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Vacuum solutions to the Einstein equations can be viewed as the interplay between the geometry and

the gravitational wave energy content. The constraints on initial data reflect this interaction. We assume

we are looking at cosmological solutions to the Einstein equations so we assume that the 3-space is

compact, without boundary. In this article we investigate, using both analytic and numerical techniques,

what happens when the extrinsic curvature is increased while the background geometry is held fixed. This

is equivalent to trying to magnify the local gravitational wave kinetic energy on an unchanged

background. We find that the physical intrinsic curvature does not blow up. Rather the local volume of

space expands to accommodate this attempt to increase the kinetic energy.

DOI: 10.1103/PhysRevD.85.044028 PACS numbers: 04.20.Cv

I. INTRODUCTION

Initial data for the Einstein equations is usually con-
structed by the conformal method. One is given ‘‘free’’
data and rescales it to get the physical initial data. This is
necessary because the Einstein initial data has constraints.
A comprehensive discussion of the constraints can be
found in [1], especially in Chapter VII. Interesting physics
tends to occur at the boundaries of the space of free data:
one gets at the very least some insight into the limitations
of the conformal method.

The free data consists of a ‘‘base’’ metric, a Riemannian
3-metric, a divergence-free, trace-free symmetric tensor (a
TT tensor), and a scalar, which is the trace of the extrinsic
curvature. If the domain is a compact manifold without
boundary we often choose the scalar as a constant. We then
use a conformal transformation to solve the constraints. If
neither the TT tensor nor the constant vanish, we can
always find the appropriate conformal factor [2]. Parts of
the boundary of the free data are easily accessible. We can
scale any one of the three parts by multiplying it by a
constant and letting the constant become either large or
small. What effect has this on the physics? For example,
does the solution just cease to exist, does the volume of the
spacetime blow up (or shrink to zero), do apparent horizons
(which may be interpreted as cosmological horizons)
appear?

Maxwell’s equations also have constrained initial data.
By choosing the Maxwell free data as a pair of 3-vectors,

ð ~A; ~FÞ, a parallel can be seen between the two fields.

The magnetic and electric fields can be generated via ~B ¼
r� ~A and ~E ¼ ~F� ~rV, where V is a scalar function

chosen to satisfy r2V ¼ riF
i. It is clear that if we multi-

ply either ~A or ~F by any constant, ~B or ~E will be multiplied
by the same amount. As a result, this kind of rescaling can
be used to increase the electromagnetic energy density
ðE2 þ B2Þ without limit.
Can we perform such a rescaling in general relativity?

Can we increase the gravitational wave energy at will by
multiplying any part of the free data by a large constant?
Because the gravitational wave energy interacts in a very
nonlinear way with the geometry, it is not clear what
happens with the Einstein equations.
In this article, we discuss one such rescaling of the

gravitational free data. The initial data consists of a
3-metric, gij, and a symmetric tensor, Kij which is the

extrinsic curvature of the slice. This is essentially the ve-
locity of the 3-metric. Kij is generated from the TT tensor
and the constant. The constant is the Hubble constant, it
represents a uniform expansion or contraction of the space,
while the TT tensor (which has only 2 degrees of freedom
per space point) can be interpreted as the gravitational wave
velocity. We multiply the term that represents the gravita-
tional wave velocity by a large number and track the solu-
tion. It turns out that the local energy density remains
constant, while the volume of the universe expands.
This article is a combination of analytic and numerical

works. Although we study a highly nonlinear elliptic equa-
tion, nevertheless we obtain some interesting analytical
results. In addition, we can accurately solve the equation
numerically. This numerical work not only confirms the
analytic results, where available, but also indicates the
behavior of solutions in situations where we cannot prove
anything.
In Sec. II, we confine ourselves to describing the con-

formal method of solving the constraints. In Sec. III, we
show that if the extrinsic curvature vanishes nowhere on a
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compact manifold and we increase it, the conformal factor
uniformly blows up. However, when the extrinsic curvature
vanishes somewhere, the analysis in Sec. III is no longer
valid. To investigate this special case, we revert to a
spherically symmetric toy model, deriving some analytic
results in Sec. IV and showing the numerical work in
Sec. V. We distinguish between data sets where the extrin-
sic curvature vanishes in finite regions and when it only
vanishes at an isolated point. Here we supply strong evi-
dence that we do not get blowup in regions of vanishing
extrinsic curvature, and that we get slow blowup when the
extrinsic curvature vanishes at an isolated point. We con-
clude with a summary and an outline of future work.

