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Abstract9

Numerical simulations and laboratory measurements are presented of multi-directional focused10

wave groups interacting with a plane beach. The numerical model is a two-dimensional-horizontal11

(2DH) hybrid flow solver, governed by a Boussinesq equation set with enhanced dispersion charac-12

teristics pre-breaking, and the nonlinear shallow water equations post-breaking. Waves are intro-13

duced into the model via an in-built multi-element piston wavemaker, allowing for complete repro-14

duction of laboratory experiments. A wetting and drying algorithm models shoreline movement in15

both cross-shore and longshore directions. Predicted free surface motions of the multi-directional16

focused wave groups are in good agreement with wave gauge data from laboratory experiments17

previously carried out at the UK Coastal Research Facility (UKCRF) using a linear paddle wave18

generator. Both phase decomposition into Stokes-like harmonic components and wavelets provide19

insight into nonlinear interactions as the wave groups propagate up the beach. Free second-order20

error waves in a multi-directional wave group are smaller than for the corresponding uni-directional21

case, and spread laterally around the incoming wave group. Of the free error waves generated by22

linear paddle signals, only the low-frequency second-order error wave affects extreme run-up on23

the beach. By applying a second-order correction to the paddle signals used to generate a multi-24

directional wave group, it is shown that, whereas the long error wave causes a significant increase25

in the maximum run-up, the impact is not as severe as for the uni-directional analogue. Shoaling26

and run-up of the bound long waves in a spread sea are studied. Examination of the transverse27

structure of these subharmonic components reveals that sideways spreading in the inner surf zone28

contributes to reduced run-up in directionally spread groups.29

1 Introduction30

Coastal engineers are required to analyse complicated hydrodynamic processes in the nearshore31

zone in order to design effective coastal protection schemes. Numerous strategies exist to model the32

propagation of waves over coastal bathymetry as it shallows, and the associated run-up at beaches33

and overtopping of sea defences. Run-up and overtopping have been investigated through field34

observations and laboratory tests by Holman (1986), and van der Meer and Stam (1992). However,35

such measurement campaigns are both expensive and labour-intensive. With coastal practitioners36

in mind, efforts have been made to develop empirical formulae for run-up and overtopping, such37

as proposed by Hunt (1959) for breaking wave run-up on smooth uniform slopes in relatively deep38
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water. Overtopping is often calculated using mean discharge rates as opposed to individual over-39

topping events (see for example the CLASH database (De Rouck et al., 2009)). The most recent40

EurOtop manual (van der Meer et al., 2016) recognises the limitations of using mean-discharge to41

describe overtopping, and emphasises the importance of the statistical distribution of overtopping42

volumes. Although empirical formulae for run-up and overtopping lead to useful design param-43

eters, such calculations do not provide information on detailed spatial and temporal variations.44

In practice, the quantification of large individual run-up and overtopping events is important for45

determining sea defence failure modes, and assessing hazards posed to pedestrians and vehicles46

(Bruce et al., 2002). Over the past twenty years, phase-resolving numerical models based on the47

nonlinear shallow water equations, the Navier-Stokes equations, and the Boussinesq equations have48

been increasingly used to model wave propagation, run-up, and overtopping (see e.g. Schäffer et al.49

(1993), Hubbard and Dodd (2002), and Higuera et al. (2014)).50

The nonlinear shallow water equations (NSWEs) underpin many numerical models applied to51

coastal engineering and large-scale flooding problems. Dodd (1998) applied the NSWEs to random52

wave run-up and overtopping; however the non-dispersive nature and underlying hydrostatic as-53

sumption of the NSWEs mean that they are only applicable to domains containing very shallow54

water where the velocity can be assumed to be nearly horizontal. Examples of two-dimensional nu-55

merical models based on the NSWEs are those of Fraccarollo and Toro (1995), Rogers et al. (2001)56

and Liang and Borthwick (2009). Dispersive nonlinear shallow water equations (Antuono et al.,57

2009) aim to merge the main advantages of the NSWEs with Boussinesq-type equations to give an58

equation set with both nonlinear and dispersive properties that can be solved at low computational59

cost.60

Eulerian mesh-based computational fluid dynamics (CFD) models based on continuity and the61

Navier-Stokes equations offer an accurate means of predicting wave transformation, breaking, run-62

up, and overtopping. However, such models incur very high computational cost. In practice,63

simplifications are incorporated to reduce the computational burden, such as the Reynolds-Averaged64

Navier-Stokes equations (RANS) (e.g. Lin and Liu, 1998) and Large-Eddy Simulation (LES) (see65

Zhou et al., 2014). An alternative Lagrangian, particle-based approach is provided by Smoothed66

Particle Hydrodynamics (SPH) (see e.g. Dalrymple and Rogers, 2006). In SPH methods, the fluid67

mass is discretised into constituent particles with assigned physical quantities; such models are68

inherently capable of dealing with complex wave-shore-structure interactions.69

Boussinesq-type models are widely used in coastal engineering due to their ability to represent70

adequately the main physical processes at the shore while remaining relatively computationally71

efficient compared to CFD solvers. Comprehensive reviews of Boussinesq-type models are given by72

Madsen and Schäffer (1999), Kirby (2003), and Brocchini (2013). Hybrid Boussinesq-shallow flow73

models implement Boussinesq equations pre-breaking and shallow water equations post-breaking.74

This approach is adopted by Tonelli and Petti (2009), Tonelli and Petti (2012), Shi et al. (2012),75

Orszaghova et al. (2012), McCabe et al. (2013) and Judge et al. (2018). Tatlock et al. (2018)76

implement the roller approach in a finite difference-finite volume scheme to solve the Boussinesq77

equations in the surf zone, removing the need to switch to the NSWEs.78

Focused wave groups offer an efficient means for coastal engineers to model large wave events79

at the coast, and thus estimate extreme run-up and overtopping. In particular, the NewWave80

methodology (see e.g. Jonathan and Taylor, 1997; Taylor and Williams, 2004; Tromans et al., 1991)81

ensures that the focused wave group corresponds to the average shape of the largest wave event82

in a Gaussian sea state, which is imperative for accurate calculations of run-up and overtopping.83

Whittaker et al. (2016) confirmed the validity of NewWave in relatively shallow coastal waters.84

This paper aims to use a hybrid Boussinesq-shallow flow model (Judge et al., 2018, following85

Orszaghova 2011 and Orszaghova et al. 2012) to replicate selected multi-directional focused wave86

group experiments undertaken previously at the UKCRF (Hunt, 2003) based on the NewWave87

methodology. Stokes-like decomposition and wavelet analysis are used to investigate the harmonic88

structure of the multi-directional wave groups, and provide insight into the component interactions89

as the groups travel up the beach. A comparison is included between first-order and second-order90

wave generation in order to examine the significance of the long error wave from linear generation91

in the context of multi-directional wave groups, in particular the impact on run-up. The evolution92

2



of the long waves associated with a multi-directional wave group as they propagate up the beach93

is also examined.94

2 Background and methodology95

2.1 First and second order wave generation in a laboratory96

Piston paddles are commonly used to generate waves in shallow and intermediate depth laboratory97

flumes and basins. The paddles move horizontally according to a displacement time-series calcu-98

lated using wavemaker theory to produce waves with desired amplitude and frequency. First-order99

wavemaker theory is derived directly from linear wave theory, with additional lateral boundary100

conditions accounting for the moving wavemaker. For an overview, see Dean and Dalrymple (1991)101

or Hughes (1993). All water waves, except in the limit of infinitesimal amplitude contain nonlin-102

earities. When paddle displacement signals calculated from first-order theory are used to generate103

waves in the laboratory, spurious waves are created due to the mismatch between the generated104

nonlinear waves and the linear paddle signal. These higher-order free parasitic or error waves are105

not bound to the underlying linear components and propagate independently according to their106

dynamics. The largest parasitic waves are sub-harmonic and super-harmonic waves associated with107

second-order bound Stokes terms (for details see Hunt, 2003). When generating wave groups with a108

linear paddle signal, the super-harmonic error waves travel slower than the main wave group. The109

low-frequency sub-harmonic error wave, however, travels ahead of the wave group as a single hump110

and thus has an impact on the wave group transformation. Schäffer (1996) derives wavemaker the-111

ory correct to second order, for normally-propagating irregular waves, for both piston and hinged112

wavemakers, with the aim of suppressing the generation of second-order error waves. An overview113

of the application of the theory is given by Orszaghova et al. (2014). Schäffer and Steenberg (2003)114

extend second-order wavemaker theory to multi-directional irregular waves.115

2.2 NewWave theory116

A focused wave group comprises a number of individual sinusoidal wave components that come117

into phase at a single point in time and space to produce a large event. Using linear wave theory,118

the surface elevation at any time and any point in space of a multi-directional focused wave group,119

where waves approach the focus location xf from a range of angles, is given by120

