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Abstract

In the atomic layer deposition (ALD) of Cobalt (Co) and Ruthenium (Ru) metal using nitrogen 

plasma, the structure and composition of the post N-plasma NHx terminated (x = 1 or 2) metal 

surfaces are not well known but are important in the subsequent metal-containing pulse. In this 

paper, we use the low-index (001) and (100) surfaces of Co and Ru as models of the metal 

polycrystalline thin films. The (001) surface with a hexagonal surface structure is the most 

stable surface and the (100) surface with a zigzag structure is the least stable surface but has 

high reactivity. We investigate the stability of NH and NH2 terminations on these surfaces to 

determine the saturation coverage of NHx on Co and Ru. NH is most stable in the hollow hcp 

site on (001) surface and the bridge site on the (100) surface, while NH2 prefers the bridge site 

on both (001) and (100) surfaces. The differential energy is calculated to find the saturation 

coverage of NH and NH2. We also present results on mixed NH/NH2-terminations. The results 

are analyzed by thermodynamics using Gibbs free energies (ΔG) to reveal temperature effects 

on the stability of NH and NH2 terminations. Ultra-high vacuum (UHV) and standard ALD 

operating conditions are considered. Under typical ALD operating conditions we find that the 

most stable NHx terminated metal surfaces are 1ML NH on Ru(001) surface (350K-550K), 

5/9ML (0.56ML) NH on Co(001) surface (500K-650K) and a mixture of NH and NH2 on both 

Ru(100) and Co(100) surfaces.
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1. Introduction

With the downsizing of semiconductor devices, the copper interconnect becomes the key 

challenge and the volume available in the via is reduced.1-3 Barrier and liner layers are needed 

to prevent copper diffusion and to promote copper adhesion or wetting. Future developments 

in this area envisage replacing copper with metals such as Co or Ru which have lower resistivity 

at typical device dimensions. Co can be used as a seed layer for metallization of interconnects 

and Ru is a potential electrode material for DRAM capacitors and MOSFETs.4  In modern 

device structures, the barrier and liner layers and the interconnect require high conformality 

and continuous thin film deposition at the atomic scale. Atomic layer deposition (ALD) is the 

leading technique for depositing thin films with these properties in semiconductor technology.5-

6 ALD usually consists of two half-cycle reactions that are each self-limiting with a purge after 

each step. The reactions stop when all available surface sites are consumed and this self-

limiting property can ensure, at least in principle, that the thickness of the deposited thin film 

is precisely controlled by changing the number of cycles.7-8 ALD is used in depositing metal 

oxides9-11 (e.g. TiO2), metal nitride12 (e.g. TaN), and metals13-14 (e.g. Cu). 

Plasma enhanced ALD (PE-ALD) is a variant of ALD that allows low-temperature deposition, 

which can make the ALD process consistent with the permitted processing temperatures in 

semiconductor device fabrication.15-16 The plasma source can be oxygen or nitrogen. The O-

plasma mechanism has been well-established in recent years.17-21 The oxygen reactant can be 

H2O, O3, or H2O2 to promote metal oxide ALD growth.1, 22 Hydroxylated (OH-terminated) 

surfaces are produced after this pulse21, 23 and hydroxylated metal oxide surfaces have been 

widely studied both for the ALD process7, 9-10 and in catalysis for reactions including water-

gas shift and photocatalysis24-26.  
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However, by contrast, the N-plasma mechanism is not well understood. In particular, the nature 

and stability of NHx terminated metal surfaces that would be produced during the N-plasma 

deposition and required for modelling the N-plasma ALD process are entirely lacking. When 

depositing metals, such as Co and Ru, the use of N-plasma is preferred because this avoids 

oxygen contamination and subsequent oxidation of the metal surface. Previous studies have 

used ammonia adsorption or decomposition on platinum group metal surfaces including Pt, Pd 

and Rh27-28 or hexagonal close-packed (hcp) metal surfaces such as Ru29-30 in catalysis-focused 

studies. The nature of the most stable NHx fragment on these metals varies with different 

surface orientations and the decomposition is structure sensitive. 

The ALD of Co uses metal precursors such as cyclopentadienyl dicarbonyl cobalt (CoCp(CO)2) 

and bis-cyclopentadienyl cobalt (CoCp2)31-33 and the other precursors are NH3 or a mixture of 

N2 and H2. The first ALD of Ru used RuCp2 and O2 as precursors. The reported main 

byproducts are CO2 and H2O. A combination of high O2 dose and low Ru precursor dose can 

result in RuO2 rather than Ru.4 Other Ru precursors such as Ru(EtCp)2 and CpRu(CO)2Et have 

also been developed.19, 34 Generally, the deposition temperature is above 200°C for these metal 

precursors.35-36 As pointed out earlier, oxygen can oxidize metal surface and use of N-plasma 

is therefore important for the deposition of metals. Experimental results have pointed out that 

both NH3-plasma and N2/H2 plasma can result in high purity and low resistivity Co thin film. 

However, H-plasma alone or separate N2 and H2 plasma can produce lower purity and higher 

resistivity Co thin films.32-33, 37 It has been argued that the NHx-terminated metal surfaces play 

an important role in Co thin film deposition.32, 38 However, the nature of the NHx-terminated 

metal surfaces is not yet understood and this is the key advance in our present work. 

Density functional theory (DFT) calculations have been successfully applied to reveal the 

reaction mechanism of O-plasma in PE-ALD.39-41 However, limited theoretical studies are 

available that discuss N-plasma PE-ALD.42 Phung et al.43-44 have simulated the ALD of Ru on 
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Ru surfaces focusing on Ru precursor reactions with bare Ru surface and H-terminated Ru 

surfaces. The effect of nitrogen plasma is not considered in that paper. A full ALD cycle is as 

follows - starting from the post N-plasma cycle, the metal surface will be NHx-terminated 

surface, where x can be 1 or 2. Then the metal precursors (RuCp2 and CoCp2) are adsorbed on 

the NHx-terminated metal surfaces and a hydrogen transfer step can produce CpH which 

desorbs. The second half reaction with N-plasma produces a deposited metal layer with an 

NHx-terminated surface. A whole cycle is completed and the surface is ready for the next cycle. 

The present paper is focused on using first principles simulations to identify stable NHx-

terminated Co and Ru surfaces by considering termination of Co and Ru with amine (NH2) or 

imine (NH) species and mixed termination with NH2 and NH. The nature and stability of NHx-

terminated metal surface can strongly influence the hydrogen transfer step. The results are 

further analyzed with ab initio thermodynamics using the Gibbs energy (ΔG) in which the 

effect of temperature and pressure is considered. The results show that under ALD operating 

condition, the nature of the NHx terminated Co and Ru surfaces can be strongly dependent on 

the temperature at a given pressure. With increasing operating temperature, the surface 

adsorbed NH or NH2 may desorb from metal surface. On (001) surface, NH-termination is the 

most dominant species; while on (100) surface, a mixture of NH and NH2 is the most dominant 

species. The study on NHx terminated metal surface is vital and essential to investigate the PE-

ALD deposition of metal thin films.