II. SOLVING THE EINSTEIN CONSTRAINTS

Initial data for the Einstein equations consists of two
parts: the first part is a manifold equipped with a
Riemannian 3-metric gij, and the second is a symmetric

tensor Kij on the same manifold. Kij is the extrinsic
curvature of the 3-slice, i.e., the time derivative of the
3-geometry. The metric and extrinsic curvature cannot be
chosen arbitrarily. They must satisfy two constraints: the
first is the Hamiltonian constraint,

R� KijK
ij þ K2 ¼ 0; (1)

where R is the 3-scalar curvature of gij andK is the trace of

Kij, i.e., K ¼ gijK
ij. The second, the so-called momentum

constraint, is

riK
ij �rjK ¼ 0: (2)

The terminology and notation comes from [3].
The standard way of generating solutions to these equa-

tions is by means of a conformal transformation. On any
given manifold, it is easy to construct TT tensors [4]. These
are tensors that are both trace-free and divergence-free,

gijK
ij
TT ¼ 0; riK

ij
TT ¼ 0. Such TT tensors are conformally

covariant. If one multiplies the given base metric gij by an

arbitrary positive function � to construct a new metric,

�gij ¼ �4gij, then �Kij
TT ¼ ��10Kij

TT is TT with respect

to �g. [4].
Any Kij which is the sum of a TT part and a constant

trace, i.e., Kij ¼ Kij
TT þ 1

3Kg
ij, where K is a constant,

satisfies the momentum constraint Eq. (2). If we make a
conformal transformation of the metric, �gij ¼ �4gij, we

find that �Kij ¼ ��10Kij
TT þ 1

3K �gij again satisfies the mo-

mentum constraint with respect to the new metric. Note
that K is not transformed; rather, it remains a given con-
stant. In the conformal method, one uses the fact that we
can freely choose the conformal factor to solve the
Hamiltonian constraint.

If we conformally transform the metric, �gij ¼ �4gij, we

find that the scalar curvature transforms as

�R ¼ ��4R� 8��5r2�: (3)

We want the final metric and the final extrinsic curvature to

satisfy the Hamiltonian constraint Eq. (1), �R� �Kij �Kij þ
K2 ¼ �R� �Kij

TT
�KTT
ij þ 2

3K
2 ¼ 0. This reduces to the fa-

mous Lichnerowicz-York equation [4,5]

r2�� R

8
�þ 1

8
KTT

ij Kij
TT�

�7 � K2

12
�5 ¼ 0 (4)

r2�� R

8
�þ 1

8
A2��7 � K2

12
�5 ¼ 0 (5)

where A2 ¼ KTT
ij Kij

TT .

This equation is very well behaved [2]. In this article, we
focus on the situation where the topology of the 3-manifold
is compact and without boundary. It can be shown that

Eq. (5) has a unique positive solution ifK � 0 and ifKij
TT is

not identically zero. It need not be nonzero everywhere; it
is enough that it not vanish somewhere [2]. Let us remind

the reader that K is a constant, while Kij
TT is a function. In

the special cases, where either K ¼ 0 or Kij
TT � 0, we have

an extra condition related to the sign of the scalar curva-
ture. However, in the general case no such restriction
applies. This existence result does not depend either on
the metric, other than it be uniformly elliptic, or on the
topology of the 3-manifold.
To recapitulate: we start with a triplet, i.e., the free data,

ðgij; Kij
TT; KÞ, and construct a new set ð �gij; �Kij

TT; KÞ ¼
ð�4gij; �

�10Kij
TT; KÞ that satisfies the constraints.

