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Abstract. Past literature in Natural Language Processing (NLP) has
demonstrated that counterfactual data points are useful, for example,
for increasing model generalisation, enhancing model interpretability, and
as a data augmentation approach. However, obtaining counterfactual
examples often requires human annotation effort, which is an expensive
and highly skilled process. For these reasons, solutions that resort to
transformer-based language models have been recently proposed to gen-
erate counterfactuals automatically, but such solutions show limitations.

In this paper, we present CouRGe, a language model that, given a movie
review (i.e. a seed review) and its sentiment label, generates a counterfac-
tual review that is close (similar) to the seed review but of the opposite
sentiment. CouRGe is trained by supervised fine-tuning of GPT-2 on a
task-specific dataset of paired movie reviews, and its generation is prompt-
based. The model does not require any modification to the network’s archi-
tecture or the design of a specific new task for fine-tuning.

Experiments show that CouRGe’s generation is effective at flipping the
seed sentiment and produces counterfactuals reasonably close to the seed
review. This proves once again the great flexibility of language models
towards downstream tasks as hard as counterfactual reasoning and opens
up the use of CouRGe’s generated counterfactuals for the applications
mentioned above.

Keywords: Natural language processing * Sentiment analysis *
Language models - Counterfactual reasoning - Data augmentation

1 Introduction

Under the framework of example-based reasoning [20], counterfactual examples
are widely-adopted as a proxy for investigating causality relationships between
events [16]. Their usefulness is well-established in the machine learning literature
as they have been employed in many settings and domains, for example, to boost
model generalisation, provide explanations and to enrich datasets (e.g. [7,22,23]
respectively). In Sect. 2 we briefly review different types of counterfactuals but,
in this work, we focus on counterfactuals in the Natural Language Processing
(NLP) domain - specifically in sentiment analysis.
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As a demonstrating and relevant example, consider the four textual movie
reviews in Table 1. Literature has proposed approaches to generate counterfac-
tual reviews of types a, b and ¢ from the seed review s. Review a is a task-specific
counterfactual because its generation is targeted to apply a specific different
counterfactual label to the review, i.e. the negative sentiment. Generations of
this kind can be found in [8,14], for example. Instead, review c is a general-
purpose counterfactual because its generation isn’t tailored to any downstream
task, i.e. the sentiment label does not necessarily change!. Generations of this
kind can be found in [17,27], for example.

Table 1. Example of a seed review s with three corresponding counterfactual reviews
(a, b, ¢) where edits are highlighted in blue.

Id | Review Sentiment | Generation type

s | “Titanic” is a good movie because of the original | Positive —
plot and the fascinating cast.

a | “Titanic” is a bad movie because of the expected | Negative | Task-specific
plot and the low-performing cast.

b | “Titanic” is a bad movie because of the expected | Negative | Task-specific
plot (really, I could predict every single minute
of it, not kidding) and the horrible soundtracks.
c | “Titanic” is a good movie because of the original | Positive General-purpose
cast and the fascinating plot

A counterfactual review should be close to the seed review so that minimal
changes allow causality assessments [16]. For example, while review a and b lead
to the same negative sentiment, the former is much closer to s than the latter.
In this paper, we focus on counterfactual reviews of type a, i.e. close to s but of
different sentiment.

Also, generation can be manual or automatic (or hybrid [27]). When manual,
human annotators are required to edit the seed review manually to generate
counterfactuals. The editing process is generally accurate but expensive: human
annotators are required to be “experts” in the task, and the effort dedicated to
each generation can be quite high (e.g. 4-5 min in average [8]). Also, resorting to
the manual approach might be a limitation in applications where online single-
generation is required rather than offline batch-generation. On the other hand,
automatic generation is generally cheaper and is fast enough to be suitable for
interactive use, thus being appropriate for many modern data-hungry settings.