ζ(x, y, t) =
N∑
n=1

an

M∑
m=1

bm cos(kn((x− xf ) cos θm + y sin θm)− ωn(t− tf ) + φ), (1)

where N is the number of wave components, an is the wave amplitude, M is the number of spreading121

angles, bm is a spreading factor, kn is the wave number, xf is the focus location, θm is the angle of122

the mth component measured from the x-axis, ωn is the angular frequency, tf is the focus time, φ123

is the phase angle of the wave group.124

Herein, the spreading factor is given by a top-hat function, b(θ) = c, where c is a constant, in125

accordance with the laboratory tests where no components could be created at angles too far from126

normal to the front face of the paddles. The formulation meets the requirement
∑M

m=0 bm = 1.127

According to NewWave theory, the surface water profile in the vicinity of an extreme wave128

matches the normalised autocorrelation function of the underlying sea spectrum, premultiplied by129

the crest height. Thus for a crest-focused wave, the NewWave time history is given by130

ζ(t) = AN

∑
n Sn(ω)∆ωn cos(ωn(t− tf ))∑

n Sn(ω)∆ωn
, (2)

where Sn(ω) is the discretised underlying energy spectrum and ∆ωn is the angular frequency res-131

olution. AN represents the linear amplitude of the largest wave from a sea surface time series of132

N waves and is calculated from AN =
√

2σ2(lnN ), where N is the number of waves and σ2 is133
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variance of the free surface time series. In the present work, a Pierson-Moskowitz (PM) spectrum134

is used, given by135

S(ω) =
(ωp
ω

)5
exp

(
−5

4

(ωp
ω

)4)
, (3)

where ω is the angular frequency, and ωp is the prescribed peak angular frequency.136

Focused wave groups are created in the laboratory by offsetting individual wave components at137

the paddles to account for the frequency dispersion of linear water waves. At the focus location,138

constructive interference between the individual wave components produces a large, energetic wave139

group. The piston paddle signal to produce a NewWave focused wave group, to first-order, is140

xp(y, t) =
N∑
n=1

an

M∑
m=1

bm
e0nm

sin(kn((x− xf ) cos(θm) + y sin(θm))− ωn(t− tf ) + φ), (4)

where e0nm is the oblique linear paddle transfer function (see Schäffer and Steenberg, 2003, for141

details). The wave component amplitudes necessary to generate NewWave in equation (4) are142

given by143

an =
ANSn(ω)∆ωn∑
n Sn(ω)∆ωn

. (5)

Note that a trough-focused wave group is generated by replacing an with −an, which is equivalent144

to setting φ = π in Equation 1. To generate a spread-sea focused wave group, correct to second145

order, the multi-directional wavemaker theory of Schäffer and Steenberg (2003) has to be employed.146

Only sub-harmonic correction is implemented, because the short error waves do not affect run-up.147

For each pair of linear harmonic components (in Equation 1), a second order difference-frequency148

correction is calculated. The second-order paddle transfer function contains infinite summation149

terms due to taking into account the evanescent mode interactions. In practice these are evaluated150

up to a finite number of terms, and the asymptotic solution of Schäffer (1993b) is also used to keep151

the number of terms low to speed up the paddle signal calculations.152

2.3 NewWave experiments at the UKCRF153

Experiments undertaken at the UK Coastal Research Facility (UKCRF) using focused wave groups154

are described by Hunt (2003) and Hunt-Raby et al. (2011), where NewWave theory was implemented155

to generate 32 different focused wave groups with varying amplitudes and phases. The UKCRF156

wave basin had internal plan dimensions of 20 m x 36 m in the downwave x- and lateral y-directions.157

Waves were generated by 72 independently operated piston paddles, each 0.5 m wide and 1.5 m158

high. The toe of a 1:20 plane beach was located 8.33 m from the paddles. The basin floor and plane159

beach had smooth, impermeable surfaces. Wave gauges positioned at 250 mm intervals along the160

basin centre-line were used to measure water surface elevation time series from x = 6.83 m (1.5 m161

offshore of the beach toe) to x = 18.33 m (still water shoreline location, see Figure 1). The focus162

point of the directionally spread wave groups was invariably located along this centre-line. The163

test programme encompassed uni-directional wave groups (WG1-WG16) and directionally spread164

wave groups (WG17-WG32) interacting with a plane beach and a sea wall. Both crest-focused and165

trough-focused wave groups were considered. Focus locations included: the beach toe, 3/4 offshore166

depth (i.e. 1/4 of the way up the beach), and 1/2 offshore depth. Focusing of the wave groups was167

based on linear wave theory assuming that the waves were propagating on water of uniform depth168

in the absence of the beach. For the focus location at the beach toe, the presence of the beach had169

little effect locally, whereas focus locations further up the beach were affected by the beach slope.170

However, it is convenient to define focusing in terms of the above locations on the beach. It should171

be noted that the focus location considered in the remainder of this paper was a function of x and172

t only, because the multi-directional wave group is symmetrical about the basin centreline.173

Table 1 summarises details of the selected wave groups considered in this paper. The underlying174

PM spectrum had a peak angular frequency ωp = 2.91 rad s−1 (0.46 Hz). The truncated spectrum175

was defined by ωmin ≈ 2.07 rad s−1 (0.33 Hz) and ωmax ≈ 6.06 rad s−1 (0.96 Hz). This spectrum176

was discretised into N = 53 components with a uniform angular frequency resolution of ∆ω ≈ 0.077177
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Multi-directional wave groups at the UKCRF

Name Input amplitude Focus location Spread angle Phase of group
(mm) (deg) (rad)

WG1 114 beach toe 0 0
WG2 114 3

4 offshore depth 0 0
WG3 90 1

2 offshore depth 0 0
WG5 114 beach toe 0 π
WG6 114 3

4 offshore depth 0 π
WG7 90 1

2 offshore depth 0 π
WG17 114 beach toe ±30 0
WG18 114 3

4 offshore depth ±30 0
WG19 90 1

2 offshore depth ±30 0
WG21 114 beach toe ±30 π
WG22 114 3

4 offshore depth ±30 π
WG23 90 1

2 offshore depth ±30 π
WG25 114 beach toe ±10 0
WG26 114 3

4 offshore depth ±10 0
WG27 90 1

2 offshore depth ±10 0
WG29 114 beach toe ±10 π
WG30 114 3

4 offshore depth ±10 π
WG31 90 1

2 offshore depth ±10 π

Table 1: Selected multi-directional wave group tests in the UKCRF (Hunt, 2003).