We would like to investigate the boundary of the set of
free data. There exist parts of the boundary that are easy to
reach.We can change the original triplet in a simple way by
multiplying any one of them by a constant without touch-
ing the other two, because, for example, multiplying a TT
tensor by a constant does not change its TT-ness with
respect to a fixed metric. Of course, such a transformation
will change the solution, �, of Eq. (5), and thus the data
satisfying the constraints will be different.
In this article we will consider such a rescaling. We pick

one triplet ðgij; Kij
TT; KÞ, and use it to construct a family of

free data of the form ðgij; �12Kij
TT; KÞ, where � is a running

parameter. In particular, we wish to focus attention on the
behavior of � as � becomes large in order to see what
happens to the physical initial data that emerges. This is a
particularly interesting part of the boundary.

One can regard Kij
TT as the velocity of the gravitational

waves coded into the initial data. This rescaling seems to
push up the gravitational wave energy content of the free
data. Therefore, we are trying to increase the gravitational
wave energy while controlling the rest of the geometry as
much as we can.

In the special case where Kij
TT vanishes nowhere, we can

show that the conformal factor uniformly blows up. We
demonstrate this in the next section.
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III. A HARNACK TYPE INEQUALITY FOR THE
CONFORMAL FACTOR

We want to look at Eq. (5)

r2�� R

8
�þ 1

8
A2��7 � K2

12
�5 ¼ 0;

where A2 ¼ KTT
ij Kij

TT . We are interested in the situation

where we scale KTT
ij Kij

TT by a constant �12. Therefore, we

look at

r2�� R

8
�þ �12 1

8
A2��7 � K2

12
�5 ¼ 0; (6)

and we wish to show that � scales linearly with �

as � becomes large. We write ~� ¼ �=� and then Eq. (6)
becomes

r2 ~�� R

8
~�þ �4

�
1

8
A2 ~��7 � K2

12
~�5

�
¼ 0: (7)

We wish to solve the family of equations on a compact
manifold without boundary. It turns out that the sign of the
scalar curvature plays a minor role in the behavior of the
solutions. We can always set the scalar curvature to a
constant value because of the Yamabe theorem [6], which
tells us that any Riemannian metric on a compact manifold
can be conformally transformed to a metric of constant
scalar curvature (this really only makes sense on a compact
manifold). The key quantity is the Yamabe number

Y ¼ inf

R½ðr�Þ2 þ 1
8R�

2�dv
½R �6dv�1=3 ; (8)

where the infimum is taken over all smooth functions, �.
The sign of the Yamabe number fixes the sign of the
constant scalar curvature. Since Eq. (7) is conformally
covariant, and since conformal transformations form a
group under composition, we can set R to a constant value
without losing any generality. However, we do need to
handle the three separate cases, Y > 0, R> 0, Y < 0,
R< 0, and Y ¼ 0, R ¼ 0 independently. In each case we
will set the value of K2 ¼ 9. This choice does not change
in any fundamental way the behavior of the solution.

A. Y > 0, R > 0

We assume that we are in the positive Yamabe class and
set the scalar curvature R ¼ þ24; the specific number can
be chosen freely. Now Eq. (7) reduces to

r2 ~�� 3 ~�þ �4

�
1

8
A2 ~��7 � 3

4
~�5

�
¼ 0: (9)

Equation (9), because it is just a rescaled version of the
original Lichnerowicz-York Eq. (5), which is extremely
well behaved, has a regular positive solution. Let us look at

what happens at the maximum of ~�, which we shall

assume occurs at a point r ¼ rmax. The first two terms in
Eq. (9) will be negative at r ¼ rmax, so we get�

1

8
A2 ~��7 � 3

4
~�5

�
rmax

> 0: (10)

This becomes

½max ~��12 < 1

6
A2jrmax

� 1

6
maxA2: (11)

The second inequality is needed because the location of
rmax may well depend on � and, in general, does not
coincide with the maximum of A2. However, Eq. (11) gives

us a uniform upper bound on ~� as a constant independent
of �.
We get a uniform lower bound by looking at Eq. (9)

when ~� is a minimum, which we shall assume occurs at
r ¼ rmin. At r ¼ rmin we get

