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Thesis abstract 

Bacteriocins are a heterogeneous group of small, ribosomal-synthesised, 

antimicrobial peptides produced by bacteria, capable of inhibiting bacteria both 

closely related or indeed those from other genera than the producer. These peptides 

are often active in the nanomolar range making them highly potent in low 

concentrations. This thesis expands the large body of research and knowledge that 

exists in the field of bacteriocins. 

 

Firstly, a literature review examines the current and potential applications of 

bacteriocins to control spore-forming bacteria in food manufacturing. This review 

was the first to examine the mechanisms that underpin the anti-spore potential of 

bacteriocins and their viable use. A second literature review examined the efficacy of 

bacteriocin antibiotics as an alternative to current antibiotics and their lowered 

potential to induce microbiota dysbiosis during treatment. The first research chapter 

used conventional bacteriocin culture-based screening approaches in combination 

with whole genome in silico screening and peptide characterisation to discover new 

antimicrobial candidates in the genus Geobacillus. This resulted in the discovery of 

the potentially novel bacteriocin thermocin 458, who’s amino acid sequence and 

molecular mass is unknown due to an interesting inability to generate enough peptide 

for in depth physicochemical characterisation. The second research chapter sought to 

identify the full potential of the genus Geobacillus as a reservoir for novel 

bacteriocin candidates using a bioinformatic approach. This ultimately resulted in the 

discovery of many potential bacteriocin gene clusters across a variety of bacteriocin 

classes that will likely ignite further in vitro characterisation as a result. The third 

and final research chapter of this thesis sought to advance bacteriocin mutagenesis 
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towards potential applications in cheese manufacture. Using a novel developmental 

approach, five new cheese starter cultures were created. Although three of the starter 

cultures produce nisin variants, they were created in a process that certifies their 

classification as non-genetically modified microorganisms (GMM) for contained 

use. This approach and its resultant non-GMM status is critical to future application 

and commercialisation of this technology.   

 

This thesis seeks to drive and generate interest in bacteriocin discovery and 

application in both academia and industry. Furthermore, the studies contained 

provide direction for future development within this field and demonstrate the 

efficacy of bacteriocin use in both food and medicine applications.  
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Chapter Ia 

 

 

Bacteriocins: Novel Solutions to Age Old Spore-Related problems? 

 

Kevin Egan, Des Field, Mary C. Rea, R. Paul Ross, Colin Hill  

and Paul D. Cotter 

 

 

This chapter was published in Frontiers in Microbiology (2016) 7, 461. 
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Abstract 

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by 

bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins 

are produced by food-grade lactic acid bacteria (LAB). Indeed, the prototypic 

bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 

countries. With consumers becoming more concerned about the levels of chemical 

preservatives present in food, bacteriocins offer an alternative, more natural 

approach, while ensuring both food safety and product shelf life. Bacteriocins also 

show additive/synergistic effects when used in combination with other treatments, 

such as heating, high pressure, organic compounds, and as part of food packaging. 

These features are particularly attractive from the perspective of controlling 

sporeforming bacteria. Bacterial spores are common contaminants of food products, 

and their outgrowth may cause food spoilage or food-borne illness. They are of 

particular concern to the food industry due to their thermal and chemical resistance 

in their dormant state. However, when spores germinate they lose the majority of 

their resistance traits, making them susceptible to a variety of food processing 

treatments. Bacteriocins represent one potential treatment as they may inhibit spores 

in the post-germination / outgrowth phase of the spore cycle. Spore eradication and 

control in food is critical, as they are able to spoil and in certain cases compromise 

the safety of food by producing dangerous toxins. Thus, understanding the 

mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against 

bacterial spores will ultimately facilitate their optimal use in food. This review will 

focus on the use of bacteriocins alone, or in combination with other innovative 

processing methods to control spores in food, the current knowledge and gaps 

therein with regard to bacteriocin-spore interactions and discuss future research 



7 
 

approaches to enable spores to be more effectively targeted by bacteriocins in food 

settings. 
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Introduction  

Control and eradication of Bacillus and Clostridium spores is one of the most 

challenging aspects of microbial control faced by the modern food industry. 

Traditionally, spores have been controlled using extreme treatments such as high 

heat alone or in combination with chemical additives. However, modern consumers 

are more conscious than previous generations of the negative health effects 

associated with the consumption of certain chemical preservatives and of the 

significant effects of heat on the nutritional value and flavour of many foods. With 

ready-to-eat and minimally processed foods becoming a staple of the modern diet, 

the food industry is faced with an unprecedented challenge to provide food that is: (I) 

low in synthetic chemical additives, (ii) low in salt/sugar, (iii) nutritionally 

beneficial, and (iv) stable and safe, from a microbial perspective, over an extended 

period of time. As a result, the food industry is under pressure to employ innovative 

processing methods to meet consumer and regulatory demands. One potential 

innovation that has been intensively researched over the last number of decades, and 

is well positioned to provide a safe and effective alternative to existing processing 

technologies, involves the use of bacteriocins. This review will examine the efficacy 

of bacteriocins alone, and in combination with other processing technologies, to 

control spores in food. 

 

The bacterial spore 

Metabolically dormant spores of Gram-positive Clostridium and Bacillus species are 

formed during sporulation. This sporulation process is typically a response to 

cellular nutrient starvation and involves a complex cascade of enzyme reactions. 

This process of sporulation has been extensively described over the last number of 
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decades in the model spore former B. subtilis (see review by: Tan and Ramamurthi 

(2014). Spores consist of a core surrounded by a coat and/or endosporium. The spore 

core consists of DNA, enzymes, and dipicolinic acid (DPA). DPA plays a role in 

maintaining spore dormancy, providing resistance to DNA damaging substances and 

is usually bound to divalent cations such as Ca2+ at a 1:1 ratio in the core 

(Setlow, 2014b). The composition and structure of the metabolically inactive, 

dehydrated, spore confers resistance to changes in pH (Blocher and Busta, 1983), 

wet and dry heat, UV radiation, desiccation (Nicholson et al., 2000), and various 

toxic chemicals (Russell, 1990; Cortezzo and Setlow, 2005). A spore may be viable 

after extended periods of dormancy (Cano and Borucki, 1995), monitoring its 

environment for favourable growth conditions and when suitable, germination and 

outgrowth occur, ultimately resulting in a vegetative cell (Figure 1). Endospore-

forming bacteria vary considerably with respect to genotype and phenotype and, with 

respect to phenotype, consist of aerobic, facultative anaerobic, and obligate 

anaerobic, psychrophilic, mesosphilic, thermophilic, psychotropic and 

thermotolerant strains (see review by: Doyle et al., 2015). This phenotypic 

heterogeneity of spore-forming bacteria means that virtually all types of food are 

potential targets for spore contamination and spore outgrowth, with potentially 

severe consequences with respect to food quality and safety. 

 

There are many pathways via which spores can gain access to the food chain. Food 

products are composed of multiple ingredients, potentially from different 

international origins, each contributing their own specific quantity and diversity of 

spores into the final formulation. Factors such as microbial ecology, farming 

practices, the local climate, hygiene of the processing facility and animal feeding 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B149
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B139
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B106
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B134
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B37
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practices determine the spore composition of an ingredient. Spores are also highly 

adhesive and may remain on the surfaces of equipment and contribute to problems 

long after their initial contamination of the facility. Reducing these initial spore loads 

is critical in avoiding problems downstream. However, it is important to note that 

spores are often selected for in food processing as their thermal resistance allows 

them to endure any heating steps (see review by: Carlin, 2011). 

 

As early as 1956 (Stuy, 1956), the induction of spore germination was identified as a 

strategy that could facilitate spore eradication. When threshold levels of nutrients 

(such as amino acids, sugars, and nucleosides) are present, they bind to Ger 

complexes, located on the inner membrane of the spore. This strategy takes 

advantage of the loss of the resistance properties that a dormant spore possesses. It 

has been shown that once spores have germinated, they become more sensitive than 

dormant spores to: heat (Durban et al., 1970), X-Ray and UV radiation (Stuy, 1956; 

Munakata, 1974), and copper (Wheeldon et al., 2008). Interestingly the process of 

spore germination is not 100% efficient, due to the heterogeneity in germination 

rates among members of the spore population in response to a particular nutrient 

germinant. Previous studies have highlighted the specificity of germinant receptors 

(GRs): showing that GerA will respond to L-alanine and L-valine, while GerB and 

GerK will respond to a mixture of L-asparagine, D-glucose, D-fructose, and 

potassium ions (Moir et al., 1994; Atluri et al., 2006). The binding of the nutrients to 

their appropriate GRs results in the irreversible commitment of the spore to 

germination. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B145
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B145
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B103
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B165
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B102
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B8
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Commonly spores termed superdormant have been isolated from populations of B. 

subtilis following saturation with nutrient germinant. This super dormancy is 

attributed to the lag in initiation of the rapid loss of Ca2+-DPA stage in spore 

germination. Following the initiation of rapid loss of Ca2+-DPA from its core, the 

spore is no longer superdormant and its germination will proceed in a similar manner 

as dormant spores (Figure 1). This superdormancy may be an issue for 

antimicrobials (e.g. nisin) whose effect is only exhibited on those spores that have 

reached the end of stage II of germination (Figure 1; Chen et al., 2014). 

Superdormant spores may, however germinate, in response to an alternative 

germinant that utilizes an alternative GR. A different strategy, which can be used to 

increase germination of super dormant spores, is by using higher heat activation 

temperatures than is required for those non-superdormant spores (Ghosh et 

al., 2009). Treatment of spores with sublethal heat (also called heat activation) has 

been shown to increase the rate of germination of a number of spore species. Luu et 

al. (2015) suggested that although the main target of heat activation is the spore's 

GRs, this may only be indirect and that the sublethal heat is having a more direct 

effect on the inner membrane of the spore in which the GRs are situated, ultimately 

resulting in increased spore germination. Therefore decisive triggering of the spore 

germination process, will allow food processors to render spores sensitive to a 

variety of inactivation methods that are ineffective against highly resistant dormant 

spores. 

 

Bacteriocins  

Bacteriocins are a class of ribosomally synthesized antimicrobial peptides (AMPs) 

produced by bacteria. These small and naturally produced peptides can kill other 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B53
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B86
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bacteria, which are closely (narrow spectrum) or distantly (broad spectrum) related 

to the producing bacteria (Cotter et al., 2005). It is hypothesized that the production 

of bacteriocins is a strategy to control competing bacteria in the hunt for nutrients 

and space in an environmental niche. Therefore, it is not surprising that it has been 

estimated that many bacteria produce at least one bacteriocin (Riley and 

Wertz, 2002), which may help them to influence the surrounding population 

dynamics. Although many bacteriocin-producing bacteria in the biosphere have been 

investigated, it is still the case that there remain many are that are still to be 

discovered (Yang et al., 2014). Indeed, bioinformatic mining of publically available 

genomes, along with other rapid techniques, are beginning to bridge this gap in 

initial discovery, by overcoming the previous dependence on the expensive, time 

consuming, culture-dependent nature of bacteriocin discovery and purification 

(Sandiford, 2015). BAGEL3 (BActeriocin Genome mining tooL) (van Heel et 

al., 2013) and antiSMASH 3.0 (antibiotics and Secondary Metabolite Analysis Shell) 

(Weber et al., 2015) are examples of web based genome mining tools that detect 

putative bacteriocin biosynthetic gene clusters. Liquid chromatography / mass 

spectrometry has also been used to rapidly detect bacteriocins in as little as 25 μl of 

culture supernatant and is sensitive enough to distinguish between variants of the 

same bacteriocin e.g., nisins A, Z, and Q (Zendo et al., 2008). High throughput, 

culture-based screens can also be valuable (Rea et al., 2010). 

 

Bacteriocins from LAB are suitable for food preservation 

Although there are many Gram-negative and Gram-positive microorganisms which 

produce bacteriocins, those produced by the lactic acid bacteria (LAB) are of 

particular interest to the food industry. Many of these bacteria already play a crucial 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B32
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B127
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B170
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B136
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B155
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B163
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B176
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B126
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role in a variety of food fermentations by converting lactose to lactic acid, as well as 

producing a variety of additional antimicrobial molecules such as other organic 

acids, diacetyl, acetoin, hydrogen peroxide, antifungal peptides, and bacteriocins. 

The best known LAB genera are Lactococcus, Streptococcus, Lactobacillus, 

Pediococcus, and Enterococcus, though a number of other, generally regarded as 

more peripheral and less frequently applied from an industrial perspective, genera 

also exist. LAB offer several key properties which make their bacteriocins highly 

desirable for use in food: (i) the LAB are Generally Regarded As Safe (GRAS) and 

there are perceived by the public as having health promoting features, (ii) their 

bacteriocins are sensitive to digestive proteases such as pancreatin complex, trypsin 

and chymotrypsin, and thus don't impact negatively on the gut microbiota, (iii) they 

are non-toxic to eukaryotic cells (iv) they are often active across a range of pH 

values and are, in many cases, not temperature sensitive (Table 1), (v) they are gene 

encoded and therefore highly amenable to genetic manipulation where desired (Field 

et al., 2015), (vi) not all of the bacteriocins produced by the LAB have similar / the 

same mode of action, and (vii) they are active against a range of food pathogenic and 

spoilage bacteria. 

 

Classification of bacteriocins produced by the LAB 

LAB bacteriocins may be classified into two separate classes based on their 

modification status: Modified (class I), and minimally modified or cyclic (class II; 

Rea et al., 2011; Cotter et al., 2013). 

 

Class I are comprised of all peptides that undergo post-translational modification 

during biosynthesis and include the subclass of lantibiotics among others. While 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B125
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B33
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several other subclasses within class I have been described (Arnison et al., 2013; 

Cotter et al., 2013), this review will focus mainly on those with relevance to the food 

industry. The commercially important bacteriocin nisin is produced by L. lactis and 

is the prototypical member of the class I lantibiotics. Nisin is currently used in over 

50 countries to improve food safety and extend shelf life. Other important members 

of this class include: the two peptide lantibiotic lacticin 3147 produced by L. 

lactis DPC 3147 (Suda et al., 2012), subtilin produced by Bacillus subtilis ATCC 

6633 (Lee and Kim, 2011), and lacticin 481 produced by L. lactis CNRZ 481 (Piard 

et al., 1993). Lantibiotics undergo extensive post-translational modifications, 

resulting in the presence of unusual amino acids such as lanthionine, β-

methyllanthionine, dehydrobutyrine, and dehydroalanine. Covalent bonds are formed 

between these non-standard residues, resulting in internal rings which are important 

for it’s potent activity (Rink et al., 2007). 

 

Class II bacteriocins are < 10 kDa, heat stable and non-modified peptides that can be 

further subdivided into four subgroups: IIa pediocin like, IIb two peptide 

bacteriocins, IIc cyclic bacteriocins, and IId single linear non-pediocin bacteriocins. 

Members of class IIa are Listeria-active peptides which contain a conserved amino 

acid consensus sequence across all members of this group: Y-G-N-G-V-X1-C-X2-

K/N-X3-X4-C (where X is any amino acid) (Cui et al., 2012). This consensus 

sequence is often referred to as the “pediocin box” and is present at the N-terminal 

region of the class IIa bacteriocins. Class IIb bacteriocins are unmodified two 

peptide bacteriocins, which interact to give full activity; having little or no activity in 

isolation. Class IIc bacteriocins are covalently linked from their N to C termini 

during post-translational modification resulting in a circular backbone. Class IId are 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B33
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B146
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B82
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B118
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B129
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B34
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a heterogeneous group, made up of bacteriocins which are linear, do not contain a 

pediocin box and do not require another peptide for full activity. 

 

Using bacteriocins produced by Enterococcus in food 

The bacteriocins produced by Enterococcus species are diverse, both in terms of 

their classification and inhibitory spectrum (Table 1). While most LAB are GRAS, 

and thus their associated bacteriocins can be considered for food applications, the 

status of enterococci is less clear. Indeed, many strains are clearly not food grade. 

Although Enterococcus species have been used as artisanal cultures in a variety of 

foods, their suitability for use in food is questionable as they have been sometimes 

associated with pathogenicity. Indeed, cases of urinary tract infections, bacteremia 

and endocarditis have been associated with Enterococcus species (Franz et al., 1999; 

Kayser, 2003). De Vuyst et al. (2003) suggested that Enterococcus species could be 

safely used in food if virulence genes are absent (cytolysin, vancomycin resistance, 

etc.). However, in a review by Franz et al. (2011), the ability of Enterococcus to 

acquire virulence and antibiotic resistance genes on mobile genetic elements was 

identified as a significant barrier to their use in food. Recently, Jaouani et al. (2015) 

examined the safety of previously identified bacteriocinogenic enterococci, by 

examining the presence of virulence and antibiotic resistance genes. Using these 

criteria, it was concluded that 22 / 55 of the strains tested were safe for use in food. 

Ultimately, Enterococcus are an important reservoir for bacteriocin discovery and 

therefore developing a comprehensive set of guidelines / considerations for their safe 

use would be highly valuable when considering their suitability for use in food. 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B45
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B79
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B76
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Bacteriocin mode of action against vegetative cells 

Mechanistically, bacteriocin molecules produced by the LAB act by one, or both, of 

two different mechanisms: (i) inhibition of cell wall biosynthesis, and (ii) pore 

formation. 

 

At the cell envelope, lipid II plays a key role in the synthesis of peptidoglycan as it 

transports cell wall subunits across the bacterial cytoplasmic membrane. Lipid II 

delivers its peptidoglycan subunit cargo from the cytosol to an exterior multi-enzyme 

complex which is responsible for polymerization of that subunit into the 

peptidoglycan cell wall. The halting of cell wall biosynthesis by sequestering lipid II 

is a strategy employed by a number of antimicrobial compounds which results in cell 

death (see review by: Oppedijk et al., 2016). The important clinical antibiotic 

vancomycin also targets lipid II, though its lipid II binding site is distinctly different 

to the lantibiotic nisin. The alternative binding site for nisin results in the ability of 

nisin to kill bacterial cells which are resistant to vancomycin (Gut et al., 2011). Other 

bacteriocins that exert their bactericidal mechanism of action by inhibition of cell 

wall biosynthesis are mersacidin, which inhibits transglycosylation (Brötz et 

al., 1995), and lactococcin 972 which targets septum biosynthesis via lipid II 

(Martínez et al., 2008). While lipid II is an important receptor for certain 

bacteriocins, there are however other receptors to which bacteriocins bind on the 

Gram-positive cell such as: the mannose PTS system, the maltose ABC transporter, 

Zn-dependent metallopeptidase, and undecaprenyl pyrophosphatase phosphatase (see 

review by: Cotter, 2014). Indeed these bacteriocin-receptor complexes play an 

important role in specifying a bacteriocins spectrum of activity. The outer cell 

membrane of Gram-negative bacteria provides an effective barrier to bacteriocins 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B112
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B90
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B31
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from binding their lipid II targets. However, Gram-negative bacteria can be 

sensitized toward bacteriocins if treated with agents or chemicals that destabilize the 

outer cell membrane (such as sodium phosphate buffer or EDTA). 

 

Bacteriocins may also kill or damage cells by pore formation in the cell membrane. 

This pore formation is achieved by insertion of the bacteriocin into the cell 

membrane, forming a membrane pore. This pore results in depolarization of the 

membrane potential and diffusion of low molecular cytosolic compounds out of the 

cell; ultimately rendering the bacterial cell non-viable. Enterocin AS-48 is predicted 

to form aggregates which insert into the bacterial membrane, resulting in 

accumulation of positive charge along the cell surface, destabilizing the membrane 

potential, leading to pore formation and cellular leakage. Other bacteriocins that 

form pores include: streptococcin SA-FF22, lacticin F, and lactococcin A (Héchard 

and Sahl, 2002). 

 

There are a number of members of the bacteriocins that exhibit dual modes of 

antimicrobial action by both: forming pores and inhibiting cell wall biosynthesis. 

The ability of such bacteriocins to act through two mechanisms of action can prevent 

the development of bacteriocin resistance. Moreover, it is worth noting that 

microorganisms that are resistant to antibiotics generally do not display cross-

resistance to bacteriocins (Jordan et al., 2014). Nisin (Wiedemann et al., 2001), 

pediocin PA-1 (Diep et al., 2007), lacticin 3147 (Wiedemann et al., 2006), epidermin 

(Götz et al., 2014), and gallidermin (Götz et al., 2014) are examples of bacteriocins 

that display a dual mode of action, making their activity particularly potent against 

their targets. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B63
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B77
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B167
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B166
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B57
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B57
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Bacteriocin spore interactions 

In comparison to the vast knowledge available with respect to bacteriocin 

interactions with vegetative cells, it is safe to say that there is considerably less 

known about bacteriocin / spore interactions. However, there are a small number of 

bacteriocins (Table 2) for which activity against a variety of bacterial spores has 

been demonstrated. Phase contrast microscopy can be utilized to determine at what 

stage in the spore cycle (Figure 1) the bacteriocin exhibits its anti-spore activity by 

combining the bacteriocins with dormant (phase bright) and germinated (phase dark) 

spores. Spore viability can then be examined following the treatment with 

bacteriocin to determine the bacteriocins effect on the spore. Two outcomes may 

ensue: the bacteriocin (i) does not require germination and will be sporicidal against 

dormant spores, or (ii) will be sporostatic to dormant and germinated spores but 

requires germination to inhibit spore outgrowth. Bacteriocins can also affect the 

germination rate of the spore, which can be examined by measuring the drop in 

absorbance (OD600nm) of a dormant spore suspension as it transitions to a germinated 

spore suspension over a time period. These outcomes are however heterogeneous 

(Table 3), with differences occurring at species level where the same bacteriocin was 

used, and will be further discussed below. 

 

Nisin  

Previous studies have shown that for B. anthracis (Gut et al., 2008; 2011), B. 

licheniformis (Mansour et al., 1999), C. difficile (Nerandzic and Donskey, 2013), 

and C. perfringens (Udompijitkul et al., 2012), nisin had no impact on the process of 

germination, as it neither initiated, inhibited, or altered the rate of germination, as 

examined on the basis of spore refractility, with or without nisin. Conversely, the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/figure/F1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B62
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B87
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B105
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B154
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presence of 25 μg/ml of nisin has been shown to have a progerminant activity for C. 

botulinum spores, as when it was present in the germination medium, the 

germination rate was doubled. However, the presence of nisin (125 μg/ml) has been 

shown to decrease the germination rate of B. sporothermodurans spores (Aouadhi et 

al., 2015). 

 

With respect to anti-B. anthracis activity, it has been reported that nisin exerts its 

inhibitory effect after germination initiation, where nisin binds lipid II in the 

germinating spore and prevents it from becoming metabolically active by interfering 

with the establishment of a membrane potential and oxidative metabolism. 

Germination initiation is required for this lipid II binding to occur, as nisin is unable 

to associate with the dormant spore due to the absence of lipid II on the exterior of 

the spore (Gut et al., 2011). When investigating the effects of nisin on C. 

perfringens spores, it was observed that, as for studies involving B. anthracis and C. 

butyricum, nisin exhibited its inhibitory action during the stage of spore outgrowth 

(Udompijitkul et al., 2012). Using a truncated nisin derivative consisting of rings A, 

B and C (which could bind lipid II but not form pores) and fluorescently labeled 

unmodified nisin, it was shown that lipid II binding alone was insufficient to inhibit 

spore outgrowth. This was further investigated using the double mutants 

N20P/M21P and M21P/K22P, which were unable to form pores, but could bind lipid 

II. These nisin mutants were again shown to be unable to inhibit spore outgrowth. 

Through the use of the double mutant and truncated nisin, it is clear that pore 

formation is the essential mechanism by which nisin inhibits spore outgrowth, while 

lipid II is the target for nisin (acting as a receptor for nisin) to inhibit outgrowth in 

the germinating spore (Gut et al., 2008; 2011). While it has been shown that 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B154
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B62
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B61
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truncated nisin consisting of rings A, B, and C does not inhibit spore outgrowth in B. 

anthracis, it has been reported elsewhere that this peptide does inhibit outgrowth 

of B. subtilis (Rink et al., 2007). While the mechanisms underlying these differing 

results have not yet been completely elucidated, some possible explanations given 

were (i) differences in outgrowth measurement methods and (ii) potential spore 

structure variations (Gut et al., 2011). Nisin however displays sporicidal activity 

against dormant B. sporothermodurans (Aouadhi et al., 2013), in contrast with the 

sporostatic activity against other targets described above. 

 

The ability of microorganisms to develop resistance mechanisms to bacteriocins is a 

concern that could impede their widespread use in food (see review by: Draper et 

al., 2015). Nisin resistance has been reported for toxigenic spores of C. 

botulinum which had the ability to germinate and grow in levels of nisin that reduced 

levels of sensitive germinating spores by 7–8 log10 spores/ml (Mazzotta and 

Montville, 1999). The exact mechanism by which these spores exhibited nisin 

resistance is unknown but, interestingly it has been noted that nisin resistant strains 

have an altered fatty acid composition, which is consistent with a more rigid 

membrane. It has also been observed that nisin resistant strains of C. 

botulinum display cross-resistance to class II bacteriocins (Mazzotta et al., 1997). 

 

Enterocin AS-48 

Enterocin AS-48 produced by Enterococcus faecalis A-48-32 is a class IIc cyclic 

bacteriocin that is active against a number of Bacillus and Clostridium sp. (Table 1). 

Unlike nisin, the exact molecular mechanism by which enterocin AS-48 interacts 

with bacterial spores is unknown. It was observed that spores of B. cereus became 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B129
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B97
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B96
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T1/
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more sensitive to enterocin AS-48 gradually after germination and were sensitive to 

25–50 μg/ml 10 min after germination initiation. The greatest effect of enterocin AS-

48 was observed 90–120 min after germination initiation, when cellular growth 

occurred (Abriouel et al., 2002). Enterocin AS-48 has also been shown to be 

effective in inhibiting spore outgrowth using heat activated spores of B. cereus. In a 

boiled rice substrate, 25 μg/ml of enterocin AS-48 reduced heat activated spores 

incubated at 37 and 15°C, below the level of detection after 3 days, whereas at 6°C, 

this reduction took 14 days. A higher concentration of 35 μg/ml of enterocin AS-48, 

reduced the heat activated spores below the level of detection in rice gruel after 24 h 

at three different temperatures (6, 15, and 37°C) (Grande et al., 2006b). 