2. Methods and Computational Details 

All the calculations are performed on the basis of spin-polarized DFT with the projector 

augmented wave (PAW) formalism45, as implemented in the Vienna ab initio simulations 

package (VASP 5.3) code. The generalized gradient approximation (GGA) with the 
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parameterization of Perdrew-Burke-Ernzerhof (PBE) is used for the exchange-correlation 

functional.46-47 The energy cutoff is set to be 400eV for the plane wave expansion. The 

convergence of energy and forces are set to be 1×10-4 eV and 0.01eV/Å, respectively. The bulk 

Co and Ru crystal structure is optimized by simultaneously relaxing the ionic positions, cell 

volume and cell shape at a higher plane wave energy cutoff of 550eV and a Monkhorst-Pack 

grid48 k-point mesh of 12 × 12 × 6. The resulting lattice constants are a = b = 2.489Å, and c = 

4.035Å for Co bulk and a = b = 2.715Å, and c = 4.285Å for Ru bulk. 

The deposited Co or Ru films by ALD are polycrystalline and have random surface orientations 

after low temperature deposition. The Ru crystallite tends to orient towards [001] direction at 

elevated temperature or increased plasma power.4 In this paper, three X-ray detected low-index 

surfaces (001), (100), and (101) are considered. The surface models consist of multi-layer Ru 

or Co and the vacuum region is up to 15Å. Both (3 × 3) and (4 × 4) surface supercell expansions 

are considered to minimize the neighboring effect of adsorbates (NH and NH2). A five-layer 

slab is used in the (100) and (001) surfaces, and an eight-layer slab is used for the (101) surface. 

The computational details of these slab model and calculated properties are shown in Table S1 

in supporting information. The configurations of these surfaces are shown in Figure 1. The 

bottom three layers are fixed during the calculations. We have checked the effect of fixing the 

number of layers on the adsorption energies. The results are summarized in Table S2 in 

supporting information and show that our model of fixing the bottom three-layers is reasonable 

and reliable. 

Both Ru and Co have the lowest surface energy along [001] direction, which forms a hexagonal 

structure and is the most stable surface. The (100) surface has a zigzag structure and shows 

high reactivity, while the (101) surface is a nearly flat surface. Based on the surface stability 

and reactivity, we have chosen the most stable (001) surface and the least stable, and high 

reactivity surface, (100) to study the stability of NHx-terminations. 
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Figure 1. The top and side view of Ru or Co surfaces in three orientations: (001), (101), and (100). The 

adsorption sites on (001) surfaces are highlighted as 1 (fcc), 2 (hcp), 3 (top), and 4 (bridge); The 

adsorption sites on (100) surfaces are highlighted as A, B (top), C, D (hollow), and E, F (bridge).

The chemisorption energy of NHx terminations is defined by the formula: 

𝐸𝑎𝑑 =  𝐸𝑡𝑜𝑡 ―  𝐸𝑠𝑙𝑎𝑏 ―  𝐸𝐴            (1)

where Etot, Eslab, and EA are the energy of the metal slab with termination A (A = NH, NH2), an 

isolated slab model for the clean metal surface, and isolated adsorbate A, respectively. The 

reference energy for the NH and NH2 adsorbate is computed using the total energy of gas phase 

N2 and H2. 

𝐸𝑁𝐻 =
1
2

(𝐸𝑁2 +  𝐸𝐻2)                               (2)

 𝐸𝑁𝐻2 = 1/2𝐸𝑁2 + 𝐸𝐻2                              (3)

These correspond to typical gases in the nitrogen plasma set-up. These computed energies can 

be thought of as an indication of how an NHx termination resists desorption with temperature, 

which would be probed through a temperature programmed desorption experiment. At high 

coverage, the surface NHx may dissociate into, e.g. NH and H, or form ammonia. The activation 
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barriers reported in this paper are computed using climbing image nudged elastic band (CI-

NEB) method42 with 6 images including the starting and ending geometries and with force 

converged to 0.01eV/Å.

3. Results and Discussions

3.1 Structure and Stability of NH or NH2 species at Co and Ru Surfaces

To begin with, we have considered the termination of Co and Ru (001) and (100) surfaces with 

single NH or NH2 to assess the preferred binding sites. The possible adsorption sites are shown 

in Figure 1. For the (001) surfaces, four adsorption sites including hcp, fcc, bridge, and top are 

considered. On the (100) surface six possible sites are considered, which are top (A and B), 

hollow (C and D), and bridge (E and F). Due to the unique trench structure of the (100) surface, 

sites A and E are located on the surface, while site B and F are anchored to zigzag channel. 

Site E is a surface bridge and site F is a channel bridge. The calculated energies of NH and 

NH2 adsorption, relative to ½(N2+H2) and ½N2+H2, respectively, are listed in Table 1; to 

facilitate the discussion, we also align the adsorption energy of the most stable site to be zero 

as a reference to discuss the stability of NHx terminations. 

The configurations of the most stable single NH and NH2 terminations on Ru and Co surfaces 

are shown in Figure 2 and Figure 3, respectively. We see that the most stable binding sites are 

the same on each surface facet. On the (001) surface, NH prefers to bind on the hcp site while 

NH2 prefers to bind on a bridge site. On the (100) surface, both NH and NH2 prefer a bridge 

site and these are the bridge F (zigzag channel) for NH and bridge E (surface) for NH2. A larger 

surface supercell expansion ((4 × 4) supercell) does not affect the most stable sites and these 

results are consistent with a previous modelling report on NH3 synthesis.29, 49 After relaxation, 

NH is in an upright position with the nitrogen atom adsorbed on a hollow site on the (001) 

surface and a channel bridge site on (100) surfaces. The metal-N distances are 1.86Å and 1.89Å 
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Table 1. The calculated adsorption energies of NH and NH2 on Co and Ru (001) and (100) surfaces. The energies in bracket are 

with respect to the energy of most stable site.

Adsorption energy/eV 

NH

Co(001)

3×3

Co(001) 

4×4

Ru(001) 

3×3

Ru(001) 

4×4 NH

Co(100)

3×3

Ru(100)

3×3

hcp -3.68 (0.00) -3.61 (0.00) -3.74 (0.00) -3.68 (0.00) top_A -2.29 (1.41) 2.02 (1.56)

bridge -2.75 (0.93) -3.14 (0.48) hollow* hollow* top_B -2.12 (1.58) -2.49 (1.09)

top -1.27 (2.41) -0.64 (2.97) -1.78 (1.96) -1.73 (1.95) hollow_C 1.68 (5.38) top*

fcc -3.21 (0.47) -3.17 (0.44) -3.36 (0.38) -3.34 (0.34) hollow_D 0.96 (4.66) bridge*

bridge_E -3.22 (0.48) -3.30 (0.28)

bridge_F -3.70 (0.00) -3.58 (0.00)

NH2 NH2

fcc bridge* bridge* bridge* -3.65 (0.92) top_A -2.88 (1.42) -2.51 (1.53)

bridge -3.37 (0.00) -3.39 (0.00) -3.64 (0.00) -4.57 (0.00) top_B -3.63 (0.66) -3.34 (0.70)

top -3.23 (0.14) 2.83 (0.56) -2.98 (0.66) -1.94 (2.63) hollow_C -3.54 (0.75) -3.32 (0.72)

hollow_D bridge* bridge*

bridge_E -4.29 (0.00) -4.04 (0.00)

bridge_F -3.27 (1.02) -2.76 (1.28)

*: after structure relaxing, the NH or NH2 diffuse to * site from the initial site.

