W CORA =

g/ﬁ%

Title

A cloud reservation system for big data applications

Authors

Marinescu, Dan C.;Paya, Ashkan;Morrison, John P.

Publication date

2017-03

Original Citation

Marinescu, D. C., Paya, A. and Morrison, J. P. (2017) 'A Cloud
Reservation System for Big Data Applications’, IEEE Transactions
on Parallel and Distributed Systems, 28(3), pp. 606-618. DOI:
10.1109/TPDS.2016.2594783

Type of publication

Article (peer-reviewed)

Link to publisher’s
version

https://ieeexplore.ieee.org/document/7523396 - 10.1109/
TPDS.2016.2594783

Rights

© 2017, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date

2024-04-25 03:55:38

[tem downloaded
from

https://hdl.handle.net/10468/8414

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://hdl.handle.net/10468/8414

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

A Cloud Reservation System for Big Data Applications

Dan C. Marinescu and Ashkan Paya
Computer Science Department, University of Central Florida, Orlando, F1. 32816, USA
Email: [dem, apaya|@cs.ucf.edu

John P. Morrison
Computer Science Department, University College Cork, Cork, Ireland.
Email: j.morrison@cs.ucc.ie

July 14, 2016

Abstract

Emerging Big Data applications increasingly require re-
sources beyond those available from a single server and
may be expressed as a complex workflow of many com-
ponents and dependency relationships - each component
potentially requiring its own specific, and perhaps spe-
cialized, resources for its execution. Efficiently support-
ing this type of Big Data application is a challenging re-
source management problem for existing cloud environ-
ments. In response, we propose a two-stage protocol for
solving this resource management problem. We exploit
spatial locality in the first stage by dynamically form-
ing rack-level coalitions of servers to execute a workflow
component. These coalitions only exist for the dura-
tion of the execution of their assigned component and
are subsequently disbanded, allowing their resources to
take part in future coalitions. The second stage creates
a package of these coalitions, designed to support all the
components in the complete workflow. To minimize the
communication and housekeeping overhead needed to
form this package of coalitions, the technique of combi-
natorial auctions is adapted from market-based resource
allocation. This technique has a considerably lower over-
head for resource aggregation than the traditional hier-
archically organized models. We analyze two strategies
for coalition formation: the first, history-based uses in-
formation from past auctions to pre-form coalitions in
anticipation of predicted demand; the second one is a
just-in-time that builds coalitions only when support for
specific workflow components is requested.

Index terms — Big Data applications, cloud resource
management, hierarchical organization, coalition forma-
tion, combinatorial auctions.

1 Introduction and Motivation

The vast number of diverse services offered by modern
Cloud Service Providers (CSPs) require an extensive in-

frastructure consisting of large farms of computing and
storage servers in a diverse eco-system supporting sev-
eral cloud delivery models including Software as a Ser-
vice (SaaS), Platform as a Service (PaaS), and Infras-
tructure as a Service (IaaS). Moreover, this diversity is
increasing with advances in technology:
(a). The cloud infrastructure is becoming more hetero-
geneous; servers with different configurations of multi-
core processors and attached co-processors such as GPUs
and FPGAs are expected to dominate the cloud comput-
ing landscape.
(b). The number of cloud services and cloud applications
is ever increasing. For example, in recent years AWS
has added new services, including Elastic Cache, and
DynamoDB. AWS also offers several Elastic Compute
Cloud (EC2) instance types including: C3 - compute-
optimized, R3 - memory-optimized; M3 - balanced; G2
- graphics with GPUs; 12 - storage-optimized. Each in-
stance type provides different sets of computer resources
measured by vCPUs. A vCPU is a hyper-thread of an
Intel Xeon core for C3, R3, M3, G2, and 12 instances.
Efficiently managing resources in a dynamic eco-
system is extremely challenging. Resource management
policies support reservation systems, admission control,
capacity allocation, load balancing, energy optimization,
and quality of service [19]. Existing mechanisms imple-
menting these policies are less effective than they could
be and are also not scalable because they require accu-
rate information about the state of individual servers.
Poor resource management can potentially result
in high economic and ecological costs. Cloud over-
provisioning, the current preferred mechanism for sup-
porting elasticity, demands high initial costs and leads
to a low system utilization; this strategy is not econom-
ically sustainable [7]. As a result, the average cloud
server utilization is in the 18-30% range. The power
consumption associated with over-provisioning has been
shown to be excessive and has a negative ecological im-
pact [3]. A 2010 survey [4] reported that idle or underuti-
lized servers contribute 11 million tones of unnecessary

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

CO4 emissions each year and that the total yearly cost
for the idle servers is $19 billion.

At this stage in the evolution of compute clouds, a
question needs to be posed regarding how far the limits
of composability of computing and communication sys-
tems can be pushed, while still being able to support the
required policies for resource management and effective
mechanisms implementing these policies. Hierarchical
organization of the cloud infrastructure is ubiquitous
[3]. In these systems, resource management decisions
require some knowledge of the system state, but the re-
liability of state information degrades as we move from
the servers to the upper levels of the system hierarchy.
Moreover, the value of this information is ephemeral,
if not acted upon immediately wrong decisions may be
taken, since the state may change rapidly. In contrast
to current approaches, market-oriented mechanisms for
resource management are scalable, self-regulating, and
are widely used in many areas of human activity.

We are currently working on a Big Data project in
condensed-matter physics [22]. The space, computa-
tion, and communication complexity of the tensor net-
work contraction algorithm at the heart of this project,
increases dramatically from one iteration to the next.
Only an application-centric resource allocation mecha-
nism, similar to the one discussed in this paper, can
minimize waste and support algorithm optimization by
balancing computing and communication costs.

The contributions of this paper. We address the
problem of efficiently determining the most appropriate
heterogeneous cloud resources to solve Big Data prob-
lems expressed as a workflow of service components. We
acknowledge the scalability issues associated with tradi-
tional, centralized, resource managers that rely on, of-
ten inaccurate, monitoring information to make resource
allocation decisions. In effect, the evolving complexity
of the cloud is increasingly falling short of the received
wisdom from control theory that tells us that accurate
state information and a tight feedback loop are the crit-
ical elements of an effective control system. In essence,
only local information, used locally, is reliable. In def-
erence to this principle, we focus on market-oriented re-
source allocation for the IaaS cloud delivery model. In
our system, coalitions of servers use local state infor-
mation to make local decisions, which have beneficial
emergent global properties. In previous work, we in-
vestigated the use of market-oriented mechanisms in a
large-scale computing system and reported that a simple
bidding scheme is much more effective than hierarchical
management based on monitoring [20]. We also investi-
gated the effectiveness of combinatorial auctions and in
[21] we reported a better than 80% success rate.

Market mechanisms address the tensions between lo-
cal and global objectives. These tensions manifest them-
selves in such questions as: How can we balance value
to the user with CSP profit? How can we dynamically
adapt the price for resources to the real-time demand?
The market-based approach gives us the tools to begin

addressing these, and other challenging, questions.

