
Title Power analysis of sorting algorithms on FPGA using OpenCL

Authors O'Mahony, Aidan T.;Popovici, Emanuel M.

Publication date 2018-06-21

Original Citation O'Mahony, A. and Popovici, E. (2018) 'Power analysis of sorting
algorithms on FPGA using OpenCL', 29th Irish Signals and
Systems Conference (ISSC 2018), 21-22 June, Belfast. doi:
10.1109/ISSC.2018.8585361

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/abstract/document/8585361 - 10.1109/
ISSC.2018.8585361

Rights © 2018 European Union; © 2019 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Download date 2024-04-23 16:12:09

Item downloaded
from

https://hdl.handle.net/10468/7054

https://hdl.handle.net/10468/7054

Power analysis of sorting algorithms on FPGA
using OpenCL

Aidan O Mahony
Department of Electrical and Electronic Engineering

University College Cork
Ireland

103837793@umail.ucc.ie

Emanuel Popovici
Department of Electrical and Electronic Engineering

University College Cork
Ireland

E.Popovici@ucc.ie

Abstract—With the advent of big data and cloud comput-
ing, there is tremendous interest in optimised algorithms and
architectures for sorting either using software or hardware.
Field Programmable Gate Arrays(FPGAs) are being increasingly
used in high end data servers providing a bridge between the
flexibility of software and performance benefits of hardware.
In this paper we look at implementations of some of the most
popular sorting algorithms using OpenCL which take advantage
of FPGA architecture. We evaluate these implementations in
terms of power consumption which is measured using dedicated
server power loggers and execution on Intel Arria 10 hardware.
Our experiments show that taking advantage of software FIFOs
have a significant impact on power consumption as well as
requiring less hardware and memory resources.

Index Terms—Energy efficiency, FPGAs, Acceleration,
OpenCL, Sorting, Power Consumption, Radix Sort, Bitonic
Sort, Odd/Even Sort, Insertion Sort

I. INTRODUCTION

Sorting plays an important part in everyday life. It is even
more relevant to applications which require big data, cloud
computing and the internet. Sorting algorithms speed up dras-
tically every database, search engine and indeed certain other
computations. In our quest for instant information, hardware
is often used to accelerate software applications.

The aim of this paper is to provide a comparison of a
number of hardware oriented data sorting algorithms from the
perspective of power consumption. The hardware in question is
an FPGA (Field-Programmable Gate Array) which allows for
more energy efficient hardware when compared to CPU/GPUs
[1] for some types of algorithms.

Energy costs of data centers are expected to account for 50%
of the total cost of ownership in the short to medium term
[2]. Sorting in the data center is widely used, for example
search engines such as Google use sorting to implement its
PageRanking algorithm. Furthermore, it is estimated that 85%
of scientific applications depend on sorting algorithms [3].
When you consider that in 2011 data centers in the United
States consumed 100 billion kWh (amounting to a $7.4 billion
energy bill) there appears to be scope to save a significant
amount of energy if we can improve the energy-efficiency of
sorting in the data center.

Fig. 1. Adaptive Logic Module

II. BACKGROUND

In this section we introduce FPGA technology and we
will examine the use of the OpenCL framework to FPGA
development. Also, we provide some background on sorting,
both algorithms and applications.

A. FPGA Technology

An FPGA is a reconfigurable integrated circuit with flexibil-
ity approaching general purpose processors while performance
is comparable to custom hardware. The first commercially
available FPGA, the Xilinx XC2064, had 1200 logic gates
however modern FPGAs are massive in scale when in com-
parison and offer run time programming.

The basic block of an FPGA is an Adaptive Logic Module
(ALM) (figure 1) which contains look up tables (LUTs),
adders, registers and combinational logic. There is also routing
fabric which provides the connectivity between different clus-
ters of logic blocks (also known as logic array blocks (LABs)).

FPGAs are used in a wide variety of industries e.g. automo-
tive (autonomous driving, in-vehicle infotainment), financial,
industrial (IoT, manufacturing), and medical (patient moni-
toring, radiation equipment). Our specific interest in FPGA
applications is that of “Big Data” servers.

There already exists a number of applications of FPGA tech-
nology for “Big Data” in the commercial space. Microsoft’s978-1-5386-6046-1/18/$31.00 © 2018 European Union

Project BrainWave is a Scalable FPGA-powered DNN Serving
Platform which uses Intel Stratix 10 FPGAs for supporting
deep learning frameworks. Amazon is using GPU and FPGA
technology to accelerate deep learning, video processing, and
many other computations. Baidu are using FPGAs for “Big
Data” analysis.

