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1 Introduction 
 
For conventional Wireless Sensor Networks (WSN) without energy harvesting 
capability, chemical batteries are normally used as energy storage subsystems. In 
most cases, the electrochemical reactions of the battery limits the WSN system 
lifetime. Once the chemical is depleted, maintenance efforts must be made to either 
replace or recharge the battery. Given the current battery technology and power 
consumption of the motes, even for motes run on low duty cycle, battery replacement 
is required every 3-6 months [1]. For WSNs with higher power consumption or higher 
duty cycle, the battery may limit the motes lifetime to less than a few weeks [2]. The 
short lifetime of the mote becomes a severe limitation for wireless sensor networks.  
 
By implementing energy harvesting techniques, energy in ambient sources like light, 
heat and vibration can be scavenged and transformed into useable form for low 
power WSNs, thus, the lifetime of the mote will not be limited by the available battery 
energy. Figure 1 shows the layout of the architecture of an indoor light energy 
harvesting system. 
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Figure 1: Energy Harvesting System Architecture 

 
For energy harvesting powered WSNs, electric double-layer capacitors 
(supercapacitors) are frequently used as the energy storage [3]. With a much higher 
rechargeable numbers, supercapacitor enables the WSN motes being charged over 



a million times.  Together with long shelf time, an energy harvester with 
supercapacitor energy storage expects 15 years operative lifetime. However, the 
leakage current of a supercapacitor is one order of magnitude higher than the 
conventional Lithium-ion battery. The energy density and capacity of the 
supercapacitor is also much lower than battery. The drawbacks of such lead to 
intensive research in more advanced supercapacitor and other alternative products.  
 
A type of thin film lithium polymer (TFLP) battery is introduced in this paper [4]. 
Significantly different from conventional Lithium polymer battery, the novel design of 
the TFLP battery provides a high number of rechargeable cycles (>50,000 times) and 
low leakage alternative for the WSNs energy storage. However, the small capacity 
(1mAh level) and relatively high internal resistance limit the application of TFLP 
battery as stand-alone energy storage. Thus, a hybrid energy storage unit is 
proposed in this paper to create a relatively high capacity and low leakage short-to-
middle term energy storage for energy harvesting powered WSNs. 
 
In section 2, the characterization of both TFLP battery and supercapacitors are 
presented and analyzed. In section 3, an energy storage mathematic model is 
created to simulate the subsystem performance. In section 4, the hybrid energy 
storage unit is implemented and integrated in Tyndall mote system. The test results 
in real world condition are also presented and compared with supercapacitor-only 
energy storage. 

2 Supercapacitor and Thin Film Lithium Polymer Battery 
 
In all types of energy harvesting approaches, the energy storage subsystem is one of 
the key elements.  WSNs powered or partly powered by an ambient energy harvester 
often use capacitive energy storage. Since these applications require relatively high 
energy density, the high capacitance electric double-layer capacitor (supercapacitor) 
is apparently preferred.  
 
At the mean time, recent development of thin film Lithium polymer (TFLP) battery 
technologies increases the capacity of these batteries to 1 mAh level [5]. The ever 
increasing capacity and high number of recharge cycles make TFLP battery an 
attractive option for energy harvesting applications.  A few energy harvesting 
products are now based on such technology [6].  
 
In this work, electrical characterizations have been conducted to investigate these 
two different types of energy storage techniques, supercapacitor and TFLP battery. 
Key parameters are tested; Table I. shows the characterization results. The leakage 
testing results are based on data gathered in 24 hours immediately after the samples 
are fully charged.  
 
The relationship between capacitance value CE and leakage current Ileak is given as 
Leakage Correlation ρ. For the supercapacitors presented in this paper, the 
correlation ρ is in the range of 5-8. For supercapacitors with a capacitance higher 



than 2 F, the leakage current is similar to the ultra-low duty cycle average current 

consumption of the Tyndall mote at 20-30 A level [7].  
 

Table I: Energy Storages Characterization 
 

Manu- 

facturer 

Equivalent 

Capacity 

CE (F) 

Effective 

Energy 

Density 

(J/cm
3
) 

Average 

Leakage 

Current 

Ileak (A) 

Leakage 

Correlation 

ρ 

Ileak / Cs 

(A×F
-1

) 

Minimum 

Charging 

Current 

IcMIN (A) 

Equivalent 

Series 

Resistance 

R () 

Maxwell 5.00 6.96 27.78 5.56 32 30 

EPCOS 4.10 11.31 26.28 6.41 28 50 

Cornell 

Dubilier  
3.30 5.38 23.50 7.12 25 0.3 

AVX 

Bestcap 
0.010 0.75 0.05 5.0 1 0.1 

Infinite 

Power 

Solution 

MEC101 

4.6 130.9 0.1 0.02 1 50 

 
In comparison, the TFLP battery IPS MEC101 shows a low leakage correlation ρ, the 

average leakage current over 24 hours test is only 0.1A compare to 26.3 A in 
EPCOS supercapacitor, while the TFLP battery obtains a higher capacity as well.   
 