Figure 2. The configurations of the most stable adsorption of NH and NH2 with (a) top view of Ru(001), 

(b) side view of Ru(001), (c) top view of Ru(100), and (d) side view of Ru(100). 
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10

Figure 3. The configurations of the most stable adsorption of NH and NH2 with (a) top view of Co(001), 

(b) side view of Co(001), (c) top view of Co(100), and (d) side view of Co(100). 

on Co(001) and Co(100) surfaces and 2.01Å and 2.25Å on Ru(001) and Ru(100) surfaces. NH2  

also binds in an upright position with the nitrogen atom binding to metal atoms in bridge sites. 

The metal-N distances are 1.98Å and 1.95Å on Co(001) and Co(100) surfaces and 2.11Å and 

2.10Å on Ru(001) and Ru(100) surfaces, respectively. 

Additionally, on (001) surfaces, the metal-metal distances are 2.72Å for Ru(001) and 2.49Å 

for Co(001). On the (100) surfaces, the metal-metal distances between successive bridge sites 

are 4.29Å for Ru(100) and 4.04Å for Co(100). With this in mind, the repulsion between 

adsorbed NH2 groups is stronger on the (001) surfaces. The (001) surface is flat, and NH prefers 

the hollow site and NH2 prefers bridge site. However, trench structure of (100) promotes both 

NH and NH2 to take different bridge sites, which are channel bridge for NH and surface bridge 

for NH2. These are sufficiently well separated that the repulsion between NH2 species is 

reduced on the (100) surfaces. 

We have calculated the partial density of states (PDOS) of the most stable binding modes and 

they are shown in Figure 4 and Figure 5. We see that there is hybridization between the 2p-

orbitals of nitrogen and d-orbitals of Co or Ru atom. The PDOS looks quite similar for the 

same adsorbate on Co or Ru surfaces. For comparison, the PDOS of the less stable binding 
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modes at the top site are shown in Figure S1 and Figure S2. On Ru surface, a broadened PDOS 

is observed at the most stable sites. On both Ru and Co surfaces, the N-2p PDOS has shifted 

to lower energy, resulting in stabilization at these most stable binding sites. 

Figure 4. The plotted partial density of states (PDOS) of (a) NH2-Ru(001), (b) NH-Ru(001), (c) NH2-

Ru(100), and (d) NH-Ru(100) at the most stable adsorption site.

Figure 5. The plotted partial density of states (PDOS) of (a) NH2-Co(001), (b) NH-Co(001), (c) NH2-

Co(100), and (d) Co-Ru(100) at the most stable adsorption site.
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3.2 Coverage Dependence of the Stability of NHx Terminations on Ru and Co Surfaces 

Once the stable adsorption sites for single NH and NH2 species are confirmed, we further 

investigate the stability of different surface coverages by increasing the number of adsorbates 

one by one in (3×3) unit cell. The surface coverage is defined as follows. For single adsorbate, 

in (3×3) unit cell, there are in total 9 possible adsorption sites. Thus, 1ML corresponds to 9 

adsorbates adsorbed on the surface. In (100) surfaces, due to the zigzag structure, the adsorbate 

can be adsorbed on surface site and zigzag channel site. Thus, in total maximum 2ML coverage 

(in total 18 adsorbates) are possible with 1ML surface occupation and 1ML zigzag channel 

occupation. 

The differential energy is defined as 

, ∆𝐸 =  𝐸(𝑛 + 1)𝐴 ― 𝐸𝑛𝐴 ― 𝐸𝐴

where E(n+1)A and EnA are the energies of (n+1)A species on the metal surface and nA species 

on the metal surface, respectively. The reference energy for adsorbate A is as previously 

described. This differential energy is used to find the saturation coverage, where a positive 

differential energy means that further NH or NH2 species cannot be accommodated on the 

metal surface and we are at the saturation coverage. The calculated adsorption and differential 

energies with respect to surface coverage are plotted in Figure 6 and Figure 7, respectively. For 

the adsorption energy, on (001) surfaces, these are 9 data points ranging from 1/9ML (0.11ML) 

to 9/9ML (1.0ML). On (100) surfaces, these are 11 data points including 9 points ranging from 

1/9ML (0.11ML) to 9/9ML (1.0ML) and two points with coverages at 12/9ML (1.33ML) and 

15/9ML (1.67ML). NH and NH2 have similar adsorption strength on both (001) surfaces, while 

on the (100) surfaces, NH2 clearly binds stronger than NH at all coverages. The structure of the 

(100) surfaces with the larger metal-metal distance and the trench appears to be able to 

accommodate the NH2 species. 
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Considering the differential energy shown in Figure 7, on the (001) surfaces, the calculated 

differential energies deviate from linearity at high coverage. We have marked these deviated 

data points with circles in Figure 7 and carefully checked the relaxed structure. This deviation 

is due to the desorption of NH or NH2 at high coverage, which leads to the formation of N2H2, 

NH3 or NH. This allows us to then determine the most stable coverage of NH and NH2 on all 

surfaces. The saturation coverage cannot be determined by differential energy alone. Although 

there may be negative differential energies at high coverage, the final coverage is smaller than 

the initial coverage. Thus, the relaxed structure at all coverages must also be considered. The 

configurations of all the structures at different coverages are shown in Figure S3 and Figure S4 

in supporting information.

Figure 6. The calculated adsorption energies of NH and NH2 on (a) Ru(001) and Ru(100) surfaces and 

(b) Co(001) and Co(100) surfaces.
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Figure 7. The calculated differential energy of NH and NH2 on Co and Ru surfaces as a function of 

coverage. (a) (001)-NH terminated, (b) (001)-NH2 terminated, (c) (100)-NH-terminated and (d) (100)-

NH2-terminated. A positive energy means that further addition of NH or NH2 is not favourable and 

therefore under high coverages, NH and NH2 would desorb from surface and NH2 may dissociate into 

NH or form NH3.

For NH species, on the Ru(001) surface, 1ML (in total 9 NH) is stable. The differential energy 

is negative and the relaxed structure is stable. If the number of NH is increased, the differential 

energy becomes positive and the extra NH species desorb from surface. Thus, the saturation 

coverage on Ru(001) surface of NH adsorption is 1ML. On the Co(001) surface, the differential 

energy becomes positive at 7/9ML (0.78ML) coverage. Although the values of the differential 

energy become negative again at 8/9ML (0.89ML) and 9/9ML (1.0ML), the relaxed structures 

of these coverages are critical to understand why the saturation coverage is no larger than 

6/9ML (0.67ML). At the coverage of 0.78ML, one NH desorbs from surface and only 6 NH 

Page 14 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

are adsorbed on Co(001) surface. At the coverage of  0.89ML and 1.0ML, there is N2H2 

formation on the surface. Thus, NH is not stable at 0.89ML and 1ML coverages. The saturation 

coverage on Co(001) surface of NH adsorption is 6/9ML (0.67ML). On Ru and Co (100) 

surfaces. Due to the unique trench structure, the differential energy is negative and the structure 

is stable. Thus, the saturation coverages on Ru(100) and Co(100) surfaces are 2ML. 

