
Title An approach to robustness in stable marriage and stable
roommates problems

Authors Genc, Begum

Publication date 2019

Original Citation Genc, B. 2019. An approach to robustness in stable marriage and
stable roommates problems. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2019, Begum Genc. - http://creativecommons.org/licenses/by-
nc-nd/3.0/

Download date 2025-07-02 16:18:21

Item downloaded
from

https://hdl.handle.net/10468/8361

https://hdl.handle.net/10468/8361

An Approach to Robustness in
Stable Marriage and Stable

Roommates Problems

Begüm Genç
MSC

114220501

�
NATIONAL UNIVERSITY OF IRELAND, CORK

COLLEGE OF SCIENCE, ENGINEERING AND FOOD SCIENCE

SCHOOL OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

INSIGHT CENTRE FOR DATA ANALYTICS

Thesis submitted for the degree of
Doctor of Philosophy

June 2019

Head of Department: Professor Cormac J. Sreenan

Supervisors: Professor Barry O’Sullivan
Dr Mohamed Siala

Contents

Contents

List of Figures . iv
List of Tables . vi
Acknowledgements . x
Abstract . xi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement and Contributions 4
1.3 Overview of the Dissertation . 7

2 Background 9
2.1 Mathematical Structures . 9

2.1.1 Graphs . 9
2.1.2 Partially Ordered Sets 12

2.2 Combinatorial Optimization . 14
2.3 Optimization Modelling Languages and Techniques 15

2.3.1 Boolean Satisfiability Problem 16
2.3.2 Constraint Programming 19

2.3.2.1 Search Strategies 20
2.3.2.2 Choco Constraint Solver 23

2.3.3 Iterated Local Search . 25
2.3.4 Genetic Algorithm . 26
2.3.5 Genetic Local Search . 29
2.3.6 Computational Complexity 31

2.3.6.1 Algorithmic Complexity 32
2.3.6.2 Problem Complexity 33

2.4 Matching Under Preferences . 36
2.4.1 Stable Marriage Problem 37
2.4.2 Stable Roommates Problem 44

2.5 Robust Optimization . 52
2.5.1 (a,b)-supermodels . 54
2.5.2 (a,b)-super solutions . 56
2.5.3 Discussion on (a,b) models 57
2.5.4 Robustness Notions in Matching Problems 58

2.6 Chapter Summary . 60

3 Robust Stable Marriage 61
3.1 Introduction . 61
3.2 Notation and Definitions . 62
3.3 (a,b)-supermatches . 64
3.4 (1,1)-supermatches . 67

3.4.1 A Model Using Independent Sets 68
3.5 Complexity of Finding (1,1)-supermatches 70

3.5.1 A Specific Problem Family F 71
3.5.2 The Definition of SAT-SM 74

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

i Begüm Genç

Contents

3.5.3 The Complexity of SAT-SM 80
3.6 Threshold and Polynomial Cases 86

3.6.1 Polynomial Cases . 86
3.6.2 Finding an (a,0)-supermatch 90

3.7 Chapter Summary . 91

4 Methods for Finding (1,b)-supermatches in RSM 93
4.1 Notation and Definitions . 93
4.2 Methodology for verifying a (1,b)-supermatch 96

4.2.1 Complexity . 104
4.3 Constraint Programming Model 105

4.3.1 Variables . 106
4.3.2 Constraints . 107

4.4 Genetic Algorithm Approach . 111
4.4.1 Initialization . 112
4.4.2 Evaluation . 113
4.4.3 Evolution . 115

4.5 Local Search Approach . 119
4.5.1 Neighbourhood . 120
4.5.2 Search . 121

4.6 Genetic Local Search (Hybrid) Approach 124
4.7 Experiments . 125

4.7.1 Random Instances . 126
4.7.2 Large Instances (MANY) 132

4.8 Chapter Summary . 137

5 Robust Stable Roommates 138
5.1 Introduction . 138
5.2 Notation and Definition . 140
5.3 Verification of (1,b)-supermatches 142

5.3.1 Identification of Elimination and Production Rotations . 144
5.3.2 Methodology . 148
5.3.3 Complexity . 151

5.4 Models for Finding (1,b)-supermatches 152
5.4.1 Local Search Approach 153
5.4.2 Hybrid Approach . 156

5.5 Experiments . 157
5.5.1 A Comparison of Models 158
5.5.2 Robustness of RSM vs RSR 164

5.5.2.1 Experiments on RANDOM 165
5.5.2.2 Experiments on MANY 167
5.5.2.3 Experiments on SAME 168
5.5.2.4 Experiments on MOD 172

5.6 Chapter Summary . 177

6 Conclusion and Future Work 178
6.1 Thesis Defence . 178

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

ii Begüm Genç

Contents

6.2 Future Work . 180
6.2.1 Complexity . 180
6.2.2 Improvements on the Current Models 182
6.2.3 Variations and Applications 183

A CP Model 186

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

iii Begüm Genç

List of Figures

List of Figures

1.1 An HR instance of 9 residents and 3 hospitals. 2
1.2 A possible relocation on the HR instance illustrated in Figure 1.1. 3

2.1 An illustration of a directed graph (left) and an undirected graph
(right) where both have 5 vertices and 6 edges. 10

2.2 A sample weighted directed graph composed of 6 vertices and 6
edges. 11

2.3 Hasse diagram of the poset (Π(S),⊆), where S = {a, b, c}. . . . 13
2.4 A sample undirected graph with 5 vertices. 21
2.5 The search tree created when backtracking is used to find a solu-

tion to the graph colouring instance provided in Figure 2.4. . . 22
2.6 The search tree created when a domain filtering algorithm is

used to enhance the search for Figure 2.5. 23
2.7 The procedure for a generic Genetic algorithm model. 27
2.8 The procedure of a generic Genetic Local Search algorithm. . . 30
2.9 Illustration of the complexity classes under the assumption that

P 6= NP. 34
2.10 The lattice of all stable matchings corresponding to the instance

given in Table 2.1. 40
2.11 Rotation poset of the instance given in Table 2.1. 44
2.12 The roommates rotation poset (left) and the reduced rotation

poset (right) for the instance given in Table 2.3. 52

3.1 A closed subset S = {ρ0, ρ1, ρ2} in Π, the sub-graphs Π1, Π2 after
the cut, and the sets L(S) = {ρ2}, and N(S) = {ρ3, ρ4} high-
lighted in Π1 and Π2, respectively. 64

3.2 Undirected graph representation with transitive edges included
of the rotation poset given in Figure 2.11. 69

3.3 Illustrations of different cases for the men and women included
in the rotations in Π of SM instances in F. 72

3.4 Final version of the rotation poset constructed from the sample
in Table 3.3. 74

3.5 Initial version of the rotation poset constructed from the sample
in Table 3.3. 82

3.6 Rotation poset of the instance IF given in Table 3.7. 89
3.7 Illustration of the complexity hierarchy between the different

cases of RSM. 91

4.1 A set of closed subsets illustrated on a sample rotation poset. . 97
4.2 A sample Stable Marriage instance of 8 men and 8 women from

Manlove [Man13]. 101
4.3 Illustration of the sets L(S) = {ρ1, ρ4, ρ7} and N(S) = {ρ2, ρ6} on

a sample rotation poset for a given closed subset S. 120
4.4 Search efficiency on the instances in DATA-S. 127

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

iv Begüm Genç

List of Figures

4.5 Search efficiency on the instances in DATA-L. 127
4.6 Average total time spent by each model on all instances (i.e.

DATA-S merged with DATA-L). 129
4.7 Average time spent to find the best solution by each model on all

instances (i.e. DATA-S merged with DATA-L). 129
4.8 Average number of different stable matchings found by each

model on all instances (i.e. DATA-S merged with DATA-L). 130
4.9 Rotation posets corresponding to the large instances. 134

5.1 Reduced rotation poset of the rotations given in Table 5.4. . . . 150
5.2 The reduced rotation poset of an RSR instance that contain 10

non-singular rotations. 155
5.3 Performance comparison of LS and HB models. 159
5.4 Robustness values found by LS and HB models (continued on the

next page). 161
5.4 Robustness values found by LS and HB models (continued from

previous page). 162
5.5 Total time spent by LS and HB models (continued on the next

page). 163
5.5 Total time spent by LS and HB models (continued from previous

page). 164
5.6 Total time spent by the LS and the HB models. 164
5.7 Total time spent during search for the RSM and RSR instances in

RANDOM. 167
5.8 Robustness of the SM instances created from the same master list. 171
5.9 The relation between the number of non-fixed men and the prob-

ability of modification for the SM instances created from the
same master list. 171

5.10 Relation between the ratio (b/np) and the probability (pr) of the
SM instances created from the same master list. 172

5.11 Robustness of the instances in MOD. 176
5.12 The average total time of the instances in MOD. 176

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

v Begüm Genç

List of Tables

List of Tables

2.1 Preference lists for men (left) and women (right) for a sample
Stable Marriage instance of size 7. 38

2.2 A sample SM instance (left) and its corresponding SR instance
(right). 46

2.3 A sample SR instance of six people. 47
2.4 Phase-1 table of the SR instance given in Table 2.3. 48
2.5 Table T ′ after elimination of the rotations ρ0 and ρ1. 50
2.6 Satisfying assignments of the sample SAT formula given in Equa-

tion 2.1. 55

3.1 The list of all stable matchings given in Figure 2.10. 65
3.2 An SM instance from family F of 6 men and 6 women. 73
3.3 An instance of SAT-SM of 6 lists and 6 integers. 79
3.4 Clauses of the SAT-SM instance given in Table 3.3. 79
3.5 The incomplete preference lists derived from the rotation poset

in Figure 3.4. 84
3.6 Solution transformation from ISSM to I. 85
3.7 Preference lists for men (left) and women (right) for a Stable

Marriage instance IF of size 8. 89

4.1 The closed subsets S∗iUP and S∗iDOWN for M5. 98
4.2 The repair stable matchings M∗i

UP and M∗i
DOWN for each man in M5

following the Table 4.1 and the distances between M5 and the
repair stable matchings. 98

4.3 The robustness values of all stable matchings for the sample
given in Table 2.1. 99

4.4 Details on the instances in DATA-S and DATA-L. 126
4.5 The average minimum b values found by each model on all in-

stances (i.e. DATA-S merged with DATA-L). 131
4.6 An SM instance of size 8 that belongs to the original family de-

scribed by Irving and Leather [IL86a]. 133
4.7 An SM instance of size 8 that belongs to our benchmark MANY

obtained by the original instance given in Table 4.6. 133
4.8 Summary of the results on large instances for RSM. 135
4.9 More details of the results on large instances for RSM. 136

5.1 The preference table of an SR instance of size 10. 139
5.2 The table TS for the SR instance of size 10 presented in Table 5.1. 143
5.3 An illustration of a table T . 144
5.4 The list of non-singular rotations of the instance given in Table 5.2. 147
5.5 A list of all the seven complete closed subsets of the poset given

in Figure 5.1. 150
5.6 A list of all the stable matchings corresponding to the complete

closed subsets given in Table 5.5. 150

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

vi Begüm Genç

List of Tables

5.7 All production and elimination rotations for each pair in M6. . . 151
5.8 All production and elimination rotations for each pair in M6. . . 151
5.9 An overview of performances of HB and LS models on random

RSR instances. 160
5.10 Results on uniformly random instances for RSM. 166
5.11 Results on uniformly random instances for RSR. 166
5.12 Three different SM instances of size 6, created from the same

master preference list, where the master list for men lm = [1, 6, 2,
5, 4, 3] and lw = [5, 3, 4, 6, 1, 2] for women. 169

5.13 Six different SR instances created from two different master lists
l1, l2, where l1 = [1, 6, 2, 5, 4, 3] and l2 = [6, 2, 5, 1, 3, 4]. 170

5.14 An SM instance and the three other instances generated from it
given as an overview of the instances in MOD. 174

5.15 An overview of the instances in MOD with respect to the average
number of non-fixed pairs in each set. 175

6.1 The overall complexity results. 181

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

vii Begüm Genç

I, Begüm Genç, certify that this thesis is my own work and I have not obtained
a degree in this university or elsewhere on the basis of the work submitted in
this thesis.

Begüm Genç

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

viii Begüm Genç

To those who accompanied me throughout this process with special mention to
my mother for always being my inspiration.

Acknowledgements

Acknowledgements

Firstly, I wish to express my eternal gratitude to my main supervisor Professor
Barry O’Sullivan for his time, patience, and unwavering support. I feel incred-
ibly fortunate to have received his guidance and the valuable opportunity he
provided for me. He has not only been a great supervisor but also a positive
mentor.

I also would like to extend my sincere thanks to my other supervisors Dr. Mo-
hamed Siala, and to Dr. Gilles Simonin for their patience and support. They
have been outstanding advisors and great friends to me. Without them, the
task of attaining this degree would not be possible. I am also grateful to my
examiners Professor James Gleeson and Dr. John Herbert for their evaluation
and corrections.

I have thoroughly enjoyed my time at the Insight Centre. I feel privileged to
have worked alongside such consummate professionals, many of which I am
delighted to call my life-long friends. I sincerely thank all the help provided by
the administrative staff Caitriona, Eleanor, and Linda.

Needless to say, my family’s support has been invaluable. I especially would like
to thank my brother, Burkay, for helping me identify this career path, assisting
me the whole time, and playing a key role for me to get this opportunity at
Insight. I cannot express enough gratitude my mother, Solmaz, who was a
constant source of comfort to me and made sure that I am progressing each
day. To my grandmother Saibe, sister-in-law Selen, niece Arya, and nephew
Orkun Efe; thank you for always putting a smile on my face. Finally, to my
father Mustafa, who gave me his blessing to move to Ireland to further my
career. I am grateful to my true friends Neslin, Ozan, and Ozlem for their trips
to come see me in Ireland, and bringing a piece of home with them. Last but not
least, I wholeheartedly thank Brian, without whose support this section would
not be completed.

This dissertation would not have been possible without the financial support
of the Science Foundation Ireland Grant No. 12/RC/2289 which is co-funded
under the European Regional Development Fund.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

x Begüm Genç

Abstract

Abstract

This dissertation focuses on a novel concept of robustness within the context of

matching problems. Our robustness notion for the stable matching framework

is motivated by the unforeseen events that may occur after a matching is com-

puted. We define the notion of (a, b)-supermatches as a measure of robustness

of a matching. An (a, b)-supermatch characterizes a stable matching such that

if any combination of a pairs want to leave the matching, there exists an alter-

native matching in which those a pairs are assigned new partners, and in order

to obtain the new assignment at most b other pairs are broken.

We first formally define the notion of (a, b)-supermatches by using one of the

most famous matching problems, namely the Stable Marriage problem (SM),

as the platform. We name the problem of finding an (a, b)-supermatch to the

SM as the Robust Stable Marriage problem (RSM). Subsequently, we prove that

RSM is NP-hard, and the decision problem for the case where a = 1 (i.e.

deciding if there exists a (1, b)-supermatch) is NP-complete. We also develop a

constraint programming model and a number of meta-heuristic approaches to

find a (1, b)-supermatch that minimizes the value of b for the RSM.

Following the results on the RSM, we extend the notion of (a, b)-supermatches

to the Stable Roommates problem (SR), namely, the Robust Stable Roommates

problem (RSR). We show that the NP-hardness is also valid for the RSR, and

we also define a polynomial-time procedure for the RSR to decide if a given

stable matching is a (1, b)-supermatch. Similarly, we provide a number of

meta-heuristic models to solve the optimization problem for finding a (1, b)-
supermatch that minimizes the value of b. We conclude this dissertation by

providing some empirical results on the robustness of different datasets of RSM

and RSR instances.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

xi Begüm Genç

Chapter 1

Introduction

“Change is the only constant.”

– Heraclitus, The Greek Philosopher

1.1 Motivation

It is essential to build robust systems that can be repaired by only minor chan-

ges in case of an unforeseen event [Sus07]. The Hospitals/Residents problem
(HR) (often referred as the College Admissions problem) is a popular matching

problem. An instance of HR is defined by a set of residents R = {r1, . . . , rn}
and a set of hospitals H = {h1, . . . , hn}. All residents and hospitals express their

strictly ordered preferences over the agents of the other set. Each hospital hi
has a positive integer value ci indicating its capacity. A solution to an HR in-

stance is an assignment between the residents and the hospitals such that each

resident is assigned to at most one hospital, none of the hospitals are assigned

more residents than their capacities, and the matching is stable. The stability

in this context refers to having an assignment that has no blocking pairs. A pair

(ri, hj) is said to block a matching if:

• A resident ri is unassigned or prefers hj to his/her current assignment;

• The hospital hj is under-subscribed or prefers ri to at least one of the

assigned residents.

Figure 1.1 presents an instance of HR that consists of nine residents, repre-

sented R = {r1, r2, . . . , r9}, and three hospitals, H = {h1, h2, h3}, where the

1

1. INTRODUCTION 1.1 Motivation

capacities of the hospitals are c1 = 2, c2 = 4, c3 = 3, and an example stable

matching between the residents and the hospitals. In this figure, the residents

r1, r2 stay in hospital h1, r3, r4, r5, r6 stay in h2, and r7, r8, r9 stay in h3.

Assume that the matching between the hospitals and the residents (medical

students) given in the Figure 1.1 is stable. After analysing this matching, it is

easy to see that all hospitals are working at full-capacity. A huge problem arises

if one of the residents can no longer stay in his/her assigned hospital. The rea-

sons behind this request can be for reasons such as: the resident is experiencing

a problem with one of the agents serving in the hospital; is not happy with the

management of the hospital; or his/her transportation to the place is not pos-

sible anymore; etc. In a similar way, the hospital may request him/her to be

transferred to another hospital because they are not happy with his/her perfor-

mance, they do not have sources to supply him/her anymore, etc. We refer to

such causes as unforeseen events, where the preferences are expressed correctly

at the beginning of the assignment, but the matching becomes infeasible as the

time progresses.

Given the stable matching in Figure 1.1, assume that, due to an unexpected

event, r3 must be relocated to another hospital. In this case, a relocation of at

least one other medical student is required because all the hospitals are full.

h1, c1 = 2

h2, c2 = 4

h3, c3 = 3

r1 r2

r3 r4 r5 r6

r7 r8 r9

Figure 1.1: An HR instance of 9 residents and 3 hospitals.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

2 Begüm Genç

1. INTRODUCTION 1.1 Motivation

h1, c1 = 2

h2, c2 = 4

h3, c3 = 3

r1 r2

r3 r4 r5 r6

r7 r8 r9

Figure 1.2: A possible relocation on the HR instance illustrated in Figure 1.1.

Figure 1.2 illustrates another possible stable assignment after applying the re-

locations required to obtain another solution. The relocations include moving

the resident r3 from h2 to h1, moving r2 from h1 to h3, and r8 from h3 to h2.

An interesting property of this problem is that, the set of residents that are as-

signed to hospitals in a stable matching is exactly the same set of residents in

any other stable matching of the underlying instance. Additionally, note that,

there is a cost associated with the relocations of the residents. Therefore, in the

case of unforeseen events, in order to reduce the extra cost, it is desirable to

find another assignment with the minimum number of additional changes. We

refer to these matchings (solutions) that require only a small number of mod-

ifications if some assignments break as robust solutions. The main motivation

of studying robust solutions is to produce solutions that ideally do not require

any modifications in the case of an unforeseen event, or solutions that provide

a bound on the cost for the repairs.

This notion is not only important in the context of Hospital/Residents, but also

important in the context of other stable matching problems such as Stable Mar-

riage, Ride Sharing, Kidney Exchange, Stable Roommates, etc [Man13]. Some

of these problems arise in many real-world settings. For instance, cloud comput-

ing can be modelled as a Stable Marriage problem, or peer-to-peer applications

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

3 Begüm Genç

1. INTRODUCTION 1.2 Thesis Statement and Contributions

can be modelled as a Stable Roommates problem [DPK13, LMV+07].

For a second motivating example, consider the Paper/Reviewer assignment

problem. Some conferences or journals receive hundreds of submissions af-

ter announcing the call for papers. In most of the cases, the authors submit the

keywords related to their work. The reviewers declare their conflicts and/or ex-

press their preferences over the papers, or the topics. After the preferences are

provided, the organizers are responsible for assigning the papers to the review-

ers. It is possible that after the assignments are completed, a reviewer may ask

to change his/her assigned paper due to lack of confidence in the field or the

complexity of the paper, etc. In this case, considering that some reviewers may

already have started working on their assigned papers, an ideal solution would

be the one that can accommodate the change requests by reflecting very limited

disturbance on the other people. This ideal solution is a robust matching.

The work presented in this dissertation considers the application of robustness

into various matching problems. In Section 1.2, we present an outline of all

contributions of this thesis related to the proposed robustness notion.

1.2 Thesis Statement and Contributions

In this dissertation we focus on introducing a novel robustness notion for match-

ing problems. We state the thesis defended in this dissertation and present our

approach, by also providing a list of our supporting publications for each point.

Thesis. Matching problems are widely-studied computational problems that re-
quire assigning agents to one another under different optimality criteria. The sta-
bility criterion in matching problems is well defined and dominantly used. How-
ever, imposing only the stability constraint on matchings is not enough on its
own when the dynamism of the real world due to unexpected events is considered.
Therefore, the need to consider a notion of robustness in addition to the existing
stability constraint emerges. We claim that achieving both stability and robustness
is possible. We propose a novel concept of robustness that has not been consid-
ered in this field before. By defining robust stable matchings we allow systems to
handle unexpected events while making a bounded number of changes, after the
matchings have been constructed.

Discussion. In Chapter 3, we introduce a novel robustness notion for the match-

ing problems called (a, b)-supermatches that uses a fault tolerance framework

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

4 Begüm Genç

1. INTRODUCTION 1.2 Thesis Statement and Contributions

and represents matchings that are stable and can handle unexpected events.

This notion is inspired by previous work on fault tolerance and robustness

notions represented as (a, b)-supermodels in SAT and (a, b)-super solutions in

CSP [GPR98, HHW04b]. We introduce the (a, b)-supermatches concept within

the context of the Stable Marriage problem (SM) and call the problem of find-

ing a robust solution to an SM instance as the Robust Stable Marriage problem

(RSM). The first appearance of our work related to the proposal of the novel

concept can be found in the following conference publication [GSOS17c]:

Begum Genc, Mohamed Siala, Gilles Simonin and Barry O’Sullivan.

Robust Stable Marriage. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAI 2017, pages 4925-4926, 2017.

Next, we focus on the complexity of the RSM and prove that although it is

easy to find a stable matching, it is not easy to find robust stable ones (i.e.

(a, b)-supermatches). We prove in Chapter 3 that finding a (1, b)-supermatch

to a given Stable Marriage instance is NP-complete. A preliminary version of

this research excluding the proofs appears in the following conference publica-

tion [GSSO17a]:

Begum Genc, Mohamed Siala, Gilles Simonin and Barry O’Sullivan.

On the Complexity of Robust Stable Marriage. In Combinatorial Op-
timization and Applications - 11th International Conference, COCOA
2017, pages 441-448, 2017. doi: 10.1007/978-3-319-71147-8_30.

The proofs of this publication, including some additional examples, is publicly

available as a technical report as follows [GSSO17b]:

Begum Genc, Mohamed Siala, Gilles Simonin, Barry O’Sullivan: On

the Complexity of Robust Stable Marriage. Technical report as e-

Print on arXiv: 1709.06172 (October 2017). URL: arxiv.org/abs/

1709.06172.

Then, we extend this work by providing detailed proofs as well as an indepen-

dent set formulation for finding a (1, 1)-supermatch for any given SM instance.

We provide some cases that can be solved in polynomial-time and also show

that some cases need not exist at all. The details of the complexity study on

RSM can be found in the following journal publication [GSSO19]:

Begum Genc, Mohamed Siala, Gilles Simonin, Barry O’Sullivan.

Complexity Study for the Robust Stable Marriage Problem. In Theo-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

5 Begüm Genç

1. INTRODUCTION 1.2 Thesis Statement and Contributions

retical Computer Science, 2019. ISSN 0304-3975, doi: 10.1016/j.tcs.

2018.12.017.

In order to show the NP-completeness of the (1, b)-supermatches case, we de-

fine a polynomial-time procedure to decide if a given stable matching is a (1, b)-
supermatch. Considering the difficulty of the RSM, we develop four different

optimization models to find a (1, b)-supermatch that minimizes the b to a given

RSM instance. We also provide a performance comparison of these different

models on randomly generated SM instances. These findings are presented in

Chapter 4. A part of this work including three of the four models appears in the

following conference publication [GSOS17a]:

Begum Genc, Mohamed Siala, Gilles Simonin and Barry O’Sullivan.

Finding Robust Solutions to Stable Marriage. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, pages 631-637, 2017. doi: 10.24963/ijcai.2017/88.

A technical report on this work that includes details of the proposed algorithms

and examples for the methods is also publicly available [GSOS17b]:

Begum Genc, Mohamed Siala, Gilles Simonin and Barry O’Sullivan.

Finding Robust Solutions to Stable Marriage. Technical report as

e-Print on arXiv: 1705.09218 (August 2017). URL: arxiv.org/abs/

1705.09218.

We conclude our work by showing that (a, b)-supermatches are not only mean-

ingful in the context of Stable Marriage problem, but can also be applied to

other matching problems. In order to show that, we extend the notion of

robustness into a different matching problem, namely the Stable Roommates

problem (SR), and call the robust version as Robust Stable Roommates prob-

lem (RSR). We provide a polynomial-time procedure to find (1, b)-supermatches

for the RSR. We develop two different meta-heuristic approaches to find (1, b)-
supermatches to RSR and we provide a comparison of them. Subsequently, we

perform some experiments that investigate the robustness of different datasets

of RSM and RSR. We present these findings in Chapter 5, and the details can be

found in the following publication:

Begum Genc, Mohamed Siala, Gilles Simonin and Barry O’Sullivan.

An Approach to Robustness in the Stable Roommates Problem and

its Comparison with the Stable Marriage Problem. In CPAIOR 2019,

in press.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

6 Begüm Genç

1. INTRODUCTION 1.3 Overview of the Dissertation

1.3 Overview of the Dissertation

This dissertation consists of four main chapters. We present briefly the structure

and the contents of each chapter below.

Chapter 2 presents the necessary background information to understand the

concepts and correctly follow the notation used in this dissertation. The main

purpose of this chapter is to define all the concepts in detail and also provide

examples for the reader to help them understand the concepts before moving

to the technical part of the dissertation. We start with an introduction to the

mathematical structures widely being used throughout this dissertation such as

graphs and partially-ordered sets. Then, we formally introduce what combina-

torial optimization is and some of the popular techniques that can be used to

model a given combinatorial optimization problem. The discussed techniques

are limited to the ones we are using in this dissertation. Following the tech-

niques, we present in detail the two combinatorial optimization problems we

focus in this dissertation: the Stable Marriage problem and Stable Roommates

problem. We also give a brief introduction to robustness in optimization. Con-

sequently, we present the two robustness models that our work is based on:

(a, b)-supermodels in Boolean Satisfiability [GPR98], and (a, b)-super solutions

in Constraint Satisfaction Problems [HHW04b]. We conclude this section by

reviewing the existing robustness notions within the matching problems.

Chapter 3 focuses on two main points: the formal definition of our novel notion

of robustness and the complexity of the Stable Marriage problem when robust-

ness is included. We first define our notion of (a, b)-supermatches and introduce

the problem of Robust Stable Marriage (RSM). Then, we present a model us-

ing an independent set formulation as a representation for the restricted case

of the RSM, i.e. (1, 1)-supermatches. We also provide another model, which

is a special case of SAT with specific constraints imposed on its clauses, called

SAT-SM. We show that SAT-SM is NP-complete by Schaefer’s Dichotomy the-

orem. Then, we use this special SAT formula to show that a restricted case of

our proposed problem, (1, b)-supermatches is NP-complete. The work in this

chapter also includes identification of some polynomial cases as well as some

non-existing cases for RSM.

Chapter 4 presents a polynomial-time procedure to decide if a given stable

matching is a (1, b)-supermatch or not. Consequently, four different models are

proposed based on this procedure. The models solve the optimization problem

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

7 Begüm Genç

1. INTRODUCTION 1.3 Overview of the Dissertation

for RSM, i.e. to find the (1, b)-supermatch that minimizes the value of b. These

models include: a complete search technique (Constraint Programming), and

three meta-heuristics (Genetic Algorithm, Iterated Local Search, and Genetic

Local Search). We conclude this section by presenting some experiments to ob-

serve the relative performances of the models, and the effects of parameters on

the search, time efficiency.

Chapter 5 is mainly an extension of the Chapter 3 and Chapter 4. We define

our robustness concept, (a, b)-supermatches in Stable Roommates problem and

call the robust version of the problem as Robust Stable Roommates (RSR). The

work in this chapter consists of a formal definition of the proposed problem, fol-

lowed by a polynomial time procedure for deciding if a given stable matching

is a (1, b)-supermatch. Subsequently, we present two meta-heuristic procedures

that are using the polynomial time procedure. Then, we perform experiments

to compare the performances of these two models. We also create some inter-

esting datasets for the RSM and the RSR problems. We conclude this chapter

by comparing the behaviour of robustness values of the two aforementioned

problems.

Lastly, in Chapter 6, we discuss some general concluding remarks, open prob-

lems and identify some future directions related to the work presented in this

dissertation.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

8 Begüm Genç

Chapter 2

Background

Abstract. In this chapter, we present the background and notation re-
quired to present our work on robustness in stable matching problems.
First, we introduce some mathematical structures, define combinato-
rial optimization, as well as review a number of techniques for solving
those problems. Subsequently, existing robustness notions in the liter-
ature, mainly in CP, SAT and matching problems, is discussed.

2.1 Mathematical Structures

In this section, we introduce two of the mathematical structures: graphs and

partially ordered sets.

2.1.1 Graphs

A graph is an abstracted structure for modelling and graphically representing

the relations between objects. In mathematics, this is a field called graph theory
[Wil86, Die10, BM11].

Formally, a graph G = (V,E) is composed of a set of vertices, denoted by V, and

a set of edges, denoted by E. Each edge e ∈ E in a graph is represented by

e = (vs, vt), where vs, vt ∈ V. For each edge e = (vi, vj) in the graph G, vi and vj
are referred as adjacent vertices in G. Each adjacent vertex of v is a neighbour
of v. The set of neighbours defines the neighbourhood of v.

9

2. BACKGROUND 2.1 Mathematical Structures

A graph can be directed or undirected. If G is a directed graph, then its edges

are directed, meaning there is an order between its vertices. For a directed

edge e = (vs, vt), the vertex vs is called as the initial vertex and vt is called as the

terminal vertex. In this case, vs is said to precede vt. Additionally, e is referred

as an incoming edge of vt and an outgoing edge of vs. On the other hand, if G

is an undirected graph, the edges are undirected and there does not exist any

precedence relation between its vertices. The directed graphs are suitable for

representing arbitrary binary relations, whereas undirected graphs are suitable

for modelling symmetric binary relations [SD08].

Figure 2.1 illustrates an example directed graph Gd = (Vd, Ed) and an undi-

rected graph Gu = (Vu, Eu), where the graphs are defined by the following

sets Vd = Vu = {1, 2, 3, 4, 5}, Ed = {(1, 2), (2, 4), (2, 5), (3, 5), (4, 3), (4, 5)} and

Eu = {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {2, 5}, {3, 5}}.

Given a graph G = (V,E) and a sequence of vertices v1, v2, . . . , vn such that

there exists an edge between each consecutive vertex pair (vi, vi+1) ∈ E, i ∈
[1, n−1] represents a path on the graph. A path that starts and ends at the same

vertex such that v1, v2, . . . , vn, where v1 = vn is called a cycle.

The edges (or sometimes the vertices) of a graph can have additional associ-

ated information such as a label, weight, value, etc. For example Figure 2.2,

illustrates a weighted directed graph with six vertices. The text on each vertex

(v1, v2, . . . , v6) denotes the label (unique identifier) of that vertex. Addition-

ally, there is a weight associated with each edge. Let the weight of each edge

eij = (vi, vj) denoted by wij. For Figure 2.2, the weight of the edge (v1, v2) is

w12 = 4, (v6, v3) is w63 = 1, etc.

The degree of a vertex v, denoted by d(v), represents the number of vertices

adjacent to v. If the graph is directed, then there are two types of degrees:

in-degree and out-degree. For each vertex v, the number of incoming edges of

Figure 2.1: An illustration of a directed graph (left) and an undirected graph
(right) where both have 5 vertices and 6 edges.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

10 Begüm Genç

2. BACKGROUND 2.1 Mathematical Structures

v1

v2 v3

v4 v5

v6

4

1

3

2

1 1

Figure 2.2: A sample weighted directed graph composed of 6 vertices and 6
edges.

v denotes the in-degree of v denoted by d−(v), whereas the number of outgoing

edges gives the out-degree of it, denoted by d+(v). For illustrative purposes, the

degree of vertex v3 in Figure 2.1 (right) is calculated as d(3) = 2. Moreover, for

the directed case in Figure 2.1 (left) in-degree and out-degree of the vertex 4
are d−(4) = 1 and d+(4) = 2, respectively.

Each vertex v in a directed graph Gd = (Vd, Ed) can have a number of predeces-

sors and a number of successors defined by the incident edges of v in the given

graph. If there exists a directed edge e = (vs, vt), vs is an immediate predecessor
of the vertex vt, and vt is an immediate successor of vs. Extending this concept,

if there exists a path between any two vertices vs and vt that starts at vs and

ends at vt, illustrated as: vs, vi, . . . , vt, then the vertex vs is a predecessor of vt
and vt is a successor of vs. If a vertex v does not have any successors in the

given graph (i.e. d+(v) = 0), then it is referred as a sink vertex; if d−(v) = 0
then it is a source vertex. The set of all immediate predecessors of v in Gd is

denoted by N−(v) and the immediate successors by N+(v). We denote the sets

of predecessors and successors as N−t (v) and N+
t (v), respectively. For instance,

in Figure 2.2, the immediate predecessors and successors of the vertex v6 can be

found as: N−(v6) = {v1, v4}, N+(v6) = {v3}. Similarly, the sets of all predeces-

sors and successors of the same vertex are identified as: N−t (v6) = {v1, v2, v4},
and N+

t (v6) = {v3, v5}.

Consider a graph G = (V,E). A graph G′ = (V ′, E ′) denotes a sub-graph of G

if V ′ ⊆ V and E ′ ⊆ E such that an edge (vi, vj) ∈ E ′ only if (vi, vj) ∈ E. If all

the vertices in the sub-graph G′ has at least one incident edge in E ′, then G′

defines an induced sub-graph of G on the edge set E ′. We refer to edge-induced

sub-graphs as induced graph.

Given a graph G = (V,E), a set of edges Esub ⊂ E such that removal of those

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

11 Begüm Genç

2. BACKGROUND 2.1 Mathematical Structures

edges fromG results in partitioning the graph into two sub-graphsG1 = (V1, E1)
and G2 = (V2, E2) and for each edge e = (vi, vj) ∈ Esub, vi ∈ V1 and vj ∈ V2 then

Esub is called as cut on G.

Apart from the general definitions, there exist many different graph types. In

this work we mainly focus on: weighted graphs, bipartite graphs and cyclic/a-

cyclic graphs. We briefly describe the specific properties of these graph types

below.

• If the vertices or edges of a graph have associated weights, then it is called

a weighted graph.

• If the vertices of a graph can be divided into two disjoint sets such that

there does not exist any edge between the vertices of the same set, and

therefore each edge connects two vertices from different sets, then the

graph is a bipartite graph.

• If the graph contains at least one cycle, then it is a cyclic graph.

• If there are no cycles in the graph, then it is an acyclic graph.

2.1.2 Partially Ordered Sets

Partially ordered sets are mathematical structures that are defined over some

relations between the objects of the set. Most of the definitions in this section

are based on the definitions used by Simovici and Djeraba [SD08]. Formally, a

partial order on a set S is a relation ρ ⊆ S × S that is reflexive, antisymmetric,
and transitive. A partially ordered set or poset Π(S) consists of a set S under the

relation ≤ between all the elements a, b, c ∈ S has the following properties:

• a ≤ a (reflexivity).

• a ≤ b and b ≤ a implies a = b (anti-symmetry).

• a ≤ b and b ≤ c implies a ≤ c (transitivity).

The inverse of a partial order is also a partial order on the same set. If the

number of objects in the set |S| is finite, the poset (S,≤) is referred as a finite

poset.

Let (S,≤) be a poset. Any two elements x, y of S are incomparable if neither

x ≤ y nor y ≤ x. If two elements are not incomparable, then they are said to be

comparable. A chain on a poset is defined in the following way: for any subset

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

12 Begüm Genç

2. BACKGROUND 2.1 Mathematical Structures

of elements T of S such that for every x, y ∈ T where x 6= y, either x < y or

y < x (i.e. x and y are comparable), T represents a chain. Any chain (T,≤) in

the poset (S,≤) such that T is a subset of S, is a maximal chain if there does

not exist any other chain in S that is a superset of T . For any subset T of S

such that for every x, y ∈ T , x and y are incomparable, then T represents an

anti-chain.

Finite posets are often represented by diagrams. When a poset is drawn by a

diagram, each element in the set is represented as a point and each relation is

represented as a segment (solid line) and if for two elements b covers a such as

a, b ∈ S, a ≤ b, then a appears below b in the drawing. Any such diagram is also

referred as a Hasse diagram, named after Helmut Hasse [Bir48]. For instance,

given the subset relation ⊆ in sets, the Hasse diagram of a poset (Π(S),⊆),

where S = {a, b, c} is given in Figure 2.3 [SD08].

The Hasse diagram can be represented as a graph. Let (S,≤) be a poset and

G = (V,E) be its corresponding graph. In this case, every element i in the set

S corresponds to a vertex vi in V. For each two element i, j ∈ S such that i ≤ j,

there exists a directed edge between the corresponding vertices as e = (vi, vj)
in E. Then, the resulting graph G is a directed acyclic graph.

{a, b, c}

{b, c}

{c}{a} {b}

{a, c}{a, b}

{}

Figure 2.3: Hasse diagram of the poset (Π(S),⊆), where S = {a, b, c}.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

13 Begüm Genç

2. BACKGROUND 2.2 Combinatorial Optimization

2.2 Combinatorial Optimization

There are many different classes of the optimization problems with tremendous

differences between them [Ped03, Mur11]. Some examples of these classes

can be listed as: linear optimization, non-linear optimization, combinatorial

optimization, stochastic optimization, etc.

In optimization problems, the aim is to find the “best” solution to the given

problem subject to a set of given criteria. Combinatorial optimization is a widely

studied sub-category of the field of Optimization. Combinatorial optimization

has the limitation of a finite, discrete set of feasible solutions [KV06]. In these

types of problems, the search space is usually large and not very practical

for applying complete search methods. Therefore, in some cases, incomplete

search methods are favoured when compared to the complete search methods.

Some well-known problems in this category can be formulated as the Job Shop

Scheduling problem [YN97], Travelling Salesman problem (TSP) [ABCC07],

Bin Packing problem [GJ79], Vehicle Routing problem [TVTV14], Matching

Problems [Man13] etc.

As mentioned before, many of the combinatorial optimization problems are

computationally hard to solve due to having large search spaces. A complete

algorithm is said to solve a problem if the procedure always generates a solution

for every possible instance of the problem if one exists, or reports that there ex-

ists no solution. The main intuition behind solving these problems is to find

efficient algorithms that find the best element of some finite set of feasible so-

lutions [KV06]. Graphs are often used to model the combinatorial optimization

problems due to their combinatorial foundation.

The Travelling Salesman problem (TSP) is among one of the most famous com-

binatorial optimization problems. The objective is about finding the shortest

tour among a given set of cities such that a salesperson returns to the city from

which he starts his tour, by visiting each city exactly once. The underlying

structure of the TSP is very suitable to be modelled as a graph. Thus, it is often

modelled as a weighted graph with distances being the weights on the edges

and strategies are developed based on finding the best path on the graph. Below

is the formal definition as a graph model for TSP [MS91].

Definition 1 (TSP) Given a directed graph G = (V,E), of n vertices and a dis-
tance function, d : V × V → R+ ∪ {∞} such that:

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

14 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

d(vi, vj) =

 Di,j ∈ R+, if (vi, vj) ∈ E,
∞ , if (vi, vj) 6∈ E,

find a simple cycle of vertices: vi0 → vi1 → . . .→ vin = vi0, which minimizes

n−1∑
k=0

d(vik, vik+1).

An instance of the TSP can have exponentially many feasible solutions. Try-

ing to compute and compare all possibilities would yield in n! possible solu-

tions, making it a complex problem to solve even for very modest sized in-

stances. Therefore, researchers have worked for almost 60 years on tackling

the problem using optimization techniques. For instance, many different meta-

heuristic models are studied on the TSP such as ant colony optimization [SD99],

local search [VT99], hybrid meta-heuristic algorithms such as genetic local

search [FM96], tabu search [Fie94], etc. In the next sections, we look into

the details of how a problem is classified as a complex or computationally hard

to solve, and also which techniques can be used to solve them.

2.3 Optimization Modelling Languages and Tech-

niques

There exist many different languages for modelling an optimization problem.

Depending on the problem and its objective, one model can be superior to

the other one. In this section, we explain two of these modelling paradigms:

boolean satisfiability and constraint programming. Additionally, the strategies

to solve combinatorial optimization problems differ depending on the model

and nature of the problem. Two main approaches to be used are complete and

incomplete search methods [Pre08]. We discuss in this section about the differ-

ent search strategies for finding a solution to a given optimization problem.

Complete search methods guarantee finding the optimal solution to a given

problem instance or report if none exists. On the other hand, incomplete search

strategies do not guarantee that a solution will be found or that they report if

none exists to the given combinatorial optimization problem. They may fail

to find a solution to a satisfiable problem or fail to find the optimal solution

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

15 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

to an optimization problem. Incomplete search methods are used to find an

“acceptable” solution to the given problem if not the exact optimal one [Pre08].

Metaheuristic algorithms define strategies to perform incomplete search [BR03].

They are iterative processes that guide the production of high-quality, near-

optimal solutions. Some of the widely used metaheuristics can be listed as:

Simulated Annealing, Tabu Search, Ant Colony Optimization (ACO), Iterated

Local Search (LS), Genetic Algorithms (GA), etc [GP10]. These algorithms are

generally inspired by the natural processes. For instance, the ACO algorithm

mimics the behaviour of ants searching for food [DB10]. The pheromones re-

leased by the ants during this search leads other ants to certain paths, which

eventually results in a valid path to food (i.e. solution). On the other hand, the

GA is an evolutionary algorithm that mimics the evolution of a population by

combination of genes and exposing mutations [B96].

One of the main challenge for metaheuristics is the risk of getting trapped at

a local optimum during the convergence. Therefore the search may fail to

reach the global optimum [Voß01]. This problem is often tackled by defining

neighbourhoods of solutions and moving from a solution to another neighbour

solution. Due to the neighbourhood, there is a trade-off between the local-

ization and the diversification. The metaheuristic approaches apply different

techniques to increase the diversity in the search space. As one would expect,

a comprehensive survey on metaheuristics points out the fact that there is no

final agreement on which metaheuristic model is more suitable for what type of

problems, or which metaheuristic is superior to the others [Voß01]. The quality

of the models usually depends on the quality of the assumptions made specific

to the problem.

In this section, we only focus on the details of two metaheuristic algorithms

in detail, which we use in our work. Those algorithms are: Genetic Algorithm

and the Local Search. We also provide a Genetic Local Search model, which

is a hybrid metaheuristic modelled as a combination of the Genetic Algorithm

and the Local Search procedures. These models are discussed in detail in Sec-

tions 2.3.3, 2.3.4 and 2.3.5.

2.3.1 Boolean Satisfiability Problem

The Boolean Satisfiability (SAT) problem has its roots in mathematical logic,

which is the basis of the modern computation. SAT was the first problem proved

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

16 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

NP-complete by Cook [Coo71].

A Boolean variable can have only one of the two values: true or false. An ex-

pression that is defined over Boolean variables and Boolean operators (and, or,

xor, etc.) is called a Boolean expression or a propositional logic formula. It is

often referred as “formula" in short. A clause refers to an expression that con-

sists only of disjunctions (or conjunctions) of Boolean variables. Each variable

in a clause represents a literal. Therefore, a literal either represents a positive

Boolean variable or a negated Boolean variable. For the sake of giving an ex-

ample, a disjunctive clause Ci has the form: Ci = (x0 ∨ x1 ∨ . . . ∨ xn) and a

conjunctive clause: Cj = (x0 ∧ x1 ∧ . . . ∧ xn). If any literal in Ci has the value

true, then the clause Ci is evaluated to true. On the other hand, in order for

a clause Cj to be evaluated to true, all the literals in Cj must have the value

true. A clause C is referred as a Horn clause, if C is disjunctive with at most

one unnegated (positive) literal. Moreover, a C is a Dual-Horn clause, if it is

disjunctive and it contains at most one negated (negative) literal [Hor51].

There are a number of different forms of formulas. Let Ci, i ∈ {1, . . . , n}, denote

a number of conjunctive or disjunctive clauses. We define a number of different

formula types:

• Conjunctive Normal Form (CNF): A conjunction of one or more disjunctive

clauses as: (C1 ∧ C2 ∧ . . . ∧ Cn).

• Disjunctive Normal Form (DNF): A disjunction of one or more conjunctive

clauses as: (C1 ∨ C2 ∨ . . . ∨ Cn).

• Horn Formula: If every clause in a CNF contains at most one positive

literal.

• Dual-Horn Formula: If every clause in a CNF contains at most one negative

literal.

• Affine Formula: A conjunction of linear equations over a 2-element field,

where a linear equation over the 2-element field is defined by Schaefer as

an expression of the form x1⊕ x2 . . .⊕ xk = δ where ⊕ is the sum modulo

2 operator and δ is 0 or 1 [Sch78].

An assignment is a mapping from Boolean variables to {true, false}. An assign-

ment A is said to satisfy a clause C if and only if there exists a variable x such

that C contains x and the assignment of x by A is true; or C contains ¬x and

the assignment of x by A is false. A Boolean constraint of arity k is a function

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

17 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

φ : {true, false}k → {true, false}. Let (x1, . . . xk) be a sequence of Boolean vari-

ables and φ be a Boolean constraint of arity k. The pair 〈φ, (x1, . . . xk)〉 is called

a constraint application. An assignment A to (x1, . . . xk) satisfies 〈φ, (x1, . . . xk)〉
if φ evaluates to true on the truth values assigned by A. Let Φ be a set of con-

straint applications, and A be an assignment to all variables occurring in Φ. A is

said to be a satisfying assignment of Φ if A satisfies every constraint application

in Φ.

In order to distinguish polynomial-time solvable problems from the intractable

cases, Schaefer published a remarkable dichotomy theorem [Sch78]. Let C be

a set of Boolean constraints. SAT (C) is defined as the following decision prob-

lem: Given a finite set Φ of constraint applications from C, is there a satisfying

assignment for Φ? As mentioned before, the Cook’s theorem proves that the

satisfiability problem, SAT, is NP-complete. Furthermore, Schaefer’s findings

state that SAT (C) is either in P orNP-complete. The detailed theorem is given

in Theorem 1.

Theorem 1 Dichotomy Theorem for Satisfiability [DH09, Sch78]. Let C be a set
of Boolean constraints. If C satisfies at least one of the conditions (a)-(f) below,
then SAT (C) is in P. Otherwise, SAT (C) is NP-complete.

a) Every constraint in C evaluates to true if all assignments are true.

b) Every constraint in C evaluates to true if all assignments are false.

c) Every constraint in C can be expressed as a Horn formula.

d) Every constraint in C can be expressed as a dual-Horn formula.

e) Every constraint in C can be expressed as affine formula.

f) Every constraint in C is definable by a CNF formula having at most 2 literals
in each conjunct.

Although the SAT problem is NP-complete in general, it is obvious that the

2SAT problem, which is a restricted case of SAT where each clause is a disjunc-

tion of at most 2 literals, is in P by Schaefer’s Dichotomy Theorem. On the

other hand, the version where each clause contains exactly 3 literals, namely

the 3SAT problem, is NP-complete.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

18 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

2.3.2 Constraint Programming

Constraint Programming (CP) is a framework that is used to model problems as

a set of decision variables and the relations between them. In this framework,

the variables have discrete domains and the relations between variables are

denoted by a finite number of constraints. We mainly use the notation used in

the Handbook of Constraint Programming throughout this section [RvBW06],

and also refer to the some recent studies for definitions [RN03, Sia15, CC16,

vH01].

A CSP network is defined as a triple 〈X,D,C〉. In this representation, the

set X = 〈x1, x2, . . . , xn〉 is an n-tuple denoting a finite set of distinct variables,

and D = 〈D1, D2, . . . , Dn〉 is the domain of each variable such that xi ∈ Di.

If the variable xi is a Boolean variable, then the domain of xi is denoted by

Di = {0, 1}. Otherwise, the domain of a variable is represented as a set Di =
{dl, dl+1, . . . , du}, where dl denotes the lower bound (i.e. the minimum value in

the domain) and du denotes the upper bound, respectively. If |Di| = 1, then the

domain is said to be singleton.

The third set in the definition, C = 〈C1, C2, . . . , Ct〉 corresponds to the con-

straints of the problem. Each constraint Ci is represented as a pair 〈RSi
, Si〉,

where S ⊂ X is the scope of the constraint and RS denotes the relation con-

taining all valid assignments of the variables in S. A solution to the CSP is an

assignment to the n variables in X such that for each constraint Ci, the assign-

ment of the variables in Si falls into the range RSi
. If there exists at least one

such assignment, the CSP instance is said to have a solution, and is satisfiable.

However, if the set of solutions is empty, the instance is unsatisfiable. Informally,

the Constraint Satisfaction Problem is to decide whether a given constraint net-

work is satisfiable or not.

As an example, assume we are given a set of two variables X = 〈x1, x2〉,
where each variable has the same finite domain D = {1, 2, 3} as x1, x2 ∈ D,

and the constraint exposed on the system is the not-equal constraint (i.e.

x1 6= x2). Then the following assignments for the variables of the problem:

(x1, x2) = {(1, 1), (2, 2), (3, 3)}, do not satisfy the constraint exposed on the net-

work. Therefore, these assignments are not solutions. However, there exists an-

other set of assignments where each of pair in the set makes the constraint satis-

fied. For instance, each pair in the following set: (x1, x2) = {(1, 2), (1, 3), (2, 1)}
represents a solution for the instance. Hence, having at least one solution, the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

19 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

given constraint network is satisfiable.

The CSP is considered as a generalization of SAT [Coo71]. If all the variables in

CSP are Boolean variables and each clause is considered as a constraint over the

related variables, the resulting network represents a SAT instance. Therefore,

the complexity result is carried and finding a solution to a given CSP problem

is also NP-hard. Moreover, for CSPs, the verification of a given solution is

possible to be done in polynomial-time. Thus, deciding if a CSP has a solution

is NP-complete.

2.3.2.1 Search Strategies

In this section, we consider some of the systematic search techniques being used

in CSPs. In order to find a solution to a CSP, the CSP is split into other smaller

CSPs and a search tree is constructed from these smaller CSPs. Each node in this

tree represents a CSP, where the root of the tree represents the CSP problem

that we want to solve. If a CSP is not solved, or failure has not been detected, it

is split into the smaller CSPs which represent the successor nodes of the current

CSP in the search tree. This process continues until either each CSP is split,

failed or solved. The failed or solved CSPs represent the leaf nodes of the tree.

The size of this search tree is exponential in the number of the related CSPs

variables.

The most straight-forward complete search algorithm can be considered as ex-

haustively searching all possible assignments to find the best solution. However,

if the search space is large or there exist exponentially many number of solu-

tions, enumerating all solutions can be very time consuming if not impossible

within the reasonable time limit. Such an exhaustive, systematical search has

an exponential-time complexity in the best case, and this is where propagation

comes in [vHK06]. Additionally, Constraint Programming is used commonly to

perform complete search and it can be made efficient by making use of propa-

gation procedures or backtracking algorithms.

In order to reduce the size of the search space some propagation, filtering and

search strategies are being used. Given a constraint C and the notion of con-

sistency, all the values that are not consistent with C are removed from the

domains of the variables of C. This procedure is called domain filtering algo-
rithm. Then, the effect of the removal of inconsistent values are propagated to

the other relevant constraints. When all variables contain only the consistent

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

20 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

values in their domains, the CSP is called to be locally consistent. Efficient fil-

tering and propagation algorithms speed up the solution phase by reducing the

search space.

Backtracking is an intelligent method mainly adapted to Constraint Program-

ming to perform complete search [RvBW06]. Backtracking algorithms behave

as performing a depth-first search on the search tree. The intuition is to build

up a solution by assigning values to the variables in the problem, branching,

and “backtracking” when it is clear that it is impossible to find a solution using

the assigned values. The search space is usually modelled as a tree structure,

where a tree represents an undirected graph that has only one path between

each of its vertices. The backtracking step is used to prune the sub-trees that

contain no solutions.

