation between orders via their termination value, a label attached to the
orders exchanged by agents during search. Termination values are auxiliary
information associated with each suggested reordering. New orders and their345

termination values are computed by a function, denoted by f() in the rest of the
paper. Agents accept or reject a suggested reordering using the priority relation
over termination values. Termination values can be simple scalar values, or more
complex structures based on some features of the agents. As in AgileABT every
agent can change the order without any global control, whenever changing the350

order, agent ai informs other agents of the new order by sending them its new
order λi and its associated termination value, denoted by τi. When an agent
compares two pairs order/termination value, the strongest pair is chosen.

Definition 6. Let λi and λj be two total agent orderings and τi and τj their
associated termination values. The pair (λi, τi) is stronger than the pair (λj , τj)355

if and only if the termination value τi is smaller than τj w.r.t. the priority
relation ≺τ over the range of termination values, or τi = τj and the vector
of agents IDs in λi is smaller than the vector of agents IDs in λj w.r.t. the
lexicographic order <lex.

Consider for instance the three orders on five agents λi = [1, 2, 3, 4, 5],360

λ′i = [1, 2, 5, 4, 3] and λ′′i = [1, 2, 4, 5, 3]. If the termination value τ ′i associated
with λ′i is smaller than the termination value τi associated with λi, the pair
(λ′i, τ

′
i) is stronger than the pair (λi, τi). If the termination value τ ′′i associated

with λ′′i is equal to the termination value associated with λ′i, the pair (λ′′i , τ
′′
i)

is stronger than the pair (λ′i, τ
′
i) because the vector [1, 2, 4, 5, 3] of IDs in λ′′i is365

lexicographically smaller than the vector [1, 2, 5, 4, 3] of IDs in λ′i.

3.1. The algorithm AgileABT

In AgileABT, agents exchange the following types of messages:

• ok? message used to notify its recipients of a new assignment of the
sender.370

• ngd message used to report a no-good to its receiver agent, requesting the
removal of its value.

• adl message used to request the addition of a link to the receiver.

• order message is sent to propose a new order. This message includes the
proposed order together with its associated termination value 〈λ, τ〉.375

11

• stp message used to inform all agents to stop the search meaning that the
problem is unsolvable because an empty no-good has been generated.

The pseudo-code of AgileABT executed by every agent ai ∈ A is presented
in Figure 4. In the following, vi will represent the current value assigned to
xi and ti the counter tagging vi. ti is used for the timestamp mechanism of380

generated assignments. In the main procedure AgileABT, after initialization of
the data structures (line 1) each agent assigns a value to its variable and informs
its lower priority neighbors Γ+

i through ok? messages (assignVariable call,
line 2). Then, it loops for processing the received messages (lines 3 to 10).

Procedures initialize, chooseValue, assignVariable, checkAgentView,385

updateAgentView, processOk, processAdl, and checkAddLink are exactly the
same as in ABT. We reproduce them in Figure 4 but we do not repeat the
description.

The procedure backtrack() is called when a dead end occurs (i.e., when
every value of variable xi is forbidden by a stored no-good). The first step of390

this procedure is to determine the set Λi of variable assignments responsible for
the failure (resolveNogoods() call, line 37). If Λi is empty, then the DisCSP
has no solution. Agent ai sends stp messages to all agents and terminates its
execution (lines 38 to 40). Otherwise, agent ai is allowed to propose a new
order (proposeOrder() call, line 43). After the reordering, agent ai selects the395

variable xt that has the lowest priority among the variables in the conflicting set
Λi to be the backtracking target, generating a new no-good, ngd[xt 6=vt] (lines 44
to 45). The generated no-good is sent in a ngd message to agent at owning the
variable xt, line 46. It is important to note that as a consequence of changing
ordering, xt was not necessarily the lowest variable in ngd[xt 6=vt] on the agent400

ordering when calling procedure backtrack(). The assignment of xt is deleted
from the agent-view (updateAgentView call, line 47). Finally, agent ai checks
if its current assignment is consistent with assignments of higher agents AV −.
If it is the case, agent ai has to send its assignment through ok? messages to
its lower neighbors who did not receive it beforehand because they had a higher405

priority in previous agent ordering, line 49. If vi is inconsistent with AV −, agent
ai tries to select a new consistent value (assignVariable() call, line 50).

The procedure proposeOrder() calls function f() to generate a new or-
der λ′ and a new termination value τ ′, line 31. If the termination value τ ′

associated with the newly generated order λ′ is smaller (w.r.t. ≺τ) than the ter-410

mination value τi associated to the current order λi, agent ai sends 〈λ′, τ ′〉 to all
other agents through order messages, line 33, and calls procedure changeOrder,
line 34, to update its current order, termination value, according to the newly
generated ones. Otherwise, ai keeps its current order and termination value
unchanged. In procedure changeOrder(), agent ai replaces its current order415

λi and its associated termination value τi by the new ones (line 29). Then, ai
removes all no-goods that become incoherent with the new order (line 30).

Whenever agent ai receives an order message (procedure processOrder,
line 9), it checks if the pair (λs, τs) included in the received message is stronger
than its current pair (λi, τi) (line 51). If it is the case, ai calls procedure420

12

procedure AgileABT()

01. initialize();
02. assignVariable();
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. ok? : processOk(xs, vs, ts);
07. ngd : processNgd(as, ngd[xi 6=v′i]);
08. adl : processAdl(as, v

′
i);

09. order : processOrder(λs, τs);
10. stp : end← true;

procedure initialize()

11. vi ← nil; ti ← 0; end← false;

12. Γ−i ← Γi ∩ λ−i ;

13. Γ+
i ← Γi ∩ λ+

i ;

function chooseValue()

14. foreach (v′i ∈ Dc
i) do

15. if (isConsistent(v′i, AV
−)) then

16. xi ← v′i;
17. return(true);

18. else store ngd[xi 6=v′i] from constraints;

19. return(false);

procedure assignVariable()

20. if (chooseValue()) then
21. ti ← ti+1;

22. sendMsg:ok?〈xi, vi, ti〉 to Γ+
i ;

23. else backtrack();

procedure checkAgentView()

24. if (¬isConsistent(vi, AV −)) then
25. assignVariable();

procedure updateAgentView(S)
26. foreach (〈xj , v′j , t′j〉 ∈ S) do
27. if (t′j ≥ tj) then AV [j]← 〈xj , v′j , t′j〉;
28. remove incompatible no-goods;

procedure changeOrder(λ′, τ ′)
29. 〈λi, τi〉 ← 〈λ′, τ ′〉;
30. remove incoherent no-goods;

procedure proposeOrder()

31. 〈λ′, τ ′〉 ← f();
32. if (τ ′ ≺τ τi) then
33. sendMsg:order〈λ′, τ ′〉 to {A \ ai};
34. changeOrder(λ′, τ ′);

procedure processOk(〈xs, v′s, t′s〉)
35. updateAgentView(〈xs, v′s, t′s〉);
36. checkAgentView();

procedure backtrack()

37. Λi ← resolveNogoods();
38. if (Λi = ∅) then
39. end← true;
40. sendMsg:stp〈〉 to {A \ ai};
41. else
42. LN ← Γ+

i ;
43. proposeOrder() ;
44. Let xt be the lowest agent in Λi;
45. ngd[xt 6=vt]← ({Λi \ xt} → xt 6=vt);
46. sendMsg:ngd〈ngd[xt 6=vt]〉 to at;
47. updateAgentView(〈xt, nil, tt〉);
48. if (isConsistent(vi, AV

−)) then
49. sendMsg:ok?〈xi, vi, ti〉 to {Γ+

i \LN};
50. else assignVariable();

procedure processOrder(λs, τs)
51. if ((λs, τs) is stronger than (λi, τi)) then
52. LN ← Γ+

i ;
53. changeOrder(λs, τs);
54. if (isConsistent(vi, AV

−)) then
55. sendMsg:ok?〈xi, vi, ti〉 to {Γ+

i \LN};
56. else assignVariable();

procedure processNgd(as, ngd[xi 6=v′i])
57. checkAddLink(lhs(ngd[xi 6=v′i]));
58. if (compatible(ngd[xi 6=v′i], AV −)∧

coherent(ngd[xi 6=vi], λi)) then
59. store ngd[xi 6=v′i];
60. if (vi = v′i) then checkAgentView();

61. else if (vi = v′i) then
62. sendMsg:ok?〈xi, vi, ti〉 to as;
procedure processAdl(as, v

′
i)

63. Γi ← Γi ∪ {as};
64. if (vi 6= v′i) then
65. sendMsg:ok?〈xi, vi, ti〉 to as;
procedure checkAddLink(S)
66. updateAgentView(S);
67. ∆←

{
j | 〈xj , vj , tj〉 ∈ S ∧ j /∈ Γi

}
;

68. Γi ← Γi ∪∆;
69. foreach (〈xj , vj , tj〉 ∈ S s.t. j ∈ ∆) do
70. sendMsg:adl〈xj , vj , tj〉 to aj ;

Figure 4: The AgileABT algorithm run by agent ai.

13

changeOrder to change its current order and its associated termination value
to the newly received ones 〈λs, τs〉 (line 53). Next, agent ai checks if vi is con-
sistent with assignments of higher agents AV −. If it is the case, agent ai has
to send xi’s assignment through ok? messages to its lower neighbors who did
not receive it beforehand because they had a higher priority in previous agent425

ordering, line 55. If vi is inconsistent with AV −, agent ai tries to select a new
consistent value (assignVariable() call, line 56).

The procedure processNgd() is called whenever agent ai receives a ngd
message, line 7. In this procedure, agent ai calls procedure checkAddLink

(line 57) in order to update its agent-view with the newer assignments contained430

in the left hand side of the received no-good (updateAgentView call, line 66)
and to request the establishment of new links with non-neighbors agents owning
variables on the left hand side of the received no-good (lines 67 to 70). Then,
the compatibility (Definition 3) and coherence (Definition 4) of the received no-
good are checked (line 58) and the no-good is accepted only if it is compatible435

with the assignments of higher priority agents, i.e. AV − and coherent with the
current order λi of agent ai. An accepted no-good is stored in order to justify
the removal of the value on its rhs (line 59). If the current value of ai is the
same as the rhs of the accepted no-good then a new consistent value for ai is
searched (checkAgentView call, line 60). If the no-good is not accepted, it is440

discarded, but if the value in its rhs was correct, ai re-sends its assignment to
the no-good sender (as) through an ok? message (lines 61 and 62).

There are several ways to instantiate the general framework AgileABT. The
instantiation is made by defining the termination values and the priority relation
over those termination values and by specifying the function f() that computes445

new orders associated with those termination values.

3.2. Correctness and complexity

In this section we prove that AgileABT is sound, complete and terminates
provided that (T ,≺τ) is a well-ordering, where T denotes the range of termina-
tion values computed by function f() and ≺τ is the priority relation on T . In450

addition, if the function f() has polynomial space complexity, then AgileABT
has polynomial space complexity.

AgileABT always stops its execution in one of the two cases: when an empty
no-good has been generated, meaning that there is no solution, or when the
network reaches a quiescence state reporting a solution. To prove that AgileABT455

is sound, one needs to prove that the reported solution is a correct one and to
prove that it is complete one needs to prove that it cannot infer an empty
no-good if a solution exists.

Proposition 2. The AgileABT algorithm is sound.

Proof. Let us assume that the state of quiescence is reached. The order (say460

λ∗) known by all agents is the same because when an agent proposes a new
order, it sends it to all other agents. Obviously, (λ∗, τ∗i) is the strongest pair
that has ever been calculated by agents. Also, the state of quiescence implies

14

that every pair of constrained agents satisfies the constraint between them. To
prove this, assume that there exists two agents ai and ak that do not satisfy the465

constraint between them (i. e., cik). Let ai be the agent which has the highest
priority between the two agents according to λ∗ (ak is the agent evaluating cik).
Let vi be the current value of ai when the state of quiescence is reached (i. e.,
〈xi, vi, ti〉 is the most up to date assignment of ai). Let msg be the last ok?
message sent by ai to ak before the state of quiescence is reached. Clearly, msg470

contains vi, otherwise, ai would have sent another ok? message when it chose
vi, i.e. msg = ok?

i→k
:〈xi, vi, ti〉. If vi was assigned after ai changed its current

order to λ∗, agent ai sent msg to all its lower priority neighbors according to
λ∗ (including ak, procedure assignVariable()). If vi was assigned before ai
changed its previous order λi to λ∗, agent ak received msg if ak ∈ λ+i when475

vi was assigned to ai, otherwise (ak ∈ λ−i), ak receives a copy of msg when
ai changed λi to λ∗ (line 49 or line 55). The only case where ak can forget
vi after receiving it is the case where ak derives a no-good proving that vi is
not feasible. In this case, ak should send a no-good message to ai. If the no-
good message is accepted by ai, ai must send an ok? message to its lower480

neighbors (and therefore msg is not the last one). Similarly, if the no-good
message is discarded, ai has to re-send an ok? message to ak, lines 61 and 62
(and therefore msg is not the last one). So the state of quiescence implies that
ak knows both λ∗ and vi. Upon receiving an ok? message, agents in AgileABT
call procedure checkAgentView() to ensure their current value is consistent485

with the assignments of higher neighbors. Therefore, the state of quiescence
implies that the current value of ak is consistent with value vi.