We recognize the need for a holistic solution to re-
source management and, in particular, that its mecha-
nisms should be complemented by specific characteris-
tics in the physical system organization. To this end,
we assume the warehouse scale computer organization
described in [3] and add constraints to support effec-
tive local decision-making. We introduce the concept
of server coalitions to execute workflow components and
two strategies for coalition formation. The first strategy
is history-based (HB) and uses historical information to
pre-form coalitions that have been used successfully in
the past. To our knowledge this is the first attempt to
address cloud resource management based on coalition
formation and combinatorial auctions where individual
servers learn from past behavior. The second, just-in-
time (JST) strategy, forms coalitions dynamically to
meet real-time demands. This paper focuses on rack-
level coalition formation; the subsequent aggregation of
these coalitions into packages to support the complete
workflow using combinatorial auctions is presented in
[21]. Formation of coalitions and of coalition package
are the two stages of a resource reservation system.

In passing we note that, distinct from the ideas pre-
sented here, the research literature makes reference to
coalition formation for cloud federations. Our coalitions
have a short life-span. They cease to exist once the ser-
vice component they are executing terminates. Our sys-
tem allows for free resources to choose to offer themselves
on the spot market, or to wait to join a coalition in prepa-
ration for the next auction. Long-term coalition stability
is critical for cloud federations, but is a non-issue for our
coalitions. In addition, locality is important for us, but
is a non-issue for cloud federations that use the Internet
to communicate. We focus on rack-level coalitions and
assert that communication across multiple hierarchical
layers of the cloud infrastructure is undesirable to avoid
increased latency and falling bandwidth.

The solution discussed in this paper involves concepts,
policies, and algorithms from several well-established ar-
eas of economics and computer science: coalition for-
mation and virtual organizations; auction theory and
practice; system organization and computer architec-
ture; and self-organization and self-management of com-
plex systems. Related work and the system model are
discussed in Sections 2 and 3, respectively. Algorithms
for rack-level coalition formations and the results of sim-
ulation experiments are presented in Sections 4 and 5,
respectively. Conclusions, future work, and the feasibil-
ity of self-organization are discussed in Section 6.

2 Related Work

Existing cloud resource management systems.
Cluster management systems such as Borg [36] and
Omega [33] are used by Google in its cloud infrastruc-
ture. Google supports containers allowing cloud users to

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

run their applications in a resource-isolated manner.

Kubernetes, is a system developed at Google for man-
aging containerized applications across a cluster of nodes
[14]. Docker uses cgroups to group processes running in
the container. Amazon and Google support the creation
of Docker-based containers [1, 9]. Twitter’s infrastruc-
ture is managed by Mesos [11]. A storage management
system used by VMware is described in [35].

A 12,000-server Google cluster, managed by the Borg
system, achieves aggregate CPU utilization of 25-35%
and aggregate memory utilization of 40% [8]. The ag-
gregate CPU utilization of systems using Mesos is consis-
tently below 20%, even though reservations reach up to
80% of system capacity. The Quasar system developed
at Stanford University improves resource utilization in
a 200-server EC2 cluster by 47% [8].

Existing systems can manage clusters with tens of
thousand servers but the challenges outlined in Section
1 persist and motivate the search for effective and scal-
able policies and mechanisms for cloud resource man-
agement [5, 6, 16, 23, 24, 28, 39]. To respond to the
needs of increasingly more complex applications consist-
ing of multiple phases and requiring workflow manage-
ment, CSPs are already offering workflow management
services such as SWM (Simple Workflow Management)
and EBS (Elastic Bean Stock) at AWS.

Market Mechanisms. In spite of all the advantages
of market mechanisms and the vast literature on market-
based resource allocation [18], the practical application
of these ideas is rarely seen [30]. For many years the
research continued to be focused on global optimization
of system-centric metrics such as mean average job com-
pletion time, throughput, and system utilization, while
now considerations regarding user preferences including
cost, security, and quality of service (QoS) have to be
added to the mix.

Our recent results confirm that the communication
complexity of hierarchical control with resource moni-
toring is more than two orders of magnitude higher than
that of a simple bidding scheme [20]. Hierarchical con-
trol is quite inefficient for a cloud consisting of multiple
Warehouse-Scale Computers (WSCs).

Coalition formation is a widely used method for
increasing the efficiency of resource utilization and for
providing convenient means to access these resources. In
recent years, the emergence of large-scale electronic mar-
kets, grid and cloud computing, sensor networks, and
robotics have amplified the interest in coalition forma-
tion and virtual organizations [15, 29, 31].

Different aspects of resource management in compu-
tational grids including load balancing, job-allocation,
and scheduling, as well as revenue sharing when agents
form coalitions or virtual organizations are discussed in
[10, 13, 25, 38]. Grid resource allocation is modeled as
cooperative games [13] or non-cooperative games [25].
Resource co-allocation is presented in [38].

There is little surprise that the interest in coalition
formation migrated in recent years from computational

grids to cloud resource management. The majority of
the on-going research in this area is focused on game-
theoretic aspects of coalition formation for cloud federa-
tions. A cloud federation is a set of CSPs collaborating to
provide services to a cloud user community. A stochastic
linear programing game model for coalition formation is
presented in [24]; the authors analyze the stability of
the coalition formation among cloud service providers
and show that resource and revenue sharing are deeply
intertwined. An optimal virtual machine (VM) provi-
sioning algorithm ensuring profit maximization for CSPs
is introduced in [6].

A cloud federation formation described as a hedonic
game and focused on the stability and the fairness of the
game is discussed in [23]. The profit maximization for
each federation is formulated as an integer programming
problem and the game is augmented with a preference
relation over the set of federations. The paper adopts a
payoff division based on the Banzhaf value. Currently,
individual CSPs may believe that they have a competi-
tive advantage due to the unique value of their services
and may not be motivated to disclose relevant informa-
tion about the inner working of their systems. Thus, the
formation of cloud federations seems uncertain, at least
in the immediate future.

A combinatorial coalition formation problem is de-
scribed in [15]. The paper assumes that a seller has
a price schedule for each item. The larger the quan-
tity requested, the lower is the price a buyer has to
pay for each item; thus, buyers can take advantage of
price discounts by forming coalitions. An algorithm to
find optimal coalition structures in cooperative games
by searching through a lattice like the one in Figure 1 is
described in [26]; in this algorithm the coalition struc-
tures are grouped according to so-called configurations
reflecting the size of the coalitions.

Auctions. Auctions are a widely used mechanism
for resource allocation with numerous applications such
as: the auctioning of airport take-off and landing slots,
spectrum licensing by the Federal Communication Com-
mission, and industrial procurement. An online auction
mechanism for resource allocation in computer clouds is
presented in [38].

Different phases of an application may require coali-
tions of servers with different types of resources so there
is the need to investigate combinatorial auctions where
packages of items are auctioned. A combinatorial auc-
tion is one where a buyer requires simultaneous access
to a package of goods. An auction allows the seller to
obtain the maximum available profit for the auctioned
goods; it is organized by an auctioneer for every request
of a consumer. A prozy is an intermediary who collects
individual bids from the buyers participating in an auc-
tion, computes the total cost of the package from the
bids, and communicates this price to the auctioneer. A
vast literature including [2, 37] covers multiple aspects
of combinatorial auctions including bidding incentives,
stability, equilibrium, algorithm testing, and algorithm

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

optimality.