In the WSNs application, the Equivalent Series Resistance (ESR) of the energy 
storage is an important factor. Since most of the WSNs are operated in a duty cycling 
manner, the power consumption of a mote is 2-3 orders of magnitudes higher during 
the active mode than in sleep mode [8]. Energy storage with a high ESR will result in 
high voltage drop on the energy storage unit. The microcontroller of Tyndall mote has 
a lower threshold voltage at 2.5V, therefore if the voltage drop across the ESR is 
higher than threshold, the microcontroller will be disabled, and the data processing 
will not be successfully conducted. For example, the small form factor EPCOS 4.1F 
supercapacitor has a 50 Ω ESR and a voltage rating at 2.7V. Since the active mode 
current is 33.1 mA, the voltage drop on the supercapacitor is 1.65V, thus the voltage 
on Tyndall mote is only 1.05V. To avoid this, it is important to use low ESR energy 
storage to supply at least the active mode current.  

3 Energy Storage Modeling 
 
Based on the characterization, an energy storage model meant to describe the 
capacity, energy density, internal resistance, average leakage current, minimum 
charging current is created to direct the system design.  Previous literature presents 
the physical based model and nonlinear fractional model of the supercapacitors [9] 
[10]. However, both of these models are not able to fully describe the characteristics 

of supercapacitor when W level power is used to charge the supercapacitor.  



In this paper, instead of using one physical based model, a statistic model is created 
to describe the supercapacitor. The model is comprised of one charging model and 
one discharge model based on neural networks method. The schematic of the 
energy storage charging model is shown in Figure 2 (a). The algorithm of the model 
is then trained and verified by multiple experiments conducted under same testing 
conditions as in the characterization tests in section 2.  Similar to the charging model, 
the schematic of discharging model is given in Figure 2 (b).  
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(a)                                                           (b) 
Figure 2. (a) Energy Storage Charging Model  (b) Energy Storage Discharging Model 

 
In the initial phase of the learning process, a set of training data is given to create the 
initial weight from the inputs.  The initial weight results although far away from the 
real condition, it sets the starting point of the learning process. In the forward pass 
phase of learning, inputs from training data file calculate the output based on the 
initial weight. The output then is compared with the target results to generate an error 
signal. The second phase will adjust the learning system parameters based on the 
learning rules. The size of adjustment step is pre-determined to avoid excessive 
adjustment. These two processes will repeat until the error signal reduces to lower 
than a defined tolerance threshold. The learning procedure is a supervised learning. 

  
                        Figure 3(a)                                             Figure 3(b) 
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                      Figure 3 (c)                                               Figure 4 (a) 

   
                     Figure 4 (b)                                                Figure 4 (c) 
Three samples are chosen to create the energy storage models: Cornell Dubilier (CD) 
3.3F 2.5V supercapacitor, AVX BestCap 0.01F 5V supercapacitor and IPS MEC101 
1.0mAh 4.1V TFLP battery. Figure 3 (a) (b) (c) show the charging model simulation 
results and measured results on three samples.  Figure 4 (a) (b) (c) show the 
discharging model simulation and measured results. 
 

Table II. Energy Storage Model Validations shown in Figure 3 & 4  

Figure Number Charging Model Figure 
Number 

Discharging Model 

Figure 3 (a)  CD Supercap 
Output voltage 

Figure 4 (a) AVX Supercap 
Output voltage* 

Figure 3 (b) AVX Supercap 
Available Energy 

Figure 4 (b) IPS TFLP Battery 
Available Energy** 

Figure 3 (c) IPS TFLP Battery 
Leakage Current 

Figure 4 (c) CD Supercap 
Leakage Current 

 
Note that in Figure 4 (a), the AVX supercapacitor is discharged by active mode 
power consumption of a Tyndall mote. In Figure 4 (b), the IPS TFLP battery is 
discharged by sleep mode power consumption. For each sample, models are created 
based on 10 set of testing data. The tolerance threshold for the model is set to be 5%. 
Once the error of all 10 set of data is lower than 3%, the model is then considered to 
be established. Two more set of data are then used to verify the confidence of the 
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neural network model.  The results show high level of correlation between the 
simulation results and testing results. The error between model simulation and 
testing results on all samples are lower than 3.5%.  