20

x (m)

1:20 beach

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SWL a cb d e f

Figure 1: Gauge locations for the UKCRF run-up experiments reported by Hunt (2003).
The gauge locations highlighted in red (labelled a-f) are used in Section 3.1 (Figures 3
and 4) to compare numerical and measured data. The horizontal scale denotes distance
from the paddle. The offshore water depth is 0.5 m.

rad s−1. The top-hat spreading factor b(θ) = 1/M where the number of spread angles was M = 81.178

Paddle signals were calculated according to Equation (4), with an experimentally derived transfer179

function used in place of the theoretical linear paddle transfer function. A detailed explanation of180

the paddle calibration procedure is given in Chapter 4 of Hunt (2003). The resulting experimental181

data have been used to verify numerical models described by Borthwick et al. (2006), Orszaghova182

(2011) and Orszaghova et al. (2012).183

2.4 Numerical model184

The multi-directional focused wave group experiments in the UKCRF are simulated numerically185

using the 2DH flow solver described by Judge et al. (2018). This numerical model is a hybrid Boussi-186

nesq - shallow flow solver that simulates the propagation of waves in two horizontal-dimensions from187

intermedate depth (d/λ = 0.5, where d is local depth and λ is wavelength). Pre-breaking, wave188

propagation is calculated using the enhanced Boussinesq equation set of Madsen and Sørensen189

(1992). This equation set has improved dispersion characteristics; the equations are discretised190

using second-order central differences and solved using the conjugate gradient method with fourth-191

order Runge-Kutta time integration. In the breaker zone, a ramping function is applied to the192
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Boussinesq dispersive terms so that they are gradually switched off, and the resulting nonlinear193

shallow water equations are solved using a finite volume MUSCL-Hancock scheme with an HLLC194

approximate Riemann solver, following Liang and Borthwick (2009). Broken waves are treated as195

hydraulic bores. A wetting and drying algorithm models the wet/dry front as it moves up and196

down the beach and also spreads laterally in the longshore direction. It does this by excluding any197

dry cells or volume elements from the computational process unless they are about to be flooded198

(i.e. the bed level of the dry cell is below that of a wet neighbouring cell to the north, south, east or199

west). The moving shoreline is therefore automatically tracked within the solver. Where a cell has200

water depth less than the critical value, then it is automatically dried out, its water redistributed201

into an adjacent cell, and the intercell fluxes are adjusted accordingly. For full details of the nu-202

merical implementation, refer to Liang and Borthwick (2009) or Judge (2018). The location of the203

switch from the Boussinesq to the shallow water equations is determined by a local calculation of204

the slope of the free surface in any direction. The switch point is then set to half a wavelength205

offshore of the point where the free surface slope exceeds a threshold value of 0.4 (≈ 22°), and206

applied evenly across the domain in the y-direction (parallel to the beach). The switch location is207

recalculated at every time step, and thus follows the breaking waves inshore.208

Waves are generated in the numerical model by a line of independently moving piston paddles.209

This allows full replication of laboratory experiments, including the generation of oblique waves and210

spread seas, as well as waves that propagate normal to the shore. Wave generation is undertaken211

through a linear mapping, which maps the stretching and compressing domain in the region of212

the paddles onto a fixed domain, to circumvent re-gridding at every time step. For the initial test213

cases considered herein, the numerical wave paddles are driven according to the linear experimental214

paddle displacement signals calculated by Hunt (2003), to allow a complete reproduction of the215

experiments. The simulation results are presented in Sections 3.1 - 3.4. Additionally, for a number216

of selected wave groups, the paddle signals have been recalculated using second-order wavemaker217

theory (Schäffer and Steenberg, 2003). These are used in Section 3.4.1 to generate focused wave218

groups where the low-frequency error wave travelling ahead of the group has been largely removed.219

Judge et al. (2018) present a series of benchmark tests to verify the numerical model, and220

obtain satisfactory results for nearshore circulation at sinusoidal and cusped beaches by comparing221

numerical predictions to the laboratory measurements of Da Silva Lima (1981) and Borthwick and222

Foote (2002). Numerical simulations of uni-directional focused wave interactions with a plane beach223

are also presented, and the results compared with Hunt’s laboratory measurements (WG1 of the224

UKCRF tests).225

2.4.1 Model calibration226

Orszaghova (2011) previously calibrated a one-dimensional hybrid model of the UKCRF by ad-227

justing values of the bed friction coefficient Cf , and the local free surface slope coefficient, Φ, that228

triggers the switch from the Boussinesq to the shallow water equations, until a best fit (assessed229

by visual comparison of numerical predictions and gauge measurements) was obtained between the230

model predictions and the experimental data on focused waves. The resulting values, Cf = 0.008231

and Φ = 0.4 are also used here. Whittaker et al. (2017) perform a similar exercise in a different232

laboratory, and justify setting Φ = 0.4. The eddy viscosity coefficient, ε, is set to zero.233

3 Results234

3.1 Multi-directional focused wave group235

The directionally spread wave group experiments at the UKCRF reported by Hunt (2003) included236

waves with top-hat spreading angles of ±10°and ±30°. The test case of a multi-directional focused237

wave group with spread angle ±30°, linear focus amplitude Af = 0.114 m and focus location at238

the beach toe, is first considered (WG17 in Hunt, 2003). Waves are generated in the numerical239

model using paddle displacement signals from the laboratory experiments. Here, the computational240

domain matches the internal basin measurements of 20 m x 36 m, with the grid spacing in the x-241
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Figure 2: Numerically predicted water surface elevation distributions for ±30° spread
multi-directional focused wave group (WG17) in the UKCRF at: (a) t = 40 s; (b) t = 45
s; (c) t = 50 s; and (d) t = 55 s.

direction set to ∆x = 0.05 m. As there are 72 paddles in the UKCRF basin, each paddle is242

modelled with 10 grid points in the y-direction, giving ∆y = 0.0501m. The simulation is run for243

90 s to match the laboratory experiment, with time step ∆t = 0.01 s. Linear interpolation is244

performed on the experimental paddle signal to produce signals with a time step matching that245

of the numerical model. The simulation CPU run time is approximately 17 hours 45 minutes246

(compiled using gfortran with -O3 optimisation on a late 2011 MacBook Pro with a 2.3 GHz Intel247

Core i5 processor executing 3 threads).248

In the early stages of the simulation, the amplitudes of the paddle motions are low, sending small249

waves across the basin. The paddle amplitudes gradually increase, producing larger amplitude wave250

components, with all waves coming into phase where the beach toe meets the basin centreline at251

t ≈ 46 s, producing a large wave event that is now localised in both directions. Figure 2 illustrates252

the evolution of the free surface profile during the simulation.253

Figure 3 compares the laboratory measurements and numerical predictions of the free surface254

elevation time series at 6 gauge locations along the UKCRF basin centre-line. The performance of255

the model for the multi-directional wave group is very similar to the uni-directional case presented256

by Judge et al. (2018): leading waves in the wave group are predicted with excellent accuracy,257

whereas pre-breaking, the height of the central wave crest in the group is under-predicted, and258

the trough following this crest is over-predicted. The transformation to a steep-fronted bore is259

captured very well, while a slight phasing mismatch is present in the propagation of the third and260

subsequent bores in very shallow water. Figure 4 shows the corresponding results obtained for261

the trough-focused multi-directional wave group (WG21 in Hunt, 2003). Again very satisfactory262

agreement is obtained between the predictions and measurements, except for slight over-predictions263

of the primary trough depth at focus, and the trailing trough depth as the group approaches the264

shoreline.265

The normalised root mean square error (NRMSE) of the free surface predictions at each of the266

gauge locations in Figures 3 and 4 are presented in Table 2. The RMSE is normalised by the range267
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NRMSE
x (m) WG17 WG21

8.33 4.1% 4.3%
10.33 3.8% 3.8%
12.33 3.6% 3.7%
14.83 5.6% 4.8%
16.33 6.1% 6.4%
17.83 8.8% 11.1%

Table 2: Root mean square error, normalised by the range of the measured data, at gauge locations, x.
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Figure 3: WG17 - Crest-focused multi-directional wave group (±30° spread) in the
UKCRF: comparison between measured (thick grey line) and numerically predicted (red
line) free surface elevation time series at six gauge locations from x = 8.33 to x = 17.83
m along the centreline of the basin.