Although automatic generation is a way of obtaining a large number of
cheap counterfactuals, we believe the approach is still under-investigated in
the NLP domain. The most successful applications leverage recent progress on
transformer-based [24] language models (LMs). By modification to the model’s

! When the generation is task-specific but the counterfactual label and the seed label
are the same, the generated instance is known as semi-factual, e.g. the counterfactual
explanations in [9].
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architecture and/or fine-tuning, some works apply a controlled generation to
a specific task, e.g. [14,17] and some others to a specific part of the text, e.g.
[21,27]. Our solution to automatic counterfactuals generation is inspired in par-
ticular by [1,17,27] and targets the sentiment analysis task. Indeed we design
a generator, which we name CouRGe, that, given a textual seed review and
a counterfactual sentiment, produces a textual counterfactual review close to
the seed review and displaying the target sentiment. We implement CouRGe
by fine-tuning GPT2 [18] with a task-specific dataset of paired examples, and
we leverage a prompt-based generation framework [12]. We run experiments?
on a movie review dataset where we investigate different training scenarios for
CouRGe. Results show that CouRGe can generate counterfactuals that belong
to the target sentiment and that are diverse and fairly close to the seed review.
The remainder of the paper is structured as follows: Sect.2 reviews related
work in the literature; Sect. 3 outlines the counterfactuals generation framework
we employ and describes how we train CouRGe; Sect. 4 presents the experiments
and analyse results; and Sect.5 draws conclusions and illustrates future plans.

2 Background and Related Work

2.1 Counterfactual Examples: Applications

Counterfactual examples have been used for a variety of goals: to explain the
outputs of a model for increasing interpretability and trust for both users and
AT practitioners in (e.g. [6,7,25]); to obtain more robust models that (hopefully)
capture not only spurious correlation relationships, but also causal relationships
between inputs and outputs of a model (e.g. [23,26]); to increase fairness (e.g.
[5,10]); or simply for data augmentation purposes (e.g. [13,28]).

Counterfactual and adversarial examples are related but different in nature
[3]. Indeed, adversarial examples (also known as adversarial attacks) are test
inputs created with the purpose of fooling a model to misclassify such inputs.
They are designed with the specific goal of testing the robustness of a model
to unexpected and out-of-distribution inputs. Also, counterfactuals are used to
test a model in some settings (e.g. [4,14]), but their use is more related to the
interpretability and the analysis of the causal effects between the inputs and
the outputs of the model [3]. Although generation algorithms in the literature
work with similar principles for both counterfactuals and adversarials, the former
typically hold additional properties such as plausibility (i.e. generated examples
are realistic and in-distribution) and human-perceptibility (i.e. changes on the
generated examples need to be perceptible by a human evaluator) [14,28].

2.2 On Generating Counterfactuals for NLP

In the NLP domain, manual approaches to generate counterfactuals have been
proposed, for example, in [4,8,17]. Similarly, the authors employ human crowd

2 The code is available at https://github.com/cdiego89phd/counterfactuals-genera
tion.
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workers to generate counterfactual reviews from original textual movie reviews.
This editing process instructs workers to apply minimal perturbations to the
seed text (i.e. closeness constraint) but at the same time ensure that the gen-
erated text remains coherent and fluent (i.e. coherence-fluency constraint) and
that the counterfactual label applies (i.e. label-flip constraint, when applicable).
Generations of this kind are generally very expensive and often impractical: for
this reason, in this paper we propose a cheaper alternative, i.e. automatic gen-
eration. In the remainder of this section, we review literature that is closest to
and inspired our work.

PPLM [1] and GYC [14] are LM-based tools able to generate text entailed to
one or more controllable attributes, such as class labels, for example. In practice,
the generation is controlled by specific attribute models that are plugged in on
top of the LM so that the generation does not require any further training of
the LM. While GYC is designed to produce counterfactuals from a seed text,
PPLM is a general-purpose text generator. MiCE is a tool that resorts to a
two-stage process to generate counterfactuals as a proxy for interpretability [21].
In the first step, MiCE identifies portions of the seed text that are associated
with the example’s label; in the second step, such portions are minimally per-
turbed to obtain a text matching a specific counterfactual label. POLYJUICE
[27] is a general-purpose conditional counterfactual generator for text sentences.
It is a GPT-2 version fine-tuned on various paired-sentences datasets that allow
for control over perturbation types and locations through pre-defined control
codes. Finally, Counterfactual Story Rewriting (CSR) is a system able to per-
form counterfactual narrative reasoning and revision by fine-tuning an LM with
a task-specific dataset [17].

