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We show that a two-component mixture of a few repulsively interacting ultracold atoms in a one-dimensional
trap possesses very diverse quantum regimes and that the crossover between them can be induced by tuning the
interactions in one of the species. Starting from the composite fermionization regime, in which the interactions
between both components are large and neither gas is phase coherent, our results show that a phase-separated
state can be reached by increasing the interaction in one of the species. In this regime, the weakly interacting
component stays at the center of the trap and becomes almost fully phase coherent, while the strongly interacting
one is expelled to the edges of the trap. The crossover is sharp, as can be witnessed in the system’s energy and in
the occupation of the lowest natural orbital of the weakly interacting species. We show that such a transition is a
few-atom effect which disappears for a large population imbalance.
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Ensembles of a few interacting ultracold trapped atoms
constitute unique quantum systems. They can be exceptionally
well isolated from the environment, minimizing the role of
decoherence, and are perfect candidates for the study of
states with strong quantum correlations. Moreover, they are
extremely versatile, as precise control over the shape of the
trapping potential and the atom-atom interactions is routinely
available in current experiments. Since at these energy scales
often all degrees of freedom other than the positions can be
ignored, they provide a simple system which still shows a great
diversity of phenomena [1,2]. Experimentally, the loading of
a small number of fermionic or bosonic atoms into a single
trap has been achieved [3], and mixtures have been realized
in optical lattice potentials [4]. Also, the strongly correlated
low-dimensional Tonks-Girardeau (TG) gas has been achieved
experimentally, which also requires low densities [5]. These
systems constitute a natural ground for studies of squeezing
and entanglement, with applications, for example, in precision
measurements [6,7], thus leading to the great interest in their
experimental realization.

In this article, we predict a sharp crossover between
two very different regimes in microscopic, two-component
mixtures of repulsively interacting bosons at zero temperature,
corresponding to different interaction strengths between atoms
of the same and different species when trapped in a one-
dimensional (1D) trap. In the first regime the interactions
between the atoms of different species are strong, while the
interactions between the atoms of the same species are weak.
This is the so-called composite fermionization limit [8,9],
which shows strong anticorrelations between unlike atoms,
similar to the ones between like atoms in the standard TG
gas [10]. Since the occupation number of the lowest natural
orbital for each species, A and B, scales more rapidly than√

NA,B but more slowly than NA,B, neither of them is fully Bose
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condensed. The second limit is obtained when the interaction
strength in one of the species (A) is increased to the same level
as the interaction strength between the species, while keeping
the other component (B) weakly interacting. Surprisingly, this
leads to phase separation, with species B being located in the
center of the trap and the occupation number of its lowest
natural orbital tending to NB; i.e., species B becomes Bose
condensed.

The transition between the two limits is sharp and can
be observed in the one- and two-body correlation functions,
as well as in the degree of condensation of species B. In
its dynamical form, i.e., upon an increase in the interaction
strength in the A component in a time-dependent manner,
it also allows us to create highly correlated quantum states.
It is worth noting that the well-known mixing-demixing
condition for weakly interacting Bose mixtures [11] predicts
phase separation in both limits, but not spatial localization,
which is crucial to finding the crossover. However, here we
consider a small number of particles in the strong correlation
regime, for which a mean-field Gross-Pitaevskii treatment is
not appropriate.

We consider a system consisting of a small number of
atoms of two bosonic components trapped in a 1D harmonic
potential, V (x) = 1

2mω2x2. We assume that each component
is represented by a different hyperfine state of the same atomic
species, and therefore all atoms have the same mass m = mA =
mB. The Hamiltonian for a fixed number of atoms NA,B in each
species can then be written as Ĥ = ĤA + ĤB + ĤAB, where

ĤA =
NA∑
j=1

[−h̄2

2m

∂2

∂x2
j

+ V (xj )

]
+

NA∑
j<j ′

vA
int(xj ,xj ′ ),

(1)

ĤAB =
NA∑
j=1

NB∑
j ′=1

vAB
int (xj ,yj ′ ).

The part of the Hamiltonian for B, ĤB, is like ĤA

but for B atoms. At low temperatures all scattering
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processes between the atoms can be described by a contact
interaction, vA

int = gAδ(xj − xj ′ ), vB
int = gBδ(yj − yj ′ ), and

vAB
int = gABδ(xi − yj ), where xj and yj are the positions of the

atoms in species A and B, respectively. Here gA(B) and gAB are
the 1D intra- and interspecies coupling constants, respectively.
We assume that they are all positive, corresponding to repulsive
interactions, and can be fine-tuned by means of Feshbach
or confinement-induced resonances [12]. We use harmonic
oscillator units in the following and scale all lengths in units
of the oscillator length a0 = √

h̄/(mω) and all energies in units
of h̄ω.