B. Sorting

Knuth [4] divides up sorting algorithms into the follow-
ing categories; insertion, exchanging, selection, merging, and
distribution. We will concern ourselves with algorithms that
have already been shown as amenable to implementation in
hardware such as those that use “Sorting Networks”.

In the age of “Big Data” sorting of data is extremely
relevant. An example of “Big Data” sorting is found in the
Apache Spark cluster computing framework which offers the
Timsort sorting algorithm for its Sort Shuffle feature. Indeed, it
is worth remarking that Apache Spark has set a record as the
fastest open source engine for large-scale sorting previously
[5]. Also of interest is applying the sorting circuits to massive
data sets such as the method presented in [6].

Power consumption of algorithms (and indeed specifically
sorting algorithms) has already been examined for other plat-
forms and languages [7].

C. OpenCL

OpenCL (Open Computing Language) is a framework for
writing device independent programs. The OpenCL standard is
maintained by the Khronos Group and is currently supported
by hardware vendors such as Intel (both for CPU and FPGA),
Xilinx (FPGA), Qualcomm (GPU), Nvidia (GPU) and Texas
Instruments (DSP). OpenCL allows algorithm designers to de-
ploy their code onto many different types of hardware without
the hardware language overhead, i.e. a designer can create
an algorithm and deploy it to a GPU and an FPGA without
translating the algorithm into both CUDA and VHDL/Verilog.
This opens up hardware acceleration to a greater audience of
developers.

There are a number of applications already taking advantage
of the ability to quickly and easily create custom acceleration
circuits. Examples of features already accelerated on FPGA
using OpenCL include Gzip compression [8], Genome Se-
quencing [9], graphics [10], and financial mathematics [11].

An OpenCL program is divided into two distinct sections,
the host side and the device side. The host device (generally
a CPU) is used to launch and interact with the device (which
could also be a CPU, or it could be any other OpenCL
supported device e.g. GPU/FPGA/DSP). The device side is
implemented in kernel form. An OpenCL kernel is a routine
compiled for a specific device. OpenCL kernels are based on
the C99 standard [12]. A simple addition kernel for Intel’s
OpenCL SDK for FPGAs is illustrated in figure 2.

D. State of the art in sorting on FPGA using OpenCL

A comparison of bitonic-sort on FPGA using OpenCL to
a GPU implementation in terms of power consumption and

__kernel void simpleAdd(__global int A,
__global int B,
__global int* C)

{

*C = A + B;
}

Fig. 2. OpenCL Kernel for addition

Algorithm 1 Compare Swap Unit
COMPARE SWAP(*a, *b)

2: if a > b then
temp = a

4: ∗a = ∗b
∗b = temp

6: end if

time is presented in [13]. The authors of [14] present OpenCL
implementations of Radix sort and Bitonic sort for Xilinx FP-
GAs with a specific interest in the operations generated by the
OpenCL compiler. In [15] a comparison of radix sort, bitonic
sort and insertion sort on FPGA is presented, however these
were implemented in VHDL rather than OpenCL. Odd-even
sort and bitonic sort have been analysed in terms of FPGAs
and power consumption in [16] from a HDL perspective.

III. HARDWARE ORIENTATED SORTING ALGORITHMS

The sorting algorithms presented in this section were chosen
due to their lack of branches and parallelisable nature.

A. Bitonic Networks & Even-odd networks

The sorting algorithms in this section are taken from Ken
Batchers paper Sorting Networks and their applications [17].
These types of algorithms are well suited to a hardware im-
plementation however there does exist redundant comparisons
due to the oblivious sequence of comparisons.

1) Odd-even Merge Sort: If we start at the smallest merging
network (a 1x1 merging network) we see it is simply a single
comparison unit. A compare and swap unit in pseudocode
form is illustrated in algorithm 1. A compare and swap unit
compares two values and swaps them if necessary with the
aim of guaranteeing a certain order. We can create larger
networks by following the iterative rule for odd-even merging
networks as described by Ken Batcher [17]. The pseudocode
implemented in OpenCL is illustrated in algorithm 2 and is
based on the circuit shown in figure 3.