1

6
minA2 � 1

6
A2jrmin

� 4
½min ~��8

�4
þ ½min ~��12: (12)

Consider the cubic equation

x3 þ 4
x2

�4
� 1

6
minA2 ¼ 0: (13)

This will have a positive root that increases as � increases.
Fix �, � ¼ �0, and find the positive root of Eq. (13) for

� ¼ �0. This number is a lower bound for ½min ~��4 that is
independent of � for all �> �0. In turn, this means that
min� diverges at least as fast as � as � becomes large.
Using the bounds on bothmin� andmax�, we have shown
that there exists a universal constant C0 independent of �
such that

min�

max�
> C0 *

�
minA2

maxA2

�
1=3

: (14)

The maximum and minimum of � both increase together
proportional to � so that their ratio remains bounded
independent of �. This can be regarded as a version of
the Harnack inequality [7] for the nonlinear equation
Eq. (9).

B. Y < 0, R < 0

We assume that we are in the negative Yamabe class, and
set the scalar curvature R ¼ �24. Now Eq. (7) reduces to

r2 ~�þ 3 ~�þ �4

�
1

8
A2 ~��7 � 3

4
~�5

�
¼ 0: (15)

Let us look again at what happens at the maximum of ~�.
We again assume that this occurs at a point r ¼ rmax. The

first term in Eq. (15), r2 ~�, will be negative at r ¼ rmax so
we get �

1

8
A2 ~��7 � 3

4
~�5 þ 3 ~�

�4

�
rmax

> 0: (16)
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This becomes

½max ~��12 � 4½max ~��8
�4

<
1

6
A2jrmax

<
1

6
maxA2: (17)

Consider the cubic equation

x3 � 4x2

�4
� 1

6
maxA2 ¼ 0: (18)

This equation has a positive root which is an upper bound

for ½max ~��4 for any given �. This root decreases with
increasing�. An easy way to confirm this is to differentiate
Eq. (18) with respect to �. We get�

3x2 � 8x

�4

�
dx

d�
þ 16x2

�5
¼ 0: (19)

Using Eq. (17), we get 3x2 � 8x=�4 ¼ 4x=�4 þ
maxA2=6x > 0. This means that dx=d� < 0, as required.
As in the positive Yamabe case, pick a value for �,
� ¼ �0, find the root of Eq. (18), and it will be a uniform

upper bound of max ~�4 for all �> �0.
We get a uniform lower bound by looking at Eq. (15) at

the point where ~� is a minimum. We assume that this
occurs at r ¼ rmin. The first two terms in Eq. (15) are
positive at the minimum. Therefore, we get

1

6
minA2 � 1

6
A2jrmin

� ½min ~��12: (20)

This inequality Eq. (20) gives the desired lower bound for

½min ~��, which is independent of �. In turn, this means that
min� diverges at least as fast as �, as � becomes large.
Using the bounds on bothmin� andmax�, we have shown
that there again exists a universal constant C0 independent
of � such that

min�

max�
> C0 *

�
minA2

maxA2

�
1=3

; (21)

and we again recover a Harnack inequality, but now for
Eq. (15).

C. Y ¼ 0, R ¼ 0

Now Eq. (7) can be reduced to

r2 ~�þ �4

�
1

8
A2 ~��7 � 3

4
~�5

�
¼ 0: (22)

Showing the existence of uniform bounds in this case is
even easier. We immediately get

½max ~��12 < 1

6
A2jrmax

<
1

6
maxA2 (23)

and

½min ~��12 > 1

6
A2jrmin

>
1

6
minA2: (24)

Again, we get

min�

max�
>C0 >

�
minA2

maxA2

�
1=3

: (25)

D. Discussion

The Harnack inequalities that have been derived in the
last three subsections are clearly only valid when

minðA2Þ ¼ minðKij
TTK

TT
ij Þ � 0. Since TT tensors are usu-

ally constructed by a decomposition method, one might
think that it would be difficult to find TT tensors which
vanish either at points or in regions. Interestingly, we can
construct such TT tensors [8] and they cannot be ignored.
It has not yet been possible to derive general results for
such special TT tensors. Therefore, we revert to consider-
ing only a spherically symmetric toy model. It turns out, in
the spherical situation, that the case where A2 vanishes in a
region is easier to analyze than the case where A2 vanishes
at a point. When A2 vanishes in a region, we can prove that
the minimum of � has an upper bound and does not scale
with �. In the region where A2 � 0 we get the standard
linear scaling with �. We use a combination of analytical
and numerical techniques in the next two sections deal with
this spherical model.