Package bidding assumes that a seller offers N differ-
ent types of items. A buyer bids for packages of items.
A package is a vector of integers Z = {z1,22,...,2x}
which indicates the quantity of each item in the package;
the price of items is given by M = {mq,ma,..., myr}.

Package bidding can be traced back to generalized
Vickerey auctions based on the Vickerey-Clarke-Groves
mechanisms. In Vickerey auctions a bidder reports its
entire demand schedule. The auctioneer then selects the
allocation which maximizes the total value of the pack-
age and requires a bidder to pay the lowest bid it would
have made to win its portion of the final allocation, con-
sidering all other bids.

In a clock auction the auctioneer announces prices and
the bidders indicate the quantities they wish to buy at
the current price. When the demand for an item in-
creases so does its price, until there is no more excess
demand. On the other hand, when the offering exceeds
the demand, the price decreases. In a clock auction the
bidding agents see only aggregate information, the price
at a given time, and this eliminates collusive strategies
and interactions among bidding agents. The auction is
monotonic, the amounts auctioned decrease continually
and this guarantees that the auction eventually termi-
nates. When the price of a package can be computed as
the sum of products of prices and quantities it is said
that an auction benefits from linear pricing.

The clock-prozxy-auction is a hybrid auction based on
an iterative process with two phases [2]. A clock phase
is followed by a proxy round. During the proxy round
the bidders report the values they have submitted to
the proxy which in turn submit bids for the package
to the auctioneer. A bidder has a single opportunity
to report the quantity and the price to the proxy, bid
withdrawals are not allowed, and the bids are mutually
exclusive. The auctioneer then selects the winning bids
that maximize the seller’s profit.

Autonomic computing and self-organization.
The recognition of the challenges posed by the design
and implementation of large-scale systems lead to new
research areas closely related to self-organization such
as autonomic computing, proposed by IBM in 2003, and
organic computing. Over 8,000 papers, nearly 200 con-
ferences, and some 200 patents issued and more than
100 pending, are some of the results of a decade long
research effort in autonomic computing [12].

Small systems based on these ideas have been de-
scribed in the literature, but scalability of the solutions
proposed seems to be an insurmountable obstacle, as ev-
idenced by the fact that no such large-scale systems ex-
ist today. Indeed, this is an indication of the challenges
to a practical implementation of these concepts in sys-
tems with a very large number of components interacting
with each other in unpredictable ways and operating in
a dynamic environment with a large and diverse user
population.

Surely, an important reason for the slow progress of

solutions of this type is the absence of suitable techni-
cal definitions of these concepts, definitions that would
lead to practical design principles for self-organizing sys-
tems and to the quantitative evaluation of the results.
A powerful definition of self-organization was given by
Turing “the spontaneous emergence of global coherence
out of local interactions” [34]. However, this definition
contains no hint at these elusive design principles.

The design principle may not be explicit but at
least we have many real examples of self-organization.
Market-based ecosystems, for example, exhibit this type
of behavior. There, individuals with competing interests
and inherent conflicts interact to form a state of dynamic
equilibrium.

The coalitions and combinatorial auctions introduced
in this paper differ from those discussed in the grid and
cloud computing literature. Coalitions are based on co-
operative games and are short-lived. Combinatorial auc-
tions involve multiple buyers and sellers.

3 System Model

The demand for computing resources will increase for
Big Data applications and could be considerably larger
than a single server can provide. Only coalitions of
servers will be capable of offering such resources. For
optimum performance the members of a coalition should
communicate effectively thus, they must be be in close
proximity to each other. This constrains the coalition
formation protocol.

System architecture. We assume a hierarchical or-
ganization of the cloud infrastructure similar to the one
described in [3] in which a data center consists of mul-
tiple warehouse-scale computers (WSCs). Each WSC
has multiple cells, each cell has multiple racks and each
rack houses multiple servers. A WSC connects 50, 000
to 100, 000 servers and uses a hierarchy of networks.

The servers are housed in racks; typically, the 48
servers in a rack are connected by a 48 port Gigabit Eth-
ernet switch. The switch has two to eight up-links which
go to higher level switches in the network hierarchy [3].
The bandwidth for communicating outside the rack is
much smaller than the one within the rack; this has im-
portant implications for resource management policies
and becomes increasingly difficult to address in systems
with a large number of servers.

Model assumptions. We assume that the servers
in a rack have identical processors with the same num-
ber of cores, the same amount of main storage, cache,
and secondary storage and an identical configuration of
GPUs, FPGAs, or other hardware. We also assume that
all servers in a rack support the same type of services.
Our WSC is heterogeneous, the servers in different racks
may have different architectures and configurations. The
same service may be offered by multiple racks, possibly
using different hardware; for example, a rack could of-
fer a service using GPUs, whereas, another may offer the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

same service using FPGA. This heterogeneity in the ser-
vice offering introduces an element of choice making it
possible to match the user requirements and constraints
with the available resources.

The system we envision supports both reservation and
spot resource allocation. The reservation system has two
stages: (A) coalition formation, and (B) combinatorial
auctions. Spot allocation is supported by a bidding pro-
cess for each type of resource. Time is quantified in
allocation slots and reservations are made as a result of
auctions carried out at the beginning of each slot; for
example, an allocation slot could be one hour.

4 The Reservation System

Coalition formation as a cooperative game. Coali-
tion formation can be modeled as a cooperative game
where the goal of all servers is to maximize the reward
for the CSP, rather than being selfish and competing
with one another. Here, coalitions are formed in all racks
of a WSC before an auction. We discuss the formation
in one rack with N servers: {s1,s2,...,Sn5}.

A coalition C; is a non-empty subset of N servers. A
coalition structure S = {Cy,Caq,...,C,,} is a set of m
coalitions satisfying the following conditions:

| U;il(cl |:N and Z#] = Clﬂ(C] =

Figure 1 shows a lattice representation of the coali-
tion structures for a set of four servers si,so,s3 and
s4. This lattice has four levels, L1, L2, L3 and L4 con-
taining the coalition structures with 1,2,3 and 4 coali-
tions, respectively. In general, the level k of a lattice
contains all coalition structures with k coalitions; in
our example at level L1 there is one coalition structure
{s1, 82, 53,84} and at L2 there are groups of two coali-
tions, e.g., {s1},{s2,s3,s4}. The number of coalitions
structures at level k£ for a population of N servers is
given by the Stirling Number of the Second Kind:

S(N, k) = 4 SE o (=1 (§) (k — i)™,

In the case illustrated in Figure 1, N = 4 and the num-
ber of coalition structures at levels L1 — L4 are 1,7,6, 1,
respectively.! The total number of coalition structures
with N servers is called the Bell number?