CouRGe is inspired by PPLM, GYC and MiCE because generation is con-
trolled towards a specific label; it is close to CSR because the training is per-
formed with a task-specific dataset (and we propose a different training scenario);
and it uses prompting, which resembles the use of control codes in POLYJUICE.

3 Training CouRGe

3.1 Framework

Our goal is to build a generator G with parameters 6, i.e. Gy, able to perform the
following task: given a seed review with its sentiment label and a counterfactual
target sentiment, generate a counterfactual review as close as possible to the seed
review and of target sentiment. More formally, given a seed review x of sentiment
s and a counterfactual opposite sentiment 5, we require Gy to learn the function
gg, that returns the counterfactual review &, as close as possible® to x and of
sentiment s:

99(x757§) = (1)

where a sentiment is either positive (s,5 = 1) or negative (s,5 = 0).

3 We use different distance metrics to measure the closeness, see Sect. 4.
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3.2 Training Scenarios

In this section, we describe different training scenarios for our task. We use
two variants of the GPT-2 pre-trained language model [18] as base models, i.e.
GPT2 and GPT2-m (124 and 355 million parameters respectively), leading to 12
different trained model versions. However, such training scenarios are general,
and other pre-trained models could be used with little modification (e.g. the
BERT family [2], the T5 family [19]). In some training scenarios below, we also
assume the availability of a dataset of n paired reviews D = {z;, s;, T;, 5; } where
x is a seed review with sentiment s; and a ground truth counterfactual review
T; with sentiment 5; (we will use the counterfactually-augmented dataset from

[8])-

Zero-Shot (ZS). There is no training in this scenario, i.e. we employ GPT2
and GPT2-m to assess the generation capabilities that these models gained from
the pre-training.

Unsupervised Fine-Tuning (UFT). In this scenario, we expose GPT2 and
GPT2-m to a movie-specific corpus to drive the models’ text generation toward
the target domain and vocabulary (sometimes, this type of training is also known
as continual pre-training). In this setting, the model is fine-tuned to maximize
the log-likelihood of the reviews in the corpus C:

LUTT(0) = log g4(C) (2)

Supervised Fine-Tuning (SFT). We use the task-specific dataset from [8]
(and formally described in Sect. 3.1) to fine-tune GPT2 and GPT2-m so that the
text generation will be specific to our task. Informally, this setting is equivalent to
a supervised scenario where ground-truth counterfactual reviews are the target
labels. We perform prompt-based fine-tuning [12], where we design two specific
manual prompts. The log-likelihood is the following:

L5FT(©) = log go(fpt (2, 5,7, 5)) (3)

and fp is a function that encapsulates the input into the prompt (Table2).

Unsupervised and Supervised Fine-Tuning (UFT + SFT). In this sce-
nario, we sequentially combine UFT first (Eq.2) and SFT afterwards (Eq. 3), in
order to leverage the advantages of both training steps.

3.3 Generation Step

At generation time, we feed the models from scenarios ZS and UFT with s, z, §
(separated by the special separation token [SEP]) and we ask them to generate
Z. For scenarios SFT and (UFT + SFT) we apply prompt-base inference so that
we query the models with the encapsulated input fy.(z,s,3) to generate 7.
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Table 2. The close prompts used for training and generation. The design of P1 and P2
is inspired by [12]. To note, we fill the sentiments s and § with the strings accordingly
to the sentiment map reported. Also, we use special tokens in square brackets for the
prompts: [SEP] is a separator; [BOS] and [EOS] indicate the beginning and the end of
the generation, respectively.

Id | Prompt (fpt) Sentiment map
s,5=1 5,5=0
P1| “[BOS]s review:[SEP]z[SEP] “Positive” | “Negative”
5 review:[SEP]Z[EOS]”
P2 | “[BOS]The movie is s.[SEP]z[SEP] “good” “bad”
The movie is 5.[SEP|zZ[EOS]”

4 Experiments

4.1 Datasets Preprocessing

Because our target domain is the movie domain, for the UFT setting, we use
the Rotten Tomatoes movies and critic reviews dataset*. We randomly split the
dataset into training and validation sets (with 80%-20% ratio).