Example. We demonstrate the backtracking algorithm on a well known op-

timization problem, called graph colouring. The graph colouring problem is

defined by an undirected graph, and a set of colours each vertex can be asso-

ciated with such that none of the two adjacent vertices have the same colour.

Figure 2.4 represents a sample graph G = (V,E) with 5 vertices. A solution to a

3-colouring of G with the colour set C = {blue, red, green} corresponds to each

vertex having a colour from C respecting the difference constraint.

Figure 2.5 shows a sample run of the backtracking algorithm and the search

tree it constructs when solving G. We denote the colour red by R, blue by B and

green by G in the tree to make it more clear for the reader.

The algorithm starts by assigning v1 the colour red. Then, assume that it assigns

v2 as red. When it assigns v3 as red, a constraint violation is detected because

v2 and v3 are adjacent and they cannot have the same colour. The algorithm

backtracks and assigns v3 a different colour, which is green in this case. The so-

lution is found if a successful assignment is found for each vertex. The solution

found in Figure 2.5 is when v1, v2, v4 are assigned red, v3 is green and v5 is blue.

v1 v2

v3

v4 v5

Figure 2.4: A sample undirected graph with 5 vertices.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

21 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

v1 = R

v2 = R

v3 = R v3 = G

v4 = R

v5 = R v5 = G v5 = B

Figure 2.5: The search tree created when backtracking is used to find a solution
to the graph colouring instance provided in Figure 2.4.

The simple backtracking algorithm can be significantly improved by making

use of a domain filtering algorithm [GI06]. The domain filtering algorithm

filters out the inconsistent values in the domains of the unassigned variables.

For example, consider the same problem given in Figure 2.4 again. Figure 2.6

illustrates all the steps of using a domain filtering algorithm.

In Figure 2.6, the domain of each variable contains all possible values in the

beginning. Assume that, v1 is assigned R. By the filtering algorithm, R is

filtered from the domains of all the adjacent vertices (in this case it is only v3).

Then, on the next step, assume v2 = R. This assignment also filters R from v3

(already filtered in the previous step) and v5’s domains. Considering the steps

defined for Figure 2.5, now the vertex v3 cannot be assigned to R, because R is

already removed from D3. Therefore, the backtracking step is prevented by the

filtering algorithm. As next step, let v3 = G. This assignment eliminates R from

D4 and D5. This filtering prevents from the other two backtracking steps shown

in Figure 2.5 for v5. After setting v4 = R, a solution to the problem instance is

found as all the domains Di have |Di| = 1.

There also exist some other strategies for making the search algorithms more

intelligent. For instance, nogood learning in CP learns from the previous search

steps and does not to repeat the decisions that results in failure [FD94]. This

technique is often referred as conflict learning [LW05]. These strategies are

adapted in the solvers.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

22 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

v1 v2

v3

v4 v5

D1 = {R, G, B} D2 = {R, G, B}

D3 = {R, G, B}

D4 = {R, G, B} D5 = {R, G, B}

v1 v2

v3

v4 v5

D1 = {R} D2 = {R, G, B}

D3 = {R, G, B}

D4 = {R, G, B} D5 = {R, G, B}

/

v1 v2

v3

v4 v5

D1 = {R} D2 = {R}

D3 = {G, B}

D4 = {R, G, B} D5 = {R, G, B}/

v1 v2

v3

v4 v5

D1 = {R} D2 = {R}

D3 = {G}

D4 = {R, G, B} D5 = {G, B}//

v1 v2

v3

v4 v5

D1 = {R} D2 = {R}

D3 = {G}

D4 = {R} D5 = {B}

Figure 2.6: The search tree created when a domain filtering algorithm is used
to enhance the search for Figure 2.5.

2.3.2.2 Choco Constraint Solver

Choco is a free open-source software that serves as a solver for constraint pro-

gramming [PFL16]. It uses some filtering algorithms associated with the con-

straints and also uses some limits on the search. For instance, one can specify

a time limit, solution limit, or a limit on the count of backtracks. It allows the

use of different search strategies on the tree such as selecting the variable of

smallest domain size first, or selecting the smallest domain value first. One

can also specify the variables to branch on. Another feature of it is the support

of restarts, which means restarting the search starting from a completely new

search tree. After a search is terminated, it also provides user with some statis-

tics such as whether the search is completed or not, the number of solutions

found, the number of backtracks, the maximum depth of the search tree, and

the number of constraints and the variables in the model, etc. In Listing 2.1, we

present an example implementation of the graph colouring problem defined in

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

23 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

Figure 2.4 using Choco.

import org.chocosolver.solver.Model;

import org.chocosolver.solver.variables.IntVar;

public class GraphColouring {

public static void main(String[] args) {

// Initialization of the model

IntVar[] vars = new IntVar[5];

Model model = new Model("Graph colouring example");

// Initialization of the variables

for (int i = 0; i < numberOfVars; i++)

vars[i] = model.intVar("var" + i, 0, 2);

// Constraints

model.arithm(vars[0], "!=", vars[2]).post();

model.arithm(vars[2], "!=", vars[3]).post();

model.arithm(vars[1], "!=", vars[2]).post();

model.arithm(vars[2], "!=", vars[4]).post();

model.arithm(vars[1], "!=", vars[4]).post();

// Solve the problem

model.getSolver().solve();

// Print the solution

for(IntVar v : vars)

System.out.print(v + ", ");

}

}

Output: var0 = 0, var1 = 2, var2 = 1, var3 = 0, var4 = 0,

Listing 2.1: A Choco implementation of graph colouring problem on a graph

given in Figure 2.4.

In Listing 2.1, assume that we represent each color by a number. For instance,

red = 0, green = 1, blue = 2. Therefore, each of our vertices can be represented

by an integer variable (represented by IntV ar) in Choco with the domains

[0, 2]. Each vertex vi in Figure 2.4 is labelled in the Choco model as var(i − 1).
For instance, v1 in the Figure 2.4 corresponds to var0 in our Choco model.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

24 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

Then, we use the edges as the constraints for our model. We create a not equal
constraint between each pair of vertices that are connected by an edge. For

instance, there exists an edge between v1 and v3. Therefore, we post a ‘not

equal’ constraint to the model between the corresponding integer variables in

Choco (i.e. vars[0] and vars[2]). After posting the all 5 edges as constraints

to the model, a sample solution to the problem found by Choco is reported in

the output as var0 = 0, var1 = 2, var2 = 1, var3 = 0, var4 = 0. This solution

corresponds to v1 = R, v2 = B, v3 = G, v4 = R, v5 = R, which can easily be

verified to be a correct solution.

2.3.3 Iterated Local Search

The main idea behind Iterated Local Search (ILS) is to focus only on a neigh-

bourhood instead of focusing on the full search space [Stü98, LMS03]. To this

end, a subset of solutions that are “close” to the current solution is referred as

the neighbourhood. The search starts from an initial solution and as the name

suggests, the solution is attempted to be improved at each iteration until an

acceptable solution is found. In order to improve the current solution S, the

neighbourhood NS of S is considered, and the search continues with a solution

in NS that provides a better objective value than S. The perturbation to the

“nearby” solution is desired to be not too small and also not too large. Large

perturbations lead to almost random states and the algorithm acts stochasti-

cally, whereas small perturbations make the algorithm behave in a greedy man-

ner and may not provide an escape from the local optima. In order to make the

search more efficient, a history can be kept in order not to search the previously

searched local optimas. The outline for ILS is given in Algorithm 1.

The search process is initiated by a random solution s0. Then, the neighbour-

hood of the current solution is constructed and the best neighbour s∗ is found.

Algorithm 1 Iterated Local Search [Stü98]

1: procedure ITERATEDLOCALSEARCH()
2: s0 ← generate an initial solution
3: s∗ ← LOCALSEARCH(s0)
4: while a termination criterion is not met do
5: s′ ← PERTURBATION(s∗, history)
6: s′′ ← LOCALSEARCH(s′)
7: s∗ ← ACCEPTANCECRITERION(s∗, s′′, history)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

25 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

Then, the best neighbour is modified (s′), and the neighbourhood search of s′

is performed. If a better neighbour is found, the current solution is updated by

the s′′ to be used as the base of the next neighbourhood search.

The iteration provides a convergence to the local optima but does not guarantee

to reach the global optimum. Therefore, the ILS procedures can easily get stuck

in a local optimum without providing any improvement. In order to prevent

this situation, a common strategy is to use random restarts [LMS03]. If random

restarts are being used, search is restarted a number of times by a randomly

created solution and the search proceeds from this point.

Example. Consider the 3-colouring problem instance given in Figure 2.4. Let

a neighbour sn of a solution s to be defined by changing only the colour of a

single vertex from s. Additionally, assume a solution is evaluated as a good

solution based on the number of vertices in it that satisfy the difference con-

straint. Assume that a solution s is denoted by a list of colours in order

s = 〈c1, c2, c3, c4, c5〉, where each ci represents the color of the corresponding

vertex vi. Therefore ci ∈ {R,G,B}.

A sample initially created solution s0 to this problem is s0 = 〈G,G,G,G,G〉. The

neighbourhood of s0 is then corresponding to a set of 10 different solutions as:

〈R,G,G,G,G〉, 〈B,G,G,G,G〉, . . . 〈G,G,G,G,B〉. The best neighbour in this

set is one of the solutions that has as many vertices as possible that satisfy the

difference constraint. Let this neighbour be s′′ = 〈G,G,R,G,G〉 as it satisfies

the constraint by 3 of its vertices: v1, v3, v4. Comparing the current best solution

s0 and s′′, one can infer that s′′ is a better solution as s0 does not have any

vertices that satisfy the constraint. Therefore, the search proceeds by accepting

s∗ = s′′. On the next iteration, a neighbour solution of s∗ that is better (such as

s′′ = 〈G,B,R,G,G〉) is selected as the base of the neighbour search. The search

terminates when a termination criterion is met.

The termination criteria can be a time limit, finding the optimal solution, or

finding no improved solutions for a number of iterations.

2.3.4 Genetic Algorithm

Genetic algorithms (GA) are population-based methods inspired by the natural

process of evolution [Hol92]. They are compelling robust search and optimiza-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

26 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

tion tools, which work on the natural concept of evolution, based on natural

genetics, and natural selection. They have been used extensively in optimiza-

tion problems as an alternative to traditional heuristics. Holland introduced

the GA and he also showed how to apply the process to various computation-

ally difficult problems [Hol92, B96].

The generic search process consists of five main steps: initialization of the popu-

lation, evaluation, selection, crossover and mutation [BNKF98]. The initializa-

tion starts with finding an initial set of solutions called population. Each solution

in the population is referred as an individual. Each individual is associated with

a fitness value indicating how good (or fit) it is. The fitness is evaluated with

respect to the objective function. The selection process is carried out using the

fitness values of individuals. There exist different selection algorithms. One of

them is called roulette wheel selection [LL12]. Roulette wheel selection gives a

more fit individual higher chance to be selected.

There are two main operators that are used to improve the solution quality, pro-

vide convergence, and help with tackling the problem of getting stuck at local

optima in the population: crossover and mutation. The population is evolved by

applying crossover on different selected individuals or applying mutations on a

single selected individual. These operations simulate the real world inheritance

of genes from parents to children as well as the mutations. The process termi-

nates either when an acceptable solution is found or a termination criterion is

met: such as a pre-determined time limit or not improving the solution for a

number of iterations. The process is illustrated in Figure 2.7.

Initialization

Evaluation

Selection

Termination

Crossover

Mutation

Figure 2.7: The procedure for a generic Genetic algorithm model.

Example. Consider the 3-colouring problem given in Figure 2.4. Let the fit-

ness of an individual be measured by the number of vertices in the graph that

satisfy the different colour constraint with respect to the given solution. Assume

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

27 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

that, we have a GA model for this problem, where the population consists of

only 3 individuals. Let each individual s denoted by a list of colours in order

s = 〈c1, c2, c3, c4, c5〉, where each ci represents the color of the corresponding

vertex vi. Therefore ci ∈ {R,G,B}. A population P can be initialized ran-

domly as P = 〈s1, s2, s3〉, where s1 = 〈R,G,B,G,G〉, s2 = 〈G,G,B,B,B〉, and

s3 = 〈B,B,B,B,B〉. Let us list the individuals in P and their fitness criterion

below where c denotes the number of vertices that satisfy the constraint:

s1 = 〈R,G,B,G,G〉, c = 3,

s2 = 〈G,G,B,B,B〉, c = 2,

s3 = 〈B,B,B,B,B〉, c = 0.

When each individual in this population is evaluated for their fitnesses, s1, s2 are

the fitter than s3. In the selection phase, it is more likely for the fitter individuals

to be selected. Therefore, assume that s1 and s2 are selected by roulette wheel

selection. Let sc1 and sc2 be the two products of crossover of s1 and s2. A sample

crossover operation over the individuals can be defined as swapping the halves

of the lists. The operation can be reflected on the individuals as follows:

s1 = 〈R,G,B,G,G〉, c = 3,

s2 = 〈G,G,B,B,B〉, c = 2,

sc1 = 〈R,G,B,B,B〉, c = 2,

sc2 = 〈G,G,B,G,G〉, c = 3.

The products sc1 and sc2 are not the optimal solution. In fact, sc1 is a less fit

solution when compared to the least fit solution in the population (i.e. s3). Let

the population be refined by eliminating the least fit individuals and adding the

fitter ones. This process removes s3, and adds sc2 as P = 〈s1, s2, sc2〉. In detail:

s1 = 〈R,G,B,G,G〉, c = 3,

s2 = 〈G,G,B,B,B〉, c = 2,

sc2 = 〈G,G,B,G,G〉, c = 3.

On the next step, let s1 be selected for mutation. A sample mutation oper-

ation can be performed as randomly changing the colour of one vertex from

the selected individual. Therefore, let s1 be mutated on the vertex v5 as

s1 = 〈R,G,B,G,R〉. The new population P is now updated as:

s1 = 〈R,G,B,G,R〉, c = 5,

s2 = 〈G,G,B,B,B〉, c = 3,

sc2 = 〈B,G,B,G,G〉, c = 3.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

28 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

The individual s1 is now an optimal solution that satisfies the different colours

constraint on all of its vertices. The evolution continues until a termination

criterion such as finding the optimal solution, having no improvement for a

number of iterations, or a time limit is met. If the search cannot find the optimal

solution, then the best solution found during the search is returned as the final

solution.

2.3.5 Genetic Local Search

Combining different search techniques to enhance the performance of the mod-

els is a popular field. The methods for creating hybrids are not only lim-

ited to combining methods from different metaheuristics but also combining

the metaheuristics with the other optimization methods such as mathematical

programming, constraint programming, machine learning etc. [RPB10, Tal15].

We consider combining two metaheuristics: the GA and the LS, which is re-

ferred as genetic local search in the literature [FM96]. Genetic local search

algorithms have been shown to significantly improve the quality of the search

and reduce the time for many combinatorial optimization problems such as the

Travelling Salesman, graph coloring problems or in the field of bioinformat-

ics [KP94, UAB+91, DH98, MF97, YMLC16]. We use the abbreviation HB to

refer to the hybrid model.

Here, we use local search in order to increase the diversity in the population

after the crossover is applied. The procedure of LS is described in detail in

Section 2.3.3, and the GA in Section 2.3.4. We apply the same procedures de-

fined in these previous sections and combine them as described below. After

crossover step is applied, two product individuals are generated. We search the

neighbourhood each product individual to see if they have a better individual

than themselves. If the individual produced has a better neighbour, then it is re-

placed with its neighbour and the population is updated accordingly. The whole

process of HB is illustrated in Figure 2.8. Later, we use this hybrid procedure to

solve our proposed optimization problem.

Example. Consider the 3-colouring problem given in Figure 2.4. Let the fit-

ness of an individual be measured by the number of vertices in the graph that

satisfy the different colour constraint with respect to the given solution. Assume

that, we have a GA model, where the population consists of only 3 individuals.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

29 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

Initialization

Evaluation

Selection

Termination

Crossover

Local Search

Mutation

Figure 2.8: The procedure of a generic Genetic Local Search algorithm.

Let each individual s be defined by a list of colours in order s = 〈c1, c2, c3, c4, c5〉,
where each ci represents the color of the corresponding vertex vi. There-

fore ci ∈ {R,G,B}. Consider the sample population P = 〈s1, s2, s3〉, where

s1 = 〈R,G,B,G,G〉, s2 = 〈G,G,R,B,B〉, s3 = 〈B,B,B,B,B〉 as in the exam-

ple given in Section 2.3.4. The variable c denotes the number of vertices that

satisfy the different colour constraint using the given solution. Below is the list

of individuals in the initial population:

s1 = 〈R,G,B,G,G〉, c = 3,

s2 = 〈G,G,B,B,B〉, c = 2,

s3 = 〈B,B,B,B,B〉, c = 0.

Similar to the steps given in the GA example, let s1 and s2 crossover and sc1, sc2
below denote the products of the crossover:

sc1 = 〈R,G,B,B,B〉, c = 2,

sc2 = 〈G,G,B,G,G〉, c = 3.

Now the neighbourhood of both product individuals are constructed. We can

define the notion of neighbour in the same way that we defined in the example

of Section 2.3.3, where a neighbour solution differs from the current one by the

colour of exactly one vertex. Let Nc1 (and Nc2) denote the neighbourhood of sc1
(respectively sc2). Note that, none of the neighbours of sc provides an optimal

solution. However, the fittest of them (i.e. the best neighbour) is an assignment

that has the maximum number of vertices satisfying the difference constraint.

An assignment sn1 can be found for sc1 as containing 4 vertices that satisfy the

constraint. Similarly, the best neighbour of sc2 can be found as follows:

sn1 = 〈R,G,R, B,B〉, c = 4,

sn2 = 〈G,R, B,G,G〉, c = 5.

Finding that sn1 and sn2 are fitter solutions than sc1 and sc2, the best neigh-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

30 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

bours sn1 and sn2 are considered for refining the population. After eliminating

the worst two individuals from the population and adding the better ones, the

population P is updated as:

s1 = 〈R,G,B,G,G〉, c = 3,

sn1 = 〈R,G,R,B,B〉, c = 4,

sn2 = 〈G,R,B,G,G〉, c = 5.

Considering this population, the solution sn2 represents an optimal solution and

therefore the search is terminated.

2.3.6 Computational Complexity

The theory of computation is a concept in mathematics and computer science

based on estimating how efficiently a problem can be solved. The method used

to solve a problem is usually referred as an algorithm. In order to solve combi-

natorial problems, different researchers proposed different approaches and for-

mulations of algorithmic notions. In 1936, Church introduced the idea of “effec-

tive calculability” [Chu36]. At the same time, Turing defined the “computabil-

ity” [Tur36]. Turing stated in his paper: “In a recent paper Alonzo Church has

introduced an idea of “effective calculability”, which is equivalent to my “com-

putability”, but is very differently defined.” Then, he showed the equivalence

between these two notions. Turing is the one who defined in the best way

how a universal machine is able to compute any kind of calculus. Therefore,

in modern days, the efficiency of an algorithm is calculated based on Turing’s

computability studies [Tur36].

Turing explained that any algorithm can be described by a Turing Machine. He

defined the Turing machine as a machine TM that has a one-dimensional blank

tape in motion and a head that is used to print or read symbols on the tape. The

finite set of all possible symbols defines an alphabet on TM . The tape consists

of square-regions and the head is always positioned on one of the regions in

TM . The head can only move to the right or to the left of its currently located

square. The machine has two actions: write or move. A set of symbols defined

over the alphabet defines an input. The machine reads the input by one symbol

at a time, and either writes a symbol from the alphabet on the tape or the head

shifts to the square on the left or right. A TM is said to be deterministic, if

at most one action can be performed in any state. If the transition function is

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

31 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

changing the state of the machine to a possible set of states, then the machine

is referred as a non-deterministic TM .

The Turing Machine can be abstracted as having a finite number of states and

the machine runs by transitioning between the states with respect to the given

input. If the machine terminates after a finite number of transition between

the states, the set of symbols written on the tape after termination is called the

output. A problem is said to be computable if there exists a deterministic TM

that gives an output for every possible input of that problem. Additionally, a

problem is decidable if there exists a deterministic TM that produces a “Yes/No”

answer.

In Sections 2.3.6.1 and 2.3.6.2, we present two different complexity measures:

complexity of an algorithm and complexity of a problem.

2.3.6.1 Algorithmic Complexity

The main goal in computation is to find an efficient algorithm that solves a

problem. The algorithms define formal step-by-step strategies for solving prob-

lems [CLRS09]. Each algorithm can be represented by a Turing machine TM .

Different algorithms can be compared by their complexities. The complexity of

an algorithm is mainly studied in terms of the time and space required to solve a

problem. The size of a problem is measured by the amount of input data that is

required to describe an instance of the problem (i.e. length of the input). The

time complexity of an algorithm is described by the number of steps required

from the initial state of a TM to termination (i.e. the number moves performed

by the head). The space complexity, on the other hand, indicates how much

memory the system needs to use from start to termination (i.e. the space used

on the tape of a TM). The complexities of algorithms proposed for solving the

problems can be classified with respect to their order of growth. The growth
function of an algorithm gives an indication of how the algorithm behaves in

terms of running time. We can then compare algorithms by the asymptotic ef-

ficiency of their growth functions when the input size is assumed to have no

bounds.

The time complexity of an algorithm is often expressed by using the Big-O nota-
tion, denoted by O(.) [Sip06]. Big-O notation expresses an (asymptotic) upper

bound on the growth function in terms of the running time or space require-

ments of a given algorithm. A function f(n) is said to be O(g(n)) if and only if

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

32 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

there exists two positive constants c ∈ R+ and n0 ∈ Z+ such that [MS91]:

∀n ≥ n0, f(n) ≤ c · g(n)

In this case, g(n) is said to be an upper bound on f(n). Let TM be a Turing

machine and let n denote the size of a problem instance. We say that TM has

time complexity O(f(n)). Since the Big-O notation represents an upper bound,

it is used to indicate a bound for the worst-case running time of the algorithm.

It is possible to characterize algorithms with the input size denoted by n and a

positive constant x by using the Big-O notation as [Hoe14]:

• Constant time: O(1)

• Logarithmic time: O(logn)

• Linear time: O(n)

• Polynomial time: O(nx)

• Exponential time: O(xn)

After classifying an algorithm using the Big-O notation, one can infer which

algorithm is better in terms of the running time. The hierarchy between these

classes can broadly be given as: O(1) << O(logn) << O(n) << O(nx) <<
O(xn).

2.3.6.2 Problem Complexity

Computational complexity is a branch of the theory of computation that fo-

cuses on the difficulty of solving a problem [GJ79]. Complexity theory is used

to measure the hardness of any kind of problems. It provides us with a method-

ology and simple tools to prove that some problems are intractable. Within this

framework, we can show that a problem is as difficult as any other well-known

intractable problems. In this section, we discuss briefly the definitions of some

of the complexity classes because we use them later to prove the complexity

of our problem. These classes are: P, NP, NP-complete, NP-hard and #P -

complete. The relationship between these different complexity classes under

the assumption P 6= NP is illustrated in Figure 2.9.

We start with the definitions of two fundamental computational complexity

classes: P and NP. The class P is the set of all problems that can be solved by

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

33 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

Figure 2.9: Illustration of the complexity classes under the assumption that
P 6= NP.

a deterministic TM that is bounded by time that is a polynomial of the size of

the problem. Any such problem in P is also referred as solvable in “polynomial-

time" or “tractable". Thus, there exists an algorithm A for each of these prob-

lems that solves any instance of the given problem in O(nx) where n represents

the size of a problem instance, and x is a constant.

Class NP represents the problems that can be solved by a non-deterministic

TM in polynomial-time. In other words, a solution can only be found in

polynomial-time if a non-deterministic Turing machine is used. We know how

to simulate a non-deterministic machine with a deterministic one. However, it

takes exponential time to consider all the possible assignments (2n). Therefore,

P ⊂ NP.

The problems in P are contained by the set NP, however whether P = NP is

considered to be one of the most important open problems. If one can prove

that P = NP, that means that any problem whose solutions can be verified in

polynomial-time is also solvable in polynomial-time.

Another complexity class, namely NP-hard, represents a set of problems that

are at least as hard as all the problems in NP (if not harder). Any problem in

NP can be reduced in polynomial-time to a problem in NP-hard.

Let us briefly explain the difference between an optimization and a decision

problem before introducing the rest of the complexity classes of interest. A

problem can be modelled as an optimization problem, or a decision problem.

An optimization problem is interested in finding a solution to a given problem,

whereas the decision problem is interested in generating a “Yes/No” answer for

expressing whether there exists a solution to the problem using a set of input

values or not [GJ79]. For instance, recall the Travelling Salesman Problem

introduced in Definition 1. Let us define the inputs of the problem. There exists

a set of cities C = {c1, c2, . . . , cm}. A tour is defined as an ordering of cities

〈cπ(1), cπ(2), . . . , cπ(m) of C such that:

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

34 Begüm Genç

2. BACKGROUND

2.3 Optimization Modelling Languages and
Techniques

(m−1∑
i=1

d(cπ(i), cπ(i+1))
)

+ d(cπ(m), cπ(1))

Definition 2 gives a formal definition for the optimization problem of TSP,

whereas Definition 3 represents a formal definition for its decision version.

Definition 2 Optimization problem for TSP.
INPUT: A finite set C = {c1, c2, . . . , cm} of “cities”, a “distance” d(ci, cj) ∈ Z+ for
each pair of cities ci, cj ∈ C, and a bound B ∈ Z+ (where Z+ denotes the positive
integers).
QUESTION: Find a tour of all the cities in C that minimizes the total length in B.

Definition 3 Decision problem for TSP.
INPUT: A finite set C = {c1, c2, . . . , cm} of “cities”, a “distance” d(ci, cj) ∈ Z+ for
each pair of cities ci, cj ∈ C, and a bound B ∈ Z+ (where Z+ denotes the positive
integers).
QUESTION: Is there a tour of all the cities in C having total length no more than
B?

Note that, we use this formal language to define our problems in the remaining

sections.

There is another complexity class that is a subset of NP is called as NP-

complete. The problems in NP-complete are both NP and NP-hard. They

represent decision problems whose solutions can be verified in polynomial-time.

The first problem to be proven as being in NP-complete is the Boolean Satisfia-
bility Problem (SAT) by Cook’s theorem [Coo71]. Cook received a Turing award

for his work on complexity.

In order to give an insight, the optimization problem for TSP Definition 2 lies

in NP, because given a tour P as solution, P can be tested for being a solution

or not in polynomial-time. On the other hand, the decision problem of TSP

given in Definition 3 is proven to be NP-complete by Karp in 1972 [Kar72].

Following his contributions to the field, Karp also received a Turing award in

1985.

The last class we present is #P -complete. This class contains a set of problems

related to counting, whose related decision problem is inNP-complete [Val79].

Similarly, a problem is #P -complete if and only if it is in #P , and all #P -

hard problems are reducible to it. The counting problem of the TSP can be

formulated as in Definition 4.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

35 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Definition 4 Counting problem for TSP.
INPUT: A finite set C = {c1, c2, . . . , cm} of “cities”, a “distance” d(ci, cj) ∈ Z+ for
each pair of cities ci, cj ∈ C, and a bound B ∈ Z+ (where Z+ denotes the positive
integers).
QUESTION: How many tours of all the cities in C have total length no more than
B?

2.4 Matching Under Preferences

Matching problems emerge from many large-scale real-world problems and

have become the basis of a variety of important applications. These problems,

in general, involve assigning agents from one set to another. Typically, each

agent has an ordered preference list over the agents of the other set. Similarly,

some of the agents may have a capacity constraint to be satisfied, which indi-

cates the maximum number of other agents that should be assigned to it. These

types of problems have been widely studied by different research communities

such as computer scientists and economists over the years; in fact, the 2012

Nobel Prize for Economics was awarded to Shapley and Roth for their work on

stable allocations [201].

The most famous matching problem is the Stable Marriage (SM) which first ap-

peared in the literature in 1962 [GS62]. The Stable Marriage problem consists

of a set of men and a set of women, where each person has a strictly ordered

preference list over the people in the other set. The optimality criterion is to

assign each person with a partner such that no two unassigned people pre-

fer each other more than their currently assigned partners. The most straight-

forward generalizations of the Stable Marriage problem have been studied such

as the non-bipartite version Stable Roommates problem or the many-one gener-

alization Hospitals/Residents problem [GI89]. In addition to these problems,

some further stable matching problems such as versions where the preference

lists have ties [GI89], assigning pupils to schools [APRS05], student-project

allocation [AIM07], kidney exchange programmes [RSÜ04], and house alloca-

tion [AS98] problem have been studied under many different optimality criteria

such as Pareto optimality, popularity, rank-maximality, etc [Man13]. For a com-

prehensive survey on different matching problems the reader is referred to the

book written by Manlove [Man13].

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

36 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

It is important to note here that matching problems are also studied within the

field of algorithmic game theory under different optimality criteria. Game the-

ory is a study of mathematical models that aim to model situations in which

multiple participants interact or affect each other’s outcomes [NRTV07]. Ex-

tending this concept, algorithmic game theory is the study of game theory com-

bined with theoretical computer science [Rou10]. One of the most famous con-

cepts in algorithmic game theory is the Nash equilibrium. In a Nash equilibrium,

no player can be made better-off by changing their own strategies [Suh97]. The

Nash equilibrium focuses on changing strategy for one participant at a time. A

specific case, where the participants cannot benefit from jointly changing the

strategies of any possible subset of participants, is referred as strong (Nash)
equilibrium [Suh97]. The game version of the SM is a good example that im-

plements the strong Nash equilibria [NRTV07, DPK13].

In Section 2.4.1, we focus on the details of the Stable Marriage problem and

in Section 2.4.2, we discuss details of the Stable Roommates problem. We

present a comprehensive explanation for both of the problems, as we need their

properties in detail, later.

2.4.1 Stable Marriage Problem

The Stable Marriage problem (SM) was formally defined and solved by David

Gale and Lloyd Shapley [GS62]. In 1989, Gusfield and Irving wrote a book

that focuses on the Stable Marriage problem and provided detailed analysis

about the structure of the problem as well as the algorithms being used [GI89].

Unless otherwise stated, we refer to the notation and the information presented

in their book.

The SM is a bipartite matching problem with two-sided preferences, where the

aim is to find a stable matching. Formally, an instance of the Stable Marriage

problem takes as input two disjoint sets: a set of men U = {mi,mi+1, . . . ,mni
}

and a set of women W = {wi, wi+1, . . . , wni
}, where each person has an ordinal

preference list over all members of the opposite sex. In the SM, the preference

lists are said to be complete if all members of each sex strictly ranks all members

of the opposite sex. The size of an SM instance is denoted by n and assumed

to be n = |U | = |W |. Practically, a person can find another person from the

other sex unacceptable, hence prefers not to give a ranking in his/her preference

list. In this case, some preference lists may not be complete. This version of

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

37 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Table 2.1: Preference lists for men (left) and women (right) for a sample Stable
Marriage instance of size 7.

m0 0 6 5 2 4 1 3 w0 2 1 6 4 5 3 0
m1 6 1 4 5 0 2 3 w1 0 4 3 5 2 6 1
m2 6 0 3 1 5 4 2 w2 2 5 0 4 3 1 6
m3 3 2 0 1 4 6 5 w3 6 1 2 3 4 0 5
m4 1 2 0 3 4 5 6 w4 4 6 0 5 3 1 2
m5 6 1 0 3 5 4 2 w5 3 1 2 6 5 4 0
m6 2 5 0 6 4 3 1 w6 4 6 2 1 3 0 5

the problem is defined in the literature, without loss of generality, as Stable
Marriage with Incomplete Lists problem (SMI).

A man-woman pair (mi, wj) is acceptable if wj (respectively mi) appears in the

preference list of mi (respectively wj). For the SM, a matching M is defined as a

one-to-one correspondence between the sets U and W such that M consists of a

set of acceptable pairs where each man and woman appear in exactly one pair of

M. A matching is represented by M = {(mi0, wj0), (mi1, wj1), . . . , (min, wjn)}. If

(mi, wj) ∈M , we say that wj (respectively mi) is the partner of mi (respectively

wj) and we denote pM(mi) = wj and pM(wj) = mi. A pair (mi, wj) (sometimes

denoted as (i, j)) is said to be blocking a matching M if mi is unassigned or

prefers wj to M(mi) and wj is unassigned or prefers mi to M(wj). A matching

M is called stable if there exists no blocking pair in M . Similarly, a pair (mi, wj)
is said to be stable if it appears in some stable matching. Additionally, a pair

(mi, wj) is called fixed if (mi, wj) appears in all the stable matchings of the given

instance. We also refer to the man mi and woman wj that appear in a fixed-pair

as fixed. Table 2.1 gives an example of a Stable Marriage instance with 7 men

and 7 women, where each line represents the preference list of the relevant

person. For clarity, we denote each man mi with i and each woman wj with j

in the preference lists.

The algorithm proposed by Gale and Shapley, called the GS algorithm, was

proven to always find a stable matching to a given SM instance. The GS al-

gorithm finds a stable matching that is either uniquely favouring the men or

the women. The case where the men are proposing to the women results in a

stable matching that the men are matched with their best possible choice. If

the women are proposing, then the GS algorithm results in the stable matching

that is the best possible one for the women. Throughout this thesis, when we

talk about the operations we use man-oriented language (for instance we say

“if a man wants to break-up” or “a man prefers” etc.) to keep consistent and

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

38 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

clear. However, a woman-oriented language can be used interchangeably. This

change does not affect the theoretical results.

The idea behind the GS algorithm is straight-forward. The algorithm allows

men (or women) to “propose" to women (or men) until every man (or woman)

has made a proposal that has been accepted. There are two states during the

execution of the algorithm: a person can be free or can be engaged. In the

case that the men are proposing, the next free man proposes to the women

starting from the most preferred one in his list until he becomes engaged. On

the other hand, when a woman receives a proposal, if she is free at the time, she

accepts the proposal and becomes engaged with the proposer. However, if she

is already engaged with another man, she checks her preference list, refuses

the less favourable man and becomes engaged to the more preferred one. If

she breaks her current engagement, the man who has been rejected becomes

free and the algorithm continues as him proposing to the next most favourable

woman on his list. The order of the people proposing is not important as all

possible executions of the GS algorithm results in the same stable matching.

Subsequently, Gusfield and Irving slightly enhanced the GS algorithm and called

it the Extended Gale-Shapley algorithm. The motivation behind the extended

version was to reduce the size of the preference lists. In order to achieve it,

they introduced a deletion operation for any pair (mi, wj) that is not stable.

The deletion of pair (mi, wj) is performed by deleting the woman wj from man

mi’s list and deleting mi from wj ’s list. The extended algorithm is presented as

Algorithm 2.

It was shown by Gale and Shapley that the structure that represents all the

stable matchings for an instance forms a lattice M . In this lattice, the stable

matching in which each man is assigned to their most preferred stable part-

Algorithm 2 Extended Gale-Shapley [GI89]

1: procedure EXTENDED-GS()
2: assign each person to be free;
3: while some man m is free do
4: w := first woman on m’s list;
5: if some man p is assigned to w then
6: assign p to be free;
7: assign w to m;
8: for each successor m′ of m on w’s list do
9: delete the pair (m′ , w);

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

39 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

ner is called the man-optimal (woman-pessimal) matching and denoted by M0.

Similarly, the woman-optimal (man-pessimal) matching is denoted by MZ . A

stable matching Mi is said to dominate another stable matching Mj, denoted by

Mi � Mj, if every man prefers their partners in Mi to the ones in Mj or indif-

ferent between them. The man-optimal matching M0 and the woman-optimal

matching MZ represent the minimum and maximum elements of this lattice

because M0 dominates all other stable matchings and MZ is dominated by all

others. In Figure 2.10, we give the lattice of all stable matchings of the SM

instance given in Table 2.1.

The size of the lattice of stable matchings can be exponential in the number

of the people involved (n), as the number of all stable matchings can be expo-

nential in n [IL86b]. Pittel proves that the average number of stable matchings

when the preference lists are similar is O(nlogn) [Pit89]. Although it is known

that the number of stable matchings of a given SM instance can be exponential

M0

M1

M2

M3 M5

M4 M6 M8

M7 M9

M10

0 1 2 3 4 5 6
5 4 6 3 1 0 2

0 1 2 3 4 5 6
2 4 6 3 1 0 5

0 1 2 3 4 5 6
2 5 6 3 1 4 0

0 1 2 3 4 5 6
4 5 6 3 1 2 0

0 1 2 3 4 5 6
2 5 0 3 1 4 6

0 1 2 3 4 5 6
4 5 0 3 1 2 6

0 1 2 3 4 5 6
1 5 6 3 4 2 0

0 1 2 3 4 5 6
2 3 0 5 1 4 6

0 1 2 3 4 5 6
4 3 0 5 1 2 6

0 1 2 3 4 5 6
1 5 0 3 4 2 6

0 1 2 3 4 5 6
1 3 0 5 4 2 6

ρ0

ρ1

ρ4 ρ2

ρ5

ρ2 ρ4
ρ3

ρ2 ρ5
ρ3

ρ4

ρ3 ρ5

Figure 2.10: The lattice of all stable matchings corresponding to the instance
given in Table 2.1.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

40 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

in n, finding the maximum number of stable matchings an instance can have is

an open question proposed by Donald Knuth [Knu76]. Irving and Leather con-

structed a family of instances that has been shown to contain at least Ω(2.28n)
stable matchings [IL86b]. On the other hand, the best known asymptotic up-

per bound is O(3
4n!) [DBS13]. The number of stable matchings is also studied

on the three-dimensional version of the SM, and proven by Escamoher and

O’Sullivan that it is exponential in the instance size [EO18]. For more details

on the number of stable matchings, the reader is referred to the two recent

studies [Man13, KGW17].

It is important to note here a remarkable result on the stable pairs from Gus-

field’s work in Theorem 2.

Theorem 2 (Theorem 1.4.2 [GI89]) In a Stable Marriage instance that allows
unacceptable partners, the men and the women are each partitioned into two sets
− those that have partners in all stable matchings and those that have partners in
none.

From this theorem, it is known that the same set of men/women are assigned

in all stable matchings. This result is also known as the “Rural Hospitals Theo-

rem” [Man13]. If a person has a partner in a stable matching, then he/she has

a partner in all possible stable matchings of the same instance.

Let M be a stable matching of a given SM instance I. Given any man mi ∈ U
in I, let sM(mi) denote the most-preferred woman wj on mi’s list such that

wj ∈ W and wj prefers mi to pM(wj). Also, let nextM(mi) denote pM(sM(mi)).
A rotation ρ = (m0, w0), (m1, w1), . . . , (ml−1, wl−1) (where l ∈ N∗) is an ordered

list of pairs that is said to be exposed in M such that for each i, 0 ≤ i ≤ l − 1,

mi+1 = nextM(mi), where the addition operation is modulo l. For each pair

(mi, wj) ∈ ρ, we say mi (or wj) is involved in ρ or ρ includes mi (or wj).

It is important to see that a pair cannot be involved in more than one rotation.

Corollary 1 shows this property.

Corollary 1 (Corollary 3.2.1 [GI89]) Every man-woman pair (m,w) is in at
most one rotation. Hence there are at most n(n− 1)/2 rotations in an instance of
the Stable Marriage problem of size n.

The elimination of ρ from the matchingM that it is exposed in results in another

stable matching denoted by M/ρ. The matching M/ρ is defined as: M/ρ =
(M \ {(mi, wi) : 0 ≤ i ≤ l − 1}) ∪ {(mi, wi+1) : 0 ≤ i ≤ l − 1}. In Figure 2.10,

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

41 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

there exists a vertex for each stable matching of the instance and each vertex is

contains two vectors for representing the partners. The first vector represents

the set of men and the second vector represents the partner of each man in the

matching. Each edge e = (M ′,M) on the lattice is labelled with the rotation ρ,

and should be read as: ρ is exposed on M ′ and M = M ′/ρ.

There exists a partial order for rotations as shown by Gusfield and Irving [GI89].

A rotation ρ′ is said to precede another rotation ρ (denoted by ρ′ ≺ ρ), if ρ′ is

eliminated in every sequence of eliminations that starts at M0 and ends at a

stable matching in which ρ is exposed. Note that this relation is transitive,

that is, ρ′′ ≺ ρ′ ∧ ρ′ ≺ ρ =⇒ ρ′′ ≺ ρ. The structure that represents all

rotations and their partial order is a directed graph called rotation poset denoted

by Π = (V , E). Each rotation in Π corresponds to a vertex in V and there exists

a directed edge from ρ′ to ρ if ρ′ precedes ρ. The number of rotations is bounded

by n(n− 1)/2, and hence, the size of the rotation poset is O(n2) [GI89].

There are two different edge types in a rotation poset: Type 1 and Type 2.

Suppose that a pair (mi, wj) is in a rotation ρ. If ρ′ is the unique rotation that

moves mi to wj then (ρ′, ρ) ∈ E and ρ′ is called a Type 1 predecessor of ρ.

Suppose now that a pair (mi, wj) is not involved in any rotations. If ρ moves

mi below wj, and ρ′ 6= ρ is the unique rotation that moves wj above mi, then

(ρ′, ρ) ∈ E and ρ′ is called a Type 2 predecessor of ρ.

If a rotation ρ′ precedes another, ρ, we say ρ′ is the predecessor of ρ. Similarly,

ρ is called the successor of ρ′. Additionally, given two rotations ρ and ρ′, we say

that ρ′ is an immediate predecessor of ρ if ρ′ ≺ ρ and there is no rotation ρ′′ such

that ρ′ ≺ ρ′′ ≺ ρ. Similarly ρ is an immediate successor of ρ′ if ρ′ is an immediate

predecessor of ρ. Immediate predecessors of a rotation ρ in a rotation poset

are denoted by N−(ρ) and immediate successors are denoted by N+(ρ). Later,

we shall need transitivity. Therefore, we denote by N−t (ρ) (respectively N+
t (ρ))

the predecessors (respectively successors) of a rotation ρ including transitivity.

Using the terms defined in Section 2.1.2, two rotations are said to be comparable
if one precedes the other. Similarly, they are said to be incomparable if one does

not precede the other.

Gusfield and Irving present an algorithm for the construction of Π, which runs

in O(n2). In order to exploit this structure and to find all rotations, Gusfield

and Irving proposed an algorithm based on traversing a maximal chain in the

lattice of stable matchings from M0 to MZ . All rotations are exploited when

traversing this chain. Once a rotation is exposed in the current stable matching

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

42 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Algorithm 3 Implementation of Algorithm minimal-differences [GI89]

1: procedure MINIMAL-DIFFERENCES()
2: find M0 and MZ , and create the GS-lists using the Algorithm 2.
3: i := 0
4: set up an empty stack
5: x := 1
6: while x ≤ n do
7: if stack empty then
8: while (pMi

(x) = pMz (x)) and (x ≤ n) do
9: x := x+ 1

10: if x ≤ n then
11: push x onto stack
12: if stack not empty then
13: m := man on top of stack
14: m := nextMi

(m)
15: while m not in stack do
16: push m onto stack
17: m := nextMi

(m)
18: m′ := top of stack
19: pop stack
20: set up list ρi containing the pair (m′, pMi

(m′))
21: while m 6= m′ do
22: m′ := top of stack
23: pop stack
24: add the pair (m′, pMi

(m′)) to the head of ρi
25: output ρi
26: Mi+1 := Mi/ρi
27: i := i+ 1
28: update reduced preference lists

M, it is eliminated from M. Then the next rotation exposed in M/ρ is found

and the algorithm continues searching for rotations until the woman-optimal

matching MZ is obtained. Their algorithm called minimal-differences is given in

Algorithm 3. Note that, this algorithm runs in O(n2) time.

All the rotations associated with the instance given in Figure 2.10 respecting

the precedence relations are given in Figure 2.11. This figure represents the

rotation poset of this instance.

A closed subset S is a set of rotations such that for any rotation ρ in S, if there

exists a rotation ρ′ ∈ V that is a predecessor of ρ, then ρ′ is also in S. Given a

ρ = (m0, w0), (m1, w1), . . . , (ml−1, wl−1), the set of men {m0,m1, . . . ,ml−1} in ρ is

referred by x(ρ) and the set of women {w0, w1, . . . , wl−1} by y(ρ). Additionally,

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

43 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

(0, 5), (6, 2)

(1, 4), (6, 5), (5, 0)

(0, 2), (5, 4) (6, 0), (2, 6)

(0, 4), (4, 1) (1, 5), (3, 3)

Figure 2.11: Rotation poset of the instance given in Table 2.1.

we denote by X(S) the set of men that are included in at least one of the

rotations in S. More formally, X(S) = ⋃
ρ∈S x(ρ). Gusfield and Irving showed

the relationship between closed subsets and the stable matchings of an instance,

presented in Theorem 3, stating that each closed subset in the rotation poset

has a corresponding stable matching.

Theorem 3 (Theorem 2.5.7 [GI89]) i) There is a one-one correspondence be-
tween the closed subsets of Π and the stable matchings of M .

ii) S is the closed subset of rotations of Π corresponding to a stable matching M if
and only if S is the (unique) set of rotations on every M0-chain in M ending
at M . Further, M can be generated from M0 by eliminating the rotations in
their order along any of these paths, and these are the only ways to generate
M by rotation eliminations starting from M0.

iii) If S and S ′ are the unique sets of rotations corresponding to distinct stable
matchings M and M ′, then M dominates M ′ if and only if S ⊂ S ′.

By way of example, in Figure 2.10, the closed subset S0 of the man-optimal

matching M0 corresponds to the empty set S = ∅. Similarly, for the match-

ing M3, the closed subset S3 = {ρ0, ρ1, ρ4} and X(S3) = {0, 1, 2, 5, 6}. For the

woman-optimal matching MZ = M10 the closed subset is S10 = {ρ0, ρ1, ρ2, ρ3, ρ4,

ρ5} and X(S10) = {0, 1, 2, 3, 4, 5, 6}.

2.4.2 Stable Roommates Problem

The Stable Roommates problem (SR) is a generalization of the Stable Marriage

problem, where the sex factor is eliminated. It was proposed by Irving in

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

44 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

1985 [Irv85]. In the following year, Gusfield and Irving included a detailed

chapter on SR in their famous book [GI89]. Unless stated otherwise, we refer

to Gusfield and Irving’s book for definitions in this section.

An instance of SR admits a set of n agents regardless of their gender, where

each person expresses a ranking over all other people in the set in order of

preference. Most of the definitions for the SM also hold for the SR. Let P =
{p1, p2, . . . , pn} denote the set of people in any given SR instance, where n =
2 × k, k ≥ 0. A matching corresponds to a partition of P into disjoint pairs (or

sets of partners). If there does not exist any two persons {pi, pj} in the set P

that are not partners in matching M but they prefer each other to their partners

in M , then M is said to be a stable matching. If any such pair exists, it is called

a blocking pair. If a pair {pi, pj} appears in at least one stable matching, then

the pair is called a stable pair. If a pair appears in all stable matchings of the

underlying instance, then the pair is a fixed pair. Any pair that is stable and not

fixed is a non-fixed pair. Additionally, we refer to each of the persons appearing

in a fixed pair as a fixed person, and appearing in a non-fixed pair as a non-fixed
person. It should be noted that, the pairs are denoted by {pi, pj} in the SR, in

contrast to the SM, where a pair is (mi, wj). This is because the pairs in SR

are unordered, whereas the pairs in SM are ordered by the gender as a man

followed by a woman.

Gusfield and Irving show in Lemma 1 that given any SM instance, a correspond-

ing SR instance can be created.

Lemma 1 (Lemma 4.1.1 [GI89]) Given an instance of the stable marriage prob-
lem involving n men and n women, there is an instance (in fact there are many
instances) of the stable roommates problem involving those 2n persons such that
the stable roommates matchings are precisely the stable matchings for the original
stable marriage instance.

The method they use is by padding. For each person p, the idea is to pad all

the people of the same gender to the end of the preference list of p in any

order. This method removes the gender factor. A sample of how this padding

works can be found in Table 2.2. By this conversion, any SM instance has a

corresponding SR instance with the exact same stable matchings. Hence, the

number of stable matchings in the SR instances also grows exponentially with

respect to n.

Table 2.2 shows an instance of SM that admits three men U = {m1,m2,m3}

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

45 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Table 2.2: A sample SM instance (left) and its corresponding SR instance
(right).

pi Preference List of pi pi Preference List of pi
m1 2 3 1 p1 4 6 5 2 3
m2 3 1 2 p2 6 4 5 1 3
m3 2 3 1 p3 5 6 4 1 2
wi Preference List of wi p4 2 3 1 5 6
w1 2 3 1 p5 1 2 3 4 6
w2 1 2 3 p6 1 3 2 4 5
w3 1 3 2

and three women W = {w1, w2, w3} on the left, and its corresponding SR in-

stance that admits six people P = {p1, p2, p3, p4, p5, p6} on the right. Observe

the relationship between the men/women and the persons in those instances

as: p1 = m1, p2 = m2, p3 = m3, p4 = w1, p5 = w2, p6 = w3. We used the lex-

icographic order when applying the padding. We also used i to denote mi, wi

or pi in the preference lists for enhancing the readability depending on the

type of the problem. There exist two stable matchings for the SM instance:

M1 = {(m1, w1), (m2, w3), (m3, w2)} and M2 = {(m1, w3), (m2, w1), (m3, w2)}.
Note that, there exists one and only one fixed pair (m3, w2). For the corre-

sponding SR instance, there also exist exactly two stable matchings as M1 =
{{p1, p4}, {p2, p6}, {p3, p5}} and M2 = {{p1, p6}, {p2, p4}, {p3, p5}}, where the

pair {p3, p5} is a fixed-pair.

One of the most important differences between an SM and an SR instance is that

although any SM instance can be shown to have at least one stable matching,

an SR instance may contain no stable matchings at all. Any SR instance that

admits at least one stable matching is said to be solvable and the latter case is

unsolvable.

There exists an O(n2) algorithm to find a stable matching to a given SR in-

stance or report if none exists. The algorithm works in two phases: Phase 1
and Phase 2. Let us define some important concepts before discussing the algo-

rithm. Given the set of people P , the set consisting of each persons preference

list is called a preference table, denoted by T . The preference tables are modified

during the execution of the algorithm; the modified ones correspond to stable
tables. A preference table T is called stable if it satisfies the following properties:

1. pi = fT (pj) if and only if pj = lT (pi);

2. pair {pi, pj} is absent if and only if p prefers lT (pi) to pj or pj prefers lT (pj)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

46 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

to pi;

3. no person’s list in T is empty.

A pair is said to belong to a table T , if the persons in the pair appear in their

preference lists in T . A pair is said to be deleted from a table T , if they are

deleted from each other’s preference lists in T . For a given table T and a person

pi, the notations fT (pi), sT (pi), lT (pi) denote, if any, the first, second and last

entries in pi’s preference list in T , respectively.

Phase 1 is very similar to the Gale-Shapley algorithm proposed for solving the

Stable Marriage problem (see Algorithm 2). It is based on each person propos-

ing to the first available person on their lists. Any person that is currently not

holding any proposals hold the first proposal they receive, and become semi-
engaged. Moreover, if a semi-engaged person receives a proposal from a more

preferred person than he/she currently has, he/she becomes semi-engaged to

the more preferred person and the previous person becomes free. If a person

p becomes semi-engaged to p′, all pairs (p′, p∗) such that p′ prefers p to p∗ are

deleted from the table. The details of the procedure is presented in Algorithm 4.

The table obtained after applying the Phase 1 algorithm is called the phase-1
table and is denoted by T0. If at any step of the algorithm, any of the preference

lists become empty, then the instance is immediately reported as unsolvable.

Consider the SR instance involving six people, given in Table 2.3, as running

example throughout this section. Applying Algorithm 4 on the SR instance

given in Table 2.3 results in the Phase-1 table given in Table 2.4.

In T0, if each person’s list contain exactly one entry, T0 corresponds to a unique

stable match, where each person is matched with the single entry in their pref-

erence lists. However, if at least two of the preference lists in T0 contain more

than one entry, the second phase of the SR algorithm is performed. The main

idea behind the Phase 2 is to identify rotations exposed and eliminating them

Table 2.3: A sample SR instance of six people.

pi Preference List of pi
p1 4 5 2 3 6
p2 6 1 4 5 3
p3 2 1 6 5 4
p4 2 5 6 3 1
p5 3 4 1 2 6
p6 1 5 3 2 4

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

47 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Algorithm 4 Phase 1 of the SR algorithm

1: assign each person to be free
2: while some free person x has a nonempty list do
3: y ← first person on x’s list
4: if some person z is semi-engaged to y then
5: assign z to be free
6: assign x to be semi-engaged to y
7: for each successor x′ of x on y’z list do
8: delete the pair (x′, y) from the preference table.

Table 2.4: Phase-1 table of the SR instance given in Table 2.3.

pi Preference List of pi
p1 4 5 2 3
p2 6 1 4
p3 1 6 5
p4 2 5 1
p5 3 4 1 6
p6 5 3 2

starting from T0 until the final table contains one entry at each list or empty.