For NH2 species, NH2 may dissociate into NH or form NH3 at high coverage on (001) surfaces. 

On Ru(001) surface, the computed differential energies are negative for all data points. 

However, they are not linear at the coverage of 0.78ML, 0.89ML and 1.0ML. NH2 is not stable 

on the Ru(001) surface at these coverages. For example, at 0.78ML coverage, the surface 

termination is 6 NH2 and 1 NH2 is desorbed; at 0.89ML coverage, the surface termination is 6 

NH2 and 1 NH and 1 desorbed NH3; at 1.0 ML, the surface termination is 5 NH2, 2 NH and 2 

desorbed NH3. Thus, the saturation coverage of NH2 on the Ru(001) surface is 0.67ML. 

Similarly, on Co(001) surface, we find that NH2 is not stable at coverages higher than 0.67ML. 

At 0.78ML coverage, the surface termination is 5 NH2, 1 NH and 1 NH3; at 0.89ML coverage, 

surface termination is 5 NH2, 1 NH, 1 desorbed NH3 and 1 desorbed NH2; at 1ML, the surface 

termination is 5 NH2, 2 NH, and 2 desorbed NH3. Thus, the saturation coverage on Co(001) 

surface of NH2 adsorption is 0.67ML. 

On (100) surfaces, due to the unique trench structure, the saturation coverage of NH2 on 

Ru(100) surface is 12/9ML (1.33ML). and that on Co(100) surface is 1ML. The calculated 

saturation coverages are summarized in Table 2. The configurations of the saturated adsorption 

of NHx fragments are shown in Figure 8 and Figure 9. The structures of all the unstable high 

coverage NH2 terminated surfaces are shown in Figure S3 and Figure S4 in supporting 

document.
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The adsorbed NH2 species can dissociate into NH and H or form NH3 on both Co and Ru 

surfaces at high coverage, which shows that NH2 is quite unstable at high coverage. The barrier 

for dissociation of NH2 to NH and H on the Ru(001) surface was computed as 0.71eV in a 

previous DFT study.49 Here, we have calculated the dissociation barrier for NH2 dissociation 

to NH and H on the Co(001) surface using the CI-NEB method and the calculated barrier is 

0.71eV, which will be easily overcome at typical ALD operating temperatures. The 

configurations of the initial state, transition state and final state can be found in supporting 

information Figure S5. This is consistent with a previous report that focused on NH3 

synthesis,29, 49 and found that NH2 is difficult to form but relatively easy to dehydrogenate due 

to high formation barrier (1.28eV) but relatively low dehydrogenation barrier (0.71eV). 

Additionally, as pointed out in the same report, the reaction barrier would decrease as the 

surface coverage increases. Our finding of NH2 instability at high coverages supports this 

finding as we observe spontaneous dissociation of NH2.

Table 2. The calculated individual saturation coverage of NH and NH2 on Co and Ru (001) 

and (100) surfaces.

Ru Co

(001) (100) (001) (100)

NH 1ML 2ML 6/9ML (0.67ML) 2ML

NH2 6/9ML (0.67ML) 12/9ML (1.33ML) 6/9ML (0.67ML) 1ML

The saturation coverage of NH on Co(001) surface 6/9ML, while on Ru(001) surface full 

coverage of 1ML is stable. This difference between the two metals arises from the larger Ru 

(001) surface lattice (Ru lattice constant is 2.72Å and Co lattice constant is 2.49Å) and the 
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resulting larger Ru-Ru distance when compared to the Co(001) surface; Thus, the repulsion 

between NH groups will be weaker on the Ru (001) surface, as a result of the longer N-N 

distance; this distance is 2.72Å on Ru and 2.49Å on Co. The saturation coverage of NH2 on 

both Ru and Co (001) surfaces is 0.67ML, so here the structural features of the metal surfaces 

play no role in determining the stability. At low NH2 coverage, the interactions between 

adsorbed NH2 species are not so strong. However, if the number of adsorbed NH2 species 

increases, the H-H distance between two NH2 species becomes smaller and the number of such 

interactions increases, the repulsion plays a more important role. This effect is more obvious 

on (001) surface due to smaller surface area (and smaller adsorbate-adsorbate distances) than 

that of (100) surface. An analysis of the relative stability at different configurations at the same 

coverages are summarized in Table S3 in supporting information.

Figure 8. The configurations of the saturated adsorption of NH and NH2 with (a) top view of Ru(001), 

(b) side view of Ru(001), (c) top view of Ru(100), and (d) side view of Ru(100).
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Figure 9. The configurations of the saturated adsorption of NH and NH2 with (a) top view of Co(001), 

(b) side view of Co(001), (c) top view of Co(100), and (d) side view of Co(100).

3.3 Termination with Mixed NH and NH2 Species. 

We now consider the termination of the Co and Ru surfaces with a mix of NH and NH2 species 

to investigate the stability of mixed NH and NH2-terminated surfaces. On the (001) surfaces, 

due to the instability of adsorbed NH2 at high coverage, an NH terminated surface model is 

used at the starting configuration in the simulation of mixed NH/NH2 termination. 

On the (100) surfaces, an NH2 terminated surface model is used in the simulation of the mixed 

NH/NH2 termination as a result of the greater stability of NH2 compared to NH. All the 

calculations for the mixed termination cases are performed with the (3×3) surface supercell. 

For the Ru(001) surface, the NH saturation coverage is up to 1ML, and additional NH2 desorbs 

from surface upon relaxation. Thus, Ru(001) is excluded from further discussion and will not 

show mixed termination with NH and NH2. 

For Co(001), the saturation coverage of NH is 6/9 ML. We start from this partial termination 

with NH; NH2 species are adsorbed on available surface sites one by one until reaching full 

coverage. Two models with initial coverage of 5 NH and 6 NH are used. For Ru(100) and 

Co(100), we have considered two NH2 terminated models: 6 NH2 and 9 NH2 on the (3×3) 

surface. Due to the stability of the NH termination, we set the number of surface NH to be 3, 6 
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or 9 instead of increasing the coverage of NH species one by one. These models and the 

energies of the mixed terminations are presented in Table 3. The configurations of models for 

mixed terminations are shown in Figure S6 and Figure S7 in supporting information. 

Table 3. The mixed termination models and adsorption energies on Co(001) surface and (100) 

surfaces. The adsorption energies in the bracket are with reference to initial NH or NH2 

terminated models. 

