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Opposite Expression Patterns of 
Spry3 and p75NTR in Cerebellar 
Vermis Suggest a Male-Specific 
Mechanism of Autism Pathogenesis
Zhenfei Ning, John M. Williams, Romika Kumari †, Pavel V. Baranov and Tom Moore *

School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland

Autism is a genetically complex neurobehavioral disorder with a population prevalence 
of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, 
are consistently reported, and rodent models of cerebellar dysfunction exhibit features 
analogous to human autism. We previously analyzed the regulation and expression 
of the pseudoautosomal region 2 gene SPRY3, which is adjacent to X chromosome-
linked TMLHE, a known autism susceptibility gene. SPRY3 is a regulator of branching 
morphogenesis and is strongly expressed in Purkinje cells. We previously showed that 
mouse Spry3 is not expressed in cerebellar vermis lobules VI–VII and X, regions which 
exhibit significant Purkinje cell loss or abnormalities in autism. However, these lobules 
have relatively high expression of p75NTR, which encodes a neurotrophin receptor 
implicated in autism. We propose a mechanism whereby inappropriate SPRY3 expression 
in these lobules could interact with TrkB and p75NTR signaling pathways resulting in 
Purkinje cell pathology. We report preliminary characterization of X and Y chromosome-
linked regulatory sequences upstream of SPRY3, which are polymorphic in the general 
population. We suggest that an OREG-annotated region on chromosome Yq12 ~60 kb 
from SPRY3 acts as a silencer of Y-linked SPRY3 expression. Deletion of a β-satellite 
repeat, or alterations in chromatin structure in this region due to trans-acting factors, 
could affect the proposed silencing function, leading to reactivation and inappropriate 
expression of Y-linked SPRY3. This proposed male-specific mechanism could contribute 
to the male bias in autism prevalence.

Keywords: autism, cerebellum, SPRY3, p75NTR, pseudoautosomal region, TMLHE, carnitine

INTRODUCTION

Autism is a spectrum disorder whose core features include language delay, social deficits, and 
restricted interests and repetitive behaviours. In addition, there are significant co-morbidities 
including attention deficit hyperactivity disorder (ADHD), anxiety, intellectual disability, motor 
delay, and epilepsy, among others (1–3). Recently, the ESSENCE protocol was developed in response 
to the increasing diagnosis of autism associated with an expanding list of co-morbidities, including 
cases in which the co-morbidity may be the predominant clinical entity (1, 4). There is also a trend 
towards the increased diagnosis and inclusion of cases at the mild end of the spectrum (5). The 
combined effects of these trends may explain the current estimates of autism prevalence in school 
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age children, exemplified by two recent reports, which found 
1.68% prevalence in the USA and 2.85% in Northern Ireland 
(6, 7).

Heritability estimates for autism are high, ranging from 38% 
(8) to more than 80% (9, 10), and there is an emerging consensus 
that the majority of the genetic risk is attributable to common 
genetic variants of small effect size acting in combination with 
rare or de novo variants of larger effect size (11–15).

A striking and unexplained feature of autism is the 
preponderance of affected males, with a sex ratio of between 3 
and 4 to 1 consistently reported, including in recent large studies 
(6, 7, 16, 17). Earlier studies often reported more extreme male 
biases, particularly in milder cases (so-called high functioning 
autism or Asperger’s syndrome), and there is continuing debate 
on the possibility of a female protective or “camouflage” effect that 
may result in their under-diagnosis (18–25). Currently, multiple 
genes and genomic variants are associated with autism with 
varying levels of confidence; however, the majority are autosomal 
and do not explain observed sex differences in prevalence (26). 
Rather than exhibiting sex-specific expression, autism genes may 
interact with normal regulatory pathways that are themselves 
sex-specifically regulated (27–29). This is conceptually similar to 
the proposal that autism genes operate against a background of 
sex-specific hormone profiles (30–32), and shifts the explanatory 
burden from the autism genes themselves to the normal sex-
specific pathways with which they interact.

We previously analyzed the pseudoautosomal region 2 
(PAR2)-linked SPRY3 gene in autism because it is highly 
expressed in the cerebellum (33), a region consistently implicated 
in autism pathogenesis (34–39). SPRY3 is expressed in Purkinje 
cells, a key cell type deficient in autism (40, 41), but we note that 
mouse Spry3 is not expressed in the cerebellar lobules (VI–VII, 
X) homologous to those most affected in human autism (33, 
41). If this expression pattern is recapitulated in the human, as 
suggested by a human SPRY3 promoter–LacZ transgenic mouse 
strain (33), it suggests two alternative mechanisms by which 
SPRY3 could be implicated in loss of Purkinje cells preferentially 
in these lobules. First, the normal absence of SPRY3 expression 
in these lobules may increase their sensitivity to genetic or 
environmental “insults” that cause Purkinje cell loss. However, 
this would not explain the male bias. Second, the deregulation 
and inappropriate overexpression of SPRY3 in these lobules may 
be pathogenic, and could provide a male-specific mechanism, 
as described below. SPRY3 is a receptor tyrosine kinase (RTK) 
signaling inhibitor that interacts with the TrkB neurotrophin 
receptor pathway (42), which is implicated in autism and social 
behavior (43–49).