(i.e. the difference between the maximum and minimum values) of the measured data (ζm) at each268

gauge location. It is calculated according to Equation (6), in which ζm and ζp are the measured269

and predicted free surface elevations respectively, and T is the number of values in the time series.270

NRMSE =
1

ζm,max − ζm,min

√∑T
t=1(ζm,t − ζp,t)2

T
(6)

3.2 Focused wave group harmonic structure271

Waves were generated in the UKCRF experiments by supplying linear paddle signals, and therefore,272

contaminated by the spurious waves described in Section 2.1. Evanescent wave components gener-273

ated by a piston-paddle wavemaker are non-propagating and have amplitudes that decay rapidly274

away from the paddle, and so are not considered further here. Hunt (2003) analysed the harmonic275

structure of focused wave groups travelling normal to the beach by isolating individual harmonics276

through judicious combination of the surface elevation data from crest- and trough-focused wave277

groups in the UKCRF experiments. Orszaghova et al. (2014) performed a similar exercise using278

data from the one-dimensional numerical model. The purpose was to find evidence of the low-279

frequency free error wave manifesting itself as a hump of water travelling ahead of the main wave280

group that may contaminate the results, in particular those for wave run-up. In the present study,281
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Figure 4: WG21 - Trough-focused multi-directional wave group (±30° spread) in the
UKCRF: comparison between measured (thick grey line) and numerically predicted (red
line) free surface elevation time series at six gauge locations from x = 8.33 to x = 17.83
m along the centreline of the basin.

a similar exercise is performed, but for multi-directional wave groups, namely wave groups WG17282

and WG21 which are crest- and trough-focused with a spread angle of ±30°. It should be noted283

that the method of harmonic analysis assumes that the positions of the crests in one wave group284

are matched by the troughs in the inverted group, so the same locally linearised wave envelope is285

recovered even though the waves are themselves nonlinear and experience wave-wave interactions.286

Therefore, application of this method to WG17 and WG21 should work well offshore of the breaker287

line. Closer to the shore, crests and troughs may not be in alignment, therefore alternative methods288

are used in subsequent sections to examine wave behaviour in this region (see Section 3.3 on wavelet289

analysis and Section 3.5 on long wave propagation).290

Application of a fast-Fourier-transform (FFT) to the predicted surface elevation data for WG17291

and WG21 at the beach toe, leads to the amplitude spectra shown in Figure 5. Inspection of these292

spectra reveals that both the crest- and trough-focused time series (sub-figures (a) and (b)) have a293

concentration of energy at 0.46 Hz, at the peak frequency of the linear components. Secondary peaks294

are visible at approximately double this peak frequency as well as in the sub-harmonic range (below295

≈ 0.3 Hz). Figures 5 (c) and (d) present the amplitude spectra of the addition and subtraction296

time series respectively at the beach toe, and can be used to identify suitable cut-off frequencies297

to isolate bound and parasitic higher order waves. We note that the input range of linear wave298

components is 0.33 - 0.96 Hz. The amplitude spectrum of the addition time series which contains299

even-order harmonics, reduces to zero at 0.5 Hz, which suggests that this would be a suitable cut-off300

point to isolate low and high frequency second-order harmonics (denoted by 2− and 2+ on figure).301

For the subtraction time series, a cut-off frequency of 1 Hz is used to separate the linear, first-order302

terms (denoted by 1) from the higher-order harmonics (denoted by 3+).303

Figure 6 presents the predicted time histories of the harmonics associated with WG17 and WG21304

at the beach toe on the centreline of the basin. Figure 6 (a) is obtained by applying a low-pass filter305

at 1 Hz to the subtraction time series revealing the linear signal (denoted by 1). The second-order306

sum harmonics (i.e. the high frequency waves denoted by 2+) are shown in Figure 6 (b) and the307

second-order difference harmonics (i.e. the long waves, denoted by 2−) are shown in Figure 6 (c),308

obtained by applying high and low-pass filters respectively at 0.5 Hz. In the figures, ‘b’ and ‘e’309

indicate bound and error and waves respectively.310

The large depression in Figure 6 (c) is the bound set-down beneath the wave group (2−b). For311

wave groups in finite depth, the appearance of rather small positive peaks either side of the much312
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Figure 5: Predicted amplitude spectra at the beach toe for (a) crest-focused wave group
time series (WG17); (b) trough-focused wave group time series (WG21); (c) addition time
series; and (d) subtraction time-series

larger central set-down is consistent with Fourier-based second order bound wave theory (Dalzell,313

1999; Dean and Sharma, 1981). In Figure 6 (c), a very shallow hump follows the set down, and a314

much larger wave crest can clearly be seen travelling ahead of the main group (2−e). This indicates315

the presence of a free error wave. It is likely that the appearance of low-frequency waves after316

t ≈ 52 s occurs as a result of reflections. Figure 6 (d) shows the higher-order harmonics (mainly317

third-order), obtained by applying a high-pass filter at 1 Hz to the subtraction time-series. The318

waves between 55 and 60 s are due to numerical reflections (see Figure 10a). The third and higher319

order bound harmonics coincide with the passage of the wave group at about 45 s.320

Figures 7 and 8 present x− t visualisations of the propagation of the crest- and trough-focused321

wave groups WG17 and WG21 along the centreline of the basin. Both the numerical model output322

and the experimental gauge data are shown. Presentation of the data in this way allows an overall323

comparison to be made between the numerical results and the gauge data, as well as revealing fea-324

tures such as wave reflections, which are not necessarily obvious in the individual gauge comparisons325

shown in Figures 3 and 4. The experimental data are restricted to gauge locations, and therefore326

the plots show measurements as far as x ≈ 18 m. No such restrictions exist for the numerical plots,327

which show the movement of the shoreline beyond the still water level (SWL = 18.33 m). Beyond328

18.33 m, the free-surface elevations above beach level are shown, rather than above the SWL. Note329

that the experimental x − t plots are generated from coarser resolution data, with interpolation330

used to facilitate comparison with the higher resolution numerical data.331

In Figure 7, the central crest (shown in red) of WG17 and the troughs on either side (shown in332

blue) are clearly visible. The wave group focuses at x ≈ 8.33 m, when the crests on either side of333

the main crest (shown in yellow/orange) are approximately the same size. The maximum run-up334

is caused by the central crest at t ≈ 52 s. Dispersion is evident as the wave group propagates up335

the beach and becomes less well defined. Both the gauge and x− t plots (Figures 3 and 7) reveal a336

slight difference between the numerical and experimental wave celerity as the waves travel up the337

beach, where the numerical bores travel slower than those observed in the laboratory. This may338

be attributed to limitations in the shallow water equations implemented in the numerical model,339
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Figure 6: Predicted free-surface time histories from WG17 and WG21 at x = 8.33 m
(beach toe): (a) linear crest and trough signal (subtraction time-series, low-pass filtered
at 1 Hz); (b) second-order sum harmonics (addition time-series, high-pass filtered at 0.5
Hz); (c) second-order difference harmonics (long waves, i.e. addition time-series, low-
pass filtered at 0.5 Hz); and (d) third-order harmonics (subtraction time-series, high-pass
filtered at 1 Hz).
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Figure 7: Space-time plots of NewWave propagation at a plane beach for a crest-focused wave group (WG17):
(a) numerical prediction; and (b) measured free surface elevation data, along basin centreline.
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Figure 8: Space-time plots of NewWave propagation at a plane beach for a trough-focused wave group (WG21):
(a) numerical prediction; and (b) measured free surface elevation data, along basin centreline.