IV. A SPHERICAL TOY MODEL:
ANALYTICAL RESULTS

We will restrict our attention to the case where the base
3-metric is spherically symmetric, and we replace the
position-dependent function A2 by an arbitrary spherically
symmetric function because we know there exists no regu-
lar spherically symmetric TT tensor on flat space or on a
spherical compact manifold without boundary [9]. For
convenience, we set K ¼ 3. We start with a round 3-sphere
of constant scalar curvature R0 (a natural choice is
R0 ¼ 24) and seek solutions to

r2�� 1

8
R0�þ 1

8
�12A2��7 � 2K2

24
�5 ¼ 0 (26)

r2�� 3�þ 1

8
�12A2��7 � 3

4
�5 ¼ 0 (27)

for varying �. It is clear that when either � ! 0 or � ! 1
strange things happen. In keeping with the focus of this
article, we will only consider here the case where � ! 1.
Looking at Eq. (27), it is clear that � cannot remain

regular as � ! 1, because the third term would diverge
while the others remain regular. The results derived in
Sec. III remain valid so we know that � is linearly propor-
tional to � as long as A2 is nowhere zero. We need to deal
with the situation where A2 vanishes somewhere. In par-
ticular, let us consider the situation where A2 vanishes in a
spherical region around the north pole.
When dealing with spherical symmetry, we are free to

take advantage of the fact that a round 3-sphere can
be decompactified to flat 3-space, and that conformal
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transformations form a group under composition. In this
picture the equation we wish to study is

r2�̂þ 1

8
�12Â2�̂�7 � 3

4
�̂5 ¼ 0; (28)

with �̂ ! 0 at infinity.
The conformal factor that maps flat space into a round

sphere of scalar curvature equalling 24 is � ¼ffiffiffi
b

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

p
for any b > 0. The mapping that brings us

from Eq. (27) to Eq. (28) requires that A2 and � be trans-

formed. The transformation is that Â2 ¼ ��12A2 and �̂ ¼
��1�. In other words, � will be finite at the ‘‘point at

infinity’’ in the compact manifold, while �̂ � ffiffiffi
b

p
=r at the

corresponding infinity in R3.
A spherical region around the north pole corresponds to

a disc 0 � r < r1, where r is the standard conformally flat
coordinate radius, on which A2 ¼ 0. It is now convenient to
switch to the asymptotically flat picture. The equation
we consider is Eq. (28), and, in the disc 0 � r < r1 it
reduces to

r2�̂� 3

4
�̂5 ¼ 0: (29)

We can write down the solution of this equation explicitly.
It is

�̂ ¼
ffiffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; (30)

where a is a parameter. These are the functions that map
one from flat space to the round hyperboloid of constant
negative scalar curvature. These functions blow up at
r ¼ a, and since we know that the total solution is regular,
we know that the blowup must occur outside the range of
validity of these functions. While we do not know a priori
the value of a, and it will change with �, we do know that
we have a lower bound for a, i.e., a � r1. The minimum

value of �̂ for these special solutions occurs at the origin.
There we get

min�̂ ¼ �̂ðr ¼ 0Þ ¼
ffiffiffi
1

a

s
�

ffiffiffiffiffi
1

r1

s
: (31)

Therefore,min� does not blow up like � but reaches some
limit, while max� becomes unboundedly large. A similar
argument holds when A2 vanishes near the south pole.