The X-linked copy of SPRY3 is adjacent to a known autism 
gene, TMLHE, and a proportion of SPRY3 transcripts arise 
from upstream promoters in the X-linked F8A3 and TMLHE 
regions (33). The F8A2–F8A3 region contains an inversion 
polymorphism that could potentially affect the expression of 
flanking genes, including SPRY3. The Y-linked copy of SPRY3 
is epigenetically silenced in normal males (50), which could 
contribute to the male bias in autism due to X-linkage of the 
expressed gene copy. Alternatively, deregulation and reactivation 
of the silenced Y-linked copy could provide a male-specific 

pathological mechanism. A possible further mode of SPRY3 
deregulation is suggested by the fact that SPRY3 is upregulated 
in the liver of piglets fed high levels of carnitine (51). Notably, 
the gene adjacent to SPRY3, TMLHE, encodes an enzyme in 
the carnitine biosynthesis pathway. As carnitine deficiency is 
implicated in autism causation (52), this suggests a mechanism 
whereby carnitine levels could impact on SPRY3 regulation 
and autism.

In this study, we examined the expression of SPRY3 and its 
functionally associated genes in cerebellum, and we analyzed 
genetic variation in predicted X and Y chromosome regulatory 
regions that may impact on SPRY3 expression. We propose a 
pathogenic mechanism in autism involving SPRY3 deregulation 
impacting on the BDNF–TrkB–p75NTR neurotrophin pathway.

MATERIALS AND METHODS

Online Bioinformatics and Other 
Resources
The following databases and online resources were used in this 
study: UCSC genome browser (https://genome.ucsc.edu/); 
GENSAT Brain Atlas of gene expression in EGFP Transgenic 
Mice (http://gensat.org/index.html); Allen Brain Atlases (http://
portal.brain-map.org/; 53); GTEx Portal, v7, updated 09/05/2017 
(https://gtexportal.org/home/); SFARI (Simon Foundation 
Autism Research Initiative; https://www.sfari.org/); AGRE 
(Autism genetic Resource Exchange; https://research.agre.org/
program/descr.cfm). Other websites are listed under “Analysis of 
PsychENCODE data.”

Whole Mount Immunohistochemistry 
of Mouse Cerebellum
All reagents were from Sigma, UK, unless otherwise stated. Adult 
male and female C57Bl/6J mice were humanely euthanized under 
permissions obtained following animal ethics and welfare review 
by UCC committees, under national and European legislation. 
Dissected mouse cerebellum was fixed in 4% Paraformaldehyde 
(PFA)-Phosphate-buffered saline (PBS) for 10  h, post-fixed in 
methanol–Dimethyl sulfoxide (DMSO) (4:1) overnight at 4ºC, 
and then bleached in methanol–DMSO–30% H2O2 (4:1:1) 
overnight at 4ºC. After 3 × 60 min wash in 100% methanol, it 
was frozen at −80ºC and thawed at room temperature (RT) 
for six cycles in 100% methanol. After rehydrating with 50% 
methanol, 15% methanol, and PBS for 2 h each, it was digested 
by proteinase K (10 mg/ml; Sigma, UK) in PBS for 3 min at RT, 
washed in PBS for 3 × 2 h at RT, and incubated in PBS with 10% 
goat serum and 0.1% Triton X-100 overnight at 4ºC. It was then 
incubated with anti-Spry3 primary antibody (Abcam, UK) in PBS 
containing 10% goat serum, 0.1% Triton X-100, 5% DMSO for 48 
h at 4ºC and washed twice in PBS containing 10% goat serum, 
0.1% Triton X-100 for 20 min each, followed by incubation with 
secondary antibody in PBS containing 10% goat serum, 0.1% 
Triton X-100, 5% DMSO for 24 h at 4ºC. It was then washed 
twice in PBS containing 10% goat serum, 0.1% Triton X-100 for 
2 h each. Immunoreactivity was visualized by incubating the 
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cerebellum in freshly prepared DAB solution (Sigma, UK) for 
3 min at RT. The stained cerebellum was imaged with a Nikon 
SMZ1500 microscope and Nikon DXM1200 camera.

Droplet Polymerase Chain Reaction 
Analysis of F8A2–F8A3 Inversion Genotype
All reagents were from Sigma, UK, unless otherwise stated. 
Cultured cells were lysed in lysis buffer (0.1 M Tris, 0.2 M NaCl, 
5 mM EDTA, 0.4% SDS, and 0.2 mg/ml proteinase K, pH 8.0) 
at 55ºC. Cell DNA was precipitated by adding isopropanol and 
washed with 70% ethanol. DNA pellet was dissolved in water 
and digested with NruI and BspEI (NEB, UK). Polymerase chain 
reactions (PCRs) were prepared in a total volume of 100 μl with 
1× Go-taq buffer (Promega, UK), 25 mM MgCl2, 250 μM dNTPs, 
1 μM primers (Eurofins Genomics, Germany): F8A2-F1-2 5′-CAC 
ATGATGAAAGTGGGAGGA-3′, F8A2-R2-2 5′-GAATGCAACA 
AATCAGCAAGA-3′, and F8A2-R3-2 5′-TTCAGACCCATATAG 
TATTACTGGTGA-3′, 30 nM primer F8A2-R1-2 5′-GCATACAC 
TGCTAGGTGGGAATTCACAGCCACTGGAATGAC-3′, 200 ng  
digested genomic DNA, and 16 units Go-Taq DNA polymerase.