To sort 2p numbers using this algorithm requires (p2 − p+
4)2p−2 − 1 comparison units.

2) Bitonic Sort: This sorting network relies on sorting a
bitonic sequence. A sequence is called bitonic if firstly it is
increasing and, after a certain point, is strictly decreasing.
There exists an iterative rule (similar to odd-even merge sort)
which permits the creation of larger networks. The sorting
hardware for an 8 element bitonic sorter is illustrated in figure
4 and figure [13].

Algorithm 2 Odd-even Sorting Kernel
1: function ODDEVEN SORT(Data)
2: #Stage 0
3: compare swap(Data[0], Data[1]);
4: compare swap(Data[2], Data[3]);
5: compare swap(Data[4], Data[5]);
6: compare swap(Data[6], Data[7]);

· · · · · ·
· · · · · ·

7: #Stage 5
8: compare swap(Data[1], Data[2]);
9: compare swap(Data[3], Data[4]);

10: compare swap(Data[5], Data[6]);

Fig. 3. 8 element odd even Network [18]. Connecting the lines are compare-
swap units (illustrated in algorithm 1)

Using bitonic sort we need (p2 + p)2p−2 sorting elements
to sort 2p elements.

B. Merge Sort Trees

Merge Sort trees achieve the sorting computation by arrang-
ing compare-swap elements (see algorithm 1) into a tree based
structure where each level of the tree sorts a growing number
of elements. An example of a sorter tree is illustrated in figure
5. The pseudocode is illustrated in algorithm 4.

Fig. 4. Bitonic Sorter [13]

Algorithm 3 Bitonic Sorting Kernel
function BITONIC SORT(Data)
#Stage 0

3: compare swap(Data[0], Data[1]);
compare swap(Data[2], Data[3]);
compare swap(Data[4], Data[5]);

6: compare swap(Data[6], Data[7]);
#Stage 1
compare swap(Data[0], Data[3]);

9: compare swap(Data[1], Data[2]);
compare swap(Data[4], Data[7]);
compare swap(Data[5], Data[6]);
· · · · · ·
· · · · · ·

12: #Stage 5
compare swap(Data[0], Data[1]);
compare swap(Data[2], Data[3]);

15: compare swap(Data[4], Data[5]);
compare swap(Data[6], Data[7]);

Fig. 5. Merge Sorter Tree [18]

Each level of the tree will merge two times the amount of
data than the last level. A requirement is that the input to the
lowest level of the tree is already sorted (the choice of sorting
algorithm is left to the implementer).

C. Insertion Sorters

Hardware implementations of insertion sort make use of
shift registers to store the search keys. The hardware presented
in [18] and [19] illustrate this idea (pseudocode taken from
[20] and illustrated in algorithm 5). The theory is that for
each unsorted element a suitable location in the sorted array
is located and the array is shifted to accomodate the new value.
The value is then inserted into the sorted output array.

Algorithm 4 Merge Sorting Tree
MERGETREESORT(Input A, Output B);
FIFO level0[4], FIFO level1[2]
for i = 0 up to 8 do

4: if a[i] < a[i+ 1] then
level0[i/2].push(a[i])
level0[(i/2) + 1].push(a[i+ 1])

else
8: level0[(i/2) + 1].push[a[i]

level0[i/2].push(a[i+ 1])
end if

end for
12: for i = 0 up to 4 do

for j = 0 up to 2 do
if level0[i].peek() < LEV EL0[i+ 1].peek() then
level1[j].insert(level0[i].pop())

16: level1[j].insert(level0[i+ 1].pop())
else
level1[j].insert(level0[i+ 1].pop())
level1[j].insert(level0[i].pop())

20: end if
end for
i = i ∗ 2

end for
24: for i = 0 up to 8 do

if level1[0].peek() < level1[1].peek then
B[i] = level1[0].pop()

else
28: B[i] = level1[1].pop()

end if
end for

Algorithm 5 Insertion Sort algorithm
INSERTIONSORT(Input A, Output B);
for i = 0 up to size of A do
new value = A[i]
new pos = 0, found pos = false

5: while notfound pos do
new pos++
if new pos == output size then
found pos = true

else
10: if B[new pos] ≥ new value then

found pos = true
end if

end if
end while

15: for index = output size to new pos+ 1 do
B[index] = B[index− 1]

end for
B[new pos] = new value

end for

D. Radix Sort

Radix sort is a type of bucket sort which sorts based on
the radix (or base) of the data. In the case of integers, this
algorithm sorts on each significant position. It requires the
idea of a position as well as the direction of the sorting (i.e.
least significant digit or most significant). The pseudocode of
radix sort for integers using base 10 can be seen in algorithm
6.