which predict a phase speed of c =
√
gd (in which d = h + ζ where h is the still water depth340

and ζ is the free surface elevation), where kd < π/10. Therefore, although the NSWEs account341

for amplitude dispersion, the residual effects of frequency dispersion are not considered and may342

be the reason for the observed differences in phase speed. Breaking can be identified by a sharp343

drop in amplitude of the central crest at x ≈ 16 m, and of the trailing crest at x ≈ 15 m. In344

both the numerical and experimental results, there is evidence of long-wave reflections. Moreover,345

the numerical plot also contains some high-frequency reflections from x ≈ 12 m. These are also346

present in the one-dimensional numerical results of Orszaghova (2011) and Orszaghova et al. (2014)347

who attribute the presence of such reflections to the switch between governing equation sets. The348

x − t plots of the trough-focused wave group WG21 in Figure 8 exhibit similar features. Again349

there is evidence of low frequency reflections in both the numerical and experimental results. The350

maximum run-up in this case is caused by the crest leading the central trough.351

Individual low and high frequency, odd and even harmonics are investigated further by applying352

the cut-off frequencies identified above in Figure 5. Figure 9 shows the linear components of wave353

groups WG17 and WG21. The very steep fronts of the waves that characterise the unfiltered354

time series have been eliminated. Unmodified by the higher-order components, the wave crests355

remain centrally positioned as the waves propagate into shallower water. The experimental x − t356

plot shows no reflections, i.e. all the linear components are dissipated by the beach, whereas the357

numerical results contain some weak reflections at x ≈ 12 m. Odd order sum frequency harmonics358

are visualised in Figure 10, revealing the third-order harmonics (3+b and 3+e), and perhaps traces359

of the fifth (5+e) sum harmonics. Again, reflections are evident at x ≈ 12.5 m in the numerical360

results, unlike the experimental data. These reflections are primarily due to implementation of the361

transition zone to the shallow water equations at wave breaking.362

Figure 11 shows the x−t visualisation of the even-order difference frequency harmonics, primar-363

ily second-order difference components. The blue depression in these plots represents the bound364

second-order wave travelling beneath the main wave group, or the ‘set-down’. The yellow-orange365

hump preceding the bound set-down is a combination of the low frequency error wave that travels366

independently of the wave group, and a lower-amplitude bound wave crest. The darker blue bound367

wave in Figure 11a indicates that the numerical model predicts a larger set-down beneath the main368

wave group than observed in the laboratory. The numerical results also indicate a larger leading369

wave crest, which increases in amplitude slightly with respect to its experimental counterpart as370

the wave group approaches the shore. This is consistent with both focusing of the linear group,371

and reduction in water depth (the shallow water bound set-down ≈ −|A(x̃)|2/4d, where x̃ is the372

12



horizontal coordinate of the group reference frame, and d is the water depth; see Mei et al. (1981) or373

McAllister et al. (2018). At the shoreline, the amplitude of the leading wave crest increases sharply374

at t ≈ 50 s, and penetrates the swash zone beyond x = 19 m. In both the numerical and experi-375

mental plots, there is evidence of consistently raised water levels at the SWL due to low frequency376

wave action (indicated by the yellow horizontal line at x = 18.33 m). This may be evidence of a377

resonant response in the swash zone triggered by the arrival of incoming waves, and is discussed378

further in Section 3.3 and Section 3.5. A very small trailing hump appears in both the predicted379

and experimental results, but is much more prominent in the former. A discrepancy grows between380

the predicted and measured results in the breaking zone and inshore, perhaps owing to the poorer381

representation of the physics by the shallow water equations and their tendency to sharpen the382

front of the primary hump. This has an impact on the application of harmonic decomposition,383

as the crests and troughs are now out of alignment and do not cancel out in the addition time384

series. Therefore, some linear wave components with frequencies < 0.5 Hz are likely present in this385

Figure. Section 3.5 provides further analysis on long wave behaviour in the swash zone, without386

the complicating presence of the error wave.387

Figure 12 presents a visualisation of the high frequency second-order harmonics. These sum-388

frequency harmonics include both bound and parasitic components. Error waves (denoted by 2+e)389

are clearly seen trailing the super-harmonic bound waves (2−b). Again there are reflections evident390

at x ≈ 13 m in the numerical results, whereas the experimental data show close to full absorption391

of these components by the beach.392

The above analysis proves a useful tool by which to interpret the harmonic structure of the wave393

groups. The 2DH numerical model allows us to confirm the experimental findings of Hunt (2003),394

who found that the low frequency error waves from the ±10° and ±30° spread seas are approximately395

2/3 and 1/3 respectively, of the size of the error wave produced in the uni-directional case. This is396

to be expected because of the lateral structure of the wave group: the displacement of fluid beneath397

an energetic group (the long bound wave) is coupled to the return flow beneath the group, which398

for spread sea cases can go sideways around the group as well as beneath it (and thereby drive399

longshore transient currents). Therefore, the impact on run-up prediction is not likely to be as400

severe. This is investigated further in Section 3.4.1.401

It should be noted that because the fluid in the tank is water, formally, only the Navier-Stokes402

equations are appropriate for comparing experimental and numerical results. The paddle signals are403

derived either from linear theory, or in subsequent sections from the first two terms of a Stokes-type404

expansion of the solution to the potential flow equations. In contrast, the numerical scheme is based405

on a hybrid Boussinesq/NSWE model. Although it would be possible to derive a wave generation406

’paddle’ model for this equation set, we instead utilise the full potential flow ’paddle’ motion in the407

numerical scheme. Therefore, given the number of approximations made in its construction, the408

numerical model works remarkably well.409

3.3 Wavelet analysis of focused wave group component interac-410

tions411

Wavelets are now used to gain further insight into the nonlinear behaviour of wave groups as412

they propagate up the beach. A continuous wavelet transform (CWT) is used to perform a time-413

frequency analysis of surface elevation data predicted by the numerical model. CWT scalograms414

(the absolute values of the CWT as a function of time and frequency) illustrate the interactions of415

the wave group components as they propagate from offshore of the focus location through to the416

swash zone. The cone of influence is shown on the scalograms; outside the cone (in the grey regions)417

edge effects are significant. Wavelet transforms have previously been used by other researchers to418

analyse propagating waves, including Panizzo et al. (2002).419

In the context of this analysis of free-surface wave fields, it should be remembered that any420

wavelet transform trades off frequency against time resolution, so some smearing of real features421

may occur and artificial artefacts may appear in the amplitude contour plots. Both of these will be422

affected by the choice of the mother wavelet. Here we use the simple Morlet wavelet which does not423

possess complete localisation in time but does preserve signal smoothness. We observe large and424
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Figure 9: Space-time plots of NewWave run-up at a plane beach - Linear terms only, subtraction time series
low-pass filtered at 1 Hz (WG17 and WG21): (a) numerical prediction, and (b) experimental gauge data, along
basin centreline.
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Figure 10: Space-time plots of NewWave run-up at a plane beach - Odd higher order harmonics only, subtrac-
tion time series high-pass filtered at 1 Hz (WG17 and WG21): (a) numerical prediction, and (b) experimental
gauge data, along basin centreline.
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Figure 11: Space-time plots of NewWave run-up at a plane beach - Even harmonic, low frequency components
only (i.e. second-order difference components or long waves), addition time series low-pass filtered at 0.5 Hz
(WG17 and WG21): (a) numerical prediction, and (b) experimental gauge data, along basin centreline.
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Figure 12: Space-time plots of NewWave run-up at a plane beach - Even harmonic, high frequency components
only (second-order sum components), addition time series high-pass filtered at 0.5 Hz (WG17 and WG21): (a)
numerical prediction, and (b) experimental gauge data, along basin centreline.
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long lasting features in the analysis that correspond to robust properties of the underlying wave425

field. The wavelet analysis was performed on wavegroups generated numerically using both first-426

and second-order wavemakers. However, as there was remarkably little difference between the two,427

only the second-order results are presented here.428

Figure 13 shows the wavelet results obtained from CWT analysis of the free surface elevation429

time series for WG17. The CWT scalograms are presented for 6 locations along the basin centreline430

between x = 2 m and x = 18 m to illustrate component interactions as the waves shoal and break.431