 

Outgrowth inhibition of the important thermophilic spore-former Geobacillus 

stearothermophilus has also been shown using enterocin AS-48. G. stearothermophilus is 

regularly identified as a spoilage agent in low acid canned food, being highly heat resistant 

with a D121°C value of 1 min, so its removal from canned products requires an extensive 

heat treatment (Durand et al., 2015). Viedma et al. (2009) tested the efficacy of enterocin 

AS-48 in inhibiting spore outgrowth of G. stearothermophilus using three food models, 

canned corn, canned peas and coconut milk, using a cocktail of two G. 

stearothermophilus strains. Here it was shown that AS-48, used at 1.75 μg/ml, reduced 

the viable counts of heat treated spores below the level of detection after 24 h. B. 

licheniformis was controlled in a commercial cider by AS-48 at a level of 5 μg/ml at 

30°C. A significant reduction was observed in a population of germinated spores 

following treatment with AS-48 (Grande et al., 2006a). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B60
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B159
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B59
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The genus Alicyclobacillus has in recent years become a problem in the food 

industry. Members of this genus have an ability to grow at high temperatures (50–

70°C), and at low pH values (3.0–3.5), which makes their eradication from certain 

foods problematic. A. acidoterrestris is a particular problem in acidic juice products 

such as apple, tomato and orange, amongst others (Steyn et al., 2011). Inhibition 

of A. acidoterrestris spores by enterocin AS-48 has been observed at concentrations 

as low as 2.5 μg/ml. At this concentration a reduction of 6 Log10 spores/ml was 

achieved. Using electron microscopy it was observed that the enterocin AS-48 

treated spore structures sustained substantial damage supporting the hypothesis that 

the bacteriocin adsorbs to the spores negatively charged surface groups. This 

interaction with A. acidoterrestris would suggest a sporicidal rather than the 

sporostatic mechanism of action that is suggested for B. cereus (Grande et al., 2005). 

 

Lacticin 3147 

Lacticin 3147, produced by L. lactis subsp. lactis DPC3147, has been shown to 

inhibit spores of C. tyrobutyricum in milk. This Clostridium species is responsible 

for late blowing in hard cheese, as their spores can survive heat treatments and 

germinate in the ripening cheese. Previously nitrate was used to combat clostridia 

but has been banned by the European Food Safety authority (EFSA) in an effort to 

reduce nitrosamines in food (Bassi et al., 2015). When used at a concentration of 45 

μg/ml, lacticin 3147 was also able to completely inactivate 4–5 Log10 spores/ml over 

a 24 h period. Additionally, when lacticin 3147 was added following a 24 h 

incubation of the spores, total inactivation 6 days post addition of the bacteriocin was 

observed. In situ production of lacticin 3147, in a model curd system, has also been 

shown to significantly reduce (3 Log10 spores/g) the number of Clostridium spores 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B58
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B12


23 
 

after 13 days, when compared to a non-bacteriocin producing control. After 60 days 

of ripening, lacticin 3147 produced in situ was shown to be effective in reducing the 

levels of artificially contaminated clostridia (introduced prior to ripening) from 8 to 2 

Log10 spores/g (Carmen Martínez-Cuesta et al., 2010). 

 

Bificin C6165 

Bificin C6165 produced by Bifidobacterium animalis subsp. animalis CICC 6165 was 

shown to inhibit species such as Lactobacillus, Bifidobacterium, Enterococcus, 

Staphylococcus, and Alicyclobacillus acidoterrestris. Indeed, from an anti-sporeformer 

perspective, it is notable that bificin C6165 inhibited 20/20 strains of A. 

acidoterrestris tested. Bificin C6165 could also reduce a population of A. 

acidoterrestris spores and was more effective as the concentration of the bacteriocin 

increased (Pei et al., 2013). Another important characteristic of bificin C6165 which 

makes it an ideal candidate for inhibition of A. acidoterrestris is its activity at acidic pH 

3.5–6.5 (Pei et al., 2014). 

 

Plantaricin TF711 

Plantaricin TF711, produced by Lactobacillus plantarum TF711, is active over a 

broad pH range and is active against vegetative cells of B. cereus and C. 

sporogenes (Hernández et al., 2005). C. sporogenes acts as a research surrogate for 

proteolytic C. botulinum as these two species are closely related. This species has 

also been associated with late blowing of hard cheese (Bassi et al., 2015). Plantaricin 

TF711 was shown to reduce C. sporogenes spore counts significantly from 7 days 

onwards when introduced in the form of an adjunct culture producing the 

bacteriocin in situ. The bacteriocin was shown to be present at highest levels at day 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B116
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B64
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B12
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21, after which its activity declined. This decline in activity could be due to loss of 

stability, depletion of the bacteriocin in the cheese, or reduced production of the 

bacteriocin (González and Zárate, 2015). 

 

Thurincin H 

Thurincin H produced by B. thuringiensis SF361 has been shown to be sporostatic 

against dormant B. cereus spores and sporicidal against germinated B. cereus spores. 

Similarly to other bacteriocins, thurincin H displays sporicidal activity after 

germination, while it was sporostatic to dormant spores. Although not an LAB 

bacteriocin, it has been suggested that Thurincin H may have potential for use in 

food (Wang et al., 2014). 

 

Other bacteriocins active against bacterial spores 

There are a number of other bacteriocins that have shown potential. Some of these are 

described here. Soria and Audisio (2014) revealed that heat activated B. cereus spores 

could be inhibited by the cell free supernatant of E. faecium SM21 containing an enterocin 

which produced a bacteriostatic effect at both pH 5 and pH 6. Bacteriocin production 

by Streptococcus thermophilus 580 was capable of inhibiting C. tyrobutyricum gas 

production in a ripening curd model for up to 14 days, when compared to controls which 

produced gas after 14 days (Mathot et al., 2003). Pentocin L and pentocin S, are produced 

by Pediococcus pentosaceus L and S, respectively. Both of these bacteriocins are 

inhibitory against a variety of vegetative Bacillus and Clostridium strains (Table 1). 

Furthermore, these bacteriocins were shown to be sporostatic by inhibiting the 

germination of three different strains of non-heat activated B. cereus spores. These 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B56
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B162
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B143
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B95
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T1/
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active proteins are larger than typical bacteriocins which suggests that these peptides 

may in fact be bacteriolysins (Yin et al., 2003). 

 

Comparing the sensitivity of spore and vegetative cells of bacteriocins 

To date there have been conflicting reports as to whether germinated spores are more 

or less resistant to bacteriocins than vegetative cells. Heat activated spores of B. 

sporothermodurans are less sensitive to nisin (1.25 μg/ml), than vegetative cells of B. 

sporothermodurans (Aouadhi et al., 2015). The Minimum Inhibitory Concentration 

(MIC) of nisin for vegetative cells of C. butyricum, C. perfringens, C. sporogenes, 

and C. tyrobutyricum was found to be 0.17, 0.75, 38.4, and 4.8 μg/ml, respectively. 

However, 23 μg/ml of nisin prevented outgrowth of heat activated Clostridium spores 

for up to 10 days. Unfortunately in this study it is unclear whether the vegetative cells 

were more or less resistant than their spores to the nisin treatment as no MIC for 

spores was carried out (Meghrous et al., 1999). Another study found that vegetative 

cells of C. sporogenes were less resistant to nisin than heat activated spores, yielding 

MICs of 0.23 and 1.11 μg/ml, respectively. In contrast, it was revealed that heat 

activated C. beijerinckii spores were less resistant with an MIC of 1.09 μg/ml while 

their vegetative cells exhibited an MIC of 1.3 μg/ml (Hofstetter et al., 2013). At odds 

with these findings, however, were the results obtained by Ávila et al. (2014), which 

compared the sensitivity of spores and vegetative cells of four clostridia: C. 

tyrobutyricum, C. butyricum, C. beijerinckii, and C. sporogenes. Using four 

representatives of each species, they showed that spores had a higher MIC, and thus 

were more resistant to nisin, than their vegetative counterparts in 15 of the 16 strains 

tested. The only exception was displayed by C. tyrobutyricum CET 4011 strain where 

the vegetative and spore MIC values were equal at 0.39 μg/ml. It is also important to 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B174
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B99
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B66
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B9
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note that in this case all the MIC values were below the maximum permissible limit 

for nisin, which is 12.5 μg/ml in Europe. 

 

Spores of A. acidoterrestris were found to be more sensitive to nisin than their 

vegetative cells. The MIC values for both spores and vegetative cells were carried out 

in mYPGA at two different pH values (pH 3.4 and pH 4.2). Interestingly, at pH 3.4, all 

spores were more sensitive (7/7) than their vegetative cells. However, at pH 4.2 (3/7) 

spores had equal MIC-values to their vegetative cells (Yamazaki et al., 2000). Whether 

this is due to the (i) enhanced activity of nisin at lower pH, (ii) negative effects of pH 

on the spore or (iii) a combined activity of both, has yet to be determined. These 

findings were further confirmed by Ruiz et al. (2013), who found the MIC of spores 

and vegetative cells of A. acidoterrestris to be 7.81 and 31.25 μg/ml, respectively. 

 

Inhibition of spore outgrowth prevents toxin formation 

Toxin formation is an important feature of a number of Clostridium and Bacillus species. 

There are two types of toxin with which B. cereus strains are frequently associated: 

(i) heat labile diarrheal enterotoxin and/or (ii) heat-stable emetic enterotoxin. 

Beuchat et al. (1997) showed that the production of diarrheal enterotoxin produced 

in beef gravy inoculated with B. cereus spores could be inhibited by addition of 

nisin. Enterotoxin production normally occurred after 3 and 9 days for heat 

activated B. cereus spores incubated at 15 and 8°C, respectively. Addition of 1 μg/ml 

of nisin inhibited enterotoxin production completely at 8°C, whereas a higher 

concentration of 5 μg/ml was needed to inhibit enterotoxin production at 15°C over a 

14 day period. The levels of nisin required to prevent enterotoxin production from a 

spore inoculum also ensured that the final cell numbers did not exceed 4.03 and 6.23 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B169
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B132
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B14
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Log10 CFU/g at 8 and 15°C, respectively. Without nisin, enterotoxin was produced 

when cell numbers exceeded 6.78 and 7.1 Log10 CFU/ml at 15 and 8°C, respectively. 

This is in agreement with the strategy of keeping the B. cereus population below ~7 

Log10 CFU/g to prevent enterotoxin production (Christiansson et al., 1989). It would 

be interesting to see if the cell numbers in the presence of nisin were allowed to 

exceed these numbers would enterotoxin still be produced or would the enterotoxin 

production cease due to the presence of nisin. 

 

Enterocin AS-48 was also shown to have an effect on enterotoxin production by 

psychrotrophic vegetative cells of B. cereus. Enterocin AS-48 completely inhibited 

enterotoxin production and bacterial growth for at least 72 h when used at 7.5 μg/ml. 

When enterocin AS-48 was used at subinhibitory concentrations (2.5 or 5 μg/ml) the 

growth of the cells were severely subdued and enterotoxin titres were 10-fold lower 

than non-bacteriocin treated controls (Abriouel et al., 2002). 

 

Combining bacteriocins with other hurdles 

Bacteriocins in combination with heating 

The thermal resistance of bacterial spores makes their eradication from food by heat a 

major problem during food processing. Nisin at various concentrations has been 

shown to reduce the decimal reduction times (D-values) and thus the thermal 

resistance of bacterial spores. Therefore, nisin has been described as a compound with 

a “two-fold beneficial effect”: (i) it enhances the heat sensitivity of the bacterial spore 

(Table 4) and (ii) it prevents the outgrowth of spores which survive the heat treatment 

(Komitopoulou et al., 1999). Pre-exposing heat activated G. stearothermophilus spores 

to nisin (50 μg/ml) at 4°C in chocolate milk for 15 and 24 h, resulted in significantly 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B2
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reduced D130°C values of 20.5 and 25.1%, respectively, compared to those spores not 

pretreated with nisin. When the nisin pretreatment was raised to 100 μg/ml this did not 

cause a significant reduction over the lower concentration of 50 μg/ml (Beard et 

al., 1999). B. amyloliquefaciens spores were rapidly inactivated when treated with 

90°C and 16 μg/ml of nisin, in contrast to the results when a 90°C treatment was used, 

alone, where there was no inactivation of spores (Hofstetter et al., 2013). 

 

A reduction of 2 Log10 spores/ml was observed when spores of C. sporogenes spores 

were subjected to a heat treatment of 90°C for 2 h in the presence of 16 μg/ml nisin 

vs. a 90°C heat treatment without nisin. Additionally there was 30% greater DPA 

release when spores of C. sporogenes were heat treated at 90°C with nisin than those 

spores which were not treated in any way. However, when C. beijerinckii was 

subjected to the same conditions (90°C for 2 h and 16 μg/ml nisin), no increased 

inactivation was observed. The ability of nisin to increase the permeability of resting 

spores of C. sporogenes and C. beijerinckii was observed using DAPI staining. 

Fluorescence was observed after a treatment at 90°C with nisin, whereas a heat 

treated spore without nisin that did not fluoresce (Hofstetter et al., 2013). These 

findings are consistent with the hypothesis that nisin lowers the heat resistance of 

spores by permeabilizing their exterior. 

 

Response surface technology (RSM) is an empirical modeling technique that can be 

used to examine and predict the relationship between the response variable and the 

test variable. RSM can be used to predict optimum processing conditions to achieve 

a pre-determined reduction in spores (Table 5). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B66
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Dormant B. coagulans spores were shown to be resistant to enterocin AS-48 in that 

use of 6 μg/ml bacteriocin resulted in an approximately one log reduction in the 

number of viable cells when dormant spores were treated with the bacteriocin in 

three food models: (i) tomato paste, (ii) syrup from canned peach, and (iii) juice from 

canned pineapple. However, using enterocin AS-48 at 3 and 6 μg/ml in combination 

with heat treatments (5 min at a minimum of 80°C) showed a significant reduction in 

the number of viable cells in both food models. When spores were incubated at 22°C 

for 48 h with bacteriocin, then heat treated at both 80 and 95°C, there was a 

significant difference in the number of viable cells obtained following both 

treatments relative to the non-heat treated controls or those that were heat treated 

without bacteriocin (Lucas et al., 2006). A relationship between heat temperature and 

survivors was observed, showing that viable counts in samples supplemented with 

bacteriocin decreased as the temperature was increased. This relationship was further 

evidenced by the significant reduction in viable counts obtained from bacteriocin 

treated spores heat treated at 95°C over those heat treated at 80°C. This relationship 

was observed in all three food models previously discussed (Lucas et al., 2006). 

Ultimately, this study nicely highlights the efficacy of bacteriocins to (i) reduce the 

severity of heat treatments and (ii) increase the effectiveness of heat treatments, 

when used to inactivate spores in food. 

 

Another bacteriocin discussed previously, bificin C6165, has been shown to reduce 

the D90°C value of A. acidoterrestris as the bacteriocin concentration increased from 

0 to 160 μg/ml. Addition of 80 and 160 μg/ml of bificin C6165 was shown to reduce 

the D90°C A. acidoterrestris CFD1 by 32.7 and 42.7%, respectively (Pei et al., 2014). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B85
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Bacteriocins in combination with pressure 

High-pressure processing (HPP) is a “non-thermal” food preservation technique that 

inactivates harmful pathogens and vegetative spoilage microorganisms by using 

pressure rather than heat to effect pasteurization. HPP utilizes intense pressure (about 

400–600 MPa or 58,000–87,000 psi) at chilled or mild process temperatures (< 

45°C), allowing most foods to be preserved with minimal effects on taste, texture, 

appearance, or nutritional value. Microorganisms do however display a variability in 

their sensitivity to HHP in the order: Gram-negative bacteria > Gram-positive 

bacteria > bacterial spores. While HPP is an effective method used for the 

destruction of microorganisms in food, it is not sufficient alone to inactivate spores 

and therefore must be combined with other hurdles, such as bacteriocins, to increase 

its efficacy. Indeed, treating food with bacteriocins may be an excellent combination 

as HHP can induce germination, which can facilitate the germination-dependent 

sporicidal activity of bacteriocins. Black et al. (2008) showed that treatment of 8 

Log10 spores/ml of B. subtilis with low pressure (100 MPa i.e., not HHP) at 40°C in 

milk resulted in germination and inactivation of 4 and 1 Log10 spores/ml, 

respectively. A similar level of germination, but without inactivation, was observed 

in milk when a higher treatment of 500 MPa was used. When spores were treated 

with a combination of HP (500 MPa) and nisin (12.5 μg/ml), spore germination and 

inactivation increased to 6 and 3 Log10 spores/ml, respectively. When cycled twice 

with nisin there was a further increase in spore germination and inactivation of 8 and 

6 Log10 spores/ml, respectively. High pressure-induced germination is known not to 

require the presence of nutrient receptors and is characterized by a rapid release in 

DPA-Ca2+ from the core. Nisin can be characterized as a potent pro-germinant in the 

presence of germinants (naturally present in milk) such as L-alanine and L-cysteine. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B16
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Interestingly, nisin doubled the rate of germination in C. botulinum spores, while it 

had no effect on nisin resistant spores (Mazzotta and Montville, 1999). It was 

hypothesized that inactivation of spores by HPP and nisin could be due to (i) nisin 

and HP acting synergistically to inactivate spores or (ii) HP inducing germination 

after which nisin exerts its lethal effect on the germinated spore (Black et 

al., 2008). C. sporogenes spores were also shown to be inhibited rapidly by a 

treatment of nisin and 600 MPa at 90°C, relative to a treatment of 90°C alone 

(Hofstetter et al., 2013). 

 

More recently, several studies have used response surface methodology (RSM) to 

test the effectiveness of high pressure, heat and nisin. Aouadhi et al. (2013) used 

RSM to investigate the effects of high pressure, in combination with moderate heat 

and nisin treatment, on B. sporothermodurans spores. The authors showed that spore 

inactivation was concentration dependent and that 1.25 and 125 μg/ml caused an 

inactivation of 0.4 and 4 Log10 spores/ml, respectively. Aouadhi et al. (2014) and 

Gao et al. (2011) showed that RSM (Table 5) could be effectively implemented to 

design an optimum treatment, involving multiple parameters to reduce spores loads 

by a predetermined amount. 

 

Interestingly, superdormant spores of B. cereus and B. subtilis have been shown to 

germinate similarly to dormant spores when treated with pressure of 150MPa 

regardless of whether they were heat-activated or non-heat-activated. There have, 

however, been conflicting reports regarding the ability of pressure treatments to 

cause germination of an entire spore population. This uncertainty has impeded the 

widespread use of high pressure. It has been hypothesized that spores which remain 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B97
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B66
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T5/
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superdormant after high pressure may do so via a distinct mechanism from that 

involved in making some spores superdormant to nutrient germinants (Wei et 

al., 2010). 

 

Bacteriocins in combination with pulsed electric field 

Pulsed electric field (PEF) is an innovative food preservation method, which may be 

suitable for reducing spore loads in liquid food. One of the distinct advantages of 

PEF is that the thermal impacts on food are minimized as this treatment is relatively 

non-thermal. Any heat produced is directly influenced by the energy input of the 

treatment. While it is known that vegetative cells of B. cereus are sensitive to PEF 

and nisin (Pol et al., 2000) and that this combination is sporostatic, this treatment did 

not initiate germination nor did it affect the viability of the dormant spores. After 

germination, B. cereus immediately became sensitive to nisin (1.25 μg/ml) but it was 

longer (50 min) before outgrowing cells became sensitive to PEF (27 kV/cm, 302-μs 

pulses; flow rate, 10 ml/min). Unlike the synergistic activity of nisin and PEF against 

vegetative cells (Pol et al., 2000), when spores are treated with both PEF and nisin 

this synergistic activity was not observed as the reduction was comparable to nisin 

alone (Pol et al., 2001). While this combination is not synergistic against spores, 

food rarely contains spores alone but rather a mixed population of spores and 

vegetative cells. Therefore, this combination may still be an effective way of 

maintaining dormant spore numbers yet reducing the population of vegetative cells 

for increased food safety and shelf life. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B164
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B122
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Bacteriocins in combination with osmotic activation 

Stimulation of dormant bacterial spore germination followed by subsequent 

inactivation, as previously discussed, is a promising method used for spore 

inactivation. Small, non-polar, hydrophobic solutes that permeate the plasma 

membrane have been shown to stimulate B. cereus germination (Preston and 

Douthit, 1984). Inhibition of non-heat activated C. difficile spores was significantly 

increased when treated with nisin and single osmotic activators (ammonium, 

glycerol, and Tris) compared to heat activated spores treated with nisin and solutes in 

a germination medium. For example, nisin in combination with heating resulted in a 

1–2.5 log10 spores/ml decrease in viable spores but when nisin was combined with 

osmotic activators this increased to >3.5 log10 spores/ml (Nerandzic and 

Donskey, 2013). Using flow cytometry, it was observed that the membrane 

permeability of spores was significantly increased when treated with osmotic 

activators. Spores treated with both nisin and solute transitioned to phase dark (as 

spores germinate they appear phase dark using phase contrast microscopy), whereas 

those incubated with nisin and osmotic activators separately did not transition to 

phase dark (Nerandzic and Donskey, 2013). The proposed synergistic ability of nisin 

and osmotic activators to inhibit outgrowth was attributed to the osmotically induced 

loss of membrane integrity. Although C. difficile is of clinical importance, this use of 

osmotic activation could be used to overcome limitations of the germination 

dependent activity of bacteriocins with other food related strains of clostridia. 

  

Bacteriocins in food packaging  

The preservation of sausage casings of preserved intestines of animals has been 

practiced for centuries. However, this preservation method has been modernized to 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B123
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B105
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B105


34 
 

suit modern consumer desires. Such a modernization is the binding of nisin to 

sausage casing in order to control Clostridium spore outgrowth. Wijnker et al. (2011) 

showed that nisin, at 100 μg/ml, when bound to casings and placed on agar plates 

seeded with Clostridium spores, produced zones whereas those casings with only 50 

μg/ml did not. They also observed that addition of nisin at 50 μg/ml to the casings 

delayed C. sporogenes spore outgrowth between 1 and 8 days. Furthermore, at this 

concentration of 50 μg/ml, this sporostatic activity was observed for 30 days. In 

contrast, Meghrous et al. (1999) showed that a lower concentration of nisin, 23 

μg/ml, delayed clostridial spore outgrowth by 10 days. It should also be noted that 

Wijnker et al. (2011) used 106 spores/ml whereas Meghrous et al. (1999) used 

103 spores/ml. The reason that nisin at 50 μg/ml could inhibit outgrowth in vitro but 

not on the casings could be due to the irreversible binding of nisin to the collagen 

matrix of the casing wall. This would suggest that if outgrowth is to be prevented, 

the casings need to contain a higher concentration of nisin in order to overcome the 

deleterious effect of irreversible binding to the casing matrix. 

 

Bacteriocins in combination with plant extracts 

Plants contain innumerable constituents and are valuable sources of new and 

biologically active molecules possessing antimicrobial properties. The plant 

family Piperaceae are found in tropical and subtropical regions and are commonly 

used as to generate medicinal herbs. Ruiz et al. (2013) showed that a combination of 

nisin and Piper aduncum exhibited a strong antibacterial activity against spores of A. 

acidoterrestris and also exhibited a synergism (FIC = 0.24) against A. 

acidoterrestris vegetative cells. Prenylated chromone was identified as the active 

compound in this plant extract. Piperaceae extract is a natural food preservation 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B168
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B99
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B168
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B99
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B132
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method that may be combined with nisin to lower (if any) heat treatment needed to 

reduce and inhibit spores outgrowth. 

 

Bacteriocins in combination with fatty acid esters 

Sucrose fatty esters are approved internationally for use as emulsifiers and these non-toxic 

molecules have also been reported to inhibit Gram-positive bacteria. A combination of 

nisin and the fatty acid ester, sucrose palmitate (P-1570), displayed synergism against 

spores of B. cereus whereas sucrose fatty acid esters alone caused no decrease in growth 

(Thomas et al., 1998). Total inhibition of B. licheniformis spore outgrowth was achieved 

when nisin (0.75 μg/ml) was combined with the fatty acid ester monolaurin (100 μg/ml) 

whereas when these treatments were used separately at higher concentrations they only 

partially inhibited outgrowth (Mansour et al., 1999). 

 

Bacteriocins in combination with potassium sorbate 

Sorbates are extensively used in the food industry, as they are able to inhibit, or 

delay growth of, spores and vegetative populations of bacteria. Although their 

mechanism of action is not full defined for bacterial spores, it is has been shown that 

potassium sorbate inhibits the growth of spores of Bacillus species (Oloyede and 

Scholefield, 1994). A combination of nisin (1.25 μg/ml) and potassium sorbate (2% 

w/v) has been shown to cause a synergistic reduction in the number of heat 

activated B. sporothermodurans spores. After 8 h there was ~3 Log10 spores/ml 

reduction. This reduction in spores continued albeit at a slower rate until 5 days 

where total inhibition of B. sporothermodurans spores occurred (Aouadhi et 

al., 2015). When tested separately at these levels, both nisin and potassium sorbate 

inhibited spore outgrowth. Nisin was not sporicidal but rather sporostatic, inhibiting 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B150
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B87
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B111
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B4
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spore outgrowth. While potassium sorbate was not sporicidal, it did significantly 

perturb germination of B. sporothermodurans and inhibited the outgrowth of spores 

(Aouadhi et al., 2015). This ability of potassium sorbate to inhibit spore germination 

has previously been reported for spores of B. cereus and C. botulinum (Smoot and 

Pierson, 1981). 

  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B140


37 
 

Discussion  

While spores are a widely recognized problem in the food industry the majority of 

bacteriocin-related studies have focused on the elimination of vegetative cells from 

food. The removal of spores and inhibition of their outgrowth in food is important 

for (i) increasing shelf life and (ii) protecting the consumer from harmful pathogenic 

spore-formers. Although there are numerous bacteriocins which have been 

characterized as safe and effective molecules for use in food, to date, nisin is the 

only bacteriocin which is authorized for use as a food preservative. While this 

bacteriocin provides an effective and safe method to reduce spore outgrowth in food, 

it is important to recognize that this molecule has its limitations. Bacteriocins in food 

may be limited by: molecule specific solubility, the active pH range of the 

bacteriocin, inactivation by proteases in food, and the possible negative interactions 

that occur between certain bacteriocins and certain food components. One such 

limitation of nisin is its loss of activity as the pH of the food increases. There are a 

variety of bacteriocins which are more active than nisin at higher pH, such as 

gassericin A, pediocin AcM, and thermophilin T (Table 1), however they still need 

to be further characterized before their use in food may be authorized. 

 

In the majority of cases nisin is only sporicidal against those spores in the outgrowth 

phase and therefore has no effect on those spores in the dormant phase. Although 

this model of nisin (and other bacteriocins) use in food suggests that germination is a 

prerequisite for its activity, it is important to note that there are relatively few studies 

which investigate bacteriocin/spore interactions. Furthermore, it should be 

recognized that the only detailed mechanism for bacteriocins/spore interaction is that 

of B. anthracis. Indeed, the limited number of existing studies highlights the need for 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/table/T1/
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further research in this area. Understanding these interactions and mechanisms will 

ultimately lead to a more precise and optimal use of bacteriocins in food. 