Adsorption energy/eV

Co(001) Ru(100) Co(100)

5NH+NH2 -2.72 (-1.35) 6NH2+6NH -3.16 (-3.24) -2.89 (-2.72)

5NH+2NH2 -2.57 (-1.51) 6NH2+9NH -2.87 (-3.00) -2.65 (-2.67)

5NH+3NH2 -2.14 (-0.73) 9NH2+3NH -3.24 (-2.20) -2.82 (-1.76)

6NH+1NH2 -2.55 (-3.88) 9NH2+6NH -3.02 (-2.17) -2.64 (-1.83)

6NH+2NH2 -2.48 (-2.95) 9NH2+9NH -2.74 (-2.70) -2.43 (-2.23)

On all surfaces, the energy gain per adsorbate generally decreases with increasing the number 

of adsorbate species. On the (001) surfaces, the surface cannot reach full coverage (1ML, in 

total 9 adsorbates) due to the competition between NH and NH2 and Co(001) shows a 

maximum of 8 adsorbates ( 5NH+3NH2 or 6NH+2NH2). On the (100) surface, full coverage 

of mixed NH and NH2 (2 ML, with 18 adsorbed species) is possible. This is due to the unique 

zigzag surface structure, which provides more available sites over a larger surface area.

3.4 Thermodynamics 

NH and NH2 prefer to bind on different adsorption sites on Co and Ru surfaces. The 

competition between NH and NH2 terminations can be more deeply analysed from ab initio 

thermodynamics. The Gibbs free energy (ΔG) is calculated to extend the results of DFT by 
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adding the effect of temperature and pressure. Two values of the pressure are selected. One is 

the ultra-high vacuum (UHV) condition (P/Po = 5×10-14) and the second is the standard ALD 

operating condition, taken from ref. 32 (P/Po = 1.97×10-6); Po is the standard pressure, i.e. 1 atm. 

For the adsorption on metal surface, the ΔG is calculated by the equation (4):

𝛥𝐺 = 𝐺[𝑚𝑒𝑡𝑎𝑙
𝑡𝑜𝑡𝑎𝑙] ― 𝐺[𝑚𝑒𝑡𝑎𝑙] ― 𝐺𝑔𝑎𝑠(𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒) (4)

The G[metal/total], G[metal], and Ggas(adsorbate) are the Gibbs free energy of the metal surface 

(Co or Ru) with terminating groups (NH or NH2), the clean metal, and the gas phase reference 

molecules (N2 and H2), respectively. In this study, we have ignored the changes in the vibration 

modes in the surface. These contributions are usually much smaller than the total energy. 

Therefore, we can substitute the first two Gibbs energies with DFT calculated total energies. 

The last term can be calculated by 

𝐺𝑔𝑎𝑠(𝑁𝐻𝑥) =  𝑛𝐸𝑁𝐻𝑥 + 𝑛𝐺(𝑇,𝑃𝑜) +  𝑛𝑘𝐵𝑇𝑙𝑛(𝑃𝑁𝐻𝑥
𝑃𝑜)]     (5)

Where n is the number of adsorbate NHx; ENHx is the DFT calculated energy of the isolated 

NHx species with reference to N2 and H2;   is the vibrational contribution of the NHx 𝐺(𝑇,𝑃𝑜)

species in the gas phase at different temperatures with reference to N2 and H2 and is calculated 

by VASP/Phonopy; kB is the Boltzmann constant. Thus, for single NH or NH2 adsorption on 

Ru or Co surfaces, the change in the Gibbs free energy is calculated by:

𝛥𝐺(𝑁𝐻) =  𝐸(𝑛𝑁𝐻)
𝑁𝐻/𝑀𝑒𝑡𝑎𝑙 ― 𝐸𝑚𝑒𝑡𝑎𝑙 ―[𝑛 ∗ 0.5 ∗ (𝐸𝑁2 +  𝐸𝐻2) +𝑛 ∗ 0.5 ∗  [𝐺(𝑇,𝑃𝑜)

𝑁2 + 𝐺(𝑇,𝑃𝑜)
𝐻2 ] +  

      𝑛𝑘𝐵𝑇𝑙𝑛(𝑃𝑁𝐻
𝑃𝑜)               (6)

𝛥𝐺(𝑛𝑁𝐻2) =  𝐸(𝑛𝑁𝐻2)
𝑁𝐻2/𝑀𝑒𝑡𝑎𝑙 ― 𝐸𝑚𝑒𝑡𝑎𝑙 ―

      {𝑛 ∗ (0.5 ∗ 𝐸𝑁2 +  𝐸𝐻2) + 𝑛[0.5 ∗ 𝐺(𝑇,𝑃𝑜)
𝑁2 + 𝐺(𝑇,𝑃𝑜)

𝐻2 ] +  𝑛𝑘𝐵𝑇𝑙𝑛(𝑃𝑁𝐻
𝑃𝑜)}               (7)
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For mixed adsorption on Ru or Co surface, the change in the Gibbs free energy is calculated 

by:

𝛥𝐺(𝑛𝑁𝐻,𝑚𝑁𝐻2)
=  𝐸(𝑛𝑁𝐻,𝑚𝑁𝐻2)

𝑁𝐻,𝑁𝐻2/𝑀𝑒𝑡𝑎𝑙 ―  𝐸𝑚𝑒𝑡𝑎𝑙

― {𝑛 ∗ 0.5 ∗ (𝐸𝑁2 +  𝐸𝐻2) + 𝑚 ∗ (0.5 ∗ 𝐸𝑁2 +  𝐸𝐻2) + 𝑛 ∗ 0.5 ∗  [𝐺(𝑇,𝑃𝑜)
𝑁2

+ 𝐺(𝑇,𝑃𝑜)
𝐻2 ] + 𝑚[0.5 ∗ 𝐺(𝑇,𝑃𝑜)

𝑁2 + 𝐺(𝑇,𝑃𝑜)
𝐻2 ] +  𝑛𝑘𝐵𝑇𝑙𝑛(𝑃𝑁𝐻

𝑃𝑜) +  𝑚𝑘𝐵𝑇𝑙𝑛(𝑃𝑁𝐻2
𝑃𝑜

)}       (8)  

Experimentally, the typical ALD deposition temperature is in the range of 350K to 650K for 

metal precursors.4, 13, 38 The plotted Gibbs free energy for typical ALD operating pressure is 

shown in Figure 10. The plotted Gibbs free energy for ultra-high vacuum (UHV) condition can 

be found in Figure S8 of supporting information. 

Figure 10. The plotted Gibbs free energy (∆G) of NHx with respect to operating temperature 

on (a) Ru(001), (b) Co(001), (c) Ru(100), and (d) Co(100) surfaces. The pressure is set to be 

ALD operating condition (P/Po = 1.97×10-6). The inserts show the experimentally reported 

deposition temperatures taken from Ref.4.
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For Ru (001), a surface terminated with high coverage, namely 8/9ML – 1ML NH coverage is 

the most stable in the typical ALD operating temperature range (350K-650K). On the Co(001) 

surface, a surface with a partial coverage of 6/9ML NH dominates over the ALD operating 

temperature range between 425K and 500K and a surface with a partial coverage of 5/9ML NH 

dominates over the ALD operating temperature range between 500K and 650K. A Co(001) 

surface terminated with a mixture of NH and NH2 (6NH and 2NH2) is only favorable at the 

lower temperature range between 350K and 425K. 