By =330 SN,) = S3l0 1 Zimo(=1)' () (k =)™
The total number of possible combinations of coali-
tions structures increases exponentially with the number
of servers. Searching for the optimal coalition structure
C is computationally challenging due to the size of the
search space, e.g. , for n=11 and n=12 there are 115,975
and respectively 678,570 possible combinations.
History-based rack-level coalition formation.
History-based (HB) coalition formation is based on the

'For N = 5 and N = 6 the Stirling Numbers of the Second
Kind are respectively 1,15,25,10,1 and 1, 31,90, 65, 15, 1.

2The Bell numbers By, (1, 1, 2, 5, 15, 52, 203, 877, 4140,
21147, 115975, 678570, ...) describe the number of ways a set with
N elements can be partitioned into disjoint, non-empty subsets.

learning process shown in Figure 2. In contrast to the
cooperative game, it would appear to be more natural
to build coalitions based on current user demands and
we call this strategy just-in-time (JST). In Section 5 we
compare these two strategies.

Recall from Section 3 that in our model all servers in
a rack have the same architecture and identical config-
uration. This realistic assumption considerably simpli-
fies the complexity of the search for an optimal coali-
tion structure as the servers within a rack are indistin-
guishable from one another. We have a system with two
stages and feedback, see Figure 2. In the second stage
the coalitions created during the first stage are included
in successfully auctioned packages thus, we can deter-
mine precisely the value of all coalitions structures.

Coalitions have a short lifetime; a coalition partici-
pates in an auction and, if successful, the coalition per-
sists for the duration of the contract. Servers of an un-
successful coalition are free to participate in the coali-
tion formation process in the next allocation slot or to
offer their services on the spot market during the cur-
rent allocation spot. The revenue earned by a coalition
is evenly distributed among its members. The income
from a package of services supported by several coali-
tions is divided according to the resources supplied by
each one of them.

The coalition formation process involves four steps:
(1) Selection of a rack leader; (2) Ranking of coalitions
most likely to succeed based on historic performance
data; (3) Assignment of available servers to coalitions ac-
cording to their bids; and (4) Sharing information about
successful coalitions after an auction.

The role of rack leader is passed from one server
to the next to balance the load and to ensure fault-
tolerance. The rack leader may or may not be in-
cluded in any coalition. Selection of a rack leader
can be done automatically to avoid a communication-
intensive election process. For example, when the server
IDs are {1,2,...,4,...,S5} then in slot k the role of
rack leader can be automatically assigned to the server
with ID 7 = k mod S. To further reduce communi-
cation complexity all servers maintain a list of previ-
ously successful coalitions. The list is ordered accord-
ing to the revenues brought in by coalitions with the
same number of servers. In case of a tie the coali-
tion with the largest number of servers is placed be-
fore the others. For example, such a list could be
R = {6(75),11(40),8(43),...,2(97),1(198)} meaning
that historic data show that coalitions of 6 servers were
successful 75 times and brought the largest revenue,
while coalitions of 1 server were successful 198 times and
brought the least amount of revenue. The list could be
extended to include the most likely combinations of suc-
cessful coalitions.

At the beginning of an allocation slot the rack leader
receives bids from the N, servers which are not members
of an active coalition and then chooses the coalition set
to compete for service packages in the current allocation

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

L4 {suHs2HssHsa)

L3 | {siHs2Hs3,5a} {s1HssHsz,5a} {s1HsaHs2,53}

{s2Hs3Ks1,54} {s2HsaHs1,53} {ssHsaHs1,52}

L2 {s2Hs1,53,54} | | {s3Hs1,52,54}

{s1Hs2,53,54}

{saHs1,52,53}

{s1,5aHs2,53} | | {s1,52}s3,54} {s1,53Hs2,54}

L1 \%

Figure 1: A lattice with four levels L1, L2, .3 and L4 shows the coalition structures for a set of 4 servers, s1, s9, S3
and s4. The number of coalitions in a coalition structure at level Lj is equal to k.

Requests for service
Coalition formation
Coalition values from previous auctions

Figure 2: HB - feedback about past coalitions deter-
mines the current coalition structures.

Successful
bids

Combinatorial auctions

slot. For example, if N, = 27 this set could be C =
{6,11,8,2}, a subset of R. The leader ranks the bids
based on the revenue reported by each bidder and assigns
the first 6 servers to the first coalition, the next 11 to the
second coalition, and so on. Finally, after the auction,
the leader broadcasts the information about successful
coalitions, e.g., {6, 8} and verifies that the leader for the
next allocation slot is ready to assume its role.

Just-in-time (JST) coalition formation. The ser-
vice requests are dispatched to a WSC where they are
analyzed to determine the service type and the desired
coalition size for each. This information is then broad-
cast to the racks of the WSC where an attempt is made
to dynamically create appropriate coalitions. The algo-
rithm for coalition formation is similar to the one for
the HB strategy. The only difference is that the coali-
tion sizes are now the ones demanded by the service
request rather than those determined by past activity.
Once the coalitions are formed, all racks of the WSC
independently bid for all service requests. An auction
takes place and the racks hosting successful coalitions
are informed.

The combinatorial auction protocol. The proto-
col is based on the clock algorithm discussed in Section
2. The auctioneer announces prices and bidders indi-
cate the quantities they wish to buy at the current price.
Then the auctioneer adjusts the prices based on the cur-
rent demand. In our simulation, after coalition forma-
tion, coalitions start bidding on the service request and

the auctioneer analyzes these bids and prioritizes them
based on the prices they offered.

Several criteria drive the decisions of the auctioneer
when selecting the coalitions for the packages required
by the workflow. These decisions are based on the price
discovered during the clock phase. Our implementation
uses a hierarchical decision making process. The deci-
sion factors in priority order are: the coalition size - the
larger the coalition size, the higher the priority; the re-
quested service duration - the longest duration has the
highest priority.; the rack load - the lower the rack load,
the higher the priority; and finally cell load - the lower
the cell load, the higher the priority. The rack and cell
load refer to the load allocated to the servers in the rack
and cell, respectively. If two coalitions with the same
size and same duration, but with different rack load lev-
els bid for a request, the priority is given to the coalition
from the rack with the lower load. This decision process
aims to balance the load on racks and cells.

Next section reports on experiments to compare JST
and HB coalition formation algorithms.