Proposition 3. If the function f() has a polynomial space complexity, Ag-
ileABT has also a polynomial space complexity.

Proof. In addition to the termination values, each agent in AgileABT stores490

one no-good per removed value and one current order that is bounded by n, the
total number of agents. Thus, the space complexity of those data structures is
in O(nd+n) =O(nd) on each agent. Hence, the space complexity of AgileABT
is polynomial.

We now show that if the function f() always returns the same order, then495

AgileABT reduces to ABT.

Lemma 1. If all agents hold the same order λ at the start of the solving process
and the function f() always returns λ, then AgileABT behaves like ABT called
with the order λ on all the agents.

Proof. Agents in AgileABT exchange ok?, ngd, adl, order, and stp messages.500

When an AgileABT agent ai assigns a value to its variable it sends ok? messages
to its lower neighbors (Line 22) w.r.t. λ, exactly like ABT. When the AgileABT
agent ai detects a dead-end, it is allowed to propose a new order through order
messages (Line 43). But this step has no effect because by assumption the func-
tion f() used to compute new orders always returns λ. Hence, when a dead-end505

15

is detected, the agent ai resolves its no-goods and reports the resolved no-good
ngd[xt 6=vt] to the lowest agent at w.r.t. λ through a ngd message (Line 46),
exactly like ABT. Since λ is static, lhs(ngd[xt 6=vt]) exclusively contains assign-
ments of agents higher than at in λ. Thus, the add-link requests in line 70 can
only be sent to higher agents, again exactly as in ABT. Finally, an stp message510

is sent by an AgileABT agent ai when an empty no-good is detected (Line 40),
which is the same condition as in ABT. Therefore, AgileABT behaves exactly
like ABT if all agents hold the same order λ at the start of the solving process
and the function f() always returns λ.

Proposition 4. AgileABT terminates if (T ,≺τ) is a well-ordering.515

Proof. By the assumption that messages are delivered in finite time, a pair (λ, τ)
sent by an agent is known by all other agents after a finite amount of time. After
this time, an agent can no longer generate and send a new order that has a ter-
mination value equal to τ , even if the new order is lexicographically smaller than
the one to which τ was attached (Figure 4, line 32). Hence, if no agent improves520

the termination value τ , all agents will know the same pair (λ′, τ) after a finite
amount time, where λ′ is the lexicographically smallest order generated with
termination value τ during the time (λ, τ) was traveling through the system.
Furthermore, by Proposition 1, the termination values cannot decrease indefi-
nitely w.r.t. ≺τ if (T ,≺τ) is a well-ordering. Thus, AgileABT cannot change525

the pairs (λ, τ) indefinitely. As a result, after a finite amount of time, either a
quiescent state has been reached, or all agents own the strongest pair computed
in the system and follow the same static order. In that last case, AgileABT
then behaves exactly like ABT (Lemma 1), which terminates.

Proposition 5. The AgileABT algorithm is complete.530

Proof. Suppose a solution to the DisCSP exists. By Proposition 4, AgileABT
must terminate. As noted previously, AgileABT can only terminate if it gen-
erates an empty no-good, or reaches a quiescent state. All no-goods used as
justification of removing inconsistent values are induced by the constraints of
the problem (Line 18, Figure 4). Thus, these no-goods are redundant regarding535

the problem to solve. All additional no-goods produced when dead-ends occur
are generated by logical inference from existing ones (Line 37, Figure 4). As a
result, an empty no-good cannot be inferred if a solution exists. Therefore Ag-
ileABT must reach a quiescent state, and by Proposition 2, this must represent
a solution.540

3.3. Geometric interpretation of the termination of AgileABT

In this Section we present a geometric interpretation of the termination proof
of Proposition 4. Given the set T of termination values that can be computed by
function f(), Proposition 4 uses the assumption that (T ,≺τ) is a well ordering,
that is, T = (τ∗, . . . , τ t, . . . , τ0, . . .) has a least element τ∗ = min≺τ (T). In545

AgileABT, the initial termination value is the same for all agents and is denoted

16

The range of
termination
values that
can be
computed by
function f

x: time

y: Termination values

The set of the best termination values generated
during search

𝝉𝟎

		𝝉𝒑

		𝝉𝒑′

τ*

Final state

p p’

Figure 5: The variation of the best termination value of the system over time.

by τ0. A final state is a state where a solution is found or the inconsistency is
proved.

The function τ(x) returning the best termination value computed by all
agents until time x is a function of time that has the shape of a decreasing550

sequence of horizontal segments (Figure 5). Given a termination value τp com-
puted at time p, the segment where τ(x) = τp is an interval of time that starts
at the time p where the best termination value in the system was improved
to τp and ends at the time p′ where an agent has succeeded to propose a new
termination value τp

′
smaller than τp, or the final state was reached. The key555

points of the proof are that the length of each segment is finite as well as the
number of segments.

Regarding the length of each segment, assume ai has proposed a new order
λp that improves the current best termination value of the system to value τp.
Once another agent aj knows τp, it can no longer propose an order with the560

same termination value even if the proposed order is lexicographically smaller
than λp (Figure 4, line 32). Hence, the time during which an agent aj can
change the order without improving τp is bounded by the finite time it takes
to receive the order message sent by ai and containing (λp, τp). Thus, after a
finite time, τp is known by all agents and no order lexicographically smaller than565

λp can be generated. Again because messages are delivered in finite time, the
lexicographically smallest order that could be generated with termination value
equal to τp is known by all agents after a finite time. At this point, the order
is the same for all agents and AgileABT starts behaving like ABT (Lemma 1).
ABT is correct and terminates. As a result, either a new smaller termination570

value is discovered or a final state is reached after a finite time. Therefore, the
length of each segment is finite.

As for the number of segments, τ(x) can only decrease or remain unchanged
because agents reject termination values that are greater than their current
termination value. Hence, as long as agents can improve the termination value,575

17

τ(x) will continue to fall down along the y-axis. The fact that (T ,≺τ) is a
well ordering (assumption in Proposition 4) implies that the number of times
τ(x) can fall down along the y-axis is finite (Proposition 1). As every segment
corresponds to a best termination value over an interval of time (Figure 5), we
conclude that the number of segments that make the shape of τ(x) is finite.580

To summarize, AgileABT has two main features that guarantee termination.
When the best termination value stops changing, AgileABT ends up behaving
like ABT and this ensures that the segments have a finite size. And if the best
termination value continues to be improved, we are sure that it cannot indefi-
nitely decrease because (T ,≺τ) is a well ordering. So the number of segments585

is bounded.

3.4. Example of Running AgileABT with a trivial function f

We now give a simple example of running AgileABT with a trivial function
f(). Given that T is the range of termination values computed by f(), we have
seen in Section 3.2 that the only restriction on f() to ensure that AgileABT590

terminates is that (T ,≺τ) is a well-ordering (Proposition 4). We thus choose a
trivial function f() that simply returns a random reordering of agents associated
with a termination value that is a random integer in the range T = {0, . . . , 100}
(Figure 6b).1 The relation ≺τ is the standard < ordering of the integers. Clearly
(T ,≺τ) is a well ordering.595

We give a sketch of a possible execution of AgileABT on a small problem with
four variables and five constraints (Figure 6a). The initial order is λ0 = [1, 2, 3, 4]
and the initial termination value τ0 is 100.

• t0: All agents assign value 1 to their variables and send ok? messages to
their lower priority neighbors. Observe that apart from the message sent600

by agent a1 to agent a2, no other message will cause a conflict with the
current value of the recipient.

• t1: Agent a2 receives the assignment of a1 (x1 = 1) and removes value
1 from its domain because of the constraint (x1 + x2) div 3 = 0. This
removal is justified by the no-good ngd1 (Figure 6c). a2 replaces its cur-605

rent assignment by x2 = 2 and sends ok? messages to its lower priority
neighbors (i. e., a3 and a4 (Figure 6a).

• t2: Agent a3 receives the new assignment of a2 (x2 = 2) and removes
value 1 from its domain because of the constraint x2 ≤ x3. This removal
is justified by the no-good ngd2 (Figure 6c). Next, a3 replaces its current610

assignment by x3 = 2 and sends an ok? message to a4.

• t3: Agent a4 has received the ok? messages sent by a2 and a3 ((x2 = 2)
and (x3 = 2)). All of the values in its domain are now eliminated because

1In practice it is of course desirable to choose a function f() such that the smaller the
termination value, the better the associated ordering.

18

a1

a2

a3

a4

x1

x2

x3

x4

c12

c13

c23

c24

c34

A= {a1, . . . , a4}
X = {x1, . . . , x4}
D= {D1, . . . , D4},
where Di = {1, 2, 3}
C= {c12, c13, c23, c24, c34}

c12 : (x1 + x2) div 3 = 0

c13 : x1 + x3 6= 5

c23 : x2 ≤ x3

c24 : x2 + x4 6= 3

c34 : x3 · x4 ≤ 3

(a) The constraint graph of a DisCSP instance of 4
agents/variables and 4 constraints.

function f()

01. λ← random permutation of [1, . . . , n];
02. τ ← random integer in [0, . . . , 100];
03. return(〈λ, τ〉);

(b) A trivial function f() used by agents to propose
new orders.

Step Orders / Nogoods Decisions

t0 λ0 = [1, 2, 3, 4], τ0 = 100 xi = 1,∀i

t1 ngd1: x1 =1→ x2 6= 1 x2 =2

t2 ngd2: x2 =2→ x3 6= 1 x3 =2

t3

ngd3: x2 =2→ x4 6= 1
ngd4: x3 =2→ x4 6= 2
ngd5: x3 =2→ x4 6= 3

ngd6: ¬[x2 =2 ∧ x3 =2]

x4 =1

t4 λ1 = [3, 2, 4, 1], τ1 = 50

(c) Agent a4 facing a dead-end.

Step Orders / Nogoods Decisions

t5 ok? messages sent to new Γ+
i

t6 ngd6: x3 = 2→ x2 6= 2 x2 = 3

t7

ngd7: x2 = 3→ x1 6= 1
ngd8: x2 = 3→ x1 6= 2
ngd9: x3 = 2→ x1 6= 3

ngd10: ¬[x2 = 3 ∧ x3 = 2]

x1 = 1

t8 ngd10: x3 = 2→ x2 6= 3 x2 = 1

t9 ngd11: x2 = 1→ x1 6= 1 x1 = 2

(d) Agent a1 facing a dead-end.

Figure 6: An example of AgileABT running with a trivial function f()

of the constraints x2 + x4 6= 3 and x3 · x4 ≤ 3. These deletions are
justified by the no-goods ngd3, ngd4 and ngd5 (Figure 6c). Then, agent615

a4 proceeds to the resolution of its no-goods and derives the new no-
good ngd6 : ¬[(x2 = 2) ∧ (x3 = 2)] (Figure 6c). Agent a4 calls function
f() to see whether it can propose a new order. Suppose f() returns
〈λ1 = [3, 2, 4, 1], τ1 = 50〉. Because τ1 = 50 is smaller than τ0 = 100, the
new order λ1 is accepted by a4 and sent to all other agents. The conclusion620

of the no-good ngd6 is selected such that the ordering constraints induced
by ngd6 are coherent with the new order λ1. That is, x2 is moved down
to the conclusion of ngd6 (ngd6 : x3 = 2 → x2 6= 2) and a ngd message
is sent to the owner of x2 (i. e., a2). Afterwards, the no-good ngd3 is
removed from the set of no-goods stored by agent a4 because it becomes625

incompatible. After that, agent a4 assigns its variable to value 1, the
unique value left in its domain. Agent a4 does not have any lower priority

19

neighbor to inform, so it does not send any ok? message.