The physics of such a mixture can be understood by making
the following ansatz for the ground-state wave function,

�(X,Y ) = �(X) �(Y )
NA∏
j<k

|xk − xj − aA|

×
NB∏
j<k

|yk − yj − aB|
NA,NB∏

j,k

|xk − yj − aAB|. (2)

Here � is a Gaussian function that describes the exact
solution for noninteracting atoms in the harmonic trap,
�(X) = exp[−∑

x2
i /2], with X = {xi} and Y = {yi}. The

1D s-wave scattering lengths aσ , with σ = A, B, and AB,
for the interactions between A-A, B-B, and A-B atoms,
are related to the corresponding coupling constants as gσ =
−2h̄2/(maσ ). The crossover discussed in this article occurs
when changing the correlations in the A component from weak
(ideal gas) to strong (TG gas) in a system where component B
is ideal, gB = 0, and the correlations between the A and the B
components are large, gAB → ∞. In this situation the ansatz
for the wave function reduces to

� = �(X) �(Y )
NA∏
j<k

|xk − xj − aA|
NA,NB∏

j,k

|xk − yj |. (3)

In the limit of weak correlations in the A component (gA → 0),
the terms containing aA drop out from Eq. (3) and the wave
function has nodes only when two atoms of different species
meet, as expected in the composite fermionization limit [8].
For strong correlations in the A component (gA → ∞), on the
other hand, ansatz (3) gains additional nodes and the wave
function vanishes whenever two atoms of species A-A or A-B
meet. In this regime the system is a mixture of a TG gas
(component A) and an ideal gas (component B), which we
refer to as a TG-BEC gas. Wave function (3) is not exact,
however, it correctly describes the physical properties of the
system, as we discuss below. Finally, if all coupling constants
are large the system falls into a family of exactly solvable
models discussed in Ref. [13].

To characterize the transition from the composite fermion-
ization limit to a TG-BEC gas when gA is tuned from 0
to large values, in the following we discuss the quantum
many-body correlations, the spatial localization behavior, and
the coherence properties. For NB � NA the TG-BEC gas is
known to be phase separated [14], with the B component being
located in the center of the trap and the A component occupying
the outer regions. In this case the occupation of the lowest
lying natural orbital for species B is of the order of NB, which
implies that the component is Bose condensed and fully phase

FIG. 1. (Color online) Occupations λ0 and λ1 of the lowest lying
natural orbitals, energies per atom E, and interaction energies 〈UA〉
as a function of the interaction strength gA in the A component.
(a) Natural orbital occupation numbers λ0 for species B and (b)
λ0 (black lines) and λ1 (blue lines) for species A. In (a) and (b)
NA = 2 and NB = 2, 3, 4, and the results are calculated via direct
diagonalization. (c) Energy per atom for NB = 2, 3, 4, 5, and 10,
calculated using DMC. (d) Average interaction energy of species A,
〈UA〉 = 〈∑NA

j<j ′ vA
int(xj ,xj ′ )〉. In all cases, gB = 0 and gAB is large.

coherent. Conversely, in the composite fermionization limit
the phases are not separated and the occupation of a natural
orbital for both species is smaller than NA,B, indicating that
none of the species is fully Bose condensed or localized in the
center of the trap.

To calculate the ground-state properties we use direct diag-
onalization of the Hamiltonian [14] and the diffusion Monte
Carlo (DMC) method [15]. The phase-separated TG-BEC is
realized with gB = 0 and gAB = 500h̄ωa0 (diagonalization)
or gAB → ∞ (DMC). We calculate the one-body density
matrix (OBDM), ρ1 = 〈�̂†(x)�̂(x ′)〉, and its diagonalization
gives the natural orbitals and their occupation numbers λi . In
Figs. 1(a) and 1(b), we show these occupation numbers for the
lowest lying natural orbitals for systems of NA = 2 and NB =
2, 3, 4 atoms as a function of increasing A-A interactions.
One can clearly see that the ground-state occupation for
the ideal component, λB

0 , sharply increases between the
composite fermionization and the phase-separated TG-BEC
limits, while in the other component λA

0 displays a change
around the crossover point and settles to ∼0.5 for large gA.
The value range in which the crossover happens also overlaps
with the point at which the energy per atom reaches a plateau
[see Fig. 1(c)] . This point is characteristic for the number of
atoms in the B component and decreases as NB is increased.
As long as gA is small, the energy growth rate is similar for all
cases, however, it saturates more rapidly for larger particle
number imbalances, indicating that the crossover behavior
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only appears for small imbalances in the population of both
components and, in this sense, is a purely microscopic effect.