5 Simulation Experiments

Motivation. The systems we are considering have sev-
eral million components and, at this scale, numerical
simulation is the only realistic investigative approach.
Analytical modeling is not feasible due to the complexity
of the interactions among the large number of compo-
nents. We acknowledge the limitations of our approach
and concede that empirical results produced on a testbed
configuration may, or may not, hold true at scale. As
pointed out in [3] “..the WSCs are a new class of large-
scale machines driven by new and rapidly evolving sets
of workloads. The size alone makes them difficult to
experiment with, or to simulate effectively...”.
Simulation assumptions and system model.
Several simplifications are necessary to simulate a cloud
infrastructure with several WSCs. (1) Auctions are or-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE
Transactions on Parallel and Distributed Systems

12 - : : : 12 ‘ ‘ ‘ ‘ ‘

Number of Requested Coalitions
o

Number of Requested Coalitions
o

— Time — Time

<
o
S
<
o
S

Number of Successful Coalitions
o

Number of Successful Coalitions
3]

— Time — Time

() (d)

o
©
T
l
|
I
L
o
©
T
T
I
l
l
L

Success Ratio
o o o o
o2 2 = @
|
T L L L
Success Ratio
o o o o
o 2 N @
T . ; "

o
~
T
;
N
~
T
T

o o
D w
T T
T T
o o
noow
T T
T T

o
T
T
o
T
T

o
o
o

o

20 30 40 50 20 30 40 50
— Time — Time

(e) (f)

o
o

Figure 3: Time series of the number of coalitions requested, successful coalitions, and the success ratio at 20%
initial system load for all service types. 95% confidence intervals are shown. Strategies for coalition formation:
HB (a)-requested (c)-successful, and (e)-success ratio; JST (b)-requested, (d)-successful, and (f)-success ratio.

ganized periodically and the time between two consec- to the number of allocation slots. (2) We measure the
utive auction is called an allocation slot. We require a communication complexity of the two reservation sys-
service request to specify the service duration as an in- tems discussed, HB and JST, by the number of mes-
teger number of slots. The number of auctions is equal sages they require and avoid a detailed timing analysis

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE
Transactions on Parallel and Distributed Systems

4 4
12210 ‘ ‘ ‘ ‘ ‘ 10219 ‘ ‘ ‘ ‘ ‘
g,ﬁf:’ ”,, Tl T 1+ ””"” TtT T ”” ,,””””,,” B
10f o T
2 T 10T 2 °f |
] . . - S
£ i = 7 i
3 8 f 3
S S
3 3 6 i
G F
[o
3 6 N g 5 N
[o] [o)
o o
s 5 4] H
2 a4 4 g
€ £ 3 il
5 5
z =z
2 4
2 4
11 i
0 0
0 10 20 30 40 50 0 10 20 30 40 50
— Time — Time
(a) (b)
4 4
10 x 10 9 x 10
of — sl []
o 8r 1 o 7t B i
] S N
= 70 H =
S P EX]
o - i o |7
S 6 Il 3
2 25f 0]
g 5 i g
@ @ 4] —
S 4 it k<
8 8 3] i
E 3f H €
5 5
b4 z | i
2 | 2
1H H 17 N
0 0
0 10 20 30 40 50 0 10 20 30 40 50
- Time — Time

() (d)

o
©
T
“
—
o
©
T
|
l
l
L

Success Ratio

o © © o o o o

p_® & 9 9 - @

{

|

T T T T T T :
Success Ratio

© o o © o o o

p_® & 9 9 3 @

{
T : : ! " A .

o
T
T
o
T
T

o
o
o

o

20 30 40 50 20 30 40 50
— Time — Time

(e) (f)

o
o

Figure 4: Time series of the number of coalitions requested, successful coalitions, and the success ratio at 80%
initial system load for all service types. 95% confidence intervals are shown. Strategies for coalition formation:
HB (a)-requested (c)-successful, and (e)-success ratio; JST (b)-requested, (d)-successful, and (f)-success ratio.

of the communication delays, which would require mod- lead to more accurate predictions of the size of success-
eling contention at different levels of the network hier- ful coalitions for each service type thus, we expect the
archy. (3) Lastly, we simulate the system for only 500 results to improve in time for the HB strategy.

time slots for practical reasons. A longer history would We found some data in the literature to guide our

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE
Transactions on Parallel and Distributed Systems

Table 1: Statistical results for the two coalition formation strategies, history-based (HB) and just-in-time (JST),
for two different initial loads, 20% and 80%. The mean and the variance of the number of coalitions requested
and the number of successful coalitions chosen during the auctions, and the success ratio (SR). Results are shown
for: (Left) all types of service requests; (Right) two randomly chosen types.

Method Initial Stats Requested | Successful | SR ||| Requested | Successful | SR two

load all all all two types | two types | types

HB 20% Mean/ || 93,648.96/ | 64,805.99/ | 68% ||| 11,991.71/ | 7,124.12/ 60%
Std 7,691.05 10,134.88 | 0.09 1.076.32 1,101.33 0.09

80% Mean ||| 79,882.37/ | 54,192.35/ | 66% || 10,421.61/ | 5,957.67/ 57%

Std 6,540.43 9,786.67 | 0.09 1,037.72 1,149.43 0.08

JST 20% Mean/ ||| 83,194.86/ | 55,565.27/ | 66% || 10,689.07/ | 60,68.37/ 57%
Std 8445.98 9787.62 0.09 881.93 1,035.98 0.09

80% Mean 7457212/ | 51381.41/ | 67% 9672.03/ | 5,690.32/ 59%

Std 6602.59 9699.45 0.09 924.87 1,128.16 0.09

Table 2: Communication complexity of HB and JST for all service types and two different system initial loads,

20% and 80%. Number of messages: Nr - at rack level;

Nt - at all levels; SRr - per service request at rack level;

SRt -per service request at all levels; per successful coalition formation at: SCFr- rack level and SCFt - all levels.

| Method [Load | Nr Nt | SRr | SRt || SCFr | SCFt |
HB | 20% [18,823,492 [46,824,480 [201 [500 [290 | 722
80% | 6,299,012 | 19,970,590 || 79 | 250 | 116 | 368
JST | 20% | 8,129,402 | 20,798,714 | 98 | 250 | 146 | 374
80% | 14,241,563 | 37,286,059 || 191 | 500 | 277 | 725

choice of the system configuration [3] and where no such
guidance was available, we used sensible choices to de-
scribe the workload. These choices included: the num-
ber of coalitions in each package of services in a client’s
request, the number of different service types provided
by the system, service intensity measured by the num-
ber of vCPU requested, and service duration. A service
type can refer to a specific service, e.g., Map-Reduce,
or a generic type, e.g., CPU-intensive. We used uni-
form distributions for all random variables. For exam-
ple, the number of coalitions in a package is uniformly
distributed in the range 5-25. Service requests are gen-
erated continually and all service requests, arriving af-
ter an auction has begun, waited to participate in the
next auction. A coalition request must specify the ser-
vice type, the service duration, and the service intensity
expressed as the number of vCPU. The last parameter
allowed us to determine a sensible coalition size.

The simulated system consists of 4 WSC, each one
with 25 cells; each cell has 100 racks and each rack has
40 servers. The server capacity, measured by the number
of vCPU, is uniformly distributed in the range of 10 - 50
vCPU. The system provides 20 different service types.
A request for service specifies several coalitions and for

each one the service types: service intensity, and service
duration. The service intensity is uniformly distributed
in the range 10-500 vCPU and the service duration is
uniformly distributed in the range 5-25 allocation slots.
A service request unsatisfied in an allocation slot partic-
ipates in the auction organized in the next slot.