• t4: Agents a1, a2 and a3 receive the new order sent by a4. All of them
accept the new order because it is associated with a termination value630

smaller than τ0. Agents a2 and a3 remove respectively the no-goods ngd1
and ngd2 because they become incoherent with the new order.

• t5: After accepting the new order, agents a1, a2 and a3 check their current
values. Because their current values are still consistent, each of them has
to send ok? messages to its new lower priority neighbors that had higher635

priority than its own before the order changed. That is, agent a2 sends an
ok? (x2 = 2) message to a1 and agent a3 sends an ok? (x3 = 2) message
to a2 and a1. These messages do not cause any conflict with the current
assignments of their recipients a2 and a1. Agent a1 will not send any ok?
message because it is now the last agent in the order.640

• t6: Agent a2 receives the no-good sent by a4 and replaces its assignment
by x2 = 3. Next, it sends ok? (x2 = 3) messages to a1 and a4.

• t7: The ok? message sent by a2 is received by a4 and a1. This
message causes agent a1 to face a dead end because of the constraints
(x1+x2) div 3 = 0 and x1+x3 6= 5. Therefore, a1 resolves its no-goods and645

derives the new no-good ngd10 : ¬[(x2 = 3)∧ (x3 = 2)] (Figure 6d). Then,
agent a1 calls function f() in the hope of proposing a new order. Suppose
f() returns 〈λ2 = [4, 1, 2, 3], τ2 = 90〉. The new order λ2 is not accepted
by a1 and is not sent to the other agents because τ2 = 90 ≥ τ1 = 50. The
no-good ngd10 is sent to a2 and the no-goods ngd7 and ngd8 are removed650

by a1 because they become incompatible. Agent a1 reassigns its variable
to value 1.

• t8: Agent a2 receives the no-good sent by a1, instantiates x2 to 1 and
informs its lower priority neighbors.

• t9: Agents a1 and a4 receive the ok? (x2 = 1) message sent by a2. a1655

removes its value 1, stores the no-good ngd11 : x2 = 1 → x1 6= 1 and
assigns its variable to value 2. The current value 1 of agent a4 is not in
conflict with the new assignment of a2. A solution has been found.

4. Instantiation of the General Framework

In this section, we propose AgileABT([α],≺α), an instance of AgileABT660

in which the role of the termination values is not only to establish priority
between the different orders proposed by agents but also to simulate a dynamic
variable ordering (DVO) heuristic, since DVOs significantly speed up search in
CSPs. To be able to simulate a given DVO, we first need to define a measure α
that together with a preference relation ≺α over the range of measure α (i. e.,665

〈α,≺α〉) capture the DVO heuristic. In other words, α needs to be smaller
w.r.t. ≺α when a variable is better for the DVO. For example to represent the

20

min-domain heuristic, α is defined by the domain size and ≺α is defined by the
standard ordering < on numbers.

Furthermore, to be able to properly reorder all agents in AgileABT([α],≺α),670

a termination value needs to express information about every agent. Thus, in
AgileABT([α],≺α), termination values are vectors of size n, where each element
in the vector represents a measure α used to implement a DVO of the agent in
that position in the order. More formally, given an ordering λ, its associated
termination value τ is built in such a way that the kth element τ [k] of τ depends675

on the agent at position k in λ. Specifically, we have τ [k] = α(λ[k]), where α is
a generic measure that uses information about agents in the system.

In the general framework of AgileABT, we proposed to establish priority
between orders using the priority relation ≺τ over termination values. Thus,
in AgileABT([α],≺α) we first need to define the priority relation over termi-680

nation values in the form of a vector of measures α. AgileABT([α],≺α) uses
termination values to implement the DVO and, as a side effect, to provide more
flexibility in the choice of the backtracking target. We will show later how to
simulate different DVO heuristics by specifying the generic measure α together
with the preference relation ≺α. We then need to specify the function f()685

that computes new orders associated with their termination values in form of
vector of measures α. We will do it in such a way that the smaller the value
returned by α (w.r.t. , ≺α), the more preferred the corresponding variable for
the DVO heuristic represented by α. In the following we discuss theses points
together with necessary materials before formally presenting AgileABT([α],≺α)690

algorithm.

4.1. Priority between orders

In AgileABT, agents accept or reject the suggested reordering using a prior-
ity relation over termination values. Thus, we need to specify a priority relation
on termination values defined by vector of measures α. Let α and ≺α be a695

measure on agents and a total preference order that together capture the DVO
to simulate and let Rα be the range of measure α. We propose that the pri-
ority between the different orders is based on the lexicographic comparison of
termination values (vector of measure α) using ≺α as preference order on the
elements of the vector:700

Definition 7 (≺lexα). Let λi and λj be two total agent orderings and τi and τj
their associated termination values. The termination value τi is smaller than τj
(τi ≺lexα τj) if and only if τi is lexicographically smaller than τj w.r.t. ≺α. In
other words, τi ≺lexα τj if and only if ∃ k ∈ 1..n such that ∀p ∈ 1..k− 1, τi[p] =
τj [p] and τi[k] ≺α τj [k].705

Now we shall give a small example to illustrate how ≺lexα is used to compare
termination values and orders. Consider for instance three orders on five agents
λ= [1, 2, 3, 4, 5], λ′= [1, 2, 5, 4, 3], and λ′′= [1, 2, 4, 5, 3], associated respectively
with termination values τ = [2, 2, 3, 4, 2], τ ′= [1, 2, 2, 2, 2], and τ ′′= [1, 2, 2, 2, 2].
The pair (λ′, τ ′) is stronger than the pair (λ, τ) because the termination value710

21

associated with λ′ is smaller than the termination value associated with λ (i. e.,
τ ′ ≺lexα τ). However, the pair (λ′′, τ ′′) is stronger than the pair (λ′, τ ′) because
termination values associated with λ′′ and λ′ are equal, but we broke the tie
by comparing lexicographically the vector of IDs as stated in Definition 6 (i. e.,
the vector [1, 2, 4, 5, 3] of IDs in λ′′ is lexicographically smaller than (<lex) the715

vector [1, 2, 5, 4, 3] of IDs in λ′).
The termination of the general framework of AgileABT is based on Propo-

sition 4 that requires that the priority relation on termination values ≺lexα well-
orders the range T of terminations values. In the following, we define a simple
condition on the total preference order ≺α which guarantees that (T ,≺lexα) is a720

well-ordering and therefore AgileABT([α],≺α) terminates.

Proposition 6. If ≺α well-orders the range Rα of measure α then the lexico-
graphic comparison ≺lexα well-orders the range T of termination values.

Proof. We proceed by contradiction. Suppose (T ,≺lexα) is not a well-ordering,
that is, we can obtain an infinite decreasing sequence of termination values using725

a lexicographic comparison w.r.t. ≺α. We thus must have an infinite decreasing
sequence of τ [k] =α(λ[k]) measures, for some k ∈ 1..n. But, following Propo-
sition 1, it would mean that ≺α does not well-order Rα, which contradicts the
assumption that ≺α well-orders Rα. Therefore, the lexicographic comparison
w.r.t. ≺α well-orders T if the priority ordering ≺α well-orders Rα.730

Corollary 1. AgileABT([α],≺α) terminates if ≺α well-orders Rα.

Proof. Direct from Proposition 4 and Proposition 6.

4.2. Implementing DVO heuristics

The termination values defined by vector of measures α allow us to mimic
a wide variety of DVOs. To mimic them in AgileABT([α],≺α), it is sufficient735

to define the measure α in such a way that the smaller (w.r.t. ≺α) α(k), the
better variable xk for the heuristic. Once we have decided which DVO we
want AgileABT([α],≺α) to mimic, the only thing to do is to design the right
measure α and the right total preference relation ≺α over the range of α. The
only condition required for AgileABT([α],≺α) to terminate is that the total740

preference relation ≺α well-orders Rα (see Corollary 1). In the following, we
show how AgileABT([α],≺α) is able to capture a number of different DVO
heuristics that are known to be effective in reducing search in centralized CSP.

The DVO heuristics we consider in this work can be divided in three cate-
gories: (i) min-domain size [13] (i. e., dom), (ii) neighborhood based DVOs [14]745

(i. e., dom/deg, dom/fdeg, and dom/pdeg), and (iii) conflict-directed DVO
(i. e., dom/wdeg) [30]. Domain size is ubiquitous in all those DVOs. As
AgileABT([α],≺α) is used in a distributed environment, agents must be able
to recognize the domain size of other agents. To this end, agents exchange
explanations of the domain sizes.750

22

Definition 8. An explanation ei is an expression ei : Λi → dci , where Λi is
the conjunction of the left hand sides of all no-goods stored by ai as justifications
of value removals for xi, and dci is the size of the current domain of xi. (That
is, Λi explains the removal of |Di \Dc

i | values.)

Each time an agent communicates its assignment to other agents (by sending755

them an ok? message) it inserts its explanation in the ok? message for allowing
other agents to be able to infer its domain size. For an explanation ei to be
correct, the variables in the left hand side Λi of ei must precede the variable xi
in the agent order because the assignments of these variables have been used to
remove values from the current domain of xi. Hence, every explanation induces760

some ordering constraints, called safety conditions in [25] (see Definition 4).

Definition 9. An explanation ek : Λk → dck is coherent with an order λ if all
variables in Λk appear before xk in λ. Given an explanation ek, S(ek) is the set
of safety conditions induced by ek, that is, S(ek) = {xj ≺ xk | xj ∈ Λk}. Given
a set Ei of explanations, S(Ei) =

⋃
ek∈Ei

S(ek).765

Each agent ai stores a set Ei of explanations sent by other agents. During
search, ai updates Ei to store newly received explanations. Furthermore, each
time an agent computes a new order, Ei is updated to remove explanations that
are no longer valid.

Definition 10. An explanation ek: Λk → dck in Ei is valid on agent ai if it is770

coherent with the current order λi and Λk is compatible with the agent-view of
agent ai.

When Ei contains a valid explanation ek associated with agent ak, agent ai
can infer the size of the current domain of xk. Otherwise, ai can assume that
the size of the current domain of xk is equal to its initial domain size dk.2 This
gives the following function:

dom(k) =

{
dck if (ek: Λk → dck) ∈ Ei,
dk otherwise (i.e., ek: ∅ → dk)

(1)

4.2.1. Simulating Min-Domain DVO Heuristic

The most well-known DVO heuristic from the centralized CSP is the ubiq-
uitous min-domain [13]. This heuristic selects first the variable with small-775

est current domain. To mimic min-domain in AgileABT([α],≺α), an agent
ai simply needs to select an order λ that minimizes the termination value
τ = [α(λ[1]), . . . , α(λ[n])] w.r.t. ≺lexα , where α(k) = dom(k) and ≺α is the stan-
dard ordering < on integers.

2The initial domain size of each agent can be known in a preprocessing step before search
starts.

23

procedure propagate(cij)
01. foreach (vi ∈ Dc

i) do
02. if (¬hasSupport(cij , xi), vi) then
03. Dc

i ← Dc
i \ {vi};

04. foreach (vj ∈ Dc
j) do

05. if (¬hasSupport(cij , xj), vj) then
06. Dc

j ← Dc
j \ {vj};

07. if (Dc
i = ∅ ∨Dc

j = ∅) then wj ← wj + 1 ;

procedure computeWeight()

08. wdegi ← 1;
09. foreach (cij ∈ Ci) do
10. if (xj ∈ Γ+

i ∨ 〈xj , nil, tj〉 ∈ AV −) then
11. wdegi ← wdegi + wj ;

12. wdegi ← min(wdegi,W);

Figure 7: Compute wdeg(i), the weighted degree of agent ai.

4.2.2. Simulating Neighborhood Based Variable Ordering Heuristics780

In the second category we simulate three DVO heuristics from centralized
CSP that take into account the neighborhood of each agent ([14, 31]): dom/deg,
dom/pdeg and dom/fdeg. Each of these DVOs prefers the variable minimiz-
ing a ratio where the numerator is the size of the domain of that variable and
the denominator is some information about its neighborhood. To obtain mea-785

sures that mimic these DVOs, agents use Equation (1) for the numerator, but
they require information about the neighborhood of other agents to infer the
denominator. For dom/deg, each agent ai requires to know the degree deg(k)
of each agent ak in the problem (i. e., the number of neighbors of ak).3 Agent

ai computes τ = [α(λ[1]), . . . , α(λ[n])] using α(k) =
dom(k)

1 + deg(k)
. For dom/pdeg790

(resp. dom/fdeg) each agent ai requires to know the set of neighbors of each
other agent ak because it will need to compute the incoming degree pdeg(k)
(resp. the outgoing degree fdeg(k)) of ak for any proposed order.4 Agent ai

computes τ using α(k) =
dom(k)

1 + pdeg(k)
(resp. α(k) =

dom(k)

1 + fdeg(k)
) where the

incoming degree pdeg(k) in λ is the number of neighbors of ak that appear795

before k in λ and the outgoing degree fdeg(k) in λ is the number of neighbors
of ak that appear after k in λ. As these DVO heuristics prefer the variable min-
imizing the measure, they are simulated by calling AgileABT([dom/deg], <),
AgileABT([dom/pdeg], <), and AgileABT([dom/fdeg], <), respectively.