At x = 2 m, the wavelet magnitude is maximum at a frequency of about 0.5 Hz coinciding with432

that of the linear components of the group; the asymmetry of the results indicates that the group433

has yet to come into focus when it reaches this location. Two ‘spikes’ (extending from 0.5 towards434

2 Hz at times t ≈ 40 and 43 s) are crossed by a band at about 1 Hz, the intersections corresponding435

to second-order super-harmonics, bound to the linear wave group. At x = 8.33 m, focusing is436

evident from the symmetry of the scalogram. Here, the energies of the linear and bound super-437

harmonic wave components appear exactly in phase at t ≈ 45 s, with maxima at about 0.5 and 1438

Hz respectively. A faint blue patch can be seen at t ≈ 55 s and f ≈ 0.5 Hz, perhaps corresponding439

to a very low amplitude linear wave component that has been reflected from the beach. The light440

blue patches at about 1 Hz that occur at t ≈ 50 and 58 s are most likely due to trailing second-441

order super-harmonic components arising as error waves and reflected second-order super-harmonic442

components arriving back from the beach respectively. We note that the corrected paddle signal443

was designed to eliminate the second order sub-harmonic error wave only, and as such the sum444

frequency waves were unaffected. As the wave group propagates further up the beach it starts to445

defocus, before breaking and forming a series of bores. At x = 12 m, the linear wave components446

at f ≈ 0.5 Hz have most energy, and the bound second-order super-harmonics are visible at about447

t ≈ 47 and 49 s.448

At x = 15 m, where the waves are beginning to break, the magnitude of the 0.5 Hz linear449

wave component has decreased as wave breaking sheds energy to higher frequencies. The bound450

super-harmonics contain energy across a range of frequencies up to about 10 Hz, and appear to451

have distinct energy intersections at second-, and third-order super-harmonics. The peak energy452

of the bound super-harmonics occurs at 48.5 s for the second-order components (1 Hz). Reflected453

super-harmonics can be seen at t ≈ 53.5 s and 56 s. A reflected second-order sub-harmonic below454

f ≈ 0.3 Hz is also evident as a weak structure at about 54 s. Seiching motions may also be455

present, indicated by the energy content between 0.1 and 0.3 Hz. At x = 17 m, the scalograms are456

complicated by reflections and nonlinear interactions in the swash zone. Again the linear component457

is predominant at 0.5 Hz, but with its energy spread between about 47 and 54 s. There appears458

to be a reflected component at about 53.5 to 55 s, which may be diffused in the breaker zone.459

The leading super-harmonic bound components at t ≈ 47.5 s have significant energy between 1460

and > 2 Hz, with peaks at ≈ 1 Hz (second-order) and ≈ 1.5 Hz (third-order). The second-order461

super-harmonic component also seems to have substantial energy spread, i.e. the yellow area at462

≈ 1 Hz from t ≈ 47.5 to 50.5 s (at which time a second ‘spike’ of bound super-harmonics arrives).463

Reflected super-harmonic components can be discerned at t ≈ 53 and 55 s, with energy at the464

higher harmonics and peaks respectively at f ≈ 1.4 Hz (third-order) and f ≈ 1.8 Hz (fourth-order).465

Further energy can be seen at t ≈ 58 s spread across frequencies from 1 to 2 Hz. This is most likely466

a consequence of wave-wave interactions in the breaking zone, possibly very small re-reflections467

from the breaker line (so perhaps an artefact of the breaking criterion). A relative increase in468

low-frequency energy (between 0.15 and 0.3 Hz) is visible at t ≈ 50 to 55 s. At x = 18 m, very close469

to the shoreline, the incident and reflected components almost coincide. Here, the scalograms are470

similar to those at x = 17 m, except that the linear wave and its reflection have a peak at f ≈ 0.5 Hz471

centred at t ≈ 50 s and covering a range from 46.5 to 52 s. The sub-harmonic content at the lowest472

frequencies is much stronger, probably because of resonance in the swash zone. There are several473

spikes relating to super-harmonic components: one at t ≈ 46.5 s bound to the incoming linear waves;474

another at t ≈ 48 s the superposition of a second set of super-harmonic components bound to the475

incoming linear waves and the first set of reflected super-harmonics; and a third spike at t ≈ 51.5s476

related to the second set of outgoing reflected super-harmonics. Second-, third-, and fourth-order477

super-harmonics are predominant, though there appears to be wave energy at frequencies up to 10478
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Figure 13: CWT scalograms for free surface elevation time series of ±30° spread, crest-focused, multi-directional
wave group WG17 at the following locations along basin centreline: x = 2, 8.33, 12, 15, 17 and 18 m.

Hz. Lastly, there is energy at t ≈ 55 s, spread across super-harmonic frequencies from second- to479

fourth-order and beyond, which may have arisen from wave-wave interactions in the surf zone.480

3.4 Run-up analysis of focused wave groups481

Accurate calculation of maximum run-up caused by extreme waves is essential for the safe siting of482

new developments at the coast, or to assess the flood risk posed to existing infrastructure. Run-up483

is defined here as the instantaneous vertical elevation of the water surface above still water level484

on the surface of the beach. In the UKCRF tests described above, run-up was measured visually485

by filming the swash zone. Hunt (2003) estimated the error in these measurements to be ±10 cm486

along the slope, which corresponds to a vertical measurement of ±5 mm for a 1:20 beach.487

We now consider simulations of several of the UKCRF wave group experiments used to estimate488

maximum run-up. The wave groups chosen are those with the largest linear focus amplitude (Af )489

for each focus location, namely the beach toe, 3
4 offshore depth, and 1

2 offshore depth. Multiple490

spread angles are considered. Table 3 summarises the measured and predicted run-up results for491

each of the wave groups. As expected, the largest run-up events are produced by the uni-directional492

wave groups, the largest of all being WG5, the trough-focused wave group focusing at 3
4 offshore493

depth. In all cases (both numerical and experimental), the trough-focused wave groups produce494

larger run-up than their crest-focused counterparts. As the spread angle of the incident wave group495

increases, the maximum run-up decreases. For a given spread angle, with a linear focus amplitude496

Af = 114 mm, the maximum run-up is generally very similar when the focus location is the beach497

toe or 3
4 offshore depth. The only major departure from this is for uni-directional wave groups498

WG1 and WG2, where the 3
4 offshore depth focus location produces a significantly larger run-up499

event in both the laboratory and numerical results.500

In general, there is good agreement between the UKCRF measurements and the numerically501

predicted values. The largest magnitude error is for wave group WG17 at 16.9%, followed by WG30502

at -15%. Inspection of Table 3 reveals that the numerical model tends to over-predict the run-up503

of crest-focused wave groups, whereas the trough-focused wave group run-up is generally under-504

predicted. Table 4 presents the calculated percentage bias in the run-up results. The percentage bias505

measures the average tendency of the predicted values to be larger or smaller than the corresponding506
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observations, and is given by507

% BIAS = 100

(∑
(Rp −Rm)∑

Rm

)
, (7)

where Rm is the measured run-up, and Rp is the predicted run-up from Table 3. Whereas the total508

percentage bias of all wave groups is 2.2%, individual calculations for both crest- and trough-focused509

wave groups reveal +8.3% bias for the crest-focused groups, and -2.4% bias for the trough-focused510

groups.511

Table 5 lists the predicted run-up values for the directionally spread wave groups, expressed as a512

percentage of the run-up of the corresponding uni-directional wave group with the same linear focus513

amplitude and focus location. Grouping the main wave group types together (by spread angle and514

phase), and calculating the average percentage leads to Table 6, which presents a comparison with515