CAD-IMDD® is the movie reviews dataset we employ for the SFT scenario.
The dataset accounts for 2440 examples: each example is a pair of reviews where
one review is the seed review x and the other is the counterfactual review z°.
We randomly split the dataset into training, validation and test sets (with 70%-

12%-18% ratio).

4.2 Experimental Methodology

When training the different versions of CouRGe in the various scenarios, we use
the validation set to tune the hyperparameters (we optimise for the perplexity
metric [18] with early stopping); we consider the tuning of the learning rate,
weight decay, adam epsilon, warmup steps and accumulation steps.

After a model is trained, i.e. at test time, we run the generation step
(Sect. 3.3) three times, so that the model generates three counterfactuals for
each seed review in the test set. Similarly, we perform the generation step for
the baseline models (see details in the next section) and obtain three counterfac-
tuals per seed review in the test set. For the baselines and our CouRGe models,
we randomize the generation so that, instead of selecting the next token with

* https://www.kaggle.com/datasets/stefanoleone992 /rotten-tomatoes- movies-and-
critic-reviews-dataset.

5 https://github.com/acmi-lab/counterfactually-augmented-data/tree/master/
sentiment.

6 Tt is not clear which of the two reviews is the original and which one is the manually-
crafted counterfactual: we randomly assign one review to be the seed review and the
other to be the counterfactual review.
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the highest probability, we select among multiple tokens with the highest prob-
ability. After the generation is completed, we assess the performances of each
generator, computing the metrics described in Sect. 4.4.

Tuning of Generation’s Hyperparameters. At the generation step, LMs
can control the generation by setting hyperparameters such as the number of
beams, repetition penalty, n-gram repetitions, top-k and top-p. To assess the
impact of such hyperparameters, we run further experiments (denoted by SET*)
where we take the models from the SF'T scenario and we tune hyperparameters
on the validation set before running the generation (and we optimize for BLEU,
see Sect. 4.4).

Out-Of-Domain (OOD) Test. To assess the generalisation capabilities of our
generator, we evaluate CouRGe on two additional test sets, i.e. movies’ reviews’
from the IMDb website and businesses’ reviews® from the Yelp website.

4.3 Baselines

Among the generators presented in Sect. 2, we selected two baseline generators
to compare the performances of our CouRGe. We resort to the trained models
made available in their repositories and do not perform any hyperparameter
tuning (we use the default values).

PPLM [1]: for each seed review in the test set, PPLM uses a context, a Bag of
Words (BoW) and a sentiment discriminator to generate a counterfactual. The
context is the first three words of the seed review (similarly to [14]); the BoW
is composed of the words in the seed review; and the discriminator guides the
generation towards the counterfactual label.

POLYJUICE [27]: we run the generator on the full-automatic setting. Thus,
for each seed review in the test set, we randomly select k£ sentences to perturb.
Each of the selected sentences is entirely blanked (which means that we randomly
select the perturbation type), leaving the rest of the seed review as it is. To note,
POLYJUICE has been trained with the same task-specific dataset presented in
Sect. 4.1 (including the test set portion), which is a considerable advantage over
PPLM and our CouRGe.

We do not employ GYC [14] and MiCE [21] as baselines for our experiments.
Regarding the former, there is no open implementation available, and its app-
roach is similar to PPLM. We omit the latter because its generation process
would unfairly favour the performances on the LFS metric (see next section).

" The polarity dataset v2 at www.cs.cornell.edu/people/pabo/movie-review-data.
8 https://huggingface.co/datasets/yelp/_polarity.
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4.4 Evaluation Metrics

We evaluate each generator by applying a wide range of automatic metrics that
measure the generated counterfactuals’ effectiveness, closeness and diversity. For
each metric below, we first average the metric scores across the three generated
counterfactuals and then across all the test instances.