Table 4. The preferred surface terminations of Ru and Co (001) and (100) surface as a 

functional of temperature under ALD operating condition

Ru(3×3) Co(3×3)

(001) 1ML NH (350K-550K);

8/9ML NH (550K-650K)

6NH+2NH2 (350K-425K);

6/9ML NH (425K-500K);

5/9ML NH (500K-650K)

(100) 9NH2+9NH (350K-500K);

9NH2+6NH (500K-600K);

6NH2+6NH (600K-650K)

9NH2+9NH (350K-375K);

6NH2+9NH (375K-550K);

6NH2+6NH (550K-650K)

On Ru (100) and Co (100) surfaces the fully covered 9NH and 9NH2 surface termination is 

most stable at low temperature. Upon increasing the temperature, NH (or NH2) is first desorbed 

from surface so that the termination changes to 6NH and 9NH2 (or 9NH and 6NH2), whereby 

both terminations are essentially iso-energetic. Thereafter, NH2 (or NH) desorbs to produce a 

surface terminated with 6NH and 6NH2 on Co and Ru (100) surfaces. The results are 
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summarized in Table 4. Clearly, the nature of the NHx terminated Co and Ru surfaces are 

temperature dependent. This can affect the adsorption strength of the metal precursors (RuCp2 

and CoCp2) and the following Cp ligand desorption process. We can see that the growth and 

thin film quality of Co and Ru will therefore be sensitive to the deposition temperature and a 

higher deposition temperature would result in lower coverages of NH/NH2 for Co which could 

impact on film quality. Thus the use of lower temperature plasma should be beneficial in 

promoting growth of high quality metal films.

4. Conclusions

After the plasma step in ALD, the metal surface will be NHx terminated. Given the complete 

lack of knowledge of this termination, this paper focuses on the determination of the nature 

and stability of the NHx terminated metal surfaces. During the subsequent metal precursor 

reaction, this NHx terminated surface reacts with the metal-Cp precursor through proton 

transfer and ligand elimination by formation of CpH. The three most stable surfaces are (001), 

(101), and (100) and we choose the (001) surface, with the lowest surface energy, and the (100) 

surface, with high reactivity but lower stability to perform the analysis of NHx stability. For 

termination with exclusively NH or NH2, the (001) surface has a preference for NH at the hcp 

site while NH2 prefers the bridge site. On the (100) surface, both NH and NH2 prefer to bind 

on bridge site with channel bridge for NH and surface bridge for NH2. 

When increasing the coverage, on the (001) surface, the saturation coverage on Ru is 1ML NH 

and 0.67ML NH for Co. For NH2 termination, the saturation coverages are 0.67ML on both Co 

and Ru surfaces. The weaker NH-NH repulsion effect on Ru surface is attributed to larger 

surface area compared to the corresponding Co surface. Additionally, NH2 is unstable at high 

coverage by desorbing from metal surface or reacting into NH and NH3. On the (100) surface, 
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the individual saturation coverage of NH on the Ru and Co surfaces are the same, namely up 

to 2 ML for NH. For NH2 termination, the saturation coverages are 1.33ML on Ru and 1ML 

on Co surfaces. 

On (001) surfaces, in a mixed termination mode, we start from the NH pre-covered surface 

model and add NH2. On the (100) surfaces, an NH2 pre-covered surface model is then modified 

by adding NH and NH2. The results are analyzed with thermodynamics by calculating the 

Gibbs energy. Both the UHV condition and standard ALD operating condition are considered 

to elucidate the effect of pressure and temperature on the termination of metal surfaces. We 

find that under literature PE-ALD operating condition, with a temperature range of 350K-

650K, and P/Po = 1.97×10-6, the most stable NHx terminated metal surfaces are 1ML NH on 

Ru(001) (350K-550K), 5/9 ML NH on Co(001) surface (500K-650K) and a mixture of NH and 

NH2 on both Ru(100) and Co(100) surfaces. This work provides new information on the 

stability of NHx terminations of metal surfaces present after nitrogen plasma step in PE-ALD 

and is a starting point for the further investigation of the interaction with the corresponding 

metal precursors. The hydrogen transfer is the key step for metal precursor interaction and the 

nature of NHx termination will be expected to play an important role in the hydrogen transfer 

step. The effect of coverage and composition of surface terminations to the PE-ALD process 

is under investigation. To the best of our knowledge, there is no detailed study addressing this 

question yet. Experimental evidence has confirmed that the existence of N is essential in 

obtaining high-purity Co films.32, 38 In the first half cycle, the precursor chemisorbed on the 

NHx terminated surface and one Cp ring reacts with H atom, followed by the release of HCp. 

In the second half cycle, the Co ligands remaining after precursor dosing are eliminated by the 

NHx radical species from the plasma. The surfaces N atom can be desorbed in the form of either 

NH3 or N2.  To the best of our knowledge, the detailed study on the reaction mechanism is 

entirely lacking and is currently the subject of further study. 

Page 24 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

Acknowledgements

We acknowledge generous support from Science Foundation Ireland (SFI) through the SFI-

NSFC Partnership program, Grant Number 17/NSFC/5279, NITRALD and the support of Prof. 

Zhang and Prof. Lu at Fudan. Computing resources have been generously supported by Science 

Foundation Ireland at Tyndall and through the SFI/HEA-funded Irish Center for High End 

Computing (www.ichec.ie).

Supporting Information for Publication

Calculations

Plotted densities

Configurations

References

1. Elliott, S. D.; Scarel, G.; Wiemer, C.; Fanciulli, M.; Pavia, G., Ozone-based Atomic Layer 

Deposition of Alumina from TMA: Growth, Morphology, and Reaction Mechanism. Chem. Mater. 

2006, 18, 3764-3773.

2. Greenslit, D.; Eisenbraun, E., Characterization of Ultrathin PEALD-Grown RuCo Films for 

Diffusion Barrier and Copper Direct-Plate Applications. ECS Trans. 2011, 35, 17-24.

3. Chakraborty, T.; Eisenbraun, E. T., Microstructure Analysis of Plasma Enhanced Atomic Layer 

Deposition-grown Mixed-phase RuTaN Barrier for Seedless Copper Electrodeposition. J. Vac. Sci. 

Technol. A 2012, 30, 020604 1-5.

4. Miikkulainen, V.; Leskela, M.; Ritala, M.; Puurunen, R. L., Crystallinity of Inorganic Films 

Grown by Atomic Layer Deposition: Overview and General Trends. J. Appl. Phys. 2013, 113, 021301 

1-101.

5. H., V. B.; Grillo, F.; R., V. O. J., Atomic and Molecular Layer Deposition: Off the Beaten 

Track. Chem. Commun. 2017, 53, 45-71.