4.2.3. Simulating Conflict-Directed Variable Ordering Heuristic800

The third category covers the popular conflict-directed variable ordering
heuristic dom/wdeg from the centralized CSP [15]. The conflict-driven heuris-
tic dom/wdeg associates a weight with each constraint to record conflicts dur-
ing search. The weight of a constraint is increased each time the constraint
fails. This heuristic selects the variable that minimizes the ratio dom/wdeg,805

where dom denotes the current size of the domain of the variable and wdeg
the weighted degree of the variable defined as the sum of the weights of the
constraints involving that variable and at least another uninstantiated variable.

3deg(k) can be known before the search starts as is the case for the dk of each agent.
4Again this information can be known in a preprocessing step.

24

AgileABT([dom/wdeg], <) is the algorithm that simulates the conflict-driven
heuristic in AgileABT([α],≺α). Agents in AgileABT([dom/wdeg], <) store and810

exploit information about failures in the form of constraint weights to compute
measure α(k). Each agent ai maintains the weight of each constraint cij in Ci,
denoted by wj , and the weighted degree of each agent ak denoted by wdegk.

Each agent ai in AgileABT([dom/wdeg], <) computes τ using α(k) =
dom(k)

wdegk
.

In order to check consistency (isConsistent() calls, Figure 4), agents per-815

form successive revisions of their constraints using a procedure propagate().
A general description of procedure propagate(cij) called to revise a constraint
cij ∈ Ci is presented in Figure 7. Whenever a constraint cij fails (i.e., Dc

i or
Dc
j is wiped out, Dc

i = ∅ ∨ Dc
j = ∅) when calling procedure propagate, wj is

incremented (line 7, Figure 7). Each time ai assigns a new value to its variable820

(procedure assignVariable(), Figure 4), ai computes its own counter wdegi
using procedure computeWeight(), Figure 7. The weighted degree wdegi is the
sum of the weights (wj) of all constraints (cij) in Ci involving a variable having a
lower priority (xj ∈ Γ+

i) or not assigned in AV − (lines 8 to 11, Figure 7). How-
ever, to guarantee that AgileABT([dom/wdeg], <) terminates (see Section 4.4),825

we require that the new computed weighted degree does not exceed a limit W
(line 12, Figure 7). Next, agent ai attaches its counter wdegi to each ok? mes-
sage it sends out. Upon receiving an ok? message from an other agent as, agent
ai updates wdegs to the weight included in the received ok? message.

4.3. AgileABT([α],≺α) algorithm830

Once we have decided which DVO we want to mimic and designed the right
measure α with the right total preference relation ≺α over the range of α, if we
want to mimic the given DVO as closely as possible, AgileABT([α],≺α) should
compute orders with the smallest possible termination values (w.r.t. , ≺lexα).

Each time an agent faces a dead-end, it resolves its no-goods and then it835

is allowed to propose a new order. Unlike previous polynomial reordering ap-
proaches, AgileABT([α],≺α) relaxes the restriction of selecting the variable that
has the lowest priority in the current order among conflicting variables as back-
tracking target. AgileABT([α],≺α) allows agent ai to select the backtracking
target among conflicting variables Λi. The only restriction for selecting xt as840

a backtracking target is to find an order λ associated with a termination value
τ = [α(λ[1]), . . . , α(λ[n])] that is smaller (w.r.t. ≺lexα) than the termination value
associated with the current order λi of agent ai and xt is the lowest among vari-
ables in Λi w.r.t. the freshly computed order λ′.

To deal with explanations, an AgileABT([α],≺α) agent ai keeps a set of845

explanations Ei, and some of AgileABT procedures in (Figure 4) are slightly
modified. The new lines/procedures of AgileABT([α],≺α) with respect to Ag-
ileABT are presented in Figure 8. Agents in AgileABT([α],≺α) exchange the
same types of messages as AgileABT, however, each agent sends an explanation
of its new size in each of its ok? messages.850

As in AgileABT, whenever agent ai receives an ok? message from an agent
as, it processes it by calling procedure processOk(〈xs, v′s, t′s〉, es). Agent ai

25

procedure AgileABT([α],≺α)
01. initialize();
02. assignVariable();
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. ok? : processOk(〈xs, vs, ts〉, es);
07. ngd : processNgd(as, ngd[xi 6=v′i]);
08. adl : processAdl(as, v

′
i);

09. order : processOrder(λs, τs);
10. stp : end← true;

procedure processOk(〈xs, v′s, t′s〉, es)
11. add(Ei, es); /* es: Λs → dcs */
12. updateAgentView(Λs ∪ 〈xs, v′s, t′s〉);
13. checkAgentView();

function simulateExplanations(xt)
14. E′i ← Ei;
15. foreach (ek ∈ E′i) do
16. if (xt ∈ Λk) then /* ek: Λk → dck */
17. E′i ← E′i \ ek ;

18. if (et /∈ E′i) then
19. add(E′i, et : ∅ → dt);
20. add(E′i, et ← [Λt∪Λi \ (xt = vt)]→ dct −1);
21. return(E′i);

function computeOrder(E′i)
22. λ and τ are arrays of length n;
23. p← 1;
24.G← {(j, k) | xj ∈ Λk, ek ∈ E′i};
25. while (p ≤ n) do
26. R← {r | @(s, r) ∈ G};
27. r ← arg min

k∈R
{α(k)}; /* using ≺α */

28. λ[p]← r;
29. τ [p]← α(r);
30. p← p+ 1;
31. foreach ((r, s) ∈ G) do
32. G← G \ (r, s);

33. return(〈λ, τ〉);

function f()

34. foreach (ek ∈ Ei) do
35. if (¬valid(ek)) then
36. Ei ← Ei \ ek ;

37. λ← nil; τ ← nil;
38. foreach (xt ∈ Λi) do
39. E′i ← simulateExplanations(xt);
40. 〈λ′, τ ′〉 ← computeOrder(E′i);

41. if (τ ′ ≺lexα τ) then
42. λ← λ′;
43. τ ← τ ′;

44. return(〈λ, τ〉);

Figure 8: New lines/procedures of AgileABT([α],≺α) with respect to AgileABT in
Figure 4.

updates its set of explanations Ei by storing the newly received explanation es
(line 11, Figure 8). As usual the agent-view of ai is updated, but in addition
to the assignment of the sender (as), agent ai takes newer assignments con-855

tained in the left hand side of the explanation (i.e., Λs) included in the received
ok? message to update its agent-view (line 12, Figure 8). Then, procedure
checkAgentView is called (line 13) to search a new consistent value for ai if
necessary.

To compute a new reordering, an AgileABT([α],≺α) agent ai makes use of860

the function f() presented in Figure 8. First, ai updates its set of explana-
tions Ei to remove all explanations that are no longer valid (lines 34 to 36,
Figure 8). As a result, all explanations in Ei are coherent with λi. Therefore,
the set of safety conditions S(Ei) does not contain cycles. Next, agent ai iter-
ates through all variables xt in Λi, considering xt as a potential backtracking865

target, (i. e., the directed no-good is ngd[xt 6=vt] : [Λi \ (xt = vt) → xt 6=vt])
line 38. Agent ai then predicts the set of explanations Ei after backtracking
(function simulateExplanations call, line 39). Ei is updated to remove all
explanations containing xt (after backtracking xt assignment will be changed),
lines 14 to 17. Next, agent ai updates the explanation of xt by considering870

the new generated no-good ngd[xt 6=vt] (lines 19 to 20). Finally, agent ai calls

26

computeOrder to compute a new order with small termination value (line 40).
Once all the potential backtracking targets have been tried, the function f()

returns the computed order associated with the smallest computed termination
value (line 44). Unfortunately, given a backtracking target, computing a total875

order λ that respects the ordering constraints induced by the set S(Ei) while
minimizing [α(λ(1)), . . . , α(λ(n))] is NP-hard (see Proposition 9 in Section 4.4).

As it is NP-hard to compute an order λ satisfying a set of safety conditions
and minimizing termination value w.r.t. ≺lexα (Definition 7), AgileABT([α],≺α)
uses a greedy function computeOrder to find a small termination value for880

≺lexα while respecting the safety conditions. The basic idea of the function
computeOrder is to perform a topological sort of the acyclic graph represent-
ing the ordering constraints with the objective of minimizing τ . The function
computeOrder performs n iterations ranging from 1 to n (lines 25 to 32). At
the pth iteration, a variable xr is selected such that α(r) is minimal among the885

set of variables R that have no predecessors, lines 26 to 27. Ties are broken
lexicographically. The selected variable xr is put in pth position in the order,
and τ [p] is assigned value α(r), lines 28 to 29. Next, xr is removed from the
acyclic graph, lines 31 to 32. Then, the next iteration is executed.

Correctness of function computeOrder is based on the fact that the set R890

computed at line 26 is never empty. This is true if computeOrder is called with
a set E′i of explanations such that S(E′i) does not contain cycles. This is what
Lemma 2 tells us.

Lemma 2. When calling function computeOrder(E′i), S(E′i) does not contain
cycles.895

Proof. Function computeOrder(E′i) is called on function f(). In function f(),
all explanations in Ei that are no longer valid are removed (lines 34 to 36,
Figure 8). As a result, all explanations in Ei are coherent with λi. Therefore,
the set of safety conditions S(Ei) does not contain cycles. We need now to prove
that function simulateExplanations does not create cycles in the set of safety900

conditions S(E′i) if S(Ei) is acyclic. The first step is to copy Ei into E′i (line 14,
Figure 8). Then all explanations containing xt are removed from E′i (lines 15
to 17, Figure 8). By removing these explanations, all safety conditions of the
form xt ≺ xj are removed from S(E′i). Until this point, if S(Ei) is acyclic, then
S(E′i) is acyclic because S(E′i) ⊆ S(Ei). Then, the explanation of et is updated905

by taking the generated no-good into account (lines 19 and 20). All the safety
conditions added to S(E′t) after this step are of the form xl ≺ xt. Suppose that
once et is updated S(E′i) becomes cyclic. Hence, if S(E′i) contains cycles, all
these cycles should contain xt and there is a sequence of safety conditions in
S(E′i) such that xt ≺ xj ≺ · · · ≺ xl ≺ xt. However, all safety conditions of the910

form xt ≺ xj were removed, and all the safety conditions in S(e′t) are of the
form xl ≺ xt. Therefore, S(E′i) cannot be cyclic.

4.4. Theoretical Analysis

We first show that all measures presented in Section 4.2 satisfy the condition
in Corollary 1. This is sufficient to ensure termination of AgileABT([α],≺α).915

27

Proposition 7. For all measures α in {dom, dom/deg, dom/pdeg, dom/fdeg,
dom/wdeg}, (Rα, <) is a well-ordering.

Proof. We proceed by contradiction. Suppose there is an infinite decreasing

sequence of values of α(k). In all measures above, α(k) =
dom(k)

ρ(k)
, for some

ρ(k). dom(k) is the expected domain size of the agent ak. It is obvious that920

domain size cannot be negative, that is, ∀k ∈ 1..n, 0 ≤ dom(k) ≤ dk. So
dom(k) cannot decrease indefinitely. Therefore, ρ(k) must increase infinitely.
ρ(k) is a positive integer whose value depends on the measure used. Three
cases were explored in this paper. The first case concerns min-domain (dom)
where ρ(k) equals 1. The second case concerns the family of degree-based925

heuristics (dom/deg, dom/pdeg, dom/fdeg). In this case, all of the ρ(k) are
greater than or equal to 1 and smaller than or equal to n the number of agents
in the system because an agent is at most constrained to n − 1 other agents.
Thus, 1 ≤ ρ(k) ≤ n. The third case is related to the heuristic dom/wdeg. We
have outlined that an agent is not allowed to increment its weight when it has930

reached the limit W set beforehand (Figure 7, line 12). Thus, 1 ≤ ρ(k) ≤ W .
In all three cases ρ(k) is an integer that cannot increase infinitely. Therefore,

for all measures presented above, α(k) =
dom(k)

ρ(k)
cannot decrease infinitely, and

so < well-orders Rα the range of measure α.