Effectiveness. Ensure that the counterfactual label applies to the generated
text. We choose to employ the Label-Flip Score (LFS), which scores 1 when
the counterfactual sentiment is the opposite of the seed sentiment. To predict
each label, we use a version of DistilBERT, a sentiment classifier fine-tuned on
the SST-2 sentiment dataset? (selected as the most accurate classifier among
different candidates through a small experiment run on the CAD-IMDb of [8]).

Closeness. We measure Levenshtein edit distance (LEV) [11] and the syntactic
closeness with the tree-edit distance (TED) [29], and we do that by comparing
each counterfactual with its corresponding seed review. Also, we compute corpus-
level BLEU from Papileni et al. [15], widely-used to measure the performance
of translation machines, which calculates the overlap between the generated
counterfactuals and their respective reference counterfactuals in the test set.

Diversity. We use the Self-BLEU (S-BLEU) proposed by Zhu at al. [30].
For each seed review, we compute the metric between the three corresponding
counterfactuals (the lower the metric’s value, the better).

4.5 Results

The first set of results is reported in Table3. POLYJUICE’s counterfactuals
(when k& = 2) are close to their seed review (best performance for LEV and
BLEU) and diverse, but they are not effective (worst performance for LFS).
This is as expected, considering the nature of the generator. Indeed, because
POLYJUICE’s counterfactual reasoning is applied at a sentence level, then close-
ness is ensured (perturbations are minimal); at the same time, there is no such
reasoning at an inter-sentence level, which makes the label flip difficult to achieve
for multi-sentences reviews. For k € {3,4} we have similar outcomes. When
k = 1, closeness metrics improve (e.g. LEV= 0.09, TED= 10.1) but LFS drops
to 0.19. (Results for k € {1, 3,4} are not reported due to space constraints.)

PPLM’s performances are surprisingly low: despite PPLM being able to con-
trol the sentiment and the content of the generated text, it fails to generate good
counterfactuals accordingly to all the metrics (except for diversity). A possible
explanation is that we do not tune the extensive range of the model’s hyperpa-
rameters. We leave this task for future work.

9 https:/ /huggingface.co/distilbert- base-uncased- finetuned-sst- 2-english.
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Table 3. Results of the evaluation, where the test set is composed by 488 instances.
We do not report performances for the ZS scenario, as they are very similar to the
ones in UFT. For POLYJUICE, we report results for k = 2, being the version with the
highest LFS. In bold, we highlight the best-performing value of each metric.

Model Training Prompt | LFS T |LEV | | TED | | BLEU 1 | S-BLEU |
scenario
POLYJUICE-2 - - 0.27 |0.18 |17.3 0.71 0.84
PPLM - - 0.44 1 59.2 0.01 0.07
CouRGe-GPT2 UFT - 0.54 1 70.1 <0.01 0.28
CouRGe-GPT2-m | UFT - 0.53 1 68.8 <0.01 0.26
CouRGe-GPT2 SFT P1 0.88 0.3 23.6 0.45 0.84
CouRGe-GPT2 SFT P2 0.88 |0.3 25.2 0.44 0.83
CouRGe-GPT2-m | SFT P1 0.89 |0.32 23.5 0.43 0.83
CouRGe-GPT2-m | SFT P2 0.87 10.31 23.2 0.43 0.82
CouRGe-GPT2 UFT+SFT | P1 0.85 |0.3 26.7 0.45 0.84
CouRGe-GPT2 UFT+SFT | P2 0.85 |0.35 28.3 0.39 0.79
CouRGe-GPT2-m | UFT+SFT | P1 0.88 10.32 25.2 0.43 0.84
CouRGe-GPT2-m | UFT+SFT | P2 0.85 |0.35 28.3 0.4 0.88
CouRGe-GPT2 SFT* P1 0.84 |0.2 15.8 0.57 0.89
CouRGe-GPT2 SET* P2 0.85 |0.22 17.3 0.54 0.88
CouRGe-GPT2-m | SFT* P1 0.87 |0.23 16.5 0.54 0.89
CouRGe-GPT2-m | SFT* P2 0.87 0.23 16.4 0.55 0.85

Results for the training scenarios ZS and UFT of CouRGe (we only report
the latter as they are similar to the former) show that counterfactual reasoning
is a challenging task that cannot be successfully addressed without proper fine-
tuning. In particular, performances are poor accordingly to all metrics, even
when the LM is shifted towards the domain-specific distribution (UFT scenario).