Algorithm 6 Radix Sort algorithm
RADIXSORT(Input A, Number of digits d);
for j = 1 to d do

count[10] = 0
for i = 0 to sizeofA do
count[key of A[i] in pass j] + +

6: end for
for k = 1 to 10 do
count[k] = count[k] + count[k − 1]

end for
for i = n− 1 downto 0 do
result[count[key of A[i]] = A[j]

12: count[key of A[i]]−−
end for
for i = 0 to n do
a[i] = result[i]

end for
end for

IV. EXPERIMENT CONFIGURATION

The experiment is decomposed into four components; the
hardware (FPGA), the development environment (OpenCL),
the data to be sorted, and the model used to measure the power
consumption. We briefly discuss these in this section.

A. Intel Arria 10

The development board used for this experiment was the
Terrasic DE5a-Net [21] which contains the Intel Arria 10
GX1. The Arria 10 has 1150K logic elements, 427200 ALMs,
1.7 million registers, 3036 18x19 multipliers and 53 Mb of
embedded memory.

B. OpenCL Development Environment

The Intel FPGA SDK for OpenCL supplied (version 16.1)
with the Arria 10 supports the OpenCL 1.0 Standard. As
FPGA synthesis is normally in the order of hours, Intel also
provides an emulation environment which allows the developer
to test their designs on a software simulation of the device.
This allows the functionality of the design to be tested and
debugged without the lengthy intervals between synthesis.
Also, the SDK provides profiling tools to optimise the design.

The development flow for implementing the various sorting
algorithms is as follows:

1) Create host and kernel code;
2) Iterate between testing on emulator and modifying code;

1Intel bought FPGA manufacturer Altera in 2015

3) Run Intel OpenCL Compiler. This step uses Intels Quar-
tus HDL design software to create the final FPGA image
(in the form of a aocx file);

4) Deploy to the device and execute the host code.

C. Data sets

The data provided to the hardware was generated in a very
similar fashion to that discussed in [22]. Specifically, using a
data set size of 8, we generated all combinations of 5 sets of
data where each set contained 8 8-bit integers. This gave a
benchmarking set of (8!) ∗ 5 = 201600 data sets.

D. Power Measurement Model

There are a number of options available for analysing the
power consumption of an FPGA design. Intel provide two
software based mechanisms for this purpose. The Early Power
Estimator (EPE) is a Microsoft Excel based tool which allows
a user to input a number of variables and the spreadsheet will
provide some approximate power consumption figures. The
second software mechanism Intel provides is a part of the
Quartus suite called PowerPlay which is more precise.

If power measurements are required rather than estimations
(which is what the EPE and PowerPlay provide) there are
a number of options available however they require external
hardware. One example is illustrated in [23] where we can see
a method for power analysis using an oscilloscope.

Our measurements were taken with a Racktivity PowerMan-
ager PM0816-01 power distribution unit. This PDU allows
regular power consumption measurements via SNMP (Simple
Network Management Protocol). The method we chose in-
volved measuring the power consumption of the host systems
plus the static power required to run the development board.
Static power is the power consumed by the FPGA when no
signals are toggling. Another required measurement is the
host power consumption when actively transferring data to the
device. Once we have these figures we can finally measure the
entire system during sorting computation. The measurements
were averaged over the time taken to sort 201600 data sets.
This allows us to calculate the dynamic power consumption
of the sorting designs. Dynamic power is the additional power
consumed through the operation of the device caused by
signals toggling.

V. RESULTS

A. Resource Utilisation

The first results of interest are the resource consumption
of the sorting algorithms. Table I shows the resources of the
Arria 10 required to sort the input data. Note, this table does
not include the resource consumption of the board interface as
this is constant regardless of the the design. It is worthwhile
examining the decisions made by the OpenCL compiler which
influenced the resources required.