Emulsion step was carried out by adding PCR reaction dropwise 
over 30 s to 200 μl light mineral oil with 4.5% v/v Span 80, 0.4% v/v 
Tween 80, and 0.05% Triton X-100, in a 2 ml Corning Cryo-Tube 
stirring with a magnetic bar (8 × 3 mm with a pivot ring; VWR) at 
1,000 rpm. Emulsions were stirred for 3 min before being overlaid 
with 30 μl mineral oil. The PCR conditions were 95°C for 120 s; 40 
cycles of 95°C for 20 s, 60°C for 30 s, and 72°C for 15 s; 72°C for 
5 min. Emulsions were disrupted using 600 μl hexane. Each clean 
PCR product (2 μl) was amplified in a total volume of 50 μl using 
primers F8A2-F1-2, F8A2-R2-2, and F8A2-R3-2 and reaction mix: 
1× Go-taq buffer, 5 μl 25 mM MgCl2, 250 μM dNTPs, 300 nM 
primers, and 1 unit Go-Taq DNA polymerase.

Lymphoblastoid Cell Lines and DNA 
Samples
Cell lines and DNA samples were randomly selected from AGRE 
(https://research.agre.org/program/descr.cfm) and SFARI (https://
www.sfari.org/) resources. AGRE samples are from multiplex 
families, and SFARI samples are from simplex families. Further 
details are available from provider websites using sample reference 
numbers listed below. Additional autism DNA samples were 
obtained from Prof. David Skuse, University College London. 
Control DNA samples were from the Caucasian DNA panel 
from the Coriell Institute for Medical Research, USA. Cells were 
grown in T25 suspension cell flasks with RPMI-1640 medium 
supplemented with 10% FBS (Sigma, UK) at 37°C, 5% CO2.

Cell lines used were as follows (double-underlining indicates 
samples with F8A2–F8A3 inversion; see Results section):

AGRE: 2095, 2325, 2396, 2479, 2609, 2615, 2659, 2664, 2718, 
2815, 2838, 2853, 2880, 2883, 3126, 2742, 2831, 2327, 2628, 2678, 
2326, 2791, 2487, 2328.

SFARI: SSC00317, SSC00591, SSC00636, SSC02727, SSC03440, 
SSC03459, SSC03537, SSC03774, SSC03989, SSC04232, SSC05124, 
SSC05350, SSC05435, SSC07444, SSC10172, SSC10210, SSC10777, 
SSC11067, SSC12271.

Long-Range PCR of β-Satellite Repeat
PCR reactions were prepared in a total volume of 50 μl with 
25 μl 2× GoTaq Long PCR Master Mix (Promega, UK), 10  μl 
300 nM primers (Eurofins Genomics, Germany) (Y-Chr BSR-
Del-3F 5′-CACAGGCTGTAGTGCAGGTGATG-3′ and Y-Chr 
BSR-Del-4R 5′-CTGTGTTGTTGATCTGTCTAATGTTGACA 
TTA-3′), and 500 ng genomic DNA. The PCR conditions were 
95°C for 120 s; 40 cycles of 93°C for 20 s, 60°C for 16 min; final 
extension of 72°C for 20 min.

Analysis of PsychENCODE Data
We obtained paired-end RNA-seq libraries of cerebellar vermis 
from 33 autism and 38 controls from PsychENCODE (54). 
Individual libraries contained 50–200 million reads. Human 
transcriptome sequence was obtained from the RefSeq database 
(55), downloaded from NCBI (Annotation Release 108). 
Raw reads were aligned to the set of human RefSeq transcript 
sequences using bowtie2 short read alignment program (56). 
Default parameters were used for local alignments. Reads 
mapping to only one location in the transcriptome were selected 
by removing the alignments with “XS:i” bowtie2 tag, which 
represents reads having more than one possible mapping to the 
reference. SAMtools version 1.3.1 (57) was used to obtain the 
sorted BAM alignment files, which were further used to predict 
the heterozygosity in SPRY3 expressed sequences. SPRY3 had a 
total mapped read count range of 653–4033. SAMtools mpileup 
(57) and BCFtools (58) were used to characterize variations 
in mapped reads at each coordinate in the SPRY3 locus. The 
frequency of variants at each position was analyzed to estimate 
the likelihood of heterozygosity. For heterozygous genotypes, 
it is expected that the probability of finding a nucleotide matching 
the reference sequence at the single nucleotide polymorphism 
(SNP) position is 0.5, while for homozygous genotypes it is either 
0 or 1.