Hunt’s measurements. Hunt reports an approximate 20% reduction in run-up for a ±10° spread sea,516

and a 40% reduction for a ±30° spread sea. The reductions in run-up predicted by the numerical517

model are in general agreement with the values obtained by Hunt, although with slightly larger518

reductions observed, particularly for the ±10° spread wave groups.519

The values of the tuning parameters are likely to play a significant part in controlling the520

accuracy of results obtained using the present model, particularly the value of Cf in the swash521

zone. Judge et al. (2018) apply a number of different methods for calculating the eddy viscosity522

and bed friction coefficient using the present numerical model to carry out simulations involving523

nearshore circulation. They conclude that a more sophisticated turbulence model may improve524

representation of the hydrodynamics in the swash zone, and thus have an impact on numerical525

predictions of run-up. The model does not permit wave reformation from bores owing to the rather526

simple way wave breaking is treated. The foregoing warrant further research. A higher resolution527

computational grid might also lead to improved results; however achieving this for the spread-sea528

case would require more computational power than was available for the present research study.529

It should be noted that a recent study on uni-directional wave group optimisation on a similar530

1:20 beach (Whittaker et al., 2017) has shown that both the focus position (xf ) and the phase531

(φ) of the wave at focus are key parameters for determining run-up. The ‘stripes’ in Figure 10 of532

Whittaker et al. correspond to optimal combinations of focus location and phase causing maximum533

run-up. In contrast, for xf fixed with φ changing, the run-up can change from its local maximum to534

minimum rather quickly, with very sharp minima and rather broader maxima. In the uni-directional535

simulations, the run-up could change with phase by close to a factor of 2. Comparable effects should536

be expected in directionally spread groups, but full investigation of this is left for future work.537

3.4.1 Effect of long error wave on NewWave run-up538

Orszaghova et al. (2014) calculated second-order paddle signals for uni-directional focused wave539

groups at the UKCRF (WG1-WG8), which almost completely eliminated the low-frequency error540

wave. The error wave is not fully eliminated because Schäffer’s second order wave generation theory541

(Schäffer, 1996) is for potential flow, and is only approximately correct for the Madsen and Sørensen542

Boussinesq equations. In the present research, the multi-directional wave groups WG17 and WG21543

are again considered, using similarly corrected paddle signals. The aim here is to confirm that544

the long error wave travelling ahead of the wave group is largely eliminated, and to determine the545

impact this has on the maximum run-up of the multi-directional UKCRF tests. Although high-546

frequency error waves are still generated, these arrive at the beach after the main wave group and547

so do not interfere with the maximum run-up.548

The same method of separation of harmonics applied in the previous section is again imple-549

mented here, to isolate the second-order low-frequency components of the wave groups in order to550

identify whether contaminating long error waves are successfully removed. This time, the addition551

time series is low-pass filtered at 0.3 Hz, to remove the effect of out-of-phase linear components552

closer to the shore. Figure 14 compares the result of this exercise with the original numerical sim-553

ulation of wave groups WG17 and WG21 generated with the first-order paddle signal. The figure554

shows reduction in the amplitude of the wave crest leading the main wave group, indicating the555

removal of the free long error wave. A small hump remains that increases in amplitude as the wave556
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Wave group Af Spread Phase Focus Rm Rp % error
ref. (mm) angle (rad) location (mm) (mm) (Rp v Rm)

WG1 114 0° 0 beach toe 98 109 11.2
WG2 114 0° 0 3

4 depth 110 117 6.4
WG3 90 0° 0 1

2 depth 90 97 7.8
WG5 114 0° π beach toe 135 138 2.2
WG6 114 0° π 3

4 depth 136 137 0.7
WG7 90 0° π 1

2 depth 115 113 -1.7
WG17 114 ±30° 0 beach toe 59 69 16.9
WG18 114 ±30° 0 3

4 depth 60 65 8.3
WG19 90 ±30° 0 1

2 depth 51 56 9.8
WG21 114 ±30° π beach toe 76 72 -5.3
WG22 114 ±30° π 3

4 depth 75 74 -1.3
WG23 90 ±30° π 1

2 depth 65 63 -3.1
WG25 114 ±10° 0 beach toe 79 85 7.6
WG26 114 ±10° 0 3

4 depth 85 86 1.2
WG27 90 ±10° 0 1

2 depth 70 76 8.6
WG29 114 ±10° π beach toe 106 107 0.9
WG30 114 ±10° π 3

4 depth 107 91 -15.0
WG31 90 ±10° π 1

2 depth 86 84 -2.3

Table 3: Measured and predicted run-up of focused wave groups at a plane beach in the UKCRF.

Wave groups % BIAS

All 2.2
Crest-focused 8.3
Trough-focused -2.4

Table 4: % bias of run-up results

% of uni-directional
WG Spread Phase Rp Ref. WG

WG17 ±30° 0 63.3 WG1
WG18 ±30° 0 55.6 WG2
WG19 ±30° 0 57.7 WG3
WG21 ±30° π 52.2 WG5
WG22 ±30° π 54.0 WG6
WG23 ±30° π 55.8 WG7
WG25 ±10° 0 78.0 WG1
WG26 ±10° 0 73.5 WG2
WG27 ±10° 0 78.4 WG3
WG29 ±10° π 77.5 WG5
WG30 ±10° π 66.4 WG6
WG31 ±10° π 74.3 WG7

Table 5: Predicted run-up of directionally spread wave groups expressed as a percentage of the run-up of the
corresponding uni-directional wave groups with the same linear focus amplitude and focus location (Ref. WG)
at a plane beach in the UKCRF.
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mean % predicted mean % measured
αR αR (Hunt, 2003)

±10°crest focus 76.6 80.2
±10°trough focus 72.8 78.3
±30°crest focus 58.9 59.8
±30°trough focus 54.0 56.3

Table 6: Spread sea run-up expressed as a percentage of uni-directional run-up for both numerically predicted
and measured values.
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Figure 14: Space-time plots of multidirectional NewWave run-up at a plane beach - long waves only (low-pass
filtered at 0.3 Hz), WG17 and WG21 (±30 ° spread). Model predictions along basin centreline using (a) first
order paddle signals, and (b) second-order paddle signals.
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Figure 15: Space-time plots of multidirectional NewWave run-up at a plane beach - long waves only (low-pass
filtered at 0.3 Hz), WG25 and WG29 (±10 ° spread). Model predictions along basin centreline using (a) first
order paddle signals, and (b) second-order paddle signals.
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Figure 16: Numerical predictions of surface elevation at the time of maximum run-up for (a) WG25 (±10°

spread) using first-order paddle signals; and (b) WG25 using second-order paddle signals.

group shoals, along with the amplitudes of both the set-down and the trailing long wave crest. The557

effect of the second-order correction on the run-up is quantified in Table 7. A reduction in runup558

of 14.5% was observed for the crest-focused wave group, whereas a 13.9 % reduction was observed559

for the trough-focused case.560

A corresponding exercise is performed for wave groups WG25 and WG29 (with a spread angle561

of ±10°), and the results are presented in Figure 15. The numerical simulation using first-order562

paddle signals confirms the presence of a larger low-frequency error wave than was observed for563

the wave groups with a spread angle of ±30°. The application of a second-order correction to the564

paddle signals again largely removes the long error wave, and leads to a deeper set down beneath565

the main wave group. Whereas a significant difference in maximum run-up was observed between566

the crest (WG25) and trough-focused (WG29) wave groups using first-order wave generation, this567

difference is almost eradicated when using second-order wave generation (reductions of 20% and568

37.3% respectively), resulting in similar run-up predictions for these wave groups (Table 7). This is569

similar to the findings of Orszaghova et al. (2014) in relation to uni-directional wave groups WG1570

and WG5. It is likely that the long error wave interacts with the leading waves of trough-focused571

wave groups in a way that causes greater amplification of run-up than for crest-focused groups, and572

therefore its removal has the effect of narrowing the gap between the maximum run-up of both sets573

of groups. However, further research is required to investigate this behaviour.574

Figure 16 presents a comparison between the numerically predicted free surface elevation dis-575

tributions in the wave basin at maximum run-up for WG25 using first- and second-order paddle576

signals. It can clearly be seen that the second-order correction results in a significant reduction577

in the extent, in both the longshore and cross-shore directions, of the maximum run-up event. It578

should be noted that the second-order correction has been applied in the numerical model only - new579

experiments with second-order wave generation have not been carried out. Therefore, applying the580

second-order correction does not improve the agreement between the numerical and experimental581

data, the latter resulting from first-order paddle signals.582

Orszaghova et al. (2014) found, that by implementing second-order wave generation on uni-583

directional focused wave groups, predicted values of run-up were on average 40% smaller for the584

case considered than when first-order paddle signals were used. As demonstrated by the present585

study, the presence of an error wave due to first-order paddle signals also has an impact on the586

run-up of multi-directional wave groups, although as expected, the effect becomes less significant587

with increasing angle of spread. This is likely due to two effects: the reduction of the size of the588

bound set-down due to directional spreading; and the spreading out of the long error wave laterally.589
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Rp Rp,corrected % difference
(mm) (mm)

WG17 69 59 -14.5 %
WG21 72 62 -13.9 %
WG25 85 68 -20.0 %
WG29 107 67 -37.4 %

Table 7: Effect of second-order correction on numerically predicted NewWave run-up.