Undeniably, the mode of action for a great many bacteriocins has yet to be 

elucidated and a better understanding of the methods by which bacteriocins kill 

bacteria will facilitate a solid basis for engineering new and more potent derivatives 

with optimized potency and stability. Given that spores must germinate to exert their 

adverse effects, future research should focus on stimulating spore germination to 

enable spores to be more effectively targeted by bacteriocins in food settings. Indeed, 

recent research provides stimulating evidence for using a germination step prior to 

spore destruction for promoting inactivation of Bacillus and Clostridial spores (Gut 

et al., 2008). Furthermore, although numerous components of the spore germination 

machinery are conserved between spore forming members of bacilli and clostridia, 

significant differences between the germination of spores of Clostridium 

perfringens and that of spores of a number of Bacillus species, both in the proteins 

and in the signal transduction pathways involved have been revealed (Abhyankar et 

al., 2014; Setlow, 2014a; Olguín-Araneda et al., 2015). Indeed, as the number of 

microbial genome sequences has increased dramatically, bioinformatics data 

contained in the large number of spore-forming Bacillales and Clostridiales genomes 

that have been sequenced and the information gained from their analysis, can be used 

to guide researchers to develop novel strategies to achieve a complete and permanent 

loss of the spore's ability to germinate and grow in food products. 

 

Regardless of the specific bacteriocin of choice, it is clear that there is considerable 

evidence of the potential value of bacteriocins with respect to controlling 

sporeforming bacteria in food. In the case of spores, while this activity more 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B62
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B138
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/#B110
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frequently tends to be sporostatic, there are also examples of sporicidal effects. As is 

the case for vegetative cells, the mechanisms via which bacteriocins inhibit spores 

may be heterogeneous but ultimately it is apparent that in general bacterial spores 

can be controlled using bacteriocins, and their application in combination with other 

novel non-thermal treatments makes their efficacy even greater. The use of the 

bacteriocins with other food processing hurdles, such as those previously described, 

thus has the potential to satisfy consumer demands for “clean label” products, 

enabling processors to produce foods of optimal quality and shelf life. 
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Table 1. Bacteriocins that are active against vegetative cells of Gram-positive spore-forming bacteria. 
[a]  Mass estimated using SDS-PAGE 
[b]  Mass calculated based on amino acid sequence 
[c]  Mass obtained using mass spectrometry 

ND  Not determined  

 

 

Bacteriocin  

 

Clas

s 

Producer Size (Da) Spectr

um 

Heat 

stability 

Activ

e pH 

Sensitive  

Spore-formers 

References 

Acidocin LCHV IId Lactobacillus acidophilus 

n.v. Er 317/402 strain 

narine 

1158.2[c] Broad Heat stable 3 - 8 B. cereus 

B. subtilis 

(Mkrtchyan et 

al., 2010) 

Acidocin LF221A 

Acidocin LF221B 

IIb Lactobacillus gasseri 

LF221 

3500-5000 [a] Broad Heat stable 

 

2 - 9 B. cereus  

Cl. sporogenes 

Cl. tyrobutyricum 

 

(Bogovič-

Matijašić et al., 

1998) 

 

Bac217 IId Lactobacillus paracasei 

subsp. Paracasei 

BGBUK2-16 

7000 [a] Broad Heat stable 3 - 12 B. cereus 

B. fragilis 

B. subtilis 

 

(Lozo et al., 

2004) 

BacC1 ND Enterococcus faecium C1 10000 [a] Broad Heat stable 2 - 6 B. cereus (Goh and 

Philip, 2015) 

Bacteriocin L-

1077 

IIa Lactobacillus salvarius 

1077 

3454 Broad ND ND C. perfringens (Svetoch et al., 

2011) 

Bifidocin B IIb Bifidobacterium bifidum 

NFBC 1454 

4432.9[c] Narrow Heat stable 2 -10 B.  cereus (Yildirim and 

Johnson, 

1998b; 

Yildirim et al., 

1999) 



73 
 

Bificin C6165 ND Bifidobacterium animalis 

subsp. Animalis CICC 

6165 

3395.1 [c] Narrow Moderate 3.5-

6.5 

A. acidoterrestris  (Pei et al., 

2013) 

Brevicin 925A IId Lactobacillus brevis 925A ND Narrow Heat resistant ND B. coagulans (Wada et al., 

2009) 

Divergicin 750 IId Carnobacterium divergens 

750 

3447.7 Broad ND ND C. perfringens (Holck et al., 

1996) 

Duranicin TW-

49M 

IId Enterococcus durans Q 49 5227.8 [c] Narrow Moderate 

 

2 - 10 

 

B. coagulans 

B. circulans 

B. subtilis 

G. stearothermphilus 

(Hu et al., 

2008) 

Enterocin 7A/7B IId Enterococcus faecalis 

710C 

7A 5200.8[c] 

7B 5206.65[c] 

Broad ND ND C. butyricum 

C. botulinum 

C. perfringens 

C. sporogenes 

(Liu et al., 

2011) 

Enterocin A IIa Enterococcus faecium 

CTC492; Enterococcus 

faecium T136 

3829[c]  Broad 

 

 

Heat stable 

 

 

2 - 10 B. coagulans 

B. subtilis 

C. sporogenes 

C. tyrobutyricum 

(Aymerich et 

al., 1996; 

Casaus et al., 

1997; Hu et 

al., 2010; Hu 

et al., 2014) 

Enterocin AS-48 IIc Enterococcus faecalis A-

48-32 

7140[c] Broad Heat stable ND Alicyclobacillus spp. 

B. cereus 

B. coagualns 

B. lichenformis 

B. subtilis 

C. perfringens 

C. sporogenes 

C. tetani 

(Lucas et al., 

2006b; Burgos 

et al., 2014)  
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G. stearothermophilus 

Paenibacillus spp. 

Entrocin B IId Enterococcus faecium 

T136 

5463[c] Broad Heat stable ND B. coagulans 

B. subtilis 

C. sporogenes 

C. tyrobutyricum 

(Casaus et al., 

1997; Hu et 

al., 2010) 

Enterocin EJ97 IId Enterococcus faecalis 

EJ97 

5340[c] Broad Heat stable 2 - 9.5 

 

B. ciriculans 

B. coagulans 

B. macrolides 

B. megaterium 

B. moroccanus 

B. subtilis 

G. stearothermophilus 

Paenibacillus 

macerans 

(Galvez et al., 

1998;Garcia et 

al., 2004)  

Enterocin L50 IIb Enterococcus faecium L50 

 

A: 5190[c]  

B: 5178[c] 

Broad Heat stable 

 

2 - 11 B. cereus 

B. subtilis 

(Cintas et al., 

1995; Basanta 

et al., 2010) 

Enterocin IT IId Enterococcus faecium 

IT62 

6390[c] Narrow ND ND B. subtilis 

 

(Izquierdo et 

al., 2008) 

Enterocin MR10  IIb Enterococcus faecalis 

MRR10-3 

A: 5201.6 [b] 

B: 5207.5b] 

Broad Heat stable 4.6-9 B. cereus 

B. lichenformis 

(Martin-

Platero et al., 

2006) 

Enterocin NKR-

5-3B 

IIc Enterococcus faecium 

NKR-5-3 

6316.42[c] Broad Heat stable 2-10 B. circulans 

B. coagulans 

B. subtilis 

(Himeno et al., 

2015) 

Enterocin RM6 IId Enterococcus faecalis 

OSY-RM6 

7.145[c] Broad ND ND B. cereus (Huang et al., 

2013) 

Enterocin P IId Enterococcus faecium P13 4.493[b] Broad Heat stable 2 - 11 B. cereus  (Cintas et al., 
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C. botulinum 

C. perfringens 

Cl sporogenes 

C. tryobutyricum 

1997) 

Enterocin SE-K4 IIa Enterococcus faecalis K-4 5356.2[c] Narrow Heat stable 3 - 11 B. subtilis  

C. beijerinckii 

(Eguchi et al., 

2001) 

Gassericin A IIc Lactobacillus gasseri LA 

39 

3800[a] Broad Heat stable 2 - 12 B. cereus (Nakamura et 

al., 2013) 

Gassericin KT7 ND Lactobacillus gasseri KT7 ND Broad Heat stable 2.5 - 9 B. cereus 

B. subtilis 

C. botulinum 

C. perfringens 

(Zhu et al., 

2000) 

Garvieacin Q IId Lactococcus garvieae BCC 

43578 

 

5339[c] Broad Heat stable 2 - 8 B. coagulans (Tosukhowong 

et al., 2012) 

Lacticin 3147 I Lactococcus lactis subsp. 

Lactis DPC3147 

ltnA1: 

3305[c] 

ltnA2: 

2847[c]  

Broad Heat stable 5 - 9 B. cereus 

B. subtilis 

C. sporogenes  

C. tyrobutyricum 

(McAuliffe et 

al., 1998; 

Martinez-

Cuesta et al., 

2010; Iancu et 

al., 2012) 

Lacticin 481 I Lactococcus lactis subsp. 

lactis CNRZ 481 

2901[c] Narrow Heat stable ND C. tyrobutyricum (Piard et al., 

1990;Piard et 

al., 1993) 

Lacticin LC14 ND Lactococcus lactis BMG6. 

14 

3333.7c] Broad Heat stable 2 - 10 B. cereus 

B. thuringiensis 

(Lasta et al., 

2012) 

Lacticin Q IId Lactococcus lactis QU 5  5926.5[c] Broad Heat stable 2 - 10 B. cereus 

B. circulans 

B. coagulans 

(Fujita et al., 

2007) 



76 
 

Lacticin Z IId Lactococcus lactis QU 14 5968.9[c] Broad Heat stable 2 - 10 B. subtilis 

B. circulans 

B. coagulans 

(Iwatani et al., 

2007) 

Lactococcin BZ ND Lactococcus lactis subsp. 

lactis 

5500[a] Broad Heat stable 2-7 B. cereus 

B. subtilis 

(Sahingil et al., 

2011) 

Lactococcin R ND Lactococcus cremoris 

subsp. cremoris R 

2500[a] Broad Heat stable 2 - 9 B. cereus 

B. subtilis 

C. perfringens 

C. sporogenes 

(Yildirim and 

Johnson, 

1998a) 

Leucocin H IIb Leuconostoc sp. MF215B ND Broad ND ND B. cereus  

C. perfringens 

(Blom et al., 

1999) 

Leucocyclicin Q IIc Leuconostoc mesenteroides 

TK41401 

6115.59[c] Broad ND ND B. cereus  

B. coagulans 

B. subtilis 

(Masuda et al., 

2011) 

Lactocyclin Q IIc Lactococcus sp. QU 12 6062[c] Broad Heat stable 3 - 9 B. cereus  

B. coagulans 

B. subtilis 

(Sawa et al., 

2009;Masuda 

et al., 2011) 

Mesentericin 

ST99 

ND Leuconostoc mesenteroides 

ST99 

ND Broad Heat stable 2 - 12 B. subtilis 

 

(Todorov and 

Dicks, 2004) 

Macedocin I Streptococcus 

macedonicus 

2795[c] Broad Heat stable 4 - 9 B. cereus  

B. subtilis 

C. sporogenes 

C. Tyrobutyricum 

(Georgalaki et 

al., 2002) 

Macedovicin  I Streptococcus 

macedonicus ACA-DC 

198 

3428.8[c] Broad ND ND B. lichenformis 

C. sporogenes  

C. tyrobutiricum  

(Georgalaki et 

al., 2013) 

Nisin I Lactococcus lactis subsp. 

lactis 

3353.53[c] Broad Heat stable 2-6 A. acidoterrerstris 

B. anthracis 

B. amyloliquefaciens 

(Meghrous et 

al., 1999; 

Pirttijarvi et 
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B. cereus  

B. coagualns 

B. fliexus 

B. lichenformis 

B. pumilus 

B. sporothemodurans 

C. beigerinckii 

C. butyricum 

C. perfringens 

C. sporogenes 

C. tyrobutyricum 

Paenbacillus jamilae 

 

al., 2001; 

Wijnker et al., 

2011; 

Hofstetter et 

al., 2013; 

Oshima et al., 

2014;  

Aouadhi et al., 

2015) 

Nisin Z I Lactococcus lactis NIZO 

22186 

3330.93 Broad Heat stable 2-6 B. cereus 

B. pumilus 

B. subtilis 

C. butyricum 

C. perfringens 

C. sporogenes 

C. tyrobutyricum 

(Rollema et al., 

1995; 

Meghrous et 

al., 1999; 

Noonpakdee et 

al., 2003; Park 

et al., 2003; 

Rilla et al., 

2003; 

Rumjuankiat et 

al., 2015) 

Nisin Q I Lactococcus lactis 61-14 3327.5 Broad Heat stable ND B. circulans 

B. coagulans 

B. subtilis 

(Zendo et al., 

2003) 

Pediocin A IIa Pediococcus pentosaceus 

FBB61 

80000[a] Broad Heat 

sensitive 

ND B. cereus  

C. sporogenes 

(Piva and 

Headon, 1994) 
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C. tyrobutyricum 

Pediocin AcH / 

PA-1 

IIa Pediococcus acidilactici 

PAC 1.0 

4624[c] Broad Heat stable 2-10 

 

B. cereus 

C. butyricum 

C. perfringens 

C. sporogenes 

C. tyrobutyricum 

(Marugg et al., 

1992; 

Meghrous et 

al., 1999; 

Rodriguez et 

al., 2002; 

Nieto-Lozano 

et al., 2010) 

Pediocin AcM IIa Pediococcus acidilactici M 4618[c] Broad Heat stable 1 - 12 B. cereus  

B. coagulans 

C. perfringens  

(Elegado et al., 

1997) 

Pediocin L50 IId Piococcus acidilactici L50 5250[c] Broad Heat stable 2-11 B. cereus 

C. botulinum 

C. perfringens 

C. sporogenes 

C. tyrobutyricum 

(Cintas et al., 

1995) 

Pentocin TV35b  ND Lactobacillus pentosus 

TV35b 

3930 Broad Heat stable 1-10 C. sporogenes 

C. tyrobutyricum  

(Okkers et al., 

1999) 

Plantaricin 163 IId Lactobacillus plantarum 

163 

3553.2 Broad Heat stable 2-10 B. cereus (Hu et al., 

2013) 

Plantaricin 423 IIa Lactobacillus plantarum 

423; Lactobacillus 

plantarum LMG P-26358 

3932[c] Narrow Heat stable 1-10 B. cereus  

C. sporogenes 

(van Reenen et 

al., 1998; Mills 

et al., 2011) 

Plantaricin C Ì Lactobacillus plantarum 

LL441 

2880.3[c] Broad Heat stable <8 B. subtilis  

C. sporogenes 

C. tyrobutyricum 

(Gonzalez et 

al., 1994) 

Plantaricin KL-

1Y 

IId Lactobacillus plantarum 

KL-1 

3497.97[c] Broad Heat stable 2-12 B. cereus 

B. coagulans 

(Rumjuankiat 

et al., 2015) 
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B. subtilis 

Plantaricin LP84 ND Lactobacillus plantarum 

NCIM 2084 

1000 - 

5000[a] 

Broad Heat stable ND B. cereus 

B. lichenformis 

B. subtilis  

(Suma et al., 

1998) 

Plantaricin PZJ5 IId Lactobacillus plantarum 

ZJ5 

2572.9[c] Broad Heat stable 2-6 B. subtilis (Song et al., 

2014) 

Plantaricin S IIb Lactobacillus plantarum 

LPC010 

α 2904[c] 

β 2873[c] 

Broad Heat stable 3-7 C. tyrobutyricum (Soliman et al., 

2011) 

Plantaricin ST31 ND Lactobacillus plantarum 

ST31 

2755[c] Broad Heat stable 3-8 B. subtilis (Todorov et 

al., 1999) 

Plantaricin TF711 ND Lactobacillus plantarum 

TF711 

2500[a] Broad Heat stable 1-9 B. cereus 

C. sporogenes 

(Hernandez et 

al., 2005; 

Gonzalez and 

Zarate, 2015) 

Plantaracin UG1 ND Lactobacillus plantarum 

UG1 

3000-

10000[a] 

Narrow Heat stable 3.5-8 B. cereus 

C. perfringens 

C. sporogenes  

(Enan et al., 

1996) 

Plantaricin ZJ008 ND Lactobacillus plantarum 

ZJ008 

1334.77 Broad Heat stable 2-8 B. subtilis (Zhu et al., 

2014) 

Salivaricin D I Streptococcus salvarius 

5M6c 

3467.55 Broad Heat stable ND B. subtils 

C. butyricum 

C. bifermentans 

(Birri et al., 

2012) 

Thermophilin 

1277 

I Streptococcus 

thermophilus SBTI1277 

3700[a] Broad Heat stable 3 - 10 B. cereus 

C. Butylicum 

C. Sporogenes 

C. tyrobutyricum  

(Kabuki et al., 

2007) 

Themophilin 13 IIb Streptococcus 

thermophilus SFi13 

5776[c] Broad ND 

 

 

ND B. cereus 

B. subtilis 

C. botulinum 

(Marciset et 

al., 1997) 
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C. tyrobutyricum 

Thermophilin T ND Streptococcus 

thermophiles ACA-DC 

0040 

2500[a] Narrow Heat stable 1 - 12 C. sporogenes 

C. tyrobutyricum  

(Aktypis et al., 

1998) 

VJ13B IIa Pediococcus pentosaceus 

VJ13 

4000[a] Broad Moderate 2 - 8 B. cereus 

B. subtilis 

C. perfringens 

C. sporogenes 

(Vidhyasagar 

and 

Jeevaratnam, 

2013) 

Weissellicin Y IId Weisella hellenica Q13 4925[c] Broad Heat stable 3 - 11 B. cereus 

B. circulans 

B. subtilis 

B. coagulans 

(Masuda et al., 

2012) 

Weissellicin M IId Weisella hellenica Q13 4968[c] Broad Moderate 3 - 11 B. cereus 

B. circulans 

B. coagulans 

B. subtilis 

(Masuda et al., 

2012) 
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Table 2. Bacteriocins that display inhibitory action against bacterial spores. 

Bacteriocin   Sensitive spores Reference 

Nisin A. acidoterrestris, B. amyloliquefaciens B. anthracis, B. lichenformis, 

B. sporothermodurans , B. subtilis, B. cereus, G. stearothermophilus, 

C. perfringens, C. sporogenes, C. botulinum, C. difficile, C. 

beijerinckii 

(Komitopoulou et al., 1999; Mansour et al., 1999; 

Wandling et al., 1999; Pol et al., 2000; Black et al., 

2008;Gut et al., 2008; Udompijitkul et al., 2012; 

Hofstetter et al., 2013; Nerandzic and Donskey, 

2013; Aouadhi et al., 2015)  

Enterocin AS-48 A. acidoterrestris, B. cereus, B. lichenformis, G. stearothermophilus (Abriouel et al., 2002; Lucas et al., 2006a) 

Bificin C6165 A. acidoterrestris (Pei et al., 2014) 

Lacticin 3147 C. tyrobutyricum (Martinez-Cuesta et al., 2010) 

Plantaricin 

TF711 

C. sporogenes (Gonzalez and Zarate, 2015) 

Thurincin H B. cereus (Wang et al., 2014) 
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Table 3. Bacteriocin mode of action against bacterial spores is heterogeneous. 

 

Bacteriocin  

 

Spore Effect on 

germination 

rate 

Effect on 

dormant 

spores 

Requires 

germination 

to be active 

Other remarks  

Nisin B. anthracis None None Yes Lipid II becomes 

available for nisin to 

bind following 

germination, followed 

by pore formation in 

the outgrowing spore.  

(Gut et al., 2008; Gut et al., 

2011) 

B. sporothermodurans Decreased rate   None Yes   (Aouadhi et al., 2015) 

B. lichenformis None None Yes  (Mansour et al., 1999) 

C. butyricum  None Yes  (Ramseier, 1960) 

C. botulinum Increases rate  None Yes  (Mazzotta and Montville, 

1999) 

C. difficile None None Yes  (Nerandzic and Donskey, 

2013) 

C. perfringens None None Yes  (Udompijitkul et al., 2012) 

Enterocin AS-48 A. acidoterrestris  Sporicidal  No  (Grande et al., 2005) 

 B. cereus None None Yes  (Abriouel et al., 2002) 

 B. coagulans  None Yes  (Lucas et al., 2006a) 

 B. lichenformis  None Yes  (Grande et al., 2006a) 

 G. stearothermophilus  None Yes  (Viedma et al., 2009) 

Thurincin H B. cereus None None Yes  (Wang et al., 2014) 
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Table 4. Nisin addition to food reduces spore D values. 

The adition of nisin to food at various levels sensitises spores to heat, thereby reducing the time (D value) required to achieve a 1 Log10 spore/ml 

reduction in spore numbers.  

Spore Nisin Conc 

µg/ml 

Food 

model 

Dx°C  

D values (minutes) 
Reference 

Non-nisin 

treated 

Nisin treated 

B. cereus 25 Milk D80°C 
26.5 

15.9 (Vessoni and Moraes, 2002) 

D90°C 
9.9 

8.3 

D97.8°C 
1.8 0.97 

B. cereus 50 Milk D97°C 
7.0 4.8 

(Wandling et al., 1999) 

D100°C 
2.7 2.2 

D103°C 
1.5 0.85 

G. stearothermophilus  100 Milk D130°C 
16 

12.5 (Wandling et al., 1999) 

A. acidoterrestris  1.25 Apple 

juice 

D80°C 
41.2 23.8 

(Komitopoulou et al., 1999) 
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Table 5. RSM models can be used to predict a treatment to achieve a specific spore reduction in food. 

 

Spore Predicted 

reduction 

Treatment  Food model 

employed 

Reference 

Pressure 

(MPa) 

Temperature 

(°C) 

Time 

(mins) 

Nisin 

(µg/ml)  

B. sporothermodurans 5 Log10 

spore/ml 

 95 12 3.125 Water (Aouadhi et al., 2014) 

B. sporothermodurans 5 Log10 

spore/ml 

 100 13 3.35 Milk 

B. sporothermodurans 5 Log10 

spore/ml 

 100 15 3.375 Chocolate milk 

B. sporothermodurans 5 Log10 

spore/ml 

472 53 5  5.025 Water (Aouadhi et al., 2013) 

C. perfringens 6 Log10 

spore/ml 

654 74 13.6 8.2 UHT milk (Gao et al., 2011) 
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Figure 1. Germination dependent inhibition of spore outgrowth by bacteriocins.  

Dormant spores may germinate after being activated by a variety of means; most commonly sub-lethal heat being used. Heat is believed to 

activate the dormant spores by making the germinant receptors (GR) more accessible to nutrient germinants. Once the GR-nutrient binding 

occurs, the spore is now committed to germination even if the germinant is removed. Stage 1 of germination consists of H+, K+ and Na+ ion 

release followed by Ca2+-DPA release. This release of Ca2+-DPA triggers stage II of germination where the cortex is degraded, allowing the 

germ cell wall to expand and take up water. At the end of stage II the spore core is hydrated and has expanded along with the cortex. This rise in 

water content signals the end of stage II of germination and the beginning of the outgrowth phase. At this point bacteriocins that are not active 

against dormant spores become active, inhibit outgrowth and reduce viable counts from the germinated spore population. This figure is adapted 

from Setlow (2014a).  
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Abstract 

Antibiotics have revolutionised the treatment of infectious disease and improved 

the lives of billions of people worldwide over many decades. With the rise in 

antimicrobial resistance (AMR) and corresponding lack of antibiotic 

development, we find ourselves in dire need of alternative treatments. 

Bacteriocins are a class of bacterially produced, ribosomally synthesised, 

antimicrobial peptides that may be narrow or broad in their spectra of activity. 

Animal models have demonstrated the safety and efficacy of bacteriocins in 

treating a broad range of infections; however, one of the principal drawbacks has 

been their relatively narrow spectra when compared with small-molecule 

antibiotics. In an era where we are beginning to appreciate the role of the 

microbiota in human and animal health, the fact that bacteriocins cause much 

less collateral damage to the host microbiome makes them a highly desirable 

therapeutic. This review makes a case for the implementation of bacteriocins as 

therapeutic antimicrobials, either alone or in combination with existing 

antibiotics to alleviate the AMR crisis and to lessen the impact of antibiotics on 

the host microbiome.  
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Introduction 

Antimicrobial resistance (AMR) has been recognised as one of the major threats 

to public health in the 21st century. In a report commissioned by the UK 

government in 2014, it was estimated that AMR could be responsible for 10 

million deaths worldwide by 2050, with a global financial cost of $100 trillion 

(O'Neill, 2014). Meanwhile, the Centers for Disease Control and Prevention 

(CDC) estimates the annual cost of AMR in the USA to be about $20 billion in 

direct healthcare costs and $35 billion in additional costs to society due to lost 

productivity (Prevention, 2013). Apart from the human and financial costs 

associated with AMR, there are also ethical considerations that need to be 

addressed surrounding how we, as a society, respond and deal with the AMR 

crisis (Littmann and Viens, 2015). There are multiple reasons for the present 

AMR crisis, but significant factors include the incorrect/indiscriminate 

administration and use of antibiotics and a dry antibiotic development pipeline 

(Arias  and Murray 2009; Riley et al., 2013). The CDC also recently estimated 

that, in the USA, ∼50% of antibiotics are incorrectly prescribed. Moreover, the 

use of antibiotics in agriculture has continued, despite undeniable evidence that 

this practice adds to the AMR crisis. Resistance to a key ‘ last-resort’ antibiotic, 

colistin has been observed in the USA, Europe and Asia (Liu et al., 2016; 

Meinersmann et al., 2016; Ye et al., 2016). We have also seen the rapid spread of 

resistance to another ‘ last resort’ class of antibiotics, the carbapenems (Potter et 

al., 2016). With the emergence of these new resistant strains and the emergence 

of pan-resistant bacteria, it is safe to say we have truly arrived in the much-

predicted post-antibiotic era (Fair and Tor, 2014). 
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It is important that we acknowledge that broad-spectrum antibiotic therapy has 

revolutionised the treatment of infectious diseases within the last century, but we 

must also admit to unintended consequences of antibiotic use, such as potentially 

negative effects on the host microbiome and their potential toxicity (Cotter et al., 

2013; Riley et al., 2013). Although the field of microbiome research is in its 

infancy relative to that of antibiotic therapy, evidence strongly suggests that the 

composition of the microbiome can be an indicator of health and is likely to be 

involved in many aspects of human health and disease (Guinane and Cotter, 

2013). Strides in DNA sequencing technology and bioinformatics have increased 

our understanding of the role of the microbiome in a variety of disease states. 

Indeed, the administration of antibiotics in early life and the subsequent 

disruption of the microbiota may contribute to the risk of obesity in later life 

(Petschow et al., 2013; Cox and Blaser, 2015). Furthermore, when subjected to 

broad-spectrum antibiotic therapy, non-target commensal microbes may evolve 

and/or acquire resistance mechanisms to evade the effects of the antibiotic, 

thereby contributing to the antibiotic resistance crisis. 

 

Bacteriocins represent a class of powerful antimicrobial peptides that may 

provide at least part of a solution to the AMR crisis. We aim to demonstrate their 

efficacy in the treatment of infectious disease and their reduced impact on the 

host microbiome by comparison with broad-spectrum antibiotic therapy. 
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Bacteriocins: potent antimicrobial peptides 

Many excellent reviews have been written about bacteriocins (Rea et al., 2011a; 

Cotter et al., 2013; Alvarez-Sieiro et al., 2016), but in brief they are a diverse 

group of peptides that may be classified into three distinct groups: class I 

(modified), class II (unmodified or cyclic) and class III (>10 kDa peptides). 