4 Modeling based Optimization and System Implementation 
In energy harvesting powered WSN operation, two phases are often defined as 

time period Tcharge when energy harvesting is charging the system and time period 
Tdischarge when energy harvesting is not available. In Tdischarge the energy used in mote 
is from energy storage unit. In order to maintain a continuous mote operation 
powered from energy harvester, two basic requirements are: first, energy harvester 
must charge the energy storage to required level within period Tcharge; second, 
system is ability to operate while no additional energy is available for a period of time 
Tdischarge.   

Separate models are used to explain the requirement in the two phases. In the 
case of indoor solar energy harvesting, charging phase of the harvester module can 
be described with the following equation (1). 

 

   
                                    

               

                 
               (1) 

Where    
      is the average PV cell output current,    

      is the average PV cell output 
voltage, Ileak is the supercapacitor normalized leakage current, Iact is the active mode 
current consumption and Isleep is the sleep mode current consumption. D is the duty 
cycle. Tcharge is the charging time in every 24hours (average illuminance >30lux). 
Tdischarge is the discharge time (8hours) when illuminance <30lux, Vavg is the average 
voltage on the supercapacitor in discharge phase. The required energy consumed in 
the discharge phase Edischarge is shown in the equation (2).  
 

    
       

  

 
                                                                   (2) 

Where C is the capacitance of the supercapacitor, V0 is the smaller one of average 
PV cell output voltage and supercapacitor rated voltage. Vmote is the lower operational 
voltage limit of Tyndall mote.  
  By applying the NN model simulation results in Equation (1) and (2) and compare 
different combinations, it can be noticed that a 0.01F level supercapacitor and TFLP 
battery is the optimized hybrid energy storage. In active mode of mote, the 0.01F 
supercapacitor is used to provide the high active mode current. The low ESR gives a 
very low voltage drop on the supercapacitor. The short discharge time in the active 
mode will not discharge the supercapacitor to a voltage lower than the threshold 
voltage as shown in Figure 4(a).  In sleep mode of the mote, the TFLP battery is 
used to provide a long term low leakage current power supply as shown in Figure 4 
(b). The high ESR will not create a high voltage drop when the sleep mode current 
consumption is 7uA.  In the charging phase as shown in equation (1), the TFLP 
battery is charged from the solar panel after maximum power point tracking. The low 
minimum charging current allows the TFLP battery been charged more efficiently. An 
external timer is used to control when to charge the supercapacitor from TFLP 
battery. The timer is programmed by the mote. The voltage rating of TFPL battery is 
higher than the Tyndall mote‟s required 3.0 V, while the supercapacitor‟s voltage can 
be programmed to meet the requirement. Thus, voltage regulators are only needed 



for the TFLP battery. The hybrid energy storage is then implemented as shown in 
Figure 5.  
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Figure 5. Hybrid Energy Storage Power Management 

The proposed energy storage unit was then integrated into an indoor light energy 
harvesting powered WSN system shown in Figure 5 and Figure 6. The low power 
Tyndall WSN mote is deployed in typical office environment to measure electricity 
consumption data. The experimental results show that the hybrid energy storage unit 
enables the Tyndall WSN mote to autonomously operate continuously based on 10 
hours of 350 lux indoor light illuminance every 24 hours. The proposed energy 
storage unit also extends the system operation lifetime in darkness by 24% from 58 
hours to 72 hours. 

 
Figure 6. Implemented Indoor Light Powered WSN with Hybrid Energy Storage 

Compared to capacitive energy storage [1], the proposed hybrid energy storage 
solution reduces the average leakage current by 45% to 12.5 uA. The effective 
capacity of the energy storage is also increased 25% to 1.3 mAh. 

5 CONCLUSIONS and FUTURE WORK 
This paper presents the design of a hybrid energy storage solution for energy 
harvesting powered WSN applications. By utilizing a neural network method based 
energy storage system model, a 1.3 mAh hybrid energy storage unit with 4.1V 



voltage rating is carefully designed by taking in account all the component 
parameters. The testing results show that it achieves 12.5 uA low leakage current, 
which makes it very attractive for energy harvesting applications. By integrating the 
hybrid energy storage unit into the indoor light powered Tyndall WSN, it significantly 
extends the mote operative time in darkness by 24%. The different voltage ratings on 
the two types of energy storages require additional dc/dc conversion and lead to 
lower energy conversion efficiency. In future work, a higher efficiency dc/dc converter 
or other methods need to be investigated in order to further reduce the energy loss in 
the energy storage subsystem. 
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