Corollary 2. AgileABT([α],≺α) is guaranteed to terminate if α ∈935

{dom, dom/deg, dom/pdeg, dom/fdeg, dom/wdeg}.

Proof. From Corollary 1 and Proposition 7.

Hence, AgileABT([α],≺α) has all the good properties we can expect from
an algorithm for solving DisCSPs.

Corollary 3. AgileABT([α],≺α) is sound, complete, and terminates if α ∈940

{dom, dom/deg, dom/pdeg, dom/fdeg, dom/wdeg}.

Proof. From Proposition 2, Proposition 5, and Corollary 2.

We demonstrate that the space complexity of AgileABT([α],≺α) is polyno-
mially bounded.

Proposition 8. The spatial complexity of AgileABT([α],≺α) is polynomial.945

Proof. The size of no-goods, explanations, termination values, and order-
ings, is bounded by n, the total number of variables. Now, on each agent,
AgileABT([α],≺α) only stores one no-good per value, one explanation per
agent, one termination value and one ordering. Thus, the space complexity
of AgileABT([α],≺α) is in O(nd+ n2 + n+ n) =O(nd+ n2) on each agent.950

We prove that it is difficult for an agent ai to compute an order with the
smallest possible termination value.

28

Proposition 9. Given a DisCSP defined by the network (A,X ,D, C), with X =
{x1, . . . , xn}, given an agent ai, and given a measure α from [1..n] to Q, it is
NP-hard to compute a total order λ on X that satisfies the safety conditions in955

S(Ei) and such that [α(λ[1]), . . . , α(λ[n])] is lexicographically minimum, even if
S(Ei) is acyclic.

Proof. Our proof is inspired from a proof of hardness of finding minimal topo-
logical sorts of a graph [32]. We reduce the Clique problem (one of Karp’s 21
NP-complete problems), to our problem of finding a total order λ on X that960

satisfies the safety conditions in S(Ei) and such that [α(λ[1]), . . . , α(λ[n])] is
lexicographically minimum. Let G = (X,H) be an undirected graph in which
we want to decide if there exists a clique of size k. We build a DisCSP with
network (A,X ,D, C). X contains |X|+ |H|+ 1 variables, where each node i in
X is associated with a variable ui, each edge (i, j) is associated with a variable965

wij , plus a variable z. A contains an agent per variable of X . The variables ui
have two values {i, i+ 1} in their domain. The variables wij have three values
{i, j, i + j · |X|} in their domain, so that value i + j · |X| only belongs to one
wij variable. The variable z has domain {i+ j · |X| | (i, j) ∈ H} that contains
|H| values, each value corresponding to an edge (i, j) ∈ H. C is composed of970

3 · |H| constraints: ui 6= wij , uj 6= wij , and wij 6= z, for each edge (i, j) ∈ H.
The measure α is defined by α(x) = dom(x), for any variable x in X . The
initial order among agents is such that all ui appear before all wij , and z is
the last. Finally suppose all agents instantiate their variables in lexicographic
order of their values. Once a variable wij has received ok? messages from its975

two predecessors ui and uj , it eliminates values i and j from its domain and
assigns value i+ j · |X| to its variable. Afterwards, it sends a new ok? message
to the variable z. In addition to the new value of the variable wij , this ok?
message contains the explanation ui = i ∧ uj = j → 1. Once the variable z has
received all the ok? messages from variables wij , it has to backtrack because all980

values in its domain become forbidden. It has to compute a new order minimiz-
ing the termination value, that is, an order λ such that [α(λ[1]), . . . , α(λ[n])] is
lexicographically minimum. For each wij ∈ X , there are two safety conditions
(ui ≺ wij) and (uj ≺ wij) in S(Ez) induced by the explanation sent by wij .
Observe that S(Ez) is thus acyclic. In addition, for each i ∈ X,α(ui) = 2,985

and for each (i, j) ∈ H,α(wij) = 1 (because no-goods have removed values i
and j from the domain of wij). As a result, G contains a clique of size k if and
only if the lexicographically minimum vector [α(λ[1]), . . . , α(λ[n])] satisfying the
acyclic safety conditions accepts the word 221212213...21k−1 as prefix, where 2i

denotes the sequence of i consecutive 2.990

To prove this claim we first observe that an order λ satisfying the safety
conditions cannot put a variable wij before ui and uj . We now analyze the
two directions of this claim. If G contains a clique of size k, we generate a
sequence of variables the following way. Start from the empty sequence. Select
each node j in turn in the clique of size k. Add uj to the sequence, followed995

by all wij such that ui is already in the sequence. At the end of this process
we have built a prefix of an order λ such that 221212213...21k−1 is a prefix

29

of [α(λ[1]), . . . , α(λ[n])]. By construction, any lexicographically smaller prefix
would put a wij before ui or uj in λ , which would break the safety conditions.
Suppose now that we have an order λ such that 221212213...21k−1 is a prefix of1000

[α(λ[1]), . . . , α(λ[n])]. By construction, this means that there are k nodes in G
that are linked by [1 + 2 + · · · + (k − 1)] = k(k − 1)/2 edges. In other words,
these nodes form a clique in G.

We have proved that the existence of a clique of size k is equivalent to the
existence of the prefix 221212213...21k−1 in [α(λ[1]), . . . , α(λ[n])]. Checking this1005

prefix is polynomial, therefore we have a polynomial-time reduction, and our
problem is NP-hard.

4.5. Example of Running AgileABT([dom], <)

Figure 9 presents an example of a possible execution of AgileABT([dom], <)
on the simple problem presented in Figure 1. Assume all 5 agents start with1010

the same initial ordering λi = [1, 2, 3, 4, 5] associated with the termination value
τi = [4, 4, 4, 4, 4] and values are chosen lexicographically. Consider the situation
in a5 after receiving ok? messages from other agents (Figure 9a). On receipt,
explanations e1, e2, e3, and e4 are stored in E5, and assignments x1 = 1, x2 = 2,
x3 = 2, and x4 = 3 are stored in a5 agent-view. After checking its constraints1015

with higher neighbors (c15, c25, and c45), a5 detects a dead end (Λ5 → 0) where
Λ5: {x1 = 1∧x2 = 2∧x4 = 3}. All explanations stored in E5 are valid: They are
compatible with the agent-view of a5 and coherent with λ5. Agent a5 iterates
through all variables xt ∈ Λ5, considering xt as the target of the backtracking.
Figure 9b shows the updates on the explanations stored in a5 (E5) when it1020

considers x1 as the target of the backtracking (i. e., xt =x1). Agent a5 updates
E5 to remove all explanations containing x1 (i. e., e2 and e3) and considering the
new generated no-good ngd[x1 6=1] : [x2 = 2∧ x4 = 3]→ x1 6=1 in the explanation
of x1, i.e. e1 (Figure 9b, left). Finally, a5 computes a new order (λ′) and
its associated termination value (τ ′) from the updated explanations E5. λ′ is1025

obtained by performing a topological sort on the directed acyclic graph formed
by safety conditions induced by the updated explanations E5 (Figure 9b, right).
Figure 9c presents the computed orderings and their associated termination
values (by topological sort) when considering each xt ∈ Λ5 as backtracking
target. The strongest computed order (i.e., λ′= [3, 4, 2, 5, 1], τ ′= [4, 2, 4, 2, 3]) is1030

that computed when considering x1 as backtracking target. Since τ ′ is smaller
than τ5 (i.e., τ ′ ≺lexα τ5) agent a5 changes its current order to λ′ and proposes
this ordering to all other agents through order messages (i. e., order:〈λ′, τ ′〉).
Then, a5 sends the no-good ngd[x1 6=1] : [x4 = 3 ∧ x2 = 2]→ x1 6=v1 to agent x1.

5. AgileABT versus retroactive ABT DO1035

As mentioned in the introduction, several algorithms have been proposed
for reordering agents dynamically during search. AgileABT and retroactive
ABT DO (i. e., ABT DO Retro [20]) are the only ones which are able to reorder

30

Data structures maintained by A5

∀i ∈ 1..5, λi = [1, 2, 3, 4, 5], τi = [4, 4, 4, 4, 4]

Λ5: x1 =1 ∧ x2 =2 ∧ x4 =3

incoming messages

ok?
1→5

:〈(x1 =1), e1: []→4〉

ok?
2→5

:〈(x2 =2), e2: [x1 =1]→3〉

ok?
3→5

:〈(x3 =2), e3: [x1 =1]→3〉

ok?
4→5

:〈(x4 =3), e4: [x3 =2]→2〉

e1: [] → d1 =4

e2: [x1 =1]→ d2 =3

e3: [x1 =1]→ d3 =3

e4: [x3 =2]→ d4 =2

explanations (E5)

ngd(x5 6=1): [x1 =1]→x5 6=1

ngd(x5 6=2): [x2 =2]→x5 6=2

ngd(x5 6=3): [x1 =1]→x5 6=3

ngd(x5 6=4): [x4 =3]→x5 6=4

no-goods (D5 = ∅)

(a) Explanations and no-goods maintained by a5

A5: when choosing x1 as backtracking target for Λ5

Updated explanations (E′
5)

e1: [x2 =2 ∧ x4 =3]→ d1 =3

e2: [] → d2 =4

e3: [] → d3 =4

e4: [x3 =2] → d4 =2

e5: [x2 =2 ∧ x4 =3]→ d5 =2

Directed graph

1
3

2
4

3
4

4
2

5
2

e
4

e1 e 5

e
1 e

5

agent ID

domain size

(b) a5: updated explanations with x1 as target.

A5: target selection

Selected no-good: ngd[x1 6=1]: [x4 =3 ∧ x2 =2] → x1 6=1

λ5 = [1, 2, 3, 4, 5] τ5 = [4, 4, 4, 4, 4]

directed nogood agent ordering termination value

ngd[x1 6=1]: [x4 =3 ∧ x2 =2] → x1 6=1 λ′ = [3, 4, 2, 5, 1] τ ′ = [4, 2, 4, 2, 3]

ngd[x2 6=2]: [x1 =1 ∧ x4 =3] → x2 6=2 λ′ = [1, 3, 4, 5, 2] τ ′ = [4, 3, 2, 1, 2]

ngd[x4 6=3]: [x1 =1 ∧ x2 =2] → x4 6=3 λ′ = [1, 2, 5, 3, 4] τ ′ = [4, 3, 1, 3, 1]

(c) a5: selection of target (x1).

Figure 9: An example of a possible execution of AgileABT([dom], <) on the problem
of Figure 1.

31

the agents with priority higher than the no-good receiver.5 Therefore the main
differences between these two algorithms deserve to be explored in more depth1040

5.1. Reordering

5.1.1. ABT DO Retro

The algorithm ABT DO was first introduced in [17]. When an ABT DO
agent assigns a value to its variable, it can only change the order of agents
that have a lower priority than its own. ABT DO Retro, presented in [20], is1045

a slightly modified version of ABT DO where the reordering operation is gen-
erated by the no-good generator instead of the no-good receiver. Furthermore,
ABT DO Retro allows for retroactive heuristics. A retroactive heuristic enables
moving the no-good sender to a higher position than the no-good receiver. The
more the no-good sender is moved higher in the order, the more the heuristic is1050

flexible.
However, the flexibility of the retroactive heuristics enabled by

ABT DO Retro comes at the price of keeping no-goods in memory. To monitor
the storage of the no-goods, ABT DO Retro uses a parameter K and only al-
lows the storage of no-goods that are smaller than or equal to K in size. Hence,1055

ABT DO Retro has a space complexity exponential in K.
When K is equal to the number of agents in the system, the no-good sender

can always be moved to be before all the participants in the no-good. The
resulting algorithm is a generalization of AWC [20]. However, agents must store
all the no-goods until the end of the search, which gives a space complexity1060

exponential in the number of agents.
When K equals 0, the spatial complexity of the algorithm becomes polyno-

mial, but the flexibility becomes limited because the sender of the no-good, can
no longer be moved to a position higher than the second last in the no-good
[20].1065

An intermediate version between these two extremes consists in setting the
parameter K to a value between 0 and the number of agents in the system. In
this case, if the no-good created has size larger than K, the sender of the no-
good cannot be moved to a position higher than the second last in the no-good.
If the no-good has size smaller than or equal to K, the sending agent can be1070

moved to be higher than all the participants in the no-good and the no-good is
sent to and stored by all of them.