Apart from their potent antimicrobial activity (with minimum inhibitory 

concentrations [MICs] often in the nanomolar range), they have also been shown 

to have antiviral (Al Kassaa et al., 2014), anticancer (Kamarajan et al., 2015) and 

immunomodulatory properties (de Pablo et al., 1999). Bacteriocins typically 

have a narrow spectrum of activity, but broad-spectrum peptides are also present 

in this class of antimicrobials (e.g. nisin and lacticin 3147 inhibit a wide range of 

Gram-positive bacteria). As a result, these peptides may be suitable for treating 

infections of unknown aetiology, using broad-spectrum bacteriocins, or may 

allow more precise targeting of known infectious agents using highly active 

narrow-spectrum bacteriocins. Bacteriocins are gene-encoded, which makes 

them amenable to genetic alterations to improve functional characteristics. 

Furthermore, their toxicity is low and they may be administered as either purified 

peptide or produced in situ by bacteriocin-producing probiotic bacteria (Cotter et 

al., 2013). Bacteriocins are also known to interact with a variety of receptors, 

which are different from those targeted by antibiotics, making cross-resistance 

less likely (Cotter, 2014). Although a more targeted approach may still ultimately 

lead to resistance development in the infectious agent, it does reduce the 

likelihood of resistance development in commensal populations outside of the 

target range of the bacteriocin. Resistance mechanisms involving the class II 

receptors, the mannose phosphotransferase system, have been identified (Kjos et 
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al., 2011) along with a variety of resistance mechanisms to the class I lantibiotics 

(Draper et al., 2015). 

 

The microbiota perspective 

The term ‘ superorganism’ or ‘ holobiont’ has commonly been applied to 

describe the relationship that exists between humans and their commensal 

microbes and viruses (Goodacre, 2007). Understanding the role of the microbiota 

in health and protecting its diversity during the treatment of infectious disease is 

a key element of why bacteriocins may be suitable as alternatives to antibiotics. 

The two-peptide sactibiotic bacteriocin Thuricin CD is a narrow-spectrum 

bacteriocin. Thuricin CD is highly active against one of the main causative 

agents of antibiotic-associated diarrhea (AAD), Clostridium difficile, which is 

responsible for 20– 30% of AAD cases (Rea et al., 2013). Briefly, AAD is 

caused by a disruption of the microbiota (often referred to as dysbiosis) 

following broad-spectrum antibiotic treatment and notably has a recurrence rate 

of 15– 60% (McFarland, 2008). Thuricin CD was shown to exhibit comparable 

activity to both vancomycin and metronidazole [two antibiotics used for the 

treatment of AAD which has progressed to C. difficile-associated disease 

(CDAD)]. Importantly, it showed almost no effect on microbial diversity when 

compared with both metronidazole and vancomycin in a distal colon model (Rea 

et al., 2011b). The modified R-Type bacteriocin Av-CD291.2 has also been 

shown to prophylactically inhibit colonisation of C. difficile in a mouse model 

without perturbing the microbiota (Gebhart et al., 2015). There are other broad-

spectrum bacteriocins which are attractive therapeutic agents by virtue of their 

activity against C. difficile, but while the broad-spectrum lantibiotic lacticin 3147 
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is effective at killing C. difficile, it has a significant impact on the resident 

microbiome populations such as Bifidobacterium, Lactobacillus and 

Enterococcus species (Rea et al., 2007). It has also been shown that a 

commercially available product containing the lantibiotic nisin, Nisaplin®, can 

eliminate a C. difficile infection when added at a concentration of twenty times 

the MIC in a simulated human colon model. However, a significant decrease in 

the total microbiota count was observed, with Gram-positives being adversely 

affected (Le Lay et al., 2015). 

 

Notably, in recent years, the emergence of vancomycin-resistant Enterococci  

(VRE) has become a great concern and therefore raises the issues surrounding 

the efficacy of treating CDAD with vancomycin if it presents a risk to the 

general population and the spread of antibiotic resistance. In this light, the 

treatment of CDAD with bacteriocins could be a valuable alternative to 

vancomycin. When VRE development has taken place, it has been shown that 

mice colonised with VRE can be decolonised through the use of an Enterococcus 

probiotic containing a conjugation defective plasmid which produces a 

bacteriocin named Bac-21 (Kommineni et al., 2015). 

 

A defensin-like bacteriocin, bactofencin A, displays in vitro activity against 

Listeria monocytogenes and Staphylococcus aureus (O'Shea et al., 2009; O'Shea 

et al., 2013). Although one might expect this medium to broad-spectrum 

antimicrobial peptide to cause drastic changes in the host microbiome, this was 

in fact not the case. It was observed that the bactofencin peptide only subtly 

modulated an ex vivo host microbiome (distal colon model) when introduced as 
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a bacteriocin-producing probiotic or purified peptide (Guinane et al., 2016). 

While the purified peptide resulted in higher levels of beneficial microbes such 

as Bifidobacterium, it was also associated with lower levels of Clostridium, 

which has been linked to obesity and gut pathogenesis (Woting et al., 2014). 

Interestingly, although bactofencin does not show inhibitory activity in vitro 

against strains from the genera Clostridium, Fusobacterium and Bacteroides, the 

reduction in these populations in the bactofencin-treated faecal samples indicates 

that the consequence of bactofencin altering the overall microbiota structure 

affects, directly or indirectly, these normally insensitive populations when in the 

gut environment (Guinane et al., 2016). 

 

It has also been shown, using bacteriocin-producing probiotic strains and their 

isogenic mutants, that the production of bacteriocins can aid the colonisation of a 

murine host (Umu et al., 2016). Sequencing data revealed that although 

bacteriocin production by the probiotics did not affect bacterial diversity at the 

phylum level, broad-spectrum bacteriocins (enterocins and garvicin ML) had a 

more significant impact on the genus/family diversity of the host microbiome 

than narrow-spectrum bacteriocins (sakacin A, plantaricins and pediocin PA-1). 

 

Bacteriocins in animal models 

Bacteriocins have been shown to be effective in the treatment of a variety of 

bacterial infections using two delivery methods, either as purified peptides 

(Table 1) or when delivered in situ by probiotics (Hegarty et al., 2016). It has 

been hypothesised that there are three mechanisms by which bacteriocins 

mediate their producers’ probiotic properties (Dobson et al., 2012): (i) 
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competitive inhibition:  bacteriocins may support colonisation of the host 

through competitive inhibition of the autologous microbiota; (ii) pathogen 

inhibition:  bacteriocins may interact directly with a pathogenic target; or (iii) 

immunomodulation:  bacteriocins may act as signaling peptides, recruiting other 

bacteria or recruiting immune cells to the site of infection to aid elimination of 

the pathogen (Figure 1). 

 

Preventing infection 

Oral disease is a widely recognized as a major public health issue worldwide, 

with dental caries in industrial countries affecting 60– 90% of school children 

and adults, making it the most prevalent human disease (Petersen, 2004; Simón-

Soro and Mira, 2015). The concept of oral replacement therapy is an interesting 

example of prophylactic probiotic therapy, which may be used to treat dental 

caries and oral disease. The mutacin 1140 producing Streptococcus mutans 

BCS3-L1 may be suitable for replacement therapy as it has reduced cariogenic 

potential because it does not produce lactic acid, mediated through the removal 

of its entire lactic acid dehydrogenase operon (Hillman et al., 2007). Another 

interesting probiotic that has shown promise in the limitation of dental caries, 

plaque accumulation and acidification is Streptococcus salivarius M18. This 

strain has three plasmid and one chromosomally encoded bacteriocins, which is 

perhaps why it can colonise the oral cavity so effectively. It also produces two 

enzymes, urease and dextranase, which reduce the acidity of saliva and 

counteract plaque formation (Burton et al., 2013b). In a clinical trial, both the 

safety and efficacy of this strain’s probiotic potential were demonstrated, and it 

was shown to significantly reduce plaque formation in subjects who received the 
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probiotic, over those who received the placebo (Burton et al., 2013a). 

Furthermore, the treatment of children who have a high risk of dental caries 

development, with an oral formulation of the Streptococcus salivarius M18 

probiotic (Carioblis®), was shown to reduce the likelihood of new dental caries 

development (Di Pierro et al., 2015). 

 

It has been demonstrated that dosing mice orally with the bacteriocin producer 

Lactobacillus salivarius UCC118 3 days prior to infection with L. 

monocytogenes resulted in a significant reduction in subsequent infection by L. 

monocytogenes (Corr et al., 2007). Nisin Z and pediocin AcH have also been 

shown to reduce and prevent the colonisation of a mouse model with VRE, 

where the bacteriocinogenic probiotic was administered 8 days prior to infection 

(Millette et al., 2008). It has also been demonstrated using a porcine model that 

Salmonella enterica serovar Typhimurium shedding is reduced and disease 

symptoms of infection are alleviated when a mixture of five probiotic strains was 

administered 6 days before infection (Casey et al., 2007). One of the probiotics, 

L. salivarius, produces salivaricin P, which can kill the other four strains in the 

probiotic mixture. Interestingly, this bacteriocinogenic strain dominated in the 

ileum (the primary attachment site of the infecting Salmonella), whereas it was 

only detected as a minor component in the faeces of the same animals. This 

suggests that bacteriocin production may play a role where colonisation can 

occur along the gastrointestinal tract (Walsh et al., 2008). The concept of using 

prophylactic probiotics to competitively colonise a pathogen’ s niche could be an 

effective strategy in agriculture to reduce antibiotic usage. If, as expected, 

regulations limiting the use of antibiotics in agriculture come into force, 
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probiotics may be an invaluable alternative. 

 

Acute otitis media (AOM) is a type of inflammatory disease of the middle ear, 

characterised typically by rapid inflammation, potential tympanic membrane 

perforation, along with fullness and erythema.  It has been reported that the 

levels of normal α -haemolytic Streptococcus colonising the nasopharynx of 

otitis-prone children are much lower than those in healthy individuals and that 

recolonisation can significantly reduce the episodes of AOM (Roos et al., 

2001;Marchisio et al., 2003). It has been demonstrated that treating otitis-prone 

children with a history of AOM with a nasal spray containing safe Streptococcus 

salivarius 24SMB (a strain which produces a bacteriocin-like substance) reduces 

the incidence rates of AOM compared with those of the placebo-treated group 

(Santagati et al., 2012). 

 

Treating infection 

Helicobacter pylori infection and colonisation results in a variety of disease 

states and may even lead to the development of gastric carcinoma. More 

recently, the prevalence of antibiotic-resistant H. pylori has been increasing, 

creating a need for a new therapeutic agent (Thung et al., 2016). It has been 

shown in mice that eradication of H. pylori was achieved using a 

bacteriocinogenic probiotic treatment of Pediococcus acidilactici BA28 (Kaur et 

al., 2014). Using a mixture of cranberry juice and the bacteriocin-producing 

probiotic culture Lactobacillus johnsonii str. La1 supernatant, the carriage of H. 

pylori was also reduced in children after 3 weeks of treatment (Gotteland et al., 

2008). 
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One limitation to the use of bacteriocinogenic probiotics as therapeutics is their 

ability to survive gastrointestinal conditions and deliver bacteriocins to the site of 

infection. It has been shown that P. acidilactici UL5 and Lactococcus lactis 

ATCC 11454 can produce the bacteriocins pediocin PA-1 and nisin, respectively, 

in situ under simulated upper gastric conditions (Fernandez et al., 2014). 

Interestingly, the in vitro activity of a bacteriocin does not always correspond to 

the in vivo activity, where the bacteriocin is sometimes more or less active in an 

animal model, as is the case with mersacidin, which is more active in vivo than in 

vitro (Chatterjee et al., 1992). 

 

Immunomodulation 

Probiotic mediated immunomodulation has been described in various reviews 

(Erickson and Hubbard, 2000; Hardy et al., 2013), however, far less is known 

about bacteriocin-mediated immunomodulation (Figure 1). Walsh et al., (2008) 

described reduced CD25 induction on T-cells and monocytes, increased in CD4+ 

and CD8+ T cells, and increased IL-8 mRNA expression upon the administration 

of a five-strain bacteriocin producing probiotic. Furthermore it was seen through 

the use of gene-trait matching approach by Meijerink et al. (2010) that 6 

bacteriocin genes were responsible for increased IL-10, IL-12p70 and TNF-alpha 

production by monocyte derived dendritic cells. IL-10, Gro-α and Mcp-1 

induction was shown to be increased by nisin Z, pep5 and gramicidin in 

peripheral mononuclear blood cells. Mechanistic studies revealed that these 

bacteriocins act similarly to host immune defense peptides, initiating various 

signal transduction pathways (Kindrachuk et al., 2013).  
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Bacteriocins against Gram-negatives 

Comparatively speaking, Gram-negative bacteria are relatively insensitive to 

bacteriocins compared with their Gram-positive counterparts, largely owing to 

their outer membrane, which acts as a physical barrier. Until recently, the 

treatment of Gram-negative infections with bacteriocins has not been favoured 

due to the efficacy of conventional antibiotics in the treatment of these 

infections. The rise of antibiotic-resistant Gram-negative bacteria to the last line 

of antibiotics (Liu et al., 2016) means that the treatment of these infections using 

bacteriocins can no longer be ignored.  

 

Widespread use requires a solution to the relative insensitivity of Gram-negative 

microorganisms. One possibility is to use bacteriocins in combination with other 

antimicrobial agents, including conventional antibiotics. Although conventional 

antibiotics will have an impact on the host microbiota (as previously discussed), 

certain bacteriocin/antibiotic combinations can be synergistic (Naghmouchi et 

al., 2012; Draper et al., 2013; Naghmouchi et al., 2013; Rishi et al., 2014) and 

therefore lead to a reduced dose of both antimicrobial agents needed to treat an 

infection, thereby lowering the potential effect on the host microbiome and the 

cytotoxic effects on the host, and may potentially reduce the development of 

resistance. Success of antibiotics is also hindered by Gram-negative bacteria 

residing within biofilms, where they are highly resistant to antibiotic treatments. 

Bacteriocin/antibiotic combinations have shown great promise in overcoming 

biofilm-mediated resistance for important Gram-negative pathogens such as 

Pseudomonas aeruginosa (Field et al., 2016) and Escherichia coli  (Al Atya et 

al., 2016). 
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Although this review mainly focuses on Gram-positive bacteriocins, it is 

important also to identify Gram-negative bacteriocins, which may have potential 

therapeutic significance. Microcins are ribosomally synthesized peptides 

commonly produced by Gram-negative bacteria, which are active against Gram-

negative strains, and are an interesting alternative to Gram-positive bacteriocins. 

They have been shown to display potent antimicrobial activity in vitro (Patzer et 

al., 2003; Nolan and Walsh, 2008) and more recently also in vivo (Sassone-Corsi 

et al., 2016). It has been demonstrated that the microcin producer E. coli Nissle 

1917 (EcN) can prevent colonisation of competing Enterobacteriaceae in the gut, 

while still having a minimal impact on the diversity of the gut microbiota. 

However, EcN microcins exhibit their mechanism of action by targeting specific 

siderophore receptors on other Enterobacteriaceae, which are only displayed 

during iron starvation, making their spectrum of activity quite narrow. 

Additionally to its prophylactic applications, EcN has also been demonstrated to 

reduce inflammation and weight loss associated with Salmonella infections. 

Another microcin produced by E. coli G3/10, microcin S, has been shown to 

inhibit other E. coli strains and, furthermore, can prevent the adherence of 

Enteropathogenic E. coli to intestinal epithelial cells (Zschüttig et al., 2012). 
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Overcoming the limitations / outlook 

In previous decades, significant emphasis was placed on functional 

characteristics of bacteriocins, such as spectrum of activity, pH and temperature 

stability, which were essential for the use of bacteriocins in food applications. 

For their use as therapeutics, additional characteristics such as proteolytic 

resistance, stability and solubility of bacteriocins will also be important. 

 

With advancements in the field of bioengineering, many intrinsic limitations 

have been overcome, and it has been shown using the prototypic lantibiotic nisin 

that bioengineering strategies can improve functional qualities such as 

antimicrobial activity (Field et al., 2008; Field et al., 2012b; Healy et al., 2013; 

Molloy et al., 2013), solubility (Rollema et al., 1995; Yuan et al., 2004) diffusion 

properties (Rouse et al., 2012) and effectiveness against Gram-negative bacteria 

(Field et al., 2012a). Indeed, similar bioengineering strategies could be applied to 

other bacteriocins once suitable expression systems have been developed. 

Although the sensitivity of bacteriocins to proteolytic cleavage was previously 

regarded as a desirable trait when using these peptides as food preservatives, it 

does represent a major concern with regard to their administration and 

widespread use, both orally and intravenously. Bioengineering strategies could 

be once again used to manipulate peptide residues, so they are no longer 

recognisable by host proteases and therefore are not proteolytically cleaved, 

thereby improving peptide functional qualities (Field et al., 2015a). Notably, the 

therapeutic application of the prototypic bacteriocin nisin has been in part 

hampered by its sensitivity to host proteases (Field et al., 2015b). Other 

approaches include prospecting for bacteriocins that display innate resistance to 
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proteases, as was achieved with pseudomycoicidin (Basi-Chipalu et al., 2015), 

which is naturally resistant to trypsin due to the presence of a thioether ring 

structure. The field of bioinformatics and the use of such programmes as BAGEL 

3.0 (van Heel et al., 2013) and antiSMASH (Blin et al., 2016) could be a 

fundamental aspect of this prospecting, as these bacteriocin amino acid 

prediction tools from genome sequences may also allow researchers to identify 

protease-resistant peptides before investing large amounts of time and effort in 

characterising such bacteriocins. Finally, understanding bacteriocin 

pharmacodynamics and pharmacokinetics is also essential to their safe 

implementation as therapeutics, which has been under-investigated in 

comparison with other aspects of bacteriocin research. If bacteriocins are indeed 

to become an alternative to conventional antibiotics, a greater emphasis must be 

placed on research surrounding these host–drug interactions, such as was 

achieved with MU1140 (Ghobrial et al., 2010). 

 

Addressing these limitations of bacteriocin research to date could provide a 

turning point for the flagging interest of the pharmaceutical industry and make 

bacteriocins an attractive therapeutic alternative to current antibiotics (Fair and 

Tor, 2014). Although there is considerable evidence that narrow-spectrum 

bacteriocins have a minimal effect on the host microbiome by comparison with 

current broad-spectrum antibiotics, it should also be recognised that more work 

in this regard is needed to strengthen the argument for the use of bacteriocins as 

antibiotics, along with overcoming the previously outlined limitations. 

Ultimately, we believe, given the safe history of use of bacteriocins in food and 

the large body of literature surrounding this field, that they are useful candidates 
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for antimicrobial therapeutics as the AMR crisis continues to worsen. 
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Table 1. Bacterial infections in animal models successfully treated using purified bacteriocins. 

 

 

 Peptide  Strain inhibited Model Purity Reference 

Nisin F Staphylococcus aureus Immunosuppressed Wistar 

rats 

Semi-pure (De Kwaadsteniet et al., 2009) 

Staphylococcus aureus  Brushite cement in BALB/c 

mice 

Semi-pure (van Steden et al., 2012) 

Lacticin NK34 Staphylococcus aureus  

/ Staphylococcus 

simulans 

ICR mice Semi-pure (Kim et al., 2010) 

Nisin V L. monocytogenes BALB/c mice Pure (Campion et al., 2013) 

Divercin V41  L. monocytogenes BALB/c mice Pure (Rihovka et al., 2010) 

Mutacin B-Ny266 Staphylococcus aureus Unknown Pure (Mota-Meira et al., 2005) 

Mersacidin Methicillin-resistant 

Staphylococcus aureus 

(MRSA) 

BALB/c mice Pure (Kruszewska et al., 2004) 

Epidermicin  NI01 Methicillin-resistant 

Staphylococcus aureus 

(MRSA) 

Cotton rats Pure (Halliwell et al., 2017) 
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Figure 1. Bacteriocinogenic probiotics can be utilised either prophylactically or therapeutically to treat an infection. M, M cell; Mac, 

macrophage; Mu, mucous; T, T cell; IEC, intestinal epithelial cell; DC, dendritic cell.
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Abstract 

Bacteriocins are ribosomally-synthesized antimicrobial peptides produced by 

bacteria, which can have either broad or narrow spectrum of activity and are often 

active at nanomolar concentrations. We report the discovery of thermocin 458, an 

antimicrobial produced by Geobacillus stearothermophilus DSM 458 with a narrow 

spectrum of activity against closely related Geobacilli. In order to elucidate the 

genetic basis of the antimicrobal produced the genome of Geobacillus 

stearothermophilus DSM 458 was genome sequenced using PacBio sequencing. 

This resulted in a fully circular genome of 3,466,824 bp with a G+C content of 

52.11% with 3361 protein coding sequences. In silico screening highlighted the 

presence of a 6.9 kDa highly hydrophobic circular bacteriocin within the genome. 

Thermocin 458 is heat stable and active across a broad range of pH values. The 

molecular mass of thermocin 458 is between 11-13 kDa as determined by native 

sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Digestion with 

proteases (proteinase K, trypsin, ficin and papain) results in decreased antimicrobial 

activity.  
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Introduction 

One of the most useful defense mechanisms employed by bacteria is the ability to 

produce bacteriocins.  Bacteriocins are small, ribsomally-synthesised peptides which 

may be broad or narrow spectrum in activity and are considered to be highly 

abundant amongst bacteria.  These peptides are classified into three broad groups: 

Class I (post-translationally modified), Class II (unmodified) or Class III (>10 kDa) 

(Cotter et al., 2013). In previous decades, bacteriocin prospecting has been heavily 

focused on the lactic acid bacteria (LAB) because of their Generally Regarded As 

Safe (GRAS) status and proven safety record in food preservation.  In recent years, 

there has been a move towards expanding screening strategies to include other 

bacterial genera such as Geobacillus (Abriouel et al., 2011). These newer initiatives 

have been largely driven by the need for new antibiotics to address the antimicrobial 

resistance crisis. 

 

Geobacillus are facultative thermophilic bacteria which are virtually ubiquitous in 

the environment and are believed to play a minor role in the global carbon cycle 

(Zeigler, 2014). These bacteria are also biotechnologically important, as they are a 

source of thermostable enzymes and have highly desirable degradative properties, 

including the ability to break down complex sugars (e.g. lignocellulose) (Cripps et 

al., 2009; De Maayer et al., 2014; Studholme, 2015). Recent studies have identified a 

number of bacteriocins produced by this genus, (Başbülbül Özdemir and Biyik, 

2012; Garg et al., 2012; Özdemir and Biyik, 2012) which have highlighted its 

potential as a source of novel antimicrobials. In parallel, the accelerated development 

of the field of bioinformatics has reduced both the time and cost required to discover 
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and characterize bacteriocin gene clusters through mining tools such as BAGEL 3.0 

(van Heel et al., 2013) and AntiSMASH (Weber et al., 2015).  

 

Here, we classify and characterize the potentially novel antimicrobial thermocin 458 

which is produced by Geobacillus stearothermophilus DSM 458 previously isolated 

from a sugar beet factory. Furthermore, we also sequence the genome of G. 

stearothermophilus DSM 458 in an effort to identify the genetic determinants of 

thermocin 458. 
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Materials and methods 

Bacterial strains and growth conditions 

All strains used in this study are listed in (Table 1) All Geobacillus species were 

grown in Brain Heart Infusion (BHI) (Oxoid) at 55°C shaking at 180 RPM. 

Enterococcus, Bacillus, Listeria and Streptococcus were grown in BHI (Oxoid) at 

37°C. Lysinibacillus, Alicycobacillus, Paenibacillus were grown in BHI (Oxoid) at 

30°C. Lactococcus species were grown at 30°C in M17 (Oxoid) supplimented with 

0.5% glucose. 

 

Antimicrobial detection assays 

Deferred antagonism assays were carried out by spotting 10µl of an overnight 

culture of the antimicrobial producer onto the surface of BHI agar plate and 

incubating for 18hrs at at 55°C. The resultant colonies were then subjected to UV 

exposure for 40 minutes and subsequently overlaid with the desired indicator in its 

relevant pre cooled molten agar (0.75% w/v agar). Any zones of inhibition were 

measured using calipers, where the producer colony diameter was subtracted from 

the total zone diameter. This diameter was then used to calculate the area of 

inhibition zone using the formula: 𝑎 = 𝜋𝑟2.  

 

Well diffusion assays were performed by seeding 50mls of cooled nutrient agar 

(1.5%) with a 0.1% v/v inoculum of an overnight culture of the relevant indicator 

strain and pouring into a sterile petri dish. After the agar was set, wells were bored 

using a Pasteur pipette (Diameter = 5.66) and 20 µl of antimicrobial containing 

liquid was pipetted into each well, after which the plates were incubated at the 
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relevant temperature for 18 hours. The zone of inhibition sizes were measured and 

the units of activity calculated where 1 unit = 1mm2 as previously described. 

 

Whole genome sequencing 

The bacteriocin producer G. stearothermophilus DSM 458 was grown to mid log 

phase and the pellet harvested. 600mg of this pellet was snap frozen by placing it 

into ethanol at -80°C. Chromosomal DNA was isolated from this pellet by 

commercial sequence providers GATC Biotech Ltd. (Konstanz, Germany) and 

sequenced on a Pacific Bioscience PacBio RS II (GATC Biotech Ltd., Konstanz, 

Germany). De novo assembly of the genome was performed using the SMRTPortal 

analysis platform (version 2.3.1), using the RS_HGAP_Assembly.2 protocol.  

 

General feature predictions 

Following genome assembly, Open Reading Frame (ORF) prediction was performed 

using the Prodigal v2.5 prediction software (Hyatt et al., 2010). These ORFs were 

confirmed using BLASTX v2.2.26 (Altschul et al., 1990) alignments and annotated 

automatically using BLASTP v2.2.26 (Altschul et al., 1990) analysis against the 

non-redundant protein databases curated by the National Centre for Biotechnology 

Information (NCBI) (Pruitt et al., 2007). Following automatic annotation, manual 

curation of ORFs was completed using Artemis v16 genome browser and annotation 

tool (Rutherford et al., 2000). Subsequently the software tool was utilized for the 

combination and inspection of ORF results, adjustment of start codons where 

necessary and to aid in the identification of pseudogenes. Transfer RNA (tRNA) and 

ribosomal RNA (rRNA) genes were predicted using tRNAscan-SE v1.23 (Lowe and 

Eddy, 1997) and RNAmmer v1.2 (Lagesen et al., 2007) respectively. The RNA 
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encoded genes predicted were then manually added to the genome using Artemis 

v16. Phast was used to predict putative phages encoded within the genome (Zhou et 

al., 2011) and CRISPRfinder was used to predict clustered regularly interspaced 

short palindromic repeat (CRISPR)-associated repeat regions (Grissa et al., 2007). 