The general algorithm for the Phase 2 is given in Algorithm 5. The overall

algorithm for SR takes O(n2) time.

The rotations in SR are represented as ordered lists of pairs and they are defined

relative to the tables, and are analogous to the minimal differences described

for Stable Marriage problem discussed in Algorithm 3, Page 43. A rotation ρ

is denoted as ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1), where all xi, yj ∈ P . Each

rotation sequence has the property that yi = fT (xi) and yi+1 = sT (xi) for all i,

0 ≤ i ≤ r− 1, where i+1 is taken modulo r in table T . In this case, the rotation

ρ is said to be exposed in table T . The set {x0, . . . , xr−1} of persons is called the

X-set of ρ, denoted by X(ρ). Similarly, {y0, . . . , yr−1} is called the Y-set, denoted

Algorithm 5 Phase 2 of the SR algorithm
1: T ← T0
2: while (some list in T has more than one entry) and (no list in T is empty)

do
3: find a rotation ρ exposed in T
4: T ← T/ρ . eliminate ρ
5: if some list in T is empty then
6: report instance unsolvable
7: else
8: output T . T is a stable matching

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

48 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

by Y (ρ). The X-set (or Y-set) of a set of rotations refers to the union of X-sets

(or Y-sets) of all rotations in the rotation set. For any two rotations ρi and ρj,

the X-sets of ρi, ρj are disjoint, as are their Y-sets. The positions of xi and yi in

their respective lists are characterized in Lemma 2.

Lemma 2 (Lemma 4.2.7 [GI89]) Let ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) be a
rotation exposed in table T. Then, if T/ρ contains no empty lists,

i) fT/ρ(xi) = yi+1 for each i, 0 ≤ i ≤ r − 1;

ii) lT/ρ(yi) = xi−1 for each i, 0 ≤ i ≤ r − 1;

iii) fT/ρ(x) = fT (x) for each x not in the X-set of ρ, and lT/ρ(y) = lT (y) for each
y not in the Y-set of ρ.

Given a table T and a rotation ρ exposed in T , eliminating ρ from T means that

for each pair (xi, yi) ∈ ρ, the deletion of yi from xi’s list and also the deletion of

all pairs {yi, z} such that yi prefers xi−1 to z from T . The table after eliminating

ρ from T is denoted by T/ρ. The rotation ρ is said to move xi down from yi to

yi+1, and move yi up from xi to xi−1 when ρ is eliminated from T and does not

produce any empty lists.

There are two types of rotations: singular and non-singular. A rotation ρ =
(x0, y0), (x1, y1), . . . , (xr−1, yr−1) is called a non-singular rotation if ρ̄ = (y1, x0),
(y2, x1), . . . , (y0, xr−1) is also a rotation. In this case, ρ and ρ̄ are called duals of

each other. If a rotation does not have a dual, then it is a singular rotation.

Gusfield and Irving characterize the pairs with respect to the tables and rota-

tions as presented in Lemma 3.

Lemma 3 (Lemma 4.4.1 [GI89]) In a solvable roommates instance,

i) {x, y} is a fixed pair if and only if x’s list in the reduced Phase-1 table contains
only y and y’s contains only x;

ii) otherwise, {x, y} is a stable pair if and only if the pair (x, y), or the pair (y, x),
is in a nonsingular rotation.

Now, we demonstrate Algorithm 5 on the Phase-1 table presented in Table 2.4.

There are two rotations exposed in table T0. These rotations are ρ0 = (1, 4),
(6, 5), (5, 3) and ρ1 = (2, 6), (3, 1). Eliminating both ρ0 and ρ1 results in the

table T ′ given in Table 2.5. On table T ′, there is one more rotation ex-

posed: ρ2 = (1, 5), (4, 2). Note that, eliminating ρ2 from T ′ results in reduc-

ing all lists to one entry and, therefore, corresponds to the stable matching

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

49 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Table 2.5: Table T ′ after elimination of the rotations ρ0 and ρ1.

pi Preference List of pi
p1 5 2
p2 1 4
p3 6
p4 2 5
p5 4 1
p6 3

M = {{p1, p2}, {p3, p6}, {p4, p5}}.

The next step is to identify which rotations are singular, which ones are non-

singular and to create duals of the non-singular ones accordingly. The test for

deciding the type of a rotation ρ can be done by applying Algorithm 5, starting

from T0, eliminating a set of the exposed rotations without eliminating ρ. If a

solution can be found without eliminating ρ, it means that ρ̄ exists. This test is

a brute force approach and, therefore, needs to be repeated for each individual

rotation. Applying this test on the rotations found for the instance given in

Table 2.3, we find out that ρ0 is a singular rotation and ρ1, ρ2 are both non-

singular rotations. Additionally, the duals of ρ1 and ρ2 are found as follows:

ρ̄1 = (1, 2), (6, 3) and ρ̄2 = (2, 1), (5, 4). Therefore, our instance contains five

rotations in total, ρ0, ρ1, ρ2, ρ̄1, and ρ̄2.

Similar to the definition of rotation posets in SM, the set of both singular and

non-singular rotations under ≺ defines the roommates rotation poset. A rotation

π is a predecessor of a rotation ρ, denoted by π ≺ ρ, if, whenever T is a table in

which ρ is exposed and T = T0/Z, π belongs to the set of rotations Z. We refer

to any two rotations ρ, σ in Π such that σ 6= ρ̄ as incomparable if none of them

precede the other one, comparable otherwise. For two rotations exposed in a

table, if the rotations are not duals, then the order of eliminating them does not

matter (see Lemma 4).

Lemma 4 (Lemma 4.3.2 [GI89]) If ρ and σ are rotations exposed in a table T,
and σ 6= ρ̄, then (T/ρ)/σ = (T/σ)/ρ.

A subset of the rotations in the roommates rotation poset such that the set con-

tains at least one of each dual rotations is called a complete subset. Furthermore,

for each rotation in this subset, if all predecessors of the rotation is also in the

subset, then it is called a complete closed subset. The set of only non-singular

rotations under ≺ also forms a partially ordered set and is called the reduced
rotation poset denoted by Π.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

50 Begüm Genç

2. BACKGROUND 2.4 Matching Under Preferences

Gusfield and Irving showed that there exists a one-one correspondence between

the complete closed subsets of the reduced rotation poset and the stable match-

ings of the underlying instance [GI89]. They also provided a characterization

for the singular and non-singular rotations, including the precedence relation

between them, as presented in Lemma 5. This characterization points out to

three properties of rotations. The first one states that given two non-singular

rotations, where one of them is the dual of the other one, these two rotations

are always incomparable. Second, given two comparable rotations ρ and σ,

where ρ precedes σ, their duals are also comparable and σ̄ precedes ρ̄. Finally,

the last property states that all rotations that precede a singular rotation are

also singular.

Lemma 5 (Lemma 4.3.7 [GI89]) If ρ, σ are non-singular and π is a singular
rotation, then

i) ρ 6≺ ρ̄

ii) ρ ≺ σ ⇐⇒ σ̄ ≺ ρ̄

iii) τ ≺ π =⇒ τ is singular; i.e. a predecessor of a singular rotation is also
singular.

Any stable matching can be obtained by eliminating all singular rotations fol-

lowed by one of each of the dual rotations from the Phase-1 table T0. We denote

by TS the table where all singular rotations are eliminated from T0. The con-

struction of Π can be achieved in O(n2) time analogously to the construction

of the SM rotation poset, once all the non-singular rotations are found. The

overall complexity then is O(n4). This time can be further reduced to O(n3logn)
by using a more subtle algorithm, but we use the brute force approach.

Recall that we identified each rotation for the SR instance given in Table 2.3.

The roommates rotation poset for this instance with rotation set {ρ0, ρ1, ρ2, ρ̄1,

ρ̄2} (left), and also the reduced rotation poset of the same instance with the

rotation set {ρ1, ρ2, ρ̄1, ρ̄2} (right) are given in Figure 2.12.

There exist two different complete closed subsets in the reduced rotation graph

Π given in Figure 2.12, namely S1 = {ρ1, ρ̄2} and S2 = {ρ̄1, ρ2}. These two

complete closed subsets correspond to the two stable matchings of the under-

lying instance. Applying all the singular rotations and each of the rotations in

the given subset starting from T0 results in those stable matchings, which are

M1 = {{p1, p5}, {p2, p4}, {p3, p6}} and M2 = {{p1, p3}, {p2, p6}, {p4, p5}} corre-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

51 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

sponding to the S1 and S2, respectively.

ρ0

ρ̄2

ρ1

ρ̄1

ρ2

ρ̄2

ρ1

ρ̄1

ρ2

Figure 2.12: The roommates rotation poset (left) and the reduced rotation
poset (right) for the instance given in Table 2.3.

2.5 Robust Optimization

Robust Optimization (RO) is a very broad area that dates back to 1970s [Soy73].

We start with a motivational example followed by the general view of the area

and then narrow our focus down to a specific field.

We start with motivating the robustness in the context of a flight scheduling

problem. It is well-known that the airlines lose huge amounts of money by

rescheduling their flights due to unexpected events [SSDS02, Yua09]. There-

fore, it is desirable to find schedules such that if an emergency landing must be

made, a crew member cannot attend a flight, a flight is cancelled, etc., then an

alternative arrangement can be found at a minimum cost or requiring a limited

number, if any, additional changes.

Examples of the most active robust optimization fields can be broadly listed as

planning, scheduling, logistics, finance, etc [GMT14]. The need for robustness

in optimization arises because many problems, especially in the real-world, are

usually sensitive to perturbations such as measurement mistakes, errors in data,

or they are lacking a clear objective [IS16]. Some recent comprehensive reviews

of robust optimization [GMT14, ST16, BBC11] and a textbook [BTGN09] are

available in the literature.

In general, in a robust optimization model, uncertain parameters that are de-

rived from noisy, incomplete, or erroneous data are handled as random vari-

ables with discrete distributions [XHQC09]. One main issue in RO is that the

term robustness has many different definitions. These different definitions do

not only appear between different fields but also different robustness notions

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

52 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

exist within the same field or problem. Some of these fields that include am-

biguous definitions can be listed as: scheduling and timetabling [SBI12], CP

models [BS15], machine learning [XCM09], economics [Woo06].

We give some concrete examples on some different robustness notions below.

For example, in stochastic constraint programming, a robust solution is one that

is consistent with similar decisions made in different scenarios [TMW06]. On

the other hand, in robust sensor network design, different levels of uncertainty

are defined to evaluate the robustness of a network that is not effected by node

failures or some other technical errors [BNR08, KBG08, KBG07]. Another ap-

proach to robustness is to find solutions that are robust to changes and can be

repaired by minor changes. This notion of robustness motivated by providing

small repairs, sometimes also referred as fault-tolerance, was founded by Gins-

berg by (a, b)-supermodels in SAT and also extended to CP by Hebrard et al. un-

der the name (a, b)-super solutions [GPR98, HHOW05, HHW04a]. Models that

take into account robustness are generally obtained by choosing the parameters

of the solution such that the performance of the solution is less influenced by

negative effects of the uncertainty [SAFP14].

The robustness notions presented in Boolean satisfiability and constraint pro-

gramming frameworks are the main inspirations to the robustness notion we

introduce in matching problems. Therefore, we focus on the robustness notions

being used in these fields.

CP and SAT

Robustness in SAT and CP form one of the branches of the general RO field. The

need for robustness in CP emerged due to the need to provide robust solutions

that are not brittle to changes in the environment, or uncertainty and noise in

data [HS96]. A solution that is not robust may not remain a solution in the

case of an error or it may require many modifications if an unexpected event

occurs and/or it might be costly to compute a new solution within the required

number of maximum changes [RvBW06].

There exist a variety of definitions within the context of CP and SAT [BS15].

We exclude the robust SAT/CSP solvers or their search strategies in this review.

Robustness in the context of solvers refers to having ability to solve a variety

of instances within a specified time frame [GN07, FH00, MH12]. Our focus is

on the ability of an individual solution that is produced to withstand particular

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

53 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

events of change.

There is some research in the area that considers robustness as: “a robust so-
lution has a high probability to remain solution after changes in the environ-
ment” [CWSB14, BS15]. This is the most common use of the term robustness.

Another definition that exists defines a solution as robust if “there exists an-
other solution that can be found through a small number of modifications to the
current solution” [GPR98, HHW04b, HHW04a, HO04]. The Handbook of Con-

straint programming also considers the robustness as “solutions that are likely
to remain solutions even after the change has occurred, or to need only minor
repairs”. However, some research characterize this notion of repairs as fault-

tolerance [Heb07] or recoverability [DSOI05].

In Section 2.5.1 and Section 2.5.2, we look into details of some models that

use the robustness as “there exists another solution that can be found through

a small number of modifications to the current solution”.

2.5.1 (a,b)-supermodels

In 1998, Ginsberg, Parkes and Roy introduced (a, b)-supermodels as a mea-

sure of robustness in the SAT framework [GPR98, Roy01]. Ginsberg et al.

also proved that determining whether a formula has an (a, b)-supermodel is

NP-complete [GPR98]. In Ginsberg’s work the (a, b)-supermodels are referred

as robust solutions. However, later on Roy denotes them by γ−models, and

referring to them as robust solutions as an approach to fault-tolerance in his

work [Roy06]. The formal definitions for both of these concepts are given in

Definition 5 and Definition 6.

Definition 5 [GPR98] An (a, b)-supermodel is a model such that if we modify the
values taken by the variables in a set of size at most a (breakage), another model
can be obtained by modifying the values of the variables in a disjoint set of size at
most b (repair).

Definition 6 [Roy01] A γ−model of a boolean formula F is a satisfying assign-
ment α of F , F (α) = 1, such that for every i, if we negate the ith bit of α, there is
another bit j 6= i of α which we an negate to get another satisfying assignment.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

54 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

Example. We demonstrate (a, b)-supermodels on the following formula that

contains three literals x1, x2, and x3:

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) (2.1)

There exists 6 different assignments for those literals that satisfy the formula.

These assignments, referred as Ai, i ∈ [1, 6], are listed in Table 2.6.

Let us first demonstrate the concept of (1, b)-supermodels using the assign-

ment A1 = (0, 0, 1). If x1 loses its value, (1, 0, 1) is not a satisfying assign-

ment but changing one other literals value such as x2, a satisfying assignment

A6 = (1, 1, 1) can be obtained. Similarly, if x2 loses its value, (0, 1, 1) is a satisfy-

ing assignment and no repairs are required. Lastly, if x3 loses its value, (0, 0, 0) is

not a satisfying assignment but by changing one other, such as x1, A4 = (1, 0, 0)
can be found as a satisfying assignment. Therefore, the assignment A1 is a

(1, 1)-supermodel because the loss of a value for any single variable (a = 1)

may require, in the worst case, one other variable to change its value to obtain

another satisfying assignment. On the other hand, by following the same rea-

soning, we conclude that A5 = (1, 1, 0) is a (1, 0)-supermodel because, for each

possible break, each of (0, 1, 0), (1, 0, 0), (1, 1, 1) are satisfying assignments.

Next, we demonstrate (2, b)-supermodels on the same model. This time, all size

2 combinations of literals must be checked for a value loss. For A1, if any of

the pairs {x1, x2}, {x1, x3}, or {x2, x3} lose their values at the same time, no

further repairs are required as (1, 1, 1), (1, 0, 0) and (0, 1, 0) are all satisfying

assignments. Thus, A1 is also a (2, 0)-supermodel. On the other hand, A3 is a

(2, 1)-supermodel because if x2, x3 lose their value at the same time, x1 must be

changed to provide a repair. Additionally, if x1, x2 lose their value, x3 must be

changed. However, no repairs are required if x1, x3 lose their value.

Table 2.6: Satisfying assignments of the sample SAT formula given in Equa-
tion 2.1.

Ai x1 x2 x3
A1 0 0 1
A2 0 1 0
A3 0 1 1
A4 1 0 0
A5 1 1 0
A6 1 1 1

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

55 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

2.5.2 (a,b)-super solutions

The (a, b)-super solutions framework is an extended version of (a, b)-super-

models to the constraint programming setting [HHW04b, HHW04a, Heb07,

HW05]. Hebrard et al. define (a, b)-super solutions as a generalization of both

fault-tolerant solutions in CP and (a, b)-supermodels. An (a, b)-super solution is

a solution which if any a variables break, the solution can be repaired by pro-

viding repair by changing a maximum of b other variables. They use a notion

of distance denoted by ∆A(f, g) for two assignments f and g on a set A. Then,

they define repairability of a solution as:

Definition 7 A breakage set A is a subset of variables (A ⊂ X). A b-repair of a
breakage A for a solution f is a solution g such that ∆A(f, g) = |A| and ∆(f, g) ≤
|A|+ b.

They also show that the NP-completeness of (a, b)-supermodels lifts to (a, b)-
super solutions, and that finding (a, b)-super solutions is also NP-complete.

Their main focus, however, is on finding (1, b)-super solutions.

As a related term, h-recoverability is defined by Barber and Salido as an (h, 0)-
super solution (i.e. a = h, b = 0) [BS15]. They point out the difference

being only as the variables to be repaired are consecutive over time for h-

recoverability, but in (h, 0)-super solutions, they are not consecutive. Hebrard

et al. remark that it is rare for problems in general to have solutions where all

possible breaks are repairable. Therefore, they look for the most robust solu-

tion, which maximizes the number of repairable variables by also minimizing

the repair costs [Heb07].

Policella, in her thesis, mentions one of the main disadvantages of using (a, b)-
super solutions as considering only the number of changes and not their mag-

nitudes [Pol05]. At the same time, Holland and O’Sullivan extend the notion

of (a, b)-super solutions to weighted super solutions (WSS), and also use them

for finding robust solutions to combinatorial auctions or job shop schedul-

ing [HO04, HO05b, HO05a]. Bofill et al. also work on the robustness of so-

lutions in combinatorial auctions mostly using the (a, b)-supermodels [BBV03].

Holland and O’Sullivan define a solution as robust if there exists an alternative

repair solution should some assignments break. Their main contributions are

to use a probabilistic approach to model which assignments are more likely to

break and also a a notion of repair cost. They define a static and a dynamic

version of weighted super solutions as follows.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

56 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

Definition 8 (Static WSS) A solution to a CSP is a static weighted super solution,
or (α, β)-static WSS, if any set of variables whose probability of losing their current
assignments is greater than or equal to α, can be repaired by reassigning other
values to these and other variables with a repair cost of at most β.

Definition 9 (Dynamic WSS) A solution to a CSP is a dynamic weighted super
solution, or (α, β, τ)-dynamic WSS, if any set of variables whose probability of
losing their current assignments is greater than or equal to α before time τ , can
be repaired by reassigning other values to these and other variables with a repair
cost of at most β.

Considering that the (a, b)-super solutions are defined within the CP networks,

the proposed algorithms for finding robust solutions are mainly based on MAC

(Maintaining Arc Consistency algorithm) [SF94] by using backtracking meth-

ods.

2.5.3 Discussion on (a,b) models

As discussed throughout Section 2.5, there exist many different notions of ro-

bustness in RO. Following the definitions given above, let us re-write two com-

monly used definitions below.

Definition 10 A solution is robust, if it still remains as a solution in the case of
erroneous input, unexpected failures, etc.

Definition 11 A solution is fault-tolerant, if it is guaranteed to find another solu-
tion by applying small modifications in the case of unexpected events.

Now, let us partition (a, b)-supermodels and (a, b)-super solutions (we shall re-

fer them as (a, b) models for simplicity) into two, where one of the cases is when

b = 0 and the other one is when b ≥ 1. Using the Definitions 10 and 11, one can

characterize the (a, b) models as either defining robustness or fault-tolerance (or

recoverability). More specifically, the (a, b)-supermodels and γ−models can be

referred as fault-tolerant or recoverable when b ≥ 1. On the other hand, (a, 0)-
supermodels provide robust solutions because they do not require any further

modification/repairs. In the overall, the models above (referred as (a, b) mod-

els) define a general notion of robustness by also using fault-tolerance frame-

work.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

57 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

2.5.4 Robustness Notions in Matching Problems

Robustness in matching problems is a new and active area. Considering that

matching problems is a true interdisciplinary area, the first appearance of ro-

bustness dates back to 2011 studied in economics, within the context of Match-

ing Markets by Kojima [Koj11]. Kojima’s robustness notion is motivated by

the students misreporting their preferences to manipulate the matchings in the

central assignment systems such as assignment of students to schools.

These kind of preference manipulations in the literature have been studied un-

der the notion of strategy-proofness. In this context, a market is defined by the

set of agents and their preferences. A mechanism defines a function over the

preferences to the set of all matchings. A mechanism is stable, if no two agents,

one from each side of the market, prefer each other over the partners with

whom they are matched [AG15]. It is strategy-proof if no individual student

has an incentive to misreport his/her preference [Afa12]. Then, a mechanism

is defined by Kojima as robustly stable if it is stable, strategy-proof, and also im-

mune to a combined manipulation, where a student first misrepresents his or

her preferences and then blocks the matching that is produced by the central-

ized mechanism. Afacan extended the concept of robust stability proposed by

Kojima, to group robust stability, where a group of students misrepresent their

choices for a manipulation [Afa12].

Later on, some researchers focused on including robustness for stable match-

ings when uncertainty in the preferences is present. In 2013, Drummond and

Boutilier proposed to use minimax regret as a measure of robustness of stable

matchings for the Stable Marriage problem [DB13]. Their work is motivated

by the incomplete information provided by agents. The use of minimax regret

provides robustness by minimizing the worst-case loss.

A recent study from Menon and Larson focuses on finding “good” solutions (i.e.

a matching with the least number of blocking pairs in expectation) and refer

to a good solution as a robust one [ML18]. They mostly focus on providing

algorithms to find such matchings.

Aziz et al. considered different models to study this problem and mostly focused

on the complexity of the problem [ABG+16]. They define a stability probability
as the probability of a matching being stable. Then, they model a number

of problems related to stability probability using the uncertainty and provide

rich complexity results, showing some of those problems are NP-hard, NP-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

58 Begüm Genç

2. BACKGROUND 2.5 Robust Optimization

complete or #P -complete, also leaving some open problems.

One of the most recent robustness notions has been proposed by Jacobovic on

the Stable Marriage problem, where the main idea is to use a probability model

and a social cost function to measure robustness [Jac16]. They are motivated

by some agents leaving the stable matching after it has been constructed. For

instance, a student changes his/her decision to go to the college that he/she

has been assigned to. They propose their version as perturbation robust sta-
ble matching, by introducing a probabilistic model that finds the possibility of

agents to leave, or the probabilities are assumed to be known. They focus on

the case in which only one agent is allowed to leave the stable matching at

a time and show that v − perturbation robust stable matching is solvable in

polynomial-time by reducing the problem to a max-flow problem.

Mai and Vazirani also work on a robust version of SM [MV18]. Their robustness

notion is defined over the errors in the input. These errors are defined by

swaps or shifts. A swap occurs in the preference lists of a person, where the

positions of two adjacent people in the list are swapped. A shift occurs if a

person wants to move up a person’s position in his/her list and shift all the

remaining people accordingly. They provide a polynomial-time solution based

on finding “nearby” instances by using the lattice structures. The problem they

solve is to finding a stable matching for a given Stable Marriage instance that

maximizes the probability of being stable for the nearby instance obtained after

introduction of an error. Their work is also allowing only one error at a time.

Mai and Vazirani discuss our work on robustness in matching problems as a

misnomer in their work [MV18]. They suggest that “fault-tolerance” is a more

appropriate term for the robustness notion that we proposed. However, we use

the robustness definition that appears in the Handbook of Constraint Program-

ming, defined at the beginning of Section 2.5. As we discussed in Section 2.5,

(a, b)-supermatches (the formal definition is given in Definition 12 in Chapter 3,

Page 64) define a notion of robustness for matching problems.

Note that, most of the papers investigated in this section have been published

as e-prints. To the best of our knowledge, there do not exist any formally

peer-reviewed versions for the associated publications [ML18, ABG+16, Jac16,

MV18] at the time this thesis being written. Although the two research pa-

pers; one of them by Jacobovic, and the other one by Mai and Vazirani contain

overlapping aspects with our research, our notion of robustness is completely

different as can be seen in Chapter 3.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

59 Begüm Genç

2. BACKGROUND 2.6 Chapter Summary

2.6 Chapter Summary

This chapter reviews the definitions and notation relevant to this dissertation.

Two mathematical structures: graphs and partially ordered sets have been in-

troduced as they are being widely used in the technical chapters. A formal

definition for optimization problems has been given and a detailed informa-

tion of the field including complexity, modelling and search techniques have

been presented. Subsequently, formal definitions of the two matching prob-

lems, namely the Stable Marriage and the Stable Roommates problems have

been presented in detail. The chapter is concluded by discussing the Robust

Optimization by mainly focusing on the different robustness notions in opti-

mization problems. We also provide a discussion of these notions in the context

of (a, b)-supermodels and (a, b)-super solutions. Subsequent chapters will intro-

duce new notation and definitions that are specific to the work presented in this

dissertation at the beginning of the relevant chapters.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

60 Begüm Genç

Chapter 3

Robust Stable Marriage

Abstract. In this chapter, we propose a notion of robustness for the
stable matching problems called (a, b)-supermatches. We first formu-
late the problem on the Stable Marriage framework. We refer to the
problem of finding (a, b)-supermatches for Stable Marriage problem
as the Robust Stable Marriage problem (RSM). Then, we present a
formulation, based on finding independent sets, for finding the (1, 1)-
supermatches of the underlying instance. We prove the NP-complete-
ness of deciding if there exists a (1, 1)-supermatch to a given Stable
Marriage instance by showing a reduction based on a special case of
SAT, which we also prove is NP-complete. We conclude the chapter by
identifying some cases of RSM that are in P and NP-hard.

3.1 Introduction

The Stable Marriage problem (SM) is one of the most popular variants of the sta-

ble matching problems with an active history of more than fifty years [Man13].

The SM provides an interesting and rich framework to study new concepts

mostly because all SM instances have at least one stable matching and their

structural properties are well studied.

In Section 1.1, we provided motivation for the need of a notion of robustness

for the Hospital/Residents (HR) problem, a generalization of the SM. If men

(or women) in SM are abstracted as the residents, and women (or men) as

the hospitals, then with the restriction of having the capacities of each hospital

61

3. ROBUST STABLE MARRIAGE 3.2 Notation and Definitions

set to one, we obtain a Hospital/Residents instance. In that example, we men-

tioned about the robustness as a relocation cost for a number of pairs. In the

context of SM, the robustness investigates the number of break-up requests of

man-woman pairs by considering the cost of finding new partners to the broken

pairs.

3.2 Notation and Definitions

In this section, we characterize and formally define the notion of robustness we

propose for stable matching problems and also formulate our notation. We use

the Stable Marriage problem as the framework to define our notion.

Informally, an (a, b)-supermatch is a stable matching such that if any a men in

the matching break-up from their current partners, it is possible to find another

stable matching by changing the partners of those a men and also changing the

currently assigned partners of at most b other men. Note that, the term “men”

can be replaced by “women”, or “pairs” in the definition of (a, b)-supermatches

without loss of meaning. Although we use a man-oriented language in this

work (for example, we say that the “man” wishes to break-up), there is no

sexist meanings to it. Also note that, each man or woman in a stable matching

refers to a unique pair. Therefore, the break-up of a man/woman can also be

considered as losing the pair in which the specified man/woman is involved.

Let us first define the terminology to be used throughout this dissertation. Given

a stable matching M and a set of pairs Ψ ∈ M, when searching for another

stable matching M ′, where none of the pairs in Ψ are in M ′, we say that the

pairs in Ψ wish to break-up. We also say that any pair (mi, wj) ∈ Ψ is a breakage,

or mi wishes to break-up, interchangeably. Subsequently, the men in Ψ ∈M are

said to lose their partners to obtain M ′.

Let Mi,Mj and Mk be three different stable matchings. We measure the dis-
tance between two stable matchings, denoted by d(Mi,Mj), as the number of

men that have different partners between Mi and Mj. Considering the discus-

sion above, this distance can also be computed as the number of pairs in Mi

that are not in Mj (or vice versa). Note that, this notion is analogous with

the Hamming distance. Then, we can infer that Mj is closer to Mi than Mk if

d(Mi,Mj) < d(Mi,Mk). We say that a repair matching for the breakage of Ψ
in M is a stable matching M ′ that minimizes the value of d(M,M∗) taken over

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

62 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.2 Notation and Definitions

every other stable matching M∗ such that M∗ ∩ Ψ = ∅. The repair cost in this

context is the value d(M,M ′)− |Ψ|.

The work presented in this chapter is mostly based on the rotations and struc-

tural properties of the rotation posets of the SM. Recall briefly a few concepts.

A rotation ρ = ((mk0 , wk0), (mk1 , wk1), . . . , (mkl−1 , wkl−1)), where l ∈ N∗, is an

ordered list of pairs in a stable matching M such that changing the partner of

each man mki
to the partner of the next man mki+1 (the operation +1 is modulo

l) in the list ρ leads to a stable matching denoted by M/ρ. The latter is said to

be obtained after eliminating ρ from M . In this case, we say that (mli , wli) is

eliminated by ρ, whereas (mli , wli+1) is produced by ρ, and that ρ is exposed in

M . All stable matchings of an instance form a lattice, and there exists a partial

order for the rotations. If a pair appears in at least two stable matchings, it is a

non-fixed pair; otherwise a fixed-pair.

A set of rotations is called a closed subset S, if for each rotation ρ ∈ S, all

predecessors of ρ are also in S. Then, let L(S) be the set of rotations that are

the sink nodes of the graph induced by the rotations in a given closed subset

S. Similarly, let N(S) be the set of the rotations that are not included in S that

either have no incoming edges or have all their predecessors in S.

Consider the rotation poset Π presented in Figure 2.11 (Page 44) and a closed

subset S = {ρ0, ρ1, ρ2} on it. These sets for S are identified as L(S) = {ρ2}
and N(S) = {ρ3, ρ4}. Formally, for each ρ ∈ N(S) either din(ρ) = 0 or for all

ρ′ ≺ ρ, ρ′ ∈ S. This can be illustrated as having a cut in a given graph Π,

where the cut divides Π into two sub-graphs, namely Π1 and Π2. If there are

any comparable nodes between Π1 and Π2, let Π1 be the part that contains the

preceding rotations. Eventually, Π1 corresponds to the closed subset S, L(S)

corresponds to the sink nodes of Π1. Additionally, N(S) corresponds to the

source nodes of Π2. We refer to the rotations in L(S) as the sink rotations of S
and rotations in N(S) as the neighbour rotations of S. Figure 3.1 illustrates a

cut on the Π in Figure 2.11, and the two sub-graphs, where the sets of interests

are highlighted.

Observe that, each rotation in the rotation poset contains a minimum of two

pairs. We introduce a function R∗(V) that takes a set of rotations denoted by

V as input, and returns only the rotations that are of size 2 (i.e. has 2 pairs) in

this set.

Additionally, in order to avoid repetition, we use a notation for stable match-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

63 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.3 (a,b)-supermatches

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

ρ0

ρ1

ρ2

ρ3 ρ4

ρ5

π π1 π2
Figure 3.1: A closed subset S = {ρ0, ρ1, ρ2} in Π, the sub-graphs Π1, Π2 after
the cut, and the sets L(S) = {ρ2}, and N(S) = {ρ3, ρ4} highlighted in Π1 and
Π2, respectively.

ings and their corresponding closed subsets such that if a stable matching is

identified using some superscripts or subscripts, then its corresponding closed

subset contains them as well (i.e. the closed subset of M j
i is denoted by Sji).

3.3 (a,b)-supermatches

In this section, we first formally define the problem of finding an (a, b)-super-

match, and then discuss in practice, how one can be found. We give in Defini-

tion 12 a formal definition for (a, b)-supermatches.

Definition 12 ((a,b)-supermatch) Given an SM instance I, a stable matching
M of I is said to be an (a, b)-supermatch if for any set Ψ ⊆ M of non-fixed stable
pairs, where |Ψ| = a, there exists a stable matching M ′ such that M ′ ∩Ψ = ∅ and
d(M,M ′) ≤ b+ a, where a, b ∈ N.

We refer to the problem of deciding, and eventually finding, if there exists an

(a, b)-supermatch to a given Stable Marriage instance as the Robust Stable Mar-
riage problem (RSM).

Recall that, due to the Rural Hospitals Theorem (see Theorem 2, Page 41), the

same set of agents are assigned in all stable matchings. Therefore, within the

context of RSM, if any a men who are matched in M lose their partners, we

cannot expect to find another stable matching without those a men becoming

matched to a partner again.

Let us give an insight into the identification of (a, b)-supermatches. Table 3.1 is

a list of all the stable matchings given in Figure 2.10, Page 40.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

64 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.3 (a,b)-supermatches

Table 3.1: The list of all stable matchings given in Figure 2.10.

Stable Matching Pairs
M0 {(0, 5), (1, 4), (2, 6), (3, 3), (4, 1), (5, 0), (6, 2)}
M1 = M0/ρ0 {(0, 2), (1, 4), (2, 6), (3, 3), (4, 1), (5, 0), (6, 5)}
M2 = M1/ρ1 {(0, 2), (1, 5), (2, 6), (3, 3), (4, 1), (5, 4), (6, 0)}
M3 = M2/ρ4 {(0, 2), (1, 5), (2, 0), (3, 3), (4, 1), (5, 4), (6, 6)}
M4 = M3/ρ5 {(0, 2), (1, 3), (2, 0), (3, 5), (4, 1), (5, 4), (6, 6)}
M5 = M2/ρ2 {(0, 4), (1, 5), (2, 6), (3, 3), (4, 1), (5, 2), (6, 0)}
M6 = M5/ρ4 = M3/ρ2 {(0, 4), (1, 5), (2, 0), (3, 3), (4, 1), (5, 2), (6, 6)}
M7 = M4/ρ2 = M6/ρ5 {(0, 4), (1, 3), (2, 0), (3, 5), (4, 1), (5, 2), (6, 6)}
M8 = M5/ρ3 {(0, 1), (1, 5), (2, 6), (3, 3), (4, 4), (5, 2), (6, 0)}
M9 = M6/ρ3 = M8/ρ4 {(0, 1), (1, 5), (2, 0), (3, 3), (4, 4), (5, 2), (6, 6)}
M10 = M7/ρ3 = M9/ρ5 {(0, 1), (1, 3), (2, 0), (3, 5), (4, 4), (5, 2), (6, 6)}

We give the basic intuition behind determining the robustness of a stable match-

ing in the context of a (1, b)-supermatch on a stable matching in this list, namely

M2. In order to find the value of b for M2, where a = 1, one can simply com-

pute the distance from M2 to every other stable matching M of the underlying

instance (listed in Table 3.1) to find the closest stable matching M ′ in case of

the breakage of each pair (mi, wj) ∈ M2. Then, the stable matching M ′ that

minimizes the distance d(M2,M
′) is reported as the repair stable matching for

the breakage of (mi, wj).

• (m0, w2)→M ′ = M5, d(M2,M5) = 2

• (m1, w5)→M ′ = M1, d(M2,M1) = 3

• (m2, w6)→M ′ = M3, d(M2,M3) = 2

• (m3, w3)→M ′ = M4, d(M2,M4) = 4

• (m4, w1)→M ′ = M8, d(M2,M8) = 3

• (m5, w4)→M ′ = M5, d(M2,M5) = 2

• (m6, w0)→M ′ = M3, d(M2,M3) = 2

Considering that a = 1, the b values are computed by subtracting 1 from all the

computed distance values (see Definition 12). Because, the value of b represents

the maximum value of the additional number of break-ups required to obtain

another stable matching. Then, one can infer that if any of the men from the

following set {m0,m2,m5,m6} wishes to break-up, a repair matching at a repair

cost of 1 can be found. On the other hand, for m1 and m4 the cost is 2 and for

m3 the cost is 3. Hence, M2 is a (1, 3)-supermatch can be read as: “if any of

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

65 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.3 (a,b)-supermatches

the men loses his current partner in M2, an alternative stable matching can be

found by changing at most three other men’s partners”. Similarly, the reader

can verify that stable matching M6 is a (1, 1)-supermatch by following the same

procedure. It is left as an exercise to the reader.

Furthermore, in order to check if a stable matching M is a (2, b)-supermatch, all

combinations of two different pairs (mi, wj), (mk, wl) ∈ M must be considered

for break-up. The M is compared with all the other stable matchings M ′, where

(mi, wj), (mk, wl) 6∈M ′. Any such M ′ that minimizes the distance with M repre-

sents the repair stable matching for the break-up of those two men. Then, the

maximum repair cost for all combinations of two pairs indicates the robustness

of M.

An important remark is that there is a one-to-one correspondence between the

stable matchings in I and the sets of incomparable rotations in V as shown in

Proposition 1. Note that, a closed subset is defined by adding all predecessors of

each node in the subset to the subset. Equivalently, if all rotations that precede

some other rotations in S are removed from S, the resulting set corresponds to

a set of incomparable nodes, namely the sink rotations as L(S).

Proposition 1 There is a one-to-one correspondence between the incomparable
rotations and the stable matchings in the underlying instance.

Proof. ⇒ Let VI denote a set of incomparable rotations in the rotation poset of

the underlying instance. By adding all the predecessors of the rotations in set

VI , we obtain a closed subset. The latter defines a stable matching.

⇐ Let M be a stable matching and let S be its closed subset. The set of sink

rotations of S corresponds (by definition) to a set of incomparable rotations. �

We do not study (1, 0)-supermatches because, in the case of the SM these do

not exist as shown in Proposition 2. Therefore, the first interesting general

case is when a = 1 and b = 1. In the rest of this chapter, we work on the

(1, 1)-supermatches.

Proposition 2 (1, 0)-supermatches does not exist.

Proof. The proof is quite straightforward by Theorem 2, Page 41. Given a stable

matching M, if a pair (mi, wj) ∈ M is to break-up, the agents mi and wj must

be matched to other people. This means that at least one other couple has to

break-up to provide a repair to each break-up. �

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

66 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.4 (1,1)-supermatches

3.4 (1,1)-supermatches

Finding a (1, 1)-supermatch is a special case of the general case of finding (a, b)-
supermatches, since it allows breaking-up of only one pair and guarantees a

repair stable matching by breaking-up at most one other pair. In this section, we

first discuss how to characterize a (1, 1)-supermatch and then discuss a model

for finding if there exists one in a given SM instance.

Given a stable matching M and its corresponding closed subset S, in order to

decide if M is a (1, 1)-supermatch, all possible breakages for each pair must be

considered. We refer to each pair by the man involved in that pair, i.e. (mi, wj)
is referred by mi. The idea is that, the breakage of a man mi can only be

repaired at a cost of 1 if one of the following holds:

i) If there exists a sink rotation ρ of S, where |ρ| = 2 and ρ involves mi;

ii) If there exists a neighbour rotation ρ of S, where |ρ| = 2 and ρ involves mi.

Note that the sink rotations of a closed subset S can be removed from the S

without requiring that any additional rotations are removed (the successors) to

obtain another closed subset. Because, by definition, none of the successors of

the sink rotation are in the S. Similarly, the neighbour rotations of an S can

be added to S without requiring that any other rotations (the predecessors) are

added to obtain another closed subset. Because, by definition, all predecessors

of a neighbour rotation are already in the S. Recall that, given a set of rotations

V , the function X(V) returns the set of all men involved in the rotations in V .

In addition, the function R∗(V) returns all the rotations ρ ∈ V , where |ρ| = 2.

Proposition 3 presents a characterization for the (1, 1)-supermatches by using

their corresponding closed subsets.

Proposition 3 Let M be a stable matching and S be its closed subset. M is a
(1, 1)-supermatch if and only if every non-fixed men of the instance are included in
a neighbour or sink rotation of S of size 2, i.e. |X(R∗(L(S) ∪ N(S)))| = n, where
n is the number of non-fixed men.

Proof. ⇒ Suppose for contradiction that |X(R∗(L(S) ∪ N(S)))| 6= n. Take a

(non-fixed) man m that is not in X(R∗(L(S) ∪ N(S))). In order to repair M

when m breaks-up with his partner, one needs to remove, or add, a rotation

of size at least 3 or a set of rotations where at least 2 other men are modified.

Therefore, by contradiction, M cannot be a (1, 1)-supermatch.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

67 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.4 (1,1)-supermatches

⇐ If |X(R∗(L(S) ∪ N(S)))| = n, then there exists a repair for the breakage of

every man by either adding or removing a single rotation of size 2 to/from S.

Therefore, M corresponds to a (1, 1)-supermatch. �

3.4.1 A Model Using Independent Sets

We describe a representation for the problem of finding (1, 1)-supermatches to

a given SM instance. Our representation is based on finding independent sets

with additional constraints. Independent sets have been used previously to

find stable matchings in the Stable Roommates problem (SR) [GI89]. For SR,

Gusfield and Irving show that each maximal independent set on an undirected

graph derived from its rotation poset is in one-to-one correspondence with the

stable matchings of the underlying SR instance. However, for the Robust Stable

Marriage problem, we show that the additional robustness constraints change

the structure of the problem, and therefore the approach is different.

An independent set I in an undirected graph G is defined as a set of vertices

such that no two vertices from the set I share an edge in G. Consider a Stable

Marriage instance I and let Π = (V , E) be its rotation poset. We use Πu =
(V , Eu) to denote the undirected representation of the rotation poset Π with

transitivity. It is important to observe that, every independent set defined in

Πu consists of incomparable rotations. Because Πu contains transitive edges,

meaning that if a rotation ρ′ is preceding another rotation ρ, there exists an edge

(ρ′, ρ) ∈ Eu, and therefore the rotations ρ′ and ρ together cannot be members

of any independent sets of Πu. Using Proposition 1 and the observation, it

is correct to state that there exists a one-to-one correspondence between the

independent sets of Πu and the stable matchings of the underlying instance.

Given a set of nodes I in V, let PI be the set of vertices that corresponds to

rotations that precede a rotation from I. We use ΠI
sub = (VIsub, Esub) to denote

the subgraph induced by Π where the set of vertices is VIsub = V \ (PI ∪ I).
We also define a function source(G) that takes a directed graph G as input and

returns the vertices in G that do not have any predecessors. Theorem 4 gives a

formulation of the problem of finding (1, 1)-supermatches. It is immediate from

the Propositions 1 and 3.

Theorem 4 There exists a one-to-one correspondence between the (1, 1)-super-
matches and the set of the independent sets S that satisfies I ∈ S if and only
if the rotations of size 2 in the independent set I together with the source rotations

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

68 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.4 (1,1)-supermatches

in ΠI
sub cover all the non-fixed men (i.e. |X(R∗(I ∪ source(ΠI

sub)))| = n), where n
is the number of non-fixed men.

Proof. By construction. �

Example. For illustration, consider the case of the Stable Marriage instance

of Table 2.1 (Page 38) and its rotation poset Π given in Table 2.11 (Page 44).

The version of Π, where the transitive edges are included (denoted by Πu) is

illustrated in Figure 3.2.

A sample independent set on Πu can be given as Ii = {ρ2, ρ4} as they do not

share any edge. The rotations of size 2 in this set are R∗(Ii) = Ii as all the rota-

tions in Ii are of size 2. The sub-graph ΠIi
sub contains only the vertices ρ3 and ρ5

and an empty set of edges. The source nodes of ΠIi
sub are therefore {ρ3, ρ5} and

they are both of size 2. The set of men included in these rotations all together

{ρ2, ρ4, ρ3, ρ5} corresponds to X(R∗(Ii ∪ source(ΠIi
sub))) = {0, 1, 2, 3, 4, 5, 6}. It

can be verified that the size of this set is 7, i.e. the number of non-fixed men n

in the problem. Hence, we say that there is a repair for the breakage of each

man at a cost of 1. Therefore, according to Theorem 4, the independent set Ii
corresponds to a (1, 1)-supermatch.

Then, the closed subset Si that corresponds to Ii is obtained by starting from

Si = Ii, and adding all the predecessors PIi
of the rotations in Ii to Si.

Considering that PI = {ρ0, ρ1}, the corresponding closed subset Si yields in

Si = {ρ0, ρ1, ρ2, ρ4}. The closed subset Si, and the corresponding stable match-

ing Mi can be verified from the Table 3.1 as M6. It can be used as the proof for

ρ0

ρ1

ρ2

ρ3

ρ4

ρ5

(0,5), (6,2)

(1,4), (6,5), (5,0)

(0,2),(5,4) (6,0), (2,6)

(0,4), (4,1) (1,5), (3,3)

Figure 3.2: Undirected graph representation with transitive edges included of
the rotation poset given in Figure 2.11.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

69 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

the example left to the reader that M6 is a (1, 1)-supermatch.

A second illustration on the same graph is with the independent set Ij = {ρ0},
corresponding to stable matching M1 in Table 3.1. The rotation set R∗(Ij) =
Ij, and ΠIj

sub consists of the rotations {ρ1, ρ2, ρ3, ρ4, ρ5}. Since ρ1 is the only

source node of ΠIj

sub with size 3, we have R∗(Ij ∪ (source(ΠIj

sub)) = {ρ0}. Then,

X(R∗(Ij ∪ (source(ΠIj

sub))) = {0, 6} and the size of this set is 2. Due to 2 < n,

where n = 7, being true, the stable matching corresponding to the closed subset

{ρ0} (i.e. M1) is not a (1, 1)-supermatch.

Although we provide a model for identifying the (1, 1)-supermatches, we do

not have a polynomial-time method to decide if a (1, 1)-supermatch exists for a

given instance using this model. This model can lead to an elegant proof for the

complexity of RSM. However, in order to prove the complexity, we make use of

a special SAT formulation as discussed in Section 3.5.

3.5 Complexity of Finding (1,1)-supermatches

This section corresponds to the most technical part of this dissertation. We

provide formal definitions for the RSM and some of its sub-problems. Then,

we define a special case of SAT, that is shown to be NP-complete by Schaefer’s

Dichotomy Theorem. Then we use this formulation to prove that our problem,

RSM, is NP-hard. We categorize some sub-problems as NP-complete, NP-

hard or polynomial-time solvable as well as identifying some open problems.

We start by defining the general case of the RSM in Definition 13.

Definition 13 (πab) Decision problem for (a, b)-supermatch.
INPUT: a, b ∈ N, and a Stable Marriage instance I.
QUESTION: Is there an (a, b)-supermatch for I?

The main purpose of this section is to decide to which complexity class πab
belongs. We work on the complexity of the πab by breaking it into its sub-

cases such as the decision problem for (1, b)-supermatches, (1, 1)-supermatches,

etc. Next, we show the NP-completeness of deciding if there exists a (1, 1)-
supermatch for a given Stable Marriage instance. In order to achieve this, in

Section 3.5.1, we begin by defining a specific family of SM instances. The moti-

vation for studying this family is that finding (1, 1)-supermatches using the ro-

tation posets of the underlying instances from this family has very specific con-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

70 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

straints that can easily be modelled. Therefore, considering these constraints,

we introduce in Section 3.5.2 a specific Boolean Satisfiability (SAT) problem

with many specific rules capturing these constraints. This SAT problem is ac-

tually a SAT formulation of the problem of finding a (1, 1)-supermatch on this

restricted family of SM instances. After defining the SAT formulation, in Sec-

tion 3.5.3 we show using the Schaefer’s Dichotomy Theorem (defined in Sec-

tion 2.3.1) that this SAT formulation is NP-complete. Subsequently, we state

our complexity result for RSM by showing the equivalence between this special

SAT formulation and the problem of deciding if there exists a (1, 1)-supermatch

for the restricted family of instances. We also provide examples for the reader

to understand the steps in the rest of the section better.

3.5.1 A Specific Problem Family F

We characterize a specific, restricted family F of Stable Marriage instances with

four properties, where ΠF = (VF, EF) represents their generic rotation poset.

Before introducing the properties, recall that, given a pair (mi, wj) in a rotation

ρ, if ρ′ is the unique rotation that moves mi to wj then there exists an edge

(ρ′, ρ) in the poset, and ρ′ is called a Type 1 predecessor of ρ. We call the edge

(ρ′, ρ) as a Type 1 edge. The following are the four properties of family F:

Prop. (1) Each rotation ρi ∈ VF , contains exactly 2 pairs ρi = ((mi1, wi1),
(mi2, wi2)).

Prop. (2) Each rotation ρi ∈ VF , has at most 2 immediate predecessors and at

most 2 immediate successors.

Prop. (3) Each edge ei ∈ EF , is a Type 1 edge.

Prop. (4) For each man mi, i ∈ [1, n], mi is involved in at least 2 rotations.

Figure 3.3 illustrates some cases respecting these properties. In this figure, we

denote each pair (mi, wj) by (i, j) to make it easier to read. The different cases

in the figure emphasize Property (2), where a rotation has exactly: one prede-

cessor and one successor (A,B); one predecessor and two successors, which is

also similar to having one successor and two predecessors (C); two predeces-

sors and two successors (D). It can be verified that Properties (1) and (3) are

satisfied in all of the cases. However, Property (4) is not satisfied as this is not

a complete example. Observe that, the ordering of the pairs is not important as

there exist only two pairs in each rotation.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

71 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

ρp1 ρp2

ρ

ρs1 ρs2

(i, a), (j, b) (k, c), (l, d)

(i, b), (k, d)

(i, d), (m, e) (k, b), (n, f)

ρp1

ρ

ρs1

(i, a), (j, b)

(i, b), (k, c)

(i, c), (m, d)

ρp1

ρ

ρs1

(i, a), (j, b)

(i, b), (k, c)

(k, b), (m, d)

ρp1

ρ

ρs1 ρs2

(i, a), (j, b)

(i, b), (k, c)

(i, c), (m, d) (k, b), (n, e)

(D)

(A) (B)

(C)

Figure 3.3: Illustrations of different cases for the men and women included in
the rotations in Π of SM instances in F.

We would like to emphasize the difference between Case A and Case B in Fig-

ure 3.3. Due to Property (3), any two rotations that have an edge between

them contain a man and a woman in common. When the case is generalized

to three rotations ρp1 − ρ − ρs1, it should be noted that those three rotations

either contain the same man mi but contain different women, wb between ρp1

and ρ, but wc between ρ and ρs1, as in Case A; or the same woman wb in all

three rotations but different men mi between ρp1 and ρ, but mk between ρ and

ρs1, as in the Case B.

This family of instances is very restricted as it does not allow any of the rotations

to contain more than 2 pairs. Additionally, due to the bound on the number of

successors and predecessors of a rotation, the rotation posets of these instances

have very specific structures. Later in Section 4.7.2, we identify a set of in-

stances that is in F. The number of stable matchings for each instance in this

set is exponential with respect to the size n.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

72 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

Lemma 6 is a characterization for all the SM instances and can easily be ob-

served on the family F.

Lemma 6 For every two different paths P1 and P2 defined on the rotation poset
ΠF of an instance of family F, where both start at rotation ρs, end at ρt, and the
pair (me, wf) ∈ ρs, if all rotations on P1 (respectively P2) contain me, at least one
of the rotations on P2 (respectively P1) does not contain wf .

Proof. Suppose for contradiction that man me is involved in all rotations on

P1, and wf is involved in all rotations on P2. This scenario is likely to occur

on F as Property (3) indicates that all edges are of Type 1 (i.e. a rotation and

its immediate successor involves the same man, or woman), which is also easy

to observe in Figure 3.3, where any two rotations connected by an edge in

the rotation poset always contain a man and a woman in common. In this case,

because of the supposition, namely thatme and wf are carried on to the rotation

ρt, the pair (me, wf) is reproduced. In other words, exposing ρt on a stable

matching produces the pair (me, wf). However, this pair is already eliminated

by ρs, meaning this couple is already produced. The supposition contradicts

the fact that exposing rotations on stable matchings causes men to be matched

with their less preferred partners, and if a couple is eliminated once, it cannot

be produced again. �

In Table 3.2 we provide a sample SM instance I from family F. The instance

contains 6 men and 6 women. Figure 3.4 illustrates the rotation poset of this

instance. It can be easily verified that Properties (1), (2), (3), and (4) apply to

the rotation poset.

Note that in Section 3.5.2, we use this instance as a look-up example. We give

a complete example in the sense that we first introduce a sample SM instance,

then we show how to construct this instance by starting from a special SAT

formulation, without knowing anything about the SM instance. Let us first

define some sub-problems of πab below.

Table 3.2: An SM instance from family F of 6 men and 6 women.

m1 1 2 6 3 4 5 w1 3 2 1 4 5 6
m2 2 1 4 3 5 6 w2 5 6 1 2 3 4
m3 3 4 1 2 5 6 w3 6 5 4 3 1 2
m4 4 3 5 1 2 6 w4 2 3 4 1 5 6
m5 5 3 2 1 4 6 w5 4 5 1 2 3 6
m6 6 2 3 1 4 5 w6 1 6 2 3 4 5

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

73 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

1

2

4

3

5

6

(1, 1),
(2, 2)

(2, 1),
(3, 4)

(3, 3),
(4, 4)

(1, 2),
(6, 6)

(4, 3),
(5, 5)

(5, 3),
(6, 2)

Figure 3.4: Final version of the rotation poset constructed from the sample in
Table 3.3.