We can repeat this argument when A2 vanishes on some
belt r1 < r < r2. The equation, Eq. (29), is still the same,
but now is valid for r1 < r < r2. We cannot write down a
set of explicit solutions, but we have much information
about the solutions. Fix the location of the minimum, in

this case in the interval ðr1; r2Þ, and fix the value of �̂ at the
minimum. This uniquely determines the solution. The
solution is ‘‘U’’ shaped, blowing up twice at rA and rB.

The bigger the min�̂, the narrower the ‘‘U’’, i.e.,

ðrB � rAÞðmin�̂Þ2 is bounded [10]. However, we know

that ðrA < r1Þ and ðrB > r2Þ because the blowup cannot
occur in the range of validity of Eq. (29). Therefore rB �
rA > r2 � r1, and so the value of min�̂ is bounded above.
The more interesting case is when A2 vanishes at a point

rather than in a region. To repeat: we can show that when
A2 vanishes nowhere, we have uniform blowup over the
entire domain; when A2 vanishes in a region, the minimum
saturates. We conjecture that we will have behavior which
is ‘‘halfway’’ between the two situations dealt with above.
More precisely, we conjecture that the minimum will blow
up with �, but at a rate which is slower than linear. The
details will depend on the rate that A2 goes to zero at the
point. We have done some numerical modeling, both to
confirm the analytic results and to investigate those situ-
ations where we can prove nothing concrete. These models
will be discussed in the next section.

V. A SPHERICAL TOY MODEL:
NUMERICAL RESULTS

In this section, the equation we deal with is a one-
dimensional elliptic equation with a highly nonlinear
source term,

r2�þ Sð�Þ ¼ 0: (32)

We use a one-dimensional pseudo spectral method to solve
this equation in two computational domains [11–13]. We
have a coordinate y 2 ½0; 2Þ replacing r 2 ½0;1Þ. In the
interior domain we have y ¼ r; y 2 ½0; 1�; r 2 ½0; 1�,
while in the exterior domain we have y ¼ 2� 1=r; y 2
ð1; 2Þ; r 2 ð1;1Þ. Therefore, infinity can be included when
we put the computational grid at the point y ¼ 2.
We use Chebyshev polynomials as basis functions and

the collocation points are

yi ¼ cos

�
�i

2n

�
in½0; 1� (33)

yj ¼ 1þ cos

�
�j

2n

�
in½1; 2� (34)

where i ¼ 0; 1 . . . n and j ¼ 0; 1; 2 . . . n. The two domains
meet at i ¼ 0 on the interior domain and j ¼ n on the
exterior domain. The grid point j ¼ 0 touches the infinity
of coordinate r.
We require the solution to be C1. This means that � and

its normal derivative must match at the interface between
the domains. The discrete equations are solved by the
Newton-Raphson method. The resolution is taken as 100
on each domain.

A. A2 ¼ 1

We here consider the simplest case, where we choose
the base metric to be a round sphere with scalar
curvature equalling 24, and pick A2 to be a global constant
equalling 1. Then Eq. (27)
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r2�� 3�þ 1

8
�12A2��7 � 3

4
�5 ¼ 0;

reduces to an algebraic equation

�12 þ 4�8 � 1

6
�12 ¼ 0; (35)

or in terms of the normalised ~� ¼ �=�,

~� 12 þ 8 ~�8

�4
� 1

6
¼ 0: (36)

As � ! 1, we expect ~�12 ! 1
6 from below, or ~� !

0:8612992.
The round base metric can be written as

gij ¼ 1

ð1þ r2Þ2 �ij: (37)

The computation is all done in the flat space, so we have
to solve

r2�̂þ 1

8
�12Â2�̂�7 � 3

4
�̂5 ¼ 0; (38)

where Â2 ¼ 1
ð1þr2Þ6 . At the risk of confusion we introduce

a normalized ’̂ ¼ �̂=�, then Eq. (38) becomes

r2�̂0 þ 1

8
�4Â2’̂�7 � 3

4
�4’̂5 ¼ 0: (39)

The relationship between ~� and ’̂ is ~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
’̂.