RESULTS

Cerebellar Lobule Gene Expression Screen 
Identifies Opposite Expression of Spry3 
and p75NTR in Lobules VI–VII and X
We used whole mount immunohistochemistry of cerebellums 
from adult male and female C57Bl/6J strain mice and confirmed 
relatively low Spry3 expression in lobules VI–VII and X, 
as previously noted in mouse Allen Brain Atlas (ABA) and 
GENSAT data [Figure 1A, B, F; see also Ref. (33)]. We next 
sought to determine whether other genes share this expression 
pattern by visually inspecting the spatial expression patterns 
of genes in sagittal sections of the mouse ABA data as follows: 
i) 54 genes with biased expression in “Cerebellar cortex, Purkinje 
layer” under the “Fine Structure Search” option of the mouse 
ABA (Supplementary Table 1); ii) mouse homologues of 87 
high-risk autism genes from SFARI (https://www.sfari.org/
resource/sfari-gene/#bottom; Supplementary Table 2). Three 
of 54 cerebellar cortex-biased gene set (Abhd3, Lrp8, and Plcβ4) 
had lower expression in lobules VI–VII and X (Figure 1G, H, I), 
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reminiscent of the Spry3 pattern, but none of 87 SFARI gene 
mouse homologues had this pattern; however, many of the latter 
had faint staining and were difficult to score.

Transcription factors (TFs) predicted to regulate human 
SPRY3 (ZNF263, MAZ, PURA, EGR1, PAX6) are expressed in 
mouse Purkinje cells (33), and GTEx data confirm relatively high 
expression of these factors in human adult cerebellum (Figure 2). 
However, limited data on these genes in ABA and GENSAT 
did not allow us to determine whether their spatial expression 
patterns coincide with Spry3 lobular expression.

We next examined spatial expression of Spry1, Spry2, and 
Spry4; neurotrophins (Ngf, Bdnf, NTF3, and NTF4); neurotrophin 
receptors (p75NTR, TrkA, TrkB, and TrkC); and Bex3 (Ngfrap1), 
which encodes a p75NTR interacting protein (59), in cerebellum 
to determine possible lobular co-expression with Spry3. On 
ABA, Spry1 and Spry4 exhibit faint staining, whereas Spry2 is 
widely expressed, including in cerebellar Purkinje cells, but does 
not exhibit a specific lobular expression pattern like Spry3. This 
is consistent with GTEx data in which SPRY2 has relatively high 

expression in human cerebellum, whereas SPRY1 and SPRY4 
exhibit no and low expression, respectively (Figure 2).

For the neurotrophins, expression data on GTEx indicated that 
BDNF and NTF3 are relatively highly expressed in cerebellum, 
compared to other brain regions, whereas there was no expression 
of NGF and NTF4 (Figure 2). However, on ABA, mouse Ntf4 is 
expressed in Purkinje cells, whereas there is no Bdnf or Ngf, and 
barely detectable Ntf3 expression. It is unclear if these species 
differences reflect biological differences or technical limitations.

The data for neurotrophin receptor expression were generally 
consistent between ABA (mouse) and GTEx (human) datasets. 
On ABA, TrkB is widely expressed in the brain, including in 
cerebellar Purkinje cells, and GTEx data also indicated its wide 
expression in brain including cerebellum (Figure 2). TRKA and 
TRKC exhibited low and moderate expression, respectively, on 
GTEx, and no expression was detected on ABA. Analysis of 
p75NTR expression in GTEx suggested that it is virtually absent 
from the central nervous system, apart from a marginal signal in 
cerebellum and high expression in the peripheral nervous system 

FIGURE 1 | Lobular expression of genes in adult mouse cerebellum. (A, B) Spry3. (C) Human SPRY3 promoter–LacZ reporter transgenic mouse. (D, E) p75NTR. 
(F) Representative whole mount immumohistochemistry of adult female mouse cerebellum using anti-Spry3 antibody. (G–I) Abhd3, Lrp8, and Plcβ4. Images (A, D) 
and (G–I) were from Allen Brain Atlas; (B and E) were from GENSAT. Data for images (A–C) were previously published (31) and are included here for comparison 
with p75NTR expression. Roman numerals (I–X) in panel A indicate lobule identity. Arrowheads indicate lobules VI–VII and X with notable gene expression patterns.
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FIGURE 2 | GTEx data for genes associated with SPRY3 expression and regulation. Cerebellum samples are boxed to highlight expression relative to other tissues: 
brain–cerebellar hemisphere; brain–cerebellum. Note different scales on TPM (transcripts per million) Y-axis for each gene.
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(spinal cord, tibial nerve; Figure 2). However, scrutiny of ABA 
and GENSAT data indicated wide expression of p75NTR in the 
mouse adult brain, but with restricted expression in cerebellar 
vermis Purkinje cells, largely restricted to lobules VI–VII and X 
(Figure 1D, E), the exact opposite of the Spry3 lobular expression 
pattern. Bex3 (and other Bex genes; data not shown) is expressed 
throughout the adult mouse brain (ABA), including in cerebellar 
Purkinje cells, and is highly expressed in human cerebellum 
(Figure 2).