Definition 14 (π1b) A particular case of πab. Decision problem for
(1, b)-supermatch.
INPUT: b ∈ N, and a Stable Marriage instance I.
QUESTION: Is there a (1, b)-supermatch for I?

Definition 15 (π11) A particular case of π1b. Decision problem for
(1, 1)-supermatch.
INPUT: A Stable Marriage instance I.
QUESTION: Is there a (1, 1)-supermatch for I?

Definition 16 (πF11) A particular case of π11. Decision problem for
(1, 1)-supermatch for problem family F.
INPUT: A Stable Marriage instance I ∈ F.
QUESTION: Is there a (1, 1)-supermatch for I?

Our aim is to first prove the complexity of π1b as it is a more specific case of

πab. We construct the proof for showing the problem π1b is NP-complete by

first showing that its restricted version π11 is NP-complete. In order to do

this, we work on the specific family of Stable Marriage instances F, proving

NP-completeness for πF
11. Then we generalize the results.

3.5.2 The Definition of SAT-SM

In this section, we define a special, restricted case of SAT that takes additional

inputs. As motivated before, this SAT formulation is inspired by the specific

family F defined earlier in Section 3.5.1. Please note that this definition is long

as we include examples in the definition to make it more understandable. The

formulation requires some rules and conditions to be applied on the input of the

problem. The intuition behind imposing these rules and conditions is to reflect

the specified properties (Prop. (1), (2), (3), and (4)) of the family F. This

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

74 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

special SAT formulation is actually equivalent to finding (1, 1)-supermatches to

any instance in F, which we prove later in Section 3.5.3. However, for the

moment, we would like to give some insight to the reader about why we need

all the conditions and the rules in the definition of this formulation to make the

definition easier to follow.

All the Boolean and integer variables in the input of the problem are inspired by

the rotations. First, we give an abstraction of the use of these variables. The set

of integers corresponds to the set of rotations in the rotation poset of a Stable

Marriage instance I. Assume that a matching M (S is M ’s corresponding closed

subset) is a (1, 1)-supermatch to I. The Boolean variables then correspond

to the status of the rotations with respect to S. More specifically, for each

rotation identified by a unique integer e, each Boolean variable ye represents

if the corresponding rotation e is a sink rotation in S, each se represents if e

is included in S, pe represents if all parents of e are in S but e 6∈ S (i.e. a

neighbour rotation).

Second, the conditions on the lists reflect the properties of F. Rule 1 captures

the property of the problem defined in Lemma 6. Recall that, our motivation

is to show that an SM instance can be constructed from this SAT formulation.

Considering this, if Rule 1 is not satisfied, then previously broken pairs might

be re-matched in the constructed SM instance, which is not allowed in the

SM [GI89].

Finally, the conditions on the clauses model the problem πF
11. In what is pre-

sented below, the purpose of the clauses in A ensure each man is included

either in a sink rotation in S or all of its parents are in S. Clauses in B ensure

the result corresponds to a closed subset. Clauses in C define how a rotation

can be identified as a sink rotation. Additionally, clauses in D define how a

rotation can be identified as having its parents in S but not itself.

The reason for including all these clauses and rules should become more clear

to the reader when we are constructing a Stable Marriage instance from an

instance of SAT-SM later in the proof of Theorem 6.

We now begin our definition for the special case of SAT, namely SAT-SM.

Input: SAT-SM takes as input the following:

• A set of integers: χ = [1, |χ|],

• A set of n lists: l1, l2, . . . , ln, where each list is an ordered list of integers

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

75 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

of χ,

• A set of disjoint Boolean variables: Y = {ye | e ∈ χ},

• Another set of disjoint Boolean variables: S = {se | e ∈ χ},

• Another set of disjoint Boolean variables: P = {pe | e ∈ χ}}.

Conditions on the Lists: The lists l1, . . . , ln are subject to the following con-

straints.

• Each list ∀a ∈ [1, n], la = (χa1, . . . , χakla
), where kla = |la| ≥ 2.

• Each element of χ appears in exactly two different lists.

Example. For illustration, the set χ represents the indexes of rotations and a list

la represents the index of each rotation containing the man ma. The order in

la specifies the path in the rotation poset from the first rotation to the last one

for a man ma. The requirement for having each index in two different lists is

related to Property (1) of F. In addition to those two conditions, we have the

following rule over the lists:

[Rule 1] For any χmi and χm
j from the same list lm where m ∈ [1, n] and j > i,

there does not exist any sequence S that starts at χmi and ends at χmj constructed

by iterating the two consecutive rules below:

α) given χae ∈ S, the next element in S is χae+1, where e+ 1 ≤ kla.

β) given χa
e ∈ S, the next element in S is χbf , where χae = χb

f , a 6= b ∈ [1, n],
and 1 ≤ f ≤ klb.

Example. Before continuing to the conditions on the clauses, we would like to

present an example where Rule 1 is not satisfied. Consider three lists defined

over χ = {1, 2, 3} as: l1 = (1, 3), l2 = (1, 2), l3 = (2, 3). We use the properties α

and β to construct a sequence that is not allowed by the rule. Let the pair 〈i, lk〉
denote the element i in list lk, and we use →p to show the property p that is

applied to move from one pair to the other one in the sequence. For elements

1 and 3 in from the same list l1, consider the sequence S = 〈1, l1〉 →β 〈1, l2〉 →α

〈2, l2〉 →β 〈2, l3〉 →α 〈3, l3〉 →β 〈3, l1〉. This sequence starts and ends at the same

list l1, where 1 appears before 3 in l1. The existence of this sequence causes the

given three lists to be excluded from the SAT-SM.

Conditions on the clauses. The CNF that defines SAT-SM is a conjunction of

four groups of clauses: A , B , C and D . The groups are subject to the following

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

76 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

conditions:

A : For any list la = (χa1, . . . , χakla
), we have a disjunction between the Y -

elements and the P -elements as
∨kla
i=1(yχa

i
∨ pχa

i
).

A is defined by
n∧
a=1

 kla∨
i=1

(yχa
i
∨ pχa

i
)

. (3.1)

B : For any list la = (χa1, . . . , χakla
), we have a conjunction of disjunctions be-

tween two S-elements with consecutive indexes as
∧kla−1
i=1 (sχa

i
∨ ¬sχa

i+1
).

B is defined by
n∧
a=1

kla−1∧
i=1

(sχa
i
∨ ¬sχa

i+1
). (3.2)

C : This group of clauses is split in two. For any list la = (χa1, . . . , χakla
), the first

sub-group C1 contains all the clauses defined by the logic formula
∧kla−1
i=1 yχa

i
→

(sχa
i
∧ ¬sχa

i+1
). In CNF notation it leads to

∧kla−1
i=1 (¬yχa

i
∨ sχa

i
) ∧ (¬yχa

i
∨ ¬sχa

i+1
).

Note that, C1 also covers the special case, when i = kla.

C1 is defined by
n∧
a=1

 kla∧
i=1

(¬yχa
i
∨ sχa

i
) ∧

kla−1∧
i=1

(¬yχa
i
∨ ¬sχa

i+1
)

. (3.3)

The second sub-group C2 has three specific cases according to the position of

elements in the ordered lists. As fixed above, each element of χ appears in

exactly two different lists. Thus, for any e ∈ χ, there exists two lists la and lb

such that χai = χb
j = e, where i ∈ [1, kla] and j ∈ [1, klb]. For each couple of

elements of χ denoted by (χai , χbj) that are equal to the same value e, we define

a clause with these elements and the next elements in their lists respecting

the ordering: sχa
i
→ (yχa

i
∨ sχa

i+1
∨ sχb

j+1
). With a CNF notation it leads to:

(¬sχa
i
∨ yχa

i
∨ sχa

i+1
∨ sχb

j+1
).

We add the two specific cases where χai or χbj, or both are the last elements of

their ordered lists. The complete formula for the set of clauses C2 for each two

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

77 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

element (χai , χbj) s.t. χai = χb
j is:

C2



∧
i 6= kla , j 6= klb

¬sχa
i
∨ yχa

i
∨ sχa

i+1
∨ sχb

j+1∧
i 6= kla , j = klb

¬sχa
i
∨ yχa

i
∨ sχa

i+1∧
i = kla , j = klb

¬sχa
kla
∨ yχa

kla
.

(3.4)

D : Similar to C2, for each couple of elements of χ denoted by (χai , χbj) equal

to the same value e, there exists a clause with these elements and the previous

elements in their lists respecting the ordering: pχa
i
↔ (¬sχa

i
∧ sχa

i−1
∧ sχb

j−1
). In

CNF notation, it leads to: (¬pχa
i
∨¬sχa

i
)∧ (¬pχa

i
∨ sχa

i−1
)∧ (¬pχa

i
∨ sχb

j−1
)∧ (sχa

i
∨

¬sχa
i−1
∨ ¬sχb

j−1
∨ pχa

i
).

By generalizing the formula for any couple, and by adding the two cases where
χla
i , or χlbj , or both are the first elements of their respective lists, the complete

formula D for each two element (χai , χbj) s.t. χai = χb
j = e is described by:

D



∧
i 6= 1, j 6= 1

(¬pχa
i
∨ sχa

i−1
) ∧ (¬pχb

j
∨ sχb

j−1
)∧

(sχa
i
∨ ¬sχa

i−1
∨ ¬sχb

j−1
∨ pχa

i
)∧

i = 1, j 6= 1
(¬pχb

j
∨ sχb

j−1
) ∧ (sχa

i
∨ ¬sχa

j−1
∨ pχa

i
)

∧
i = 1, j = 1

(sχa
1
∨ pχa

1
)

∧ (¬pe ∨ ¬se).

(3.5)

To conclude the definition:

The full CNF formula of SAT-SM: A ∧ B ∧ C1 ∧ C2 ∧ D .

We introduce a sample SAT-SM instance as an example to demonstrate the

methods described in the rest of this section. Table 3.3 introduces a SAT-SM

instance consisting of 6 lists and a set of 6 integers χ = {1, 2, 3, 4, 5, 6}. Note

that, these lists are constructed using the set χ by following the conditions on
the lists described on Page 76 defined for SAT-SM and Rule 1.

Each list can be seen as corresponding to a man involved in the constructed

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

78 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

Table 3.3: An instance of SAT-SM of 6 lists and 6 integers.

List Elements
l1 (1, 2)
l2 (1, 4)
l3 (3, 4)
l4 (3, 5)
l5 (5, 6)
l6 (2, 6)

Table 3.4: Clauses of the SAT-SM instance given in Table 3.3.

list A B C1
l1 (y1 ∨ y2 ∨ p1 ∨ p2) (s1 ∨ ¬s2) (¬y1 ∨ s1) ∧ (¬y2 ∨ s2) ∧ (¬y1 ∨ ¬s2)
l2 (y1 ∨ y4 ∨ p1 ∨ p4) (s1 ∨ ¬s4) (¬y1 ∨ s1) ∧ (¬y4 ∨ s4) ∧ (¬y1 ∨ ¬s4)
l3 (y3 ∨ y4 ∨ p3 ∨ p4) (s3 ∨ ¬s4) (¬y3 ∨ s3) ∧ (¬y4 ∨ s4) ∧ (¬y3 ∨ ¬s4)
l4 (y3 ∨ y5 ∨ p3 ∨ p5) (s3 ∨ ¬s5) (¬y3 ∨ s3) ∧ (¬y5 ∨ s5) ∧ (¬y3 ∨ ¬s5)
l5 (y5 ∨ y6 ∨ p5 ∨ p6) (s5 ∨ ¬s6) (¬y5 ∨ s5) ∧ (¬y6 ∨ s6) ∧ (¬y5 ∨ ¬s6)
l6 (y2 ∨ y6 ∨ p2 ∨ p6) (s2 ∨ ¬s6) (¬y2 ∨ s2) ∧ (¬y6 ∨ s6) ∧ (¬y2 ∨ ¬s6)
χ C2 D
1 (¬s1 ∨ y1 ∨ s2 ∨ s4) (¬p1 ∨ ¬s1) ∧ (s1 ∨ p1)
2 (¬s2 ∨ y2 ∨ s6) (¬p2 ∨ ¬s2) ∧ (¬p2 ∨ s1) ∧ (s2 ∨ ¬s1 ∨ p2)
3 (¬s3 ∨ y3 ∨ s4 ∨ s5) (¬p3 ∨ ¬s3) ∧ (s3 ∨ p3)

4 (¬s4 ∨ y4) (¬p4 ∨ ¬s4) ∧ (¬p4 ∨ s1) ∧ (¬p4 ∨ s3)∧
(s4 ∨ ¬s1 ∨ ¬s3 ∨ s4)

5 (¬s5 ∨ y5 ∨ s6) (¬p5 ∨ ¬s5) ∧ (¬p5 ∨ s3) ∧ (s5 ∨ ¬s3 ∨ p5)

6 (¬s6 ∨ y6) (¬p6 ∨ ¬s6) ∧ (¬p6 ∨ s5) ∧ (¬p6 ∨ s2)∧
(s6 ∨ ¬s5 ∨ ¬s2 ∨ p6)

Stable Marriage instance I. For instance, l1 corresponds to m1, l2 corresponds

to m2, etc. Then, each element can be seen as a rotation in the rotation poset

of I, i.e. 1 corresponds to ρ1, 2 corresponds to ρ2, and so on. Then, this table

describes which rotations involve which men. For example, m1 is included in

rotations ρ1, ρ2, and none of the other rotations contain m1. Recall the rotation

poset of the SM instance given in Figure 3.4. Observe that the lists capture the

men in the rotations in this poset.

Then, using the lists given in Table 3.3, clauses of the model can easily be

derived by following the conditions on the clauses described on Page 76. The

complete list of clauses are detailed in Table 3.4. Note that, although it is not

specified on the table for making it easy to read, the SAT-SM instance is a

conjunction of all the clauses in each group (i.e. A ∧ B ∧ C1 ∧ C2 ∧ D). Also

note that, this example instance is one of the smallest that can be created by

respecting the rules of the SAT-SM.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

79 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

3.5.3 The Complexity of SAT-SM

We show some properties of the SAT-SM in this section to be used in our theo-

rem.

Lemma 7 There always exist clauses of minimum length 4 that are defined over
positive literals in A .

Proof. For any list of ordered elements la ∈ {l1, l2, . . . , ln}, the length of each

list is defined as kla ≥ 2 in SAT-SM, which results in A having n clauses that

have at least 4 positive literals in each. �

Lemma 8 There always exist clauses of length 2 that are defined over two negative
literals in C .

Proof. The clauses in C consists of C1 and C2. The clauses in C1 are defined

over the list of ordered elements. For any two consecutive elements in a list

la ∈ {l1, l2, . . . , ln}, there exists one clause in C1:
∧kla−1
i=1 (¬yχa

i
∨ ¬sχa

i+1
). By

definition, the minimum length of an ordered list la is kla = 2 and therefore the

formula contains at least n clauses defined over two negative literals. �

Lemma 9 Any clause defined over only positive literals of size at least two is not
affine.

Proof. Any clause C of the given form with k positive literals has 2k−1 valid as-

signments. The cardinality of an affine relation is always a power of 2 [Sch78].

Thus, C is not affine. �

The SAT-SM problem is the question of finding an assignment of the Boolean

variables that satisfies the above CNF formula.

Theorem 5 The SAT-SM problem is NP-complete.

Proof. We use Schaefer’s Dichotomy Theorem (see Theorem 1, Page 18) to

prove that SAT-SM is NP-complete [Sch78]. Schaefer identifies six cases,

where if any one of them is valid the SAT problem is solved in polynomial

time. Any SAT formula that does not satisfy any of those six is NP-complete.

It is easy to see the properties b, c, and f in Schaefer’s Dichotomy Theorem do

not apply to SAT-SM due to Lemma 7. Similarly, properties a and d are not

satisfiable because of Lemma 8. The clauses in A are defined as clauses over

positive literals and it is known that they always exist by Lemma 7. By applying

Lemma 9 on the clauses in A , we infer that property e is not applicable either.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

80 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

Hence, SAT-SM is NP-complete. �

Having proved that SAT-SM isNP-complete, we now present in Theorem 6 the

main result of this section, which is the NP-completeness of πF
11.

Theorem 6 The decision problem πF
11 is NP-complete.

Proof. The witness is known to be polynomial-time decidable [GSOS17a].

Therefore, πF
11 is inNP. We discuss this polynomial-time witness in Section 4.1

in detail. We show that πF
11 is NP-complete by presenting a polynomial reduc-

tion from the SAT-SM problem to πF
11. Note that this proof is long. We first

discuss how to construct an SM instance from the given SAT-SM instance, and

then conclude the proof by showing the equivalency between SAT-SM and πF
11.

Therefore, let us divide this section into sub-sections for the construction of the

SM instance, and showing the equivalency.

Construction of the rotation poset ΠF. From an instance ISSM of SAT-SM,

we construct in polynomial-time an instance I of πF
11. This means the construc-

tion of the rotation poset ΠF = (VF, EF) with all stable pairs in the rotations,

and the preference lists. We begin by constructing the set of rotations VF and

then proceed by deciding which man is a part of which stable pair in which ro-

tation. First, for each integer in the input, i.e. ∀e ∈ χ, we have a corresponding

rotation ρe. Initially, each rotation contains two “empty” pairs.

Second, for each integer i appears in a list la, we add the i as the man in the

first empty pair to rotation ρa. More formally, ∀la, a ∈ [1, n],∀χai ∈ [1, kla], we

insert ma as the man to the first empty pair in rotation ρχa
i
. Since kla ≥ 2

from Lemma 7, each man of πF
11 is involved in at least two rotations (satisfying

Property (4) of the family F).

Illustration. For the SAT-SM formula presented in Table 3.3, the rotations are

constructed as: ρ1 = ((1,−), (2,−)), ρ2 = ((1,−), (6,−)), ρ3 = ((3,−), (4,−)),
ρ4 = ((2,−), (3,−)), ρ5 = ((4,−), (5,−)), and ρ6 = ((5,−), (6,−)). Note that,

we use − instead of the women in the pairs as we do not know which woman

is involved in which rotation, yet.

As each χai appears in exactly two different lists la and lb, each rotation is guar-

anteed to contain exactly two pairs involving different men ma,mb (satisfying

Property (1) of F), and to possess at most two immediate predecessors and two

immediate successors in ΠF (satisfying Property (2) of F).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

81 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

1

2

4

3

5

6

Figure 3.5: Initial version of the rotation poset constructed from the sample in
Table 3.3.

For the construction of the set of edges EF, for each couple of elements of χ

denoted by (χai , χai+1), a ∈ [1, n], ∀i ∈ [1, kla − 1], we add an edge from ρχa
i

to

ρχa
i+1

. The shape of the rotation poset of the example SAT-SM given in Table 3.3

after the vertices and edges are created is shown in Figure 3.5. Recall that, the

labelling of the vertices (or rotations) come from the integers in χ.

It is important to observe that this construction yields each edge in EF repre-

senting a Type 1 relationship (satisfying Property (3) and (4) of F). This can

easily be seen as each edge links two rotations, where exactly one of the men

is involved in both rotations. Now, in order to complete the rotation poset ΠF,

the women involved in rotations must also be added. The following procedure

is used to complete the rotations in the rotation poset:

1. For each element χa1 ∈ χ, with a ∈ [1, n], let ρχa
1

be the rotation that

involves man ma. In this case, the partner of ma in ρχa
1

is completed by

inserting woman wa, so that the resulting rotation contains the stable pair

(ma, wa) ∈ ρχa
1
.

2. We perform a breadth-first search on the rotation poset from the com-

pleted rotations. For each complete rotation ρ = ((mi, wb), (mk, wd)) ∈ VF,

if the immediate successor of ρ involves mi (resp. mk), let ρs1 (resp. ρs2)

be the immediate successor of ρ that modifies mi (resp. mk). If ρs1 exists,

then we insert the woman wd in ρs1 as the partner of man mi. In the same

manner, if ρs2 exists, we insert the woman wb in ρs2 as the partner of man

mk. The procedure creates at most two stable pairs (mi, wd) and (mk, wb).
We can observe that the completed rotations follow the same behaviour

as the rotation poset illustrated in Figure 3.3 (D), Page 72.

Remark. We now show that none of the constructed paths in the rotation poset

cause a pair that was eliminated before by a rotation to be re-matched. Rule 1

imposed on the SAT-SM ensures that there does not exist more than one path

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

82 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

between any two rotations. Therefore, by imposing Rule 1, we can conclude

that Lemma 6 is satisfied and none of the pairs that is eliminated by a preceding

rotation is re-matched.

Throughout the construction we showed that all the properties required to have

a valid rotation poset from the family F are satisfied. Using this process we are

adding an equal number of women and men into the rotation poset. We can

observe that after adding all the women in Figure 3.5 (Page 82) by using the

procedure defined above, we end up with the rotation poset illustrated at the

very beginning of this section in Figure 3.4 (Page 74).

Construction of the SM instance I from ΠF. Having constructed the rotation

poset, the last step to obtain an instance I of πF
11 by constructing the preference

lists. Recall that ΠF = (VF, EF) is the rotation poset that we are building. By

using the rotation poset ΠF created above, we can construct incomplete pref-

erence lists for the men and women. Gusfield et al. have previously defined

a procedure to show that every finite poset corresponds to a Stable Marriage

instance [GILS87]. They describe a method to create the preference lists using

the rotation poset. We use a similar approach for creating the lists as detailed

below:

• Apply topological sort on VF.

• For each man mi ∈ [1, n], insert woman wi as the most preferred to mi’s

preference list.

• For each woman wi ∈ [1, n], insert man mi as the least preferred to wi’s

preference list.

• For each rotation ρ ∈ VF in the ordered set, for each pair (mi, wj) pro-

duced by ρ, insert wj to the man mi’s list in decreasing order of preference

ranking. Similarly, place mi to wj ’s list in increasing order of preference

ranking.

Lemma 6 on our rotation poset clearly imposes that each preference list contains

each member of the opposite sex at most once. To finish, one can observe that

the instance obtained I respects the Stable Marriage requirements, and the

specific properties from problem family F.

Illustration. Applying the procedure above, the preference lists of the men and

women are found as shown in Table 3.5. The integers in the preference list of

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

83 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

Table 3.5: The incomplete preference lists derived from the rotation poset in
Figure 3.4.

m1 1 2 6 w1 3 2 1
m2 2 1 4 w2 5 6 1 2
m3 3 4 1 w3 6 5 4 3
m4 4 3 5 w4 2 3 4
m5 5 3 2 w5 4 5
m6 6 2 3 w6 1 6

a man mi denote the index of women. For instance, man m1 prefers w1 over w2

and his least preferred partner is w6. It is also similar for the preference lists

of the women. Observe that, the lists obtained after the procedure correspond

to the preference lists provided in Table 3.2, where the non-stable pairs are

removed.

Equivalency between SAT-SM and πF11. Having seen the construction of an

SM instance I of πF11 from a given instance ISSM of SAT-SM we now present

the equivalence between the two decision problems: πF11 and SAT-SM.

⇒ Suppose that there exists a solution to an instance I of the decision problem

πF
11. Then we have a (1, 1)-supermatch and its corresponding closed subset S.

As defined at the beginning of this chapter, L(S) is the set of sink vertices of the

graph induced by the rotations in S, N(S) the set of vertices such that all their

predecessors (if any) are in S but not themselves. From these two sets, we can

assign all the literals in ISSM as follows:

• For each rotation ρi ∈ L(S), set yi = true. Otherwise, set yi = false.

• For each rotation ρi ∈ S, set si = true. Otherwise, set si = false.

• For each rotation ρi ∈ N(S), set pi = true. Otherwise, set pi = false.

If S represents a (1, 1)-supermatch, that means by removing only one rotation

present in L(S) or by only adding one rotation from N(S), any pair of the cor-

responding stable matching can be repaired with no additional modifications.

Thus every men must be contained in a sink or a neighbour vertex. This leads

to having for each man one of the literals assigned to true in his list in SAT-SM.

Therefore every clause in A in Equation 3.1 are satisfied.

For the clauses in B in Equation 3.2, for any man’s list the clauses are forcing

each si literal to be true if the next one si+1 is. From the definition of a closed

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

84 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.5 Complexity of Finding (1,1)-supermatches

subset, from any sink vertex of S, all the preceding rotations (integers in the

lists) must be in S. And thus every clause in B is satisfied.

As the clauses in C altogether capture the definition of being a sink vertex of

the graph induced by the rotations in S, they are all satisfied by L(S). At last,

for the clauses in D , it is also easy to see that any rotation being in N(S) is

equivalent to not being in the solution and having predecessors in. Thus all the

clauses are satisfied. Thus we can conclude that this assignment satisfies the

SAT formula of ISSM .

⇐ Suppose that there exists a solution to an instance ISSM of the decision

problem SAT-SM. Thus we have a valid assignment to satisfy the SAT formula

of ISSM . We construct a closed subset S to solve I. As previously, we use the

sets L(S) and N(S), then for each literal yi assigned to true, we put the rotation

ρi in L(S). We do the same for pi and si as above.

The clauses in B enforce the belonging to S of all rotations preceding any

element of S, thus the elements in S form a closed subset. To obtain a (1, 1)-
supermatch, we have to be sure we can repair any couple by removing only one

rotation present in L(S) or by only adding one rotation from N(S). The clauses

in C enforce the rotations in L(S) to be without successors in S. And in the

same way the clauses in D enforce the rotations in N(S) to not be in S but have

their predecessors in the solution.

Now we just have to check that all the men are contained in at least one rotation

from L(S) ∪ N(S). From the clauses from A , we know that at least one ye or pe
for any manmi is assigned to true. Thus from this closed subset S, we can repair

any couple (mi, wj) using one modification by removing/adding the rotation

having mi. Since there exists a 1 − 1 equivalence between a stable matching

and the closed subset in the rotation poset, we have a (1, 1)-supermatch.

Illustration. In terms of example, a satisfying assignment for the look-up exam-

ple SAT-SM instance ISSM in Table 3.3 is presented in Table 3.6. One should

read Table 3.6 as: S = {ρ1, ρ2, ρ3}. It can be observed in Figure 3.4 that ρ2 and

ρ3 are the sink rotations of S. Additionally, ρ4 and ρ5 are not in S, but all their

predecessors are in, i.e. they are neighbour rotations. The S corresponds to one

Table 3.6: Solution transformation from ISSM to I.

true false
s1, s2, s3, y2, y3, p4, p5 s4, s5, s6, y1, y4, y5, y6, p1, p2, p3, p6

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

85 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.6 Threshold and Polynomial Cases

of the (1, 1)-supermatches to the SM instance I constructed from ISSM . �

Corollary 2 Both decision problems π11 and π1b are NP-complete.

Note that, we cannot generalize our results to the general case πab. Because

there is no known polynomial-time witness for (a, b)-supermatches for a > 1.

3.6 Threshold and Polynomial Cases

We present a family of instances for which a (1, 1)-supermatch can be found in

polynomial time. Then, we show that (2, 0)-supermatches do not exist. Last, we

discuss the existence of (a, 0)-supermatches.

3.6.1 Polynomial Cases

In order to show a polynomial-time solvable SM family for (1, 1)-supermatches,

we first introduce a labelling for rotations in the rotation poset. We assume

that the label of each source vertex of the rotation poset is 1, and for every

other rotation, the rotations label is calculated by the number of edges to its

furthest predecessor summed by the predecessor’s label. Note that the furthest

predecessor is always a source vertex due to having a poset, and therefore not

having any cycles.

We often encounter with these instances when trying to create SM instances

that have many stable matchings. Thus, these instances are interesting in the

sense that some “large” SM instances often contain a (1, 1)-supermatch and

finding one is easy despite the size of the problem.

Formally, the label of ρ ∈ V, denoted by l(ρ), is defined recursively as: l(ρ) = 1
if ρ is a source node, and l(ρ) = 1 + maxρ′∈N−(ρ)(l(ρ′)) otherwise. The set

of vertices that have the same label l defines a level, referred as Level l. The

purpose of the labelling process is to be able to find some levels in the rotation

poset such that every level corresponds to a unique stable matching.

Lemma 10 All rotations that have the same label are incomparable.

Proof. The proof is derived from the definition of the labelling function. If one

rotation precedes another, i.e. they are comparable, the successors label must

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

86 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.6 Threshold and Polynomial Cases

be larger than the label of the predecessor. Therefore, if two rotations have the

same label then they are incomparable. �

Using the intuition of the levels, we define a family of SM instances called Fw.

Each SM instance in this family is identified by having a Level l such that the set

of all rotations of size 2 in Level l combined with the rotations in the Level l+ 1
involve all the non-fixed men of the underlying instance. Then, we show that

all SM instances in this family have a (1, 1)-supermatch and we can find this

(1, 1)-supermatch by a polynomial-time algorithm. In Definition 17, we give a

formal definition of Fw.

Definition 17 Fw is a family of Stable Marriage instances such that each instance
has a stable matching M, where the M and its corresponding closed subset S have
the two following properties:
1) All the sink rotations of size 2 in S have the same label;
2) The rotations of size 2 contained in the union of the sink rotations and neigh-
bour rotations of S, cover all the non-fixed men (i.e. |X(R∗(L(S) ∪ N(S)))| = n,
where n denotes the number of non-fixed men).

The first observation on this family is given in Lemma 11.

Lemma 11 All instances of Fw admit a (1, 1)-supermatch.

Proof. Proposition 3 (Page 67) and Property 2 from Definition 17 lead directly

to this result. �

Lemma 12 There exists a (1, 1)-supermatch M in any instance I of Fw such that
in M ’s closed subset S all the sink nodes of size 2 have the same label l and all the
nodes in Level l are in S.

Proof. Let M be such a (1, 1)-supermatch for I. Let L be the set of sink rotations

of S. Assume there exists a set of rotations L∗, where L ⊆ L∗ such that all

the rotations in L∗ have the label l. Then, the closed subset S∗ defined with

L ∪ L∗ as sink rotations corresponds to a (1, 1)-supermatch. The proof is quite

straightforward. We know from Proposition 3 that |X(R∗(L(S) ∪ N(S)))| = n

(where n is the number of non-fixed men). Moreover, we have R∗(L(S∗) ∪
N(S∗)) is a superset of R∗(L(S) ∪ N(S)). Hence, |X(R∗(L(S∗) ∪ N(S∗)))| =
n and by Proposition 3, the stable matching corresponding to S∗ is a (1, 1)-
supermatch.

In short, if a subset of rotations in a level corresponds to a (1, 1)-supermatch

with the given properties, the closed subset that covers all the rotations in that

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

87 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.6 Threshold and Polynomial Cases

level also corresponds to a (1, 1)-supermatch. Thus, in order to find a (1, 1)-
supermatch for I, it is sufficient to look for the closed subset whose set of sink

rotations contains all the rotations in a level. �

Definition 18 (πw11) A particular case of π11 for problem family Fw.
INPUT: A Stable Marriage instance I ∈ Fw.
OUTPUT: Find a (1, 1)-supermatch for I?

We now state our tractability result.

Theorem 7 πw11 is solvable in O(|V|+ |E|) time.

Proof. Consider an instance I in Fw. The principle of our polynomial-time

procedure for any instance of Fw is to first identify the different levels, then to

look for the closed subset whose set of sink rotations contains all the rotations

in every level to see if it corresponds to a (1, 1)-supermatch (until one is found).

The levels in the rotation poset can be identified by applying topological sort

on the rotation poset first and then by calculating the labels of rotations in the

sorted list. Topological sorting results in a list of rotations such that if rotation

ρ′ is preceding rotation ρ in Π, then ρ′ appears before ρ in the sorted list. The

running time of topological sort is O(|V|+ |E|).

Let Nl denote the set of all rotations at Level l, and Nl+1 denote the ones at level

l + 1. Then, for any Level l, if the union set of all rotations of size 2 in Level

l and Level l + 1 contains all the non-fixed men, i.e. |X(R∗(Nl ∪ Nl+1))| = n,

then l corresponds to a (1, 1)-supermatch. The corresponding stable matching

is constructed by adding all predecessors of all the rotations at Level l, includ-

ing the rotations themselves into the closed subset. Note that, the last Level l

corresponds to a (1, 1)-supermatch only if |X(R∗(Nl))| = n.

Let m < |V | be the number of levels in the poset. The check at a level to see

if it contains all the men can be done in constant time, and construction of the

corresponding stable matching is O(|V|), which is computed only once at the

end. Therefore, the running time of the overall algorithm is O(|V|+ |E|) due to

the Topological sorting.

Also, observe that the number of stable matchings this algorithm creates is

bounded by the number of levels, where the number of levels is equal to the

maximum number of edges in a path between a source vertex and a sink vertex.

�

Note that, although the algorithm described in the proof of Theorem 7 is com-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

88 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.6 Threshold and Polynomial Cases

Table 3.7: Preference lists for men (left) and women (right) for a Stable Mar-
riage instance IF of size 8.

m1 8 6 2 5 1 4 7 3 w1 4 8 7 6 1 5 2 3
m2 5 7 8 2 1 4 3 6 w2 4 2 7 1 5 3 8 6
m3 2 1 7 5 6 8 3 4 w3 2 1 5 3 7 6 4 8
m4 4 3 2 6 7 5 8 1 w4 8 4 3 6 5 7 2 1
m5 4 1 6 5 2 7 8 3 w5 4 2 6 7 8 1 5 3
m6 5 1 8 4 3 2 7 6 w6 7 4 1 3 8 5 6 2
m7 7 2 3 8 4 5 6 1 w7 5 4 1 3 6 7 8 2
m8 3 5 7 4 2 1 6 8 w8 3 8 5 1 4 2 6 7

ρ0

ρ1 ρ4

ρ2

ρ5

ρ3(3, 2), (7, 7) (8, 3), (4, 4)

(5, 6), (3, 7) (4, 3), (7, 2)

(1, 8), (3, 6)

(1, 6), (7, 3)

Level 1

Level 2

Level 3

Level 4

Figure 3.6: Rotation poset of the instance IF given in Table 3.7.

plete for the family Fw, it does not guarantee a solution to instances that are

not in Fw. In Table 3.7 we give an example of a Stable Marriage instance IF

of size 8, that is not in Fw. Figure 3.6 is the rotation poset that represents this

instance, respectively. Note that, IF has a (1, 1)-supermatch. For any such IF,

using the notion of levels of a rotation poset fails to find a (1, 1)-supermatch.

Recall that, if a man has the same partner in all stable matchings of the un-

derlying instance, then the man is said to be fixed. However, if he has at least

one alternative partner, then the man is non-fixed. The instance IF contains

two fixed men (m2 and m6) and 12 stable matchings in total. Only one stable

matching, namely M = {(1, 8), (2, 5), (3, 6), (4, 3), (5, 7), (6, 1), (7, 2), (8, 4)}, is a

(1, 1)-supermatch. The closed subset corresponding to M is S = {ρ0, ρ1, ρ3}.
Let Ni denote a level identified by the algorithm described earlier as follows:

N1 = {ρ0, ρ3}, N2 = {ρ1, ρ4}, N3 = {ρ2}, and N4 = {ρ5}. Additionally,

the corresponding closed subsets for each level is as follows: SN1 = {ρ0, ρ3},
SN2 = {ρ0, ρ3, ρ1, ρ4}, SN3 = {ρ0, ρ1, ρ2}, SN4 = {ρ0, ρ3, ρ1, ρ4, ρ2, ρ5}. We

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

89 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.6 Threshold and Polynomial Cases

can calculate the (1, b)-robustness of each stable matching corresponding to

these levels. The stable matching of the sets SN1, SN2, and SN3 are all (1, 2)-
supermatches, whereas the stable matching of SN4 is a (1, 3)-supermatch.

3.6.2 Finding an (a,0)-supermatch

We consider the case of finding an (a, 0)-supermatch and show that (2, 0)-
supermatches do not exist for the Stable Marriage instances. Let πa0 denote

the problem of finding an (a, 0)-supermatch.

Definition 19 (πa0) A particular case of πab. Decision problem for
(a, 0)-supermatch.
INPUT: A Stable Marriage instance I.
QUESTION: Is there an (a, 0)-supermatch for I?

Firstly note that (1, 0)-supermatches do not exist because in order to find new

partners for a couple, at least one other couple must break up. We next show

that (2, 0)-supermatches need not exist in general and then discuss the generic

method for solving πa0.

Theorem 8 Given any Stable Marriage instance where the number of non-fixed
men n is at least 3, there do not exist any (2, 0)-supermatches.

Proof. Suppose that a (2, 0)-supermatch M exists and let S be its closed subset.

We argue that the only way to repair M (if two couples decide to break up)

is to obtain a closed subset by either adding a rotation of size 2 to S or to

remove a rotation of size 2 from S. Let m1,m2,m3 be three distinct non-fixed

men (recall that n > 2). For every pair of men {m1,m2}, {m2,m3}, {m1,m3},
there exists a rotation ρ of size 2 that involves both men such that ρ ∈ L(S) or

ρ ∈ N(S). Therefore, there necessarily exists a man m ∈ {m1,m2,m3} that is

involved in two rotations ρ1 and ρ2 that are both in L(S) or both in N(S). Since

ρ1 and ρ2 involve m, then they are comparable. This contradicts the fact that

L(S) (respectively N(S)) contains rotations that are incomparable. Therefore,

(2, 0)-supermatches need not exist in general. �

We make the following observation regarding the general case of (a, 0)-super-

matches. Let n denote the number of non-fixed men in a stable marriage in-

stance I such that 2 < a ≤ n. Also, for a given stable matching M and a

number of pairs in M to break-up, the repair matching denotes the closest sta-

ble matching to M , where the pairs that wish to break-up do not exist in the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

90 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.7 Chapter Summary

πab: (a, b)-supermatch

π11: (1, 1)-supermatch

πa1 : (a, 1)-supermatch π1b: (1, b)-supermatch

πw
11: (1, 1)-supermatch

πa0: (a, 0)-supermatch

NP-complete

Polynomial

Open

NP-hard

Figure 3.7: Illustration of the complexity hierarchy between the different cases
of RSM.

repair matching. Suppose that M is a (a, 0)-supermatch for I. This means that

it is possible to find a repair stable matching to M for a breakage involving ev-

ery combination of non-fixed men of size a. Considering Theorem 8, we have

the intuition that (a, 0)-supermatches need not exist in general. However, if

they exist, we suspect they exist in instances that have many number of stable

matchings.

Conclusion. Figure 3.7 summarizes our findings in this chapter by also em-

phasizing the hierarchy between different cases of finding an (a, b)-supermatch.

We do not know about the complexity class of finding (a, 0)-supermatches, yet.

However, we suspect they do not exist. If one can find a polynomial-time wit-

ness for (a, b)-supermatches or (a, 1)-supermatches, these two problems can also

be shown as NP-complete. In fact, we suspect that the complexity of finding

(a, b)-supermatches is ΣP
3 -complete as discussed in Chapter 6 in greater detail.

3.7 Chapter Summary

In this chapter, we introduced a novel robustness notion called (a, b)-super-

matches for the matching problems under ordinal preferences. We studied in

depth the decision problem of a sub-case of RSM, i.e. the (1, 1)-supermatches.

We first provided a characterization for (1, 1)-supermatches. Then, we provided

a model based on finding the independent sets on the rotation posets of the

underlying SM instances.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

91 Begüm Genç

3. ROBUST STABLE MARRIAGE 3.7 Chapter Summary

In order to prove the NP-completeness of deciding if there exists a (1, 1)-
supermatch to a given SM instance, we first defined a special SAT formulation.

By using Schaefer’s Dichotomy Theorem, we proved that this special formula is

NP-complete. Then, we showed equivalency between the two problems. We

also showed that the NP-completeness lifts up to (1, b)-supermatches. Cur-

rently, there is no polynomial-time witnesses for (a, b)-supermatches. Similarly,

we cannot yet generalize our findings on the NP-completeness to the (a, 1)-
supermatches. Therefore, we cannot generalize the complexity result. How-

ever, as another sub-problem, we showed that (2, 0)-supermatches do not exist

for the SM. However, there is no generalization of this result to the (a, 0)-case,

yet.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

92 Begüm Genç

Chapter 4

Methods for Finding
(1,b)-supermatches in RSM

Abstract. We define a polynomial-time procedure to decide if a

given stable matching is a (1, b)-supermatch using the rotation poset

of the underlying Stable Marriage instance. Then, we propose one

complete, and three meta-heuristic models that are based on this

polynomial-time procedure for solving the optimization problem of

finding a (1, b)-supermatch that minimizes the value of b. These four

models are: CP, local search, genetic algorithm, and a hybrid of

both the local search and the genetic algorithm procedures. Sub-

sequently, we perform experiments on two different datasets. One

of them consists of uniformly random SM instances, and the other

one consists of SM instances that contain many stable matchings

(referred as MANY). We first report the performance comparison of

the four models on the random RSM instances. Finally, we report

how these models perform on MANY.

4.1 Notation and Definitions

We present a polynomial-time algorithm based on rotations to verify if a given

stable matching is a (1, b)-supermatch. We use some of the notation defined

for RSM in Section 3.2, and also introduce below a few others for this chap-

ter. Notice that, for an SM instance that contains at least two different stable

matchings, each stable matching M of the instance has a value b such that M

93

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.1 Notation and Definitions

is a (1, b)-supermatch. We define the most robust stable matching of a given

SM instance as a (1, b)-supermatch that has the minimum b value among all the

(1, b)-supermatches of the underlying instance. We suppose that M is a given

stable matching, S its corresponding closed subset, and (mi, wj) is the non-fixed

pair in M that wishes to break-up. In order to avoid repetition, we use a no-

tation for stable matchings and their corresponding closed subsets such that if

a stable matching is identified using some superscripts or subscripts, then its

corresponding closed subset contains them as well (i.e. the closed subset of M j
i

is denoted by Sji).

Recall the definitions of elimination and production rotations introduced in

Section 3.2. Our work in this section is mostly based on these two special

rotations. Given a rotation ρ exposed on a stable matching M and a pair

(mi, wj) ∈ ρ, the stable matching M/ρ is said to be obtained after eliminating ρ

from M. In this case, we say that the pair (mk, wk), 0 ≤ k ≤ |ρ|, is eliminated by

ρ and (mk, wk+1) is produced by ρ. Suppose that there is a stable matching M,

and rotation ρ = (m0, w0), (m1, w1), . . . , (ml−1, wl−1) is exposed on the M. Then

ρ is the elimination rotation for the pairs: (m0, w0), (m1, w1), . . . , (ml−1, wl−1),
and it is the production rotation for the pairs: (m0, w1), (m1, w2), . . . , (ml−1, w0).

For each pair (mi, wj) that appears in some stable matching M, the pair (mi, wj)
/∈ M0, and M 6= M0, there exists a unique production rotation ρpi,j

that pro-

duces (mi, wj). Similarly, if (mi, wj) /∈ MZ and M 6= MZ , then there exists a

unique elimination rotation ρei,j
that eliminates (mi, wj). Recall that it is al-

ways the case that M strictly dominates M/ρ and the addition operations (+1)

on rotations are modulo |ρ|.

We identify four different cases below to make it easier to show the existence of

the production and elimination rotations. These four different cases are listed

based on the existence of a stable pair (mi, wj) in the man-optimal and the

woman-optimal stable matchings (M0 and MZ , respectively) as follows:

(1) (mi, wj) ∈M0 and (mi, wj) ∈MZ , or;

(2) (mi, wj) ∈M0 and (mi, wj) 6∈MZ , or;

(3) (mi, wj) 6∈M0 and (mi, wj) ∈MZ , or;

(4) (mi, wj) 6∈M0 and (mi, wj) 6∈MZ .

Case (1) refers to the case in which (mi, wj) is a fixed pair. For Case (2), the

wj is the most preferred stable partner for mi, but mi also has alternative, less

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

94 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.1 Notation and Definitions

preferred, partner(s) than wj. For Case (3), wj is the least preferred stable

partner for mi and he has better alternative(s). The last case, Case (4), applies

when mi has more alternatives than wj, where he can be partners with a more

preferred woman (women) or less preferred ones.

If there is a stable matching M , and it includes the pair (mi, wj) ∈ M, then we

can observe the production and elimination rotations of that pair as:

• If Case (1), then there do not exist a production or elimination rotation

for the (mi, wj);

• If Case (2), then there exists a rotation that eliminates the (mi, wj);

• If Case (3), then there exists a rotation that produces the (mi, wj);

• If Case (4), then there exists a rotation that produces the (mi, wj) and

there exists another one that eliminates it.

Suppose that a pair (mi, wj) ∈M wishes to break-up. Let M ′ denote the closest

stable matching to M that does not include (mi, wj). Recall that the stable

matching M ′ is said to be the repair matching for M for pair (mi, wj). The

M ′ can either be a stable matching that dominates M in the lattice of stable

matchings, it can be a stable matching that is dominated by M, or it can be

incomparable to M. As an illustration, in the case of M0 � M ′ � M, it means

that there exists a rotation ρ that is in the closed subset of M and not in the

closed subset of M ′ (i.e. ρ ∈ S and ρ 6∈ S ′). This rotation is the rotation that

produces the pair (mi, wj) in M. However, if M �M ′ �MZ , then there exists a

rotation ρ that eliminates the pair in M. Hence, when it is included in a closed

subset, we see a different partner for mi than wj. In this case, ρ 6∈ S and ρ ∈ S ′.1

Considering the above-mentioned cases based on precedence, we identify two

different sets for each stable matching M. For any pair (mi, wj) ∈ M, if the

production rotation ρpi,j
exists, then there exists a set of stable matchings Su,

where each of them dominates M and does not include the (mi, wj). Similarly,

if there exists the elimination rotation ρei,j
, then there exists a set of stable

matchings Sd, where each of the stable matchings in Sd is dominated by M and

none of them include the pair (mi, wj).

1 We show later in this section that an incomparable stable matching can never be the
closest stable matching within the defined context. Therefore, we do not discuss this case for
the moment.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

95 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

4.2 Methodology for verifying a (1,b)-supermatch

In this section, our motivation is to find a procedure that verifies if a given

stable matching is a (1, b)-supermatch, or not. Considering that there may be

exponential number of stable matchings to the instance, enumerating all stable

matchings may be impractical for some cases. We present here a procedure that

decides if a given stable matching is a (1, b)-supermatch in polynomial-time.

The intuition of this procedure is due to the lattice structure of all stable match-

ings. In order to find if a stable matching M is a (1, b)-supermatch, one needs

to find all the closest stable matchings to M for the break-up of each pair. We

discuss below a procedure that shows how to find the closest stable matching

M ′ to M given a pair in (mi, wj) ∈M and (mi, wj) 6∈M ′. We first show that the

stable matching M ′ is either M ′ � M or M � M ′ in the lattice. We begin by

showing how to construct both of these two stable matchings, then prove that

one of them is the closest to M.

Recall that each man in a stable matching refers to a unique pair. We identify

for each pair (mi, wj) ∈M, for mi, two stable matchingsM∗i
UP andM∗i

DOWN. The

M∗i
UP represents a stable matching that dominates M and does not include the

pair (mi, wj). Similarly, M∗i
DOWN represents a stable matching that is dominated

by M and does not include the pair (mi, wj). It is important to note that M∗i
UP or

M∗i
DOWN need not exist. For instance, all of the dominating stable matchings of

M include the pair, it means that the pair is included in the man-optimal stable

matching M0 (Case (1) and Case (2)). In other words, wj is the best possible

partner for mi. Therefore, an M∗i
UP does not exist. Similarly, if there exist no

dominated stable matchings that does not include the unwanted pair, it means

that wj is the least preferred partner of mi (Case (1) and Case (3)). Therefore,

there does not exist an M∗i
DOWN.

Let us define the closed subsets of the above-mentioned two stable matchings

M∗i
UP and M∗i

DOWN, where mi wishes to break-up in our current stable matching

M. We name their closed subsets as S∗iUP and S∗iDOWN, respectively. Note that

given Su as the set of all the dominating stable matchings of M, and Sd as the

dominated ones: M∗i
UP ∈ Su and M∗i

DOWN ∈ Sd.

In Equation 4.1, we define the S∗iUP as a closed subset that includes all the ro-

tations in the corresponding closed subset S of M, except the rotation that

produced (mi, wj), i.e. ρpi,j
, and all the successors of ρpi,j

in S. More formally,

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

96 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

if (mi, wj) /∈M0, we define a specific set of rotations S∗iUP as follows:2

S∗iUP = S \ ({ρpi,j
} ∪ (N+

t (ρpi,j
) ∩ S)). (4.1)

Subsequently, in Equation 4.2, we define S∗iDOWN as a closed subset that contains

all the rotations in S together with the rotation that eliminates (mi, wj), i.e.

ρei,j
. Additionally, we need all the predecessors of the ρei,j

that are not in S to

make sure S∗iDOWN is a closed subset. Formally, if (mi, wj) /∈ MZ , we define a

specific set of rotations S∗iDOWN as follows:

S∗iDOWN = S ∪ {ρei,j
} ∪ (N−t (ρei,j

) \ S). (4.2)

In Figure 4.1 we illustrate for a closed subset S and a pair (mi, wj) that wishes

to break-up in M: the two sets S∗iUP, S∗iDOWN, and also the closed subset (Sk) of

an incomparable matching Mk to be used later in this section.

Observe that the set S∗iUP is obtained by removing the production rotation that

produced the partner of mi ∈ M and all of its successors that are in S (i.e. ρpi,j

ρpi,j

ρei,j

SUP
*i

SDOWN
*iSk

S

ρmρn

Figure 4.1: A set of closed subsets illustrated on a sample rotation poset.

2The brackets () in Equations 4.1 and 4.2 are used to emphasise priority between the oper-
ators.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

97 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

and ρm). On the other hand, the set S∗iDOWN is obtained by adding the elimina-

tion rotation that eliminates the partner of mi in M and also all its predecessors

that are not in S (i.e. ρei,j
and ρn). Observe that S∗iUP and S∗iDOWN are in fact,

closed subsets since S is a closed subset.

For illustration, consider the stable matching M5 in Figure 2.10 (Page 40), and

its closed subset S5 = {ρ0, ρ1, ρ2}, which can be verified in Table 3.1 (Page 65).

Table 4.1 shows for the break-up of each man (mi, wj) the closed subsets S∗iUP

and S∗iDOWN, if one exists. If the closed subset does not exist, we denote it by the

sign “-”.

Table 4.2 shows the stable matchings corresponding to the closed subsets in

Table 4.1 and the distances between the current stable matching M5 to each

one of them. The distances are denoted as diup and didown in the table, where for

each man mi, diup = d(M5,M
∗i
UP) and didown = d(M5,M

∗i
DOWN), respectively. If M∗i

UP

does not exist for a man mi, then diup is set to∞ (the same value is used when

M∗m
DOWN does not exist). Lastly, bi = min(diup, didown) − 1 represents the repair

cost of each man. The reason for subtraction of 1 is because we are considering

only (1, b)-supermatches, hence a = 1 (see Definition 12, Page 64).

Table 4.1: The closed subsets S∗iUP and S∗iDOWN for M5.

(mi, wj) ρpi,j
ρei,j

S∗iUP S∗iDOWN
(m0, w4) ρ2 ρ3 {ρ0, ρ1} {ρ0, ρ1, ρ2, ρ3}
(m1, w5) ρ1 ρ5 {ρ0} {ρ0, ρ1, ρ2, ρ4, ρ5}
(m2, w6) - ρ4 - {ρ0, ρ1, ρ2, ρ4}
(m3, w3) - ρ5 - {ρ0, ρ1, ρ2, ρ4, ρ5}
(m4, w1) - ρ3 - {ρ0,ρ1, ρ2, ρ3}
(m5, w2) ρ2 - {ρ0, ρ1} -
(m6, w0) ρ1 ρ4 {ρ0 } {ρ0, ρ1, ρ2, ρ4}

Table 4.2: The repair stable matchings M∗i
UP and M∗i

DOWN for each man in M5
following the Table 4.1 and the distances between M5 and the repair stable
matchings.

M∗i
UP M∗i

DOWN diup didown bi
M2 M8 2 2 1
M1 M7 4 4 3
- M6 ∞ 2 1
- M7 ∞ 4 3
- M8 ∞ 2 1
M2 - 2 ∞ 1
M1 M6 4 2 1

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

98 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

Table 4.3: The robustness values of all stable matchings for the sample given in
Table 2.1.

Mk Sk b
M0 {} 5
M1 {ρ0} 4
M2 {ρ0, ρ1} 3
M3 {ρ0, ρ1, ρ4} 2
M4 {ρ0, ρ1, ρ4, ρ5} 3
M5 {ρ0, ρ1, ρ2} 3
M6 {ρ0, ρ1, ρ2, ρ4} 1
M7 {ρ0, ρ1, ρ2, ρ4, ρ5} 3
M8 {ρ0, ρ1, ρ2, ρ3} 3
M9 {ρ0, ρ1, ρ2, ρ3, ρ4} 2
M10 {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5} 3

The robustness of a stable matching is characterized by the repair cost of the

non-fixed man that has the worst repair cost b = ∑
i∈{1...n}max(bi). For instance,

for the given example, M5 is characterized as a (1, 3)-supermatch as menm1 and

m3 require at least 3 other men to change their partners. Moreover, Table 4.3

lists the (1, b)-robustness values for each stable matching for the SM instance

in Figure 2.10 (Page 40). The most robust stable matching in this example is

M6 since it has the smallest value for b. Similarly, M0 is the least robust stable

matching.