 

Genome visualisation tool and bacteriocin biosynthetic gene(s) identification 

The genome of Geobacillus stearothermophilus DSM 458 was visualised using 

DNA plotter (Carver et al., 2009). In order to identify putative bacteriocin operons 

within the genome the bacteriocin mining tool BAGEL 3.0 (van Heel et al., 2013) 

and antiSMASH (Weber et al., 2015) were utilized. Additionally, all the proteins 

encoded within the genome were aligned against the prokaryotic antimicrobial 

peptide database using the Protein Basic Local Alignment Search Tool (BLASTP) in 

order to further identify antimicrobial gene candidates.  

 

Purification of thermocin 458 

The bacteriocin producing strain G. stearothermophilus DSM 458 was grown 

overnight in BHI at 55°C. This overnight culture was then inoculated (1% inoculum) 

into 2L of BHI broth. Following incubation of the culture at 55°C RPM 180 for 24 

hours the cells were harvested by centrifugation (6000 RPM at 4°C for 20 minutes) 

from the cell free supernatant (CFS). Both the CFS and cells were retained for 

further purification.  

 

In order to detach any potential cell-attached antimicrobial, the cells were stirred in 

70% propan-2-ol (IPA) containing 0.1% Trifluoroacetic acid (TFA) for 4 hours at 

4°C and subsequently centrifuged (6000 RPM for 20 minutes). After centrifugation 
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the cellular debris were discarded and the volume of the aqueous / solvent mixture 

was reduced by 70% using rotary evaporation (Buchi) at 42°C and a pressure of 

85mbar, in order to remove the propan-2-ol.  This was designated solution 1. 

 

The bacteriocin contained within the supernatant was precipitated using an 

ammonium sulfate precipitation method. This was completed by slowly adding 

ammonium sulfate to the CFS until it reached a total concentration of 90% w/v and 

stirred at room temperature for 4 hours. The precipitated protein was then pelleted at 

7000 RPM for 30 minutes and the supernatant discarded. The precipitated pellet was 

then dissolved in 200mls of 150mM Tris, 150mM NaCl, pH 7.5 and retained for 

further desalting. This was designated solution 2. 

 

Solution 1 and 2 were now combined and subjected to solid phase extraction (SPE) 

using a 10g (60ml) C-18E-SPE Giga-Tube (Phenomenex, Cheshire, UK). Initially 

the SPE cartridge was activated using 60mls of methanol, followed by 60mls of H20. 

The aqueous solution containing the bacteriocin was then loaded onto the cartridge 

and washed with 30% Ethanol. The bacteriocin was eluted from the sorbent using a 

60ml solution of 70% IPA and 0.1% TFA.  This antimicrobial containing crude 

preparation was now used for further protein characterisation. 

 

Reverse-phase high performance liquid chromatography 

Liquid chromatography was performed using a Shimazdu Prominence UHPLC 

system (Shimazdu Biotech, Manchester, Uk) with a Proteo Widepore C18 column 

(250 X 4.6 mm, 5µm, 300Å, Phenomenex). The mobile phase A (water, 0.1% TFA) 

and B (acetonitrile 0.1%TFA) were used and a gradient of 0% to 70% of solvent B 
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was performed over 85 minutes. A total injection volume of 400µl and a 1.2ml/min 

flow rate was used. The fractions were assayed for activity and those found to be 

active were pooled and run on a lesser gradient of 40 – 70% solvent B. Active 

fractions were subsequently brought forward for mass determination and Vmax 

determination. All fractions were surveyed for activity using well assays and as 

before 1 unit of activity was characterized at 1 mm2 as was described by Huang et al. 

(2016).  

 

Mass determination using native SDS-PAGE Gel electrophoresis 

In order to estimate the molecular weight (MW) of Thermocin 458, a 4-20% 

TruPAGE gel (Sigma Aldrich) was used as previously described (Schagger and von 

Jagow, 1987). The antimicrobial containing solution was loaded onto opposite sides 

of the gel with a molecular marker (5-250 kDa) and after electrophoresis was 

completed the gel was divided in two. The first half was stained with coomassie blue 

to estimate the size of the antimicrobial. The second half was fixed for 30 minutes in 

propan-2-ol (25%) and acetic acid (10%) then washed in dH20 for 3 hours.  The 

fixed gel was then overlaid in a small petri dish with 15mls of BHI agar (0.75%) 

which had been previously seeded with a 0.1% inoculum of Geobacillus 

thermoleovorans DSM 7263. The presence of a zone was then correlated back to the 

visualized half of the gel in order to gain an accurate size estimation of the 

antimicrobial protein.  

 

Biochemical characterization of thermocin 458 

The pH stability of thermocin 458 was investigated using the cell free supernatant of 

an overnight culture. The pH was adjusted using 1M NaOH and HCL from pH 2 to 
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pH 12. The areas of the zone of inhibition were measured and expressed in terms of 

activity units, where 1 unit = 1mm2. 

 

In order to carry out temperature stability and enzyme susceptibility tests, a crude 70 

% propan-2-ol/0.1% TFA thermocin 458 containing preparation which had been 

prepared as previously described was dispensed into 500 µl aliquots and lyophilized. 

The crude Thermocin 458 was then re-suspended in 500µl of Phosphate Buffered 

Saline (PBS) containing one of the following enzymes: proteinase K, a-

chymotrypsin, papain, ficin, a-amylase and lipase. These enzymes were added at a 

final concentration of 1 mg/ml and incubated for 1 hour at 37°C.  

 

To assess temperature stability, the lyophilized thermocin 458 was re-suspended in 

PBS (pH7) and aliquoted into 50µl aliquots in low protein binding microfuge tubes 

and incubated in triplicate at 60, 70, 90 or 100°C for 30 minutes or 121°C for 15 

minutes.  

 

Areas of the zone of inhibition were measured and percentage residual activity 

calculated. Enzymes (10mg/ml) and pH buffers without thermocin 458 were also 

included on the plate to serve as controls. 
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Results 

Antimicrobial spectrum of thermocin 458 

A bank of Geobacillus species was screened for antimicrobial activity against L. 

lactis HP, G. stearothermophilus DSM 7263, S. agalactiae ATCC 13813, B. subtilis 

1012 and S. aureus SA113 (Table 2) and one isolate, G. stearothermophilus DSM 

458 displayed antimicrobial activity. G. stearothermophilus DSM 458 had a narrow 

spectrum of activity, only inhibiting other Geobacillus spp (Table 3) 

 

Whole genome sequencing and general feature prediction 

In an attempt to identify the biosynthetic genes responsible for the antimicrobial 

activity of G. stearothermophilus DSM 458, whole genome sequencing and gene 

annotation was carried out. This yielded a fully circularised genome without any 

plasmids (Figure 1). The mean fold coverage was 147.88. The genome size was 

3,466,824 bp with a G+C content of 52.11%. A total of 3361 protein coding 

sequences (CDSs) were predicted including 32 rRNA operons, 89 tRNAs, 43 pseudo 

genes, 4 putative phages and 5 repeat regions (Table 4). 

 

Identification of putative bacteriocin gene clusters 

Subsequently, the genome was screened using BAGEL 3.0 and antiSMASH 

software to identify putative antimicrobial-encoding gene clusters, both of which 

predicted the presence of a highly hydrophobic circular bacteriocin (Figure 2), with 

an amino acid sequence similar to other characterised circular bacteriocins (Figure 

3). This circular bacteriocin DNA sequence was also shown to be present in a 

number of other Geobacilli genomes (Figure 4). 
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Three strains (G. thermoleovorans Y4.12MC52, G. thermoleovorans Y4.12MC61 

and G. thermoleovorans C56-T3) which contained the putative bacteriocin genes 

were acquired to examine potential cross-immunity to the G. stearothermophilus 

DSM 458 strain and to also assess for production of the predicted circular 

bacteriocin encoded in their genomes. However, all three strains were sensitive to the 

antimicrobial produced by G. stearothermophilus DSM 458 and did not themselves 

appear to produce any inhibitory activity.  

 

Additionally, the masses obtained using colony mass spectrometry (Figure 5) of G. 

stearothermophilus DSM 458 and HPLC purification of the inhibitory substance 

(11-13 kDa) using native SDS-PAGE (Figure 6) did not correspond to the predicted 

circular bacteriocin (6.933 kDa). The RP-HPLC profile analysis (Figure 7a) of the 

antimicrobial also did not resemble that of a highly hydrophobic peptide such as the 

circular bacteriocin circularin (Gabrielsen et al., 2014). These results suggested that 

the antimicrobial activity associated with G. stearothermophilus DSM 458 is 

unlikely to be the predicted putative circular bacteriocin. Furthermore, BLASTP 

analysis of the genome against all proteins in the prokayotic antimicrobial peptide 

database produced no significant matches with any other known antimicrobial 

peptides.  

 

Production and partial purification of thermocin 458 

In order to obtain sufficient quantities of peptide for further analysis (mass 

spectrometry, peptide stability, enzymatic sensitivity) G. stearothermophilus DSM 

458 was grown in 2L of BHI broth over 24 hours. A combinatorial protein 

purification approach was then undertaken in order to concentrate the antimicrobial. 
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This method involved extracting the antimicrobial from the cells using a polar 

solvent (propan-2-ol) and precipitating the antimicrobial from the supernatant using 

ammonium sulfate precipitation. The antimicrobial displayed a retention time 

between 65-75 mins over a mobile phase gradient of 5-70% acetonitrile as 

determined through detection of the antimicrobial activity through a well diffussion 

assay (Figure 7b). The active fractions were subsequently pooled and run on a 

shallower gradient of 40-70% acetonitrile in order to further separate the proteins, 

however the detection of the active peptide did not correspond to a peak on the 

HPLC chromatogram. In order to elucidate absorbance (Vmax) of the antimicrobial 

contained within this HPLC fraction a spectral scan (200-800nm) was performed, but 

this yielded no conclusive results as no absorbance signal was observed across this 

range, indicating the peptide may be present in extremely low concentrations. 

 

Mass determination of thermocin 458 

The inhibitory substance isolated from the RP-HPLC purification was subjected to 

ultrafiltration using a 10 kDa molecular weight cut off spin filter (MWCO). 

Retention of the inhibitory substance suggests that the inhibitiory substance has a 

mass > 10 kDa. This was further substantiated by native Sodium Dodecyl Sulphate 

Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of the antimicrobial 

which indicated its mass was between 11-13 kDa (Figure 6). MALDI-TOF mass 

spectrometry was carried out on the purified HPLC fraction and two potential masses 

were identified at 11362.12 and 12924.46 Da (Figure 8).  
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Biochemical characterisation of thermocin 458 

It was observed that thermocin 458 had remarkable pH and temperature stability 

(Table 5). It retained full activity across a broad pH range (2-10), only becoming 

11% less active at pH 12. It was also observed that the antimicrobial was 

temperature stable, losing only 5% of relative activity from 80-100°C and 27% at 

115°C when treated for 30 and 15 minutes.  

 

When the antimicrobial was treated with various enzymes it was shown that the 

antimicrobial was susceptible to a range of proteases over one hour, with papain 

resulting in the greatest loss of activity, suggesting that the antimicrobial contains 

essential peptide bonds. It was also noted that α-amylase only slightly reduced the 

activity of the antimicrobial, while lipase had no effect (Figure 9).                                   
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Discussion 

In this study we identified an antimicrobial which we are designating thermocin 458, 

produced by Geobacillus stearothermophilus that was isolated from a sugar beet 

factory in Austria. This antimicrobial protein was found to be 11-13 kDa in size and 

is narrow spectrum, only exhibiting activity against other geobacilli. Based on these 

characteristics we predict this antimicrobial protein is likely a bacteriocin and 

belongs to the Class 3 bacteriolysins using the classification scheme set out by Cotter 

et al. (2013).  Furthermore, by comparing our biochemical and physicochemical data 

with published antimicrobial peptides from the genus Geobacillus (Table 6) we 

believe that thermocin 458 is a potentially novel antimicrobial protein. 

 

Geobacilli are an important source of thermostable enzymes, and consequently it has 

been suggested that they might also be a source of thermostable bacteriocins. Indeed, 

the thermocin 458 antimicrobial identified here is stable across a broad range of 

temperatures including those used by autoclaves, supporting the hypothesis of 

mining thermostable bacteriocins from thermophillic bacteria. Furthermore, the 

degradation of thermocin 458 by ficin, papain, proteinase K and trypsin confirms the 

proteinaceous nature of this antimicrobial compound while the slight loss of activity 

from α-amylase treatment could suggest the presence of a carbohydrate moiety. 

Although proteinaceous degradation of thermocin 458 was observed, it was not at 

the levels seen by Pilasombut et al., (2015), where the antimicrobial activity of L. 

plantarum KL-1 was completely reduced over the course of a three hour treatment 

with enzymes. Perhaps this lower sensitivity of thermocin 458 to proteinaceous 

enzymes could be an advantageous feature of bacteriocins from Geobacillus species, 

which may be expolited in future studies.  
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Although thermocin 458 displayed reproducible retention times using HPLC, as was 

detected by assaying fractions for antimicrobial activity, there was no detection of 

the bacteriocin using UV-VIS. A possible explanation for this is that the protein 

exhibits antimicrobial activity against sensitive Geobacillus even at concentrations 

below the level of detection for analytical HPLC.  

 

While the availability of genomic data has led to an increase in in silico bacteriocin 

identification such as formicin (Collins et al., 2016), lichenicidin (Begley et al., 

2009; Dischinger et al., 2009) and Geobacillin I and II (Garg et al., 2012) it is worth 

considering that neither BAGEL 3.0 (van Heel et al., 2013) nor antiSMASH (Weber 

et al., 2015) could successfully identify the gene(s) responsible for the production of 

Thermocin 458. Perhaps this could be explained by the lack of bacteriocins currently 

known to be produced by Geobacillus and a potential higher diversity compared to 

known bacteriocins in this genus, leading to an inability to identify the biosynthetic 

gene(s) responsible for its production. Ultimately until we know the sequence of the 

biosynthetic gene(s) responsible for the antimicrobial activity of thermocin 458 it is 

difficult to ascertain true novelty. 

 

Discovering bacteriocins which are novel and functionally interesting will be a key 

part of the solution to the antimicrobial resistance crisis and therefore, it is important 

that we expand the knowledge of bacteriocin biology and prospect new sources of 

bacteriocin peptides such as the genus Geobacillus in the future.   
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Table 1. Strains used in this study 

Strain Characteristics 
Source/ reference * 

G. stearothermophilus DSM 458  
Antimicrobial producer BGSC 

G. stearothermophilus ATCC 12980 
Indicator BGSC 

G. stearothermophilus DPC 6941 
Indicator DPC  

G. stearothermophilus DSM 494 
Indicator BGSC 

G. stearothermophilus DSM 1550 
Indicator BGSC 

G. stearothermophilus NRRL B4419 
Indicator BGSC 

G. thermoleovorans DSM 7263 
Indicator BGSC 

G. thermoleovorans DSM 13174 
indicator BGSC 

G. thermoleovorans DSM 5366 
Indicator  BGSC 

G. thermoleovorans Y4.12MC61 
Indicator BGSC 

G. thermoleovorans Y4.12MC52 
Indicator BGSC 

G. thermoleovorans C56-T3 
Indicator BGSC 

G. thermoglucosidius DSM 6939 
indicator DPC  

G. tobeii DSM 14590 
Indicator BGSC 

G. uziensis DSM 13551 
Indicator BGSC 

G. anatolyticus SB 
Indicator BGSC 
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G. subterraneus DSM 13552 
Indicator BGSC 

G. kaue HU 
Indicator BGSC 

G. uziensis X 
Indicator BGSC 

G. thermodenitrificans DSM 465 
Indicator BGSC 

L. lactis HP 
Indicator UCC  

L. lactis KH 
Indicator UCC 

L. monocytogenes L028 
Indicator This study 

S. aureus RF122 
Indicator This study 

B. cereus DPC 6089 
Indicator DPC  

B. subtilis 1012 
Indicator BGSC 

Paenibacillus polymyxa  
Indicator BGSC 

E. faecium  
Indicator UCC  

Alycycliobacillus acidoterrestris 
Indicator UCC 

 

* Culture collection abbreviations  

BGSC: Bacillus Genetic Stock Centre, Ohio State University, USA. 

DPC: Dairy Culture Collection, Teagasc Food Research Centre, Moorepark, 

Fermoy, Co. Cork. 

UCC: University College Cork culture collection, School of Microbiology, 

Western Road, Cork City, Ireland
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Table 2. Bank of Geobacilli screened for antimicrobial activity  

 

Bacteria screened for antimicrobial production 
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G. thermoleovorans DSM 7263 - - + - - - - - - - 

B. subtilis 1012 - - - - - - - - - - 

S. agalactiae ATCC 13813 - - - - - - - - - - 

L. lactis HP* - - - - - - - - - - 

S. aureus SA113 - - - - - - - - - - 
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Table 3. Thermocin 458 has a narrow spectrum of activity against other 

thermophilic Geobacilli.  

Indicator Zone of inhibition (mm2) 

G. stearothermophilus ATCC 12980 
186 

G. stearothermophilus DPC 6941 
150 

G. stearothermophilus DSM 494 274 

G. stearothermophilus DSM 1550 
292 

G. stearothermophilus NRRL B4419 263 

G. thermoleovorans DSM 7263 
387 

G. tobeii DSM14590 
420 

G. uziensis DSM 13551 
280 

G. anatolyticus SB 178 

G. subterraneus DSM 13552 
257 

G. kaue HU 
177 

G. uziensis X 
328 

G. thermodenitrificans DSM 465 282 
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Table 4. Overview of genome features of Geobacillus stearothermophilus DSM 

458 

Atributes Data 

Genome size (bp) 3,466,824 

GC content  52.11% 

rRNAs 32 

tRNAs 89 

Repeat regions 5 

Pseudo genes 43 

Phages 4 

Proteins 3361 

Genes 3525 
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Table 5. Physicochemical stability tests of thermocin 458  

Treatment  

Heat treatment % untreated control 

Control 100  

60 93.50 ± 2.25 

70 91.75 ± 1.43 

90 91.26 ± 2.09  

100 92.38 ± 3.87 

121 91.26 ± 2.09 

  

pH Activity units (1 unit = 1 mm2) 

2 80.118 ± 6.20 

 

3 50.265 ± 7.89 

 

4 105.68 ± 14.41 

 

5 120.76 ± 15.31 

 

6 120.76 ± 2.98 

 

7 120.76 ± 2.98 

 

8 120.76 ± 2.26 

 

9 120.76 ± 2.26 

 

10 120.76 ± 2.26 

 

11 120.76 ± 5.89 

 

12 109.35 ± 22.35 
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Table 6. Antimicrobials / bacteriocins produced by other Geobacilli  

Producer Size Spectrum of 

activity 

Name Refrences 

G. stearothermophilus NU-1 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-2 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-7 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-10 20 kDa Narrow Unknown Shafia, 1966; Yule and Barridge, 1976 

G. stearothermophilus NU-23W Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-34 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-37 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-41 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NU-44 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NCA-1373 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus NCA 1492 Unknown Narrow Unknown Shafia, 1966 

G. stearothermophilus RS93 Unknown Narrow thermocin 93 Pokusaeva et al., 2009 

G. toebii HBB-247 38 kDa Broad Unknown Başbülbül Özdemir and Biyik, 2012 
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G. thermodenitrificans NG80-2 3.2 - 3.4 kDa Broad Geobacillin I Garg et al., 2012 

G. thermodenitrificans NG80-2 3.4 - 3.6 kDa Broad Geobacillin II Garg et al., 2012 

G. toebii HBB-218 5.5 kDa Broad Toebicin 218 Özdemir and Biyik, 2012 

Geobacillus sp. ZGt-1 15-20 kDa Broad Unknown Alkhalili et al., 2016 
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Figure 1. Genome map of of Geobacillus stearothermophilus DSM 458.  

The tracks from the figure (starting from the outside) are: (1) forward CDS, (2) 

reverse CDS, (4) % GC, (4) GC skew [(GC)/(G+C)] 
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Figure 2. A putative highly hydrophobic circular bacteriocin gene cluster is contained within the genome of G. stearothermophilus 

DSM 458. 
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Figure 3.  Alignment of predicted circular peptide with characterised circular bacteriocins 
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Figure 4. A putative highly hydrophobic bacteriocin is encoded in Geobacillus genomes 
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Figure 5. Colony Mass Spectrometry (CMS) of G. stearothermophilus DSM 458 
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Figure 6. Thermocin 458 has an estimated molecular mass of 11-13 kDa as 

determined by native SDS-PAGE. 
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Figure 7.  HPLC chromatogram of crude antimicrobial purification. Retention 

time of antimicrobial is 65 – 75 minutes on a gradient of 0-70% ACN / 0.1%TFA.  
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Figure 8. MALDI-TOF mass spectrometry analysis of active HPLC fractions containing putative masses of: 11362.12 and 12924.46 

kDa.  
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Figure 9. Thermocin 458 enzyme susceptibility assay (n=6). 
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Abstract 

The thermophilic, endospore-forming genus of Geobacillus has historically been 

associated with spoilage of canned food. However, in recent years it has become the 

subject of much attention due its biotechnological potential in areas such as enzyme 

and biofuel applications. One aspect of this genus that has not been fully explored or 

realised is its use as a source of novel forms of the ribosomally synthesised 

antimicrobial peptides known as bacteriocins. To date only two bacteriocins have 

been fully characterised within this genus, i.e., Geobacillin I and II, with only a small 

number of others partially characterised. Here we bioinformatically investigate the 

potential of this genus as a source of novel bacteriocins through the use of the in 

silico screening software BAGEL3, which scans publically available genomes for 

potential bacteriocin gene clusters. In this study we examined the association of 

bacteriocin gene presence with niche and phylogenetic position within the genus. We 

also identified a number of candidates from multiple bacteriocin classes which may 

be promising antimicrobial candidates when investigated in vitro in future studies.  
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Introduction 

The genus Geobacillus is composed of thermophillic, rod shaped, spore-forming, 

aerobic or facultative anaerobic bacteria. Their defining feature is their ability to 

grow at elevated temperatures of up to 80°C, with most isolates having growth 

temperature optima between 45 and 70°C (Nazina et al., 2001; Zeigler, 2014). Their 

sporulating nature makes their presence particularly challenging in food as they may 

survive intensive thermal processing methods and germinate when optimum 

conditions exist at a later period (Egan et al., 2016). In recent years this genus has 

attracted ever greater attention due an increased appreciation of its biotechnological 

potential, e.g. as sources of thermostable enzymes, as well as the biofuel and 

bioremediation industries (Cripps et al., 2009; Hussein et al., 2015; Kananavičiūtė 

and Čitavičius, 2015; Studholme, 2015). One application of Geobacillus which has 

not yet been fully explored relates to their usefulness as a source of novel and highly 

potent antimicrobial peptides called bacteriocins.  

 

Bacteriocins are ribosomally synthesised, narrow or broad-spectrum, antimicrobial 

peptides produced by bacteria. They can be broadly classified into three classes: 

class I post-translationally modified, class II unmodified and class III <10 kDa in 

size (Arnison et al., 2013; Cotter et al., 2013). In past decades bacteriocins have been 

isolated primarily from lactic acid bacteria (LAB) due to their generally recognised 

as safe (GRAS) status which allows them to be used in food (Cotter et al., 2005). 

With the widespread use of in silico screening (Marsh et al., 2010; Azevedo et al., 

2015; Walsh et al., 2015; Collins et al., 2017) and large culture based screening 

projects (Rea et al., 2010), bacteriocin candidates have been identified from 

alternative bacterial genera isolated from environmental, food or clinical samples. 
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However, relatively few Geobacillus-associated bacteriocins have been identified to 

date (Pokusaeva et al., 2009; Başbülbül Özdemir and Biyik, 2012; Garg et al., 2012; 

Alkhalili et al., 2016), with very little genetic or structural information available with 

respect to these peptides. Geobacillin I and II represent the only two well 

characterised lantibiotic (class I) bacteriocins from this genus, with a large amount of 

information available with regard to antimicrobial spectrum, physicochemical 

characteristics and genetic determinants (Garg et al., 2012).  

 

In silico screening of bacterial genomes for novel bacteriocins has become a staple 

element of bacteriocin discovery and characterisation over the past decade. Its 

widespread use and popularity has been driven by its ability to reduce time and cost 

relative to culture-based bacteriocin screening studies. First generation in silico 

screening of bacterial genomes required the use of ‘driver genes’ to predict potential 

new bacteriocin genes within genomes (Begley et al., 2009; Marsh et al., 2010). 

However, in recent years the bacteriocin prediction software BAGEL3 (van Heel et 

al., 2013) has become the tool of choice for in silico bacteriocin discovery. BAGEL3 

searches bacterial genomes in DNA FASTA format using two different approaches 

to discover new bacteriocins, i.e., (1) detection of bacteriocin structural genes and (2) 

detecting other genes commonly associated with bacteriocin production. Those 

bacteriocins which are identified using both approaches are compared and filtered to 

remove duplicate candidates. Furthermore this software can be supplemented with 

traditional ‘driver gene’ in silico screening or even with other programs such as 

antismash 3.0, which can detect other classes of antimicrobial peptides such as Non-

Ribosomal PolyKetide (NRPK) antimicrobials (Weber et al., 2015). 
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This study set out to use BAGEL3 (van Heel et al., 2013) to perform an in silico 

screen of publically available Geobacillus genomes in an attempt to identify 

bacteriocin candidates for future in vitro experiments. The specific objectives were 

to: (1) identify potential structural peptides within Geobacillus genomes; (2) 

investigate the possibility of a relationship between genome phylogenetic position 

and gene presence; and (3) examine any homology between structural peptide-

encoding and surrounding genes with previously characterised bacteriocin gene 

clusters.  
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Materials and Methods 

Bacteriocin identification and visualisation 

Using the in silico bacteriocin prediction tool BAGEL3 (van Heel et al., 2013), 

genome sequences belonging to the genus Geobacillus (Table 1) were aquired and 

analysed. Amino acid sequences of all 16 class III bacteriocins were aquired from 

Bactibase (Hammami et al., 2007) and aligned against the genomes as driver 

sequences using blastP (Altschul et al., 1990). Where necessary NisP (NCBI protein 

ID: AAA25200.1) and NisT (NCBI protein ID: AAA25191.1) driver sequences were 

used to seek and identify LanT and LanP-determinants in genome sequences. Those 

bacteriocin genes predicted were further visualised using Artemis genome 

visualisation tool (Rutherford et al., 2000). Blastn and blastP (Altschul et al., 1990) 

were used to determine the % identities between putative peptides / genes and those 

accurately curated. Structural peptides were aligned using the Multiple Sequence 

Alignment (MSA) tool MUSCLE (Edgar, 2004) and then visulised using Jalview 

(Waterhouse et al., 2009). The previously generated MUSCLE peptide alignments 

were then input into the MEGA 7 software package (Kumar, 2016) for phylogenetic 

analysis. Using a neighbour-joining method, an unrooted phylogenetic tree was 

generated using a Jukes–Cantor method (Dukes and Cantor, 1969) and bootstrap 

replication values of 1000 similarly to that by Zhang et al., (2015). In alignments 

where specifiec sequences contained no common sites, these were deleted. The 

resulting nexus tree files were exported to the interactive tree of life (itol) (Letunic 

and Bork, 2016) for graphical adjustment. 