Algorithm
Resource Power

(mJ)
Fmax
(MHz)ALUTs FFs RAMs

Bitonic sort 11645 34213 268 36.00 340

Even-odd 11531 34119 268 31.15 366

Network

Merge sort 9186 8142 0 17.83 389

Trees

Insertion 61805 190245 1170 135.10 242

Sort

Radix sort 23713 60651 414 29.87 373

Empty Kernel 1570 1685 0 N/A 412

TABLE I
RESOURCE AND POWER UTILISATION

1) Bitonic Sort & Even-Odd Network: The resources con-
sumed by both of these kernels are very close. As expected
this is due to the dependence on the compare-swap hardware.
The total hardware resources required are almost a simple
multiplication of the number of computations by the resource
requirement of the compare-swap hardware. Approximately
75% of the ALUTs and FFs were actually consumed by the
load and store operations used to copy the sorted data to the
output buffer.

2) Merge Sort Trees: The HLD FPGA report generated as
part of the compilation process provides some explanation as
to why the resource usage of this sorter is relatively low. A
number of the private variables used were implemented as
barrel shifter with registers. Also, unlike the bitonic sort and
even-odd network, it was possible to integrate the output buffer
into the sorting process which removed the cost of the load
and store operations.

3) Insertion Sort: As we can see from the utilisation
table, this algorithm consumes more resources than the other
algorithms. From the generated report it appears that this
algorithm is clustered into 15 distinct blocks which can be
run without stalls. Also, this algorithm has a greater iterative
design than the other algorithms.

4) Radix Sort: This algorithm is relatively more complex
in its approach to sorting data. The private variables were
implemented as registers. A large amount of the ALUTs
(approximately 16000) and FFs(approximately 45000) were
consumed by memory copying.

5) Empty Kernel: The empty kernel was included to il-
lustrate the overhead required for the kernel regardless of
the computation involved. As we can see there is some cost
in terms of ALUTs and FFs but no memory resources are
required.

B. Power Consumption

As discussed earlier, our power measurement approach
depends on a base measurement using an empty OpenCL
kernel and through sorting the test data set we can calculate
the energy required for sorting an eight input data set.

Table I also shows the power consumed by the sorting
algorithms. It is immediately apparent that the Merge sort
tree sorting algorithm requires less power to carry out an
eight element sort. As noted previously, the HLD FPGA report
states the FIFOs were implemented as barrel registers by the
OpenCL compiler. This implementation used no RAMs.

It is also worth remarking on the high cost associated with
using insertion sort. This algorithm was chosen due to the fact
it should make use of hardware shift-registers however there
is no evidence the OpenCL compiler implemented the shifts
prior as shift-registers.

VI. CONCLUSION

In this paper we presented a power consumption comparison
of five sorting algorithms using the Intel FPGA SDK for
OpenCL and an Arria 10 FPGA. We chose algorithms which
have been implemented previously in hardware.

The experiment results demonstrate that using an OpenCL
implementation of merge sort trees has a significant benefit
in both more efficient resource utilisation and reduced energy
consumption than the other algorithms. Indeed, OpenCL merge
sort trees consume 40% less power than the closest sorting
algorithm (radix sort) when sorting 8 element data sets.

There are a number of different experiments left which
are of interest. From an algorithm perspective broadening the
number of sorting algorithms, or choosing more efficient im-
plementations of the sorting algorithms (such as that presented
in [24]), or designing power aware sorting algorithms are
possible avenues. From a hardware point of view increasing
the number of inputs to the sorting circuits, or improving the
accuracy of the power consumption measurement approach,
comparing OpenCL implementations with Verilog implemen-
tations [25], or augmenting other sorting algorithms with
FIFOs to determine if a FIFO approach can improve power
consumption are potentially interesting approaches.

VII. ACKNOWLEDGMENTS

This paper has been supported in part by Intel Pro-
grammable Solutions Group, Racktivity, and SFI INSIGHT
Centre for Data Analytics.

REFERENCES

[1] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing performance and
energy efficiency of fpgas and gpus for high productivity computing,” in
Field-Programmable Technology (FPT), 2010 International Conference
on. IEEE, 2010, pp. 94–101.

[2] Y. Yue, B. He, L. Tian, H. Jiang, F. Wang, and D. Feng, “Rotated logging
storage architectures for data centers: Models and optimizations,” IEEE
Transactions on Computers, vol. 65, no. 1, pp. 203–215, 2016.

[3] I. Zecena, Z. Zong, R. Ge, T. Jin, Z. Chen, and M. Qiu, “Energy
consumption analysis of parallel sorting algorithms running on multicore
systems,” in 2012 International Green Computing Conference (IGCC),
June 2012, pp. 1–6.