We now show the correctness of our method. Recall that X(ρ) denotes the set

of men involved in the rotation ρ. Lemma 13 gives a main characterization for

the incomparable rotations.

Lemma 13 Given two incomparable rotations ρ and ρ′, the set of men in ρ and ρ′

are disjoint (i.e. X({ρ}) ∩X({ρ′}) = ∅).

Proof. By definition of incomparability, if two rotations are incomparable, it

means that they modify a set of men who do not require modifications from the

other first. Therefore the sets of men are distinct. �

In Lemma 14 we characterize the distance relation between comparable stable

matchings. We show that if two stable matchings are close in the lattice in

terms of the length of the shortest path that connect them, they are also closer

in terms of our distance function.

Lemma 14 Given three stable matchings Mx,My and Mz such that Mx � My �
Mz, thenMz (orMx) is closer toMy thanMx (orMz) i.e. d(My,Mz) ≤ d(Mx,Mz)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

99 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

and d(Mx,My) ≤ d(Mx,Mz).

Proof. Using the properties of domination and the closed subsets in Theorem 3

(Page 44), we can infer Sx ⊂ Sy ⊂ Sz.

Assume to the contrary that d(My,Mz) > d(Mx,Mz). This situation occurs only

if a set of pairs that are present in Mx are eliminated to obtain My and then

re-matched with the same partners they had in Mx to get Mz. However, this

contradicts Corollary 1 (Page 41). For similar reasons, d(Mx,My) < d(Mx,Mz).
�

Remark. Observe for Lemma 14 that the distance of a stable matching to two

different stable matchings can be the same, i.e. d(Mx,My) = d(Mx,Mz). This

case occurs if the rotation set in the difference sets Sy \ Sx, Sz \ Sx, and Sz \ Sy
include the same set of men. We demonstrate this case on a Stable Marriage

instance I of size 8 given in Manlove’s book, Page 91 [Man13]. Figure 4.2

illustrates the lattice of the stable matchings of I.

Consider the three stable matchings M8 � M15 � M21 in this instance. The

stable matchings can be identified by starting with the man-optimal matching

(denoted by M1 on the figure) and exposing each rotation one by one by re-

specting their order until the desired stable matching is reached. The rotations

on the path fromM1 to a stable matchingMi identifies the corresponding closed

subset of Mi (denoted by Si). The pairs involved in these three matchings are

as follows:

M8 = {(1, 1), (2, 3), (3, 4), (4, 8), (5, 2), (6, 5), (7, 6), (8, 7)}

M15 = {(1, 5), (2, 4), (3, 3), (4, 6), (5, 8), (6, 7), (7, 2), (8, 1)}

M21 = {(1, 7), (2, 8), (3, 2), (4, 1), (5, 6), (6, 4), (7, 3), (8, 5)}

The closed subsets corresponding to these three stable matchings are:

S8 = {ρ1, ρ2, ρ3}

S15 = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}

S21 = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9, ρ10}

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

100 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

Figure 4.2: A sample Stable Marriage instance of 8 men and 8 women from
Manlove [Man13].

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

101 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

The pairs involved in the rotations are presented below:

ρ1 = (1, 3), (2, 1), ρ6 = (4, 8), (7, 6), (5, 2),

ρ2 = (3, 7), (5, 4), (8, 2), ρ7 = (3, 3), (8, 1),

ρ3 = (4, 5), (7, 8), (6, 6), ρ8 = (2, 4), (5, 8), (6, 7),

ρ4 = (1, 1), (6, 5), (8, 7), ρ9 = (1, 5), (5, 7), (8, 3),

ρ5 = (2, 3), (3, 4), ρ10 = (3, 1), (7, 2), (5, 3)(4, 6).

In this case, the difference sets are:

S15 \ S8 = {ρ4, ρ5, ρ6}

S21 \ S15 = {ρ7, ρ8, ρ9, ρ10}

S21 \ S8 = {ρ4, ρ5, ρ6, ρ7, ρ8, ρ9, ρ10}

Due to the fact that X(S15 \ S8) = X(S21 \ S15) = X(S21 \ S8) =
{1, 2, 3, 4, 5, 6, 7, 8}, all 8 men have different partners in all three stable match-

ings. In addition, the distances of all of them are equal to each other

d(M8,M15) = d(M15,M21) = d(M8,M21) = 8.

Having defined two stable matchingsM∗i
UP andM∗i

DOWN above, we now show that

one of them is the closest stable matching to M when mi wishes to break-up.

As the first step, in Lemma 15 we show that M∗i
UP is the closest stable matchings

to M in the lattice when compared with all other dominating stable matchings

in Su. Subsequently, in Lemma 16 we show that M∗i
DOWN is the closest to M

when compared with all other dominated stable matchings in Sd. The reader is

referred to the illustration given in Figure 4.1 (Page 97), as it demonstrates the

sets used in Lemma 15, 16, and 17.

Lemma 15 If there exists a stable matching Mx that: (a) does not contain
(mi, wj), (b) dominates M, and (c) different from M∗i

UP, then Mx dominates M∗i
UP.

Proof. M∗i
UP � M by definition. Suppose by contradiction that there exists an

Mx such that (mi, wj) 6∈ Mx and M∗i
UP � Mx � M. It implies that S∗iUP ⊂ Sx ⊂ S.

In this case, the difference set (Sx \S∗iUP) contains the rotation that produced the

pair and also all its successors is S. Formally, (Sx \S∗iUP) ⊂
{
{ρpi,j

}∪{N+
t (ρpi,j

)∩

S}
}

. Adding any rotation from this set to Sx results in a contradiction by either

adding (mi, wj) to the matching, thereby not breaking that couple, or because

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

102 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

the resulting set is not a closed subset. �

Example. An example Mx as discussed in Lemma 15 could be illustrated in

Figure 4.1 as a Sk that contains only the sink vertex of the rotation poset.

Lemma 16 If there exists an Mx that: (a) does not contain (mi, wj), (b) is domi-
nated by M, (c) and different from M∗i

DOWN, then M∗i
DOWN dominates Mx.

Proof. Similar to the proof above, suppose that there exists an Mx such that

(mi, wj) 6∈ Mx and M � Mx � M∗i
DOWN. We have S ⊂ Sx ⊂ S∗iDOWN. It implies

that the difference set (Sx \ S) contains the elimination rotation of the pair

and its all preceding rotations that are not in S. More formally, (Sx \ S) ⊂{
{ρei,j

} ∪ {N−t (ρei,j
) \ S}

}
. In order to add ρei,j

all other rotations must be

added to form a closed subset. If all rotations are added, S = S∗iDOWN which

results in a contradiction. �

Example. An example Mx as discussed in Lemma 16 could be illustrated in

Figure 4.1 as a Sk that contains all the rotations in S∗iDOWN and the immediate

successor of ρei,j
.

Finally, we show in Lemma 17 that an incomparable stable matching to M

cannot be closer to M than either M∗i
UP or M∗i

DOWN. Note that, an incomparable

stable matching Mk is already illustrated in Figure 4.1.

Lemma 17 For any stable matching Mk incomparable with M such that Mk does
not contain the pair (mi, wj), M∗i

UP is closer to M than Mk.

Proof. Let Sk be the closed subset corresponding to Mk, and S be that corre-

sponding toM. First, we consider the case in which Sk∩S = ∅. If the closed sub-

sets have no rotations in common the rotations in these sets are incomparable.

Using Lemma 13, X(Sk) ∩X(S) = ∅. Therefore, d(Mk,M) = |X(Sk)| + |X(S)|,
whereas d(M∗i

UP,M) ≤ |X(S)|.

Second, we consider the case in which Sk ∩ S 6= ∅. Let Mc be the closest domi-

nating stable matching of both Mk and M∗i
UP, along with Sc as its corresponding

closed subset. Using Lemma 14 we know that d(M∗i
UP,M) ≤ d(Mc,M), where

d(Mc,M) = |X(S \ Sc)|.

Using Lemma 13 we know thatX(Sk\Sc)∩X(S\Sc) = ∅. Therefore, d(Mk,M) =
|X(Sk \ Sc)| + |X(S \ Sc)|. By substituting the formula above, d(Mk,M) ≥
|X(Sk \Sc)|+d(M∗i

UP,M). Using the fact that |X(Sk \Sc)| > 0 from the definition

of Mk, we can conclude that d(Mk,M) > d(M∗i
UP,M). �

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

103 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM
4.2 Methodology for verifying a

(1,b)-supermatch

Theorem 9 is a direct consequence of Lemmas 15, 16, and 17. It concludes that

the repair stable matching for M for pair (mi, wj) is one of the stable matchings

we have identified.

Theorem 9 The closest stable matching of a stable matching M given the un-
wanted pair (mi, wj) is either M∗i

UP or M∗i
DOWN.

Proof. The proof is immediate from Lemmas 15, 16, and 17. �

Lemma 18 identifies the stable matching in any SM instance that is brittle, i.e.

it has the highest value of b.

Lemma 18 For any SM instance, either M0 or MZ is the (1, b)-supermatch that
has the largest b among all stable matchings of the underlying instance.

Proof. Suppose for contradiction that there exists a stable matching M, where

M 6∈ {M0,MZ}, and M has a larger b value among those three stable matchings

when their (1, b)-robustness is computed. Assume that this large value of b of

M is due to the distance for M to a repair matching M ′. We know that the

man-optimal stable matching M0 dominates all other stable matchings, and the

woman-optimal one MZ is dominated by all others (i.e. M0 � M ′ � MZ). By

Lemma 14, for any stable matching M ′ that is M0 �M ′ �M or M �M ′ �MZ ,

M ′ is closer to M than the man/woman optimal matchings. This means that, if

M0 � M ′ � M, then d(M,M ′)leqd(M,M0). Similarly, if M � M ′ � MZ , then

d(M,M ′)leqd(M,MZ). Hence, the supposition contradicts. �

4.2.1 Complexity

We show that checking if a stable matching is a (1, b)-supermatch can be per-

formed in total, in O(n × |V|) time after a O(n2 + |V|2) preprocessing step. We

explain the reasoning below.

The pre-processing step consists of building: the rotation poset (in O(n2) time),

the transitive predecessor and successor lists N−t (ρ), N+
t (ρ) for each rotation ρ

(in O(|V|2) time), and the identification of ρei,j
and ρpi,j

for each pair (mi, wj)
whenever applicable (in O(n2) time). The construction of the rotation poset

takes O(n2) as discussed in Section 2.4.1 (Page 42). The construction of the

lists N−t (ρ), N+
t (ρ) for each rotation is performed by identifying all the rota-

tions in the rotation poset, where the number of rotations is O(|V|). Therefore,

this identification takes O(|V|2). The identification of the elimination and pro-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

104 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.3 Constraint Programming Model

duction rotations for each pair is performed by searching for all the rotations

in the rotation poset. There are exactly n/2 pairs and |V| rotations yielding in

O(n + |V|). Combining all the three orders, we obtain a pre-processing time of

O(n2 + |V|2). Note that, the number of rotations |V| is bounded by n(n− 1)/2.

Next, we compute S∗iUP and S∗iDOWN for each man. Note that S∗iUP and S∗iDOWN can

be constructed in O(|V|) time (by definition of S∗iUP and S∗iDOWN) for each man

mi (see Equation 4.1 and Equation 4.2). Note that, computing the distance

d(M∗i
UP,M) is equal to the number of men participating in the rotations that are

eliminated from S to obtain S∗iUP. The difference set, S\S∗iUP obtains, in the worst

case, all the rotations in the poset, i.e. O(|V|). The same applies to calculating

the distance d(M∗i
DOWN,M). Last, if b < d(M∗i

UP,M)−1 and b < d(M∗i
DOWN,M)−1,

we know that it is impossible to repair M when mi needs to change his partner

with at most b other changes. Otherwise, M is a (1, b)-supermatch. Hence, the

defined procedure takes O(n × |V|), which can be equal to O(n3), in the worst

case.

As a final remark, we obtain a closed subset S as the solution to the procedure

defined. Hence, there also exists an additional cost to convert the solution S

into its corresponding stable matching M . In order to do that, starting from

M0, all the rotations in S starting from the sink rotation of S by respecting the

precedence order, must be eliminated. The resulting matching M ′, is obtained

by eliminating |ρ| pairs for each rotation ρ in S.

4.3 Constraint Programming Model

Constraint programming (CP) is one of the most powerful techniques for solv-

ing combinatorial search problems by expressing the relations between decision

variables as constraints [RvBW06]. In this section we give a CP formulation

for finding the most robust stable matching, i.e. the (1, b)-supermatch with

the minimum b. The idea is to formulate the Stable Marriage problem using

rotations, then extend that formulation in order to compute the two values

d(M∗i
UP,M) and d(M∗i

DOWN,M) (where M is the solution) for each man mi so

that the value of b is always greater or equal to one of them. Using rotations

to model stable matching problems has been used in [GI89] on Page 194, and

also in [Fed92, FIM07, SO17].

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

105 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.3 Constraint Programming Model

4.3.1 Variables

We first introduce all the variables to be used in the model. Let the set of

rotations be V = {ρ1, ρ2, . . . , ρ|V|}. The list below shows the notation we use in

our CP model.

M : The solution stable matching.

S: The closed subset corresponding to M.

SP : The set of all non-fixed, stable pairs.

NM : The set of all men that appears in at least one of the pairs in

SP , also referred as the non-fixed men.

Ri: The set of rotations in which man mi is involved.

S∗iUP: The closed subset corresponding to the closest dominating sta-

ble matching M∗i
UP when mi in M wishes to break-up.

S∗iDOWN: The closed subset corresponding to the closest dominated sta-

ble matching M∗i
DOWN for mi in M wishes to break-up.

ρpi,j
: For each pair (mi, wj) /∈ M0, ρpi,j

denotes the unique identifier

for the rotation that produces (mi, wj).

ρei,j
: For each (mi, wj) /∈ MZ , ρei,j

denotes the unique identifier for

the rotation that eliminates the pair (mi, wj).

w0
i : The unique identifier for the man mi’s partner in M0.

wZi : The unique identifier for the man mi’s partner in MZ .

Notice that pi,j and ei,j are integer values that point to the index of the rotation

that they denote, i.e. pi,j, ei,j ∈ {1, . . . , |V|}. Similarly, for a pair (mi, wj) ∈ M0,

w0
i = j and (mi, wj) ∈MZ , wZi = j.

In our model, we assume that an O(n2) pre-processing step is performed to

compute M0, MZ , SP , NM , the rotation poset, ρei,j
, and ρpi,j

for every pair

(mi, wj) whenever applicable by using the methods described in Section 2.4.1

(Page 37) and Section 4.1 (Page 93). Additionally, the lists of predecessors and

successors of each rotation ρ including transitivity (N−t (ρ), N+
t (ρ)) are com-

puted. This step takes additional O(|V|2) time. The running times are discussed

in detail in Section 4.2.1.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

106 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.3 Constraint Programming Model

Now, we define the variables to be used in our model.

xi,j: A boolean variable xi,j for each pair (mi, wj) ∈ SP to indicate if

(mi, wj) is part of the solution matching M. It represents the decision

variable in the model.

b: An integer variable b with the initial domain [1, |NM | − 1]. The lower

bound for the domain is set to 1, because in order to obtain another

stable matching at least 1 other man needs to have a different partner.

Additionally, the upper bound is set to |NM | − 1 because in the worst

case every other person needs to change their partners to accommo-

date mi’s wish to break-up. This variable represents the objective.

αi: A boolean variable for each mi ∈ NM to indicate if (mi, ww0
i
) is in the

solution M.

βi: A boolean variable for each mi ∈ NM to indicate if (mi, wwZ
i

) is in the

solution M.

sv: A boolean variable sv for each rotation ρv, v ∈ {1, . . . , |V|} to indicate

if ρv is in S.

siupv
: A boolean variable for each mi ∈ NM, ρv ∈ V to indicate if ρv is in the

difference set S \ S∗iUP.

sidownv
: A boolean variable for each mi ∈ NM, ρv ∈ V to indicate if ρv is in

the difference set S∗iDOWN \ S.

yil : A boolean variable for each man ml ∈ NM and ml ∈ NM to indicate

in order to find the repair S∗iUP when mi breaks up with his partner, if

the partner of ml needs to be changed or not.

zil : A boolean variable for each man ml ∈ NM and ml ∈ NM to indicate

in order to find the repair S∗iDOWN when mi breaks up with his partner,

if the partner of ml needs to be changed or not.

4.3.2 Constraints

Using the terminology described above, we construct the CP model step by step.

In order to make it clear for the reader, we separate different logical blocks into

different subsections and use parentheses in equations to emphasize priority

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

107 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.3 Constraint Programming Model

between the operators.

SM formulation. We first express that a pair is a part of a solution if and only

if it is produced by a rotation (if it is not a part of M0) and not eliminated by

another (if it is not a part of MZ). More specifically, the first set of constraints

ensures that if a pair (mi, wj) is in M, the rotation that produces (mi, wj) is in

S and the rotation that eliminates is not in S. Hence, Constraint 4.3 is required

to keep track of the pairs that are in the solution.

∀(mi, wj) ∈ SP :
xi,j ↔ ¬sei,j

, if (mi, wj) ∈M0,

xi,j ↔ spi,j
, if (mi, wj) ∈MZ , (4.3)

xi,j ↔ (spi,j
∧ ¬sei,j

) , otherwise.

A set of rotations corresponds to the closed subset of the solution if and only if

all the parents of each rotation in the set are also in the set, and the rotations

produce the pairs in the solution. Constraint 4.4 ensures that the solution is a

stable matching by ensuring that S is a closed subset.

∀ρv ∈ V , ∀ρv′ ∈ N−(ρv):
sv → sv′ . (4.4)

Having ensured that the result is always a stable matching, and keeping track

of the pairs, the next step is to find the closest stable matchings S∗iUP and S∗iDOWN.

In order to find these stable matchings, we focus on the differences between the

solution M and them. In other words, we construct the difference sets S \ S∗iUP

and S∗iDOWN \ S.

Building the difference set S \ S∗iUP. The following set of constraints (Con-

straint 4.5 and Constraint 4.6) are required to build the difference set S \ S∗iUP.

These constraints are specifically for keeping track of the pairs included in the

difference sets. Constraint 4.5 handles the special case when manmi is matched

to his partner in M0.

∀mi ∈ NM :

αi ↔ xi,w0
i
. (4.5)

Constraint 4.6 is used to indicate that the pair (mi, wj) is a part of the solution

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

108 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.3 Constraint Programming Model

(i.e. the repair stable matching) if and only if its production rotation is included

in the difference set S \ S∗iUP.

∀mi ∈ NM, ∀(mi, wj) ∈ SP , where j 6= w0
i :

xi,j ↔ siuppi,j
. (4.6)

The set of constraints given between Constraint 4.7 to Constraint 4.9 are for

keeping track of the rotations in S \ S∗iUP. Constraint 4.7 is used to ensure if

the current partner of a man is not produced by a rotation, then there does not

exist a dominating repair stable matching and neither its closed subset S∗iUP.

∀mi ∈ NM, ∀ρv ∈ V:

αi → ¬siupv
. (4.7)

Constraint 4.8 ensures that if there exists a rotation ρ in the closed subset S of

the given matching and it is in the difference set (i.e. it needs to be removed

from the S to construct the S∗iUP), then all of ρ’s successors in S must also be in

the difference set (i.e. the successors must be removed, respectively).

∀mi ∈ NM, ∀ρv ∈ V ,∀ρv′ ∈ N+(ρv):
siupv
∧ sv′ → siupv′

. (4.8)

Then, in order to construct the difference set for the dominating stable matching

fully, we specify the constraints from the other direction, i.e. if a rotation ρ is

in the difference set, it must be in the closed subset S of the current matching

M, and either the pairs it produces are in M or at least one other successor

of ρ is in the difference set. There are two cases to distinguish as specified in

Constraint 4.9.

∀mi ∈ NM, ∀ρv ∈ V:

siupv
→
(
sv ∧ (xi,j ∨

∨
ρv∗∈N−(ρv)

siupv∗)
)

,if ρv produces (mi, wj), (4.9)

siupv
→
(
sv ∧ (

∨
ρv∗∈N−(ρv)

siupv∗)
)

,otherwise.

Building the difference set S∗iDOWN \ S. Following the same intuition as

above, we use the following set of constraints to represent the difference set

S∗iDOWN \ S. We are not adding detailed explanations for each case as their logic

is the same as the cases above for constructing of the difference set S \S∗iUP used

for construction of the closest dominating stable matching.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

109 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.3 Constraint Programming Model

∀mi ∈ NM : βi ↔ xi,wZ
i
. (4.10)

∀mi ∈ NM, ∀(mi, wj) ∈ SP, where j 6= wZi : xi,j ↔ sidownei,j
. (4.11)

∀mi ∈ NM, ∀ρv ∈ V : βi → ¬sidownv
. (4.12)

∀mi ∈ NM, ∀ρv ∈ V ,∀ρv′ ∈ N−(ρv) : sidownv
∧ ¬sv′ → sidownv′

. (4.13)

∀mi ∈ NM, ∀ρv ∈ V :

sidownv
→
(
¬sv ∧ (xi,j ∨

∨
ρv∗∈N+(ρv)

sidownv∗)
)

,if ρv eliminates (mi, wj), (4.14)

sidownv
→
(
¬sv ∧ (

∨
ρv∗∈N+(ρv)

sidownv∗)
)

,otherwise.

Counting the repair cost. Next, we define a number of constraints to count

exactly how many men must change their partners in order to provide a repair

to M using the difference sets for S∗iUP and S∗iDOWN (i.e. S \ S∗iUP and S∗iDOWN \ S).

Constraints 4.15 and 4.16 are required to keep track if man ml must change his

partner in M to obtain the S∗iUP (or S∗iDOWN) upon the break-up of man mi. The

idea is that, if ml appears in any of the rotations in the difference set, it means

his partner is changed to provide the repair stable matching. Constraint 4.15 is

the case for obtaining S∗iUP, whereas Constraint 4.16 is for the S∗iDOWN.

∀ml 6= mi ∈ NM :

yil ↔
∨

ρv∈Rl

siupv
, and (4.15)

zil ↔
∨

ρv∈Rl

sidownv
. (4.16)

After finding out which men are involved in the difference sets, the next step

is to count the number of them. Constraint 4.17 is for counting the number

of additional men (excluding the man that wishes to break-up mi) that are

changing their partners in the difference set to S∗iUP. Similarly, Constraint 4.18

is for S∗iDOWN. Note that, we also specify the case that if the man mi has never

been produced by a rotation, there does not exist an S∗iUP, therefore the number

of men that must be modified is ∞ (or n can be used to denote that it is even

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

110 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

larger than the worst possible repair cost). The same applies to the other set,

the closest dominated stable matching.

∀ml 6= mi ∈ NM :

αi → diup = n and ¬αi → diup =
∑

yil , and (4.17)

βi → didown = n and ¬βi → didown =
∑

zil . (4.18)

Finally, we constrain the value of b to indicate that b holds the maximum value

of the required repairs when the repair stable matchings of each man’s break-up

is considered.

∀mi ∈ NM :(
¬αi → (b ≥ diup)

)
∨
(
¬βi → (b ≥ didown)

)
(4.19)

To conclude the model, objective is to minimise b. An example of a CP model

of an instance can be found in Appendix A.

Note that, the initial upper bound for b can easily be lowered by using some pre-

processing. One such strategy is to use a greedy approach in which we traverse

a chain in the lattice of stable matchings starting from M0 to MZ . For instance,

Algorithm 3 (Page 43) can be used to find this maximal chain. Then, one can

check each stable matching on this chain for a (1, b)-supermatch and compute

the b values. The minimum b value on this chain then sets an upper bound on

the variable b. However, note that this preprocessing step can be very costly

because it computes (1, b)-values for each stable matching, where the number

of stable matchings on this chain can be n(n−1)/2. For a faster but less effective

upper bound adjustment, consider Lemma 18 (Page 104). We know that either

M0 or MZ sets the highest value for b. We already know of the existence of M0

and the MZ after applying the Gale-Shapley algorithm (detailed in Algorithm 2,

Page 39). Computing the b value of these two (1, b)-supermatches provides us

information about the worst case b among all the stable matchings. If the (1, b)-
robustness of the M0 and MZ are different from each other, then the one that

has a lower b value sets the upper bound for the b value in the CP model.

4.4 Genetic Algorithm Approach

Genetic Algorithms (GA) are being used extensively in optimization problems as

an alternative to traditional heuristics [Hol92]. Our approach is based on the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

111 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

traditional GA, where evolutions are realised after the initialisation of a random

set of solutions. The process terminates either when an acceptable solution is

found or the search loop reaches a pre-determined limit, i.e. maximum iteration

count, time limit, etc.

The search process begins from an initial population of solutions. Each solu-

tion in this set represents an individual. Each individual in the population is

associated with a fitness value indicating how good it is with respect to the ob-

jective. The quality of the population is improved through two main operators:

crossover and mutation [BNKF98]. The process terminates either when an ac-

ceptable solution is found or the search loop reaches a pre-determined limit.

The genetic algorithm that we propose to find the most robust stable matching

is described below with a look-up example demonstrating one iteration of the

algorithm.

4.4.1 Initialization

The purpose of the initialization step is to generate a number of random stable

matchings for constructing the initial population set, denoted by P . Recall that

each closed subset in the rotation poset corresponds to a stable matching. The

random stable matching generation is performed by selecting a random rotation

ρ from the rotation poset Π = (V , E) of the given SM instance, and initializing

a subset of rotations S by adding ρ. Then, all predecessors of ρ are added to

S to make sure S is a closed subset and subsequently the corresponding stable

matching M is found as outlined in Algorithm 6.

Line 6 in Algorithm 6 uses a method CREATESM(S) which converts the given

closed subset S to its corresponding stable matching M by exposing all the

Algorithm 6 Random stable matching creation

1: procedure CREATERANDOMSM(Π)
Input: The rotation poset Π = (V , E)
Output: A random stable matching M

2: ρ ← SELECTRANDOM(V)
3: S ← {ρ}
4: for ρp ∈ ALLPREDECESSORS(ρ) do
5: S ← S ∪ {ρp}
6: M ← CREATESM(S)

return M

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

112 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

Algorithm 7 Initialization of the population

1: procedure INITIALIZE(n,Π)
Input: A positive integer n, rotation poset Π = (V , E)
Output: A set of random stable matchings P

2: P ← ∅
3: i← 0
4: while i < |P | do
5: Mi ← CREATERANDOMSM(Π)
6: P ← P ∪ {Mi}
7: i← i+ 1

return P

rotations in S, respecting their precedence order starting from M0. For the

initial population, |P | such random stable matchings are created and added to

the population set P as outlined in Algorithm 7.

Example. Let us illustrate this step on the Stable Marriage instance given in

Table 2.1 (Page 38). Assume that the population size |P | is set to 3. In order to

generate the three initial stable matchings, three random rotations are selected

from the rotation poset, namely: ρ0, ρ1, ρ5 (find the rotation poset of the SM

instance in Figure 2.11, Page 44). Since ρ0 has no predecessors, the stable

matching that {ρ0} corresponds is obtained by exposing only ρ0 onM0, resulting

in M1 (find the lattice of all stable matchings in Figure 2.10, Page 40).

Subsequently, the closed subset obtained by adding all predecessors of ρ1 cor-

responds to M2, where S2 = {ρ0, ρ1} and the closed subset for ρ5 corre-

sponds to M4, where S4 = {ρ0, ρ1, ρ4, ρ5}. Thus, the population consists of:

P = 〈M1,M2,M4〉.

4.4.2 Evaluation

For each stable matching Mi, we denote by bi its robustness value for represent-

ing a (1, b)-supermatch. At the evaluation step, we compute the value bi of each

Mi ∈ P . Then, a fitness value vi, normalised to the interval [0, 1], is assigned to

each such Mi. Given two stable matchings from the population Mi,Mj ∈ P , if

bi < bj, then Mi is said to be more fit than Mj. On the other hand, if vi < vj,

then Mj is said to be more fit than Mi as it has a greater fitness value.

Let bmax denote the maximum b value in the population. First, we get the

complements of the numbers with bmax to reflect the relation between bi and

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

113 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

vi, that is a stable matching with a larger vi is a more fit solution. Moreover,

a small constant co is added to each vi to make sure even the least fit stable

matching Mi, i.e. bi = bmax, is still a solution that can take role in the evolution

of the population (see Equation 4.20). Then, the normalization is applied as

shown in Equation 4.21.

vi = bmax + co − bi. (4.20)

vi = vi∑
Mi∈P vi

. (4.21)

These steps are detailed in Algorithm 8. The first for loop finds the maximum b

value. The second one finds the vi for each Mi by applying Equation 4.20, and

also the total sum for the normalization step. Then, the last loop normalizes

the values as shown in Equation 4.21.

Example. The b values for the stable matchings given in the look-up example,

where P = 〈M1,M2,M4〉 are calculated as b1 = 4, b2 = 3, and b4 = 3, by the

polynomial procedure defined in Section 4.1. Given these values, bmax = 4.

For the sake of the example, let us fix c0 to 0.5. Then, the fitness values are

calculated as :

v1 = 4 + 0.5− 4 = 0.5,

v2 = 4 + 0.5− 3 = 1.5,

v4 = 4 + 0.5− 3 = 1.5.

Algorithm 8 Evaluation of the fitness values

1: procedure EVALUATION(P)
Input: Current population P
Output: none

2: bmax ← 0
3: for Mi ∈ P do
4: if bi > bmax then
5: bmax ← bi
6: sumv ← 0
7: for Mi ∈ P do
8: vi ← (bmax + c0 − bi)
9: sumv ← (sumv + vi)

10: for Mi ∈ P do
11: vi ← (vi/sumv)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

114 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

Then, the sum of the fitness values is sumv = v1 + v2 + v4 = 3.5. By normalizing

the fitness values, we obtain the following values: v1 = 0.143, v2 = 0.429, v4 =
0.429 indicating that M2 and M4 are the fittest stable matchings in P .

4.4.3 Evolution

We use roulette wheel selection to select a random stable matching in our pro-

cedure [LL12]. Algorithm 9 provides details on the roulette wheel selection

procedure we use. First, a random number r ∈ [0, 1] is generated. Then, the

fitness values of the stable matchings in the population are visited. At each step,

a sum of the fitness values seen so far are recorded in a variable named sumc .

This procedure continues until a stable matching Mi is found according to the

criteria at Line 5 in Algorithm 9. This criteria ensures that if a stable matching

has a higher fitness value, then it has a greater chance to be selected.

The evolution step is then continued by applying crossover and mutation on

selected stable matchings. We will present the details of the crossover and mu-

tation operators below. First, two stable matchings are selected by the roulette

wheel selection. Let these matchings named M1 and M2. If these matchings are

different from each other, the crossover procedure is applied. After applying

crossover on M1,M2 and obtaining the resulting stable matchings Mc1,Mc2, the

population is refined.

Subsequently, between Lines 8 and 12 of Algorithm 10, a stable matching Mm

is selected for mutation. If Mm is different from the fittest stable matching

Mfit, and a random mutation probability is satisfied (i.e. a random number

rand ∈ [0, 1] is generated and checked if it is less than a fixed value rand < pm)

then Mm is mutated. The mutation step may result in producing either better

or worse solutions. We do not apply a refinement procedure after mutation,

Algorithm 9 Roulette Wheel Selection

1: procedure SELECTION(P)
Input: Current population P
Output: A stable matching Mi ∈ P

2: r ← RANDOMDOUBLE(0, 1)
3: sumc ← 0
4: for Mi ∈ P do
5: if (sumc ≤ r) ∧ (r < sumc + vi) then return Mi

6: sumc ← sumc + vi

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

115 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

Algorithm 10 Evolution of the population

1: procedure EVOLUTION(P)
Input: Current population P
Output: none

2: M1 ← SELECTION(P)
3: M2 ← SELECTION(P)
4: if M1 6= M2 then
5: (Mc1,Mc2)← CROSSOVER(M1,M2)
6: REFINE(Mc1,Mc2)
7: EVALUATION(P)
8: Mfit ← GETFITTEST(P)
9: Mm ← SELECTION(P)

10: rand← RANDOM(0, 1)
11: if Mm 6= Mfit and rand < pm then
12: MUTATION(Mm)

Algorithm 11 Refinement of the population

1: procedure REFINE(Mc1,Mc2)
Input: Current population P and two stable matchings Mc1,Mc2
Output: none

2: P ← P ∪ {Mc1,Mc2}
3: (Ml1,Ml2)← LEASTFITTWOSMS(P)
4: P ← P \ {Ml1,Ml2}

instead directly apply mutation on Mm.

The refinement procedure is detailed in Algorithm 11. In the refinement proce-

dure, the given Mc1,Mc2 are immediately added to the population P . Then, the

worst two solutions, in other words the two least fit stable matchings Ml1 and

Ml2 are removed from the population.

Next, we go into the details of the crossover and mutation operations.

Crossover. The procedure for the crossover is detailed in Algorithm 12. Given

two stable matchings M1,M2 and their corresponding closed subsets S1 and S2,

one random rotation is selected from each closed subset. Let ρ1 and ρ2 denote

the randomly selected rotations from each set. The method works as follows:

if S2 already contains the rotation ρ1, then Sc2 is constructed by adding all the

rotations in S2 but excluding the ρ1 and all its successor rotations that are in S2.

We denote this removal process by REMOVE(S2, ρ1). However, if ρ1 6∈ S2, then

ρ1 and all its predecessors that are not included in S2 are added to Sc2 with the

rotations that are already in S2 to form the new closed subset Sc2. We denote

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

116 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

Algorithm 12 Crossover procedure

1: procedure CROSSOVER(M1,M2)
Input: Two stable matchings M1,M2 ∈ P
Output: Two stable matchings Mc1,Mc2

2: ρ1 ← RANDOM(S1)
3: ρ2 ← RANDOM(S2)
4: if ρ1 ∈ S2 then
5: Sc2 ← REMOVE(S2, ρ1)
6: else
7: Sc2 ← ADD(S2, ρ1)
8: if ρ2 ∈ S1 then
9: Sc1 ← REMOVE(S1, ρ2)

10: else
11: Sc1 ← ADD(S1, ρ2)
12: Mc1 ← CREATESM(Sc1)
13: Mc2 ← CREATESM(Sc2)

return (Mc1,Mc2)

the addition process by the method ADD(S2, ρ1). This new closed subset Sc2
corresponds to one of the stable matchings produced by the crossover, namely

Mc2. Similarly, the same process is repeated for S1 by constructing Sc1, and

another stable matching Mc1 is obtained.

Example. Recall that, the current population for the example is P = 〈M1,M2,

M4〉, where their closed subsets are S1 = {ρ0}, S2 = {ρ0, ρ1}, and S4 = {ρ0, ρ1,

ρ4, ρ5}. As an example, assume that M1 and M4 are selected for crossover by

the roulette wheel selection. One random rotation is selected from each set

e.g.: ρ0 ∈ S1 and ρ4 ∈ S4. Then, one of the produced stable matchings is M3

since ρ4 6∈ S1 and {ρ0} ∪ {ρ4, ρ1} = S3. The second one is M0 by removing

all the ρ0, ρ1, ρ4 and ρ5 from S4. After adding new stable matchings, the popu-

lation becomes P = 〈M1,M2,M4,M0,M3〉. Then the population is refined by

removing the two least fit stable matchings, which are in this case M0 because

b0 = 5 and M1 because b1 = 4. Hence, the refined population after crossover is

P = 〈M2,M4,M3〉.

Mutation. Let M be the stable matching selected for the mutation and S de-

note its corresponding closed subset. The procedure starts by selecting a ran-

dom rotation ρ from the rotation poset V. Then, similar to the crossover proce-

dure above, if ρ 6∈ S, then ρ and all its predecessors required to form a closed

subset are added to S. However, if ρ ∈ S, then ρ and all its successors in S are

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

117 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.4 Genetic Algorithm Approach

Algorithm 13 Mutation procedure

1: procedure MUTATION(M)
Input: A stable matching M ∈ P
Output: none

2: ρ ← RANDOM(V)
3: if ρ ∈ S then
4: S ← REMOVE(S, ρ)
5: else
6: S ← ADD(S, ρ)

removed from S. Algorithm 13 outlines the formal procedure.

Example. In order to demonstrate mutation on the example population, assume

that M3, where S3 = {ρ0, ρ1, ρ4}, is selected for mutation and ρ2 is the randomly

selected rotation from the rotation poset. Since ρ2 6∈ S3, ρ2 and all its predeces-

sors are added to S3, resulting in {ρ0, ρ1, ρ4}∪{ρ2} = S6. The new stable match-

ing is M6, which is added to the population and the original stable matching

used for mutation, M3, is deleted. The final population is: P = 〈M6,M2,M4〉.

General Procedure. The procedure for the overall GA procedure is given in

Algorithm 14. The evolution step is repeated until either a solution is found

or the termination criteria are met. In our case, we have three termination

criteria: a time limit limtime, an iteration limit to cut-off the process if there

Algorithm 14 General procedure of genetic algorithm

1: procedure GENETICALGORITHM(Π)
Input: The rotation poset Π = (V , E)
Output: The fittest stable matching Mfit

2: P ← INITIALIZE(n,Π)
3: EVALUATION(P)
4: Mfit ← null
5: bfit ← 0
6: cnt← 0
7: while time < limtime or bfit! = opt do
8: EVOLUTION(P)
9: EVALUATION(P)

10: if Mfit is updated then
11: cnt← 0
12: else
13: cnt← cnt+ 1
14: if cnt = limiter then return Mfit

return Mfit

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

118 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.5 Local Search Approach

is no improved solution for the specified number of iterations limiter, or if the

optimal b is found as bfit = opt = 1. For the cut-off termination criterion, we

keep a counter (cnt) to count the number of iterations with no improvement,

i.e. more fit solution than the current fittest solution. This counter is increased

at each unimproved iteration until it meets limiter. If a more fit solution is

generated during the process, the counter is reset to cnt = 0.

Complexity. The overall procedure is based on the polynomial-time method de-

scribed in the Section 4.1. Recall that this procedure takes O(n×|V|) time after

an O(n2 + |V|2) preprocessing step. In order to speed up the process of calcu-

lating (1, b)-robustness values from a practical point of view, in our experiments

an extra data structure is used to memorize the fitness value of each generated

stable matching. Note that, the search space may have exponential number of

stable matchings. This look-up table structure saves on time to recompute ro-

bustness of a stable matching. In both crossover and mutation phases of GA,

the worst-case time complexity for one call is bounded by O(|V|), which is also

lifted to the evolution step.

The evaluation phase evaluates the fitnesses of all the individuals, stable match-

ings, in the population, where the evaluation depends on the computation of

the b. Note that, the values of b are not computed for each stable matching

in the population at each iteration due to the look-up table. However, the fit-

nesses of all |P | individuals are computed. Therefore, the evaluation step may

take O(n× |V| × |P |) steps in the worst case.

In summary, the general complexity is linear with respect to the number of

rotations and O(k × n × |V| × |P |), where k denotes the iteration count and n

denotes the number of non-fixed men, and the maximum value of |V| is n(n −
1)/2.

4.5 Local Search Approach

In our local search model, we use the well-known iterated local search with

restarts approach [Stü98, LMS03]. The first step of the algorithm is to find a

random solution to start with. A random stable matching M is created by using

the same initialization method detailed in Algorithm 6 in Section 4.4 for the

GA procedure. Briefly, this procedure is based on selecting a random rotation

from the rotation poset, and adding all its predecessors to form a closed subset.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

119 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.5 Local Search Approach

Then, a set of neighbour stable matchings is created using the properties of the

rotation poset.

4.5.1 Neighbourhood

A neighbour in this context is defined as a stable matching, whose correspond-

ing closed subset differs only by one rotation from the closed subset S of the

matching M. Recall that L(S) denotes the set of sink rotations S. Removing

one rotation ρi ∈ L(S) from S corresponds to a different dominating neighbour

of M. Similarly, N(S) is previously defined as denoting the set of rotations that

are not included in S and for each ρ ∈ N(S) either din(ρ) = 0 or all of their

predecessors are in S. In the same manner, adding one rotation from N(S) to S

corresponds to a dominated neighbour of M.

Example. Let us first demonstrate these two sets on an example. Figure 4.3

illustrates an example rotation poset, where the closed subset is S = {ρ0, ρ1, ρ3,

ρ4, ρ5, ρ7}. The set of sink rotations in this set is identified as L(S) = {ρ1, ρ4, ρ7}.

Similarly, the set of neighbour rotations is N(S) = {ρ2, ρ6} since all their prede-

cessors are already included in S. For the stable matching that corresponds to

S, there exist 5 different neighbours. These five neighbours are listed by using

their closed subsets as: S1 = {ρ0, ρ3, ρ4, ρ5, ρ7}, S2 = {ρ0, ρ1, ρ3, ρ5, ρ7}, S3 =
{ρ0, ρ1, ρ3, ρ4, ρ5}, S4 = {ρ0, ρ2, ρ1, ρ3, ρ4, ρ5, ρ7}, and S5 = {ρ0, ρ1, ρ3, ρ4, ρ5, ρ6,

ρ7}.

Algorithm 15 expands on the procedure for identifying the set of neighbour

Figure 4.3: Illustration of the sets L(S) = {ρ1, ρ4, ρ7} and N(S) = {ρ2, ρ6} on a
sample rotation poset for a given closed subset S.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

120 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.5 Local Search Approach

Algorithm 15 Identification of the neighbour set

1: procedure FINDNEIGHBOURS(M,Π)
Input: A stable matching M and the rotation poset Π = (V , E)
Output: A set of stable matchings N

2: N ← ∅
3: for ρ ∈ V do
4: if ρ /∈ S then
5: cnt← 0
6: for e ∈ INCOMINGEDGES(ρ) do
7: if e.source /∈ S then
8: cnt← cnt+ 1
9: break

10: if cnt = 0 then
11: Mn ← CREATESM(S ∪ {ρ})
12: N ←N ∪ {Mn}
13: for ρ ∈ S do
14: cnt← 0
15: for e ∈ OUTGOINGEDGES(ρ) do
16: if e.target ∈ S then
17: cnt← cnt+ 1
18: if cnt = 0 then
19: Mn ← CREATESM(S \ {ρ})
20: N ←N ∪ {Mn}

return N

stable matchings N of a given stable matching M. Lines 3 to 12 give detail on

the procedure of finding the set of neighbour rotations N(S). A variable called

cnt is used to count the number of incoming edges of ρ, where the source node

is not in S. If this counter variable has a value of cnt = 0, it means that it is a

neighbour rotation.

Similarly, Lines 13 to 20 define the procedure for identifying the sink rotations

L(S). Each neighbour stable matching is denoted by Mn. Again, a variable

called cnt is used to count the number of outgoing edges of ρ whose target

node is in S. If cnt = 0, it means that all of the successor of ρ are in S, which

identifies ρ as a sink rotation.

4.5.2 Search

The general procedure of our local search model is detailed in Algorithm 16.

Let Mc denote the current stable matching. We sometimes refer to this sta-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

121 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.5 Local Search Approach

Algorithm 16 General procedure for local search

1: procedure LOCALSEARCH(Π)
Input: The rotation poset Π = (V , E)
Output: The (1, b)-supermatch Mbest that minimizes b

2: Mc ← CREATERANDOMSM(Π)
3: Mbest ←Mc

4: cnt← 0
5: while time < limtime do
6: cnt← 0
7: iter ← 0
8: while iter < limdesc do
9: N ←FINDNEIGHBOURS(Mc,Π)

10: Mn ← BEST(N)
11: if bn < bc then
12: Mc ←Mn

13: if bc < bbest then
14: Mbest ←Mc

15: cnt← 0
16: cnt← cnt+ 1
17: iter ← iter + 1
18: if cnt = limiter or bbest = opt then return Mbest

19: Mc ← CREATERANDOMSM(Π)
return Mbest

ble matching as the parent stable matching. The procedure first identifies the

neighbours of the current stable matching. At each iteration, if a neighbour Mn

has lower b than the parent stable matching Mc (i.e. bn < bc), in other words,

it is a more robust solution, the search continues by using the Mn as the parent

stable matching for the next iteration. A variable Mbest is used to keep track of

the best solution found so far in the search process.

We denote the best stable matching in set N by Mn and the function BEST(N)
is used to find the stable matching with the lowest value of b in set N . Also a

counter cnt is used to count the number of iterations with no improved solu-

tions. The cut-off limit is bounded by a variable denoted by limiter to stop the

search if there is no improvement for the specified number of iterations.

There is also an iteration limit limdesc that indicates the depth of search for the

neighbours of the current stable matching. In other words, it is the number of

iterations that descend from a randomly created stable matching. In this con-

text, we define the depth as the number of successor stable matchings created

starting from a random stable matching. For instance, in Line 2 in Algorithm 16,

an initial random stable matching Mc is created. Assuming that the depth is set

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

122 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.5 Local Search Approach

to 2, i.e. limitdesc = 2, first N of Mc is created. Then, on the second iteration,

the best neighbour Mn’s neighbourhood is explored. After the second iteration,

instead of searching the best neighbour of the Mn’s best neighbour, the parent

matching is set to another random stable matching. The search continues in

this fashion until a termination criteria is met.

As one of our termination criterion given in Line 18, if the stable matching Mbest

has the optimal robustness, where bbest = opt = 1, then the search is terminated

and Mbest is returned as the answer as it is the optimal solution.

Example. Let us illustrate the neighbourhood search on the SM instance given

in Table 2.1 (Page 38). Assume that the search starts with the randomly gener-

ated stable matching, M5, where S5 = {ρ0, ρ1, ρ2}. The sets L(S5) and N(S5) are

identified as follows: L(S5) = {ρ2}, N(S5) = {ρ3, ρ4}. Therefore, the current

stable matching M5 has three neighbours as follows:

S5 \ {ρ2} = {ρ0, ρ1} = S2,

S5 ∪ {ρ3} = {ρ0, ρ1, ρ2, ρ3} = S8,

S5 ∪ {ρ4} = {ρ0, ρ1, ρ2, ρ4} = S6.

Then, the neighbourhood is N = {M2,M6,M8}. Next step is to calculate the

robustness of each stable matching in N . Using the method described in Sec-

tion 4.1, the b values of all the stable matchings are calculated as follows:

b5 = 3, b2 = 3, b8 = 3, b6 = 1. Since M6 is the most robust stable matching

inN and more robust than the current stable matching M5, the neighbourhood

search for the next iteration descends from M6. Additionally, no that, the M6 is

the optimal solution. Therefore, it is returned as the solution.

Complexity. The complexity of the LS procedure depends on the computation of

the b values. Finding neighbours is based on identification of the sink rotations

of Mc, where there can be at most |V| sink rotations. Then, there is a constant

cost for removing each sink rotation, or adding each neighbour rotation. The

best neighbour is identified after computing b values of |N | stable matchings.

As we did in the GA, we use a look-up table to remember the b values of already

computed stable matchings. The overall procedure takes O(k × n× |V| × |N |),
where k is the number of iterations and n is the number of non-fixed men.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

123 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.6 Genetic Local Search (Hybrid) Approach

4.6 Genetic Local Search (Hybrid) Approach

In our hybrid model (HB), we use a genetic local search hybrid. The HB model

we propose is quite straightforward. The structure of the GA model stays the

same and the neighbourhood search of the LS algorithm is applied on the prod-

ucts of the crossover operation to enhance the quality of the produced stable

matchings.

The outline of the HB model differs from the GA model only in the evolution

phase (refer to Algorithm 10, Page 116). Algorithm 17 shows the evolution

method that adapts the LS model’s neighbourhood search used in the HB. The

Lines between 5 and 9 denotes the hybridization. The local search is adapted

in these lines by finding the neighbourhood of the products of the crossover

operations and selecting the best neighbour in the neighbourhood. If there is

no better neighbour of Mc1, then the Mc1 remains unchanged (similarly, Mc2).

The details of the methods FINDNEIGHBOURS and BEST are discussed in Sec-

tion 4.5 for the GA and is used as exactly the same for the HB model. The

details of the remaining functions are also explained in Section 4.4.3.

Complexity. At each iteration of the algorithm, the robustness values of all the

neighbours of both Mc1 and Mc2 as well as the robustness of all the population

Algorithm 17 Evolution of the population

1: procedure EVOLUTION(Π)
Input: The rotation poset Π = (V , E)
Output: The (1, b)-supermatch Mbest that minimizes b

2: M1 ← SELECTION(P)
3: M2 ← SELECTION(P)
4: if M1 6= M2 then
5: (Mc1,Mc2)← CROSSOVER(M1,M2)
6: N ←FINDNEIGHBOURS(Mc1,Π)
7: Mc1 ← BEST(N)
8: N ←FINDNEIGHBOURS(Mc2,Π)
9: Mc2 ← BEST(N)

10: REFINE(Mc1,Mc2)
11: EVALUATION(P)
12: Mfit ← GETFITTEST(P)
13: Mm ← SELECTION(P)
14: rand← RANDOM(0, 1)
15: if Mm 6= Mfit and rand < pm then
16: MUTATION(Mm)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

124 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

in the evaluation step is calculated. Note that, if the value of b of a stable

matchings was computed before, we fetch the value from a look-up table to

avoid the re-computation. If we denote by N ′ all the neighbours of Mc1 and

Mc2 at a single iteration, the overall complexity of the algorithm is changed as

O(k × n× |V| × |N ′ + P |).

4.7 Experiments

We have four models developed to find the most robust stable matching of a

given SM instance. These are namely a Constraint Programming model (CP),

an iterative local search approach (LS), a genetic algorithm approach (GA),

and a hybrid of the LS and the GA (HB). In the next section, we compare their

performances on different datasets.

We use Java 8 to perform our experiments [GJS+14]. The CP model is im-

plemented using Choco 4.0.1 [PFL16] and the two meta-heuristics are imple-

mented in Java by using the JGraphT library [SKM+15]. All experiments were

performed on Dell M600s with 2.66 Ghz processors under Linux. The plots

were prepared using Gnuplot [WKm15]. For each test, we ran three tests us-

ing different randomization seeds and reported the average of them. The time

limit limtime of each run is limited to 20 mins unless otherwise stated. We first

use a dataset that consists of randomly created instances. We further compare

the models on a dataset that consists of instances that contain (possibly) many

number of stable matchings.

Unless otherwise stated, the parameter combinations for the models used dur-

ing the tests are as given below. In our tests, we ran the CP model by using

geometric restarts policy that adjusts a cut-off value and has shown to be an

effective strategy [W+99]. In order to use our models, we performed some pa-

rameter tuning tests on randomly generated SM instances n ∈ {100 × k | k ∈
{1, . . . , 10}}, where n is the number of men/women, using different parameter

combinations. We do not share the results of these tests as they are not very

interesting, and the behaviour of the graphs are predictable. We list below the

selected parameter combination for each model.

We used the greedy heuristic described in Section 4.3 to restrict the domain of b.

We fixed limiter = 10000 and limdesc = 50 for the LS model. Allowing a large cut-

off limit limiter allows the model the perform the search for longer. This gives

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

125 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

the model a slightly increased chance of not getting stuck at a local minima.

Additionally, a large the depth for the neighbour search reduces the number of

random restarts. Our GA parameters are fixed as: |P | = 60, limiter = 10000, and

pm = 0.8. A large population allows to explore more different stable matchings.

The mutation probability is set to a high value to increase the randomization a

little, and help the algorithm not getting stuck at local minimas. Using a similar

reasoning for the HB model, we fixed limiter = 10000, |P | = 60, and pm = 0.7.

We later discuss this model using two different population sizes |P | = 60 and

|P | = 10. We slightly decreased the mutation probability when compared to

the pm in GA, as the neighbourhood search also helps with the diversity of the

procedure.

4.7.1 Random Instances

We generated two datasets of randomly generated SM instances to compare the

performances of CP, LS, GA, and the HB model. We refer to the first set as the

DATA-S and the second one as the DATA-L. The first dataset DATA-S consists of

50 uniformly random SM instances for each size n ∈ {50 × k | k ∈ {1, . . . , 6}},
where n denotes the number of men/women. Note that, DATA-S contains 300
instances. The second set DATA-L contains 50 instances for each size n ∈ {100×
k | k ∈ {4, ..., 20}}.

The details of both of the generated datasets is presented in Table 4.4. The

columns in this table report averages values for each size: size of the instance

i.e. the number of men/women (n), number of non-fixed men (nf), number of

rotations in the rotation poset (|V|). By looking at these generated instances,

we can observe that there are many men that have at least two stable partners

Table 4.4: Details on the instances in DATA-S and DATA-L.

n nf |V| n nf |V|
50 33.40 11.36 700 651.32 120.88

100 75.28 21.40 800 742.60 127.28
150 121.44 33.64 900 849.20 143.36
200 166.28 40.88 1000 948.24 158.00
250 219.52 53.92 1100 1045.20 172.20
300 257.80 58.20 1200 1140.08 178.88
400 356.36 77.12 1300 1241.72 194.16
500 455.56 91.20 1400 1340.00 202.76
600 554.36 104.44

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

126 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

	0

	2

	4

	6

	8

	10

	12

	14

	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

To
ta
l	t
im

e	
(s
ec
)

Score

cp
ls
hb
ga

Figure 4.4: Search efficiency on the instances in DATA-S.