Despite allowing this space consumption, the extra flexibility given to
ABT DO Retro had no positive effects on its performance. Indeed, “The fact
that a larger storage, which enables more flexibility of the heuristic, actually1075

causes a deterioration of the performance might come as a surprise. ” [quoted
from [20, p.193]]. Furthermore, “Larger storage for Nogoods (even exponential
in the extreme case) was found to produce worse efficiency for search on random
problems.” [quoted from [20, p.197]]. The only heuristic that performed well

5AWC also allows retroactive reordering, but ABT DO Retro is a generalization of AWC
[20].

32

was the min-domain retroactive heuristic that works with K set to 0: “In our1080

best performing heuristic, agents are moved higher in the priority order as long
as their domain size is smaller than the domains of the agents before them and
as long as they do not pass the second last in the no-good.” [quoted from Zivan
et al. [20, p.197]].

5.1.2. AgileABT1085

To increase flexibility, AgileABT uses a totally different and innovative strat-
egy based on termination values. To be able to reorder agents that are before
the receiver of the no-good, agents in AgileABT do not need to keep no-goods in
memory. They only need to improve the termination value. An agent that can
improve the termination value can propose a new order where the positions of1090

all agents are changed, including the agents before the receiver of the no-good.

5.2. Selection of the Backtracking target

5.2.1. ABT DO Retro

In all previous asynchronous backtracking algorithms, including ABT DO
[17] and ABT DO Retro [20], whenever a dead end occurs, the backtracking1095

target is determined by the order known by the generator of the no-good before
the dead end. That is, the backtracking target always corresponds to the agent
with the lowest priority among those participating in the no-good.

5.2.2. AgileABT

In order to ensure greater flexibility in exploring the search space, the re-1100

striction of selecting the lowest agent in the current order as backtracking target
has been relaxed in AgileABT. Instead of being determined by the order known
by the generator of the no-good before the dead end, the backtracking target
is determined by the order newly proposed by this agent. By proposing an
appropriate new order, any variable participating in the generated no-good can1105

be moved down to the lowest position in that generated no-good and then be
selected as the backtracking target (Figure 4, lines 43 to 46).

The example of Section 4.5 illustrates this feature. When the no-good ngd6 :
¬[(x2 = 2)∧ (x3 = 2)] was generated by a4, the current order that was known by
this agent was [1, 2, 3, 4]. In all previous asynchronous backtracking algorithms,1110

including ABT DO [17] and ABT DO Retro [20], the conclusion of the no-good
ngd6 must be x3 because it is owned by the agent that has the lowest priority
according to the current order. In AgileABT, this restriction can be relaxed.
Indeed, by choosing the new order [3, 2, 4, 1], the variable x2 was dragged down
to the lowest position among the variables participating in ngd6 and the no-good1115

x3 = 2→ x2 6=2 was sent to a2 instead of a3.

5.3. Timestamps versus termination values

5.3.1. ABT DO Retro

The method of timestamping for defining the most updated order in
ABT DO Retro is the same as that used in [17]. In these algorithms, an order1120

33

is an ordered list of pairs where every pair includes the ID of one of the agents
and a counter attached to it. Initially, all counters are set to zero, and each
agent ai that proposes a new order, updates the counters as follows:

• The counters of agents with priority higher than ai are not changed.

• The counter of ai is incremented by one.1125

• The counters of agents with priority lower than ai are set to zero.

The counters attached to the agents ID form a timestamp. Agents decide
which order is more up-to-date by comparing the timestamps lexicographically
[21]. Therefore, the timestamps used by ABT DO Retro are arrays of integers
whose sole purpose is to indicate that a given order is more up-to-date than1130

another one.

5.3.2. AgileABT

Termination values used by AgileABT are fundamentally different from the
timestamps of ABT DO Retro. First, termination values do not need to be
arrays of integers. They may be numbers, arrays or any other mathematical1135

object. The only requirement is that (T ,≺τ) is a well ordering (Proposition 4).
The example of Section 4.5 illustrates a case where termination values are posi-
tive integers, and the heuristics introduced in Section 4.2 illustrate cases where
termination values are arrays of integers and arrays of rational numbers.

Second, termination values can be used to mimic a wide variety of DVOs.1140

The termination values used by the instantiations of AgileABT presented in Sec-
tion 4 are arrays of measures α defined such that the smaller the value returned
by α w.r.t. ≺α, the more preferred the corresponding variable for the DVO
heuristic represented by α. We showed in Section 4.2 how AgileABT([α],≺α) is
able, thanks to the termination values, to capture a number of different DVO1145

heuristics (dom, dom/deg and dom/wdeg) that are known to be effective in
reducing search in centralized CSP.

6. Empirical Analysis

In this section we experimentally compare AgileABT([α],≺α)6 using differ-
ent DVO heuristics to three other algorithms: ABT, ABT DO with nogood-1150

triggered heuristic (ABT DO-ng) [17] and ABT DO with min-domain retroac-
tive heuristic (ABT DO Retro(mindom)) [20, 21]. All experiments were per-
formed on the DisChoco 2.0 platform [33].7 DisChoco implements a model to
solve Distributed Constraint Reasoning problems. Communication is performed
via the Simple Agent Communication Infrastructure (SACI) if agents are im-1155

plemented on different Java Virtual Machine (JVM). Otherwise, if agents are

6For AgileABT([dom/wdeg], <), we fixed W = 103. But, varying W (to 104 or 105) made
negligible difference to the results.

7http://dischoco.sourceforge.net/

34

http://dischoco.sourceforge.net/

5.0e+4

1.0e+5

1.5e+5

2.0e+5

2.5e+5

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

p2

#ncccs 〈n=20, d=10, p1=0.2〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

5.0e+3

2.5e+4

 0.65

2.0e+4

4.0e+4

6.0e+4

8.0e+4

1.0e+5

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

p2

#msg 〈n=20, d=10, p1=0.2〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

5.0e+3

1.0e+4

1.5e+4

 0.65

Figure 10: Sparse uniform binary random DisCSPs

simulated by Java threads on a single JVM, the communication is performed
only through message passing via a local communication simulator. This is this
second option that we have used in our experiments.

When comparing distributed algorithms, the performance is evaluated using1160

two common metrics: the communication load and computation effort. Com-
munication load is measured by the total number of exchanged messages among
agents during algorithm execution (#msg) [34]. Computation effort is measured
by the number of non-concurrent constraint checks (#ncccs) [35]. #ncccs is the
metric used in distributed constraint solving to simulate computation time, but1165

for dynamic reordering algorithms its variant generic #ncccs is used [36]. Al-

35

1e+6

2e+6

3e+6

4e+6

5e+6

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

p2

#ncccs 〈n=20, d=10, p1=0.7〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

 0.3
7e+5

8e+5

9e+5

1e+6

1e+6

2e+6

3e+6

4e+6

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

p2

#msg 〈n=20, d=10, p1=0.7〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

 0.3
5e+5

6e+5

7e+5

Figure 11: Dense uniform binary random DisCSPs

gorithms are evaluated on four benchmarks: uniform binary random DisCSPs,
distributed graph coloring problems, composed random instances and target
tracking in distributed sensor networks.

6.1. Uniform binary random DisCSPs1170

Uniform binary random DisCSPs are characterized by 〈n, d, p1, p2〉, where
n is the number of agents/variables, d is the number of values in each domain,
p1 is the network connectivity defined as the ratio of existing binary constraints
to possible binary constraints, and p2 is the constraint tightness defined as the
ratio of forbidden value pairs to all possible pairs. We solved instances of two1175

36

classes of random DisCSPs: sparse problems 〈20, 10, 0.2, p2〉 and dense problems
〈20, 10, 0.7, p2〉. We varied the tightness from 0.1 to 0.9 by steps of 0.05. For each
pair of fixed density and tightness (p1, p2), we generated 20 instances, solved 5
times each. We report average over the 100 executions.

Figures 10 and 11 show the results on sparse respectively dense uniform1180

binary random DisCSPs. In sparse problems (Figure 10), ABT is signifi-
cantly the slowest algorithm but it requires fewer messages than ABT DO-
ng. AgileABT([α],≺α) outperforms all other algorithms on both #msg and
#ncccs. AgileABT([dom/wdeg], <) is slower and requires more messages com-
pared to other heuristics of AgileABT([α],≺α). Regarding the messaging, the1185

neighborhood based heuristics (i. e., dom/deg, dom/pdeg and dom/fdeg) per-
form well. They show more than an order of magnitude improvement com-
pared to ABT, ABT DO-ng and ABT DO Retro(mindom) and an almost two-
fold improvement over dom/wdeg. Regarding the speedup, AgileABT([α],≺α)
shows at least an order of magnitude improvement compared to ABT. The1190

neighborhood based heuristics (i. e., dom/deg, dom/pdeg and dom/fdeg) show
an order of magnitude improvement compared to ABT DO-ng. Comparing
AgileABT([α],≺α) algorithms, neighborhood based heuristics (i. e., dom/deg,
dom/pdeg and dom/fdeg) show an almost two-fold improvement over dom and
dom/wdeg on #ncccs.1195

In dense problems (Figure 11), AgileABT([α],≺α) with neighborhood based
heuristics outperforms all other algorithms both on #msg and #ncccs. The
improvement factor is almost 6 over ABT on #ncccs and almost 7 in #msg.
Only neighborhood based heuristics are faster than ABT DO Retro(mindom).
ABT and AgileABT([dom/wdeg], <) are the slowest algorithms but they re-1200

quire almost half the #msg of ABT DO-ng and ABT DO Retro(mindom).
AgileABT([dom/wdeg], <) shows poor performance compared to other heuris-
tics of AgileABT([α],≺α).

6.2. Distributed graph coloring problems

Distributed graph coloring problems are characterized by 〈n, d, p1〉, where1205

n, d and p1 are as above and all constraints are binary difference constraints.
We report the average on 100 instances of two classes 〈n= 15, d= 5, p1 = 0.65〉
and 〈n= 25, d= 5, p1 = 0.45〉 in Table 1. Again, AgileABT([α],≺α) us-
ing neighborhood based DVO are by far the best algorithms for solv-
ing both classes. The results show that AgileABT([dom/pdeg], <) out-1210

performs all other algorithms in both classes. ABT DO-ng shows poor
performance on solving those problems. ABT DO Retro(mindom) outper-
forms AgileABT([dom], <) and AgileABT([dom/wdeg], <) in both classes
when comparing #ncccs, but require more #msg than them. Comparing
AgileABT([dom], <) to AgileABT([dom/wdeg], <), dom requires fewer messages1215

compared to dom/wdeg but it is slower than AgileABT([dom/wdeg], <) on large
problems.