We solve Eq. (39) numerically with Â2 ¼ 1
ð1þr2Þ6 . We see

that the solution is, as expected, of the form �̂0 ¼
C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
with C depending on �. In Fig. 1 we present

~� on the compact manifold (by multiplying �̂0 byffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
). We clearly see that we get a family of constant

functions that asymptote to a fixed function as � becomes
large.

We list the values of C w.r.t. � as the Table I.

B. A2 vanishing at a single point

A simple choice of Â2 that corresponds to A2 vanishing

at the south pole is to pick Â2 ¼ 1
ð1þr2Þ� with �> 6. We

restrict our attentions to � ¼ 7 and � ¼ 10. We present �̂
for several values of � with � ¼ 7 and � ¼ 10 in Fig. 2
and 3, where � ¼ 1; 2; 3; 4; 5; 10 gives rise to the red,
green, blue, pink, light blue, and yellow lines, respectively.

It is clear that, in both cases, the maximum of �̂, at the
north pole, settles to a constant value independent of �.
This shows that the maximum of � grows linearly with �.

On the other hand, the minimum of �̂, at the south pole,
where A2 ¼ 0, decreases with increasing �. Hence, the
minimum of � does not grow linearly with �.
To analyze the behavior of the minimum of � as a

function of �, we consider each of the two cases, i.e.,
� ¼ 7 and � ¼ 10. We conjecture that �ð� ¼ �Þ scales
with some power of �, for large �. We plot ln�= ln�
versus � for each of the two choices of �. These are
Figs. 4 and 5. Each of the two curves flattens out for large
�. These show that min� grows like �n with n � 0:71
when � ¼ 7, and min� grows like �n with n � 0:405
when � ¼ 10.
If� ¼ 6, A2 does not vanish at the south pole and we get

linear growth of � there. The limit � ¼ 1 corresponds to
A2 vanishing in a region near the south pole, and we get no

FIG. 1 (color online). �̂ on S3.

TABLE I. It is a list of the scaling parameter � and the
constancy of the standard solution �̂0. It is clear that, as ex-
pected, C asymptotes to 0.8612992.

� C

1 0.668 090 004 056 546 7

2.154 434 690 0.8387341686204405

4.641 588 834 0.860 178 942 039 265 9

10 0.861 247 075 374 901 0

21.544 346 90 0.861 296 815 485 448 8

46.419 720 69 0.861 299 124 565 752 3

FIG. 2 (color online). �̂ on S3 with � ¼ 7.
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growth at all. It is nice to see that the growth rate seems to
diminish smoothly as we move from � ¼ 6 to � ¼ 1.

C. A2 vanishing in a patch

We start by finding, on the round sphere, a smooth
positive spherical function that vanishes in a region. We

will use this as A2. We first find a cut function�ðxÞwhich is
defined on ½0; 2� by

�ðxÞ¼

8>>>>>>>><
>>>>>>>>:

0 x2½0;0:5Þ
209�2240xþ10080x2

�24640x3þ35280x4�29568x5

þ13440x6�2560x7 x2½0:5;1:0Þ
1 x2½1:0;1Þ

:

This function smoothly interpolates between 0 at
x ¼ 0:5 and 1 at x ¼ 1 and is C3 at each end. In terms of
the rescaled coordinate function y which we introduced at
the beginning of this section, we construct the following
function

fðyÞ ¼

8>>>><
>>>>:

�ð1� yÞ y 2 ½0; 0:5Þ
0 y 2 ½0:5; 1:25Þ
�ð2y� 2Þ y 2 ½1:25; 1:5Þ
1 y 2 ½1:5; 2Þ

:

This is a function that is 1 at the origin, goes to zero at
y ¼ r ¼ 0:5, is zero in y 2 ð0:5; 1:25Þ, rises to 1 in
y 2 ð1:25; 1:5Þ, and stays equal to unity out to y ¼ 2;

r ¼ 1. We choose Â2 ¼ fðyÞ=ð1þ r2Þ6. This corresponds
to a smooth A2 on the sphere, which equals 1 at both the
north and south poles but equals zero in a central region.
Figure 6 shows A2 on the sphere.
We solve the equation for a range of parameters �. We

display the various solutions in Fig. 7, showing the nor-

malized �̂ ¼ �=� on S3. The parameters used are � ¼
1:000, 2.154, 4.642, 10.00, 21.54, 53.13, 79.37, and 100.0.
These correspond to the red, green, blue, pink, light blue,
yellow, dark blue, and mauve lines, respectively, on Fig. 7.