For the SFT scenario, CouRGe produces effective and reasonably close coun-
terfactuals (best value for LFS while BLEU is the metric where performance
is not outstanding). Disproving what is found in [17], models trained in the
(UFT+SFT) do not benefit from the UFT training, as results are very similar
to the ones in SFT. As expected, when we optimize for closeness, performances
improve for LEV, TED and BLEU, while LFS suffers a small drop. Also, diver-
sity is relatively poor in all scenarios (and it is comparable to POLYJUICE’s
diversity). As a final remark on Table3, CouRGe built on GPT2-m does not
perform better than the one built on GPT2 and training with the two different
prompts also leads to similar performances, contrary to what is found in [17].

We also found that CouRGe can generalise fairly well on unseen and out-of-
domain data, see Table 4. This is true in particular for the out-of-domain Yelp
test, where performances are comparable to the ones reported in Table 3. For the
IMDDb test, performance degrades despite the fact that reviews are in the same
movie domain used for training CouRGe. A possible cause for this is the average
length of the seed review given as input to the generator, which is significantly
higher than the one in Yelp or in the training set (i.e. 901 characters).
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Table 4. Results of the ODD evaluation, where each test set is composed of 250
instances. We employ the best performing model in terms of LFS, i.e. CouRGe-GPT2-
m from SFT. We do not measure BLEU as reference counterfactuals are not available
in the datasets.

ODD test | Avg. seed LFS|LEV | TED | S-BLEU
review length

IMDb 3892 chars 0.66 |0.84 |71.2 1 0.43
Yelp 723 chars 0.81/0.35 | 21.0 |0.77

Table 5. Average computational time for each model’s generation. Experiments were
run on a NVIDIA A40 48 GB GPU.

Model Generation time
POLYJUICE-2 2s per seed review
PPLM 164 s per seed review

CouRGe-GPT2 11s per seed review
CouRGe-GPT2-m | 13.77 s per seed review

Also, Table 5 reports the average times spent by the models for generating the
three counterfactuals from the seed review: PPLM takes the largest amount of
time and therefore, its generation can only fit batch/offline settings. Instead, the
other three might be suitable for both online and offline settings (in particular,
POLYJUICE stands out with 2s per review).

5 Conclusion and Future Work

In this paper, we have designed and trained CouRGe, a GPT2-based text gener-
ator able to generate counterfactual reviews for the sentiment analysis task. We
have proven that GPT2 is an excellent learner because it can be fine-tuned to per-
form counterfactual reasoning with no modifications to the training procedure or
the model’s architecture. Based on our experiments that compare CouRGe with
PPLM and POLYJUICE (two state-of-the-art generators), our model is much
more effective (i.e. the counterfactual label applies more often), while closeness
and diversity are comparable or better than the ones shown by POLYJUICE (the
best baseline for these metrics). One limitation of CouRGe is the computational
expense in terms of time. Indeed, despite being an order of magnitude faster
than PPLM on average for a single instance generation, our model might not be
suited to operate in some online settings but only in offline settings. Also, we
are aware that our automatic evaluation should be complemented with a proper
manual evaluation, as done in [14,27], for example. We leave the investigation
to reduce the computational time and the manual evaluation as future work.
To further improve CouRGe’s counterfactual reasoning, a few options are
available. For example, we could look into prompt engineering, i.e. design
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further manual prompts and automatic prompts [12]. Also, because our training
framework enjoys generality, we could employ bigger language models from the
GPT family (e.g. GPT3); or employ different families of models such as T5 [19]
and BERT [2] in place of GPT2.

This work can be extended in some other ways. For example, we might use
CouRGe’s counterfactuals to augment the training set of a sentiment classifier
and increase generalisation (like in [8,27]); we could reproduce the same study
of this paper, but framed for a different downstream task like Natural Language
Inference (similarly to what is done in [8] for example).
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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