37

Table 1: Distributed graph coloring problems

Algorithm
〈15,5,0.65〉 〈25,5,0.45〉

#msg #ncccs #msg #ncccs

AgileABT([dom/wdeg], <) 64,587 184,641 1,155,373 2,068,677

AgileABT([dom/fdeg], <) 42,305 109,348 453,888 821,397

AgileABT([dom/pdeg], <) 24,174 67,829 197,877 396,320

AgileABT([dom/deg], <) 29,688 78,200 255,434 504,600

AgileABT([dom], <) 48,095 166,564 1,054,793 2,386,179

ABT DO Retro(mindom) 76,228 87,480 1,208,224 678,424

ABT DO-ng 139,866 239,424 4,110,364 3,131,566

ABT 77,536 133,354 1,531,776 3,413,261

Table 2: Composed random instances

Instances 25-1-25 25-1-40

Algorithm #msg #ncccs #msg #ncccs

AgileABT([dom/wdeg], <) 19,133 22,205 23,313 23,728

AgileABT([dom/fdeg], <) 56,158 139,106 112,389 316,381

AgileABT([dom/pdeg], <) 9,511 10,786 10,911 11,512

AgileABT([dom/deg], <) 38,026 150,880 156,164 763,136

AgileABT([dom], <) 9,871 14,328 10,920 14,286

ABT DO Retro(mindom) 53,566 27,507 69,627 37,049

ABT DO-ng 1,045,077 1,166,210 14,400,090 13,017,189

ABT 1,327,065 7,883,914 10,219,262 64,570,955

6.3. Composed random instances

We also evaluate all algorithms on two sets of unsatisfiable composed ran-
dom instances used to evaluate the conflict-directed variable ordering heuristic1220

in centralized CSP [37, 15].8 Each set contains 10 different instances where each
instance is composed of a main (under-constrained) fragment and some auxil-
iary fragments, each of which being grafted to the main one by introducing some
binary constraints. Each instance contains 33 variables and 10 values per vari-
able, and as before, each variable is controlled by a different agent. We solved1225

each instance 5 times and present the average over 50 executions in Table 2.
The results (Table 2) show that AgileABT([dom/pdeg], <) outperforms

8http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html

38

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

all other algorithms in both sets. The second best algorithm for solv-
ing these instances is AgileABT([dom], <). ABT DO Retro(mindom) out-
performs AgileABT([dom/deg], <) and AgileABT([dom/fdeg], <) but requires1230

more #msg than AgileABT([dom/deg], <) in the set 25-1-25. ABT shows
very poor performance on solving these problems followed by ABT DO-ng.
AgileABT([dom/pdeg], <) shows 3 orders of magnitude improvement compared
to ABT and ABT DO-ng. Regarding AgileABT([α],≺α) DVOs, dom/wdeg
pays off on these instances compared to dom/deg and dom/fdeg.1235

6.4. Target tracking in distributed sensor networks

The Target Tracking in Distributed Sensor Network (SensorDisCSP) [4, 38]
is a benchmark based on a real distributed problem. This problem consists of
a set of n stationary sensors, and a set of m mobile targets, moving through
their sensing range. The objective is to track each target by sensors. Thus,1240

sensors have to cooperate for tracking all targets. In order for a target to be
tracked accurately, at least three sensors must concurrently turn on overlapping
sectors. This allows the target’s position to be triangulated. However, each
sensor can track at most one target. Hence, a solution is an assignment of
three distinct sensors to each target. A solution must satisfy visibility and1245

compatibility constraints. The visibility constraint defines the set of sensors to
which a mobile is visible. The compatibility constraint defines a compatibility
relation among sensors regarding the physical limitations of the sensors and the
properties of the terrain on which the sensors are located.

We encode SensorDisCSP in DisCSP as follows. Each agent represents one1250

mobile. There are three variables per agent, one for each sensor that we need to
allocate to the corresponding mobile. The domain of each variable is the set of
sensors that can detect the corresponding mobile. The intra-agent constraints
between the variables of one agent (mobile) specify that the three sensors as-
signed to the mobile must be distinct and pairwise compatible. The inter-agent1255

constraints between the variables of different agents specify that a given sensor
can be selected by at most one agent. In our implementation of the DisCSP
algorithms, this encoding is translated into an equivalent formulation where we
have three virtual agents for each real agent. Each virtual agent handles a sin-
gle variable but #msg does not take into account messages exchanged between1260

virtual agents belonging to the same real agent.
Problems are characterized by 〈n, m, pc, pv〉, where n is the number of sen-

sors, m is the number of mobiles. Each sensor can communicate with a fraction
pc of the sensors that are in its sensing range, and each mobile can be tracked
by a fraction pv of the sensors having the mobile in their sensing range. We1265

solved instances of class 〈25, 6, 0.15, pv ∈ {.1, . . . , .65}〉, where we vary pv by
steps of 0.05. Again, for each pair (pc, pv) we generated 20 instances, solved 5
times each, and averaged over the 100 runs. The results are shown in Figure 12.

When comparing the speed-up of algorithms (top of Figure 12),
AgileABT([dom/wdeg], <) is the fastest algorithm and it shows more than1270

an order of magnitude improvement compared to ABT that shows very

39

1e+5

2e+5

3e+5

4e+5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

pv

#ncccs 〈n=25,m=6,pc=0.15〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

5.0e+4

7.5e+4

 0.25 0.3 0.35

1e+4

2e+4

3e+4

4e+4

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

pv

#msg 〈n=25,m=6,pc=0.15〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

 0.25 0.3 0.35

5.0e+3

7.5e+3

Figure 12: Distributed sensor networks

poor performance compared to dynamic asynchronous algorithms. Com-
paring dynamic asynchronous algorithms, ABT DO-ng is outperformed by
AgileABT([α],≺α) and ABT DO Retro(mindom). ABT DO Retro(mindom)
and AgileABT([dom/pdeg], <) show the same performance and they slightly1275

outperform AgileABT([α],≺α) with dom, dom/deg and dom/fdeg. Concern-
ing communication load (bottom of Figure 12), AgileABT([α],≺α) heuris-
tics outperform all other algorithms. ABT is the algorithm that re-
quires the most messages to solve SensorDisCSP instances. ABT DO-ng
and ABT DO Retro(mindom) require almost half the #msg of ABT. All1280

AgileABT([α],≺α) heuristics require almost the same #msg to solve Sensor-

40

 50 100 150 200 250

A
g
il

eA
B

T
([

d
o
m

/w
d

eg
],

<
)

ABT_DO-Retro(mindom)

AgileABT([dom/pdeg],<)

ABT_DO-ng

A
g
il

eA
B

T
([

d
o
m

/d
eg

],
<

)

ABT

AgileABT([dom],<)

AgileABT([dom/fdeg],<)

Largest Message TX (bytes)

Composed Random: 25-1-25

Composed Random: 25-1-40

Graph Coloring: 〈n=15,d=5,p1=.65〉

Graph Coloring: 〈n=25,d=5,p1=.45〉

SensorDisCSP: 〈n=25,m=6,pc=.15〉

Randon DisCSP: 〈n=20,d=10,p1=.2 〉

Randon DisCSP: 〈n=20,d=10,p1=.7 〉

Figure 13: The longest message transmitted in bytes.

DisCSP instances. They show an improvement factor of 3.5 over ABT DO-ng
and ABT DO Retro(mindom) and an improvement factor of 7 over ABT.

6.5. Evaluation of messages size

In order to assess the communication load we measured #msg, the to-1285

tal number of exchanged messages among agents during algorithm execu-
tion [34]. Our experiments show that AgileABT([α],≺α) generally needs
fewer messages than other algorithms. However, AgileABT([α],≺α) messages
can be longer than those sent by other algorithms. One could object that
for AgileABT([α],≺α), counting the number of exchanged messages is bi-1290

ased. However, counting the number of exchanged messages would be bi-
ased only if #msg was smaller than the number of physically exchanged mes-
sages (going out from the network card). Now, in our experiments, they are
the same. The International Organization for Standardization (ISO) has de-
signed the Open Systems Interconnection (OSI) model to standardize network-1295

ing. TCP and UDP are the principal Transport Layer protocols using OSI
model. The internet protocols IPv4 (http://tools.ietf.org/html/rfc791) and
IPv6 (http://tools.ietf.org/html/rfc2460) specify the minimum datagram size
that we are guaranteed to send without fragmentation of a message (in one
physical message). This is 568 bytes for IPv4 and 1,272 bytes for IPv6 when1300

using either TCP or UDP (UDP is 8 bytes smaller than TCP, see RFC-768
–http://tools.ietf.org/html/rfc768).

Figure 13 presents the size of the longest message sent by each algo-
rithm on all our experiments. The results show that in all the compared
algorithms the size of the longest message sent is larger when solving com-1305

posed random instances (it is between 147 bytes for ABT and 253 bytes
for AgileABT([dom/pdeg], <)). Solving graph coloring instances requires the

41

smaller longest messages for all compared algorithms. The size of largest mes-
sage size is 105 and it is exchanged by AgileABT([dom/wdeg], <). In ABT the
size of longest message size is smaller than in all asynchronous dynamic order-1310

ing algorithms. AgileABT([α],≺α) requires larger longest messages compared
to other algorithms. However, among all our experiments, the size of the longest
message sent by AgileABT([α],≺α) was of size 253 bytes. We are able to send
a single datagram of up to 568 bytes (IPv4) or 1, 272 bytes (IPv6) without frag-
mentation (i. e., send in one single physical message) in either TCP or UDP.1315

Thus, counting the number of exchanged messages is equivalent to counting the
number of physical messages. Therefore, in all our experiments assessing the
communication load by #msg is not biased.

Figure 14 presents the total number of bytes exchanged on the uniform
binary random DisCSPs and the target tracking in distributed sensor net-1320

work benchmark. The obtained results for distributed sensor network instances
(Figure 14a) show that ABT DO Retro(mindom) is the algorithm requiring
the largest number of exchanged bytes to solve these problems followed by
ABT. All AgileABT([α],≺α) heuristics require fewer exchanged bytes than
all other algorithms. They show an improvement factor of almost 3 over1325

ABT DO Retro(mindom) and of almost 2.5 over ABT. The improvement factor
is almost 2 over ABT DO. For sparse binary random DisCSPs (Figure 14b),
the obtained results show that ABT DO-ng and ABT DO Retro(mindom)
are the algorithm that require the largest amount of data. Except for
AgileABT([dom/wdeg], <) that shows a similar performance compared to ABT,1330

all other AgileABT([α],≺α) heuristics outperform all other algorithms by a large
scale. They show an improvement factor of almost 3 over ABT and an almost
order of magnitude improvement over ABT DO-ng and ABT DO Retro. For
dense binary random DisCSPs (Figure 14c), ABT DO Retro(mindom) is again
the algorithm requiring the largest amount of exchanged bytes. ABT DO-ng1335

shows better performance compared to sparse instances and it outperforms
AgileABT([dom/wdeg], <). In these instances, ABT and AgileABT([α],≺α)
with neighbourhood based heuristics are the algorithms that require the min-
imum amount of exchanged bytes with a slight improvement for ABT over
AgileABT([α],≺α).1340

6.6. Discussion

Looking at all results together, we come to the straightforward conclusion
that AgileABT([α],≺α) with neighbourhood-based heuristics, namely dom/deg,
dom/fdeg and dom/pdeg perform very well compared to other techniques. We
think that neighbourhood-based heuristics perform well thanks to their ability1345

to take into account the structure of the problem [14]. Distinctly, among these
three heuristics dom/pdeg seems to be the best one.

In distributed dynamic ordering algorithms, each change on the agents or-
dering invokes a series of coordination messages, and affects the search effort
by wasting all incoherent no-goods computed so far. Therefore, too many1350

changes of agents ordering will have a negative impact on the communica-
tion load and on the computational effort. In all our experiments, we counted

42

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

pv

dataTX(bytes) 〈n=25, m=6, pc=0.15〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

(a) The total number of bytes exchanged on SensorDisCSP instances.

1e+6

2e+6

3e+6

4e+6

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

p2

dataTX(bytes) 〈n=20, d=10, p1=0.2〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

(b) The total number of bytes exchanged on sparse random DisCSP instances.

0.0e+0

5.0e+7

1.0e+8

1.5e+8

2.0e+8

2.5e+8

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

p2

dataTX(bytes) 〈n=20, d=10, p1=0.7〉

Agile(dom/wdeg)

Agile(dom/pdeg)

Agile(dom/fdeg)

Agile(dom/deg)

Agile(dom)

ABT_DO-Retro(dom)

ABT_DO-ng

ABT

(c) The total number of bytes exchanged on dense random DisCSP instances.

Figure 14: The total number of bytes exchanges to solve random DisCSP and Sen-
sorDisCSP instances.

43

Table 3: The number of order messages exchanged by each algorithm

Benchmark
Composed
Random:
25-1-25

Composed
Random:
25-1-40

Graph
Coloring:
〈15, 5, .65〉

Graph
Coloring:
〈25, 5, .45〉

Sensor
DisCSP:
〈25, 6, .15, .3〉

Randon
DisCSP:

〈20, 10, .2, .65〉

Randon
DisCSP:
〈20, 10, .7, .3〉

ABT DO 84,709 842,538 24,962 708,482 2,710 19,331 392,376

ABT DO Retro(mindom) 30,357 35,550 27,450 423,198 5,470 24,795 1,559,112

AgileABT([dom], <) 5,095 5,182 7,935 20,315 1,022 2,206 171,374

AgileABT([dom/deg], <) 6,170 10,101 7,447 17,260 968 1,994 155,031

AgileABT([dom/fdeg], <) 10,175 10,428 10,171 30,746 837 2,622 174,801

AgileABT([dom/pdeg], <) 4,600 4,813 5,081 16,925 688 1,496 173,826

AgileABT([dom/wdeg], <) 6,591 7,104 13,285 67,197 1,265 5,187 240,000

the number of order messages exchanged by each distributed dynamic or-
dering algorithm. The results (presented in Table 3) show that ABT DO-
ng and ABT DO Retro(mindom) exchange a large number of order mes-1355

sages compared to AgileABT([α],≺α). Among AgileABT([α],≺α) algorithms,
AgileABT([dom/pdeg], <) is the algorithm that exchanges the smallest number
of order messages while AgileABT([dom/wdeg], <) is the one that exchanges
the largest number of order messages. These empirical results suggest that to
be efficient a distributed dynamic ordering algorithm needs to be able to revise1360

the ordering of all agents. However, the fewer times the ordering is changed,
the better the performance.