Simulation results. Figures 3 and 4 display time
series of the number of coalitions requested, coalitions
successful during the auctions, as well as, the success
ratio for two initial system loads, 20% and 80%, respec-
tively, when all services are taken into account. It is
rather difficult to control the average system load and
we only report the initial system load. The duration of
the simulation is 500 allocation slots and each bin shows
the average over 10 of them. The mean and the variance
of the three simulation results, the numbers of coalitions
requested and coalitions formed, and the success ratios
are summarized in the left columns of Table 1.

The average number of successful coalitions decreases
when the load increases, about 16% for HB and about
7% for JST. This difference is not reflected in the success
ratios of the two strategies; as we shall see next, it is
most likely a sign that HB better reflects the internal
state of the system than JST. The coalition formation

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

x 10"
:

1.19H

1.18(

Number of Successful Coalitions

1.16H

L
8 10 12 20 22 24 26

14 16 18
Number of Slots

(a)

x10*
T

Number of Successful Coalitions
R

8 10 12 20 22 24 26

14 16 18
Number of Slots

()

x10*
11—

1.091 R

Number of Successful Coalitions
5
8

1.06 [

1.05

L
8 10 12 20 22 24 26

14 16 18
Number of Slots

(b)

10200

10100

10000 -

9900 [-|

9800

9700 [-|

Number of Successful Coalitions

9600 |

9500 = = = = = u o u
8 10 12 14 16 18 20 22 24 26
Number of Slots

(d)

Figure 5: Histograms of coalition life-time. Average initial load 20% of system capacity: (a) HB; (b) JST. Average

initial load 80% of system capacity: (c¢) HB; (d) JST.

success ratio varies only slightly with the load. When the
initial average system load increases from about 20% to
80% the success ratio decreases from 68% to 66% for
HB and increases from 66% to 67% for JST. The results
show that a resource utilization of 80% of the system
capacity can be supported, much higher than the average
one reported for existing systems; they also indicate that
both market-based strategies are robust.

Table 2 shows the communication complexity at the
low and high average initial system load for the two
strategies HB and JST. We differentiate between mes-
sages exchanged at the rack level from those at higher
levels of the network hierarchy (cell and WSC), where
contention for network access is more intense. As ex-
pected, the total number of messages for the HB strat-
egy decreases significantly from about 47 million to 20
million, as the load increases, because fewer servers are
available for coalition formation. The situation is re-
versed for JST, we notice a sharp increase from about
21 to 37 million. This is expected because the coali-

tion formation process is driven by the external service
requests. Note that in the case of JST, 70% of all mes-
sages exchanged at high load are at the cell and WSC
level, where contention for communication bandwidth is
considerably higher.

In HB, the coalition formation process is driven by the
internal state: only servers with available capacity par-
ticipate in coalition formation and subsequently in the
combinatorial auctions, while in case of JST the process
is driven by external factors. At low load, the number
of rack-level messages per either service request, or suc-
cessful coalition formation, is almost twice as large for
HB than for JST, e.g., 201 versus 98 and 290 versus 146,
respectively, see Table 2. At high load the situation is
reversed 79 versus 191 and 116 versus 277.

The same observation applies to the total number of
messages per service request and per successful coalition
formation. At low load the ratios for HB and JST are
500 versus 250 and 722 versus 374, respectively. At high
load the ratios are 250 versus 500 and 368 versus 725.

10

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

Success Ratio For Two Service Types
0.9 T T T

08l T T, T - [+
0.7t T
0.6/

0.57|

Success Ratio

0.4r|

0.3r|

0.2

0.1H

— Time

(a)

Success Ratio For Two Service Types
T T T

0.9f
osl [T
0.7t
0.6t

0.5H

Success Ratio

0.4

0.3

0.2r|

0.1r

— Time

()

Success Ratio For Two Service Types
1 T T T

09r
0.8 TTt.I1 -+ T _ .
0.7:7
0.6

0.57|

Success Ratio

0.4r|

0.3

0.2r|

0.17

0

0 10 20 30 40 50
— Time

(b)

Success Ratio For Two Service Types
T T T

0.9F
08 T T 17777
o7t Tl T
06l 1]

0.5H

Success Ratio

0.4

0.3

0.2r|

0.1r

— Time

(d)

Figure 6: Time series of the success ratio for two randomly selected service types with 95% confidence intervals.
Initial load: (Top) 20%; (Bottom) 80%. Two strategies for coalition formation: (a) and (c¢) HB; (b) and (d) JST.

Figures 5 presents the life-time of coalitions for all
service requests when the initial load is 20% and 80%
of system capacity, respectively, for the HB and JST
reservation systems. This life-time of a successful coali-
tion reflects the duration of the corresponding service
request.

Lastly, we randomly selected two particular types of
service and investigated their behavior. The statistical
results are summarized on the right side of Table 1 and
show that indeed the number of requests, as well as, the
number of successful coalitions is about one tenth of the
total number of the corresponding entries for all service
requests. Figure 6 shows time series of the success ratios
for the two randomly selected service types.

The big picture. While we can model in great detail
the operation of an individual server, the interactions
among the servers of a WSC is what gives the cloud in-
frastructure its flexibility and power. The model should
also describe the interactions of the infrastructure with
an environment consisting of a large population of users,
rather than describing the infrastructure in isolation.

11

A realistic alternative is to develop high-level rather
than detailed models of the cloud infrastructure, con-
duct simulation experiments using these models, and
draw qualitative conclusions from the simulation results.
Such models must be carefully crafted and avoid details
that unnecessarily complicate the simulation, or make it
infeasible. The goal should be to identify trends and de-
termine the effect of different model parameters to gain
insights based on a qualitative, rather than a quantita-
tive analysis of the simulation results.

The question we discuss now is if the system organi-
zation and the algorithm we propose have the potential
to outperform existing solutions for cloud resource man-
agement. The three most important criteria for compar-
ison are scalability, performance under heavy load, and
the ability to supply resource packages tailored to spe-
cific user demands. The results presented in this section
show that our algorithms and protocols are scalable well
beyond the 12,000 Google cluster managed by Borg or
the 200 cluster managed by Quasar. In [20] and in [21]
we show that a simple bidding scheme scales well for

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

multiple WSCs and outperforms a hierarchical manage-
ment scheme.

The results in Table 1 and the time series presented
in Figures 3 and 4 show that under heavy load the sys-
tem performance is similar to the one under light load,
while typical results reported in the literature show av-
erage system utilization in the 20% range. The com-
munication complexity thus, the overhead for resource
management, decreases under heavy load and this at-
tests to the virtues of the HB strategy, see Table 2. The
energy efficiency measured as the number of operations
per Watt is dramatically better for the system we pro-
pose. Even under heavy load the system we propose is
application-centric and able to offer precisely the amount
of resources needed by the application, for the desired
period of time, as one can see from Figures 4 and 5.

6 Conclusions and Future Work

In this paper we focus on a particular class of cloud
applications that require groups of autonomous servers
to work in concert. Such Big Data applications typi-
cally have multiple phases and often each phase requires
servers with different amounts of cache, memory, sec-
ondary storage, CPUs, and attached processors such as
GPUs. We assumed the hierarchical cloud organization
of today, and most likely that of the future, is the WSCs.
We also assume that all servers in a rack are indistin-
guishable from one another, but possibly different in
each rack. The reservation system we propose is de-
signed primarily for the TaaS cloud delivery model, but
it could be extended to the PaaS delivery model.