Genetic Analysis of X Chromosome-
Linked Regulatory Sequences Upstream 
of Human SPRY3
The unique genomic configuration of human SPRY3 due to the 
evolution of the PAR2 in the hominin lineage suggests that sex-
linked upstream elements could regulate expression of X-linked 
SPRY3 and epigenetic silencing of Y-linked SPRY3 (33). X-linked 
SPRY3 transcription initiates in the F8A3–TMLHE region (33). 
F8A3 is associated with inversions involving F8A1 and F8A2 
(60, 61). The F8A2–F8A3 interval contains regulatory elements 
approximately 20 and 60 kb centromeric of F8A3 (Figure 3). 
Inversion of this sequence might affect regulation of flanking 
genes including F8A3 region-associated SPRY3 transcription. We 
developed a single-molecule droplet PCR assay to determine the 

orientation of the F8A2–F8A3 interval using a modified version 
of Turner et al. (62, 63) (Figure 4). We analyzed DNA from 
autism cases comprising 20 individuals from SFARI resource and 
24 individuals from AGRE, representing simplex and multiplex 
families, respectively (see Materials and Methods for sample 
identifiers). There were 2/20 and 4/24 inversions compared to the 
reference sequence (GRCh38/hg38 assembly, December 2013, 
UCSC browser), which is similar to the 20% frequency (4/20 
samples) found in non-autistic F8 gene-associated hemophilia 
patients (64).

Analysis of Y Chromosome-Linked 
Regulatory Sequences Upstream of 
Human SPRY3
We hypothesised that Y chromosome sequences proximal to the 
Yq–PAR2 boundary act as a silencer of Y-linked SPRY3. Scrutiny 
of this region using the UCSC browser identified a predicted 
regulatory region that begins 60 kb upstream of the SPRY3 PAR2 
transcriptional start site (TSS) and extends a further 60 kb towards 
the centromere. This element comprises compositionally distinct 
regions of ~25 and ~35 kb and is flanked by a 50 kb sequence 
gap proximally, on the far side of which are the major Yq12 
satellite sequences (Figure 5). The 25 kb region comprises ~10 kb 
of simple CATTC and CACTC repeats, while the remaining 

FIGURE 3 | ENCODE/OREG annotations in Xq28 F8A2–F8A3 interval.

FIGURE 4 | Strategy for single-molecule PCR genotyping of F8A2–F8A3 inversion polymorphism. Ref, orientation allele described in reference sequence on UCSC 
browser (HumanGRch37/hg19); Inv, opposite orientation to reference sequence.
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~15 kb is a beta satellite repeat (BSR). The entire ~60 kb region 
has multiple DNaseI sensitive sites and CTCF binding sites (data 
not shown), and the BSR, similarly to the SPRY3 core promoter 
AG-rich repeat, contains multiple ZNF263 binding sites. BLAST 
of the ~15 kb Yq12 BSR identified related sequences on chrs. 4, 
10, 14, and 18 with 100% coverage and identity scores of 78–83%. 
The BSR-containing allele of the FSHD gene locus on chr. 4q35 
(65) is not represented on the UCSC browser; but the structurally 
similar 10q26.3 locus is (66, 67). This exhibits a different pattern 
of chromatin modifications to the Yq12 BSR, increasing our 
confidence in the attribution of Yq12 annotations (Figure 5).

Inspection of the Yq12 region in the database of structural 
variants (DSV) using the UCSC browser indicated significant 
variability of the BSR, including independently reported 
deletions and duplications (Figure 6A). We attempted to use 

long PCR of genomic DNA using primers flanking the BSR to 
determine whether structural variants or length polymorphisms 
are associated with autism. Primer design was severely restricted 
due to the genomic architecture of the region, and the selected 
primer pair amplified a ~3.8 kb product from all male samples 
and no female samples (Figure 6B). Samples were as follows: 20 
male autism (AGRE); 21 male autism (Skuse samples); 12 normal 
male and 4 normal female (Skuse and Coriell Caucasian panel). 
Cloning of this PCR product was problematic, but sequences 
obtained from both ends of a cloned partial product matched 
the expected 5′ and 3′ boundaries of the reference sequence 
(Figure 6C). However, this product was not amplified from BAC 
clone RP11-88F4, which covers the region, reducing confidence 
in the genomic location of the template for the ~3.8 kb amplicon 
(data not shown).

FIGURE 5 | ENCODE/OREG annotations in Yq12 and 10q26.3 regions showing major DNA factors binding in BSR regions (ZNF263, EGR1). Note different scales in 
each panel.
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FIGURE 6 | (A) Map of genomic variants in Yq12 region. Details of annotated publication references are available on UCSC browser. (B) Male-specific ~3.5 kb PCR 
product amplified by BSR-specific primers (8 of 57 samples analyzed are shown). (C) Sequences of 5′ and 3′ ends of cloned PCR product.
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Analysis of SPRY3 Allele-Specific 
Expression in Cerebellum Using 
PsychENCODE Dataset
Genetic and structural analysis of the Yq12 putative regulatory 
region was inconclusive; therefore, we looked for loss of 
epigenetic silencing and reactivation of the Y-linked SPRY3 allele 
in a comparison of RNA-Seq data from male autism and control 
cerebellum samples. We obtained paired-end RNA-seq libraries 
of cerebellar vermis from 33 autism and 38 control samples 
from PsychENCODE (54). Genotypes for X and Y chromosome 
(including PAR2) markers are not available for these samples; 
therefore, we used a statistical approach to analyze the level of 
heterozygosity of transcripts of the SPRY3 and control genes. 
Heterozygous expression of SPRY3 would be indicative of 
expression of both X- and Y-linked alleles due to pathological 
reactivation of the Y-linked copy. Genes flanking SPRY3 were also 
examined. TMLHE was used as a negative control to estimate the 
level of variants due to technical noise (e.g., sequencing errors, 
substitutions during library preparation, and misalignments) 
since it is X-linked and no bona fide heterozygosity is expected. 
SYBL1 was analyzed because it flanks SPRY3 distally and 
is similar to SPRY3 in having a Y-linked copy; however, its 
silencing is associated with a methylated CpG island, and it may 
be regulated differently to SPRY3 (68). Autosomal genes (NPTN 
and MCM6) were used as positive controls, where we expected to 
identify heterozygosity. There was no significant difference in the 
heterozygosity plots of autism versus control samples for any of 
the genes analyzed (Figure 7; Supplementary Figure 1).