 

 

 



 168 

Phylogenetic analysis of Geobacillus species 

Where available, 16S RNA sequences were acquired from genbank, however if no 

16S sequence was available the in silico prediction tool RNAmmer (Lagesen et al., 

2007) was used. The B. cereus ATCC14579 16S sequence was selected as a root for 

the final version of the tree. All 16S sequences were then collated and aligned as 

before using the MSA tool MUSCLE (Edgar, 2004). The resulting alignment output 

was then input into MEGA 7 (Kumar, 2016). Similaraly to Cihan (2018), a 

neighbour-joining tree was generated using bootstrap values based on 1000 

replications and the resulting nexus tree file was then input into the itol software 

(Letunic and Bork, 2016) for final graphic adjustments. Where no common sites 

were found for specific peptides in the generation of the phylogenetic tree they were 

not included in the phylogenetic arrangement. The strains which had nether pre-

determined or non-predictable 16S rRNA sequences were excluded from the overall 

study. The bacteriocin predictions by BAGEL3 were subsequently overlaid onto the 

phylogenetic tree using microsoft Powerpoint.  
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Results 

Bacteriocin cluster distribution across the genus of Geobacillus 

This study sets out to use an in silico approach to determine both the prevalence and 

diversity of bacteriocin gene clusters within the genus Geobacillus. Utilizing the 

genome sequences available in the public databases, 67 genomes (Table 1) 

representing 12 Geobacillus species, including galactosidius, iciganius, jerrasicus, 

kaustophilus, liticanus, stearothermophilus, subterraneus, thermogalactosidius, 

thermoleovorans, thermocatenulatus, uziensis and vulcani were analysed. This 

screen resulted in the prediction of 81 bacteriocin gene clusters, of which 2 matched 

the previously characterised Geobacillin I and II (Garg et al., 2012) discovered in 

Geobacillus thermodenitrificans NG80-2. The other 79 clusters represented 

potentially novel bacteriocin candidates belonging to class I (modified) and class II 

(unmodified) bacteriocin families. When characterised class III bacteriocins were 

used as ‘driver’ sequences and blasted against the entire Geobacillus genome 

database, no homologies were found. Furthermore no class III bacteriocins were 

predicted by BAGEL3.  

 

In order to reveal associations between bacteriocin gene cluster presence within 

genomes and their phylogenetic position within the overall Geobacillus genus, we 

superimposed the BAGEL3 bacteriocin predictions onto a Geobacillus neighbour-

joining phylogentic tree constructed from 16S rRNA sequences. Here we can see 

that bacteriocin clusters are both diverse and common across those genomes 

examined in this study (Figure 1). While lantibiotics and circular bacteriocin clusters 

are spread across the whole genus, Linear Azole-containing Peptides (LAPs), are 

associated with those strains for which a species has been designated but cluster 
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closely with the species G. galactosidius and G. thermodenitrificans. A higher 

frequency of sactibiotics can also been seen within the species G. stearothermophilus 

but these are also present in other species. Furthermore, there are a number of strains 

included whose genomes have not been fully sequenced and therefore it is not 

possible to state definitively that alternative bacteriocin clusters are absent from 

these genomes other than those predicted in this screen.  

 

Similarly to Walsh et al. (2015), the homology of predicted Potential Bacteriocin 

Gene Clusters (PBGCs) to existing genes and the arrangement of those genes was 

examined. Below we group PBGCs by bacteriocin class. These arrangements will 

display only those genes whose function is predicted to be involved in bacteriocin 

bioactivity and not those genes of unknown function that exist within these clusters.  

 

Class I Bacteriocins 

Lantibiotics 

29 putative lantibiotic gene clusters within 18 genomes were identified by BAGEL3 

as part of this genome led bacteriocin screen (Figure 2). Lantibiotics belong to class I 

bacteriocins, which undergo significant post-translational modifications. These 

peptides are small and usually contain thioether internal bridges due to the 

interaction of dehydroalanine or dehydrobutyrine with intrapeptide cysteines, 

resulting in the formation of lanthionine or β-methyllanthionine residues. The 

structural gene (LanA) typically encodes a leader at the N-terminal of the prepeptide, 

which is transported across the cell membrane by LanT, then cleaved by LanP. The 

Post Translational Modification (PTM) enzyme LanB catalyses the dehydration of 

amino acids, while LanC catalyzes thioether formation. The two component 
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regulatory system genes, lanR and lanK, encode a response regulator and histidine 

kinase, respectively (Marsh et al., 2010; Draper et al., 2015; Field et al., 2015). 

While there are other PTM enzymes associated with lantibiotics they were not 

observed in this study so will not be described further, but they are discussed in 

greater detail elsewhere (McAuliffe et al., 2001). 

 

The lantibiotics predicted in this study (Figure 2) were grouped according to their 

amino acid similarity. Grouping the predicted peptides in this way facilitates a 

comparison with characterised bacteriocins in Bactibase (Hammami et al., 2007). 

When aligned with the Bactibase bacteriocin peptide database the following highest 

homology hits was seen for each peptide group; Group 1: no hits; Group 2: 98% 

similarity to Geobacillin I; Group 3: no hits; Group 4: 12% similarity to LsbB; 

Group 5: 19% identity to nisin U; Group 6: 16% identity to nisin U; Group 7: 25% 

identity to nisin U;  Group 8: 100% identity to Geobacillin I; Group 9: 5% identical 

to cinnamycin; Group 10: no hits. Furthermore, a phylogenetic analysis of those 

predicted peptides was carried out (Figure 3) resulting in the arrangement of five 

phylogroups. Phylogroups one, three, four and five were relatively homogenous 

showing little evolutionary distance between the group nodes. Phylogroup two 

however displayed a larger level of heterogenity with large evolutionary distances 

existing between the various nodes of the group. 

 

The putative lantibiotics discovered consisted of 7 PBGCs (Figure 4) with some 

containing multiple peptide candidates per PBGC (Figure 2). These PBGCs were 

then typed according to their cluster structure so they could be easily compared with 

one another. The first cluster (lantibiotic cluster type 1) was contained within 9 
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genomes (Geobacillus sp. 1017, G. thermocatenulatus KTCT3921, G. 

thermodenitrificans KCTC3902, Geobacillus sp. PA-3, Geobacillus sp. Lemmy01, 

G. kaustophilus NBRC102445, G. thermoleovorans B23, G. thermodenitrificans 

DSM465, G. thermocatenulatus BGSC93A1). It consisted of genes predicted to 

encode a LanB, LanT, LanC, LanR and LanK consecutively and is similar to the 

Geobacillin I cluster with regard to its gene makeup. However, within this cluster 

structure, the predicted lantibiotic peptides were not completely homologous, 

showing differences in their amino acid composition (Figure 2). Additionally two 

adjacent lantibiotic peptides were predicted within this cluster type for the genomes: 

G. thermocatenulatus KTCT3921, G. thermocatenulatus BGSC 93A1 G. 

thermoleovorans B23 and G. kaustophilus NBRC102445. There were a number of 

exceptions to this general cluster structure: G. thermoleovorans CCB US3 UF5 and 

G. litanicus N3 lacked a LanK-determinant (lantibiotic cluster type 2), while 

Geobacillus sp. JS12 contained an extra LanC-encoding gene (lantibiotic cluster type 

3). G. thermoleovorans CCB US3 UF5 encodes two peptides within this cluster type 

and they are located adjacent to each other. Geobacillus sp. 44C  (Lantibiotic cluster 

type 4) encodes an identical peptide to G. galactosidius DSM18751 (lantibiotic type 

5), but the PBGC of G. galactosidius DSM 18751 contains an additional ABC 

transporter after the LanC homolog. The genome for Geobacillus sp. G11MC16 is 

predicted to encode three LanA peptides. The first and second peptides are encoded 

within a distinct cluster from the third. These two peptides are within a cluster that 

also contains genes predicted to encode a PD2_2 homolog, sigma70, structural 

peptide, a LanM and LanT homolog (lantibiotic cluster type 6). The third putative 

peptide-encoding gene is not within an obvious PBGC, but is encoded 10kbs 

downstream of a region predicted to encode PTM enzymes SpaB-C, ABC 
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transporter, LanC, LanR and LanK. The peptide predicted to be encoded by 

Geobacillus sp. FW23 is within a cluster consisting of genes predicted to encode a 

LanB, LanT, LanC, structural peptide and response regulator (lantibiotic cluster type 

7). 

 

There were two putative LanAs encoded within the genome of G. kaustophilus 

HTA426. The gene corresponding to the first peptide was located upstream of three 

ABC transporter-determinants, while the gene corresponding to the second peptide 

was downstream of these three genes. There was a putative LanC and a further ABC 

transporter encoded approximately 10kbs downstream from these predicted 

structural peptides which appear to exist within a neighbouring gene cluster. 

However, no corresponding LanA-encoding gene was detected. The genome for 

Geobacillus sp. ZGt1 was predicted to encode one LanA that is situated upstream of 

two ABC transporter-encoding genes. However, the nearest putative LanB, ABC 

transporter and LanC determinants are located 10kbs upstream of these genes. 

Finally NisP driver sequences were aligned against all genomes containing 

lantibiotics, however there were no difinitive results which indicted the presence of 

these determinants.  

 

Sactipeptides 

Sactibiotics, like lantibiotics, are post-translationally modified and thus are a 

subclass of class I bacteriocins. These post-translational modifications take place in 

the form of intramolecular bridges of cysteine sulphur to α-carbon linkages (Mathur 

et al., 2015). 20 sactibiotics peptides were predicted within 17 Geobacillus genomes 

as part of this in silico screen (Figure 5). No conservation of amino acid residues was 
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observed when these peptides were aligned with known sactibiotic structural 

peptides. Furthermore when these predicted peptides were aligned against the 

Bactibase bacteriocin peptide database (Hammami et al., 2007), no strong 

homologies with existing sactibiotics were found. Furthermore when a phylogenetic 

analysis of the predicted peptides (Figure 6) was carried out three phylogroups were 

observed. Phylogroup one contained the Trnα peptide while phylogroup three 

contained all other previously characterised sactibiotic peptides. Phylogroup two 

however did not contain any of the previously characterised sactibiotics. 

 

When the sactibiotic biosynthetic gene clusters were further investigated, it was seen 

that 8 different types of predicted sactibiotic gene clusters were encoded within the 

Geobacillus genomes (Figure 7). The putative G. stearothermophilus A1, 

Geobacillus sp. GS27, Geobacillus sp. 47-IIb, Geobacillus sp. Sah69, Geobacillus 

sp. 44C, G. stearothermophilus ATCC 12980, G. stearothermophilus P3 and 

Geobacillus. sp. BC02 SacA-determinants were all located upstream of a putative 

PTM enzyme SacCD-encoding gene (sactibiotic cluster type 1). Geobacillus sp. 

Lemmy 01 contained putative SacCD, LanK, LanR and LanD-encoding genes 

(sactibiotic cluster type 2). G. jerrasicus 107829 contained putative SacCD and 

LanD-determinants (cluster type 3). Geobacillus sp. CAMR12793 and G. 

stearothermophilus B4114 genomes encoded putative SacCD and an ABC 

transporter-determinant (Sactibiotic cluster type 4). Geobacillus sp. PA-3 contains 

putative SacCD, two ABC transporters and a radical SAM enzyme-determinants 

(sactibiotic cluster type 5). The genomes for Geobacillus sp. 12AMOR1 and G. 

kaustophilus et2/3 contain putative SacCD and a radical SAM enzyme-determinants 

(sactibiotic cluster type 6). G. stearothermophilus D1 and G. stearotherophilus A1 
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are predicted to encode peptides located downstream of a SacCD enzyme-

determinant (cluster type 7).  

 

The G. stearothermophilus 10 genome encoded a predicted structural peptide, radical 

SAM and two ABC transporter-determinants. While the structural peptide was 

encoded on the positive strand of the genome the two secondary enzymes were 

encoded on the negative strand and therefore are not part of the same operon but 

could however be part of this PBGC. A second putative sactibiotic gene cluster, 

predicted to be encoded within the G. stearothermophilus D1 genome, contains a 

structural peptide and SacCD enzyme-determinant, which are separated by 13 genes. 

The genome of Geobacillus sp. GS27 was predicted to encode a second sactibiotic 

peptide other than that predicted previously, however the SacCD-determinant driving 

this prediction was located on the opposite strand so is not encoded within the same 

operon but could still be part of the PBGC.  

 

Linear Azole containing Peptides (LAPs) 

Linear Azole containing Peptides (LAPs) are another subclass of class I bacteriocins 

that are distinguished by virtue of containing a variety of heterocyclic rings of 

thiazole and (methyl)oxazole. These are formed through an ATP-dependant 

cyclodehydration and further flavin mononucleotide-dependant dehydrogenation of 

the amino acid residues cysteine, serine and threonine. The most notable of the LAPs 

is streptolysin S, which is modified by the cyclodehydratase SagCD (Melby et al., 

2011; Cox et al., 2015; Alvarez-Sieiro et al., 2016). Six putative LAPs were 

identified in six Geobacillus genomes (Figure 8), five of which were identified in 

those strains for which a species was not assigned. These peptides did not return any 
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strong homologies to known LAPs or other bacteriocins when aligned against the 

bactibase bacteriocin database (Hammami et al., 2007). When a phylogenetic 

analysis of the predicted LAP peptides was performed (Figure 9), three phylogroups 

were observed, each consisting of two nodes.  

 

Five out of six peptides (Figure 10) are contained within a gene cluster containing a 

structural peptide followed by a SagD-like and SagB-like determinants (LAP cluster 

type 1). For Geobacillus sp. B4113, the only gene which is predicted to be involved 

in the PTM of the associated peptide is a cyclodehydration enzyme-determinant 

upstream of the structural peptide (LAP cluster type 2). There is a LapBotD enzyme-

derminant on the opposite strand, which is close to the structural peptide, so while it 

is not part of the same operon it may still be part of this PBGC.  

 

Class II Bacteriocins 

Circular (a) 

Circular bacteriocins belong to class IIc bacteriocins and are characterised primarily 

by the C to N terminal covalent linkage. They are known for their proteolytic, heat 

and pH resistance along with their size of 5.6 to 7.2 kDa, however to date only a 

handful have been characterised (Gabrielsen et al., 2014). Recently in silico software 

has been used to predict a new circular bacteriocin pumilarin (van Heel et al., 2017) 

and assisted in the characterisation of plantaricyclin from WGS data (Borrero et al., 

2017).   

 

Thirty-one circular peptides were predicted within 29 genomes in this screen (Figure 

11). These peptides displayed a weak homology (~30-40%) to known circular 
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peptides when aligned against the bacteriocin database bactibase (Hammami et al., 

2007). Six phylogroups were observed when a phylogenetic analysis of the peptides 

was performed (Figure 12). Three peptides from the strains G. kaustophilus Et7/4, G. 

kaustophilus Et2/3 and G. stearothermophilus 10 were not included in the 

phylogenetic tree due to the absence of common sites. While circular peptides have 

been predicted recently within the genomes of Geobacillus (van Heel et al., 2017), 

they have not been examined in terms of those genes which surround their structural 

peptide. For those circular structural peptides predicted within the genus, there are 6 

general gene cluster structures (Figure 13). The genomes of G. stearothermophilus 

B4114, G. stearothermophilus GS27, G. stearothermophilus B4109, G. 

stearothermophilus 10, G. stearothermophilus ATCC12980, G. stearothermophilus 

A1, G. stearothermophilus ATCC7953, G. stearothermophilus P3, Geobacillus sp. 

4113, Geobacillus sp. T6, Geobacillus sp. Y4.MC52, G. thermocatenulatus 

KTCT3921, G. thermocatenulatus BGSC93A1, G. stearothermophilus DSM458, G. 

subterraneus PSS2 and Geobacillus sp. Y412MC61 contain a cluster predicted to 

encode a structural peptide, a modification gene and two ABC transporter-

determinants (Circular cluster type 1). The genomes of Geobacillus sp. JS12, 

Geobacillus sp. C56-T3, Geobacillus sp. LC300, G. kaustophilus Gbly and G. 

thermoleovorans CCB US3 UF5 contain a structural peptide gene, a modification 

gene, two ABC transporter genes and an additional 3 genes further downstream, 

putative LanK and Sigma5-determinants (circular cluster type 2). While it is unclear 

what role these gene products could play in the activity of the structural peptide, we 

do know that these genes are homologs of lantibiotic regulation machinery. The 

Geobacillus sp. BCO2 genome is predicted to encode a structural peptide and three 

ABC transporter-determinants (circular cluster type 3). Geobacillus sp. 
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CAMR12739 is predicted to encode a structural peptide, a modification protein and 

three ABC transporter-determinants (circular cluster type 4). G. kaustophilus Et7/4 

encodes a structural peptide and an ABC transporter-determinants (circular cluster 

type 5). The genome of G. kaustophilus Et7/4 encodes a modification and an ABC 

transporter-determinant following the structural peptide (circular cluster type 6). 

 

Circular (b) 

There were an additional 5 identical circular peptides predicted (Figure 14) that had 

distinctly different amino acid sequences to the group a circular peptides described 

above and therefore were designated as a separate group. When aligned against the 

bacteriocin database bactibase these circular peptides displayed low homology of 

17% to lacticin 481. Four of these predicted peptides were encoded within the 

genomes of G. kaustophilus HTA426, G. thermoleovorans N7, G. kaustophilus 

Gblys, Geobacillus sp. CAMR12739 and Geobacillus sp. LC300. These circular 

peptides (Figure 15) were predicted to be encoded within the previously described 

type 2 circular PBGC (Figure 13). These structural genes were the last genes 

encoded within the cluster after the putative modification, 2 ABC transporters, LanK 

and Sigma 5-determinants (circular (b) cluster stype 1). It is unclear if these genes 

have any functional role within this cluster due to a lack of any strong amino acid 

similarity to known bacteriocins such as to circularin (Kawai et al., 2004) and 

enterocin AS-48 (Burgos et al., 2014), however they could represent a family of 

potentially novel bacteriocins which may merit further in vitro testing.  

 

The structural peptide predicted to be encoded by Geobacillus sp. CAMR 12793 is 

located approximately 10 kbs downstream of the previously described type 4 circular 
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(a) cluster (Figure 13). It was accompanied by upstream putative histidine kinase and 

response regulator determinants (circular (b) cluster type 2) (Figure 15). As before it 

is unclear whether this peptide would be biologically active in this gene cluster so it 

may merit further in vitro experimentation.  

 

Non circular class II bacteriocins 

There were a number of non-circular class II bacteriocins predicted by BAGEL3 

(Figure 16), which are heterogenous with regard to both their predicted amino acid 

composition and those genes predicted to be involved in their bioactivity (Figure 17). 

When a phylogenetic analysis was performed, two phylogroups were observed for 

these predicted peptides (Figure 18). The predicted peptide encoded within the 

genome of Geobacillus sp. Y4MC1 structural peptide is 54% identical to Lacticin Z, 

however it is located on the opposite strand to its predicted ABC transporters so it is 

unclear whether they may have a role in its production (class II cluster type 3). The 

G. stearothermophilus D1 predicted cluster contained a circularisation enzyme and 

two ABC transporters, meanwhile the predicted structural peptide could be 

potentially novel as it displayed no homology to any known bacteriocins (class II 

cluster type 2). The Geobacillus sp. Lemmy 01 putative peptide did not display any 

homology to known bacteriocins and its prediction as a class II peptide was most 

likely based on the presence of a circularisation gene-determinant located 16 genes 

downstream of the structural peptide (class II cluster type 4). G. stearothermophilus 

10 is predicted to produce a class II unmodified peptide (class II cluster type 1), 

which is encoded before the previously described circular (a) cluster type 1 (Figure 

13). It is unclear if either or both peptides are bioactive. G. litanicus N3 is predicted 

to encode a bacteriocin which is two genes upstream of a circularisation gene-
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determinant, however it has no further transport or modification genes associated 

with it (class II cluster type 5).  G. vulcani PSS1 encodes a class II peptide with no 

homology to existing bacteriocins and is situated on the opposite strand to four ABC 

transporter and modification gene-determinants (class II cluster type 6).  
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Discussion: 

Bacteriocin prospecting has typically been a long and expensive process, based on 

trial and error in order to isolate bacteriocin producing bacteria and then optimise 

their growth conditions for bacteriocin production and protein purification. Further 

characterisation of these bacteriocins then typically required the use of trained 

personnel to carry out High Performance Liquid Chromatography (HPLC), mass 

spectrometry and other steps. Since the advent of in silico screening this process of 

bacteriocin discovery has been significantly reduced in terms of time and cost. 

Indeed this technology allows the bioinformatician to characterise to a high level 

putative bacteriocin candidates in terms of their amino acid content, physicochemical 

characteristics and surrounding genes which may be related to its function. 

Interestingly, it is these elements which had previously been the most laborious and 

expensive elements of bacteriocin discovery. This ability to identify candidates in 

silico ultimately removes a large portion of this trial and error process as so much is 

known about the bacteriocin once it is produced in vitro. 

 

This in silico screen resulted in the identification of seven lantibiotic, seven 

sactibiotic, two LAPs, eight circular and six class II PBGCs which are potentially 

novel. The putative bacteriocins identified through this in silico screening approach 

will require further investigation through in vitro experimentation. However, it was 

possible to study the genes surrounding the structural peptide to more accurately 

predict that the bacteriocin cluster was indeed likely to be functional. Notably, in 

some cases those genes predicted by BAGEL3 were situated within annotated genes 

and could be determined to be pseudogenes. This study serves to therefore validate 

and critically assess BAGEL3 as a tool for bacteriocin discovery which could be 
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advantageous for future improvements. When we consider the report that 30-99% of 

bacteria produce at least one bacteriocin (Riley and Wertz, 2002), it does seem likely 

that this may also be the case for Geobacillus, though a more complete picture will 

not become apparent until in vitro experiments are carried out to validate the 

findings of this study. Within the genomes examined here, only 23 of 67 were 

completely sequenced genomes. Where a genome only contains a partially 

sequenced bacteriocin cluster BAGEL3 will likely return a bacteriocin hit due to its 

dual detection method, distinguishing both structural peptides and associated 

bacteriocin genes. In order to fully explore the potential of Geobacillus as a reservoir 

of bacteriocin discovery, the generation of complete assembled genome sequences 

would be advantageous. A more conclusive picture of its potential will be revealed 

when the magnitude of genome sequences reaches that of Lactobacillus, which was 

examined recently in silico for its bacteriocinogenic potential (Collins et al., 2017). It 

could be expected that over the next number of years the amount of completely 

sequenced Geobacillus genomes will increase due to the wealth of data generated by 

way of the widespread use of metagenomic sequencing technologies and the ease / 

lower cost of WGS which is enabled by third generation sequencing technologies, 

such as PacBio (Rhoads and Au, 2015) and or Oxford Nanopore (Lu et al., 2016) 

instruments, that allow for de novo genome assembly. With this expected increase in 

genome sequence data, associations between niche and bacteriocin presence could be 

investigated in the future. 

 

In the case of lantibiotic peptide predictions, LanT-determinants were not however 

identified always by BAGEL3 and in most cases LanT-determinant identification 

was made possible through the alignment of putative ABC transporter-determinants 
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and NisT driver sequences, highlighting the importance of using a hybrid approach 

of BAGEL and driver sequence homology searching to peptide prediction. 

Furthermore, a LanK-determinant was absent from a number of lantibiotic gene 

clusters yet was found in circular PBGCs predicted in the same genomes. It is 

unclear what role (if any) these LanK-determinants play in these lantibiotic PBGCs. 

Another interesting observation which merits further investigation was the absence 

of LanP-determinants from the Geobacillus genomes as was seen in the study of the 

geobacillin I and II biosynthetic genes (Garg et al., 2012). This could be due to 

effects of incomplete genome sequencing or perhaps the absence of LanP-homologs 

for peptide leader cleavage as seen in geobacillin I and II. Issues surrounding absent 

bacteriocin gene-determinants have however been overcome in various studies 

through the use of heterologous expression systems and such technology will be 

important for future validation of the various in-silico screening studies that have 

taken place to date (Mesa-Pereira et al., 2017; Piper et al., 2011; van Heel et al., 

2016). 

 

A common method of bacteriocin molecular mass size determination involves the 

use of Native Sodium Dodecyl Polyacrylamide Gel Electrophoresis (SDS-PAGE), 

where the protein preparation is loaded onto an SDS gel and subjected to 

electrophoresis. It is then washed and overlaid with agar containing a sensitive 

indicator bacteria. A zone of inhibition surrounding a protein band provides an 

estimation of its molecular mass when compared to a molecular-weight size marker 

or ladder. While we have seen this method used to estimate the molecular mass of a 

bacteriocin produced by Geobacillus sp. ZGt-1 of 15-20 kDa, no such class III 

bacteriocin was predicted within this genome in our in silico screen (Alkhalili et al., 
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2016). This may indicate the presence of a potentially highly novel class III 

bacteriocin within Geobacillus sp. ZGt-1 given the lack of homology to any known 

class III peptide, the presence of an uncommon gene cluster not identified in this 

study or the presence of another type of peptide antimicrobial other than a 

bacteriocin. Toebicin 218 is produced by G. stearothermophilus DSM22 with a 

molecular mass of 5.5 kDa (Özdemir and Biyik, 2012) and it is interesting to note 

that no bacteriocin was detected within this genome in the current study. Pokusaeva 

et al. (2009) used SDS-PAGE to estimate the size of bacteriocins produced by 

various G. stearothermophilus at 6.8, 5.6, 7.1 and 7.2 kDa. However, the genomes of 

these strains have not been sequenced and therefore the identity of potential 

bacteriocin candidates cannot be determined through bioinformatics. This is also the 

case for G. toebii HBB-247, that has been shown to produce a bacteriocin with an 

estimated mass of 38 kDa (Başbülbül Özdemir and Biyik, 2012).  There are a 

number of other bacteriocins of undetermined mass which have been characterized 

within Geobacillus prior to modern sequencing or mass spectrometry methods 

(Shafia, 1966; Yule and Barridge, 1976; Sharp et al., 1979; Fikes et al., 1983). 

Indeed, it is notable that there is a significant lack of mass spectrometry data for all 

Geobacillus-associated bacteriocins other than the lantibiotics Geobacillin I and II 

discovered within G. thermodenitrificans NG80-2.  

 

In chapter II of this thesis a circualar bacteriocin (Figure 2) was predicted within the 

genome Geobacillus stearothermophilus DSM 458, however, it was determined that 

this was not the basis of this strains antimicrobial activity. Additionally G. 

thermoleovorans Y4.12MC52, G. thermoleovorans Y4.MC61 and G. 

thermoleovorans C56-T3 were also shown to predict this circular bacteriocin, but 
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also did not display any antimicrobial activity when tested in vitro, highlighting the 

limitations of in silico sequencing. This limitation could be overcome using a 

heterologous expression system similarly that used by Collins et al., (2018), where 

the circular bacteriocins may be expressed and characterised fully. 