	0

	50

	100

	150

	200

	250

	300

	350

	400

	450

	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

To
ta
l	t
im

e	
(s
ec
)

Score

ls
hb
ga

Figure 4.5: Search efficiency on the instances in DATA-L.

(i.e. non-fixed). We can also observe that the rotation posets are not very large

in terms of the number of rotations. Also note that, the average number of

rotations in the rotation posets increases as the size n increases.

In Figures 4.4 and 4.5 we plot the normalized objective value of the best so-

lution found by the search model h ∈ {CP,GA,LS,HB} (x-axis) after a given

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

127 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

time (y-axis). Recall that, we repeated our tests for each model by using three

different randomization seeds.

Let h(I) be the objective value of the best solution found using model h on

instance I and lb(I) (resp. ub(I)) the lowest (resp. highest) objective value

found by any model on I. The formula below gives a normalized score in the

interval [0, 1]:

score(h, I) = ub(I)− h(I) + 1
ub(I)− lb(I) + 1

This score function has previously been used by Hebrard and Siala [HS17]. The

value of score(h, I) is equal to 1 if h has found the best solution for this instance

among all models. It decreases as h(I) gets further from the optimal objective

value, and is equal to 0 if and only if h did not find any solution for I. Notice

that 1 is added both to the numerator and the denominator to avoid division by

0 in case the upper bound and the lower bound are equal. The plots show how

far the models are from finding the optimal solution and also how long they

take to find a solution. If the model h finds the lowest b value among all other

models, then the score evaluates to 1, meaning that the model h is the best one.

Note that the CP model runs out of memory for large instances. Therefore, we

do not plot it in Figure 4.5.

The outcome from both figures is clear. In the first plot, the best solutions are

found by CP, LS and HB. All the solutions are found as optimal by the CP model.

However, CP takes much longer time when compared to the meta-heuristic

models. Our GA model does not seem to be well suited for this problem. It

fails to find the best solutions in many instances. Additionally, it is the only

model that fails to find the optimal solutions. It can be observed in Figure 4.4

that GA takes the least time when compared to the other models. This is due to

GA being stuck at a local minima, failing to produce different stable matchings.

The procedure of the GA is then terminated due to the limiter criterion. Our

remark on the GA model is that, a different crossover or mutation operation

can help the GA perform better.

The LS and HB are very efficient both in the quality of the solutions they pro-

vide, and also the total time. However, our HB model outperforms LS in terms

of the time efficiency. Observing the poor performance of GA and the good

performance of HB, we can conclude that neighbourhood search adds GA the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

128 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

required diversity and effectively helps it getting stuck at the local minimas. The

results in Figure 4.5 are again in favour of the hybrid algorithm. Both LS and

HB models always find the best solutions as all the instances have a score equal

to 1. The GA model again fails to find the best solutions in many instances,

and terminates early. We present this information in Figure 4.6 and Figure 4.7

running times of each model. We did not run the CP model for sizes n > 300
due to space limitations.

	0

	50

	100

	150

	200

	250

	0 	200 	400 	600 	800 	1000 	1200 	1400

To
ta
l	t
im

e	
(s
ec
)

Size	(n)

cp
ls
hb
ga

Figure 4.6: Average total time spent by each model on all instances (i.e. DATA-S

merged with DATA-L).

	0

	10

	20

	30

	40

	50

	60

	0 	200 	400 	600 	800 	1000 	1200 	1400

Be
st
	ti
m
e	
(s
ec
)

Size	(n)

cp
ls
hb
ga

Figure 4.7: Average time spent to find the best solution by each model on all
instances (i.e. DATA-S merged with DATA-L).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

129 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

Figure 4.6 and Figure 4.7 report the average values of the total time and the

best time each model takes for search for each size n, respectively. The best

time is measured as the time spent from the beginning of the search until the

solution is found. The total time, on the other hand, is measured as the time

between the beginning of the search and the termination.

In both of these figures, we can see the same trend. Our GA model finds a

solution at the early stages of the algorithm and terminates early as it cannot

improve the solution it finds. For the small instances, when 50 ≤ n ≤ 300, we

can observe that the CP model takes more time to find the best solution when

compared to the other models, and it also takes longer to terminate. We know

from Figures 4.4 and 4.5 that both LS and HB find the same values of average

minimum b. Consequently, in Figure 4.6 and Figure 4.7, we can observe that HB

finds the solution quicker than LS, and also terminates earlier. Our HB model

takes longer time than the GA model, and less than LS. Additionally, it finds

the optimal solution. This demonstrates that the hybrid approach enhances the

performance of the meta-heuristic models on random instances.

Additionally, Figure 4.8 plots the average number of different stable matchings

created by each model until a solution is found. We can observe that the GA

procedure is not able to explore many different stable matchings, when the

values are compared to the other two models. The LS model explores many

different stable matchings. However, the HB converges faster than the LS, when

both total time and the number of stable matchings are considered.

	0

	100

	200

	300

	400

	500

	600

	700

	800

	900

	1000

	0 	200 	400 	600 	800 	1000 	1200 	1400

Nu
m

be
r	o

f	s
ta

bl
e	

m
at

ch
in

gs
	c

re
at

ed
	(s

m
s)

Number	of	men/women	(n)

ls
hb
ga

Figure 4.8: Average number of different stable matchings found by each model
on all instances (i.e. DATA-S merged with DATA-L).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

130 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

We do not provide a plot for the average minimum b values found by each

model. Because, their values are very similar. Therefore, the lines overlap.

However, we provide Table 4.5 in order to show how much they differ in terms

of finding a good solution. Note that, this table provides a different metric than

the comparisons given in Figure 4.4 and Figure 4.5. In those two figures, we

take into account the different seeds used for each model and we report the

minimum and maximum values found during different runs. However, in Ta-

ble 4.5, we report the average minimum value b found by all three different

runs. The columns represent in order the average value of number of men/-

women in the instance (n), the average minimum value b found by the model:

GA (GA-b), LS (LS-b), HB (HB-b), and CP (CP-b). We coloured the cells that

contain the best values to see the difference easier. Table 4.5 shows us that al-

though HB can find better results when individual runs are considered, on the

average, LS finds more robust solutions (i.e. lower values of b).

We can observe that when working on small uniformly random SM instances,

LS and HB are very competitive. There is no clear advantage on one another.

Although HB performs slightly better in terms of time efficiency, both models

can be preferred. For larger random instances, especially after n > 800, the

HB model has a clear advantage in terms of the total time spent over the LS.

However, the b values found by HB are not as consistent as the LS. If individual

Table 4.5: The average minimum b values found by each model on all instances
(i.e. DATA-S merged with DATA-L).

n GA - b LS - b HB - b CP - b
50 19.31 19.24 19.24 19.24
100 48.92 48.84 48.84 48.84
150 83.72 83.60 83.60 83.60
200 114.79 114.52 114.52 114.52
250 161.03 160.52 160.52 160.52
300 189.11 188.56 188.56 188.56
400 267.83 267.16 267.16 -
500 349.25 347.96 347.96 -
600 431.43 430.20 430.20 -
700 511.11 510.00 510.00 -
800 582.71 581.12 581.15 -
900 683.92 682.24 682.25 -
1000 769.05 766.68 766.69 -
1100 857.91 855.96 856.09 -
1200 931.21 928.08 928.25 -
1300 1028.47 1025.28 1025.48 -
1400 1110.55 1106.72 1106.733

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

131 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

runs are considered, HB is able to find better values of b; but if the average is re-

ported, then LS provides lower values. Note that, the difference for the average

values is very small and can be neglected in some cases (i.e. difference ≤ 0.1).

4.7.2 Large Instances (MANY)

After observing the competitive results of the HB and the LS models, we com-

pared their performance on a dataset of SM instances, where the instances

contain many stable matchings. We refer to this dataset as MANY. We often

say that the instances in this dataset are “large”, where the term large for this

dataset stands for the number of stable matchings of an instance and not the

number of men/women involved in the instance.

MANY. In order to generate instances that contain many stable matchings,

we first generated 100 SM instances for each size n = {16, 32, 64, 128} us-

ing the family described by Irving and Leather [IL86a]. Then, we slightly

modified the generated instances, similar to the technique used by Siala and

O’Sullivan [SO17]. Our dataset MANY consists of these modified instances.

First let us introduce this family of instances described by Irving and Leather.

Irving and Leather prove that any instance in the original family contains at

least 2n−1 stable matchings for an instance of size n = 2i. They define the

family over two matrices for the preferences of each gender, mpn,mp′n for the

mens’ preferences and wpn, wp
′
n for the womens’. The preference lists of these

large instances are obtained recursively by appending the following matrices

until the desired instance size is found:

mp2n =
 mpn mp′n

mp′n mpn

 , wp2n =
 wpn wp′n

wp′n wpn


For our experiments, we slightly modify each instance of this family by first

randomly selecting two random men mi,mj. Then, we modify mi’s preference

list by swapping the positions of two randomly selected women within the list.

We repeat the same for mj. We also modify the preference lists of two random

women in the same way. As a result, for each instance in this dataset, we

modify the original preference lists of men by changing 4 women’s positions.

Similarly, we modify the original women’s preference table by changing 4 men’s

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

132 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

positions. In other words, the original preference set between the original and

the modified instances have a Hamming Distance of 8.

Example. We give in Table 4.6 an example of an original instance. Subse-

quently, in Table 4.7, we provide our modified version of this instance. The

different positions in both men’s and women’s preference lists are marked as

bold to make it easier to see. Observe that, the preference lists of men m2 and

m8 are modified. Additionally, the preference lists of women w2 and w6 are

modified by making small changes.

We also plot the rotation posets corresponding these two instances in order to

provide an insight on the structures. Figure 4.9 illustrates the rotation posets of

the instances presented in Table 4.6 (left) and Table 4.7 (right). We can observe

that the technique described above may significantly decrease the number of

rotations in the rotation poset for some cases. However, as we show later, these

instances yield in a large number of stable matchings.

Before discussing the results on these instances, observe that, the original in-

stances have the properties of the specific family of SM instances discussed in

Table 4.6: An SM instance of size 8 that belongs to the original family described
by Irving and Leather [IL86a].

Preference lists of men Preference lists of women
m1 1 2 3 4 5 6 7 8 w1 8 7 6 5 4 3 2 1
m2 2 1 4 3 6 5 8 7 w2 7 8 5 6 3 4 1 2
m3 3 4 1 2 7 8 5 6 w3 6 5 8 7 2 1 4 3
m4 4 3 2 1 8 7 6 5 w4 5 6 7 8 1 2 3 4
m5 5 6 7 8 1 2 3 4 w5 4 3 2 1 8 7 6 5
m6 6 5 8 7 2 1 4 3 w6 3 4 1 2 7 8 5 6
m7 7 8 5 6 3 4 1 2 w7 2 1 4 3 6 5 8 7
m8 8 7 6 5 4 3 2 1 w8 1 2 3 4 5 6 7 8

Table 4.7: An SM instance of size 8 that belongs to our benchmark MANY ob-
tained by the original instance given in Table 4.6.

Preference lists of men Preference lists of women
m1 1 2 3 4 5 6 7 8 w1 8 7 6 5 4 3 2 1
m2 2 8 4 3 6 5 1 7 w2 7 8 5 4 3 6 1 2
m3 3 4 1 2 7 8 5 6 w3 6 5 8 7 2 1 4 3
m4 4 3 2 1 8 7 6 5 w4 5 6 7 8 1 2 3 4
m5 5 6 7 8 1 2 3 4 w5 4 3 2 1 8 7 6 5
m6 6 5 8 7 2 1 4 3 w6 3 4 1 2 5 8 7 6
m7 7 8 5 6 3 4 1 2 w7 2 1 4 3 6 5 8 7
m8 8 7 5 6 4 3 2 1 w8 1 2 3 4 5 6 7 8

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

133 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

0

2 3

1

4 14

10 11

5

7 8

6

9 13

12 23

18 19

15 16

17 22

20 21

24 25

26 27

(a) Instance given in Table 4.6.

0

2

1

4

3

5

67

812

14 913

10 1115 16

(b) Instance given in Table 4.7.

Figure 4.9: Rotation posets corresponding to the large instances.

Definition 17 (Page 87). An interesting observation is that, although the orig-

inal instances have exponentially many number of stable matchings, a (1, 1)-
supermatch to a given instance can easily be found in polynomial-time using

the procedure discussed in the proof of Theorem 7 (Page 88).

For the sake of an example, consider the fact that there are 8 men/women in

the original instance. We know that a rotation contains at least two pairs, and

incomparable rotations contain different set of men (see Lemma 13, Page 99).

Each rotation in this poset is incomparable with at least 3 rotations, where all 4
rotations are in the same level. Therefore, all rotations in this poset contain ex-

actly 2 pairs. The first level in this rotation poset can be identified as consisting

of ρ0, ρ1, ρ5, ρ6. By Theorem 7, this level corresponds to a (1, 1)-supermatch.

We now present the results that we obtained on the robustness of these modified

instances. Table 4.8 reports for each size the average value of: number of all

men/women (n), the number of non-fixed men(nf), the number of rotations in

the rotation poset (|V|). Additionally, it reports the average minimum b found

by the model LS, HB where population size |P | = 10, and HB where population

size |P | = 60 (b); followed by the total time spent in minutes for each of the

three models (t (min)).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

134 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

The first observation on this table is about the number of non-fixed men (nf). It

shows that by slightly modifying the original large instances, we can obtain SM

instances in which almost everyone have at least one alternative partner. The

reason nf having values 15.99 and 31.99 for sizes n = 16 and n = 32 is because

one of the instances among 100 instances in each set in MANY both produce 1
fixed-man. On the other hand, when the instance size is 64 or 128, all men have

at least two stable partners.

Next, this dataset shows that the robustness of instances that have many stable

matchings is very high (i.e the value of b is low). For each instance size, our best

model for that size is able to find solutions whose average b values evaluate to a

b value that is opt = 1 < b < 2. For instance, for size n = 16, the LS model finds

solutions such that for the breakage of any man on the solution, on the average,

1.12 other men need to break-up from their current partners. Similarly, for size

n = 128, HB models finds that the solution is guaranteed to be repaired by only

1.02 additional men’s break-up.

As one can observe from Table 4.8, we ran the HB model by using different

sizes of population. The reason to this should become more clear later in this

section, when we discuss the running times of the models. In Table 4.8, we can

observe that reducing the number of individuals in the population of HB (10 vs.

60) causes the algorithm to find slightly worse solutions. For instance, for size

n = 64 , the average minimum b is found as 1.74 by a population of size 10, and

1.28 by a population of size 60. This is due to having an increased chance in

getting stuck at local minima for a smaller population. On the other hand, LS

finds competitive values for b for size 16 ≤ n ≤ 64. However, as we can see for

n = 128, LS finds solutions that are far away from the optimal solution.

We provide in Table 4.9 more details on the performances of these models. This

table consists of two sections presented one below the other due to space limi-

tation. Recall that, MANY contains 100 instances for each size n. The columns in

the first half report for each size the value of: average number of all men (n),

Table 4.8: Summary of the results on large instances for RSM.

instance LS HB, |P | = 10 HB, |P | = 60
n nf |V| b t (min) b t (min) b t (min)
16 15.99 100.43 1.12 0.003 1.21 0.003 1.1 0.004
32 31.99 447.26 1.03 0.054 1.30 0.024 1.04 0.029
64 64 1889.95 1.685 3.158 1.74 0.824 1.28 0.916

128 128 7788.02 14.055 8.367 1.02 13.989 1.01 17.609

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

135 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.7 Experiments

average of the number of different stable matchings created until the search

terminates (sm), the maximum number of stable matchings created for a single

instance among all 100 instances (max-sm), the time spent until the solution is

found (tbest in minutes). Then, the columns in the second half report for each

size the average value of: the number of instances where the value of b is found

as 1 i.e. optimal (opt), the number of instances that terminated by a time-out

i.e. reaching limtime = 20 mins (t/o, the number of instances that terminated

after not improving the solution for limiter = 5000 iterations (no-im).

Table 4.9 shows that HB outperforms the LS method on large instances. If

we look at the time spent during LS, we can infer that a solution is found at

the early stages of the algorithm (tbest) and the algorithm kept running until

the cut-off limit or the time-limit is met. This is due to having large number

of neighbours and also getting stuck at local minima. We can observe this by

looking at the number of stable matchings produced in all methods. When

n = 128, LS struggles finding the neighbours and can only explore 48 different

stable matchings in total. However, HB models are able to explore more diverse

stable matchings and hence find better solutions. We can observe that when

n = 128 for LS model, on the average 32.5% of the instances terminate due to

the time limit. However, nearly all the HB models either terminate because they

could not find any improved solutions or they already found the optimal.

The results can be summed up as the LS model performs very well for the smal-

ler instances in MANY. However, it struggles to complete the search for larger

sizes. The HB model seems to perform well for the instances in MANY. The

running time of the HB model can be improved by using a smaller population.

But there is a trade-off between the total running time and the b values found.

Table 4.9: More details of the results on large instances for RSM.

LS HB, |P | = 10 HB, |P | = 60
n sm max-sm tbest sm max-sm tbest sm max-sm tbest

16 88.61 672 0.001 34.76 215 0 90.75 822 0.001
32 352.1 7221 0.038 74.38 998 0.008 125.7 2720 0.016
64 677.1 7257 1.939 126.3 1857 0.323 155.8 2453 0.629

128 48.53 583 1.993 98.29 299 13.88 138.9 191 17.61
n opt t/o no-im opt t/o no-im opt t/o no-im
16 93 0 7 90 0 10 93 0 7
32 99 0 1 93.5 0 6.5 98.5 0 1.5
64 92 8 0 95 0 5 98.5 1.5 0

128 67.5 32.5 0 99 1 0 99.5 0.5 0

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

136 Begüm Genç

4. METHODS FOR FINDING

(1,B)-SUPERMATCHES IN RSM 4.8 Chapter Summary

4.8 Chapter Summary

We presented a polynomial-time procedure using the rotation poset to verify

if a given stable matching is a (1, b)-supermatch. Subsequently, we developed

four different models to find the most robust solution: a Constraint Program-

ming, a local search, a genetic algorithm, and a hybrid model, all based on

the proposed polynomial-time procedure. Then, we compared the four models

and concluded that our hybrid procedure and the local search outperforms the

genetic algorithm on random RSM instances. For small random instances, we

verified that the local search and the hybrid model provide similar results to the

constraint programming model. We compared the performances of local search

and the hybrid models further on a dataset whose instances contain many sta-

ble matchings. We found out that although the LS model is successful for the

smaller sizes in this dataset, HB performs better for larger sizes.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

137 Begüm Genç

Chapter 5

Robust Stable Roommates

Abstract. We investigate the robustness concept further on a gen-

eralized version of the SM, namely the Stable Roommates problem

(SR). We name the robust version of the problem as Robust Stable

Roommates problem (RSR). We define a polynomial-time procedure

based on the reduced rotation poset of the underlying SR instance

to decide if a stable matching is a (1, b)-supermatch. Then, learning

from the proposed models for RSM, we propose two meta-heuristic

approaches for finding the most robust solution to an RSR instance:

a local search procedure and a hybrid (genetic local search) proce-

dure. We conclude this section by providing a comparison of the

two models and an overview of the robustness of different RSM and

RSR instances.

5.1 Introduction

The Stable Roommates problem (SR) consists of a set of n = 2×k, k ∈ N+ agents,

where each agent has a preference list in which he/she ranks all other agents

in strict order of preference. The aim is to find a matching that is stable. The

basics of the problem is presented in Section 2.4.2 (Page 44).

We define the Robust Stable Roommates problem (RSR) analogous to the RSM

(see Definition 12, Page 64). We refer the problem of finding an (a, b)-super-

match to a given SR instance as the Robust Stable Roommates problem (RSR). In

the RSM, given a stable matching M and a pair (mi, wj) ∈ M, when searching

138

5. ROBUST STABLE ROOMMATES 5.1 Introduction

for another stable matching M ′, where (mi, wj) 6∈ M ′, we say that mi wants to

break-up. Similarly, in the RSR, given a stable matching M and a pair {pi, pj} ∈
M, when searching for another stable matching M ′, where {pi, pj} 6∈ M ′, we

say that {pi, pj} wants to leave the M.

A stable matching of an RSR instance is called an (a, b)-supermatch if any a

pairs do not want to be partners anymore (i.e. leave the stable matching), it is

possible to find another stable matching by changing the partners of the people

involved in those a pairs and at most b other pairs. Observe that, the definitions

of the (a, b)-supermatches in the RSM (given in Definition 12, Page 64) and the

RSR (see Definition 20) are very similar to each other. In both RSM and RSR,

the value of a and b denote the number of pairs.

Definition 20 ((a,b)-supermatch) Given an SR instance I, and two integers
a, b ∈ N, a stable matching M of I is said to be an (a, b)-supermatch if for any set
Ψ ⊆M of non-fixed stable pairs, where |Ψ| = a, there exists a stable matching M ′

such that M ′ ∩Ψ = ∅ and d(M,M ′) ≤ b+ a.

Let us illustrate the notations and concepts introduced in this section on an SR

instance of 10 people provided by Gusfield and Irving (can be found in Page

171 in [GI89]). Table 5.1 presents the preference table for this instance. Note

that, to aid readability we sometimes denote the person by its index number

(i.e. pi as i, or pair ({pi, pj}) as {i, j}) etc.). This instance contains 7 stable

matchings (later we list them in Table 5.6). Consider one of its stable match-

ings, namely M1 = {{p1, p3}, {p2, p4}, {p5, p7}, {p6, p8}, {p9, p10}} to illustrate an

(a, b)-supermatch. In order M1 to be a (2, 0)-supermatch, there must exist a

stable matching in the underlying instance if any two pairs leave M1. In other

words, for the leave of {p1, p3} and {p2, p4}, there exists a stable matching M ′

Table 5.1: The preference table of an SR instance of size 10.

pi Preference list of pi
1 8 2 9 3 6 4 5 7 10
2 4 3 8 9 5 1 10 6 7
3 5 6 8 2 1 7 10 4 9
4 10 7 9 3 1 6 2 5 8
5 7 4 10 8 2 6 3 1 9
6 2 8 7 3 4 10 1 5 9
7 2 1 8 3 5 10 4 6 9
8 10 4 2 5 6 7 1 3 9
9 6 7 2 5 10 3 4 8 1
10 3 1 6 5 2 9 8 4 7

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

139 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.2 Notation and Definition

where M ′ ∩M1 = {{p5, p7}, {p6, p8}, {p9, p10}}. Similarly, an M∗ for the leave

of {p1, p3} and {p5, p7}, where M∗ ∩M1 = {{p2, p4}, {p6, p8}, {p9, p10}}; an M ′′

where M ′′∩M1 = {{p2, p4}, {p5, p7}, {p9, p10}}, for the leave of {p1, p3}, {p6, p8},
etc. This must hold for each pair combination of size 2.

On the other hand, in order M1 = {{p1, p3}, {p2, p4}, {p5, p7}, {p6, p8}, {p9, p10}}
to be a (2, 1)-supermatch, for the leave of each combination of size 2, there

must be a stable matching M ′ where the people involved in those 2 pair have

different partners. Additionally, in any such M ′, either all other pairs remain

the same as in M1, or there is one more pair where the two people forming

the pair also have different partners in M ′. As an example, if {p1, p3} and

{p2, p4} together want to leave M1, then there is a stable matching M ′, where

{{p1, p3}, {p2, p4}} ∩M ′ = ∅, and:

• M ′ ∩M1 = {{p5, p7}, {p6, p8}, {p9, p10}}, or

• M ′ ∩M1 = {{p6, p8}, {p9, p10}}, or

• M ′ ∩M1 = {{p5, p7}, {p9, p10}}, or

• M ′ ∩M1 = {{p5, p7}, {p6, p8}}.

Note that, there must be a stable matching M ′ as illustrated above for the leave

of all 10 different pair combinations of size 2.

5.2 Notation and Definition

We define some terminology for the RSR similar to the ones in the RSM. We

measure the distance between two stable matchings M and M ′ in an RSR in-

stance by the number of pairs that exist in one, but not the other one, and

denote it by d(M,M ′). Let M be a stable matching and Ψ ⊆ M be a set of non-

fixed pairs to leave M. A repair matching is defined analogously to the RSM. A

repair matching represents a stable matching, where for the leaves of Ψ from

M is a stable matching M ′ that minimizes the value of d(M,M∗) taken over

every other stable matching M∗ such that M∗ ∩ Ψ = ∅. The repair cost in this

context is the value d(M,M ′) − |Ψ|. Additionally, in order to avoid repetition,

as we did for the RSM, we use a notation for stable matchings and their corre-

sponding closed subsets such that if a stable matching is identified using some

superscripts or subscripts, then its corresponding closed subset contains them

as well (i.e. the closed subset of M j
i is denoted by Sji).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

140 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.2 Notation and Definition

Recall the basics of SR. Each stable matching has a corresponding unique com-

plete closed subset. A complete closed subset S represents a set of rotations in

the reduced rotation poset such that for each ρ ∈ S, ρ is a non-singular rotation

and all the predecessors of ρ are also in S. There exists a one-to-one correspon-

dence between the complete closed subsets of the reduced rotation poset and

the stable matchings of the underlying instance. The preference table obtained

after applying the first phase of the SR algorithm is called T0. We denote by TS
the preference table obtained after eliminating all singular rotations starting

from T0. Any stable matching can be obtained by eliminating one of each dual

rotations starting from TS. We shall sometimes abuse the notation and shorten

the term preference table to table.

We define elimination and production of pairs for RSR with respect to the pref-

erence tables. A rotation ρ is said to eliminate {pi, pj} if there exists a table T

such that ρ is exposed in T and when ρ is eliminated from T , the resulting table

does not contain {pi, pj}. More formally, ρ eliminates {pi, pj} if ρ is exposed in

T , {pi, pj} ∈ T , and {pi, pj} 6∈ T/ρ. On the other hand, a rotation ρ is said to

produce {pi, pj} if there exists a table T such that:

• ρ is exposed in T , and

• Preference lists of pi or pj contains more than 1 person (i.e. |LT (i)| > 1,

|LT (j)| > 1), and

• Preference lists of pi contains only pj in the table obtained after eliminat-

ing ρ from T (i.e. |LT/ρ(i)| = 1 and LT/ρ(i) = {pj}), and

• Preference lists of pj contains only pi in the table obtained after eliminat-

ing ρ from T (i.e. |LT/ρ(j)| = 1 and LT/ρ(j) = {pi}).

We use the term flipping ρ from S as the process of removing ρ ∈ S from S and

adding its dual ρ̄ to S. We define a set of sink rotations and a set of neighbour

rotations analogous to the definitions in RSM. Given a complete closed subset

S, the set L(S) denote the set of rotations that are the sink vertices of the graph

induced by the rotations in S and the N(S) denote the set of the rotations that

are not included in S and for each ρ ∈ N(S) either din(ρ) = 0 or for all ρ′ ≺ ρ,

ρ′ ∈ S. We also use LT (i) to denote the list of the person pi in a stable table T .

In the rest of this section we use an instance I that has more than one solution.

Because, some SR instances do not have a solution or they only have a single

solution. Therefore, these instances do not provide any information on the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

141 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

robustness. In fact, they are not robust with respect to our robustness definition.

Therefore, we work on instances that contain at least two stable matchings. We

also use {pi, pj} to denote a non-fixed pair of I that is stable. Recall that, by

Lemma 3 (Page 49), {pi, pj} is a stable non-fixed pair if and only if (pi, pj) or

(pj, pi) is in a non-singular rotation.

The intractability result of the RSM is lifted to the RSR as the SR is a general-

ization of the SM.

Theorem 10 RSR is NP-hard.

Proof. The proof is straightforward as it is possible to create an SR instance from

any given SM instance with the exact same stable matchings in polynomial-time

by padding every other person of the same sex to the preference list of each

person (see Lemma 1, Page 45). Every (a, b)-supermatch in the SM instance

is also an (a, b)-supermatch in the corresponding SR instance and vice versa.

Hence, RSR is NP-hard because RSM is NP-hard. �

5.3 Verification of (1,b)-supermatches

Although the outlines of the approaches for finding a (1, b)-supermatch for RSR

and RSM are similar, there is one major difference to be considered. The RSM

instances contain at most one rotation that produces a non-fixed stable pair and

at most one other that eliminates it. In this section, we show that it is different

for the RSR. We prove in the rest of the section that the RSR has two cases:

a pair can be produced by a unique rotation and eliminated by another one,

or it can be eliminated by two different rotations and produced by two others.

Throughout this section, we denote by ρe the elimination rotation, and by ρp the

production rotation. If there is more than one rotation that eliminates/produces

the pair, we use ρp1, ρp2, ρe1, ρe2, etc. to identify them.

We begin by proving the existence and identification of these rotations for each

pair. First, let us identify some cases to aid readability of this section. For any

non-fixed stable pair {pi, pj}, we identify two cases by the position of the person

in the other one’s preference list in preference table TS as follows:

Case 1: There are two sub-cases:

– fTS
(i) = pj and lTS

(j) = pi, or

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

142 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

– lTS
(i) = pj and fTS

(j) = pi.

Case 2: Otherwise.

Case 1 is a special case that applies if one of the persons in the pair is the

other one’s most preferred person in TS (respectively, the other one is the least

preferred person in TS). Note that, in both of the cases, the two persons have

more than 1 preferences in their preference lists, i.e. LTS
(i) > 1 and LTS

(j) > 1.

Because the pairs are non-fixed. Later on, we refer to these cases for identifying

scenarios.

Example. Let us illustrate the notation and concepts introduced in this section

on the example instance given in Table 5.1. We first apply the first phase of

the SR algorithm (see Algorithm 4, Page 48) on Table 5.1. We denote by T0

the table obtained at this stage. Then, we remove all singular rotations from

T0 (see Algorithm 5, Page 48) and obtain TS. Table 5.2 presents the TS of the

instance presented in Table 5.1. For this instance, we can identify the following

potential stable pairs. We also show to which case the identified pairs belong.

Set of pairs that are identified as Case 1: {{p1, p3}, {p2, p4}, {p3, p5}, {p4, p9},
{p5, p7}, {p6, p8}, {p7, p1}, {p8, p10}, {p9, p2}, {p10, p6}}.

Set of pairs that are identified as Case 2: {{p1, p4}, {p2, p3}, {p2, p8}, {p3, p6},
{p3, p2}, {p4, p1}, {p4, p6}, {p5, p10}, {p5, p8}}.

Table 5.2: The table TS for the SR instance of size 10 presented in Table 5.1.

pi Preference list of pi
1 3 4 7
2 4 3 8 9
3 5 6 2 1
4 9 1 6 2
5 7 10 8 3
6 8 3 4 10
7 1 5
8 10 2 5 6
9 2 10 4
10 6 5 9 8

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

143 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

5.3.1 Identification of Elimination and Production Rotations

In this section, we show the existence of the elimination and production rota-

tions for each pair in a given RSR instance. We identify these rotations now,

and use later when describing our methodology for verifying if a given stable

matching is a (1, b)-supermatch in Section 5.3.2.

First, in Lemma 19, we show how to identify the elimination rotation(s) for a

given pair regardless of its case. Note that, the elimination rotations for RSR

are defined similar to the ones in RSM, except the pairs in RSM are ordered but

the ones in RSR are unordered.

Lemma 19 A non-fixed stable pair {pi, pj} is eliminated by a rotation ρ if and
only if (pi, pj) ∈ ρ or (pj, pi) ∈ ρ.

Proof. ⇒ Let the rotation be defined as ρ = (x0, y0), (x1, y1) . . . , (x|ρ|−1, y|ρ|−1).
Let us remind a few concepts first. We know that every stable pair {pi, pj} in the

SR is included in a non-singular rotation ρ as either (pi, pj) ∈ ρ or (pj, pi) ∈ ρ
(by Lemma 3, Page 49). Recall that, eliminating ρ from a table also results

in deleting all pairs {ym, z} such that ym prefers xm−1 to z in the table (see

Section 2.4.2, Page 49). We first show that our non-fixed stable pair {pi, pj}
cannot be one of such {ym, z}. In other words, we show that a rotation that

does not include the pair cannot eliminate it.

Suppose for contradiction that a non-fixed stable pair (pi, pj) 6∈ ρ but ρ elim-

inates it by the deletion of a pair (xm, ym) ∈ ρ, where m ∈ [0, |ρ| − 1]. From

the definition of a complete closed subset, all the stable matchings contain ei-

ther the non-singular rotation ρ = . . . , (xm−1, ym−1), (xm, ym), (xm+1, ym+1), . . .
or its dual ρ̄ = . . . , (ym, xm−1), (ym+1, xm), . . ., (note that +1 operation is mod-

ulo |ρ|) in their corresponding complete closed subsets, denoted by S. Consider

the scenario plotted in Table 5.3. This is an illustration (not complete) of the

consequence of deleting pairs in the rotation.

Table 5.3: An illustration of a table T .

p Preference list of p

.
xm . . . , ym, (z), ym+1 . . .
.
ym . . . , xm−1, (z), xm, . . .
.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

144 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

For instance, eliminating ρ moves xm from ym to ym+1 by deleting {ym, z}. In a

similar way, eliminating ρ̄ moves ym from xm−1 to xm by deleting such {xm, z}.
The pairs eliminated in this process cannot be exposed in any stable tables later

on. Therefore, they cannot be a part of a rotation, meaning the pair is not stable.

This contradicts the fact that pair {pi, pj} is a non-fixed stable pair. Therefore,

{pi, pj} cannot be any such {xm, z} or {ym, z} The proof is the same for (pj, pi).

⇐ From the definition of eliminating a rotation ρ from T , where (pi, pj) ∈ ρ,

the elimination results in the deletion of pj from pi’s list. Similarly, if (pj, pi) ∈ ρ
then it results in the deletion of pi from pj ’s list .

Hence, for any non-fixed stable pair {pi, pj} to be eliminated, there exists a non-

singular rotation ρ and the pair appears in this rotation as either (pi, pj) ∈ ρ or

(pj, pi) ∈ ρ. �

Subsequently, Lemma 20 identifies the production rotation(s) for each pair.

Lemma 20 If a non-fixed stable pair {pi, pj} is eliminated by ρe, then {pi, pj} is
produced by its dual, ρp = ρ̄e.

Proof. A rotation is said to produce {pi, pj} if eliminating it from a preference

table T reduces LT/ρ(i) to a single entry, namely to pj and LT/ρ(j) to pi. We

prove the existence of the production rotations over the two cases (Case 1 and

Case 2) identified in Section 5.3.

We have two sub-cases in Case 1. First case is when pj is pi’s most preferred

person in TS, i.e. fTS
(i) = pj, lTS

(j) = pi. In order to reduce pi’s list to only

pj, we need a rotation that moves pi from his/her second best choice up to the

first choice. We refer to this operation as limiting pi from the right. Simi-

larly, to reduce the pj ’s list to pi, we need a rotation that moves pj from his/her

second least-preferred person to the least preferred person. We refer to this

operation as limiting pj from the left. Referring back to Table 5.3 for nota-

tion, the production rotation ρp of the pair {pi, pj} = (xm, ym) must contain

the pair (ym+1, xm) ∈ ρp to limit xm from the right. Additionally, it must con-

tain (ym, xm−1) to limit ym from the left. To illustrate, the production rotation

has the shape: ρp = . . . , (ym, xm−1), (ym+1, xm), Note that, each ordered

pair can only appear in exactly one rotation. Observe that, the dual of ρp con-

tains the pair (xm, ym), from definition of the dual. By Lemma 19, we know

that the rotation that contains (xm, ym) is the elimination rotation of the pair

{pi, pj}. Therefore, ρp = ρ̄e. The proof for the second sub-case is similar, where

(ym, xm) ∈ ρe.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

145 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

For a pair {pi, pj} in Case 2, each person has both more and less preferred

people in their lists. Therefore, in order to produce a pair, their lists must

be limited from both the left and right. Let ρp1 denote the rotation that lim-

its pi from the left and pj from the right, and ρp2 denote the rotation that

limits pi from the right and pj from the left, respectively. Let the prefer-

ence lists for the pair {pi, pj} denoted by LTS
(i) = [. . . , ym−1, ym, ym+1] and

LTS
(j) = [. . . , xm−1, xm, xm+1] where {pi, pj} = (xm, ym). The pair (xm, ym−1)

must be in ρp1 to limit pi from the left and (xm+1, ym) be in ρp1 to limit pj
from the right. Additionally, the pair (ym+1, xm) must be in ρp2 to limit pi from

right and (ym, xm−1) to limit pj from left. Note that, the dual of ρp1 contains

(ym, xm), the dual of ρp2 contains (xm, ym), from the definition of a dual rota-

tion. By Lemma 19, we know these rotations are elimination rotations of the

pair {pi, pj}.

Note that the two rotations ρp1 and ρp2 do not require one of them to be elimi-

nated from the table first; they are incomparable. Therefore, depending on the

order of elimination of the rotations, both of them are identified as production

rotations. �

Having identified the production rotation for a pair, Proposition 4 gives a char-

acterisation on production rotation(s) of a pair {pi, pj} and the complete closed

subsets of the stable matchings that {pi, pj} belong.

Proposition 4 For each non-fixed stable pair {pi, pj} in a stable matching M, the
corresponding complete closed subset of M contains all production rotations of
{pi, pj}.

Proof. The proof is immediate from the proof of Lemma 20 as eliminating the

production rotations starting from preference table TS guarantees to reduce the

entries in final table (solution) T to LT (i) = pj and LT (j) = pi. �

We sum up the findings above for the non-fixed stable pairs. If a pair is de-

scribed by Case 1, then there exists only one elimination rotation for this pair

and only one production rotation as the dual of the elimination one. Because,

the preference list needs to be limited from only one direction (limiting from

the left or from the right depending on the sub-case). However, for the pairs

described by Case 2, there exist two elimination rotations for this pair, and also

two other production rotations. Note that, for the pairs of Case 2, including one

production rotation in the complete closed subset and not the other one, results

in producing another partner for that pair. If the second production rotation is

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

146 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

not added, its dual must be added to the complete closed subset. Therefore,

the pair produced depends on the dual rotation. Subsequently, Theorem 11 is

an immediate result of Lemma 19 and Lemma 20.

Theorem 11 For a non-fixed stable pair {pi, pj}, if:

Case 1: There exists a unique elimination rotation ρe, where (pi, pj) ∈ ρe or
(pj, pi) ∈ ρe, and a unique production rotation ρp, where ρp = ρ̄e.

Case 2: There exist two different elimination rotations ρe1, ρe2, where (pi, pj)
∈ ρe1, (pj, pi) ∈ ρe2 and two rotations ρp1 = ρ̄e1, ρp2 = ρ̄e2 that produce the
pair.

Proof. Immediate from Lemma 19 and Lemma 20. �

Example. Recall the look-up example presented in Table 5.1, and its TS ta-

ble presented in Table 5.2. This instance contains 10 non-singular rotations as

presented in Table 5.4.

For a given pair covered by Case 1, e.g. {p6, p8}, there exists a unique elimina-

tion rotation ρe = ρ̄7. Its production rotation is also unique and is the dual of the

elimination rotation ρp = ρ7. Similarly, for {p5, p3}, there exists a unique elimi-

nation rotation ρe = ρ4. Its production rotation is also unique and is the dual of

the elimination rotation ρp = ρ̄4. As a final example, for a pair covered by Case

2, e.g. {p1, p4}, there exist two different elimination rotations, ρe1 = ρ̄3 and

ρe2 = ρ̄6, whereby including any of them in a closed subset results in a stable

matching, where the persons involved in the pair have different partners than

each other. Moreover, there exist two different rotations, ρp1 = ρ3 and ρp2 = ρ6,

which when both included in a complete closed subset, the corresponding stable

Table 5.4: The list of non-singular rotations of the instance given in Table 5.2.

ρ3 (1, 3), (2, 4)
ρ̄3 (4, 1), (3, 2)
ρ4 (3, 5), (10, 6)
ρ̄4 (6, 3), (5, 10)
ρ5 (8, 10), (9, 2)
ρ̄5 (2, 8), (10, 9)
ρ6 (4, 9), (7, 1), (10, 5)
ρ̄6 (9, 10), (1, 4), (5, 7)
ρ7 (3, 6), (8, 2)
ρ̄7 (2, 3), (6, 8)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

147 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

matching contains the pair. Also, observe that, the pair {p5, p8} is not a stable

pair as none of the non-singular rotations contain it (see Lemma 3, Page 49).

5.3.2 Methodology

In the previous section, we identified for each pair the rotation(s) that produce

and eliminate them. In this section, we show how to use the identified rotations

to obtain the closest stable matching M ′ to a given stable matching M if one of

the pairs wants to leave the stable matching at a time. Let SP denote the set of

all the complete closed subsets for the underlying SR instance. Lemma 21 gives

a characterization for the complete closed subsets.

Lemma 21 Let S ∈ SP . For each sink rotation ρ of S, the set S \ {ρ} ∪ {ρ̄} ∈ SP .

Proof. From the definition of closed subset, all predecessors ρ′ ∈ N−(ρ) are also

in S. Since ρ is a sink rotation, successors ρ∗ ∈ N+(ρ) are not in S. Additionally,

from the definition of the complete closed subset, duals of all ρ∗ must be in the

complete closed subset (i.e. ρ̄∗ ∈ S) and ρ̄ is not in S. Using Lemma 5 (Page 51),

we know that ρ̄∗ ≺ ρ̄. Hence, all predecessors of ρ̄ are already in S, making ρ̄ a

neighbour rotation and results in S \ {ρ} ∪ {ρ̄} ∈ SP . �

The distance between two stable matchings d(M,M ′) is previously defined in

Section 5.2 as the number of different pairs between M and M ′. Observe that

the distance can be calculated by also using their corresponding complete closed

subsets, instead of the stable matchings. If S \ S ′ = {ρ}, it means ρ ∈ S and

ρ̄ ∈ S ′. We know that, X({ρ}) = Y ({ρ̄}) and Y ({ρ}) = X({ρ̄}). Therefore,

between M and M ′, only the people in ρ (or ρ̄) have different partners. This

can also be generalised to a set of rotations. Hence, the distance can also be

denoted as d(S, S ′) = |X(S \ S ′) ∪ Y (S \ S ′)|/2. Note that d(S ′, S) = d(S, S ′).

Lemma 22 identifies the closest stable matching to a stable matching M, when

a rotation from its corresponding complete closed subset is to be removed.

Lemma 22 Given a stable matching M and its corresponding complete closed sub-
set S, if ρ ∈ S is a rotation to remove from S, the closest stable matching M ′ to M
such that ρ 6∈ S ′ is found by the formula:

C(S, ρ) = S ′ = (S \ ({ρ} ∪N+(ρ))) ∪ {ρ̄} ∪
⋃

ρ∗∈N+(ρ)
ρ̄∗. (5.1)

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

148 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

Proof. The fact that the set S ′ is a complete closed subset follows from Lemma 5

(Page 51) and Lemma 21 as flipping a sink rotation of S yields in another

complete closed subset. However, if ρ is not a sink rotation in S, we must flip

all the successors of ρ to obtain a complete closed subset.

Let M∗ denote the stable matching after flipping ρ ∈ S. Then d(M,M∗) =
d(S, S∗) = |X({ρ}) ∪ Y ({ρ})|/2. Now, let M∗ denote the stable matching af-

ter flipping both ρ, σ ∈ S. Then, the two stable matchings differ only by

the partners of all people that are involved in ρ and σ. Note that, we calcu-

late the distance over the number of pairs in RSR. Therefore, the distance is:

d(M,M∗) = |X({ρ}) ∪ Y ({ρ}) ∪ X({σ}) ∪ Y ({σ})|/2. Observe that, flipping

more rotations can only increase the distance between two stable matchings.

In Formula 5.1, the required number of flips is the minimum, and therefore,

the function C(S, ρ) returns the closest stable matching to M when ρ ∈ S to be

removed from S. �

Finally, Theorem 12 concludes how to find the closest stable matching M ′ to M

if {pi, pj} ∈M wants to leave the M.

Theorem 12 Given a stable matching M and a pair {pi, pj} to leave M, the clos-
est stable matching M ′ to M is identified by its corresponding S ′ by using the
Formula 5.1 as follows:

1. If Case 1, then S ′ = C(S, ρp).

2. If Case 2, let M1 and M2 be the two stable matchings s.t. S1 = C(S, ρp1) and
S2 = C(S, ρp2). Then S ′ = S1 if d(M,M1) < d(M,M2), otherwise S ′ = M2.

Proof. The proof is immediate from Theorem 11 and Lemma 22. �

In order to verify if a given stable matching M is a (1, b)-supermatch, all the

closest stable matchings to the given stable matching are found under the as-

sumption that each pair wants to leave the stable matching, one at a time. For

each such pair, its production rotation is identified and then Theorem 12 is

applied to find the closest stable matching. Among all the closest stable match-

ings, the stable matching M ′ that results in the maximum distance to M defines

the robustness of M, i.e. b = d(M,M ′)− 1, where 1 denotes the pair that wants

to leave.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

149 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

Example. Figure 5.1 illustrates the reduced rotation poset of our running ex-

ample presented in Table 5.1.

Table 5.5 presents a list of all the complete closed subsets of the reduced ro-

tation poset given in Figure 5.1. Additionally, Table 5.6 presents a list of all

the stable matchings corresponding to the complete closed subsets given in Ta-

ble 5.5.

On this example, we demonstrate how to find the (1, b)-robustness value of the

stable matchingM6. We chooseM6 because it contains a number of pairs of both

Case 1 and Case 2. We start by identifying in M6 in Table 5.7 the production

ρ3 ρ5 ρ4

ρ7 ρ6 ρ7 ρ6

ρ4 ρ5 ρ3

(1, 3), (2, 4) (8, 10), (9, 2) (3, 5), (10, 6)

(2, 3), (6, 8)

(9, 10), (1, 4), (5, 7) (3, 6), (8, 2)

(4, 9), (7, 1), (10, 5)

(6, 3), (5, 10) (2, 8), (10, 9) (4, 1), (3, 2)

Figure 5.1: Reduced rotation poset of the rotations given in Table 5.4.

Table 5.5: A list of all the seven complete closed subsets of the poset given in
Figure 5.1.

S1 = {ρ̄3, ρ4, ρ5, ρ6, ρ7}
S2 = {ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
S3 = {ρ3, ρ4, ρ̄5, ρ6, ρ̄7}
S4 = {ρ3, ρ4, ρ5, ρ6, ρ7}
S5 = {ρ3, ρ4, ρ5, ρ6, ρ̄7}
S6 = {ρ3, ρ4, ρ5, ρ̄6, ρ7}
S7 = {ρ3, ρ4, ρ5, ρ̄6, ρ̄7}

Table 5.6: A list of all the stable matchings corresponding to the complete closed
subsets given in Table 5.5.

M1 = {{p1, p3}, {p2, p4}, {p5, p7}, {p6, p8}, {p9, p10}}
M2 = {{p1, p7}, {p2, p8}, {p3, p5}, {p4, p9}, {p6, p10}}
M3 = {{p1, p4}, {p2, p9}, {p3, p6}, {p5, p7}, {p8, p10}}
M4 = {{p1, p4}, {p2, p3}, {p5, p7}, {p6, p8}, {p9, p10}}
M5 = {{p1, p4}, {p2, p8}, {p3, p6}, {p5, p7}, {p9, p10}}
M6 = {{p1, p7}, {p2, p3}, {p4, p9}, {p5, p10}, {p6, p8}}
M7 = {{p1, p7}, {p2, p8}, {p3, p6}, {p4, p9}, {p5, p10}}

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

150 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.3 Verification of (1,b)-supermatches

Table 5.7: All production and elimination rotations for each pair in M6.

{pi, pj} Case Production (ρp) Elimination (ρe)
{p1, p7} 1 ρp = ρ̄6 ρe = ρ6
{p2, p3} 2 ρp1 = ρ7, ρp2 = ρ3 ρe1 = ρ̄7, ρe2 = ρ̄3
{p4, p9} 1 ρp = ρ̄6 ρe = ρ6
{p5, p10} 2 ρp1 = ρ4, ρp2 = ρ̄6 ρe1 = ρ̄4, ρe2 = ρ6
{p6, p8} 1 ρp = ρ7 ρe = ρ̄7

Table 5.8: All production and elimination rotations for each pair in M6.

{pi, pj} C(S, ρ) S d(M,M ′) S ′ b
{p1, p7} C(S, ρ̄6) = {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3
{p2, p3} C(S, ρ7) = {ρ3, ρ4, ρ5, ρ̄6, ρ̄7} S7 2 S7 1

C(S, ρ3) = {ρ̄3, ρ4, ρ5, ρ6, ρ7} S1 4
{p4, p9} C(S, ρ̄6) = {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3
{p5, p10} C(S, ρ4) = {ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7} S2 3 S2 2

C(S, ρ3) = {ρ̄3, ρ4, ρ5, ρ6, ρ7} S1 4
{p6, p8} C(S, ρ̄7) = {ρ3, ρ4, ρ5, ρ̄6, ρ̄7} S7 2 S7 1

and the elimination rotations for each pair, including their cases.

After the identification of the production rotations are completed, we flip the

production rotations by applying the formula given in the Equation 5.1 to find

the closest stable matching in the case of each pair’s removal. The complete

closed subsets found after the formula for each pair is presented in Table 5.8.

Note that, if the pair is covered by Case 2 and there are two different potentially

closest stable matchings, the minimum distance one is selected as the closest.

Computing the partial b values (i.e. the repair cost for each pair removal), we

conclude that, in the worst case, the maximum cost of repairing the leave of a

pair for M6 is 3. Therefore, M6 is a (1, 3)-supermatch.

5.3.3 Complexity

The production and elimination rotations of each pair can be identified in a

pre-processing step. We show that checking if a stable matching is a (1, b)-
supermatch can be performed in O(n× |V|) time after the O(n4) preprocessing

step for an instance where n = 2 × k people are involved. We look into the

details of these computations below.

First, we look at the details of the pre-processing step. Given an SR instance,

the identification of the rotations and building the reduced rotation poset takes

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

151 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.4 Models for Finding (1,b)-supermatches

O(n4) by our implementation, but can be reduced to O(n3logn) (Section 2.4.2,

Page 51). The identification of all the predecessors and successors of each ro-

tation ρ takes O(|V|2) time as we search the rotation poset for each rotation.

Identifying elimination and production rotations for each pair {pi, pj} when-

ever applicable is O(n × |V|). Because there are n/2 pairs, and the number

of rotations in a reduced rotation poset, |V|, is O(|n2|). Thus, the overall pre-

processing step takes O(n4) time.

The main algorithm is to compute for each pair in M, the closest stable match-

ing M ′ by using the methodology presented in by Theorem 12. Finding the

distance between two stable matchings is O(n) as we find the different rota-

tions between two complete closed subsets and count the people involved in

them. Flipping a rotation takes constant time. The worst case of finding the

closest stable matching is to flip all the non-singular rotations in S, where the

number of all non-singular rotations is |V|/2. Therefore, this computation takes

O(n× |V|) time.

We also discuss below some additional costs arise when converting an M to its

corresponding S or vice-versa. Given a stable matching M, its corresponding

complete closed subset S is found by finding and adding the production rota-

tion(s) of each pair and their predecessors into set S, starting from an empty set

S = {}. Considering that the predecessors and production rotations are found

in the pre-processing step, they can be retrieved quickly by using an additional

structure, e.g. a hash table. Adding all these rotations in the set then takes

O(|V|). On the other hand, in order to find the M corresponding to an S, all the

rotations in S are eliminated from TS by respecting their precedence order. The

order between the rotations in S can be found by applying a sorting algorithm,

where the sorting algorithm can be implemented in O(|V| × log|V|). Note that,

when compared to the operations in RSM, the RSR has a higher cost.

5.4 Models for Finding (1,b)-supermatches

In this section, we describe two meta-heuristic models that we use to find a

(1, b)-supermatch to a given RSR instance: a local search approach (LS) and

a hybrid of genetic algorithm and local search (HB). Our models are inspired

from the models used for RSM defined in Chapter 4, and are based on the

methodology described in Section 5.3.2. Our hybrid model and the local search

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

152 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.4 Models for Finding (1,b)-supermatches

model are extensions of the RSM models discussed in Section 4.5 (Page 119),

and Section 4.6 (Page 124). We did not use the genetic algorithm model for the

RSR tests as it does not yield good results and is outperformed by the other two

models. A CP model could be tailored for the RSR similar to the one explained

in Section 4.3. However, we did not provide any such complete methods. Our

experience is that, unless the RSR instance yields in a small rotation poset, the

model is expected to run even slower than the RSM instances of similar size. In

the remainder of this section, we describe the two models tailored to the RSR

and then provide a comparison of them.