DISCUSSION

We have extended our previous work implicating SPRY3 in 
autism (33) and provide evidence for a possible mechanism of 

chromosome Y-linked SPRY3 gene deregulation underpinning 
male susceptibility. At the cellular level, we propose that SPRY3 
deregulation affects the functioning of the BDNF–TrkB–
p75NTR neurotrophin pathway, leading to cerebellar Purkinje 
cell pathology. Our hypothesis can explain the specific lobular 
distribution of Purkinje cell loss in autism (lobules VI, VII, and 
X), as previously described (41). More speculatively, SPRY3 
deregulation could explain a reported, although currently 
unconfirmed, lung branching abnormality in autism (69).

The male bias in autism prevalence is not explained by known 
DNA susceptibility variants because the majority are autosomal, 
and a major sex-linked gene effect has not been identified (10, 14, 
17, 26, 70–76). This suggests that autosomal variants interact with 
one or more sex-specific developmental or regulatory pathways, 
which could include sex hormones, or X or Y chromosome-
linked gene-encoded regulators. This hypothesis requires that the 
majority (perhaps hundreds) of individual susceptibility variants 
converge on sex-specific mechanisms that underpin either a 
female protective effect or male susceptibility effect (FPE or MSE) 
(27, 29). The plausibility of FPE/MSE mechanisms is supported 
by mouse mutants of known autism genes, which exhibit sex-
specific phenotypes (77–79), the presence of X-linked regulators 
expressed differently in males and females (80), and the influence 
of sex hormones such as testosterone and estrogen on normal and 
abnormal brain development and function (30, 31, 81–83).

However, recent studies did not detect a predicted Carter 
effect in autism because an increase in disease aggregation in 
families with a female proband was not observed, as would be 
expected if affected females require a higher mutation burden to 
overcome an FPE threshold (73, 84–86). This suggests that sex-
specific departures from normal physiology, rather than normal 
sex-specific physiology per se, may underlie the male bias in 
autism (87). An alternative hypothesis to FPE/MSE is therefore 
the existence of one or more male-specific disease mechanisms 

FIGURE 7 | Comparison of SPRY3 (RefSeq ID: NM_005840) expression heterozygosity maps for autism and control samples. SNP positions 4704, 4706, and 4708 
(highlighted in red, blue, and green, respectively) produced all possible genotypes in the majority of control and autism samples, suggesting a sequencing artefact at 
these positions, and were not counted as heterozygotes. Female sample 1412 position is included as indicative of a true heterozygous sample.
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(MDM). Such MDM would have to occur at a high frequency to 
explain the large male prevalence bias.

There are potentially two general mechanisms of SPRY3 
deregulation in autism. First, trans-acting effects of susceptibility 
variants at other loci encoding, for example, chromatin regulators 
could deregulate X- or Y-linked SPRY3. This category would also 
include environmental effects, for example, due to alterations in 
carnitine levels, to which SPRY3 may be responsive (see below). 
Second, cis-acting de novo mutations or common variants in 
regulatory regions could cause aberrant expression of X- or 
Y-linked SPRY3. Previous genetic studies have not associated the 
Xq28 or PAR2 regions with autism (88). However, both the X 
and Y chromosome regions upstream of PAR2 are structurally 
complex and difficult to analyze, and therefore, autism-associated 
variants may have been overlooked.

The F8A2–F8A3 interval has a common inversion 
polymorphism that may alter the orientation and distance from 
SPRY3 of ENCODE/OREG-predicted regulatory sequences. 
The major regulatory factors that bind in this region (TRIM28, 
SMARCA4) are associated with autism (89–91); therefore, 
inversions or other rearrangements of this region may impact 
on expression of F8A2/F8A3 region-associated transcription 
or on flanking genes (CLIC2, TMLHE, SPRY3), potentially 
contributing to autism risk. It is unknown how frequently de novo 

inversions occur, and inversion alleles are not tagged by known 
SNPs. Therefore, we used single-molecule analysis to determine 
orientation of this inversion in a small number of autism and 
control DNA samples. We observed similar allele frequencies to 
those reported from an analysis of 20 hemophilia patients (64), 
with no evidence of a strong association with autism.