We stressed the need to support spatial locality as the
communication bandwidth decreases and the communi-
cation latency increases due to more intense contention
at the higher levels of the network hierarchy. We also
wish to allow applications to run uninterrupted until
they complete their execution. This temporal locality
is beneficial to the users, it reduces the response time; it
is also beneficial to CSPs as it avoids the overhead as-
sociated with saving the application state before check-
pointing and restoring the state when restarting it later.

These considerations led us to propose a market-
oriented reservation system based on coalition forma-
tion and combinatorial auctions. Rack-level coalitions
provide the resources required by such applications and
combinatorial auctions allow the acquisition of packages
of resources; a package consists of several coalitions.
Spatial locality is guaranteed by the coalition formation
algorithms and temporal locality is guaranteed by com-
binatorial auctions when services are auctioned for any
number of consecutive allocation slots.

We report on a comparative analysis of two strategies
for coalition formation: History-based and Just-in-time.
They perform equally well in terms of success ratios at
both low and high system load. We choose to measure
the overhead for the implementation of both strategies

12

with respect to the communication complexity. Our re-
sults show that at high system load the History-based
strategy performs much better than the Just-in-time one
and we attribute this difference to the fact that decisions
of the History-based strategy are based on precise knowl-
edge of the internal state of the autonomous servers.

We conducted our experiments on a simple system
model. We will replicate our experiments for richer sys-
tem models, which address some of the concerns dis-
cussed above. We will also develop more sophisticated
learning algorithms and conduct experiments for longer
periods of simulated time to convince ourselves that the
system improves over time. As learning is specific to a
system and its associated environment, it seems rather
improbable that a universally suitable technical defini-
tion, that can lead to practical design principles for de-
veloping self-organizing systems will emerge soon; how-
ever, such a definition would prove to be invaluable.

We are motivated to further explore the principles de-
scribed in this paper. It is reasonable to postulate the
existence of more sophisticated learning algorithms to
discover usage patterns at different times of the day,
month and year, rather than averaging over past be-
havior. Moreover, there is no impediment in our work
to-date, apart from the desire to simplify the initial in-
vestigation, to making coalitions persistent and long-
lived. Coalition stability, which could be improved by
enhanced information about individual users and ap-
plications, would offer the opportunity to further lower
communication complexity and this alone merits further
investigation.

The results reported in Section 5 cause us to reflect on
the question of the feasibility of cloud self-organization.
We now examine the current state of affairs and present
some arguments for and against cloud self-organization,
rather than attempting a definite answer to this ques-
tion. The results of our experiments are encouraging.
They show that the systems can evolve through local de-
cision making only, to an efficient equilibrium, especially
when the system is heavily loaded. Moreover, the sys-
tem seems capable of responding well to external stim-
uli. But self-organization requires a long history for the
formation of stable structures, while the coalition struc-
tures, we create here, are short-lived.

The reservation system, presented here, makes refer-
ence to only some of the policies of a cloud resource man-
agement system. For example, it does not address the
question of error recovery nor admission control mecha-
nism, which, in theory, could be extended to enforce a
safety margin by keeping a set of resources on standby
for use in the case of server failures.

While over-provisioning as implemented in today’s
clouds is wasteful, it supports elasticity and allows
users to scale their resource consumption dynamically.
Market-oriented mechanisms, and in particular auctions,
require consumers to have a clear idea of the type of re-
sources they are bidding for, and the quantities they
need. This is rarely the case in practice; this lack of

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

Transactions on Parallel and Distributed Systems

precise information, is one of the challenges faced by
market-based resource allocation [30].

This problem can be overcome by stipulating that un-
used resources can be offered on a secondary market, or
on “spot” markets, but this solution is not without prob-
lems of its own. It complicates the system and encour-
ages the bidders to be greedy. As we can see, simplicity
and elegance are affected as we try to optimize resource
allocation.

Lastly, reservations appear to contradict the basic
tenets of self-organization and autonomic computing
which predicate that a system should react to environ-
ment changes. No adaptive system can have an instanta-
neous reaction to a rapidly changing environment. This
may be one of the reasons why practical application
of self-organization principles has not been successful
in the design of large-scale system. The study of self-
organization in nature shows that it takes time.

Learning from the past allows a system to create
the structures it needs and if the interaction with the
environment is an ergodic process, then perhaps self-
organization could address a subset of the limitations
discussed in Section 1.

Acknowledgments. The authors are grateful for the
constructive comments of anonymous reviewers. The re-
search of Dan Marinescu and of John Morrison is par-
tially supported by the NSF CCR grant 1525943 “Is the
Simulation of Quantum Many-Body Systems Feasible on
the Cloud?” and by the H2020 EU project “CloudLight-
ning,” respectively.

References

[1] Amazon Docker. http://aws.amazon.com/docker,
accessed May 2015.

[2] L. Ausubel, P. Cramton, and P. Milgrom. “The
clock-proxy auction: a practical combinatorial auc-
tion design.” Chapter 5, in Combinatorial Auctions,
P. Cramton, Y. Shoham, and R. Steinberg, Eds.
MIT Press, 2006.

[3] L. A. Barossso, J. Clidaras, and U.Ho6zle. The
Datacenter as a Computer; an Introduction to the
Design of Warehouse-Scale Machines., Morgan &
Claypool, 2013.

[4] M. Blackburn and A. Hawkins. “Unused server
survey results analysis.” www.thegreengrid.org/
media/WhitePapers/Unused %20Server%20Study
_WP_101910_v1. ashx?lang=en (Accessed on De-
cember 6, 2013).

[5] D. Bruneo. “A stochastic model to investigate data
center performance and QoS in ITAAS cloud comput-
ing systems.” IEEE Trans. Parallel & Distributed
Systems, 25(3):560-569, 2014.

13

[13] S. U. Khan and I. Ahmad.

[14] Kubernets.

[6] S. Chaisiri, B. Lee, and D. Niyato. “Optimization
of resource provisioning cost in cloud computing.”
IEEE Trans. Services Comp., 5(2):164-177, 2012.

[7] V. Chang, G. Wills, and D. De Roure. “A review of
cloud business models and sustainability.” Proc. 3rd
Int. Conf. on Cloud Computing, pp. 43-50, 2010.

[8] C. Delimitrou and C. Kozyrakis. “Quasar:
Resource-efficient and QoS-aware cluster manage-
ment.” Proc. ASPLOS14, pp. 127-144, 2014.

[9] Google Docker. https://cloud.google.com/container-
engine, accessed May 2015.

[10] L. He and T. R. Ioerger. “Forming resource-sharing

coalitions: a distributed resource allocation mech-
anism for self-interested agents in computational
grids.” Proc. Symp. Appl. Comp., pp. 84-91, 2005.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,

A.D. Joseph, R. Katz, S. Shenker, and I. Stoica.
“Mesos: A platform for fine-grained resource shar-
ing in the data center.” Proc. 8th USENIX Symp.
on Networked Systems Design and Implementation,
pp- 295-308 2011.