The sharp crossover can also be observed by looking at
the interaction energy 〈UA〉 [see Fig. 1(d)], which vanishes
in both the composite fermionization limit, because gA = 0,
and the TG-BEC limit, because ρA

2 (x1,x1) = 0. However,
between these limits a maximum is visible, whose position
approximately coincides with the position of the crossover.
Since we are considering the zero-temperature case, this allows
us to determine the order of the transition by considering the
continuity of dE/dgA. Using the Hellmann-Feynman theorem
[16] one finds that gAdE/dgA = 〈�|UA|�〉, and since 〈UA〉
is continuous, the transition is a crossover.

Figure 1(c) shows the energies obtained using DMC,
with ansatz (3) as a guiding function. In this method we
are able to treat systems with larger particle numbers and
we have checked that the energies calculated from direct
diagonalization converge to those obtained with DMC as the
number of modes is increased. An equally good agreement
between the two methods is obtained for the calculations
of the one- and two-body distribution functions discussed
below.

To interpret the crossover observed in Fig. 1, let us first
discuss the behavior of the single- and two-body correlations
present in the system. The two-body distribution function
(TBDF), ρ2, for two atoms of the same species is defined
as

ρA
2 (x1,x2) = NA(NA − 1)

∫
dx3 · · · dxNAdy1 · · · dyNB |�|2,

and the cross two-body distribution function (CTBDF) for two
atoms of different species is

ρAB
2 (x1,y1) = NA NB

∫
dx2 · · · dxNAdy2 · · · dyNB |�|2.

Both distributions can be interpreted as the probability of
finding two atoms at two well-defined positions, with the
TBDF describing atoms of the same species and the CTBDF
describing pairs made from unlike atoms.

In the composite fermionization limit (gA = gB = 0 and
large gAB = 500h̄ωa0), and for NA = NB, the OBDMs for
both species are identical, as shown in Figs. 2(a) and 2(b).
The diagonal elements for x = x ′(y = y ′) correspond to the
single-particle density, which is shown by the dashed line in

FIG. 2. (Color online) One-body density matrices ρ1(x,x ′) and single-particle densities in the composite fermionization and the phase-
separated TG-BEC limits. (a, d, g) OBDM for species A and (b, e, h) OBDM for species B, with NA = NB = 2. (a, b) The system in the
composite fermionization limit (gA = 0), (d, e) an intermediate situation with gA = 5h̄ωa0, and (g, h) the system in the phase-separated
TG-BEC regime (gA = 7h̄ωa0). (c) Density profiles in the composite fermionization limit for NA = NB = 2, 10, and 20 (dashed, solid, and
dash-dotted lines, respectively), calculated with DMC. Note that the densities for both species coincide. (f) Density profiles (species A, black;
species B, blue) in the same limit for imbalanced systems with NA = 2 and NB = 3, 5 (dashed and solid lines, respectively). (i) Density profiles
in the phase separation limit, calculated with DMC, for NA = NB = 2 and 10 (dashed and solid lines, respectively). For all situations gB = 0
and gAB is large.
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FIG. 3. (Color online) Two-body distribution functions in the composite fermionization and the phase-separated TG-BEC limits for a
system with NA = NB = 2. (a, d, g) TBDF for species A, (b, e, h) TBDF for species B, and (c, f, i) CTBDF. (a–c) The composite fermionization
limit (gA = 0), (d–f) an intermediate situation, gA = 5h̄ωa0, and (g–i) the phase-separated TG-BEC limit (gA = 7h̄ωa0).