6. Weber, M.; Julbe, A.; Ayral, A.; Miele, P.; Bechelany, M., Atomic Layer Deposition for 

Membranes: Basics, Challenges, and Opportunities. Chem. Mater. 2018, 30, 7368-7390.

7. George, S. M., Atomic Layer Deposition: An Overview. Chem. Rev. 2009, 110, 111-131.

Page 25 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.ichec.ie


26

8. Bilousov, O. V.; Ren, Y.; Torndahl, T.; Donzel-Gargand, O.; Ericson, T.; Platzer-Bjorkrnan, 

C.; Edoff, M.; Hagglund, C., Atomic Layer Deposition of Cubic and Orthorhombic Phase Tin 

Monosulfide. Chem. Mater. 2017, 29, 2969-2978.

9. Xie, Q.; Jiang, Y. L.; Detavernier, C.; Deduytsche, D.; Van Meirhaeghe, R. L.; Ru, G. P.; Li, 

B. Z.; Qu, X. P., Atomic Layer Deposition of TiO2 from Tetrakis-dimethyl-amido Titanium or Ti 

Isopropoxide Precursors and H2O. J. Appl. Phys. 2007, 102, 083521 1-6.

10. Hu, Z.; Turner, C. H., Atomic Layer Deposition of TiO2 from TiI4 and H2O onto SiO2 Surfaces:  

Ab Initio Calculations of the Initial Reaction Mechanisms. J. Am. Chem. Soc. 2007, 129, 3863-3878.

11. Hu, Z.; Turner, C. H., Initial Surface Reactions of TiO2 Atomic Layer Deposition onto SiO2 

Surfaces: Density Functional Theory Calculations. J. Phys. Chem. B 2006, 110, 8337-8347.

12. Somani, S.; Mukhopadhyay, A.; Musgrave, C., Atomic Layer Deposition of Tantalum Nitride 

Using A Novel Precursor. J. Phys. Chem. C 2011, 115, 11507-11513.

13. Lim, B. S.; Rahtu, A.; Gordon, R. G., Atomic Layer Deposition of Transition Metals. Nat. 

Mater. 2003, 2, 749-54.

14. Lu, J.; Elam, J. W.; Stair, P. C., Synthesis and Stabilization of Supported Metal Catalysts by 

Atomic Layer Deposition. Acc. Chem. Res. 2013, 46, 1806-1815.

15. Mai, L.; Zanders, D.; Subasi, E.; Ciftyurek, E.; Hoppe, C.; Rogalla, D.; Gilbert, W.; Arcos, T. 

L.; Schierbaum, K.; Grundmeier, G.; Bock, C.; Devi, A., Low-Temperature Plasma-Enhanced Atomic 

Layer Deposition of Tin(IV) Oxide from a Functionalized Alkyl Precursor: Fabrication and Evaluation 

of SnO2-Based Thin-Film Transistor Devices. ACS Appl. Mater. Interfaces 2019, 11, 3169-3180.

16. Chen, Z.; Wang, H.; Wang, X.; Chen, P.; Liu, Y.; Zhao, H.; Zhao, Y.; Duan, Y., Low-

temperature Remote Plasma Enhanced Atomic Layer Deposition of ZrO2/zircone Nanolaminate Film 

for Efficient Encapsulation of Flexible Organic Light-emitting Diodes. Sci. Rep. 2017, 7, 40061 1-9.

17. Langereis, E.; Bouman, M.; Keijmel, J.; Heil, S.; Van de Sanden, M.; Kessels, W., Plasma-

Assisted ALD of Al2O3 at Low Temperatures: Reaction Mechanisms and Material Properties. ECS 

Trans. 2008, 16, 247-255.

18. Rai, V. R.; Vandalon, V.; Agarwal, S., Surface Reaction Mechanisms During Ozone and 

Oxygen Plasma Assisted Atomic Layer Deposition of Aluminum Oxide. Langmuir 2010, 26, 13732-

13735.

19. Leick, N.; Verkuijlen, R.; Lamagna, L.; Langereis, E.; Rushworth, S.; Roozeboom, F.; Van de 

Sanden, M.; Kessels, W., Atomic Layer Deposition of Ru from CpRu(CO)2Et Using O2 Gas and O2 

Plasma. J. Vac. Sci. Technol. A 2011, 29, 021016 1-7.

20. Profijt, H. B.; Potts, S. E.; van de Sanden, M. C. M.; Kessels, W. M. M., Plasma-Assisted 

Atomic Layer Deposition: Basics, Opportunities, and Challenges. J. Vac. Sci. Technol. A 2011, 29, 

050801 1-26.

Page 26 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

21. Fomengia, G. N.; Nolan, M.; Elliott, S. D., First Principles Mechanistic Study of Self-limiting 

Oxidative Adsorption of Remote Oxygen Plasma During the Atomic Layer Deposition of Alumina. 

Phys. Chem. Chem. Phys. 2018, 20, 22783-22795.

22. Puurunen, R. L., Surface Chemistry of Atomic Layer Deposition: A Case Study for The 

Trimethylaluminum/water Process. J. Appl. Phys. 2005, 97, 121301 1-52.

23. Sun, F. Q.; Yu, J. C.; Wang, X. C., Construction of Size-Controllable Hierarchical Nanoporous 

TiO2 Ring Arrays and Their Modifications. Chem. Mater. 2006, 18, 3774-3779.

24. Raymand, D.; Van Duin, A. C.; Goddard III, W. A.; Hermansson, K.; Spångberg, D., 

Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxide−Water Interface. J. Phys. 

Chem. C 2011, 115, 8573-8579.

25. Yuzawa, H.; Aoki, M.; Otake, K.; Hattori, T.; Itoh, H.; Yoshida, H., Reaction Mechanism of 

Aromatic Ring Hydroxylation by Water over Platinum-Loaded Titanium Oxide Photocatalyst. J. Phys. 

Chem. C 2012, 116, 25376-25387.

26. Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z., Black Hydroxylated Titanium 

Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Sci. Rep. 2015, 5, 11712 

1-10.

27. Novell-Leruth, G.; Valcarcel, A.; Perez-Ramirez, J.; Ricart, J. M., Ammonia Dehydrogenation 

over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species. J. 

Phys. Chem. C 2007, 111, 860-868.

28. Novell-Leruth, G.; Valcarcel, A.; Clotet, A.; Ricart, J. M.; Perez-Ramirez, J., DFT 

Characterization of Adsorbed NHx Species on Pt(100) and Pt(111) Surfaces. J. Phys. Chem. B 2005, 

109, 18061-18069.

29. Logadottir, A.; Norskov, J. K., Ammonia Synthesis Over a Ru(0001) Surface Studied by 

Density Functional Calculations. J. Catal. 2003, 220, 273-279.

30. Popa, C.; Offermans, W. K.; van Santen, R. A.; Jansen, A. P. J., Ab Initio Density-Functional 

Theory Study of NHx Dehydrogenation and Reverse Reactions on the Rh(111) Surface. Phys. Rev. B 

2006, 74, 155428 1-10.