[12] J. O. Kephart. “Autonomic computing, the first

decade.” Int. Conf. on Autonomic Computing,
http://www3.cis. fiu.edu/conferences/icac2011/files/
Keynote_Kephart.pdf, 201, accessed May 2015.

“A cooperative game
theoretical technique for joint optimization of en-
ergy consumption and response time in computa-
tional grids.” IEFEE Trans. Parallel & Distributed
Systems, 20(3): 346-360, 2009.

https://cloud.google.com/container-
engine/docs/tutorials, accessed May 2015.

[15] C. Li and K. Sycara. “Algorithm for combinatorial

coalition formation and payoff division in an elec-
tronic marketplace.” Proc. AAMAS02, pp. 120-
127, 2002.

[16] H. Li, C. Wu, Z. Li, and F. Lau. “Profit-maximizing

virtual machine trading in a federation of selfish
clouds.” Proc. INFOCOM, pp. 2529, 2013.

[17] H C. Lim, S. Babu, J. S. Chase, and S. S. Parekh.

“Automated control in cloud computing: challenges
and opportunities.” Proc. First Workshop on Auto-
mated Control for Datacenters and Clouds,, ACM
Press, pp. 13-18, 2009.

[18] D. C. Marinescu, H. J. Siegel, and J. P. Morrison.

“Options and commodity markets for computing re-
sources,” In Market Oriented Grid and Utility Com-
puting, R. Buyya and K. Bubendorf, Eds., Wiley,
ISBN: 9780470287682, pp. 89—120, 2009.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2594783, IEEE

[19]

[20]

[21]

[31]

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Parallel and Distributed Systems

D. C. Marinescu. Cloud Computing; Theory and
Practice. Morgan Kaufmann, New York, 2013.

D. C. Marinescu, A. Paya, J. P. Morrison, and P.
Healy. “Distributed hierarchical control versus an
economic model for cloud resource management.”

http://arXiv:.org/pdf/1503.01061.pdf, 2015.

D. C. Marinescu, A. Paya, and J. P. Mor-
rison. “Coalition formation and combinato-
rial auctions; applications to self-organization
and self-management in utility computing.”

http://arXiv:.org/pdf/1406.7487.pdf, 2015.

D. C. Marinescu. Complex Systems and Clouds:
A Self-organization and Self-management Perspec-
tive. Morgan Kaufmann, New York, 2016.

L.Mashayekhy, M.M.Nejad, and D.Grosu. “Cloud
federations in the sky: formation game and mecha-
nisms.” IEEE Trans. on Cloud Computing, 2015.

D.Niyato, A.Vasilakos, and Z.Kun. “Resource and
revenue sharing with coalition formation of cloud
providers: Game theoretic approach.” Proc. Symp.
Cluster, Cloud, and Grid Comp. pp. 215224, 2011.

S. Penmatsa and A. T. Chronopoulos. “Price-
based user-optimal job allocation scheme for grid
systems.” Proc IPDPS, pp. 8-16, April 2006.

T. Rahwan, S. D. Ramchurn, N. R. Jennings, and
A. Giovannucci. “An anytime algorithm for optimal
coalition structure generation.” Journal of Artifi-
ctal Intelligence Research, 34:521-567, 2009.

S.i D. Ramchurn, M. Polukarov, A. Farinelli, C.
Truong, and N. R. Jenkings. “Coalition formation
with spatial and temporal constraints.” Proc. AA-
MAS 2010), pp. 1181-1188 , 2010.

N. Samaan. “A novel economic sharing model in a
federation of selfish cloud providers.” IEEE Trans.
Parallel & Distributed Systems, 25(1):12-21, 2014.

S. Sen and P. S. Dutta. “Searching for optimal
coalition structures.” Proc. ICMAS 2000 - 4th Int.
Conf on Multiagent Systems, pp. 287-295, 2000.

J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung,
A. C. Snoeren, A. Vahdat, A., and B. Chun. “Why
markets could (but don’t currently) solve resource
allocation problems in systems.” Proc. 10th Conf.
on Hot Topics in Operating Systems, 2005.

M. Sims, C. V. Goldman, and V. Lesser. “Self-
organization through bottom-up coalition forma-
tion.” Proc. Int. Conf. on Autonomous Agents and

Multi Agent Systems, pp. 867-874, 2003.

[32] B. Snyder. “Server virtualization has stalled,
despite the hype.” hitp://www.infoworld.com/
print/146901, accessed on December 2013.

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
and J. Wilkes. “Omega: flexible, scalable schedulers
for large compute clusters.” Proc. EuroSys13, pp.
351 — 364, 2013.

A M. Turing. “The chemical basis of morphogene-
sis.” Philosophical Transactions of the Royal Soci-
ety of London, Series B 237:37-72, 1952.

VMware. “VMware vSphere Storage Appliance.”
https://www.vmware.com/files /pdf/techpaper/ VM-
vSphere-Storage- Appliance-Deep-Dive- WP. pdf,
accessed August 2015.

A. Verma, L. Pedrosa, M. R. Korupolu, D. Op-
penheimer, E. Tune, and J Wilkes. “Large-scale
cluster management at Google with Borg.” Proc.
FEuroSys15, pp. 124-139, 2015.

S de Vries and R. Vohra. “Combinatorial auc-
tions; a survey.” INFORMS Journal of Computing,
15(3):284-309, 2003.

H-J. Zhang, Q-H. Li, and Y-L. Ruan. “Resource
co-allocation via agent-based coalition formation in
computational grids.” Proc 2 Int. Conf. Machine
Learning & Cybernetics,, pp. 1936-1940, 2003.

G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong. “A
game-theoretic method of fair resource allocation
for cloud computing services.” The Journal of Su-
percomputing, 54(2):252-269, 2010.

Dan C. Marinescu was an Associate and then Full
Professor of Computer Science at Purdue University in
West Lafayette, Indiana during the period 1984-2001.
Since August 2001 he is a Provost Professor of Com-
puter Science at University of Central Florida. He has
published several books and more than 220 papers in
referred journals and conference proceedings.

Ashkan Paya got his Ph.D. in EECS from University
of Central Florida in August 2015. He graduated from
Sharif University of Technology in Tehran, Iran, with a
BS Degree in Computer Science in 2011. His research
interests are in the area of resource management in large-
scale systems and cloud computing.

John Morrison is the founder and director of the Cen-
tre for Unified Computing. He is a co-founder and di-
rector of the Boole Centre for Research in Informatics, a
principle investigator in the Irish Centre for Cloud Com-
puting and Commerce and a co-founder and co-director
of Grid-Ireland. Prof. Morrison has held a Science Foun-
dation of Ireland Investigator award and has published
widely in the field of Parallel Distributed and Grid Com-
puting. He is a principle investigator in the Irish Centre
from Cloud Computing and Commerce, where he leads
the Service LifeCycle Group.

14