 

While Geobacillus appears to represent a potential reservoir for novel bacteriocin 

discovery, its route to commercial application in food or medicine remains unclear. 

The nature of Geobacillus when in the form of a thermally resistant spore makes it 

difficult to remove once introduced into an processing environment (Egan et al., 

2016). Furthermore, the associated high temperature growth requirements would 

translate to high processing and energy costs. Typically its direct addition to food, 

albeit a GRAS bacterial genus, is not applicable due to its history as a bacterial 

spoilage agent. Despite this, Geobacillus do already have applications in the 

biotechnology industry in a number of ways (such as biofuel and chemical 

production), so perhaps it is within this niche where bacteriocins produced by 

Geobacillus could be of commercial relevance. Additionally, these bacteria could 

serve as a platform for research into protein thermostability and as a source of not 

only heat stable bacteriocins but also post-translational modification enzymes. 

Finally, with the oncoming antimicrobial resistance (AMR) crisis, humankind is 

looking outside of the traditional antimicrobial candidate reservoirs and increased 

investment in other classes of antimicrobials such as defensins (Oppedijk et al., 

2015) are visibly apparent. Given the abundance of potentially novel bacteriocins 

identified by this study, Geobacillus spp. could yet develop their full potential as a 

source of new peptide structures with enhanced functionality. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/peptide
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samples Contig 
Russia Environmental No (Bryanskaya et al., 

2014) 

 

3 G. kaustophilus  Et2/3 GCA_000948165.1 Geyser  
Contig 

Chile  Environmental Circular; 

Sactipeptide 

 

4 G. kaustophilus Et7/4 GCA_000948285.1 Geyser 
Contig 

Chile Environmental Circular  

5 G. kaustophilus  HTA426 GCA_000009785.1 Deep sea sediment 
Complete 

Marina 

trench 

Environmental Lantibiotic; 

circular 
(Takami et al., 

2004a; Takami et 

al., 2004b) 

 

 

6 G. litanicus  N-3 GCA_002243605.1 High temp oilfield  
Complete 

Litunia  Environmental Lantibiotic; 

Circular  

 

7 Geobacillus sp. Y4.1MC1 GCA_000166075.1 Hot Spring 
Complete 

USA Environmental LAPs; Class 

II 
(Brumm et al., 

2015a) 

 

8 Geobacillus sp. FJ8 GCA_000445995.2 Compost 
Complete 

Japan Environmental No (Shintani et al., 

2014) 

 

9 Geobacillus sp. 44B GCA_002077755.1 

 

Deep subsurface 
Contig 

USA Environmental Sactibiotic; 

LAPs 
(Singh et al., 

2017) 

https://www.ncbi.nlm.nih.gov/assembly/1152491
https://www.ncbi.nlm.nih.gov/assembly/208421
https://www.ncbi.nlm.nih.gov/assembly/GCA_000948165.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000948285.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000009785.1
https://www.ncbi.nlm.nih.gov/assembly/1166801
https://www.ncbi.nlm.nih.gov/assembly/GCA_000166075.1
https://www.ncbi.nlm.nih.gov/assembly/84701
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10 Geobacillus sp. 44C GCA_002077865.1 Deep subsurface 
Scaffold 

USA Environmental Lantibiotic; 

Circular; 

LAPs 

(Singh et al., 

2017) 

 

11 Geobacillus sp. WCH70 GCA_000023385.1 

 

 

Compost 
Complete 

USA  Environmental Class II; 

LAPs (Brumm et al., 

2016) 

12 Geobacillus sp. 46C-IIa GCA_002077765.1 Deep subsurface 
Scaffold 

USA Environmental No (Singh et al., 

2017) 

 

13 Geobacillus sp. 47C-IIb GCA_002077775.1 Deep subsurface 
Scaffold 

USA Environmental Sactibitoic (Singh et al., 

2017) 

 

14 Geobacillus sp. PA-3 GCA_001412125.1 

 

Soil 
Contig 

Litunia  Environmental Lantibitoic; 

Sactibitoic 
(Petkauskaite et 

al., 2017) 
15 Geobacillus sp. 12AMOR1 GCA_001028085.1  

 

Deep sea 

hydrothermal vent Complete 
Unknown Environmental Sactibiotic (Wissuwa et al., 

2016) 

 

16 Geobacillus sp. LEMMY01 GCA_002042905.1 

 

Soil 
Contig 

Brazil Environmental Lantibitoic; 

Sactibiotic; 

Circular 

(de Souza et al., 

2017) 

 

17 Geobacillus sp. 1017 GCA_001908025.1 Oil water 
Contig 

China  Environmental Lantibiotic (Kadnikov et al., 

2016) 

 

https://www.ncbi.nlm.nih.gov/assembly/GCA_002077865.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000023385.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002077765.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002077775.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001412125.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001028085.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002042905.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001908025.1
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18 Geobacillus sp. GHH01 GCA_000336445.1 Soil sample 
Complete 

Germany Environmental No (Wiegand et al., 

2013) 

 

19 Geobacillus sp. Y4.12MC61 GCA_000024705.1 Hot spring 
Complete 

USA Environmental Circular (Brumm et al., 

2015c) 

 

20 Geobacillus sp. Y4.12MC52 GCA_000174795.2 Hot spring  
Complete 

USA Environmental Circular (Brumm et al., 

2015b; Brumm et 

al., 2015c) 
  

21 Geobacillus sp. Sah69 GCA_001414205.1 Soil  
Contig 

Algeria  Environmental Sactibitoic (Bezuidt et al., 

2015) 

 

22 
Geobacillus sp. 

JS12 GCA_001592395.1 

 

Compost  
Complete 

South Korea Environmental Lantibiotic; 

Sactibiotic 
(Jeon et al., 2016) 

 

23 
Geobacillus sp. 

T6 GCA_001025095.1 Hot water spring 
Contig 

Argentina  Environmental Circular (Ortiz et al., 2015) 

 

24 
Geobacillus sp. 

BC02 GCA_001294475.1 Bore well isolate 
Contig 

Australia Environmental Circular; 

Sactibiotic 

 

25 
Geobacillus sp. 

WSUCF1 GCA_000422025.1 Soil 
Contig 

USA Environmental No (Bhalla et al., 

2013) 

 

26 
Geobacillus sp. 

FJAT-46040 GCA_002335725.1 Hot spring 
Scaffold 

China Environmental No  

27 
Geobacillus sp. 

ZGt-1 GCA_001026865.1 Hot spring  
Scaffold 

Jordan Environmental Lantibiotic (Alkhalili et al., 

2015) 

 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000336445.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000024705.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000174795.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_001414205.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001592395.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001025095.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001294475.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000422025.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002335725.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001026865.1
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28 
Geobacillus sp. 

A8 GCA_000447395.1 Deep mine 
Contig 

South africa Environmental  No  

29 
Geobacillus sp. 

CAMR5420 GCA_000691465.1 Unknown 
Contig 

Unknown  Environmental No (De Maayer et al., 

2014) 
30 G. stearothermophilus  10 GCA_001274575.1 Hot spring 

Complete 
USA Environmental Sactibiotic; 

Circular 

 

31 G. stearothermophilus  22 GCA_000743495.1  Hot spring  
Contig 

Russia  Environmental No 

(Rozanov et al., 

2014) 
32 G. stearothermophilus  53 GCA_000749985.1  Hot Spring 

Contig 
Russia  Environmental No 

(Rozanov et al., 

2014) 
33 G. stearothermophilus C1BS50MT1 GCA_001620045.1 Water sediment 

Contig 
Australia Environmental Circular  

34 G. subterraneus  KCTC3922 GCA_001618685.1 Subsurface Oil field  
Complete 

China Environmental No (Lee et al., 2017) 

 

35 G. subterraneus K GCA_001632595.1 Oilfield 
Contig 

Russia Environmental No (Poltaraus et al., 

2016) 

 

36 G. thermocatenulatus  KCTC3921 GCA_002243665.1 

 

Gas well isolate 
Complete 

USSR Environmental Lantibiotic; 

Circular  

 

37 G. thermocatenulatus  BGSC93A1 GCA_002217655.1 Oilfield 
Contig 

Russia Environmental Lantibiotic; 

Circular 

 

38 G. thermocatenulatus  SURF-48B GCA_002077815.1 Deep subsurface 
Scaffold 

USA Environmental No (Singh et al., 

2017) 

 

39 G. thermodenitrificans  NG80-2 GCA_000015745.1 

 

 

Deep subsurface  
Complete 

China  Environmental Geobacillin I; 

Geobacillin II 
(Feng et al., 2007) 

 

40 G. thermodenitrificans  T12 GCA_002119625.1 Compost 
Complete Netherlands 

Environmental No 

(Daas et al., 2018) 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000447395.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000691465.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001274575.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000743495.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000749985.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001620045.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001618685.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001632595.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002243665.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002217655.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002077815.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000015745.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002119625.1
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41 G. thermoleovorans  CCB US3 

UF5 

GCA_000236605.1 

 

Hot spring 
Complete 

Malaysia  Environmental Lantibiotic; 

Circular 
(Muhd Sakaff et 

al., 2012) 

 

42 G. thermoleovorans  FJAT-2391 GCA_001719205.1 Soil 
Complete 

China Environmental No  

43 G. thermoleovorans  KCTC3570 GCA_001610955.1 Soil 
Complete 

USA Environmental No  

44 G. thermoleovorans  N7 GCA_001707765.1 Hot spring 
Contig 

India Environmental Circular  

45 G. thermoleovorans  B23 GCA_000474195.1 Deep oil reserve 
Contig 

Japan  Environmental Lantibiotic 

(Boonmak et al., 

2013) 
46 G. uzenesis BGSC92A1 GCA_002217665.1 Oilfield 

Contig 
Russia Environmental No  

47 
Geobacillus sp. 

B4113 GCA_001587475.1 

 

 

Mushroom soup 
Scaffold Netherlands 

Food LAPs; 

Circular (Berendsen et al., 

2016) 

48 G. kaustophilus  NBRC102445 GCA_000739955.1 Pasteurized milk 
Contig 

Unknown  Food Lantibiotic  

49 G. stearothermophilus  A1 GCA_001183895.1 Milk powder 

facility Scaffold 
New 

Zealand 

Food Sactibiotic; 

Circular 
(Burgess et al., 

2015) 

 

50 G. stearothermophilus  B4114 GCA_001587395.1 Buttermilk power 
Scaffold 

Neatherland

s 

Food Sactibiotic; 

Circular (Berendsen et al., 

2016) 
51 G. stearothermophilus  D1 GCA_001183885.1 Milk powder 

facility Scaffold 
New 

Zealand 

Food Sactibiotic; 

Circular 
(Burgess et al., 

2015) 

 

52 G. stearothermophilus  P3 GCA_001183915.1 Milk powder 

facility Scaffold 
New 

Zealand 

Food Sactibiotic; 

Circular 
(Burgess et al., 

2015) 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000236605.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001719205.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001610955.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001707765.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000474195.1
https://www.ncbi.nlm.nih.gov/assembly/1152461
https://www.ncbi.nlm.nih.gov/assembly/GCA_001587475.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000739955.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001183895.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001587395.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001183885.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001183915.1
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53 G. stearothermophilus  DSM 458 GCA_002300135.1 Sugar beet juice 
Complete 

Austria  Food Circular (Egan et al., 2017) 

 

54 G. stearothermophilus  GS27 GCA_001651555.1 Casein pipeline 
Scaffold Netherlands 

Food   Sactibiotic; 

Circular 

 

55 G. stearothermophilus ATCC 12980 GCA_001277805.1 Spoilled canned 

food Scaffold 
USA Food Sactibiotic; 

Circular 

 

56 G thermodenitrificans  DSM 465 GCA_000496575.1 Sugar beet juice 
Contig 

Austria Food Lantibiotic (Yao et al., 2013) 

 

57 G. thermodenitrificans  KCTC3902 GCA_002072065.1 Sugar Beet juice 
Complete 

Austria   Food Lantibiotic (Lee et al., 2017) 

 

58 G. jurassicus  NBRC107829 GCA_001544315.1 Unknown 
Contig 

Unknown Unknown Sactibiotic  

59 G. kaustophilus  GBlys GCA_000415905.1 Unknown 
Contig 

Unknown Unknown Circular (Doi et al., 2013) 

 

60 
Geobacillus sp. 

G11MC16 GCA_000173035.1 Unknown  
Contig 

unknown unknown Lantibiotic (Brumm et al., 

2015c) 

 

61 
Geobacillus sp. 

LC300 GCA_001191625.1 Bioreactor  
Complete 

USA Unknown Circular (Cordova et al., 

2015) 

 

62 
Geobacillus sp. 

C56-T3 GCA_000092445.1 Unknown 
Complete 

Unknown Unknown Circular (Brumm et al., 

2015c) 

https://www.ncbi.nlm.nih.gov/assembly/GCA_002300135.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001651555.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001277805.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000496575.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_002072065.1
https://www.ncbi.nlm.nih.gov/assembly/633641
https://www.ncbi.nlm.nih.gov/assembly/GCA_000415905.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000173035.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001191625.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000092445.1
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63 
Geobacillus sp. 

CAMR12739 GCA_000691445.1 Unknown  
Contig 

Iceland unknown Sactibitoic; 

Circular 
(De Maayer et al., 

2014) 

 

64 
Geobacillus sp. 

FW23 GCA_000617945.1 Oil well 
Contig 

India  unknown Lantibiotic (Pore et al., 2014) 

 

65 G. stearothermophilus  ATCC7953 GCA_000705495.1 Unknown 
Contig 

Unknown unknown Circular  

66 G. subterraneus  PSS2 GCA_000744755.1 

 

Unknown 
Contig 

Unknown  unknown Lantibiotic; 

Circular 

 

67 G. vulcani PSS1 GCA_000733845.1 

 

Human Microbiome 

isolate Contig 
Japan  Human  Circular  

https://www.ncbi.nlm.nih.gov/assembly/GCA_000691445.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000617945.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000705495.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000744755.1
https://www.ncbi.nlm.nih.gov/assembly/200241
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Figure 1. Phylogenetic arrangement of Geobacillus genomes investigated in this study. The BAGEL3 peptide predictions are overlaid in order 

to examine associations between bacteriocin gene presence and position within the Geobacillus phylogenetic arrangement 
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Figure 2. Multiple Sequence Alignment (MSA) of those lantibiotic peptides predicted. In some genomes multiple peptides were predicted within 

a single bacteriocin cluster and were therefore included as part of this alignment. PG: Phylogenetic group; GeoAI: Geobacillin I; GeoAII: 

Geobacillin II. 
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Figure 3. Phylogenetic arrangement of predicted lantibiotics 
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Figure 4. Lantibiotic cluster types predicted by BAGEL3 
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Figure 5. MSA alignment of Sactibiotic peptides predicted by BAGEL3 with characterised sactibiotic peptides. PG: phylogroup. 
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Figure 6. Phylogenetic arrangement of predicted sactibiotics 
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Figure 7. Sactibiotic cluster types predicted by BAGEL3 
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Figure 8. Linear Azole containing peptides predicted by BAGEL3. PG: phylogroup. 
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Figure 9. Phylogenetic arrangement of predicted LAPs 
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Figure 10. Linear Azole containing peptides (LAPs) cluster types predicted by BAGEL3 
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Figure 11. MSA of circular peptides predicted by BAGEL3. PG: phylogroup.  
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Figure 12. Phylogenetic arrangment of predicted circular bacteriocins 
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Figure 13. Circular (a) cluster types predicted by BAGEL3 
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Figure 14. Circular peptides (b) predicted by BAGEL 
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Figure 15. Circular (b) cluster types predicted by BAGEL 
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Figure 16. MSA of Class II bacteriocins predicted by BAGEL3. PG: phylogroup. 
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Figure 17. Class II cluster types predicted by BAGEL3 
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Figure 18. Phylogenetic arrangement of predicted class II bacteriocins.  
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Abstract: 

Starter culture innovation, research and development is extremely important for 

ensuring the future growth and development of the cheese industry. Enhanced food 

safety can be achieved though the production by starter cultures of a group of 

antimicrobial peptides called bacteriocins. In this study we use a food-grade 

mutagenesis approach to alter the amino acid structure of the bacteriocin nisin in L. 

lactis NZ9700 to produce the enhanced nisin S29A variant. Furthermore, crucial 

starter characteristics were conferred to the previously creatined nisin M21V and 

K22T variant producing strain by conjugating the lactose utilization plasmid into 

these strains. Their potential as starter cultures was assessed across a number of 

functional assays and their anti-Listerial capacity was assessed during acidification 

and as part of the cottage cheese production process. It was shown that all starter 

cultures created using this process could acidify milk effectively, however, only 

M21V and S29A variant producing starters displayed anti-Listerial traits equivalent 

to the wild-type peptide-producing starter. The K22T variant producing starter 

displayed reduced anti-Listerial activity which was comparable to the non-peptide 

producing starter culture. Overall this proof of concept work reveals a novel 

approach to starter culture improvement and also a potential means of enhancing 

food safety. 
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Introduction 

The discovery and development of new starter cultures that display enhanced 

technological characteristics is important to meet the modern demands of both 

consumers and industry. Characteristics such as the inhibition of undesirable 

microbial growth, bacteriophage resistance, enhanced proteolysis, flavour 

development and exopolysaccharide formation are perhaps the phenotypic traits of 

highest priority (Fox et al., 2000). Indeed recently technological advancements and 

innovations have resulted in the development of lower fat and salt cheese which is 

gaining popularity among health conscious consumers (Johnson, 2016). Importantly, 

many of the aforementioned desirable starter culture traits are encoded on mobile 

genetic elements such as plasmids and when transmission occurs via conjugation, the 

resultant recipient strain continues to retain its food-grade status.  

 

One such phenotypic trait that has played a significant role in cheese manufacture is 

the production of small, ribosomally synthesised antimicrobial peptides called 

bacteriocins (Cotter et al., 2005). These peptides can be encoded within the bacterial 

genome (such as gassericin A) (Kawai et al., 1998), on plasmids (such as lacticin 

3147) (Dougherty et al., 1998) or sometimes on both as is the case with nisin (Rauch 

and De Vos, 1992). Bacteriocin production is widespread and diverse amongst the 

lactic acid bacteria (LAB) group and they are commonly produced in situ during the 

cheese making process by a wide variety of starter cultures from a number of genera 

(Guinane et al., 2005). The use of the bacteriocin nisin has proved popular in a 

variety of foods due its broad spectrum of activity and potent antimicrobial activity. 

Nisin is a 3.4 kDa peptide belonging to the class of bacteriocins that are know as  

lantibiotics due to the presence of post translationally modified amino acid residues 
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(Arnison et al., 2013). Over the last decade a number of studies (Field et al., 2008; 

Field et al., 2010; Rouse et al., 2012; Healy et al., 2013; Molloy et al., 2013) have 

sought to improve the functional qualities of nisin through the use of bioengineering. 

This has coincided with the discovery of a number of natural nisin variants in nature 

(F, H, Q, O, P, U, U2, Z) (Mulders et al., 1991; Zendo et al., 2003;Wirawan et al., 

2006; de Kwaadsteniet et al., 2008; Zhang et al., 2012; O'Connor et al., 2015; 

Hatziioanou et al., 2017). Bioengineering has also allowed the production of a 

numbe of these natural variants in an isogenic background (Mierau and 

Kleerebezem, 2005; Piper et al., 2011).  

 

Precise molecular biology techniques such as double cross over mutagenesis have 

made it possible to make changes to chromosomally encoded bacteriocin genes 

without the presence of leftover exogenous DNA or antibiotic resistance markers 

(Cotter et al., 2003). Indeed there have been a number of chromosomal nisin variants 

generated via double cross over mutagenesis such as M21V, K22S and K22T (Field 

et al., 2008; Field et al., 2010). As a result of the food-grade approaches utilised, the 

European Food Safety Agency (EFSA) / Environmental Protection Agency (EPA) 

have ruled that a number of nisin variants made in this way are not regarded as 

genetically modified microorganisms (Appendix 1). 

 

Previously it has been shown that nisin M21V and S29A display enhanced activity 

against L. monocytogenes (Field et al., 2010; Field et al., 2012). While the enhanced 

activity of M21V against L. monocytogenes has been validated in foods (i.e. 

frankfurter meat and chocolate milk models) (Field et al., 2010; Field et al., 2015), 

corresponding studies have not been performed, to date with nisin S29A. 
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Furthermore, while the use of nisin has been examined in cottage cheese models 

through direct addition (Ferriera and Lund., 1996) or through the in situ production 

by nisin producing starter cultures (Dal Bello et al., 2012), the efficacy of nisin 

variants to control L. monocytogenes in cheese has yet to be tested. The use of nisin 

variants with enhanced phenotypes in this way has the potential to be of societal and 

commercial value as, despite the low incidence of listerosis in the EU, it remains a 

serious concern due to the various pathologies and mortalities which result from 

infection by L. monocytogenes (Oliver et al., 2005). 

 

In this study, we utilize double crossover mutagenesis to alter the nisin structural 

gene and to conjugate the important industrial plasmid pLP712 (a 55.39 kb plasmid 

encoding genes for lactose catabolism and a serine proteinase involved in casein 

degradation (Wegmann et al., 2012) into these nisin variant producing strains in 

order to evaluate their potential as cheese starter cultures.  
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Materials and Methods 

Bacterial strains and growth conditions 

The strains and plasmids used in this study are listed in Table 1. L. lactis was grown 

at 30 °C on M17 agar and broth (Oxoid) supplemented with 0.5% glucose. L. lactis 

strains containing the plasmid pLP712 were grown on M17 supplemented with 0.5% 

lactose (Sigma-Aldrich). Broth culture of Listeria monocytogenes was carried out in 

Brain Heart Infusion (BHI) (Oxoid), and meanwhile Listeria was selectively 

recovered onto agar plates using Listeria Selective Agar (Oxoid) at 37 °C.  

 

Creation of electrocompetent L. lactis 

An overnight culture of the desired L. lactis strain a 1% v/v dilution was performed 

in fresh sterile GM17. Once the OD600nm had achieved between 0.4 – 0.6, the culture 

was diluted serially to the 10-4 and 10µl of each dilution was added to 100 ml 

volumes of SGM17 (14.9g M17, 14g glycine, 27.4g sucrose and 2g glucose in 400 

mls of H2O). Following overnight incubation, cultures that had attained an OD600 of 

0.2 – 0.4 were centrifuged at 4000 RPM for 10 mins after which the cell pellets were 

resuspended in 100mls of ice cold glycerol-sucrose (85.5g sucrose, 50mls glycerol in 

500mls H2O). This mixture was then centrifuged again as before and the supernatant 

removed. The cell pellet was once again resuspended in 1ml of the glycerol-sucrose 

solution and aliquoted into 50 µl aliquots and frozen at -80 °C. 
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Construction of food grade nisin-derivative producing strains 

Using a combination of Quickchange site directed mutagenesis (stratagene) and 

double cross-over mutagenesis with pORI280 (LacZ+, RepA-) as previously 

described (Cotter et al., 2003; Field et al., 2008; Field et al., 2010), mutagenesis of 

the nisA gene could be achieved using E. coli EC101 (RepA+) as a host. In order to 

introduce the desired mutations, the plasmid pDF06 (encompassing ~300bp either 

side of the nis A gene cloned into pORI280) was amplified with the quickchange 

system using primers (S29Afor/S29Arev) (Table 2). The resulting PCR products 

were then transformed into E. coli EC101. Potential candidates were identified using 

‘check’ primers which were specific for the desired mutation in each case. Those 

potential candidates were then re-amplified using pORI280For and pORI280Rev and 

sequenced to confirm the successful mutagenesis and that no undesired alterations to 

the pORI208 plasmid had taken place. The pORI280nisXXX plasmids were then 

electroporated into L. lactis NZ9800 pVE6007 and transformants were grown on 

GM17 containing Xgal (80 µg/ml), chloramphenicol (5µg/ml), and erythromycin 

(2.5µg/ml). Single crossover recombination was achieved by passaging/curing the 

temperature sensitive pVE6007 plasmid at 37°C in GM17 broth containing 

Erythromycin over a period of 4 days followed by isolation of colonies on GM17 

agar containing Erythromycin at the same temperature. The loss of pVE6007 was 

confirmed by the inability of colonies to grow on GM17 agar containing 

chloramphenicol. To achieve the second recombination event a number of potential 

candidates were brought forward for passaging in GM17 without antibiotic selection. 

After a period of 7 days the subcultures were plated daily on GM17 containing Xgal 

in order to identify variants which had lost the LacZ phenotype. Candidates were 

then analysed using deferred antagonism assays to observe enhance zones of 
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inhibition against a suitable indicator organism, which differentiated the successful 

mutant candidates from those which had reverted back to a non-producer phenotype. 

These Bac+ candidates were further analysed using mass spectrometry in order to 

confirm the presence of the desired variant peptide mass. Finally in order to verify 

the loss of the pORI280 plasmid, the successful variants were checked for their 

sensitivity to erythromycin.  

 

Conjugation of pLP712 into nisin producing strains 

Conjugations were carried out between the donor strain L. lactis MG1614:pLP712 

and the relevant recipient strain at a donor-to-recipient ratio of 1:1, 1:2 and 1:2.5 

using a solid mating procedure adapted from Coakley et al., (1997). Briefly the 

donor and recipient strains were grown overnight in the appropriate media and after 

18 hours of growth were sub-cultured (2%) and grown for 4 hours at 30°C. Three 

1ml samples of the donor and recipient were pelleted and washed in maximum 

recovery diluent (MRD) twice and re suspended in 50µl of GM17. At this point the 

donor and recipient were combined at the desired ratios, spotted onto GM17 agar and 

incubated at 30°C for 18 hours. These spots were then harvested and diluted using 

MRD and plated onto agar that was selective for recipients and trans-conjugants. The 

selective agar contained Xgal (80 µg/ml) and was composed on 1:1 ratio of double 

strength (ds) LM17 and the cell free supernatant (CFS) of an overnight nisin 

producing culture that had been passed through a 0.45µm filter. Those colonies 

which appeared blue were then analysed for the presence of pLP712 by their 

acidifying capacity compared to the non-pLP712 containing nisin producing strain. 

Furthermore mass spectrometry and deferred antagonism assays were used to 

confirm the presence of the desired variant peptide production.  
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Strain validation  

Acidification potential 

Starter cultures which had been previously grown overnight in 10% RSM were 

inoculated into sterile 10% RSM (1% v/v inoculation). Following inoculation, the 

pH was monitored over a period of 24 hours in order ascertain the acidification 

profile of the starters. The rate of acidification was calculated as the mean rate of 

change in pH over the first 8 hours of fementation (dpH/dt) and was expressed as 

change in pH per hour. This dataset was then statistically analysed using a one-way 

ANOVA to determine if any of the acidification rates were statistically different (P< 

0.05). The software package Graphpad Prism 8 was used to conduct this analysis.  