[4] D. E. Knuth, The art of computer programming. Pearson Education,
1997, vol. 3.

[5] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on apache spark,” International Journal of Data Science and
Analytics, vol. 1, no. 3, pp. 145–164, Nov 2016.

[6] B. Lopez and N. Cruz-Cortes, “On the usage of sorting networks to big
data,” in Advances in Big Data Analytics: The 2014 WorldComp Inter-
national Conference Proceedings. Mercury Learning and Information,
2014, pp. 102–108.

[7] M. Rashid, L. Ardito, and M. Torchiano, “Energy consumption analysis
of algorithms implementations,” in 2015 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
Oct 2015, pp. 1–4.

[8] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip:
High performance lossless data compression on fpgas using opencl,” in
Proceedings of the International Workshop on OpenCL 2013 & 2014.
ACM, 2014, p. 4.

[9] A. Sirasao, E. Delaye, R. Sunkavalli, and S. Neuendorffer, “Fpga based
opencl acceleration of genome sequencing software,” System, vol. 128,
no. 8.7, p. 11, 2015.

[10] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accelerating computer
vision algorithms using opencl framework on the mobile gpu-a case
study,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 2629–2633.

[11] V. M. Morales, P.-H. Horrein, A. Baghdadi, E. Hochapfel, and S. Vaton,
“Energy-efficient fpga implementation for binomial option pricing using
opencl,” in Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014. IEEE, 2014, pp. 1–6.

[12] N. Trevett, “Opencl introduction,” Khronos Group, 2013.
[13] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient fpga

implementation of opencl high-performance computing applications via
high-level synthesis,” IEEE Access, vol. 5, pp. 2747–2762, 2017.

[14] D. Connors, E. Grover, and B. Caldwell, “Exploring alternative flexible
opencl (flexcl) core designs in fpga-based mpsoc systems,” in Pro-
ceedings of the 2013 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, ser. RAPIDO ’13. New York, NY,
USA: ACM, 2013, pp. 3:1–3:8.

[15] C. Grozea, Z. Bankovic, and P. Laskov, “Fpga vs. multi-core cpus vs.
gpus: hands-on experience with a sorting application,” in Facing the
multicore-challenge. Springer, 2010, pp. 105–117.

[16] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on fpgas,”
The VLDB Journal, vol. 21, no. 1, pp. 1–23, Feb. 2012.

[17] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30–May 2, 1968, spring joint computer conference. ACM,
1968, pp. 307–314.

[18] D. Koch and J. Torresen, “Fpgasort: A high performance sorting archi-
tecture exploiting run-time reconfiguration on fpgas for large problem
sorting,” in Proceedings of the 19th ACM/SIGDA international sympo-
sium on Field programmable gate arrays. ACM, 2011, pp. 45–54.

[19] R. Marcelino, H. Neto, and J. Cardoso, “Sorting units for fpga-based em-
bedded systems,” Distributed Embedded Systems: Design, Middleware
and Resources, pp. 11–22, 2008.

[20] K. Ø. Arisland, A. C. Aasbø, and A. Nundal, “Vlsi parallel shift sort
algorithm and design,” INTEGRATION, the VLSI journal, vol. 2, no. 4,
pp. 331–347, 1984.

[21] “Terasic de5a-net arria 10 fpga development kit (2017).”
[22] N. Zeinolabedini, G. Qin, D. Vasudevan, M. Schellekens, and

E. Popovici, “Static average-case power analysis for sorting applica-
tions,” in Microelectronics (MIEL), 2012 28th International Conference
on. IEEE, 2012, pp. 397–400.

[23] F.-X. Standaert, L. v. O. tot Oldenzeel, D. Samyde, and J.-J. Quisquater,
“Power analysis of fpgas: How practical is the attack?” in International
Conference on Field Programmable Logic and Applications. Springer,
2003, pp. 701–710.

[24] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on fpga,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’15. New York, NY, USA: ACM, 2015, pp. 240–249.

[25] P. C. Petrut, A. Amaricai, and O. Boncalo, “Configurable fpga architec-
ture for hardware-software merge sorting,” in Mixed Design of Integrated
Circuits and Systems, 2016 MIXDES-23rd International Conference.
IEEE, 2016, pp. 179–182.