On the other hand, AgileABT([α],≺α) with the conflict-directed variable
ordering heuristic dom/wdeg shows a relatively poor performance on some in-
stances. This fact can be explained by the limited amount of constraint prop-1365

agation performed by DisCSP algorithms. Furthermore, asynchrony affects re-
ception and treatment of ok? and ngd messages and has a direct impact on
the computation of weights and new orders for the dom/wdeg heuristic.

7. Conclusion

We proposed agile asynchronous backtracking (AgileABT), a distributed1370

asynchronous constraint satisfaction framework which allows total reordering
of agents during search without requiring exponential space. This is done via
the original notion of termination values, labels attached to the orders exchanged
by agents during search. Agents accept or reject the suggested reordering us-
ing a priority relation over termination values that can be simple scalar values,1375

or could be more complex structures based on the intrinsic properties of the
proposed reordering. We proved that AgileABT is guaranteed to terminate if
the priority relation over the termination values is a well ordering and has a
polynomial space complexity when the computation of the termination values
has polynomial space complexity.1380

We then proposed AgileABT([α],≺α) an instance of AgileABT where ar-
bitrary dynamic variable ordering heuristics defined by an order relation over

44

a measure, α, applied to each variable in the problem can be implemented
using termination values in the form of vector of measures α. We proved that
AgileABT([α],≺α) is guaranteed to terminate if the order relation over the mea-1385

sure α is a well ordering. Thanks to this original concept of termination values,
any agent is now able to propose any other conflicting agent as a target to back-
track to, and can propose a reordering of all other agents, including those ap-
pearing before that backtrack target. These interesting features are totally new
for a DisCSP algorithm with polynomial space complexity. AgileABT([α],≺α)1390

allowed us to implement for the first time in DisCSPs a wide variety of the
DVOs studied in centralized CSP research. Our experiments confirm the signif-
icance of these DVOs on a distributed setting. These experiments showed that
AgileABT([α],≺α) offers orders of magnitude improvement in both computa-
tion and messaging costs compared to the original static ABT, and consistently1395

outperforms previous proposals for dynamic ordering in ABT.

8. Acknowledgements

This material is based in part on work supported by Science Foundation Ire-
land under Grant No. 12/RC/2289 P2 which is co-funded under the European
Regional Development Fund.1400

References

1. Junges R, Bazzan ALC. Evaluating the Performance of DCOP Algorithms
in a Real World, Dynamic Problem. In: Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems - Volume
2. AAMAS’08; Richland, SC; 2008:599–606.1405

2. Ottens B, Faltings B. Coordination Agent Plans Trough Distributed Con-
straint Optimization. In: Proceedings of the Multi Agent Planning Work-
shop. MASPLAN’08; Sydney Australia; 2008:.

3. Jung H, Tambe M, Kulkarni S. Argumentation As Distributed Constraint
Satisfaction: Applications and Results. In: Proceedings of the Fifth Inter-1410

national Conference on Autonomous Agents. AGENTS’01; New York, NY,
USA: ACM; 2001:324–31.

4. Béjar R, Domshlak C, Fernández C, Gomes C, Krishnamachari B, Selman
B, Valls M. Sensor Networks and Distributed CSP: Communication, Com-
putation and Complexity. Artificial Intelligence 2005;161(1-2):117–47.1415

5. Modi PJ, Shen WM, Tambe M, Yokoo M. Adopt: Asynchronous Dis-
tributed Constraint Optimization with Quality Guarantees. Artificial In-
telligence 2005;161(1-2):149–80.

45

6. Maheswaran RT, Tambe M, Bowring E, Pearce JP, Varakantham P. Taking
DCOP to the Real World: Efficient Complete Solutions for Distributed1420

Multi-Event Scheduling. In: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume 1.
AAMAS’04; Washington, DC, USA: IEEE Computer Society; 2004:310–7.

7. Bonnet-Torrés O, Tessier C. Multiply-Constrained DCOP for Distributed
Planning and Scheduling. In: AAAI Spring Symposium: Distributed Plan1425

and Schedule Management. AAAI; 2006:17–24.

8. Kaplansky E, Meisels A. Distributed Personnel Scheduling–
Negotiation Among Scheduling Agents. Annals of Operations Research
2007;155(1):227–55.

9. Petcu A, Faltings B. A Value Ordering Heuristic for Distributed1430

Resource Allocation. In: Proceedings of Joint Annual Workshop of
ERCIM/CoLogNet on CSCLP’04. 2004:86–97.

10. Léauté T, Faltings B. Coordinating Logistics Operations with Privacy
Guarantees. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence - Volume 3. IJCAI’11; AAAI Press;1435

2011:2482–7.

11. Yokoo M, Durfee EH, Ishida T, Kuwabara K. The Distributed Constraint
Satisfaction Problem: Formalization and Algorithms. IEEE Trans on
Knowledge and Data Engineering 1998;10:673–85.

12. Bessière C, Maestre A, Brito I, Meseguer P. Asynchronous Backtracking1440

Without Adding Links: A New Member in the ABT Family. Artificial
Intelligence 2005;161(1-2):7–24.

13. Haralick RM, Elliott GL. Increasing Tree Search Efficiency for Constraint
Satisfaction Problems. Artificial Intelligence 1980;14(3):263–313.

14. Bessière C, Régin J. MAC and Combined Heuristics: Two Reasons to1445

Forsake FC (and CBJ?) on Hard Problems. In: Proceedings of the Second
International Conference on Principles and Practice of Constraint Pro-
gramming. CP’96; Cambridge, Massachusetts, USA; 1996:61–75.

15. Boussemart F, Hemery F, Lecoutre C, Sais L. Boosting Systematic Search
by Weighting Constraints. In: Proceedings of the 16th European Confer-1450

ence on Artificial Intelligence. ECAI’04; Amsterdam, The Netherlands,
The Netherlands: IOS Press; 2004:146–50.

16. Silaghi MC, Sam-Haroud D, Faltings B. Hybridizing ABT and AWC into
a polynomial space, complete protocol with reordering. Tech. Rep. LIA-
REPORT-2001-008; EPFL; 2001.1455

17. Zivan R, Meisels A. Dynamic Ordering for Asynchronous Backtracking on
DisCSPs. Constraints 2006;11(2-3):179–97.

46

18. Brito I, Meseguer P. Synchronous, Asynchronous and Hybrid Algorithms
for DisCSP. In: Proceedings of the 5th International Workshop on Dis-
tributed Constraint Reasoning. DCR’04; 2004:80–94.1460

19. Silaghi MC. Framework for Modeling Reordering Heuristics for Asyn-
chronous Backtracking. In: Proceedings of the IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology. IAT’06; Washington,
DC, USA: IEEE Computer Society; 2006:529–36.

20. Zivan R, Zazone M, Meisels A. Min-Domain Retroactive Ordering for Asyn-1465

chronous Backtracking. Constraints 2009;14(2):177–98.

21. Mechqrane Y, Wahbi M, Bessiere C, Bouyakhf EH, Meisels A, Zivan R. Cor-
rigendum to “Min-Domain Retroactive Ordering for Asynchronous Back-
tracking”. Constraints 2012;17:348–55.

22. Yokoo M. Asynchronous Weak-commitment Search for solving Distributed1470

Constraint Satisfaction Problems. In: Proceedings of the 1st International
Conference on Principles and Practice of Constraint Programming. CP’95;
Cassis, France; 1995:88–102.

23. Hirayama K, Yokoo M. An Approach to Over-constrained Distributed Con-
straint Satisfaction Problems: Distributed Hierarchical Constraint Satisfac-1475

tion. In: Proceedings of the 4th International Conference on Multi-Agent
Systems. ICMAS’00; 2000:135–42.

24. Dechter R. Constraint Networks (Survey). In Encyclopedia of Artificial
Intelligence, 2nd edition 1992;1:276–85.

25. Ginsberg ML, McAllester DA. GSAT and Dynamic Backtracking. In: Pro-1480

ceedings of the 4th International Conference on Principles of Knowledge
Representation and Reasoning. KR’94; Bonn, Germany: Morgan Kauf-
mann Publishers Inc.; 1994:226–37.

26. Yokoo M, Durfee EH, Ishida T, Kuwabara K. Distributed constraint
satisfaction for formalizing distributed problem solving. In: Proceedings1485

of the 12th International Conference on Distributed Computing Systems.
1992:614–21.

27. Hirayama K, Yokoo M. The Effect of Nogood Learning in Distributed
Constraint Satisfaction. In: Proceedings of ICDCS’00. 2000:169–77.

28. Yokoo M. Distributed Constraint Satisfaction: Foundations of Cooperation1490

in Multi-Agent Systems. London, UK: Springer-Verlag; 2000.

29. Colburn TR, Rankin TL, Fetzer JH, eds. Program Verification: Funda-
mental Issues in Computer Science. Norwell, MA, USA: Kluwer Academic
Publishers; 1993. ISBN 0792319656.

47

30. Lecoutre C, Boussemart F, Hemery F. Backjump-Based Techniques versus1495

Conflict-Directed Heuristics. In: Proceedings of the 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence. ICTAI’04; 2004:549–
57.

31. Smith BM, Grant SA. Trying Harder to Fail First. In: Proceedings of 13th
European Conference on Artificial Intelligence. ECAI’98; Brighton, UK:1500

John Wiley and Sons; 1998:249–53.

32. Eppstein D. Lexicographically Minimal Topological Sort of a Labeled
DAG. Theoretical Computer Science Stack Exchange; 2015. URL: http:
//cstheory.stackexchange.com/q/31993.

33. Wahbi M, Ezzahir R, Bessiere C, Bouyakhf EH. Dischoco 2: A platform for1505

distributed constraint reasoning. In: Proceedings of the 13th International
Workshop on Distributed Constraint Reasoning. DCR’11; Barcelona, Cat-
alonia, Spain; 2011:112–21. URL: http://dischoco.sourceforge.net.

34. Lynch NA. Distributed Algorithms. Morgan Kaufmann Series; 1997.

35. Meisels A, Razgon I, Kaplansky E, Zivan R. Comparing Performance of1510

Distributed Constraints Processing Algorithms. In: Proceedings of the
3rd International Workshop on Distributed Constraint Reasoning. DCR’02;
2002:86–93.

36. Zivan R, Meisels A. Message delay and DisCSP search algorithms. Annals
of Mathematics and Artificial Intelligence 2006;46(4):415–39.1515

37. Roussel O, Lecoutre C. XML Representation of Constraint Networks: For-
mat XCSP 2.1. CoRR 2009;abs/0902.2362. arXiv:0902.2362.

38. Wahbi M. CSPLib problem 072: Target tracking in distributed sensor
network. http://www.csplib.org/Problems/prob072; 2015.

48

http://cstheory.stackexchange.com/q/31993
http://cstheory.stackexchange.com/q/31993
http://cstheory.stackexchange.com/q/31993
http://dischoco.sourceforge.net
http://arxiv.org/abs/0902.2362
http://www.csplib.org/Problems/prob072

	Introduction
	Background
	Basic definitions and notations
	Asynchronous Backtracking - ABT
	Set Theory

	The General Framework AgileABT
	The algorithm AgileABT
	Correctness and complexity
	Geometric interpretation of the termination of AgileABT
	Example of Running AgileABT with a trivial function f

	Instantiation of the General Framework
	Priority between orders
	Implementing DVO heuristics
	Simulating Min-Domain DVO Heuristic
	Simulating Neighborhood Based Variable Ordering Heuristics
	Simulating Conflict-Directed Variable Ordering Heuristic

	AgileABT([],) algorithm
	Theoretical Analysis
	Example of Running AgileABT([dom],<)

	AgileABT versus retroactive ABT_DO
	Reordering
	ABT_DO_Retro
	AgileABT

	Selection of the Backtracking target
	ABT_DO_Retro
	AgileABT

	Timestamps versus termination values
	ABT_DO_Retro
	AgileABT

	Empirical Analysis
	Uniform binary random DisCSPs
	Distributed graph coloring problems
	Composed random instances
	Target tracking in distributed sensor networks
	Evaluation of messages size
	Discussion

	Conclusion
	Acknowledgements