Fig. 2(c), and the occupation of the lowest lying natural orbital
is λ

A,B
0 	 0.55 [see Figs. 1(a) and 1(b)]. The corresponding

TBDFs for both species are shown in Figs. 3(a) and 3(b), and
the finite values along the diagonal confirm that two atoms
of the same species can occupy the same position. However,
two atoms of different species cannot overlap, as shown by
the vanishing CTBDF along the x1 = y1 diagonal in Fig. 3(c).
Furthermore, the absence of any probability in the equal-sign
quarters in the CTBDF indicates that if an atom of species A
is found on one side of the trap, all atoms of species B will be
found on the other side. We note that wave function (3) also
correctly reproduces the density and TBDFs (not shown). This
behavior persists for larger, balanced numbers of atoms (NA =
NB), with the two peaks in the density distribution moving
farther apart due to the increased repulsive energies between
the atoms in different species [see Fig. 2(c)]. However, in an
unbalanced microscopic system with NB > NA, the OBDMs
are not equal for both species, and the larger component has
a tendency to occupy the center of the trap [see densities in
Fig. 2(f)] and become fully phase coherent despite the strong
interactions with the smaller component. This becomes more
pronounced for larger imbalances and is shown in Fig. 1(a)
by the growing occupation number of the lowest lying natural
orbital for species B.

Increasing the correlations in the A component, the system
evolves towards the TG-BEC limit and starts to phase separate
[Figs. 2(d) and 2(e)]. For gA = 7h̄ωa0 the spatial overlap

between the two components is almost gone [Figs. 2(g)
and 2(h)] and the occupation of the lowest lying natural orbital
of species B has risen to λB

0 	 0.9, indicating that this species
is almost fully condensed. Due to the phase separation the
correlations between the A and the B components are also
reduced, which can be seen in the increased value of λA

0
for small, but finite values of gA in Fig. 1(a), however, with
increasing correlations inside the A component, it moves into
the TG regime and λA

0 settles at 	0.5 [see Fig. 1(b)]. The TBDF
for B corresponds to a condensed cloud in the center of the
trap [Fig. 3(h)], while that for A is indicative of a fragmented
state of two single atoms on each side of B [Fig. 3(g)]. The
CTBDF [see Fig. 3(i)] is consistent with this picture. A similar
picture remains valid in larger, balanced systems [see Fig. 2(i),
obtained with DMC for gAB → ∞ and gA → ∞] or in systems
with a small atom number imbalance. In such cases, when
species A is spatially separated it behaves as two TG gases
occupying each side of B, each with half of the atoms, which
are anticorrelated [10].

For values of gA approaching the crossover region, the
densities of both components start to phase separate [see
Figs. 2(d) and 2(e)] and the occupation of the lowest lying
natural orbital of species B displays a small minimum
before growing rapidly [see Fig. 1(a)]. Due to the enhanced
correlations in the A component, the two A atoms start to
avoid each other, which induces a minimum along the diagonal
x1 = x2 of the respective TBDF [see Fig. 3(d)]. The increased
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tendency toward phase separation also leads to the appearance
of peaks in the other diagonal, which correspond to localization
of one atom of species A on each side of the trap. The
TBDF of species B shows a maximum in the center of the trap,
in agreement with the tendency of the atoms of this species to
localize there [see Figs. 2(e) and 3(e)]. Since the interactions
between the two species remain strong, the CTBDF [Fig. 3(f)]
maintains the 0 along the diagonal x1 = y1 in this regime. It
also develops an increased probability around y1 = 0 and x1

finite, corresponding to a density of the phase-separated state
with B atoms in the center and A atoms at the edges. This
behavior persists for larger, balanced systems.

Tuning the interactions in the A component dynamically
allows a transition in which the spatially localized A com-
ponent is split into two parts by a barrier given by the B
atoms. Such a system resembles a double-well setup for
the A component, which is known to allow for interesting,
nonclassical, many-atom superposition states between the two
parts of the A component [17]. However, let us stress again that
in this case the barrier is raised by increasing the interactions
in the A component (not in species B, which forms the
barrier) and stems from internal correlations in this species
and between the two species.

In conclusion, we have studied in an exact way the ground-
state properties of a small, trapped, 1D, two-component Bose

gas, using a diagonalization method and a DMC approach.
This has allowed us to identify a sharp crossover between the
regimes of composite fermionization and phase separation,
and we have shown that in the latter regime the strongly
correlated component fragments into two parts around the
weakly correlated one. We believe that this crossover is of
key interest for upcoming experiments with small mixtures of
interacting ultracold bosons. In addition, we have pointed out
that this crossover can be used in a dynamical way to create
a spatially strongly correlated many-atom state of the kind
that is of interest in applications in quantum information. Our
results are restricted to 1D systems, as neither the composite
fermionization limit nor the TG gas limit is defined in higher
dimensions.

Note added in proof. Recently, a work calculating the
energies in the limits discussed here in an analytical way
appeared [18].
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