3.5 Long wave evolution590

The numerical generation of waves correct to second-order in 2DH provides us with the opportunity591

to study propagation of the long waves associated with multi-directional wave groups, with minimal592

impact from the free long error wave. Using numerical data for second-order wave groups WG25593

(±10° spread) and WG17 (±30° spread), the surface elevation time series along the basin centreline594

is low-pass filtered at 0.3 Hz, and the results are presented in Figure 17. In Figure 17 (a), small595

crests are visible either side of the bound set-down (blue) beneath WG25, as the waves propagate596

away from the paddles. The set-down deepens as the wave group shoals, reaching a local minimum597

at x ≈ 14 m, and t ≈ 50 s. The long wave travelling ahead of the set-down increases in amplitude598

rapidly from x > 16 m, as radiation stress gradients in the surf zone generate a dynamic set-599

up, leading to a low-frequency run-up motion above the SWL, which results in the reflection of a600

free wave crest offshore. The interaction between this reflected crest and the incoming set-down601

generates a transient node, similar to that noted by Lara et al. (2010) although more short-lived,602

lasting approximately 2 s. The reflected crest is preceded by a shallow long wave trough, whose603

origins can be traced to the breaker zone at x ≈ 15 m (note that the breakpoints of individual wave604

crests in the wave group are identifiable by the amplitude drop in the total free surface plots, not605

shown). Breakpoint forced waves are long waves forced by oscillations in the position of the break606

point; they were first theorised by Symonds et al. (1982), and subsequently by Schäffer (1993a) and607

others. Experiments by Baldock (2006) involving normally incident wave groups interacting with608

a 1:10 beach confirmed the generation of breakpoint forced waves. RANS modelling by Lara et al.609

(2010) of a uni-directional transient wave group propagating over a discontinuous beach predicted610

similar behaviour. This research indicates that breakpoint forced waves can also be generated by611

multi-directional wave groups.612

Figure 17 (b) presents results for the ±30° spread group (WG17). Compared with ±10° case, the613

bound set-down is shallower, and the low-frequency run-up motion at the shoreline is less severe. In614

contrast, the trailing incident wave crest experiences greater forcing as the wave group shoals, and615

continues to grow in the surf zone. Long wave offshore-traveling components are discernible, but616

much less significant than for the ±10° case. The source of some of these reflections can be traced617

to the breakpoint, potentially indicating the presence of breakpoint forced waves. The reduced long618

wave reflection (along the centreline) is due to sideways spreading of these components.619

Figure 18 provides a 2DH visualisation of the long wave evolution of WG17. It shows how620

the long wave crest leading the set-down spreads in the longshore direction as it shoals, becoming621

partly trapped at the shoreline and creating oblique reflections. The incoming set-down grows in622

amplitude until t = 50 s, after which the trapped leading long wave crest and its reflections forces623

it to spread laterally, losing amplitude as it does so. The loss of the linear waves due to breaking624

releases the long wave component trailing the main packet, which then rapidly grows locally as it625

shoals, travelling faster in the shallow water than the set-down ahead of it and causing a secondary626

low-frequency run-up event (at t ≈ 57 s). The return flow is diverted sideways around the group.627

4 Conclusions628

A 2DH hybrid numerical model that implements enhanced Boussinesq equations pre-breaking and629

nonlinear shallow water equations post-breaking has been used to simulate the propagation of multi-630
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Figure 17: Space-time plots of (a) WG25 (±10° spread), and (b) WG17 (±30° spread), low-pass filtered at 0.3
Hz. Model predictions along basin centreline using second-order paddle signals.
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Figure 18: Overhead (2DH) view of long wave evolution for WG17 (±30° spread), calculated from second-order
paddle signals and low-pass filtered at 0.3 Hz. Dashed lines represent the beach toe (x = 8.33 m, and SWL
(x = 18.33 m).
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directional wave groups in shallow water and their run-up at a plane beach. Excellent agreement631

has been obtained between the numerical predictions and previous laboratory measurements of free632

surface elevations for multi-directional NewWave focused wave group interactions with a plane beach633

in the UKCRF. Predicted and measured run-up values were generally in satisfactory agreement,634

though the numerical model tended to over-predict the run-up of crest-focused wave groups and635

under-predict the run-up of trough-focused wave groups.636

The use of harmonic decomposition using phase-inverted pairs of multi-directional wave groups637

allowed much of the harmonic structure to be revealed, both components bound to the main groups638

and free error wave components released by the paddle with linear driver signals. The magnitude639

of the low-frequency error wave was found to be smaller for multi-directional wave groups than640

the corresponding uni-directional case. Its effect on run-up was found to be smaller than for an641

equivalent uni-directional focused wave group. The presence of second and third sum harmonic642

error waves created by the paddle did not affect peak run-up because these components arrive at643

the beach well after the main group. Wavelet analysis gave useful insights into the way in which644

the spectrum of wave components changed with time, and the influence of non-linearity on the645

resulting wave surface elevation distributions.646

Low-pass filtering of the surface elevation time series for crest-focused multi-directional wave647

groups corrected to second order allowed further examination of the long wave evolution, including648

the generation of breakpoint forced waves in a spread sea. The lateral structure of the long waves649

in the surf and the swash zones has been revealed. The run-up and reflections caused by incident650

long waves become less severe with increasing spread angle, due to the longshore spreading of the651

low-frequency components.652

This paper has shown that focused wave groups provide an ideal means of exploring the harmonic653

structure of waves in the coastal zone. The approach revealed explicitly the creation of spurious654

error waves by linear wavemakers, which might otherwise be concealed within random wave tests.655

The effect of linear as opposed to second-order accurate paddle motions is significant, both for uni-656

directional and directionally spread normally incident wave groups, in terms of maximum run-up657

on the beach.658

These results are important because of the implications for the design of structures for coastal659

protection. A wave group corrected to second order represents a more realistic sea state, and660

thus produces more realistic run-up and overtopping events. Therefore, a numerical model that661

generates multi-directional waves correct to second order, could be used by the coastal engineer662

to design more efficient structures for coastal protection, and reduce the conservatism in seawall663

design. The present study and that of Orszaghova et al. (2014), confirm that second-order paddle664

motions are required when modelling run-up at laboratory-scale, and hence experiments using just665

linear theory may be significantly flawed. Just as for uni-directional waves (Fitzgerald et al., 2016;666

Whittaker et al., 2017), we propose that a localised, multi-directional focused wave group may be667

used as a ‘design wave’ for the simulation of run-up extremes in directionally spread seas. But this668

will require optimisation of both focus position and wave group phase at focus, as in Whittaker669

et al. (2017), and then comparison with random simulations for sea-states to provide robust extreme670

statistics, comparable to Fitzgerald et al. (2016). Both tasks are left for future work.671
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