5.4.1 Local Search Approach

The local search (LS) approach developed for finding a (1, b)-supermatch to a

given RSR instance is similar to the local search approach developed for RSM

in Section 4.5. Considering the structural similarities between the RSM and

the RSR, we tailored the LS model of RSM as it was shown that the LS model

outperforms the genetic algorithm and produces near optimal solutions for the

RSM, especially for the small instances.

We first describe the general procedure, discuss in detail how to create a ran-

dom stable matching and how the neighbourhood of a stable matching is con-

structed. Recall that, in the LS model, there exists a neighbourhood N for the

current solution. The algorithm works by searching the N of the current solu-

tion, finding the best neighbour Mn in the neighbourhood, and then descend-

ing the search by checking the neighbourhood of the current best solution. The

search is restarted from a randomly created stable matching at every few iter-

ations to avoid getting stuck at a local minima. The search continues until a

termination criterion is met. In our model, we have three termination criteria:

1. Cut-off limit limiter, which indicates improvement of the best solution. If

the algorithm cannot find a better solution than the best one found so far

Mbest for limiter iterations, then the Mbest is returned as the result. The

counting of the number of iterations to compare with limiter is achieved

by keeping track of an additional iteration counter that resets each time a

better solution is found.

2. Depth limit limdesc, which indicates the depth of the neighbourhood

search starting from an initial stable matching. We define the depth of the

search as the number of successor neighbour stable matchings created,

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

153 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.4 Models for Finding (1,b)-supermatches

starting from an initial random stable matching. Therefore, limdesc can

be illustrated as a limit on the number of stable matchings that descends

from a randomly created stable matching. We make use of an additional

iteration counter to keep track of the depth. This counter is restarted each

time a random stable matching is created.

3. Optimal opt, which indicates if the algorithm has already found the opti-

mal solution (i.e. b = 1).

The procedure starts by creating a random stable matching Mc. The algorithm

for creating Mc is given in Algorithm 18. In this algorithm, first, an empty

complete closed subset Sc is created. Next, all the non-singular rotations of the

underlying instance V are stored in a list A, indicating that all the rotations in

A are safe to add to the Sc. “Safe” in this context means that adding ρ ∈ A does

not violate the rules for being a complete closed subset for Sc.

The procedure consists of repeating a random rotation ρr selection from the set

of available rotations A, adding the ρr to Sc by also adding all of its predecessors

ρp until Sc contains one of each dual rotation. When a rotation ρ is added to Sc,

then both ρ and its dual ρ̄ are removed from the available set A. This removal

ensures that there exists only one rotation in Sc from each dual pair (i.e. ρ, ρ̄).

After creating a random stable matching Mc identified by its complete closed

subset Sc, the N of Mc is found by checking all the sink rotations in Sc. By

using Lemma 21, we know that flipping any sink rotation in Mc creates another

stable matching Mn, which we refer as a neighbour of the Mc. The set of

neighbours for a stable matching defines its neighbourhood.

Algorithm 18 Random stable matching creation

1: procedure CREATERANDOMSM(), return: a complete closed subset
2: Sc ← {}
3: A← V
4: while |Sc| < |V|/2 do
5: ρr ← select a random rotation in A
6: Sc ← Sc ∪ {ρr}
7: A← A \ {ρr, ρ̄r}
8: for ρ′ ∈ N−(ρr) do
9: if ρ′ 6∈ Sc then

10: Sc ← Sc ∪ {ρ′}
11: A← A \ {ρ′, ρ̄′}

return Sc

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

154 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.4 Models for Finding (1,b)-supermatches

Example. Figure 5.2 illustrates an example reduced rotation poset of an RSR

instance that involves 10 non-singular rotations in total. These non-singular

rotations are identified as: ρ0, ρ1, ρ2, ρ3, ρ4, and their duals. Let a complete

closed subset on this poset be Sc = {ρ0, ρ1, ρ2, ρ̄3, ρ̄4}, as highlighted in the

figure. The sink rotations of Sc can be identified as L(Sc) = {ρ0, ρ2, ρ̄3}. Flipping

these rotations, one at a time, corresponds to a different neighbour Mni of Mc

as shown below:

1. Flip of ρ0 corresponds to Sn1 = {ρ̄0, ρ1, ρ2, ρ̄3, ρ̄4};

2. Flip of ρ2 corresponds to Sn2 = {ρ0, ρ1, ρ̄2, ρ̄3, ρ̄4};

3. Flip of ρ̄3 corresponds to Sn3 = {ρ0, ρ1, ρ2, ρ3, ρ̄4}.

The reader can verify that all three sets Sn1, Sn2, Sn3 are complete closed subsets.

Then, we say that the neighbourhood of Mc contains three neighbour stable

matchings as follows: N = 〈Mn1,Mn2,Mn3〉.

Recall that, the LS method proposed for the RSM defines the neighbours over

both sink rotations and the neighbour rotations. However, in the RSR, we only

use the sink rotations. This is due to neighbour rotations corresponding to the

duals of the sink rotations. Flipping a sink rotation or a neighbour rotation

results in the same neighbour stable matching.

The general procedure of the LS approach is the same as the one developed

for the RSM. The details of the overall procedure can be found in Algorithm 16

(Page 122). They only differ in terms of a random stable matching creation and

the definition of the neighbourhood, as discussed above.

The complexity of the LS procedure depends on the computation of the b values

(see Section 5.3.3, Page 151). Finding the set of neighbours (N) is based on the

identification of the sink rotations of the current stable matching identified by

its complete closed subset Sc, where there can be at most |V|/2 sink rotations.

Then, there is a constant cost for flipping each sink rotation, i.e. achieved simply

ρ0 ρ0 ρ1 ρ2 ρ3

ρ4 ρ4

ρ2 ρ3 ρ1

Figure 5.2: The reduced rotation poset of an RSR instance that contain 10 non-
singular rotations.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

155 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.4 Models for Finding (1,b)-supermatches

by adding its dual rotation. The best neighbour is identified after computing b

values of |N | stable matchings. This procedure takes O(k × n × |V| × |N |),
where k is the number of iterations, and n is the number of non-fixed pairs.

5.4.2 Hybrid Approach

The hybrid approach we define for the RSR is a tailored version of the hybrid

algorithm proposed for the RSM (see Section 4.6, Page 124). In order to avoid

repetition, we are not disclosing all the details of the HB procedure. The outline

of the GA procedure we use in this work is the same as the model described for

the RSM detailed in Section 4.4 (Page 111). We only slightly modify some

of the functions when compared to the HB model proposed for RSM. These

are: definition of the neighbourhood, crossover technique, and the mutation

technique. We briefly discuss the changes below.

First, the overall procedure of the HB algorithm tailored for the RSR is struc-

tured as follows:

1. Initialize a population by randomly created stable matchings by using Al-

gorithm 18.

2. Evolve the population (randomly select individuals from the population,

apply crossover, search for neighbours of the products of crossover, apply

mutation).

3. Repeat the evolution until some termination criterion is met (having no

improved solutions for a number of iterations limiter, exceeding the time-

limit limtime, or finding the optimal solution opt = 1).

As can be seen from the procedure, the only local search enhancement to the

GA algorithm is the search for the neighbours of the stable matchings after

crossover. Let Mc1,Mc2 be the two stable matchings produced by the crossover.

We update Mc1 by its best neighbour after the neighbour search (the same ap-

plies to the Mc2). Creating a random stable matching and finding the neigh-

bours of a stable matching are already discussed in Section 5.4.1.

In our model, only the crossover and mutation operations are different than

the original GA model defined for the RSM. Instead of defining the crossover

by adding rotations to the closed subset or removing them as we did for the

RSM, we flip them for the RSR. Considering Lemma 22, we define the crossover

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

156 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

procedure for two stable matchings M1,M2 as follows. First, we find a random

rotation ρ1 ∈ S1, and a random rotation ρ2 ∈ S2. If the ρ1 is not in S2, it means

ρ̄1 ∈ S2 due to the completeness property of the closed subsets in SR. Therefore,

we flip ρ̄1 in S2 and the duals of all of its predecessors ρ′ ∈ N−(ρ) if ρ′ is not

included in S2. We repeat the same procedure for the other stable matching M2

as well.

Moreover, for the mutation operation, we select a random rotation ρ from the

reduced rotation poset of the underlying instance and also a stable matching

M by the roulette wheel selection. If ρ ∈ S, we flip ρ and all the required

predecessors. If its dual ρ̄ ∈ S, then we flip ρ̄ and the predecessors.

Note that, the complexity of the method is the same with discussed in Sec-

tion 4.6 and is O(k × n × |V| × |N + P |), where k is the number of iterations,

n is the number non-fixed pairs, |V| is the number of rotations in the reduced

rotation poset, |N | is the size of neighbourhood, and |P | is the size of the pop-

ulation.

5.5 Experiments

Our objective for these experiments is to find which model is better for solving

the RSR instances, and also to observe how the robustness values differ between

the RSM and RSR instances that are created by similar methods. In this section,

we first compare the performance of the two proposed models: LS and HB on

random RSR instances. Then, we provide a comparison of the robustness of

different datasets of RSM and RSR instances.

The code is implemented in Java. All experiments are performed on Dell M600s

with 2.66 Ghz processors under Linux, using three different randomization

seeds. We fixed the time limit as limtime = 20 mins, the limit for the number

of iterations with no improvement in the solution limiter = 5000, the number of

stable matchings that descend from a random stable matching limdesc = 50 for

each instance. We then report the average of the three runs, unless otherwise

stated. We use the population size for the HB as 30 and the mutation probabil-

ity as 0.7. The reason that we use smaller values for our HB model for the RSR

than the HB model for the RSM is mainly due to the size of the problem. We

observed in the experiments on dataset MANY that the HB model can be made

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

157 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

faster in the exchange of a small value loss in the value of b 1. Considering that

we work with some large RSR instances, and the overall procedure for the RSR

is slower than the RSM, we work with a relatively small population.

5.5.1 A Comparison of Models

In this section, we compare the performances of the HB and the LS models

proposed for the RSR. We do not perform the comparison on uniformly random

RSR instances. Because, the mean and the variance of the number of stable

matchings in random SR instances has been shown to be asymptotic to e1/2 and

(πn/4e)1/2 [Pit93]. This value corresponds to very small numbers even for large

instance sizes. These numbers can be observed related to our experiments on

the dataset called RANDOM later in Section 5.5.2.1.

In order to compare the performances of HB and LS models, we look for RSR in-

stances that are likely to contain many stable matchings to gain more insight on

their performances. For this purpose, we first create a dataset of purely random

SM instances considering that each SM instance contains at least one stable

matching and also they each have a corresponding SR instance (see Lemma 1,

Page 45). We observed in Figure 4.8 that the uniformly random SM instances

contain many different stable matchings. The values reported in the figure rep-

resents a subset of the stable matchings visited by the models. Hence, this

conversion tackles the problem of random SR instances having a small number

of stable matchings, while preserving the randomness.

Our dataset consists of 30 uniformly random SM instances of each size n ∈
{100× k | k ∈ {1, . . . , 10}}, where n denotes the number of men/women. Note

that, the resulting (i.e. converted) SR instances have size 2 × n. On the other

hand, RSM instances actually also have n + n = 2 × n people. Thus, when we

report the numbers in terms of pairs: i.e. number of pairs in RSR, which is n,

number of men/women which also equals to n, we obtain a fair comparison.

In Figure 5.3 we plot the normalised objective value of the best solution found

by the search model h ∈ {LS,HB} (x-axis) and the total time (y-axis). The

scoring technique used here is presented in detail in Section 4.7.1 (Page 128).

Let h(I) be the objective value of the best solution found using model h on

instance I and lb(I) (resp. ub(I)) the lowest (resp. highest) objective value

1Our datasets are publicly available at: github.com/begumgenc/rsmData

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

158 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	0

	5

	10

	15

	20

	25

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

To
ta
l	t
im

e	
(m

in
)

Score

hb
ls

Figure 5.3: Performance comparison of LS and HB models.

found by any model on I. Recall that, the value of score(h, I) is equal to 1
if h has found the best solution for this instance among all models, decreases

as h(I) gets further from the optimal objective value, and is equal to 0 if and

only if h did not find any solution for I. Each point on this graph represents

an instance solved using the related model (HB or LS). Thus, there are 30× 10
points for each model.

Note that the running time of some instances in Figure 5.3 exceed the limtime,

which is set to 20 minutes. This is due to the cost of creating a stable matching.

The instances that exceed the time limit are the ones that have size n ≥ 800. We

see the proof of this in another graph later. We do not interrupt the construction

of a stable matching during search and also its calculation for the b value. This

operation is costly when there are many pairs, and hence, the time limit is

exceeded.

Table 5.9 reports in the rows the average number of different stable matchings

created by HB and LS models (sm-hb and sm-ls, respectively), average mini-

mum values of b found by them (b-hb and b-ls, respectively) as well as some

information about the dataset (i.e. the total number of pairs (n), the average

values of: non-fixed pairs (np), number of rotations in the reduced rotation

poset (|V|)).

Both HB and LS models produce very competitive results w.r.t. the average val-

ues of minimum b they find when 200 ≤ n ≤ 800. LS sometimes finds slightly

better results. However, we observe that for instances that have n ≥ 1000, the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

159 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

Table 5.9: An overview of performances of HB and LS models on random RSR
instances.

n 200 400 600 800 1000 1200 1400 1600 1800 2000
np 76.8 166.4 264.4 359.4 454.9 547.7 651 747.8 852.9 948
|V| 48.2 83.5 119.7 154.8 181.9 205 239.3 264.8 296.6 321.8

sm-ls 61.1 133.4 222.8 228.2 94.7 47.3 21.7 13.3 6.8 5
sm-hb 45.6 70.5 94.3 115.2 84.9 47.8 21.8 13.3 6.9 4.9

b-ls 49.93 116.90 193.7 268.6 360.7 461.2 592.8 693.7 789.6 910.7
b-hb 49.96 116.91 193.7 268.8 350.9 426.3 529.8 620.5 732.9 834.6

HB produces much better results (i.e. finds lower values for b). However, HB

has this advantage only due to the randomization in the initial population cre-

ation. When we look at the larger instances in more detail, the most robust

solution found in the initial population has almost always better robustness

values than the ones found by the LS. Recall that, we use an initial popula-

tion of size 30 for HB model for the RSR. Even if the same stable matching is

created for a few times, recall that we do not re-compute the b value of an al-

ready discovered stable matching. Therefore, it does not effect the total time

significantly.

We observe in Table 5.9 that the HB and the LS models are both exploring

similar number of different stable matchings for larger instances. For instance,

for n = 2000, the LS model searches for neighbours of a randomly created stable

matching and finds 5 neighbours on the average. Similarly, the HB model also

creates (on the average) 4.9 different stable matchings. However, the stable

matchings found by the HB are more random in the sense that the LS explores

only the neighbours of a candidate solution but the HB creates random stable

matchings. Hence, the randomization lets HB to find better robustness values.

This is the reason for larger-sized LS instances in Figure 5.3 resulting in low

scores when compared to the HB.

Figure 5.4 provides more detailed comparison between the LS and the HB. This

figure compares the average minimum b value found by the two models for each

instance in the set. There are different plots for each size. Each instance has an

associated instance ID. In the sub-figures, we can observe a comparison of the

performances of the HB and the LS models for each instance in the dataset.

The main observation from the Figure 5.4 is that both the HB and the LS models

find similar b values for small instances. However, for instances where n > 1000,

the HB model finds lower b values than the LS. Figure 5.5 has a similar structure

with the Figure 5.4, but it plots the total time used by the each model for each

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

160 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	30

	40

	50

	60

	70

	0 	5 	10 	15 	20 	25 	30

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	200

hb
ls

	90

	100

	110

	120

	130

	140

	30 	35 	40 	45 	50 	55 	60

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	400

hb
ls

	160

	170

	180

	190

	200

	210

	220

	55 	60 	65 	70 	75 	80 	85 	90

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	600

hb
ls

	230

	240

	250

	260

	270

	280

	290

	300

	310

	90 	95 	100 	105 	110 	115 	120

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	800

hb
ls

	300

	350

	400

	450

	120 	125 	130 	135 	140 	145 	150

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1000

hb
ls

	350

	400

	450

	500

	550

	150 	155 	160 	165 	170 	175 	180

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1200

hb
ls

	450

	500

	550

	600

	650

	700

	180 	185 	190 	195 	200 	205 	210 	215

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1400

hb
ls

	450

	500

	550

	600

	650

	700

	750

	800

	850

	210 	215 	220 	225 	230 	235 	240

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1600

hb
ls

Figure 5.4: Robustness values found by LS and HB models (continued on the
next page).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

161 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	650

	700

	750

	800

	850

	900

	240 	245 	250 	255 	260 	265 	270 	275

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1800

hb
ls

	750

	800

	850

	900

	950

	1000

	270 	275 	280 	285 	290 	295 	300

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	2000

hb
ls

Figure 5.4: Robustness values found by LS and HB models (continued from
previous page).

instance. We observe in Figure 5.5 that for each instance that has size 200 ≤
n ≤ 600, both models complete the search (i.e. no time-out). Additionally, they

find similar b values (in Figure 5.4).

In Figure 5.5, we observe that even though the time limit is set to 20 minutes,

most of the instances exceed the time limit when n > 1000. This is because, we

do not enforce the search to stop while creating a stable matching. As can be

observed from the figures, as the size increases, creating one stable matching

can take up to nearly 5 minutes (when n = 2000). This means that, in the

provided time frame (≈ 25 minutes), the HB model only creates 4-5 random

stable matchings for the initial population. Thus, can not perform any of the

search steps, but only works on creating a small set of random stable matchings.

Figure 5.6 plots the comparison of the average total time spent by HB and LS

for all instances of the same size. The average values in Figure 5.6 are similar

to the ones obtained from Figure 5.5. In Figure 5.5, each point represents an

instance. However, in Figure 5.6, each point represents the average value of all

30 instances of each size.

In summary, we can conclude that for small instances, both HB and LS perform

well in terms of finding solutions with low b values. If the time is essential, HB

model can be preferred over LS as it converges faster. On the other hand, HB is

able to find better solutions for larger instances. However, it is also deceiving

in the sense that it performs as a random search due to the initialization of the

random population.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

162 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	0

	0.1

	0.2

	0.3

	0.4

	0 	5 	10 	15 	20 	25 	30

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	200

hb
ls

	0

	0.5

	1

	1.5

	2

	2.5

	30 	35 	40 	45 	50 	55 	60

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	400

hb
ls

	0

	5

	10

	15

	60 	65 	70 	75 	80 	85 	90

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	600

hb
ls

	5

	10

	15

	20

	25

	90 	95 	100 	105 	110 	115 	120

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	800

hb
ls

	10

	12

	14

	16

	18

	20

	22

	120 	125 	130 	135 	140 	145 	150

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1000

hb
ls

	18

	18.5

	19

	19.5

	20

	20.5

	21

	21.5

	22

	150 	155 	160 	165 	170 	175 	180

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1200

hb
ls

	20

	20.2

	20.4

	20.6

	20.8

	21

	21.2

	21.4

	21.6

	180 	185 	190 	195 	200 	205 	210

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1400

hb
ls

	20

	20.5

	21

	21.5

	22

	22.5

	23

	210 	215 	220 	225 	230 	235 	240

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1600

hb
ls

Figure 5.5: Total time spent by LS and HB models (continued on the next page).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

163 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	20

	20.5

	21

	21.5

	22

	22.5

	23

	23.5

	24

	240 	245 	250 	255 	260 	265 	270 	275

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	1800

hb
ls

	20

	21

	22

	23

	24

	25

	270 	275 	280 	285 	290 	295 	300

Av
er
ag

e	
m
in
im

um
	b

Instance	id

size	=	2000

hb
ls

Figure 5.5: Total time spent by LS and HB models (continued from previous
page).

	0

	5

	10

	15

	20

	25

	0 	500 	1000 	1500 	2000

To
ta
l	t
im

e	
(m

in
)

Number	of	pairs	(n)

hb
ls

Figure 5.6: Total time spent by the LS and the HB models.

5.5.2 Robustness of RSM vs RSR

In this section, our objective is to investigate the robustness of the RSM and the

RSR instances that have some similarities in between. We use different models

(the LS or HB) to solve the datasets depending on their structures. In order to

perform our experiments, we created the following three datasets that consist

of both RSM and RSR instances:

RANDOM: Instances that have randomly created preference lists.

SAME: Instances that have their preference lists created from the same

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

164 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

master list.

MOD: Instances whose preference lists generated by a combination of

techniques used for RANDOM and SAME.

In the following sections, we first describe how each dataset is created. We

discuss in detail the techniques used to generate the instances for each prob-

lem. Subsequently, we perform tests and present results by also providing a

comparison when applicable.

5.5.2.1 Experiments on RANDOM

Description. This dataset consists of 30 randomly created SM and 30 ran-

domly created SR instances for each size n ∈ {100 × k | k ∈ {1, . . . , 10}}. Note

that, n denotes the number of men or women in an SM instance and each SR

instance contains 2×n people. Noticing that both problems contain n pairs, we

refer to n as the number of pairs when presenting the results. We ensure that

all the SR instances in the dataset have at least two stable matchings. We set

the time limit as limtime = 20 mins.

Results. In this section, we present a comparison of robustness values of RSM

and RSR instances in the dataset RANDOM. In these experiments, we use the LS

model for the RSM instances as the LS performs well in small scaled random

RSM instances as shown in Figure 4.4 (Page 127). We also use LS for the RSR

as the random SR instances contain only a small number of stable matchings

and the LS for RSR works well for small instances(discussed in Section 5.5.1).

Note that, the “small” here stands for the average number of non-fixed pairs,

not the total number of the pairs that are involved in the problem instance.

Table 5.10 and Table 5.11 present a summary of the robustness of the random

RSM and the RSR instances. The columns report in order for each size the

average value of: the total number of pairs in the instance (n), the number of

rotations in the rotation poset (RSM) or the reduced rotation poset (RSR) (|V|),
the number of stable matchings found during the search (sm), the number of

non-fixed pairs (np), the value of b of the best solution (b), the ratio b
np

(ratio),

and the time spent until finding the best solution in seconds (tbest).

None of the instances in RANDOM exceeds the time limit limtime. A solution to

the random RSR instances can be found quickly due to the huge number of the

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

165 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

Table 5.10: Results on uniformly random instances for RSM.

n |V| sm np b ratio tbest
100 22.02 47.9 75.12 48.27 0.64 0.02
200 41.59 116.9 166.19 115.34 0.69 0.10
300 60.22 182.4 263.94 193.08 0.73 0.37
400 74.51 244.1 356.58 265.98 0.74 0.77
500 91.47 322.5 456.00 350.16 0.76 2.18
600 103.82 394.9 551.10 425.51 0.77 3.67
700 117.08 449.6 646.69 505.61 0.78 5.89
800 131.81 527.6 749.98 595.64 0.79 9.09
900 146.34 585.5 848.32 679.82 0.80 14.60

1000 156.00 632.4 943.23 758.82 0.80 21.16

Table 5.11: Results on uniformly random instances for RSR.

n |V| sm np b ratio tbest
100 3.91 3.78 17.91 5.31 0.3 0.003
200 3.87 3.94 26.76 8.52 0.32 0.003
300 4.36 4.56 35.53 11.22 0.32 0.017
400 4.71 5.92 37.64 10.93 0.29 0.048
500 4.29 4.81 37.62 11.70 0.31 0.066
600 4.16 4.48 42.44 14.47 0.34 0.130
700 4.58 5.50 48.71 16.02 0.33 0.312
800 4.93 5.99 55.02 17.39 0.32 0.498
900 4.82 7.07 57.64 18.50 0.32 0.662
1000 4.60 5.19 55.16 18.36 0.33 0.557

fixed pairs compared to the random RSM instances of similar size. However, as

observed in Figure 5.7, the general procedure for RSR takes longer as the RSR

operations are more costly.

Additionally, observe from the tables that the random RSM instances contain

many more stable matchings than the random RSR instances of similar sizes.

Recall that, the value of sm denotes only the number of a subset of the stable

matchings found during the search. However, we can confirm the RSR instances

not containing many stable matchings by looking at the number of rotations in

their rotation posets. Note that, for the RSR instances, when 1000 pairs are

included, the corresponding rotation posets, on the average, contain |V| ≈ 5
rotations.

This is mainly caused by the large numbers of fixed-pairs in the random RSR

instances. For instance, the average number of non-fixed pairs in the RSM

instances of size 100 is np = 75.12. However, we observe in the RSR instances

of even 1000 pairs that there are only 55.16 non-fixed pairs on the average,

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

166 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	0

	50

	100

	150

	200

	250

	300

	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

To
ta
l	t
im

e	
(s
ec
)

Number	of	pairs	(n)

rsm
rsr

Figure 5.7: Total time spent during search for the RSM and RSR instances in
RANDOM.

which is less than the smallest sized RSM instances that we tested. Note that,

we measure the robustness ratio over the non-fixed pairs of the instances. It is

desirable to obtain a smaller value for the ratio to indicate a better robustness

for the instance. Because a smaller ratio indicates that a smaller proportion of

the people that have alternative partners need to change their partners for a

repair. Observe that, the ratio of the RSR instances is lower when compared to

RSM. The ratio shows that the breakage of the pairs in the RSR instances are

less costly to be repaired. Thus, we conclude that purely random RSR instances

require a smaller proportion of the people to change their partners in the case

of a breakage, when compared to the RSM.

5.5.2.2 Experiments on MANY

We discussed in Section 4.7.2 (Page 132) a dataset for SM instances called

MANY that contains many number of stable matchings in each instance.

Recall that, each SM instance has a corresponding SR instance. Hence, it is

correct to state that each SM instance in MANY has a corresponding SR instance

that contains the exact same stable matchings with the exact same robustness

values. Therefore, we know that by converting the SM instances in MANY into

their corresponding SR instances, we obtain SR instances that contain many

number of stable matchings.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

167 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

We did not repeat the robustness tests on the corresponding SR instances as

the search models proposed for the RSR is much slower when compared to

the RSM instances of similar sizes. The operations for RSR is already more

costly as discussed in Section 5.3.3. Additionally, the rotation posets of the

corresponding SR instances in MANY are twice as big than the SM ones. This

problem results in many timed-out instances when performing the experiments

on RSR. However, we know that the findings of the RSM on MANY apply to

the corresponding RSR instances. We mention about this conversion, because

any interested reader can use the SM instances in MANY to create SR instances

that contain many stable matchings. In addition to the existence of this family,

we also know that the RSM instances in MANY are very robust. Due to the

correspondence, the robustness results are lifted to the RSR.

5.5.2.3 Experiments on SAME

Description. In this section, we are mainly interested in answering the fol-

lowing two questions: “How are the instances affected by small modifications

on the preference lists?” and “What is the effect of slightly modifying the RSM

or the RSR instances on their robustness values?”. In this section, we create a

dataset celled SAME to answer these questions.

Using the same master preference list to create HR, SM and SR instances has

already been studied by different researchers as we briefly discuss below. The

main idea is to use one (or two) master list(s) to derive the people’s preference

lists. Irving et. al. study variants of the SM including ties and incomplete

lists, using master lists [IMS08]. Escamocher and O’Sullivan use master lists in

3D Stable Marriage problem to generate a set of instances and show the exact

number of stable matchings in those instances [EO18]. Additionally, O’Malley

studies the HR problem when the preferences are derived from a single master

list [O’M07]. He also studies SR using master lists when the problem has ties

and incomplete lists.

We define below our procedure for how to use master lists to generate SAME.

For the SM instances, we first create a master list denoted by lm for men, and a

different master list for women denoted by lw. These lists contain all members

of the opposite sex in arbitrary order. Then, we make use of a probability value

pr ∈ [0, 1] to control the alteration of the master list. The process starts with

generating the preference lists for each man mi by copying each person in lm

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

168 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

into the list of mi. For the first person’s preference list, we do not change the

master list. For the remaining n − 1 lists, we change the lists as follows: For

each woman w ∈ lm, we first generate a random number rn ∈ [0, 1]. If rn < pr,

then we swap w with another randomly selected woman from the master list

lm. However, we do not make this selection completely random. If swapping a

pair results in the agents being placed in their original positions in the master

list, we do not perform the swap. The same procedure is repeated for the lists

created from the master list lw for women.

Example. Table 5.12 presents three different SM instances of size 6 generated

from the same master preference list by using a probability value pr = 0.2.

Note that, the master preference list lm = [1, 6, 2, 5, 4, 3] for the men and lw =
[5, 3, 4, 6, 1, 2] for the women.

In order to create the SR instances in this dataset, we repeat the same pro-

cedure. We generate only one master list l that includes every person of the

instance. Then, we copy the master list into each person’s preference list by

removing themselves from their list. We then swap the positions of some peo-

ple in each list as defined for the SM case. Table 5.13 presents six different SR

instances, consisting of 6 people in total, generated using two different master

preference lists. The probability value is set as pr = 0.2. The three instances

in the first row are obtained by using the same random master preference list

Table 5.12: Three different SM instances of size 6, created from the same master
preference list, where the master list for men lm = [1, 6, 2, 5, 4, 3] and lw =
[5, 3, 4, 6, 1, 2] for women.

Instance-1 Instance-2 Instance-3
mi Preference list of mi Preference list of mi Preference list of mi

1 1 6 2 5 4 3 1 6 2 5 4 3 1 6 2 5 4 3
2 1 5 2 6 4 3 5 6 2 3 1 4 1 2 6 5 4 3
3 1 2 6 5 4 3 5 6 2 1 4 3 1 6 3 5 2 4
4 1 4 2 5 6 3 6 1 4 2 5 3 2 6 1 5 4 3
5 1 6 2 5 4 3 1 6 2 5 4 3 1 5 6 4 2 3
6 6 1 5 4 2 3 1 6 2 5 4 3 1 6 2 5 4 3
wj Preference list of wi Preference list of wi Preference list of wi
1 5 3 4 6 1 2 5 3 4 6 1 2 5 3 4 6 1 2
2 1 3 2 6 5 4 2 3 4 6 1 5 2 3 4 1 5 6
3 6 3 4 5 2 1 5 3 2 1 6 4 6 3 4 5 1 2
4 5 3 4 6 1 2 5 3 4 6 1 2 3 6 4 5 1 2
5 5 2 4 3 1 6 5 3 4 6 2 1 5 3 4 6 1 2
6 5 3 4 6 1 2 1 3 5 6 4 2 5 3 4 1 2 6

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

169 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

Table 5.13: Six different SR instances created from two different master lists
l1, l2, where l1 = [1, 6, 2, 5, 4, 3] and l2 = [6, 2, 5, 1, 3, 4].

Instance-1 Instance-2 Instance-3
l1 = [1, 6, 2, 5, 4, 3]

pi Preference list of pi Preference list of pi Preference list of pi
1 6 3 5 2 4 4 5 2 3 6 6 2 5 4 3
2 6 5 1 4 3 4 6 5 1 3 1 6 5 4 3
3 1 6 2 5 4 2 6 1 5 4 1 2 6 5 4
4 6 5 2 3 1 1 3 2 5 6 1 6 2 3 5
5 6 1 2 4 3 1 6 2 4 3 6 3 2 4 1
6 1 5 2 4 3 1 2 4 5 3 1 2 5 4 3

l2 = [6, 2, 5, 1, 3, 4]
pj Preference list of pi Preference list of pi Preference list of pi
1 6 2 5 3 4 6 2 4 3 5 2 5 6 3 4
2 1 5 6 3 4 4 1 5 3 6 6 5 1 3 4
3 6 2 4 1 5 6 2 1 4 5 6 1 5 4 2
4 5 2 6 1 3 5 6 2 1 3 6 2 5 1 3
5 6 1 2 3 4 6 2 1 3 4 6 1 2 3 4
6 2 4 3 1 5 5 2 3 1 4 2 5 1 3 4

l1 = [1, 6, 2, 5, 4, 3]. The instances in the second row are generated from the

same master list l2 = [6, 2, 5, 1, 3, 4].

To sum up, SAME contains 30 instances from each size n ∈ {100, 200, 300, 400}
(n denotes the number of pairs). The probability values are pr ∈ {0.1× k | k ∈
{1, . . . , 9}}. In our dataset, the 30 instances for each size is obtained by using

5 different master lists and creating 6 different instances from each master list.

This is to guarantee using instances that are created from the same master list,

but also to use different master lists for diversity. In total, we have 30 instances

for each (size, probability) pair for each problem, i.e. the RSM and the RSR.

Results. For these tests, we used the LS model for both RSM and RSR. Be-

cause, the proposed LS models perform well for small instances for both prob-

lems. See Table 4.5 (Page 131) for the RSM and Table 5.9 (Page 160) for the

RSR.

Recall that, we use master lists to obtain RSM and RSR instances in SAME. The

modifications on the master lists are controlled by a probability value pr ∈ [0, 1].
Figure 5.8 shows how the average minimum b changes depending on the value

of pr for RSM. We infer from these results that when the lists are very similar

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

170 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	0

	50

	100

	150

	200

	250

	300

	350

	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9

M
in
im
um

	a
ve
ra
ge
	b

Probability	(pr)

N=100
N=200
N=300
N=400

Figure 5.8: Robustness of the SM instances created from the same master list.

	0

	50

	100

	150

	200

	250

	300

	350

	400

	450

	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9

Nu
m
be
r	o

f	n
on
-fi
xe
d	
m
en

Probability	(pr)

N=100
N=200
N=300
N=400

Figure 5.9: The relation between the number of non-fixed men and the proba-
bility of modification for the SM instances created from the same master list.

(i.e. pr < 0.2), the values of b for the instances are likely to be low, i.e. the

repairs costs for breakages are low.

Figure 5.9 shows the relation between the probability pr and the number of

non-fixed men in the instances. We can observe from this figure that if all the

men/women have very similar preference lists (i.e. pr < 0.2), there are more

fixed pairs when compared to more random lists. Therefore, we can infer that

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

171 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	0.55

	0.6

	0.65

	0.7

	0.75

	0.8

	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9

ra
tio

	(b
/n
p)

Probability	(pr)

N=100
N=200
N=300
N=400

Figure 5.10: Relation between the ratio (b/np) and the probability (pr) of the
SM instances created from the same master list.

the robustness values on these instances are low in Figure 5.8, because there

does not exist many alternative partners. An alternative analysis is to look at

the ratio between the average minimum b values and the number of non-fixed

pairs (np). Figure 5.10 plots how the ratio changes with respect to the value

of the alteration probability. Note that, a smaller value of the ratio is desirable,

as it means that the breakages require less repair cost. This plot shows that the

probability does not have a significant effect on the ratio. However, when there

are more people involved, the repair costs increase.

The results of the RSR using master lists are not interesting as one may expect.

Creating random SR instances and modifying them to obtain other instances

make SR very brittle. We found out that out of every 6 instances created from

the same master list, on the average 3.7 of them are either unsolvable or has a

single solution. This behaviour makes it almost impossible to observe the effect

of probability on robustness. Therefore, we do not discuss in detail the results

of using same master lists for robustness in random RSR instances.

5.5.2.4 Experiments on MOD

Description. The results obtained from the experiments on SAME bring along

the question: “How brittle are the RSR instances against small modifications?”.

In order to answer this question, we generated a dataset called MOD. In this

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

172 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

dataset, we do not work with uniformly random SR instances as they do not

contain many stable matchings. Our aim is to observe what happens if we

apply small modifications on the SR instances that are rich in stable matchings.

Our results on the dataset RANDOM in Section 5.5.2.1 show that the random

SM instances have many more stable matchings when compared to the random

SR instances of similar size. Hence, we make use of random SM instances. The

main idea for MOD is to create some random SM instances and then convert

them to their corresponding SR instances. By this conversion, we know that

the instances in those two sets (i.e. SM instances vs. SR instances) have the

exact same stable matchings, and hence, the exact same robustness values. By

making small modifications on the corresponding SM and SR instances, we can

observe how brittle the robustness values for the RSM and the RSR are.

In this dataset, we first create a random SM dataset for each size n ∈ {100 ×
k | k ∈ {1, . . . , 10}} by generating 30 instances from each size. Let sm_random
denote this dataset. Then, let sm_mod consist of slightly modified versions of

the instances in sm_random. Moreover, let sr_conv denote the corresponding SR

instances of the SM instances in sm_random. Subsequently, let sr_mod consist

of modified versions of the SR instances in sr_conv.

The modification step is similar to the modification process described in SAME.

Let us first define a master instance in a similar way to a master list. A master

instance denotes an instance and consists of a set of preference lists. In this

dataset, we use a probability value equal to 0.1 to perform swaps as modification

of the lists. The set sm_mod is created by using the instances in sm_random
as master instances. For each instance I in sm_random, the procedure is to

copy each preference list in I to the newly generated instance I ’ in sm_mod.

Then, for each person in each preference list, using a random probability value

pr ∈ [0, 1], if pr < 0.1 we perform a swap with another person in the same list.

We follow the same procedure to generate sr_mod from sr_conv.

Let us illustrate some instances from each dataset. Recall the SM-SR conversion

by the example presented in Table 2.2 (Page 46). In this table, we are given

an SM instance Ism of size 3, and its corresponding SR instance Isr of size 6.

In Table 5.14, we use these two previously shown instances, and also show the

modified versions of them. In Table 5.14, we use Ism ∈ sm_random to denote

the original instance, and Ism−m ∈ sm_mod to denote its modified version.

Similarly, we denote the instance converted from Ism by Isr ∈ sr_conv. Finally,

we denote by Isr−m ∈ sr_mod, the modified version of Isr.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

173 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

Table 5.14: An SM instance and the three other instances generated from it
given as an overview of the instances in MOD.

Ism Ism−m Isr Isr−m
mi Preference list of mi, wi pi Preference list of pi
m1 2 3 1 1 3 2 p1 4 6 5 2 3 4 6 5 3 2
m2 3 1 2 3 1 2 p2 6 4 5 1 3 6 4 5 1 3
m3 2 3 1 2 1 3 p3 5 6 4 1 2 5 6 4 2 1
w1 2 3 1 2 3 1 p4 2 3 1 5 6 2 3 1 5 6
w2 1 2 3 2 1 3 p5 1 2 3 4 6 1 2 6 4 3
w3 1 3 2 1 3 2 p6 1 3 2 4 5 5 3 2 4 1

Note that, an SM instance of size n corresponds to an SR instance of size 2 ×
n, where both instances have n pairs. Also observe that, the robustness and

number of fixed-pairs in both sm_random and sr_conv are equal. Additionally,

the reduced rotation posets of the instances in sr_conv are double the size of the

rotation posets of their corresponding instances in sm_random. In summary, the

dataset MOD contains a number of instances as follows:

• sm_random: 30 SM instances for each size n ∈ {100× k | k ∈ {1, . . . , 10}},

• sm_mod: 30 SM instances for each size n ∈ {100× k | k ∈ {1, . . . , 10}},

• sr_conv: 30 SR instances for each size n ∈ {200× k | k ∈ {1, . . . , 10}},

• sr_mod: 30 SR instances for each size n ∈ {200× k | k ∈ {1, . . . , 10}}.

Results. We know that LS performs well on small instances for the RSM in-

stancs, when size < 1000 (see Table 4.5, Page 131). Although LS model per-

forms well for the small RSR instances, HB model finds better results (i.e. smal-

ler values for b) when n > 1200 (see Table 5.9, Page 160). Therefore, we use

the LS model to perform the experiments on the RSM instances, and the HB

model for the RSR instances in this dataset.

Recall that, MOD is created by first using a number of SM instances, and then

converting them to SR instances. The conversion guarantees that the two corre-

sponding SM and SR instances contain the exact same stable matchings. Later,

we slightly modify each master SM and SR instance.

In Table 5.15 the average number of the non-fixed pairs for each size n for each

dataset is presented. The results indicate that RSR instances that are rich in

stable matchings are not as brittle as the purely random ones. We can observe

that small modifications on the instances do not lead to major changes.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

174 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

Table 5.15: An overview of the instances in MOD with respect to the average
number of non-fixed pairs in each set.

n sm-random sm-mod sr-conv sr-mod
100 76.80 76.67 76.80 79.87
200 166.37 166.17 166.37 156.87
300 264.43 263.57 264.43 276.20
400 359.4 359.73 359.4 357.17
500 454.87 454.07 454.87 446.27
600 547.67 547.10 547.67 549.37
700 651.00 650.60 651.00 656.33
800 747.83 747.33 747.83 739.53
900 852.97 853.70 852.97 853.60

1000 948.03 947.30 948.03 927.63

Although the RSR instances seem to be affected more by the modification, the

effect of more modification is also a factor here. In other words, we should

also consider the fact that, for the RSR instances, for each preference list, the

chances of swapping two pairs is 2 times greater than the modification of a list in

RSM. Because, the preference lists in RSR are nearly double the size of the ones

in RSM. And we consider applying a swap for each person in the preference list.

Hence, the RSR instances can be modified slightly more.

Figure 5.11 illustrates the relation between the number of pairs and the robust-

ness (i.e. the average minimum b values) of the original RSM (sm_random),

RSR (sr_conv), and their modified instances (sm_mod and sr_mod). First out-

come of this figure is that, the HB model for RSR performs worse than the LS

model on RSM for larger instances, where n > 600. Because, the robustness

values for sm_random and sr_conv must be equal as the instances in sr_conv are

the corresponding SR instances of sm_random. However, the observation is that

sm-random-ls has lower values than sr-conv-hb for sizes n > 600. Hence, we can

say that for the RSR instances that have n ≤ 600 pairs, and that are rich in sta-

ble matchings, the HB model performs very well. The reader should note that,

we can not verify that the LS model for the RSM produces the optimal solutions

as our CP model cannot be used for the large instances. However, under the

assumption that LS performs well on the RSM instances, we can say that the

HB model for the RSR performs well for the instances that have n ≤ 600 pairs.

Second observation on this dataset is that, the RSR instances that contain many

stable matchings are not as brittle as the ones observed in SAME. The robust-

ness values we obtain from sm_mod is nearly the same with sm_random. We

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

175 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.5 Experiments

	0

	100

	200

	300

	400

	500

	600

	700

	800

	900

	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

Av
er
ag
e	
m
in
im
um

	b

Number	of	pairs	(n)

sr-conv-hb
sr-mod-hb

sm-random-ls
sm-mod-ls

Figure 5.11: Robustness of the instances in MOD.

	0

	5

	10

	15

	20

	25

	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

To
ta
l	t
im

e	
(m

in
)

Number	of	pairs	(n)

sr-conv-hb
sr-mod-hb

sm-random-ls
sm-mod-ls

Figure 5.12: The average total time of the instances in MOD.

observe some difference between the robustness values found for larger sizes.

For instance, for n = 1000, sm_mod has on the average ≈ 947 non-fixed pairs.

On the other hand, sr_mod has on the average ≈ 928 non-fixed pairs (see Ta-

ble 5.15). The expectation is to see the robustness value of sr_mod below the

sm_mod for n = 1000. However, we observe a larger value. We observe that for

smaller sizes, all four datasets produce nearly the same results.

In order to understand the poor performance of the HB model on the larger

RSR instances, we look at the times spent by the models. In Figure 5.12, we

observe that HB model is terminated by the time limit for sizes n > 600. Note

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

176 Begüm Genç

5. ROBUST STABLE ROOMMATES 5.6 Chapter Summary

that, this is an expected result from Figure 5.5 (Page 163). This termination

also explains the poor performance of the HB for the larger sizes. On the other

hand, the LS method on the RSM instances runs without time-out.

The main outcomes of the experiments on MOD can be summarized as:

• The RSM and the RSR instances that contain similar number of pairs are

equally brittle.

• The HB model proposed for the RSR instances finds b values as good as

the LS model proposed for the RSM instances of same size.

• Using the HB model for the RSR instances that have n > 600 pairs is not

practical due to the time-limit.

5.6 Chapter Summary

In this section, we extended the idea of using (a, b)-supermatches as a no-

tion of robustness to the Stable Roommates problem. We discussed in detail

the structural similarities and differences between the rotation posets of Sta-

ble Marriage problem and Stable Roommates problem. Then, we proposed a

polynomial-time procedure using the reduced rotation poset of the underlying

SR instance for deciding if a given stable matching is a (1, b)-supermatch. Fi-

nally, we adapted a local search algorithm and a hybrid algorithm that uses the

polynomial-time procedure to find a (1, b)-supermatch to a given SR instance.

Our findings on the comparison of the two models indicate that the hybrid algo-

rithm for the RSR performs well on the large instances. However, this is mainly

achieved by taking advantage of the initialization of a random population. On

a comparison of the RSM and the RSR, we identified a family of SR instances

that are rich in stable matchings and very robust (i.e. when a = 1, they have

very low b values). We observed that the uniformly random RSR instances do

not contain many stable matchings, but the breakages on their non-fixed pairs

can be repaired at a relatively low cost. The RSR instances created from the

same master lists are very brittle against changes. On the other hand, the RSM

instances are very consistent for small modifications. However, if the RSR in-

stances that contain many stable matchings are not as brittle, and in fact, they

have the same consistency with the RSM instances. A final, important remark is

that we observed that the HB model proposed for the RSR is able to find good

solutions for the RSR instances that have n ≤ 600 pairs.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

177 Begüm Genç

Chapter 6

Conclusion and Future Work

6.1 Thesis Defence

Thesis. Matching problems are widely-studied computational problems that re-
quire assigning agents to one another under different optimality criteria. The sta-
bility criterion in matching problems is well defined and dominantly used. How-
ever, imposing only the stability constraint on matchings is not enough on its
own when the dynamism of the real world due to unexpected events is considered.
Therefore, the need to consider a notion of robustness in addition to the existing
stability constraint emerges. We claim that achieving both stability and robustness
is possible. We propose a novel concept of robustness that has not been consid-
ered in this field before. By defining robust stable matchings we allow systems to
handle unexpected events while making a bounded number of changes, after the
matchings have been constructed.

Defence. We proposed a novel robustness notion for stable matching problems

to tackle the problem of dynamism of the real world due to unexpected events.

Our proposed notion is defined in terms of matchings that are stable and we

introduced, in addition, a degree of robustness. We named any such matching

an (a, b)-supermatch.

In Chapter 3 we formally defined our robustness notion on a famous matching

problem called the Stable Marriage problem. Informally, an (a, b)-supermatch

denotes a matching that is stable such that if any of the a pairs in the matching

break their assignments, another stable matching is guaranteed to be found by

changing the partners of those a pairs and also the partners of at most b other

178

6. CONCLUSION AND FUTURE WORK 6.1 Thesis Defence

pairs. Subsequently, we defined the problem of finding an (a, b)-supermatch

for any given Stable Marriage instance as the Robust Stable Marriage prob-

lem. Considering this notion, the most robust solution of a Stable Marriage

instance is a (1, b)-supermatch that has the minimum b value among all the

(1, b)-supermatches of the underlying instance.

Next, we studied the complexity of the proposed problem and showed that the

problem of finding the most robust stable matching is NP-hard in Chapter 3.

In order to prove it, we first worked on a restricted case, where a = 1, b = 1.

We proposed a special case of SAT that is NP-complete by using Schaefer’s

Dichotomy theorem. We also identified a specific family of instances of SM.

Subsequently, we showed the equivalence between the SAT formula and the

case of deciding if there exists a (1, 1)-supermatch to an RSM instance from

the specific family. Then, we generalized the NP-completeness result to the

(1, b) case. In order to prove theNP-completeness of the (1, b) case, we defined

a procedure as polynomial-time witness for (1, b)-supermatches in Chapter 4.

Given a stable matching, this procedure finds in polynomial-time the minimum

number of pairs that are required to be assigned new partners in case of one

pair’s breakage. We defined this procedure based on the structural properties

of the rotation posets of the RSM instances.

We developed a CP model to solve RSM for finding a (1, b)-supermatch that

minimizes the value of b. After proving that the RSM is difficult to solve, we

developed three other models that are meta-heuristic approaches. We used the

previously defined polynomial-time procedure as the basis of all four models.

The CP model is a complete method that guarantees to find the most robust

solution if given enough time. We compared the performances of the meta-

heuristic models with the CP model on randomly generated RSM instances to

see how successful the meta-heuristic models are. We observed that the local

search and a genetic-local search hybrid have the best performance. Then, we

extended our experiments to a family of instances of RSM that are rich in stable

matchings.

In Chapter 5, we applied our novel concept of robustness combined with the

stability into another matching problem, namely the Stable Roommates prob-

lem. We named the robust version as the Robust Stable Roommates problem.

We performed similar steps as we did for the RSM case: we proved that the

RSR is NP-hard, we defined a polynomial-time witness for the verification of

a (1, b)-supermatch, and also developed some meta-heuristic models based on

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

179 Begüm Genç

6. CONCLUSION AND FUTURE WORK 6.2 Future Work

the polynomial-time procedure. We also tailored the two meta-heuristic models

that are found to be performing well on the RSM to the RSR. We analysed the

(1, b)-supermatches further of a number of different datasets for both the RSM

and the RSR.

The overall results showed that introducing robustness combined with stability

to the matching problems need not be an easy problem. Different models can

be developed to find robust solutions. Our findings show us that some stable

matchings are more robust than the others. Therefore, one can significantly

benefit from using the most robust stable matching. The main benefit of us-

ing the most robust matching is the guarantee that a stable matching can be

repaired with a bounded cost if a given number of pairs break. Additionally,

we showed the robustness notion is not only useful for the Stable Marriage

problem, but it can be applied to different matching problems.

6.2 Future Work

We identify some future research directions and also discuss some questions

that arise from the notion of (a, b)-supermatches. As the concept is new in

the context of the matching problems, there are many interesting different

directions that can be identified. We begin in Section 6.2.1 with identifying

some directions for the theoretical aspect of the problem. Subsequently, in

Section 6.2.2, we discuss how the models can be improved. We conclude this

dissertation by identifying some applications, where the RSM and the RSR can

be useful in Section 6.2.3.

6.2.1 Complexity

The theoretical results on the complexity of Robust Stable Marriage problem

are obtained by breaking the (a, b)-supermatches into sub-cases as presented in

Table 6.1. For a different illustration see Figure 3.7 (Page 91). In this table, we

marked the results that we know by 3or 7 depending on if the problem belongs

to that class or not. There are some problems or cases that we do not know

their complexity. We marked those problems with a ?.

We proved in this dissertation that the decision problems for both (1, 1)-super-

matches and the (1, b)-supermatches are NP-complete. However, we cannot

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

180 Begüm Genç

6. CONCLUSION AND FUTURE WORK 6.2 Future Work

Table 6.1: The overall complexity results.

Problem NP-hard NP-complete P
(1, 1)-supermatch (π11) 3 3 7

(1, 1)-supermatch from family Fw(πw11) 7 7 3

(1, b)-supermatch (π1b) 3 3 7

(a, b)-supermatch (πab) 3 ? 7

(a, 0)-supermatch (πa0) ? ? ?
(a, 1)-supermatch (πa1) 3 ? 7

generalize the NP-completeness result to the case of (a, b)-supermatches, as

there is no known polynomial-time witness for the general case as of now.

There is recent study on Recoverable Team Formation problem (RTF) [DSOI18].

Demirović et al. studied a very similar notion to our robustness concept. They

introduce recoverability into the Team Formation problem. The Team Formation
Problem (TF) is defined as given a set of agents, selecting a team of agents with

minimum cost such that a certain set of skills is covered. They introduce the

recoverability to this problem as an additional cost to cope with the unexpected

events after the teams have been formed. Their notion of recoverability is very

similar to our notion of robustness for the matching problems. They focus on

the case of finding another team if any of the agents become unavailable after

a team has been formed. In a sense, they could use an (a, b) model notion

in which a represents the number of agents that become unavailable, and b

represents the repair cost. They show in their work that RTF is ΣP
3 -complete.

Considering the similarities between the RTF and the RSM, we have a strong

belief that the general case of finding (a, b)-supermatches is also ΣP
3 -complete.

Therefore, we believe it is challenging but an interesting direction to further

study the complexity of the general case of finding (a, b)-supermatches.

In our work, we showed that the (2, 0)-supermatches need not exist for the

Robust Stable Marriage problem. We discussed the generalization of this case

to the (a, 0)-supermatches, but left the proof of their existence or non-existence

as an open problem. It serves an interesting direction to study the complexity

of this, especially for different types of matching problems.

We also leave open the question of how to find (a, 1)-supermatches, which con-

siders the case of guaranteeing a stable matching at a repair cost of 1 in case

any set of a pairs lose their assignments. This case is NP-hard as it is a more

general case of the (1, 1)-supermatches. However, (a, 1)-supermatches suffer

from the break-up of many number of different combinations of men.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

181 Begüm Genç

6. CONCLUSION AND FUTURE WORK 6.2 Future Work

We believe that studying the (a, 1)-supermatches is an easier step that should be

tackled before the complexity of the (a, b)-supermatches. Because, studying the

combinations may reveal more structural properties about the rotation posets,

and also give a light to (a, 0) and (a, b)-supermatches. Additionally, mining

different family of instances that can be solved in polynomial-time can also be

interesting.