 

Colony mass spectrometry 

Colony mass spectrometry was performed as previously described by (Field et al., 

2008). Briefly, bacteria were collected using sterile plastic loops and mixed with 50 

μl of 70% isopropanol (IPA) then adjusted to pH 2 with HCl. The bacterial IPA 

suspension was vortexed and centrifuged at 14,000 r.p.m. for 2 minutes. The 

supernatant was retained for analysis. Mass spectrometry in all cases was performed 

with an Axima CFR plus matrix-assisted laser desorption/ionisation time-of-flight 

(MALDI TOF) mass spectrometer (Shimadzu Biotech, Manchester, UK.). A 0.5 μl 

aliquot of matrix solution (alpha-cyano-4-hydroxy cinnamic acid (CHCA), 10mg ml-

1 in 50% acetonitrile-0.1% (v/v) trifluoroacetic acid) was placed onto the target. This 

matrix solution was left for 1-2 minutes and then removed. The residual solution was 

then air dried and the sample solution that was previously prepared was positioned 

onto the pre-coated sample spot. Matrix solution (0.5 ml) was added to the sample 
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and allowed to air dry. The sample was subsequently analysed in positive-ion 

reflectron mode. 

 

 

Minimum inhibitory concentration assays 

Minimum inhibitory concentrations assays for chloramphenicol and erythromycin 

were determined for the nisin variant producing cultures. Briefly,stock solutions 

containing 4X the desired starting concentrations of antibiotic (100 and 20 μg/ml of 

chloramphenicol and erythromycin respectively) were generated. 100μl of GM17 

was added to each well of a 96 well plate. To the first well 100μl of the antibiotic 

stock solution was added and diluted two fold across the remaining wells of the 

plate.  

 

A 2% inoculum of each strain to be tested was grown to 0.5 OD600nm and diluted to 

give a final cell number of ~105 CFU/ml. 100μl of this inoculum was then added to 

each well containing the various concentrations of antibiotic. The MIC was 

determined visually as the minimum concentration at which the specific antibiotic 

inhibited growth.  

 

Deferred antagonism for confirmation of antimicrobial activity 

The nisin producing strains were grown in LM17 overnight for 18hrs. 10uL of this 

culture was spotted onto the surface of LM17 and incubated for an additional 18hrs. 

The surface of the LM17 plate was UV treated for 40 mins to eliminate the presence 

of bacteriocin producing bacteria. The plate was then overlaid with Listeria 

monocytogenes 33413 and L. lactis HP in an appropriate media containing (0.75%) 
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agar and incubated for 18 hours at 37oC and zone sizes measured accordingly. All 

zone sizes were expressed as total area of inhibition (mm2).  

Effect of nisin producing starter cultures on contaminated milk with L. 

monocytogenes during acidification 

10 mls of sterile RSM (10% w/v) was inoculated the 1X105 CFU/ml of indicator 

microorganism (L. monocytogenes 33413). The contaminated milk was then 

inoculated with 1% w/v of the desired starter culture overnight culture and dispensed 

into 6 1ml Eppendorf tubes (each Eppendorf tube representing one sampling time 

point) and incubated at 30°C. An Eppendorf tube was then removed at each time 

point (0, 2, 4, 6, 8, and 24 hours) and the indicator enumerated using Listeria 

selective agar for detection of L. monocytogenes.  This was carried out in triplicate. 

 

Cottage cheese manufacture 

Sterile 10% RSM was inoculated with the cheese starter cultures (L. lactis NZ9800, 

NZ9700, NZ9700::M21V, NZ9700::K22T and NZ9700::S29A) and grown for 18 

hours at 30 °C. 40mls commercial low fat milk which had previously been dispensed 

into sterile 50ml centrifuge tubes was then inoculated (1% v/v) with the overnight 

starter cultures and incubated for 30 mins at 32°C, after which time 60µl of rennet 

was added (from a 1:100 dilution of stock rennet; Maxiren, DSM, Netherlands). The 

centrifuge tube(s) were incubated at 21°C for 18 hours after which the coagulum was 

cut in vertical strokes using a 1µl inoculating loop. The curds were then cooked by 

placing the tubes into a water bath and increasing the temperature over a 90 minute 

period to 52°C. The whey was then removed via centrifugation (5000 RPM for 60 

seconds) and the curds washed at 20 minute intervals using sterile deionised water at 
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20, 10 and 4 °C.  Once all liquid was once more removed from the curds they were 

allowed to stand overnight at 4°C. After overnight resting a cream dressing 

(composed of 54% v/v single cream, 42% v/v non-fat milk and 4% w/v NaCl) was 

added at a ratio of 1 part cream to 3 parts curd.  

 

Analysis of cottage cheese 

Listeria contamination of cottage cheese 

This dressing was spiked with L. monocytogenes 33413 from a fresh overnight 

culture bringing the final concentration of L. monocytogenes in the cheese to 

1X105CFU/g. The cheese was then incubated in triplicate at 4°C, 8 °C and also at 

room temperature. The cheese was sampled on days 0, 1, 2, 3 and 7, and the Listeria 

enumerated on Listeria selective agar (Oxoid).  

 

Evaluation of pH during storage at 4°C 

In order to evaluate the changes in pH of the cottage cheese at refrigeration 

temperature, 1g of cheese was resuspended in 10mls of deionised H2O. This mixture 

was vortexed for 10-20 seconds and the pH of the resultant slurry measured using a 

digital pH meter (Mettler toledo).  
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Results 

Strain construction and validation 

This study set out to create a panel of novel Lactococcus lactis cheese starter cultures 

capable of producing the nisin variant peptides: M21V, K22T and S29A. This 

production of variant peptides was achieved through the process of double crossover 

recombination, where the nisA gene on the L. lactis NZ9800 chromosome was 

altered to encode the desired variant peptide. Importantly L. lactis NZ9800 encodes a 

non-functional nisA gene (due to a 4 base pair deletion and introduction of a stop 

codon (Miereau and Kleerebezem., 2005) and thus nisin production is restored 

following successful gene replacement via double crossover recombination. 

Furthermore this process does not require the new strain to be regarded as a 

genetically modified microorganism (GMM) as the resultant nisin variant producing 

L. lactis does not contain any residual antibiotic resistance genes or other plasmid 

remnants following the mutagenesis process. Furthermore, this non-GMM status was 

confirmed by the EPA/EFSA in 2014 (Appendix 1.). L. lactis NZ9800::M21V and L. 

lactis NZ9800::K22T had been previously created (Field et al., 2008; Field et al., 

2010), and L. lactis NZ9800::S29A was created in this study using the double 

crossover mutagenesis process.  

 

Confirmation of successful replacement of the wild type nisA gene in L. lactis 

NZ9800 to nisS29A was achieved through the combined use of colony mass 

spectrometry and deferred antagonism (Fig 1). More specifically, an antimicrobial 

producing phenotype was restored to the newly generated strain, this activity was 

greater than that associated with L. lactis NZ9700 (nisin A producers) and the mass 
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of the antimicrobial produced, 3336.65 was consistent with that of a S29A variant 

(and contrasts with the wild type mass of 3352.36).  

 

The sensitivity of the recombinant L. lactis NZ9800::S29A to chloramphenicol and 

erythromycin was indicative of the loss of the pORI280 and pVE6007 plasmids used 

to carry out the double crossover mutagenesis strategy. This sensitivity is evident 

through the use of agar plates containing these antibiotics, however it was further 

confirmation involved the use of more accurate minimum inhibitory assays (Table 

3). This loss antibiotic resistance genes involved in the double crossover 

recombination process is critical to retain the non-GMM status of these starter 

cultures.  

 

While the nisin variant producing L. lactis derived from L. lactis NZ9800 can grow 

in a dairy environment, they do not always have the potential to be used as cheese 

starter cultures due to their inability to rapidly acidify milk. Here these phenotypic 

characteristics were bestowed on these strains through the conjugation of the 

important lactose utilization and proteinase plasmid pLP712. Nisin variant-

producing trans conjugates were created through the use of the donor strain L. lactis 

MG1614:pLP712. A selective media was employed which utilized the sensitivity of 

donor L. lactis MG1614 cells to wild type nisin and detection of lactose utilizationon 

the basis of the ability to degrade Xgal to produce blue colonies by transconjugates.  

 

Acidifying ability of starter cultures 

Successful conjugation of the pLP712 plasmid into the stable variant peptide 

producers resulted in the ability of the transconjugates to rapidly acidify milk. It was 
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observed that the nisin wild type and variant-producing L. lactis transconjugates 

similarly acidified 10% RSM (Table 4). Initally, it was observed that the 

transconjugates had similar acidification profile to that of the pLP712 donor strain 

(L. lactis MG1614). When the rate of acidification (Table 4) was calculated over the 

first eight hours however, it was observed that the pLP712 transconjugates showed 

slightly reduced acidification rates when compared to the L. lactis MG1614 plasmid 

donor (0.198 dpH/h). Indeed these rate(s) of acidification were 0.190, 0.185, 0.160, 

0.189, and 0.186 (dpH/h) for the wild type, non nisin-producer, M21V, K22T and 

S29A transconjugates respectively. The commercially relevant starter cultures: L. 

lactis HP, L. lactis 303 and L. lactis AM2 had acidification rates of 0.079, 0.168 and 

0.173 (dpH/h) respectively. When the data was statistically compared using a one-

way ANOVA and it was determined that the differences in rate of acidification were 

not statistically different (P<0.05) for any of the starter cultures.  

 

Antimicrobial potential of starter cultures during acidification of milk 

While the nisin producing starters created in this study have the ability to rapidly 

acidify milk, their ability to control potential food pathogens in milk is also of great 

interest. Here, the starter cultures were inoculated into milk containing high levels of 

L. monocytogenes 33413 in a contaminated bulk milk tank model. It was shown that 

those starters producing the nisin variant peptides S29A, M21V and wild-type nisin 

completely eradicated L. monocytogenes 33413 after an acidification period of 24 

hours (Figure 2). The K22T producing starter did not have the same effect with 

approximately 5X105 CFU/ml remaining after 24 hours, which was comparable in 

activity to the non-producer which contained 1X106 CFU/ml of L. monocytogenes 

33413.  
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Cottage cheese model  

Cottage cheese was selected as a model to investigate if the newly generated starters 

could be used to control Listeria in cheese. In order to facilitate the screening of the 

5 starter cultures in this study, a cottage cheese protocol described by Dal Bello et al. 

(2012) was adapted to allow for the creation of a mini-cottage cheese model (Figure 

3). This model proved very valuable as a high throughput cheese model, and allowed 

all 5 starter cultures to be examined: L. lactis NZ9800, L. lactis NZ9700, L. lactis 

NZ9800::M21V, L. lactis NZ9800::S29A and L. lactis NZ9800::K22T. The cottage 

cheese dressing was spiked to give a final concentration of 1X105 CFU/g L. 

monocytogenes 33413 and the survival of the pathogen was tested over 7 days at 3 

temperatures: 4, 8 and 21 °C. Although at every temperature sampled the non-nisin 

producing starter culture contained the highest levels of Listeria, there were no 

notable differences between the various nisin variant producing starter cultures and 

the wild type control (Figure 4).  

 

The pH values of the cottage cheese made with nisin variant producing starter 

cultures was also analysed over a fourteen day period and again no differences were 

observed between the various starter cultures. Furthermore, it was noted that the mini 

cottage cheeses had an initial pH of approximately 4.8, however this pH value 

dropped to 4.15 after 7 days and increased to 4.25 after 14 days (Table 5).  
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Discussion  

This study sought in principle to combine both modern and classical microbiological 

techniques in order to create and develop a novel cheese starter culture system. Here 

the application of double crossover recombination and plasmid conjugation were 

employed to alter the amino acid structure of the nisin peptide and also to confer 

phenotypic starter culture characteristics respectively. Mass spectrometry and 

deferred antagonism assays were used to confirm that the accurate chromosomal 

mutagenesis of the gene corresponding to nisin S29A had occurred. Furthermore, 

MIC assays with chloramphenicol and erythromycin also confirmed that the L. lactis 

strains now producing the nisin variants had lost all plasmid-related DNA (pORI280 

and pVE6007) utilized in the recombination process, thereby confirming their food-

grade status (Cotter et al., 2003). Bacteriocin production by starter cultures 

originating from chromosomally-encoded genes is more advantageous over plasmid 

DNA due to the instability of plasmids without specific selection (i.e. lactose). 

Chromosomally encoded bacteriocin genes are however more difficult to manipulate 

in comparison to plasmid DNA, requiring greater resources in both time and 

technical expertise. However, recent advancements have demonstrated the ability to 

quickly and efficiently generate targeted point mutations in the chromosome without 

the need for antibiotics, though in some instances the technology may result in the 

loss of the food-grade status of the recombinant strains (van Pijkeren and Britton., 

2012).  Furthermore, advancements in whole genome sequencing (Rhoads and Au, 

2015; Lu et al., 2016; Raine et al., 2018) and CRISPR genome editing technology 

(Sander and Joung, 2014) in the coming years may perhaps facilitate the routine 

mutagenesis of genes within the chromosome rather than using recombinant 

technology that was common-place over the last number of decades, and that 
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employed in this study. Furthermore, the precise mechanism of CRISPR-Cas gene 

mutagenesis should theoretically allow for the development of further food-grade 

bacteriocin variants based on the previously outlined criteria. 

 

Conjugation of the plasmid pLP712 facilitated the acquisition of acidification and 

proteolytic abilities. While previously it has been shown that the presence of the 

nisin transposon has a metabolic load on acidification rates (Mills et al., 2017), here 

this metabolic load was observed with L. lactis NZ9700 pLP712 and nisin variant 

transconjugates acidifying RSM at a lower rate that the donor strain. Meanwhile the 

presence of pLP712 did in fact facilitate acidification by the wild-type, S29A and 

K22T transconjugates at a rate that could be considered of commercial interest when 

compared to those industrial starter cultures L. lactis 303 and L. lactis AM2 

(Sheehan et al., 2006; Cavanagh et al., 2015). Interestingly there were differences in 

the rate of acidifcation between the four transconjugate strains for which the 

difference cannot be explained, but could be due in part to genetic / structural 

instability previously described for the pLP712 plasmid, resulting in the loss of 

casein utilization and / or lactose utilization (Wegmann et al., 2012).  

 

Potentially the most interesting finding in this study was that wild type and the 

M21V and S29A nisin producing variants can eradicate L. monocytogenes 33413 

during the acidification stage of the cheese making process. While the variants did 

not demonstrate enhanced activity corresponding to that as observed in in vitro 

studies with purified peptides (Field et al., 2008; 2010; 2012), they did perform 

equally as well as the wild type, which could be due in part to the effects of cheese 

matrix. Another study by Lianou and Samelis (2014) demonstrated that the removal 
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of the autochthonous antagonistic microbiota in raw milk through heat thermisation 

facilitated the growth of Listeria. When the thermised milk was re-supplemented 

with a nisin A producer, Listeria numbers remained at initial inoculum levels and 

were not totally eradicated, as observed in this study. Although K22T has been 

previously reported to have identical specific activity against L. monocytogenes as 

wild-type nisin, we see here that its activty is greatly diminished and is equivalent to 

that of the non-nisin producing starter (Field et al. 2010). Furthermore, changes to 

position 22 of nisin have previously been reported to increase its activity in complex 

matrices (Rouse et al., 2012), however this is not the case here. It could be reasoned 

that this could be due to non-specific binding of K22T to a component of the whey-

curd matrix, conferred by the specific alteration to the peptide amino acid sequence.  

 

In this study a mini-cottage cheese model containing ~5g curd was developed using 

modified cottage cheese protocol set out by Dal Bello et al. (2012). It has been 

shown previously that the presence of 2000IU g-1 nisin in cottage cheese increases L. 

monocytogenes inactivation by 1000 fold (Ferriera and Lund., 1996), however in this 

study we did not observe such a reduction when the cottage cheese was produced 

using nisin variant or wild-type nisin producing starter cultures. One reason for this 

difference may be related to the capacity of the strains to produce sufficient levels of 

nisin, which is calculated to be approximately 10 mg/L (data not shown). In the 

study by Field et al., (2010), the two most nisin A resistant L. monocytogenes strains 

had nisin A minimum inhibitory concentrations of 12.57 mg/L. Thus, an issue of 

insufficient bacteriocin production in situ may be a factor in the inability of these 

nisin producers to completely eradicate L. monocytogenes 33413 in Cottage cheese.  

Another explanation could be that the various washing steps could have diluted nisin 
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peptide from the curd. Additionally, the chemical composition and treatment of 

foods as well as the initial level of L. monocytogenes contamination are all of crucial 

importance (Bhatti et al., (2004).  Overall, our results are in agreement with those of 

(Dal Bello et al., 2012) where a decrease in L. monocytogenes was observed for the 

nisin A producing starter culture compared to the bacteriocin negative starter culture. 

It should also be noted that the nisin variants produced by the starter cultures display 

enhanced activity against many other bacteria when assessed in vitro as purified 

peptides (Field et al., 2010). Thus, future work will also focus on the ability of the 

starter cultures to target bacteria that are relevant/undesirable in cheese such as non-

starter lactic acid bacteria (NSLAB) and Staphylococcus aureus, and so perhaps 

could find applications in controlling other bacteria in cheese and milk. 

 

While these starter cultures do not provide a major bio protective effect to cottage 

cheese during long-term storage, they do show promise in performing essential 

starter culture functions and also at lowering and eradicating L. monocytogenes 

during the milk acidification process. Perhaps these cultures could find applications 

in non-pasteurised cheeses where L. monocytogenes control is vital to their safe 

widespread use. These starters may also be of use in pasteurised cheeses where they 

can provide a second defence as part of the hurdle concept post pasteurisation. The 

impact of the starter cultures generated in this study on the cheese microbiota (Yeluri 

Jonnala et al., 2018) is also worth investigating, as we have seen certain amino acid 

changes in nisin confer specific differences in activity towards a variety bacterial 

species (Field et al., 2010; Field et al., 2012; Molloy et al., 2013). Finally this study 

nicely demonstrates the successful application of mutagenesis to starter culture 
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technology using a food-grade approach for future starter development to enhance 

functional qualities.  
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Table 1. Strains used in this study 

Strains/plasmids Characteristics Reference/Source 

Strains   

L. lactis NZ9800 L. lactis NZ9700ΔnisA Kuipers et al., (1993) 

L. lactis NZ9800 pVE6007  L. lactis NZ9700ΔnisA, RepA+ Kuipers et al., (1993) 

L. lactis NZ9800 pLP712 Lac+ Pro+  L. lactis NZ9800 UCC culture collection 

L. lactis NZ9700 Wild type nisin A producer 
(Kuipers et al., 1993) 

 

L. lactis NZ9700 pLP712 Lac+ Pro+  L. lactis NZ9700 This study 

L. lactis NZ9700::M21V Stable nisin M21V producer Field et al., (2008) 

L. lactis NZ9700::M21V pLP712 Lac+ Pro+ stable nisin M21V producer UCC culture collection 

L. lactis NZ9700::K22T Stable nisin K22T producer Field et al., (2008) 

L. lactis NZ9700::K22T pLP712 Lac+ Pro+ stable nisin K22T producer This study 

L. lactis NZ9700::N20P Stable nisin N20P producer UCC culture collection 

L. lactis NZ9700::N20P pLP712 Lac+ Pro+  stable nisin N20P producer This study 

L. lactis NZ9700::S29A Stable nisin S29A producer This study 

L. lactis NZ9700::S29A pLP712 Lac+ Pro+ stable nisin S29A producer This study 

L. lactis MG1614 pLP712 

 

Lactococcal donor of Lac+ Pro+ phenotypes via 

plasmid pLP712 

O’Sullivan et al. (1998) 

E. coli EC101 E. coli host for pORI280 (Law et al., 1995) 

L. lactis 303 Representative cheese starter  UCC culture collection 

L. lactis AM2 Representative cheese starter UCC culture collection 

L. lactis HP Representative cheese starter/ nisin sensitive 

indicator 

UCC culture collection 

Indicator bacteria    

L. monocytogenes 33413 Indicator  UCC culture collection 

L. lactis HP Indicator UCC culture collection 

Plasmids   

pORI280 RepA-, LacZ+, EryR (Leenhouts et al., 1996) 

pDF06 pORI280-nisA (Field et al., 2010) 

pDF11 pORI280-nisS29A This study 

pVE6007 RepA+ CmR, Temperature sensitive  (Maguin et al., 1992) 
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Table 2. Oligonucleotides used  

  

Oligonucleotides Sequence 

S29AFor 5’ TGT CAT TGT GCT ATT CAC GTA AGC AAA TAA  3’ 

S29ARev 5’TACGTGAATAGCACAATGACAAGTTGCTGTTTTCATGTT 3’ 

S29ACheck 5’ GCA ACT TGT CAT TGT GC 3’ 

pORI280For 5’ CTCGTTCATTATAACCCTC 3’  

 

pORI280Rev 5’ CGCTTCCTTTCCCCCCAT 3’  
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Table 3. MICs of stable variants against chloramphenicol and erythromycin   

Strain Characteristics Cm 

(µg/ml) 

Ery 

(µg/

ml) 

L. lactis NZ9700 Wild type nisin A producer. Progeny of the conjugation between nisin producer strain 

NIZO B8 with MG1614 (RifR StrpR derivative of MG1363). Carries nisin–sucrose 

transposon Tn5276.  

 

1.56 0.156 

L. lactis NZ9800 Derivative of NZ9700. Has a 4-bp deletion in nisA gene, leading to inactivation of the 

nisin operon except for the nisRK genes that are transcribed by a constitutive promoter. 

1.56 0.156 

L. lactis NZ9800 pVE6007 L. lactis NZ9800 harboring pVE6007 plasmid [RepA+, Cmr, temperature-sensitive]. 12.5 0.156 

L. lactis NZ9800 pORI280 L. lactis NZ9800 harbouring pORI280 plasmid [RepA−; ori+; lacZ; Eryr; integration 

vector]. 

1.56 2.5 

L. lactis NZ9800::M21V Stable derivative producing M21V variant 1.56 0.156 

L. lactis NZ9800::K22S Stable derivative producing K22S variant 1.56 0.156 

L. lactis NZ9800::S29A Stable derivative producing S29A variant 1.56 0.156 

L. lactis NZ9800::K22A Stable derivative producing K22A variant 1.56 0.156 

L. lactis NZ9800::K22T Stable derivative producing K22T variant 1.56 0.156 

L. lactis NZ9800::N20P Stable derivative producing N20P variant 1.56 0.156 
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Table 4.  Acidifying ability of cheese starter cultures 

  pH Rate of 

acidification 

Starter culture 0h 2h 4h 6h 8h 24h (d)pH/h-1  

L. lactis MG1614 (no nisin 

biosynthetic machinery) 

6.52±0.05 6.44±0.02 6.18±0.06 5.64±0.03 4.94±0.16 4.21±0.09 0.198 

L. lactis NZ9700 (MG1614 with 

nisin operon) 

6.52±0.05 6.39±0.06 6.25±0.02 5.73±0.05 5.00±0.12 4.20±0.05 0.190 

L. lactis NZ9800 (4bp deletion in 

nisA gene)  

6.52±0.05 6.45±0.04 6.29±0.06 5.72±0.11 5.04±0.22 4.29±0.03 0.185 

L. lactis NZ9700::M21V:pLP712 6.52±0.05 6.39±0.04 6.24±0.15 5.95±0.09 5.24±0.09 4.29±0.03 0.160 

L. lactis NZ9700::K22T:pLP712 6.52±0.05 6.42±0.01 6.23±0.02 5.68±0.02 5.03±0.09 4.24±0.02 0.189 

L. lactis NZ9700::S29A:pLP712  6.52±0.05 6.34±0.04 6.18±0.07 5.71±0.04 5.03±0.11 4.25±0.03 0.186 

L. lactis 303  6.52±0.05 6.45±0.02 6.30±0.03 6.01±0.03 5.18±0.13 4.15±0.03 0.168 

L. lactis AM2 6.52±0.05 6.45±0.03 6.18±0.03 5.85±0.03 5.14±0.07 4.35±0.02 0.173 

L. lactis HP 6.52±0.05 6.42±0.08 6.34±0.05 6.21±0.11 5.89±0.09 4.51±0.10 0.079 
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Table 5. pH values of cottage cheese stored over 14 days 

Day NZ9800 NZ9700 N20P M21V K22T S29A 

0 4.85±0.00 4.62±0.08 4.8±0.04 4.77±0.09 4.72±0.01 4.83±0.05 

7  4.15±0.08 4.25±0.06 4.26±0.05 4.25±0.04 4.14±0.14 4.12±0.05 

14 4.26±0.09 4.38±0.08 4.22±0.13 4.30±0.10 4.20±0.05 4.28±0.09 
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Figure 1. Deferred antagonism assay and mass spectrometry highlight successful double crossover recombination. 
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Figure 2. Fate of L. monocytogenes 33413 during acidification by nisin producing starter cultures  

The following shapes denote the starter culture characteristics used: Circles WT nisin producer; Square, non-producer; diamond, nisin S29A; 

Triangle, nisin M21V; upside-down triangle nisin K22T. 
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Figure 3. Flow chart of the mini cottage cheese making process 
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Figure 4. Fate of Listeria monocytogenes 33413 in cottage cheese manufactured with nisin (and nisin variant) producing starter cultures. 

The growth/decline of L. monocytogenes 33413 in cottage cheese was monitored over a 7 day period at three different temperatures (4, 8 and 

22). The following shapes denote the starter culture characteristics used: Circles WT nisin producer; Square, non-producer; diamond, nisin 

S29A; Triangle, nisin M21V; upside-down triangle nisin K22T.  
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Thesis conclusion 

This thesis contributes to the overall knowledge and literature in three key ways: (1) 

discovery of numerous bacteriocin candidates for future characterisation and 

application in food and biomedicine, (2) futher exploration / validation of in silico 

bacteriocin mining methodology, and (3) further application of bacteriocin 

mutagenesis in food models. The knowledge advances and challenges described 

herein will ultimately drive further investigation in the field of bacteriocin research 

and microbiology in general. 
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Appendix 

 

Appendix 1. EPA decision on non-genetically modified microbe (GMM) status of 

the stable nisin producing variants.  
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Appendix 2. CommBeBiz 2018-2019 magazine. I submitted the cover photo for the 

CommBeBiz bioeconomy photo competition and was selected as the winner.  

The photo was captioned as follows: The human body can be a source of bacteriocin 

producing bacteria capable of inhibiting antibiotic resistant superbugs. Bacteriocins 

are a group of antimicrobial peptides or proteins, produced by bacteria that can kill 
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other bacteria. Bacteriocins have been safely used in food for over half a century and 

are found in a variety of probiotic dairy products. Here, at the APC Microbiome 

Institute, we are actively mining the human gut for new bacteriocins that can meet 

the unprecedented challenge that antimicrobial resistance (AMR) presents. The 

Image shows a bacteriocin (nisin) producing colonies of Lactococcus 

lactis inhibiting vancomycin resistant enterococci (VRE), an important nosocomial 

(hospital acquired) superbug. 
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