The Yq12 PAR2 region is poorly characterized due to the 
absence of genetic recombination and the highly repetitive DNA 
sequences that comprise much of the Yq and PAR2 boundary 
regions. However, our identification of a putative regulatory 
region in distal Yq12, 60 kb upstream of the SPRY3 TSS, suggests 
a mechanism of silencing of Y-linked SPRY3. Similar to the SPRY3 
core promoter AG-rich repeat (33), a BSR in this region has 
multiple ZNF263 binding sites, suggesting a possible regulatory 
interaction with the SPRY3 promoter. A BSR at chr. 10q26.3, 
also annotated in ENCODE, has a different pattern of chromatin 
modifications, increasing confidence in the Yq12 annotations. 
Interestingly, copy number variants (CNV) in the 10q26.3 region 
are associated with autism, although there is no evidence that this 
is due to the BSR (92; https://gene.sfari.org/database/cnv/10q26.3). 
Non-BSR sequences in the Yq12 region have abundant CTCF 
binding sites, a factor associated with gene imprinting and genome 
topology (93), further suggesting a regulatory function for this 
region in regulating Y-linked SPRY3.

FIGURE 8 | Model of regulation of human SPRY3 by X and Y chromosome-linked regulatory regions and deregulation in autism. We propose that regions including 
the F8A2–F8A3 interval and associated transcription spanning the Xq28–PAR2 boundary, and Y-linked ENCODE/OREG-annotated regions including the BSR, may be 
deregulated by cis- or trans-acting factors. More specifically, we propose that cis-acting Yq12 genomic variants, including BSR length variants, may result in variable 
reactivation and expression of Y-linked SPRY3, leading to inappropriate lobular expression. Y-linked transcription may have altered lobular expression due to lack of 
putative Xq28-linked regulatory elements associated with the normal pattern of lobular expression from X-linked SPRY3 or due to influence of Yq12 genomic elements.
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There is extensive sequence and structural variation across 
the Yq12 putative regulatory region, including reported length 
polymorphisms of the BSR. However, BSRs are abundant in the 
genome (94, 95), and the majority are not annotated; therefore, 
caution is required when interpreting annotations arising from 
genome-wide studies underpinned by short sequence reads. We 
were unable to confirm Yq12 BSR variation using long PCR due 
to severe sequence constraints in primer design and instability 
of cloned PCR products. Other approaches, such as fiber FISH 
or single-molecule sequencing, anchored in unique sequences in 
PAR2, will be required to provide confirmation of BSR length 
alleles and to conduct genetic association studies. We also cannot 
exclude a role for somatic cell mutations, which are increasingly 
implicated in neurodegeneration (96). Somatic instability of the 
repeat-rich Yq12–PAR2 region could result in cell autonomous 
DNA rearrangements and deregulation of Y-linked SPRY3.

Notwithstanding significant technical difficulties in analyzing 
the Yq12–PAR2 boundary region, our data suggest a hypothetical 
mechanism whereby genetic (DNA sequence) or epigenetic 
(chromatin structure) variation could lead to reactivation and 
inappropriate lobular expression of Y-linked SPRY3. We sought 
to test this hypothesis by analyzing allelic expression of SPRY3 
in PsychENCODE cerebellum expression data, but we did not 
detect biallelic expression in male samples as would be predicted 
if the Y-linked copy is active. However, we lacked the sample 
genotypes and information about the exact cerebellar lobules 
sampled. Also, the pathological mechanism we propose may not 
be detectable in RNA-Seq data if reactivation of Y-linked SPRY3 
ultimately results in Purkinje cell death. Therefore, we do not 
consider this a definitive rejection of our hypothesis.

A possible further mode of SPRY3 deregulation is suggested 
by its linkage with TMLHE and their overlapping regulatory 
sequences (33). TMLHE is an enzyme in the carnitine biosynthesis 
pathway, and carnitine deficiency is associated with autism 
(52, 97, 98). Intriguingly, there is evidence that carnitine levels 
modulate SPRY3 expression in the pig (51). TMLHE mutations 
are rare but well-established autism susceptibility factors (52, 88, 
97, 99, 100). Mouse Tmlhe is expressed in Purkinje cells; however, 
the lobular expression pattern is not restricted like Spry3. At 
least one mutation attributed to TMLHE-associated autism risk 
also affects SPRY3 sequences (33), suggesting a possible role for 
deregulation of SPRY3 in some reported cases.

Deficits in cerebellar vermis structure and Purkinje cell 
number and morphology have been reported frequently in autism 
at post mortem, using MRI imaging, and in mouse models (39, 
82, 101–110). In a histological study of human brain tissues from 
autism cases, Skefos et al. (41) reported that Purkinje cell loss 
predominantly affects crus I and II (lobule VIIa), and they also noted 
a possible male-specific deficit in lobule X of the flocculonodular 
lobe. Following our previous study (33), and arising from our 
current observations, we show that mouse Spry3 and p75NTR have 
opposite expression patterns in cerebellar vermis lobules VI–VII 
and X. Spry3 is not expressed in these lobules, whereas p75NTR is 
strongly expressed [see also Figure  2 in Ref. (111) and Figure 1F 
in Ref. (112)]. In a screen of 135 genes in the adult mouse 
(selected for high cerebellar expression or prior association with 
autism), we identified only three (Abhd3, Lrp8, and Plcβ4) with a 

somewhat similar lobular expression pattern to Spry3, and none 
that recapitulated the p75NTR expression pattern. This suggests 
that there are relatively few genes whose expression could explain 
the lobular pattern of abnormalities described by Skefos et al. (41). 
Our qualitative screen of the ABA mouse data was restricted to 
adult brain and may therefore lack sensitivity; however, we are 
reassured regarding its specificity by an independent report that 
Plcβ4 is not expressed in lobules VI–VII and IX–X (113).