31. Kim, J. M.; Lee, H. B. R.; Lansalot, C.; Dussarrat, C.; Gatineau, J.; Kim, H., Plasma-Enhanced 

Atomic Layer Deposition of Cobalt Using Cyclopentadienyl Isopropyl Acetamidinato-Cobalt as a 

Precursor. Jpn. J. Appl. Phys. 2010, 49, 05FA10 1-5.

32. Vos, M. F. J.; G., V. S.; Kessels, W. E.; Mackus, A. J. M., Atomic Layer Deposition of Cobalt 

using H2-, N2-, and NH3-based Plasmas: On the Role of the Co-Reactant. J. Phys. Chem. C 2018, 122, 

22519-22529.

33. Lee, H. B. R.; Kim, H., High-quality Cobalt Thin Films by Plasma-Enhanced Atomic Layer 

Deposition. Electrochem. Solid State Lett. 2006, 9, G323-G325.

Page 27 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28

34. Kim, S. K.; Lee, S. Y.; Lee, S. W.; Hwang, G. W.; Hwang, C. S.; Lee, J. W.; Jeong, J., Atomic 

Layer Deposition of Ru Thin Films Using 2,4-(Dimethylpentadienyl)(ethylcyclopentadienyl)Ru by a 

Liquid Injection System. J. Electrochem. Soc. 2007, 154, D95-D101.

35. Klesko, J. P.; Kerrigan, M. M.; Winter, C. H., Low Temperature Thermal Atomic Layer 

Deposition of Cobalt Metal Films. Chem. Mater. 2016, 28, 700-703.

36. Zhu, B.; Ding, Z. J.; Wu, X. H.; Liu, W. J.; Zhang, D. W.; Ding, S. J., Plasma-Enhanced Atomic 

Layer Deposition of Cobalt Films Using Co(EtCp)(2) as a Metal Precursor. Nanoscale Res. Lett. 2019, 

14, 76 1-7.

37. Shimizu, H.; Sakoda, K.; Momose, T.; Koshi, M.; Shimogaki, Y., Hot-wire-assisted Atomic 

Layer Deposition of a High Quality Cobalt Film Using Cobaltocene: Elementary Reaction Analysis on 

NHx Radical Formation. J. Vac. Sci. Technol. A 2012, 30, 01A144 1-7.

38. Yoon, J.; Kim, D.; Cheon, T.; Kim, S. H.; Kim, H., Atomic Layer Deposition of Co Using 

N2/H2 Plasma as a Reactant. J. Electrochem. Soc. 2011, 158, H1179-H1182.

39. Elliott, S. D.; Dey, G.; Maimaiti, Y., Classification of Processes for the Atomic Layer 

Deposition of Metals Based on Mechanistic Information from Density Functional Theory Calculations. 

J. Chem. Phys. 2017, 146, 052822 1-11.

40. Zydor, A.; Elliott, S. D., TiCp*(OMe)3 versus Ti(OMe)4 in Atomic Layer Deposition of TiO2 

with Water—Ab Initio Modelling of Atomic Layer Deposition Surface Reactions. J. Nanosci. 

Nanotechnol. 2011, 11, 8089-8093.

41. Shirazi, M.; Elliott, S. D., Atomistic Kinetic Monte Carlo Study of Atomic Layer Deposition 

Derived from Density Functional Theory. J. Comput. Chem. 2014, 35, 244-259.

42. Henkelman, G.; Uberuaga, B. P.; Jonsson, H., A Climbing Image Nudged Elastic Band Method 

for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901-9904.

43. Phung, Q. M.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A., Atomic Layer Deposition of 

Ruthenium on Ruthenium Surfaces: A Theoretical Study. J. Phys. Chem. C 2015, 119, 6592-6603.

44. Phung, Q. M.; Vancoillie, S.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A., Atomic Layer 

Deposition of Ruthenium on a Titanium Nitride Surface: A Density Functional Theory Study. J. Phys. 

Chem. C 2013, 117, 19442-19453.

45. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to The Projector Augmented-wave 

Method. Phys. Rev. B 1999, 59, 1758-1775.

46. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; 

Fiolhais, C., Atoms, Molecules, Solids, and Surfaces: Applications of The Generalized Gradient 

Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671-6687.

47. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. 

Phys. Rev. Lett. 1996, 77, 3865-3868.

48. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 

13, 5188-5192.

Page 28 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29

49. Zhang, C. J.; Lynch, M.; Hu, P., A Density Functional Theory Study of Stepwise Addition 

Reactions in Ammonia Synthesis on Ru(0001). Surf. Sci. 2002, 496, 221-230.

Table of Content Graphic

Page 29 of 40

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 1. The top and side view of Ru or Co surfaces in three orientations: (001), (101), and (100). The 
adsorption sites on (001) surfaces are highlighted as 1 (fcc), 2 (hcp), 3 (top), and 4 (bridge); The 
adsorption sites on (100) surfaces are highlighted as A, B (top), C, D (hollow), and E, F (bridge). 
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Figure 2. The configurations of the most stable adsorption of NH and NH2 with (a) top view of Ru(001), (b) 
side view of Ru(001), (c) top view of Ru(100), and (d) side view of Ru(100). 
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Figure 3. The configurations of the most stable adsorption of NH and NH2 with (a) top view of Co(001), (b) 
side view of Co(001), (c) top view of Co(100), and (d) side view of Co(100). 
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Figure 4. The plotted partial density of states (PDOS) of (a) NH2-Ru(001), (b) NH-Ru(001), (c) NH2-
Ru(100), and (d) NH-Ru(100) at the most stable adsorption site. 
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Figure 5. The plotted partial density of states (PDOS) of (a) NH2-Co(001), (b) NH-Co(001), (c) NH2-
Co(100), and (d) Co-Ru(100) at the most stable adsorption site. 
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Figure 6. The calculated adsorption energies of NH and NH2 on (a) Ru(001) and Ru(100) surfaces and (b) 
Co(001) and Co(100) surfaces. 
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Figure 7. The calculated differential energy of NH and NH2 on Co and Ru surfaces as a function of coverage. 
(a) (001)-NH terminated, (b) (001)-NH2 terminated, (c) (100)-NH-terminated and (d) (100)-NH2-

terminated. A positive energy means that further addition of NH or NH2 is not favourable and therefore 
under high coverages, NH and NH2 would desorb from surface and NH2 may dissociate into NH or form 

NH3. 
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Figure 8. The configurations of the saturated adsorption of NH and NH2 with (a) top view of Ru(001), (b) 
side view of Ru(001), (c) top view of Ru(100), and (d) side view of Ru(100). 
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Figure 9. The configurations of the saturated adsorption of NH and NH2 with (a) top view of Co(001), (b) 
side view of Co(001), (c) top view of Co(100), and (d) side view of Co(100). 
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Figure 10. The plotted Gibbs free energy (∆G) of NHx with respect to operating temperature on (a) Ru(001), 
(b) Co(001), (c) Ru(100), and (d) Co(100) surfaces. The pressure is set to be ALD operating condition (P/Po 

= 1.97×10-6). The inserts show the experimentally reported deposition temperatures taken from Ref.4. 
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