One can clearly see that the value of �̂, on the support of

A2, tends to a stationary limit, while �̂ collapses off the
support of A2. This shows that � scales linearly with �, on

FIG. 3 (color online). �̂ on S3 with � ¼ 10.

FIG. 4 (color online). ln�= ln� vs � for � ¼ 7.

FIG. 5 (color online). ln�= ln� vs � for � ¼ 10.

FIG. 6 (color online). A2 on S3.
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the support of A2, while in the region where A2 is zero, �̂
continues to diminish so that � approaches a stationary
value.

We wish to show thatmin� ¼ �min�̂ increases with �
but approaches some fixed upper bound. The minimum
occurs around � ¼ 1:35. In Fig. 8 we have plotted
ln�= ln� versus � at � ¼ 1:35. One should compare this
graph with Figs. 4 and 5. This looks like a graph which is
going to an asymptotic value of 0, which indicates
that �, at � ¼ 1:35, is heading for a fixed number, inde-
pendent of �.

VI. CONCLUSIONS

We have shown that if we scale Kij
TTK

TTij by �12, we

find that the conformal factor, in general, scales like �.

However, the physical �Kij
TT

�KTT
ij ¼ ��12�12Kij

TTK
TT
ij ¼

~��12Kij
TTK

TT
ij , and as � becomes larger and larger ~�

remains finite. This means that �Kij
TT

�KTT
ij remains finite.

Hence the velocity part of the gravitational wave energy

density remains bounded even though the corresponding

‘‘free’’ data blows up. On the other hand, the volume of

space becomes unboundedly large, because
ffiffiffi
�g

p ¼
�6 ffiffiffi

g
p ¼ �6 ~�6 ffiffiffi

g
p

blows up. Therefore the total gravita-

tional wave energy in a coordinate sphere becomes larger

and larger while the local energy density remains

bounded.
We see that the gravitational wave energy inside any

coordinate sphere increases like �6 while the surface area
increases like �4. This indicates that this family of initial
data will eventually contain horizons.
The numerics, when combined with the analytic calcu-

lations, show a coherent picture. If Kij
TTK

TT
ij has no zeros,

then the conformal factor blows up uniformly. If the

Kij
TTK

TT
ij is zero on a patch, we expect no blowup on this

patch, but, nevertheless, we continue to get the standard

blowup elsewhere. If Kij
TTK

TT
ij has an isolated zero, we will

get blowup at this point, but at a rate slower than in the rest
of the space. The rate of blowup is not universal in this

case, but depends on how quickly Kij
TTK

TT
ij moves away

from zero at that point. There seems to be a smooth
transition between the ‘slow blowup’ case and the ‘no
blowup’ case.
There are a number of obvious extensions to this

work. To find a real TT tensor, we need to abandon
spherical symmetry and, at the very least, work with
axially symmetric data. We would expect that if we

have a real Kij
TTK

TT
ij , which either vanishes at a point

or vanishes in a region, to get behavior similar to the
spherical model. We would be surprised if anything
could be proven analytically; we are going to have to
depend on numerical modeling. Work is in progress in
this direction.
It would be interesting to repeat this analysis in the

asymptotically flat case. We would probably want to
work with maximal initial data, i.e., K ¼ 0, and just
have a metric and a TT tensor as free data. It is clear
that one can change the metric so that the ADM mass
becomes unboundedly large and trapped surfaces appear
[14]. What happens if we blow up the extrinsic curva-
ture on a fixed background metric? Will we get the
same behavior? Preliminary investigations indicate that
we do: the ADM mass diverges and trapped surfaces
appear. We intend to investigate this further.
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FIG. 7 (color online). �̂ on S3.

FIG. 8 (color online). ln�= ln� vs �.
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