The opposite expression patterns of Spry3 and p75NTR 
mirror the well-known opposite expression patterns of zebrin 
II/aldolase C and Hsp25/Hspb1 on the anterior–posterior (AP) 
axis (114–118). The mechanisms responsible for patterning the 
anterior–posterior axis of the cerebellum include the autism gene 
Engrailed-2 (En2; 118, 119), and intriguingly, En2 has specific 
functions in the development of lobules VI–VII and X (118, 120), 
suggesting a further mechanism underpinning involvement of 
these lobules in autism (after 39).

A recent report suggests that lobules VI–VII (Crus I) in rodents 
are homologous to Crus I and II in primates (121). Therefore, if 
mouse Spry3 and p75NTR expression patterns are conserved 
in human, as appears likely from a SPRY3 promoter–reporter 
transgenic mouse (33), and scrutiny of the ABA (human) and 
GTEx databases, we can propose an MDM in which aberrant 
expression of human SPRY3 in lobules VI–VII and X interferes 
with neurotrophin signaling, causing Purkinje cell pathology 
through a BDNF–TrkB–p75NTR mechanism. Spry1, 2, and 
4 regulate receptor tyrosine kinase signaling including FGFR 
(122–125), whereas evidence from Xenopus and mouse indicates a 
regulatory loop involving BDNF- and TrkB-dependent expression 
of Spry3, and Spry3-mediated inhibition of BDNF–TrkB signaling 
(42). Therefore, it is possible that both SPRY3 and p75NTR 
proteins interact with BDNF–TrkB signaling, a pathway implicated 
in neuronal (including Purkinje) cell development and survival 
(126–130). Although p75NTR is not listed on the SFARI autism 
gene database, it is a compelling candidate for involvement in 
autism pathogenesis (128, 131, 132). There is extensive evidence of 
both pro- and anti-apoptotic functions for p75NTR, particularly 
in contexts with concomitant alteration of neurotrophin receptor 
signaling, including of TrkB (130, 133–138). SPRY3 regulates 
TrkB signaling (42); therefore, we speculate that inappropriate 
expression of SPRY3 in lobules VI–VII and X, in the context of 
TrkB and p75NTR expression, may affect Purkinje cell function 
or survival, although the exact mechanism would have to be 
established in relevant models, as neurotrophin signaling effects 
depend strongly on physiological context (136, 139).

We previously reported that a human SPRY3 promoter–
LacZ reporter transgenic mouse substantially recapitulated the 
mouse Spry3 expression pattern (33). Similar to mouse Spry3, 
human SPRY3-LacZ is expressed in Purkinje cells throughout the 
cerebellum, except in lobules VI–VII. However, unlike mouse Spry3, 
human SPRY3-LacZ is expressed in lobule X. Therefore, sequences 
outside of the human core promoter, or trans-acting factors whose 
expression differs between mouse and human, may be required 
for regulation of SPRY3 in this lobule. Interestingly, the deficits 
in lobule X identified by Skefos et al. (41) may be male-specific, 
which, in the context of our proposed mechanism of pathological 
over-expression of SPRY3, could indicate a role for deregulation 
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(reactivation) of the Y-linked copy in this lobule, which might 
have a different expression pattern compared to the X-linked copy 
due to the lack of cis-acting X-linked regulatory sequences, or the 
inappropriate influence of Y-linked sequences (Figure 8).

Finally, we note that Sprouty was originally described based on 
a branching phenotype of the apical airways of Drosophila (140), 
and mouse Spry2 coordinates vascular and airway branching in 
the lung (141). Spry3 is expressed in the mouse lung bronchial 
tree (our unpublished data) and in human lung (GTEx), 
suggesting that deregulation of SPRY3 could potentially provide 
a mechanism underpinning a lung branching abnormality 
reported in autism patients (69).

In future work, we aim to deepen our understanding of SPRY3 
and p75NTR expression and functional interactions during brain 
and lung development in the human and mouse, including in 
autism mouse models. Transgenic under- or over-expression of 
Spry3 in cerebellar lobules VI–VII and X in mice would provide 
an in vivo model of our proposed MDM in autism. Due to the 
unique genomic architecture and regulation of the human PAR2, 
and the difficulty in sourcing matched tissue samples from specific 
cerebellar lobules from normal and autism brains, and from other 
organs such as lung, the analysis of Y-linked SPRY3 deregulation 
in the cerebellum and lung will be challenging, particularly if 
the pathology results in cell death. However, advances in single-
molecule DNA sequencing techniques will facilitate detection of 
genomic variants in this region that may be associated with autism.
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