6.2.2 Improvements on the Current Models

We have provided one exact method for solving the optimization problem for

the RSM. Additionally, we provided five meta-heuristic models in total, where

three of them are proposed for the RSM and two of them are tailored from

the existing models for the RSR. In order to show the complexity of the (1, 1)-
supermatches, we also provided a SAT formulation and also an independent set

formulation of the problem for the RSM.

We performed our experiments presented in this thesis by using the Java pro-

gramming language. As an improvement, the code can be prepared more ef-

ficiently and the total time spent for finding a solution can be reduced. In

addition, we implemented our CP model using the Choco constraint library.

Although the solver Choco 4 is a powerful one, there are faster solvers avail-

able [SFS+14]. Additionally, our model can be improved by applying some

search strategies such as the symmetry breaking methods in order to reduce the

search [GPP06].

Our meta-heuristic models can be implemented by using strategies. For in-

stance, different crossover and mutation operations can be implemented to help

the GA tackle the problem of getting stuck at the local minima. This may also

help the hybrid model to perform better. Note that, all our work is based on

the rotations and the rotation posets. Other models that are not based on the

rotations can be interesting to study.

It would be interesting to model the problem by using other methods such as

integer programming, or different meta-heuristic approaches. Moreover, the in-

dependent set formulation can lead to an elegant NP-hardness proof for RSM.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

182 Begüm Genç

6. CONCLUSION AND FUTURE WORK 6.2 Future Work

6.2.3 Variations and Applications

In this dissertation, we studied two variants of the matching problems: Stable

Marriage and Stable Roommates problems due to their structural resemblance.

Note that, the SR is a generalization of the SM. We have a strong belief that our

polynomial time verification procedure can be adapted to the matching prob-

lems that have similar structural properties by only a applying minor modifica-

tions on the procedure. Our robustness notion can be applied to many different

matching problems. We identify below some problems that we think are most

useful to apply the robustness concept.

One of the examples that the (a, b)-supermatches notion could be important is

the Kidney-Exchange problem [RSÜ04]. In this problem setting, there exists

a set of patients that have kidney failure, and another set of donors. Unfortu-

nately, not each donor is compatible with each patient. If any unexpected events

occur after the assignment process such as one of the donors refuse to donate

his kidney to his assigned patient for some reason, the assignment model can be

repaired by changing some of the assignments. Considering that the time can

be critical within the kidney-exchange framework to assess a new assignment,

a robust initial solution would be desirable.

Another problem we identify as an interesting application is the paper-reviewer

assignments. In some conferences, the organization receives many paper sub-

missions, but they have a limited number of reviewers. It is desirable to find

assignments between the papers and the reviewers in a way that all the re-

viewers get papers that are most relevant to their expertise. Additionally, all

the papers must be reviewed by a number of reviewers, while making sure the

balance between the reviewers is fair. However, this system can have many un-

expected events. For the sake of an example, a reviewer may notice a conflict of

interest with one of the papers that is assigned to him/her. Ideally, the reviewer

should immediately express the conflict after noticing it. An alternative prob-

lem is that, the reviewer may become unavailable at some point. Therefore, an

assignment that does not require any additional changes (b = 0) or minimum

number of additional changes is essential.

An application especially for the two problems identified above, the RSM, or the

RSR could be interesting to see the practicality of the solutions from a user point

of view. In addition to studying these problem variants, applications of the SM

and SR could be considered. For instance, the basic wireless resource manage-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

183 Begüm Genç

6. CONCLUSION AND FUTURE WORK 6.2 Future Work

ment problem can be modelled as a matching problem, where the agents are

resources and users [GSB+15]. The robustness concept in this setting would

be beneficial as a resource can unexpectedly become unavailable at any time

during the execution. Additionally, an SR model is used to model P2P net-

works [LMV+07]. If one has data available related to these applications, an

evaluation of them to get an insight on their robustness values could be per-

formed by using the models provided in this dissertation. It would be insightful

to see the robustness of real instances.

It is also important to note that, we only studied the basic version of the SM and

the SR. Our studied version covers the case of agents having incomplete lists.

However, the problem can become more interesting when ties are allowed i.e.,

to allow people express their preferences by allowing to express indifference

between some agents.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

184 Begüm Genç

6. CONCLUSION AND FUTURE WORK 6.2 Future Work

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

185 Begüm Genç

Appendix A

CP Model

Below is an example of the CP model presented in Section 4.3 (Page 105), for

the Stable Marriage instance provided in Table 2.1 (Page 38) as an example.

Find below the full CP model of this SM instance. We begin with identifying the

set of stable pairs of this instance: SP = {(m0, w5), (m0, w2), (m0, w4), (m0, w1),
(m1, w4), (m1, w5), (m1, w3), (m2, w6), (m2, w0), (m3, w3), (m3, w5), (m4, w1),
(m4, w4), (m5, w0), (m5, w4), (m6, w2), (m6, w5), (m6, w0), (m6, w6)}. There ex-

ists no fixed-pairs.

The constraints ensuring if a pair is a part of the solution by checking the exis-

tence of the rotations that produce and eliminate each pair (see Constraint 4.3):

x0,5 ↔ ¬s0, x0,2 ↔ s0 ∧ ¬s2, x0,4 ↔ s2 ∧ ¬s3, x0,1 ↔ s3,
x1,4 ↔ ¬s1, x1,5 ↔ s1 ∧ ¬s5, x1,3 ↔ s5, x2,6 ↔ ¬s4,
x2,0 ↔ s4, x3,3 ↔ ¬s5, x3,5 ↔ s5, x4,1 ↔ ¬s3,
x4,4 ↔ s3, x5,0 ↔ ¬s1, x5,4 ↔ s1 ∧ ¬s2, x5,2 ↔ s2,
x6,2 ↔ ¬s0, x6,5 ↔ s0 ∧ ¬s1, x6,0 ↔ s1 ∧ ¬s4, x6,6 ↔ s4.

The constraints to make sure the solution forms a closed subset by requiring all

predecessors of each rotation (see Constraint 4.4):

s1 → s0, s2 → s1, s3 → s2, s4 → s1, s5 → s4.

The constraints that handle the case if a man is matched to his best possible

partner (see Constraint 4.5):

α0 ↔ x0,5, α1 ↔ x1,4, α2 ↔ x2,6, α3 ↔ x3,3,
α4 ↔ x4,1, α5 ↔ x5,0, α6 ↔ x6,2.

186

A. CP MODEL

The constraints to state if a pair is no longer wanted, the rotation that pro-

duces the couple must be removed from the solution closed subset (see Con-

straint 4.6):

x0,2 ↔ s0
up0, x0,4 ↔ s0

up2, x0,1 ↔ s0
up3, x1,5 ↔ s1

up1,

x1,3 ↔ s1
up5, x2,0 ↔ s2

up4, x3,5 ↔ s3
up5, x4,4 ↔ s4

up3,

x5,4 ↔ s5
up1, x5,2 ↔ s5

up2, x6,5 ↔ s6
up0, x6,0 ↔ s6

up1,

x6,6 ↔ s6
up4.

The constraints that ensure there does not exist a repair matching S∗iUP for man

mi if he is matched to his best possible partner (see Constraint 4.7):

α0 → ¬s0
up0 ∧ ¬s

0
up1 ∧ ¬s

0
up2 ∧ ¬s

0
up3 ∧ ¬s

0
up4 ∧ ¬s

0
up5,

α1 → ¬s1
up0 ∧ ¬s

1
up1 ∧ ¬s

1
up2 ∧ ¬s

1
up3 ∧ ¬s

1
up4 ∧ ¬s

1
up5,

α2 → ¬s2
up0 ∧ ¬s

2
up1 ∧ ¬s

2
up2 ∧ ¬s

2
up3 ∧ ¬s

2
up4 ∧ ¬s

2
up5,

α3 → ¬s3
up0 ∧ ¬s

3
up1 ∧ ¬s

3
up2 ∧ ¬s

3
up3 ∧ ¬s

3
up4 ∧ ¬s

3
up5,

α4 → ¬s4
up0 ∧ ¬s

4
up1 ∧ ¬s

4
up2 ∧ ¬s

4
up3 ∧ ¬s

4
up4 ∧ ¬s

4
up5,

α5 → ¬s5
up0 ∧ ¬s

5
up1 ∧ ¬s

5
up2 ∧ ¬s

5
up3 ∧ ¬s

5
up4 ∧ ¬s

5
up5,

α6 → ¬s6
up0 ∧ ¬s

6
up1 ∧ ¬s

6
up2 ∧ ¬s

6
up3 ∧ ¬s

6
up4 ∧ ¬s

6
up5.

The constraints that require if a rotation is in the difference set S \S∗iUP, then all

successors of that rotation that are a part of solution are also in the difference

set (see Constraint 4.8). These constraints are listed as below.

For i = 0:

s0
up0 ∧ s1 → s0

up1, s0
up0 ∧ s2 → s0

up2, s0
up0 ∧ s3 → s0

up3,

s0
up0 ∧ s4 → s0

up4, s0
up0 ∧ s5 → s0

up5, s0
up1 ∧ s2 → s0

up2,

s0
up1 ∧ s3 → s0

up3, s0
up1 ∧ s4 → s0

up4, s0
up1 ∧ s5 → s0

up5,

s0
up2 ∧ s3 → s0

up3, s0
up4 ∧ s5 → s0

up5.

For i = 1:

s1
up0 ∧ s1 → s1

up1, s1
up0 ∧ s2 → s1

up2, s1
up0 ∧ s3 → s1

up3,
s1
up0 ∧ s4 → s1

up4, s1
up0 ∧ s5 → s1

up5, s1
up1 ∧ s2 → s1

up2,
s1
up1 ∧ s3 → s1

up3, s1
up1 ∧ s4 → s1

up4, s1
up1 ∧ s5 → s1

up5,
s1
up2 ∧ s3 → s1

up3, s1
up4 ∧ s5 → s1

up5.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

187 Begüm Genç

A. CP MODEL

For i = 2:

s2
up0 ∧ s1 → s2

up1, s2
up0 ∧ s2 → s2

up2, s2
up0 ∧ s3 → s2

up3,

s2
up0 ∧ s4 → s2

up4, s2
up0 ∧ s5 → s2

up5, s2
up1 ∧ s2 → s2

up2,

s2
up1 ∧ s3 → s2

up3, s2
up1 ∧ s4 → s2

up4, s2
up1 ∧ s5 → s2

up5,

s2
up2 ∧ s3 → s2

up3, s2
up4 ∧ s5 → s2

up5.

For i = 3:

s3
up0 ∧ s1 → s3

up1, s3
up0 ∧ s2 → s3

up2, s3
up0 ∧ s3 → s3

up3,
s3
up0 ∧ s4 → s3

up4, s3
up0 ∧ s5 → s3

up5, s3
up1 ∧ s2 → s3

up2,
s3
up1 ∧ s3 → s3

up3, s3
up1 ∧ s4 → s3

up4, s3
up1 ∧ s5 → s3

up5,
s3
up2 ∧ s3 → s3

up3, s3
up4 ∧ s5 → s3

up5.

For i = 4:

s4
up0 ∧ s1 → s4

up1, s4
up0 ∧ s2 → s4

up2, s4
up0 ∧ s3 → s4

up3,
s4
up0 ∧ s4 → s4

up4, s4
up0 ∧ s5 → s4

up5, s4
up1 ∧ s2 → s4

up2,
s4
up1 ∧ s3 → s4

up3, s4
up1 ∧ s4 → s4

up4, s4
up1 ∧ s5 → s4

up5,
s4
up2 ∧ s3 → s4

up3, s4
up4 ∧ s5 → s4

up5.

For i = 5:

s5
up0 ∧ s1 → s5

up1, s5
up0 ∧ s2 → s5

up2, s5
up0 ∧ s3 → s5

up3,
s5
up0 ∧ s4 → s5

up4, s5
up0 ∧ s5 → s5

up5, s5
up1 ∧ s2 → s5

up2,
s5
up1 ∧ s3 → s5

up3, s5
up1 ∧ s4 → s5

up4, s5
up1 ∧ s5 → s5

up5,
s5
up2 ∧ s3 → s5

up3, s5
up4 ∧ s5 → s5

up5.

For i = 6:

s6
up0 ∧ s1 → s6

up1, s6
up0 ∧ s2 → s6

up2, s6
up0 ∧ s3 → s6

up3,
s6
up0 ∧ s4 → s6

up4, s6
up0 ∧ s5 → s6

up5, s6
up1 ∧ s2 → s6

up2,
s6
up1 ∧ s3 → s6

up3, s6
up1 ∧ s4 → s6

up4, s6
up1 ∧ s5 → s6

up5,
s6
up2 ∧ s3 → s6

up3, s6
up4 ∧ s5 → s6

up5.

The constraints that ensure if a rotation ρ is in the difference set S \S∗iUP, then ρ

must be in the closed subset of the current solution, and it is either the rotation

that produced the pair that is a part of the solution or there exists a predecessor

of ρ that produces it (see Constraint 4.9).

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

188 Begüm Genç

A. CP MODEL

For v = ρ0:

s0
up0 → s0 ∧ x0,2, s1

up0 → s0, s2
up0 → s0,

s3
up0 → s0, s4

up0 → s0, s5
up0 → s0,

s6
up0 → s0 ∧ x6,5.

For v = ρ1:

s0
up1 → s1 ∧ s0

up0 , s1
up1 → s1 ∧ (x1,5 ∨ s1

up0), s2
up1 → s1 ∧ s2

up0,
s3
up1 → s1 ∧ s3

up0 , s4
up1 → s1 ∧ s4

up0, s5
up1 → s1 ∧ (x5,4 ∨ s5

up0),
s6
up1 → s1 ∧ (x6,0 ∨ s6

up0).

For v = ρ2:

s0
up2 → s2 ∧ (x0,4 ∨ s0

up0 ∨ s
0
up1), s1

up2 → s2 ∧ (s1
up0 ∨ s

1
up1),

s2
up2 → s2 ∧ (s2

up0 ∨ s
2
up1), s3

up2 → s2 ∧ (s3
up0 ∨ s

3
up1),

s4
up2 → s2 ∧ (s4

up0 ∨ s
4
up1), s5

up2 → s2 ∧ (x5,4 ∨ s5
up0 ∨ s

5
up1),

s6
up2 → s2 ∧ (s6

up0 ∨ s
6
up1).

For v = ρ3:

s0
up3 → s3 ∧ (x0,1 ∨ s0

up0 ∨ s
0
up1 ∨ s

0
up2), s1

up3 → s3 ∧ (s1
up0 ∨ s

1
up1 ∨ s

1
up2),

s2
up3 → s3 ∧ (s2

up0 ∨ s
2
up1 ∨ s

2
up2), s3

up3 → s3 ∧ (s3
up0 ∨ s

3
up1 ∨ s

3
up2),

s4
up3 → s3 ∧ (x4,4 ∨ s4

up0 ∨ s
4
up1 ∨ s

4
up2), s5

up3 → s3 ∧ (s5
up0 ∨ s

5
up1 ∨ s

5
up2),

s6
up3 → s3 ∧ (s6

up0 ∨ s
6
up1 ∨ s

6
up2).

For v = ρ4:

s0
up4 → s4 ∧ (s0

up0 ∨ s
0
up1), s1

up4 → s4 ∧ (s1
up0 ∨ s

1
up1),

s2
up4 → s4 ∧ (x2,0 ∨ s2

up0 ∨ s
2
up1), s3

up4 → s4 ∧ (s3
up0 ∨ s

3
up1),

s4
up4 → s4 ∧ (s4

up0 ∨ s
4
up1), s5

up4 → s4 ∧ (s5
up0 ∨ s

5
up1),

s6
up4 → s4 ∧ (x6,6 ∨ s6

up0 ∨ s
6
up1).

For v = ρ5:

s0
up5 → s5 ∧ (s0

up0 ∨ s
0
up1 ∨ s

0
up4), s1

up5 → s5 ∧ (x1,3 ∨ s1
up0 ∨ s

1
up1 ∨ s

1
up4),

s2
up5 → s5 ∧ (s2

up0 ∨ s
2
up1 ∨ s

2
up4), s3

up5 → s5 ∧ (x3,5 ∨ s3
up0 ∨ s

3
up1 ∨ s

3
up4),

s4
up5 → s5 ∧ (s4

up0 ∨ s
4
up1 ∨ s

4
up4), s5

up5 → s5 ∧ (s5
up0 ∨ s

5
up1 ∨ s

5
up4),

s6
up5 → s5 ∧ (s6

up0 ∨ s
6
up1 ∨ s

6
up4).

The constraints for construction of the difference set S∗iDOWN \ S can also be

generated similar to the difference set constraints above; see Constraint 4.10

(Page 110) to Constraint 4.14 (Page 110). We do not include those constraints

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

189 Begüm Genç

A. CP MODEL

here. The following constraints are for keeping track of which other men are

required to change their partners in order to repair man mi for difference set

S \ S∗iUP; see Constraint 4.15 (Page 110).

For i = 0:

y0
1 ↔ s0

up1 ∨ s
0
up5 , y0

2 ↔ s0
up4, y0

3 ↔ s0
up5,

y0
4 ↔ s0

up3, y0
5 ↔ s0

up1 ∨ s
0
up2, y0

6 ↔ s0
up0 ∨ s

0
up1 ∨ s

0
up4.

For i = 1:

y1
0 ↔ s1

up0 ∨ s
1
up2 ∨ s

1
up3, y1

2 ↔ s1
up4, y1

3 ↔ s1
up5,

y1
4 ↔ s1

up3, y1
5 ↔ s1

up1 ∨ s
1
up2, y1

6 ↔ s1
up0 ∨ s

1
up1 ∨ s

1
up4.

For i = 2:

y2
0 ↔ s2

up0 ∨ s
2
up2 ∨ s

2
up3, y2

1 ↔ s2
up1 ∨ s

2
up5, y2

3 ↔ s2
up5,

y2
4 ↔ s2

up3, y2
5 ↔ s2

up1 ∨ s
2
up2, y2

6 ↔ s2
up0 ∨ s

2
up1 ∨ s

2
up4.

For i = 3:

y3
0 ↔ s3

up0 ∨ s
3
up2 ∨ s

3
up3, y3

1 ↔ s3
up1 ∨ s

3
up5, y3

2 ↔ s3
up4,

y3
4 ↔ s3

up3, y3
5 ↔ s3

up1 ∨ s
3
up2, y3

6 ↔ s3
up0 ∨ s

3
up1 ∨ s

3
up4.

For i = 4:

y4
0 ↔ s4

up0 ∨ s
4
up2 ∨ s

4
up3, y4

1 ↔ s4
up1 ∨ s

4
up5, y4

2 ↔ s4
up4,

y4
3 ↔ s4

up5, y4
5 ↔ s4

up1 ∨ s
4
up2, y4

6 ↔ s4
up0 ∨ s

4
up1 ∨ s

4
up4.

For i = 5:

y5
0 ↔ s5

up0 ∨ s
5
up2 ∨ s

5
up3, y5

1 ↔ s5
up1 ∨ s

5
up5, y5

2 ↔ s5
up4,

y5
3 ↔ s5

up5, y5
4 ↔ s5

up3, y5
6 ↔ s5

up0 ∨ s
5
up1 ∨ s

5
up4.

For i = 6:

y6
0 ↔ s6

up0 ∨ s
6
up2 ∨ s

6
up3, y6

1 ↔ s6
up1 ∨ s

6
up5, y6

2 ↔ s6
up4,

y6
3 ↔ s6

up5, y6
4 ↔ s6

up3, y6
5 ↔ s6

up1 ∨ s
6
up2.

For difference set S∗iDOWN \ S, the constraints are generated similarly, except the

Boolean variables y are replaced with z and sup are replaced with sdown; see

Constraint 4.16 (Page 110). We do not include them here.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

190 Begüm Genç

A. CP MODEL

α0 = true→ d0
up = n, else→ d0

up = y0
1 + y0

2 + y0
3 + y0

4 + y0
5 + y0

6,
α1 = true→ d1

up = n, else→ d1
up = y1

0 + y1
2 + y1

3 + y1
4 + y1

5 + y1
6,

α2 = true→ d2
up = n, else→ d2

up = y2
0 + y2

1 + y2
3 + y2

4 + y2
5 + y2

6,
α3 = true→ d3

up = n, else→ d3
up = y3

0 + y3
1 + y3

2 + y3
4 + y3

5 + y3
6,

α4 = true→ d4
up = n, else→ d4

up = y4
0 + y4

1 + y4
2 + y4

3 + y4
5 + y4

6,
α5 = true→ d5

up = n, else→ d5
up = y5

0 + y5
1 + y5

2 + y5
3 + y5

4 + y5
6,

α6 = true→ d6
up = n, else→ d6

up = y6
0 + y6

1 + y6
2 + y6

3 + y6
4 + y6

5.

The constraints for counting how many other men are required to change their

partners in order to provide a repair stable matching that dominates the current

matching are listed below; see Constraint 4.17 (Page 111).

Similarly, the number of men that need to change their partners to obtain the

the dominated stable matching is calculated as follows; see Constraint 4.18

(Page 111).

β0 = true→ d0
down = n, else→ d0

down = z0
1 + z0

2 + z0
3 + z0

4 + z0
5 + z0

6 ,
β1 = true→ d1

down = n, else→ d1
down = z1

0 + z1
2 + z1

3 + z1
4 + z1

5 + z1
6 ,

β2 = true→ d2
down = n, else→ d2

down = z2
0 + z2

1 + z2
3 + z2

4 + z2
5 + z2

6 ,
β3 = true→ d3

down = n, else→ d3
down = z3

0 + z3
1 + z3

2 + z3
4 + z3

5 + z3
6 ,

β4 = true→ d4
down = n, else→ d4

down = z4
0 + z4

1 + z4
2 + z4

3 + z4
5 + z4

6 ,
β5 = true→ d5

down = n, else→ d5
down = z5

0 + z5
1 + z5

2 + z5
3 + z5

4 + z5
6 ,

β6 = true→ d6
down = n, else→ d6

down = z6
0 + z6

1 + z6
2 + z6

3 + z6
4 + z6

5 .

Finally, the constraint for measuring the robustness of the solution concludes

the model; see Constraint 4.19 (Page 111).(
¬(α0)→ (b ≥ d0

up)
)
∨
(
¬(β0)→ (b ≥ d0

down)
)
,(

¬(α1)→ (b ≥ d1
up)
)
∨
(
¬(β1)→ (b ≥ d1

down)
)
,(

¬(α2)→ (b ≥ d2
up)
)
∨
(
¬(β2)→ (b ≥ d2

down)
)
,(

¬(α3)→ (b ≥ d3
up)
)
∨
(
¬(β3)→ (b ≥ d3

down)
)
,(

¬(α4)→ (b ≥ d4
up)
)
∨
(
¬(β4)→ (b ≥ d4

down)
)
,(

¬(α5)→ (b ≥ d5
up)
)
∨
(
¬(β5)→ (b ≥ d5

down)
)
,(

¬(α6)→ (b ≥ d6
up)
)
∨
(
¬(β6)→ (b ≥ d6

down)
)
.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

191 Begüm Genç

A. CP MODEL

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

192 Begüm Genç

References

[201] Nobel Media AB 2019. Prize announcement. nobel-

prize.org. https://www.nobelprize.org/prizes/economic-
sciences/2012/prize-announcement/. Online; accessed 26

February 2019.

[ABCC07] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J.

Cook. The Traveling Salesman Problem: A Computational Study
(Princeton Series in Applied Mathematics). Princeton University

Press, Princeton, NJ, USA, 2007.

[ABG+16] Haris Aziz, Péter Biró, Serge Gaspers, Ronald de Haan, Nicholas

Mattei, and Baharak Rastegari. Stable matching with uncertain

linear preferences. CoRR, abs/1607.02917, 2016.

[Afa12] Mustafa Oguz Afacan. Group robust stability in matching markets.

Games and Economic Behavior, 74(1):394–398, 2012.

[AG15] Itai Ashlagi and Yannai A. Gonczarowski. Dating strategies are not

obvious. CoRR, abs/1511.00452, 2015.

[AIM07] David J. Abraham, Robert W. Irving, and David F. Manlove. Two

algorithms for the student-project allocation problem. Journal of
Discrete Algorithms, 5(1):73–90, 2007.

[APRS05] Atila Abdulkadiroğlu, Parag A. Pathak, Alvin E. Roth, and Tayfun

Sönmez. The boston public school match. American Economic Re-
view, 95(2):368–371, 2005.

[AS98] Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictator-

ship and the core from random endowments in house allocation

problems. Econometrica, 66(3):689–701, 1998.

193

https://www.nobelprize.org/prizes/economic-sciences/2012/prize-announcement/
https://www.nobelprize.org/prizes/economic-sciences/2012/prize-announcement/

REFERENCES

[B96] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evo-
lution Strategies, Evolutionary Programming, Genetic Algorithms.
Oxford University Press, Oxford, UK, 1996.

[BBC11] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis.

Theory and applications of robust optimization. SIAM Review,

53(3):464–501, 2011.

[BBV03] Miquel Bofill, Dıdac Busquets, and Mateu Villaret. Auction robust-

ness through satisfiability modulo theories. In Workshop on Agree-
ment Technologies (WAT 2009), 2003.

[Bir48] G. Birkhoff. Lattice Theory. Colloquium publications. American

Mathematical Society, 1948.

[BM11] Adrian Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in

Mathematics. Springer London, 2011.

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.

Francone. Genetic Programming – An Introduction; On the Auto-
matic Evolution of Computer Programs and its Applications. Morgan

Kaufmann, San Francisco, CA, USA, January 1998.

[BNR08] Mani Bhushan, Sridharakumar Narasimhan, and Raghunathan

Rengaswamy. Robust sensor network design for fault diagnosis.

Computers & Chemical Engineering, 32(4):1067 – 1084, 2008.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison. ACM COM-
PUTING SURVEYS, pages 268–308, 2003.

[BS15] Federico Barber and Miguel A. Salido. Robustness, stability, recov-

erability, and reliability in constraint satisfaction problems. Knowl-
edge Information Systems, 44(3):719–734, September 2015.

[BTGN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust
Optimization. Princeton Series in Applied Mathematics. Princeton

University Press, October 2009.

[CC16] Clément Carbonnel and Martin C. Cooper. Tractability in constraint

satisfaction problems: a survey. Constraints, 21(2):115–144, Apr

2016.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

194 Begüm Genç

REFERENCES

[Chu36] Alonzo Church. An unsolvable problem of elementary number the-

ory. American journal of mathematics, 58(2):345–363, 1936.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to Algorithms, Third Edition. The MIT

Press, 3rd edition, 2009.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.

In Proceedings of the Third Annual ACM Symposium on Theory of
Computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.

ACM.

[CWSB14] Laura Climent, Richard J. Wallace, Miguel A. Salido, and Federico

Barber. Robustness and stability in constraint programming under

dynamism and uncertainty. J. Artif. Intell. Res., 49:49–78, 2014.

[DB10] Marco Dorigo and Mauro Birattari. Ant Colony Optimization, pages

36–39. Springer US, Boston, MA, 2010.

[DB13] Joanna Drummond and Craig Boutilier. Elicitation and approxi-

mately stable matching with partial preferences. In Proceedings of
the Twenty-Third International Joint Conference on Artificial Intelli-
gence, IJCAI ’13, pages 97–105. AAAI Press, 2013.

[DBS13] Ewa Drgas-Burchardt and Zbigniew Switalski. A number of stable

matchings in models of the gale–shapley type. Discrete Applied
Mathematics, 161(18):2932 – 2936, 2013.

[DH98] Raphaël Dorne and Jin-Kao Hao. A new genetic local search al-

gorithm for graph coloring. In Agoston E. Eiben, Thomas Bäck,

Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Prob-
lem Solving from Nature — PPSN V, pages 745–754, Berlin, Heidel-

berg, 1998. Springer Berlin Heidelberg.

[DH09] Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds.

In Handbook of Satisfiability, pages 403–424. 2009.

[Die10] Reinhard Diestel. Graph Theory (5th Edition). Graduate texts in

mathematics. Springer, 2010.

[DPK13] Jaspal Singh Dhillon, Suresh Purini, and Sanidhya Kashyap. Vir-

tual machine coscheduling: A game theoretic approach. In Pro-
ceedings of the 2013 IEEE/ACM 6th International Conference on Util-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

195 Begüm Genç

REFERENCES

ity and Cloud Computing, pages 227–234. IEEE Computer Society,

2013.

[DSOI05] Emir Demirović, Nicolas Schwind, Tenda Okimoto, and Katsumi

Inoue. Recoverable team formation: Building teams resilient to

change. Berlin, Heidelberg, 2005.

[DSOI18] Emir Demirović, Nicolas Schwind, Tenda Okimoto, and Katsumi

Inoue. Recoverable team formation: Building teams resilient to

change. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’18, pages

1362–1370, Richland, SC, 2018. International Foundation for Au-

tonomous Agents and Multiagent Systems.

[EO18] Guillaume Escamocher and Barry O’Sullivan. Three-dimensional

matching instances are rich in stable matchings. In Willem-Jan

van Hoeve, editor, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pages 182–197, Cham, 2018.

Springer International Publishing.

[FD94] Daniel Frost and Rina Dechter. Dead-end driven learning. In Pro-
ceedings of the 12th National Conference on Artificial Intelligence,
Seattle, WA, USA, July 31 - August 4, 1994, Volume 1., pages 294–

300, 1994.

[Fed92] Tomás Feder. A new fixed point approach for stable networks and

stable marriages. J. Comput. Syst. Sci., 45(2):233–284, 1992.

[FH00] Antonio J. Fernández and Patricia M. Hill. A comparative study

of eight constraint programming languages over the boolean and

finite domains. Constraints, 5(3):275–301, Jul 2000.

[Fie94] C-N Fiechter. A parallel tabu search algorithm for large traveling

salesman problems. Discrete Applied Mathematics, 51(3):243–267,

1994.

[FIM07] Tamás Fleiner, Robert W. Irving, and David Manlove. Efficient algo-

rithms for generalized stable marriage and roommates problems.

Theor. Comput. Sci., 381(1-3):162–176, 2007.

[FM96] Bernd Freisleben and Peter Merz. A genetic local search algorithm

for solving symmetric and asymmetric traveling salesman prob-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

196 Begüm Genç

REFERENCES

lems. In Evolutionary Computation, 1996., Proceedings of IEEE In-
ternational Conference on, pages 616–621. IEEE, 1996.

[GI89] Dan Gusfield and Robert W. Irving. The Stable Marriage Problem:
Structure and Algorithms. MIT Press, Cambridge, MA, USA, 1989.

[GI06] Fabrizio Grandoni and Giuseppe F. Italiano. Algorithms and con-

straint programming. In Principles and Practice of Constraint Pro-
gramming - CP 2006, 12th International Conference, CP 2006,
Nantes, France, September 25-29, 2006, Proceedings, pages 2–14,

2006.

[GILS87] Dan Gusfield, Robert Irving, Paul Leather, and Michael Saks. Every

finite distributive lattice is a set of stable matchings for a small

stable marriage instance. Journal of Combinatorial Theory, Series
A, 44(2):304 – 309, 1987.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

New York, NY, USA, 1979.

[GJS+14] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buck-

ley. The Java Language Specification, Java SE 8 Edition. Addison-

Wesley Professional, 1st edition, 2014.

[GMT14] Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances

in robust optimization: An overview. European Journal of Opera-
tional Research, 235(3):471 – 483, 2014.

[GN07] Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust

sat-solver. Discrete Applied Mathematics, 155(12):1549 – 1561,

2007. SAT 2001, the Fourth International Symposium on the The-

ory and Applications of Satisfiability Testing.

[GP10] Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuris-
tics. Springer Publishing Company, Incorporated, 2nd edition,

2010.

[GPP06] Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry

in constraint programming. In Foundations of Artificial Intelligence,

volume 2, pages 329–376. Elsevier, 2006.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

197 Begüm Genç

REFERENCES

[GPR98] Matthew L. Ginsberg, Andrew J. Parkes, and Amitabha Roy. Super-

models and robustness. In In AAAI/IAAI, pages 334–339, 1998.

[GS62] David Gale and Lloyd S. Shapley. College admissions and the sta-

bility of marriage. The American Mathematical Monthly, 69(1):9–

15, 1962.

[GSB+15] Yunan Gu, Walid Saad, Mehdi Bennis, Merouane Debbah, and Zhu

Han. Matching theory for future wireless networks: Fundamentals

and applications. IEEE Communications Magazine, 53(5):52–59,

2015.

[GSOS17a] Begum Genc, Mohamed Siala, Barry O’Sullivan, and Gilles Si-

monin. Finding robust solutions to stable marriage. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,

pages 631–637, 2017.

[GSOS17b] Begum Genc, Mohamed Siala, Barry O’Sullivan, and Gilles Si-

monin. Finding robust solutions to stable marriage. CoRR,

abs/1705.09218, 2017.

[GSOS17c] Begum Genc, Mohamed Siala, Barry O’Sullivan, and Gilles Si-

monin. Robust stable marriage. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA., pages 4925–4926, 2017.

[GSSO17a] Begum Genc, Mohamed Siala, Gilles Simonin, and Barry

O’Sullivan. On the complexity of robust stable marriage. In Combi-
natorial Optimization and Applications - 11th International Confer-
ence, COCOA 2017, Shanghai, China, December 16-18, 2017, Pro-
ceedings, Part II, pages 441–448, 2017.

[GSSO17b] Begum Genc, Mohamed Siala, Gilles Simonin, and Barry

O’Sullivan. On the complexity of robust stable marriage. CoRR,

abs/1709.06172, 2017.

[GSSO19] Begum Genc, Mohamed Siala, Gilles Simonin, and Barry

O’Sullivan. Complexity study for the robust stable marriage prob-

lem. Theoretical Computer Science, 775:76 – 92, 2019.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

198 Begüm Genç

REFERENCES

[Heb07] Emmanuel Hebrard. Robust solutions for constraint satisfaction
and optimisation under uncertainty. PhD thesis, University of New

South Wales, 2007.

[HHOW05] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby

Walsh. Finding diverse and similar solutions in constraint pro-

gramming. In AAAI, volume 5, pages 372–377, 2005.

[HHW04a] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Robust solu-

tions for constraint satisfaction and optimization. In Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,
including Prestigious Applicants of Intelligent Systems, PAIS 2004,
Valencia, Spain, August 22-27, 2004, pages 186–190, 2004.

[HHW04b] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Super so-

lutions in constraint programming. In Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, First International Conference, CPAIOR 2004, Nice,
France, April 20-22, 2004, Proceedings, pages 157–172, 2004.

[HO04] Alan Holland and Barry O’Sullivan. Super solutions for combina-

torial auctions. In Recent Advances in Constraints, Joint ERCIM/-
CoLogNet International Workshop on Constraint Solving and Con-
straint Logic Programming, CSCLP, 2004, Lausanne, Switzerland,
June 23-25, 2004, Revised Selected and Invited Papers, pages 187–

200, 2004.

[HO05a] Alan Holland and Barry O’Sullivan. Robust solutions for combina-

torial auctions. In Proceedings 6th ACM Conference on Electronic
Commerce (EC-2005), Vancouver, BC, Canada, June 5-8, 2005,

pages 183–192, 2005.

[HO05b] Alan Holland and Barry O’Sullivan. Weighted super solutions for

constraint programs. In Proceedings, The Twentieth National Con-
ference on Artificial Intelligence and the Seventeenth Innovative Ap-
plications of Artificial Intelligence Conference, July 9-13, 2005, Pitts-
burgh, Pennsylvania, USA, pages 378–383, 2005.

[Hoe14] Benoit Hoessen. Solving the Boolean satisfiability problem using the
parallel paradigm. PhD thesis, 2014. Thèse de doctorat dirigée par

Audemard, Gilles Informatique Artois 2014.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

199 Begüm Genç

REFERENCES

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and Arti-
ficial Intelligence. MIT Press, Cambridge, MA, USA, 1992.

[Hor51] Alfred Horn. On sentences which are true of direct unions of alge-

bras. The Journal of Symbolic Logic, 16(1):14–21, 1951.

[HS96] Pascal Van Hentenryck and Vijay Saraswat. Strategic directions

in constraint programming. ACM Comput. Surv., 28(4):701–726,

December 1996.

[HS17] Emmanuel Hebrard and Mohamed Siala. Explanation-based

weighted degree. In International Conference on AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization
Problems, pages 167–175. Springer, 2017.

[HW05] Emmanuel Hebrard and Toby Walsh. Improved algorithm for find-

ing (a, b)-super solutions. In Principles and Practice of Constraint
Programming - CP 2005, 11th International Conference, CP 2005,
Sitges, Spain, October 1-5, 2005, Proceedings, page 848, 2005.

[IL86a] Robert W. Irving and Paul Leather. The complexity of counting

stable marriages. SIAM J. Comput., 15(3):655–667, 1986.

[IL86b] Robert W. Irving and Paul Leather. The complexity of counting

stable marriages. SIAM J. Comput., 15(3):655–667, August 1986.

[IMS08] Robert W. Irving, David F. Manlove, and Sandy Scott. The stable

marriage problem with master preference lists. Discrete Applied
Mathematics, 156(15):2959 – 2977, 2008.

[Irv85] Robert W. Irving. An efficient algorithm for the “stable roommates”

problem. Journal of Algorithms, 6(4):577 – 595, 1985.

[IS16] Jonas Ide and Anita Schöbel. Robustness for uncertain multi-

objective optimization: A survey and analysis of different concepts.

OR Spectr., 38(1):235–271, January 2016.

[Jac16] Royi Jacobovic. Perturbation robust stable matching. CoRR,

abs/1612.08118, 2016.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems,
pages 85–103. Springer US, Boston, MA, 1972.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

200 Begüm Genç

REFERENCES

[KBG07] Prakash R. Kotecha, Mani Bhushan, and Ravindra D. Gudi. Con-

straint programming based robust sensor network design. Indus-
trial & Engineering Chemistry Research, 46(18):5985–5999, 2007.

[KBG08] Prakash R. Kotecha, Mani Bhushan, and Ravindra D. Gudi. Design

of robust, reliable sensor networks using constraint programming.

Computers & Chemical Engineering, 32(9):2030 – 2049, 2008. Net-

worked and Complex Systems S.I.

[KGW17] Anna R. Karlin, Shayan Oveis Gharan, and Robbie Weber. A sim-

ply exponential upper bound on the maximum number of stable

matchings. CoRR, abs/1711.01032, 2017.

[Knu76] Donald E. Knuth. Mariages stables et leurs relations avec d’autres
problèmes combinatoires: introduction à l’analyse mathématique
des algorithmes. Collection de la Chaire Aisenstadt. Presses de

l’Université de Montréal, 1976.

[Koj11] Fuhito Kojima. Robust stability in matching markets. Theoretical
Economics, 6(2):257–267, 2011.

[KP94] Antoon Kolen and Erwin Pesch. Genetic local search in combinato-

rial optimization. Discrete Applied Mathematics, 48(3):273 – 284,

1994.

[KV06] Bernhard Korte and Jens Vygen. Combinatorial Optimization:
Theory and Algorithms. Algorithms and Combinatorics. Springer-

Verlag Berlin Heidelberg, 2006.

[LL12] Adam Lipowski and Dorota Lipowska. Roulette-wheel selection

via stochastic acceptance. Physica A: Statistical Mechanics and its
Applications, 391(6):2193 – 2196, 2012.

[LMS03] Helena R. Lourenço, Olivier C Martin, and Thomas Stützle. Iter-

ated local search. In Handbook of metaheuristics, pages 320–353.

Springer, 2003.

[LMV+07] Dmitry Lebedev, Fabien Mathieu, Laurent Viennot, Anh-Tuan Gai,

Julien Reynier, and Fabien De Montgolfier. On using matching the-

ory to understand p2p network design. In INOC 2007, Interna-
tional Network Optimization Conference, 2007.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

201 Begüm Genç

REFERENCES

[LW05] Hui Li and Brian Williams. Generalized conflict learning for hy-

brid discrete/linear optimization. In International Conference on
Principles and Practice of Constraint Programming, pages 415–429.

Springer, 2005.

[Man13] David Manlove. Algorithmics Of Matching Under Preferences. The-

oretical computer science. World Scientific Publishing, 2013.

[MF97] Peter Merz and Bernd Freisleben. Genetic local search for the

tsp: new results. In Proceedings of 1997 IEEE International Con-
ference on Evolutionary Computation (ICEC ’97), pages 159–164,

April 1997.

[MH12] Laurent Michel and Pascal Van Hentenryck. Activity-based

search for black-box constraint programming solvers. In Nicolas

Beldiceanu, Narendra Jussien, and Éric Pinson, editors, Integra-
tion of AI and OR Techniques in Contraint Programming for Combi-
natorial Optimzation Problems, pages 228–243, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg.

[ML18] Vijay Menon and Kate Larson. Robust and approximately sta-

ble marriages under partial information. CoRR, abs/1804.09156,

2018.

[MS91] Bernard M.E. Moret and Henry D. Shapiro. Algorithms from P to
NP: Design & efficiency. Algorithms from P to NP. Benjamin/Cum-

mings, 1991.

[Mur11] K.G. Murty. Optimization for Decision Making: Linear and Quadratic
Models. International Series in Operations Research & Manage-

ment Science. Springer US, 2011.

[MV18] Tung Mai and Vijay V. Vazirani. Finding stable matchings that are

robust to errors in the input. CoRR, abs/1804.00553, 2018.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani.

Algorithmic Game Theory. Cambridge University Press, New York,

NY, USA, 2007.

[O’M07] Gregg O’Malley. Algorithmic aspects of stable matching problems.
PhD thesis, University of Glasgow, 2007.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

202 Begüm Genç

REFERENCES

[Ped03] P. Pedregal. Introduction to Optimization. Texts in Applied Mathe-

matics. Springer New York, 2003.

[PFL16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca.

Choco Solver Documentation. TASC, INRIA Rennes, LINA CNRS

UMR 6241, COSLING S.A.S., 2016.

[Pit89] Boris Pittel. The average number of stable matchings. SIAM J.
Discret. Math., 2(4):530–549, November 1989.

[Pit93] Boris Pittel. The" stable roommates" problem with random prefer-

ences. The Annals of Probability, pages 1441–1477, 1993.

[Pol05] Nicola Policella. Scheduling with uncertainty: A proactive ap-

proach using partial order schedules. AI Commun., 18(2):165–167,

2005.

[Pre08] Steven David Prestwich. The relation between complete and in-

complete search. In Hybrid Metaheuristics, An Emerging Approach
to Optimization, pages 63–83. 2008.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2 edition, 2003.

[Rou10] Tim Roughgarden. Algorithmic game theory. Commun. ACM,

53(7):78–86, July 2010.

[Roy01] Amitabha Roy. Symmetry Breaking and Fault Tolerance in Boolean
Satisfiability. PhD thesis, Department of Computer and Informa-

tion Science. University of Oregon, 2001. AAI3024528.

[Roy06] Amitabha Roy. Fault tolerant boolean satisfiability. J. Artif. Intell.
Res., 25:503–527, 2006.

[RPB10] Günther R. Raidl, Jakob Puchinger, and Christian Blum. Meta-
heuristic Hybrids, pages 469–496. Springer US, Boston, MA, 2010.

[RSÜ04] Alvin E Roth, Tayfun Sönmez, and M Utku Ünver. Kidney ex-

change. The Quarterly Journal of Economics, 119(2):457–488,

2004.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of
Constraint Programming (Foundations of Artificial Intelligence). El-

sevier Science Inc., New York, NY, USA, 2006.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

203 Begüm Genç

REFERENCES

[SAFP14] Shaul Salomon, Gideon Avigad, Peter J Fleming, and Robin C

Purshouse. Active robust optimization: Enhancing robustness

to uncertain environments. IEEE transactions on cybernetics,
44(11):2221–2231, 2014.

[SBI12] Miguel A. Salido, Federico Barber, and Laura Paola Ingolotti. Ro-

bustness for a single railway line: Analytical and simulation meth-

ods. Expert Syst. Appl., 39(18):13305–13327, 2012.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In

Proceedings of the Tenth Annual ACM Symposium on Theory of Com-
puting, STOC ’78, pages 216–226, New York, NY, USA, 1978. ACM.

[SD99] Thomas Stützle and Marco Dorigo. Aco algorithms for the travel-

ing salesman problem. Evolutionary algorithms in engineering and
computer science, pages 163–183, 1999.

[SD08] Dan A. Simovici and Chabane Djeraba. Mathematical Tools for Data
Mining - Set Theory, Partial Orders, Combinatorics, page 79. Ad-

vanced Information and Knowledge Processing. Springer, 2008.

[SF94] Daniel Sabin and Eugene C. Freuder. Contradicting conventional

wisdom in constraint satisfaction. In Alan Borning, editor, Princi-
ples and Practice of Constraint Programming, pages 10–20, Berlin,

Heidelberg, 1994. Springer Berlin Heidelberg.

[SFS+14] Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and

Julien Fischer. The minizinc challenge 2008–2013. AI Magazine,

35(2):55–60, 2014.

[Sia15] Mohamed Siala. Search, propagation, and learning in sequencing
and scheduling problems. Theses, INSA de Toulouse, May 2015.

[Sip06] Michael Sipser. Introduction to the Theory of Computation, Second
Edition, volume 2. Thomson Course Technology Boston, 2006.

[SKM+15] John Sichi, Joris Kinable, Dimitrios Michail, Barak Naveh, and

Contributors. Jgrapht - graph algorithms and data structures in

java (version 0.9.1). http://www.jgrapht.org/, 2015.

[SO17] Mohamed Siala and Barry O’Sullivan. Rotation-based formulation

for stable matching. In Principles and Practice of Constraint Pro-

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

204 Begüm Genç

http://www.jgrapht.org/

REFERENCES

gramming - 23rd International Conference, CP 2017, Melbourne,
Australia, August 28 - September 1, 2017, Proceedings, 2017.

[Soy73] A. L. Soyster. Convex programming with set-inclusive constraints

and applications to inexact linear programming. Operations Re-
search, 21(5):1154–1157, 1973.

[SSDS02] Goran Stojkovic̀, François Soumis, Jacques Desrosiers, and Mar-

ius M. Solomon. An optimization model for a real-time flight

scheduling problem. Transportation Research Part A: Policy and
Practice, 36(9):779 – 788, 2002.

[ST16] Seçil Sözüer and Aurélie C. Thiele. The state of robust optimiza-

tion. In Robustness Analysis in Decision Aiding, Optimization, and
Analytics, pages 89–112. Springer International Publishing, Cham,

2016.

[Stü98] Thomas Stützle. Local search algorithms for combinatorial prob-
lems: analysis, improvements, and new applications. PhD thesis, TU

Darmstadt, 1998.

[Suh97] Sang-Chul Suh. Double implementation in nash and strong nash

equilibria. Social Choice and Welfare, 14(3):439–447, Jun 1997.

[Sus07] Gerald Jay Sussman. Building robust systems an essay. Mas-

sachusetts Institute of Technology, January 2007.

[Tal15] El-Ghazali Talbi. Hybrid metaheuristics for multi-objective op-

timization. Journal of Algorithms & Computational Technology,

9(1):41–63, 2015.

[TMW06] S. Armagan Tarim, Suresh Manandhar, and Toby Walsh. Stochastic

constraint programming: A scenario-based approach. Constraints,
11(1):53–80, Jan 2006.

[Tur36] Alan M. Turing. On computable numbers, with an application to

the Entscheidungsproblem. Proceedings of the London Mathemati-
cal Society, 2(42):230–265, 1936.

[TVTV14] Paolo Toth, Daniele Vigo, Paolo Toth, and Daniele Vigo. Vehicle
Routing: Problems, Methods, and Applications, Second Edition. Soci-

ety for Industrial and Applied Mathematics, Philadelphia, PA, USA,

2014.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

205 Begüm Genç

REFERENCES

[UAB+91] Nico L. J. Ulder, Emile H. L. Aarts, Hans-Jürgen Bandelt, Peter J. M.

van Laarhoven, and Erwin Pesch. Genetic local search algorithms

for the traveling salesman problem. In Hans-Paul Schwefel and

Reinhard Männer, editors, Parallel Problem Solving from Nature,

pages 109–116, Berlin, Heidelberg, 1991. Springer Berlin Heidel-

berg.

[Val79] Leslie G. Valiant. The complexity of computing the permanent.

Theoretical computer science, 8(2):189–201, 1979.

[vH01] Willem Jan van Hoeve. The alldifferent constraint: A survey. CoRR,

cs.PL/0105015, 2001.

[vHK06] Willem-Jan van Hoeve and Irit Katriel. Chapter 6 - global con-

straints. In Francesca Rossi, Peter van Beek, and Toby Walsh, ed-

itors, Handbook of Constraint Programming, volume 2 of Founda-
tions of Artificial Intelligence, pages 169 – 208. Elsevier, 2006.

[Voß01] Stefan Voß. Meta-heuristics: The state of the art. In Alexander

Nareyek, editor, Local Search for Planning and Scheduling, pages

1–23, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[VT99] Christos Voudouris and Edward Tsang. Guided local search and its

application to the traveling salesman problem. European journal of
operational research, 113(2):469–499, 1999.

[W+99] Toby Walsh et al. Search in a small world. In IJCAI, volume 99,

pages 1172–1177. Citeseer, 1999.

[Wil86] Robin J. Wilson. Introduction to Graph Theory. John Wiley & Sons,

Inc., New York, NY, USA, 1986.

[WKm15] Thomas Williams, Colin Kelley, and many others. Gnuplot 5.0:

an interactive plotting program. http://www.gnuplot.info/, June

2015.

[Woo06] Jim Woodward. Some varieties of robustness. Journal of Economic
Methodology, 13(2):219–240, 2006.

[XCM09] Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness

and regularization of support vector machines. J. Mach. Learn.
Res., 10:1485–1510, December 2009.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

206 Begüm Genç

http://www.gnuplot.info/

REFERENCES

[XHQC09] Y. Xu, G.H. Huang, X.S. Qin, and M.F. Cao. Srccp: A stochastic

robust chance-constrained programming model for municipal solid

waste management under uncertainty. Resources, Conservation and
Recycling, 53(6):352 – 363, 2009.

[YMLC16] Cheng-Hong Yang, Sin-Hua Moi, Yu-Da Lin, and Li-Yeh Chuang.

Genetic algorithm combined with a local search method for identi-

fying susceptibility genes. Journal of Artificial Intelligence and Soft
Computing Research, 6(3):203 – 212, 2016.

[YN97] Takeshi Yamada and Ryohei Nakano. Job shop scheduling. IEE
control Engineering series, pages 134–134, 1997.

[Yua09] Duojia Yuan. Flight Delay-cost Simulation Analysis and Schedule
Optimization: A Simulation Methodology to Estimate Flight Delay
and Delay Propagation. VDM Publishing, 2009.

An Approach to Robustness in Stable Marriage
and Stable Roommates Problems

207 Begüm Genç

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Thesis Statement and Contributions
	Overview of the Dissertation

	Background
	Mathematical Structures
	Graphs
	Partially Ordered Sets

	Combinatorial Optimization
	Optimization Modelling Languages and Techniques
	Boolean Satisfiability Problem
	Constraint Programming
	Search Strategies
	Choco Constraint Solver

	Iterated Local Search
	Genetic Algorithm
	Genetic Local Search
	Computational Complexity
	Algorithmic Complexity
	Problem Complexity

	Matching Under Preferences
	Stable Marriage Problem
	Stable Roommates Problem

	Robust Optimization
	(a,b)-supermodels
	(a,b)-super solutions
	Discussion on (a,b) models
	Robustness Notions in Matching Problems

	Chapter Summary

	Robust Stable Marriage
	Introduction
	Notation and Definitions
	(a,b)-supermatches
	(1,1)-supermatches
	A Model Using Independent Sets

	Complexity of Finding (1,1)-supermatches
	A Specific Problem Family F
	The Definition of SAT-SM
	The Complexity of SAT-SM

	Threshold and Polynomial Cases
	Polynomial Cases
	Finding an (a,0)-supermatch

	Chapter Summary

	Methods for Finding (1,b)-supermatches in RSM
	Notation and Definitions
	Methodology for verifying a (1,b)-supermatch
	Complexity

	Constraint Programming Model
	Variables
	Constraints

	Genetic Algorithm Approach
	Initialization
	Evaluation
	Evolution

	Local Search Approach
	Neighbourhood
	Search

	Genetic Local Search (Hybrid) Approach
	Experiments
	Random Instances
	Large Instances (Many)

	Chapter Summary

	Robust Stable Roommates
	Introduction
	Notation and Definition
	Verification of (1,b)-supermatches
	Identification of Elimination and Production Rotations
	Methodology
	Complexity

	Models for Finding (1,b)-supermatches
	Local Search Approach
	Hybrid Approach

	Experiments
	A Comparison of Models
	Robustness of RSM vs RSR
	Experiments on Random
	Experiments on Many
	Experiments on Same
	Experiments on Mod

	Chapter Summary

	Conclusion and Future Work
	Thesis Defence
	Future Work
	Complexity
	Improvements on the Current Models
	Variations and Applications

	CP Model

