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Abstract 

The objective of this research was to understand the underlying issues 

leading to the development of undesirable split or crack defects within continental 

semi-hard cheeses made from a seasonally produced milk supply. Such defects result 

in poor aesthetic quality (a key retail requirement) and poor performance under high 

speed slicing for global food service markets, with consequential economic loss. 

Centrifugation (at centrifugal force of 9,000 × g) and incorporation of high heat-

treated (HHT) centrifugate are common milk pre-treatment methods/practices prior 

to continental cheese manufacture. Centrifugation had little effect on the 

composition, texture, volatile profile and ripening characteristics of Maasdam 

cheese, except for significantly lower butyric acid levels. However, incorporating 

HHT centrifugate into the cheese milk significantly increased the levels of moisture 

in non-fat substance and decreased the hardness of the resultant cheeses. This may 

have the potential to influence subsequent eye formation characteristics, and possibly 

influence split or crack development. Primary proteolysis and levels of insoluble 

calcium content are considered to influence the fracture properties of cheese, 

including fracture stress and fracture strain. The present research found that (1) 

inhibition of rennet activity during ripening; (2) reduction of rennet activity during 

ripening; and (3) reduction of ripening temperature decreased the hydrolysis of αS1-

casein by ~95%, ~45%, or ~30%, respectively, after 90 d of ripening. During the 

same ripening period, ~35% of β-casein was hydrolysed for all cheeses, except for 

those ripened at a lower temperature (~17%). The proportion of insoluble calcium as 

a percentage of total calcium decreased significantly from ~75% to ~60% between 1 

and 90 d of ripening. Further results showed that although modulation of αS1-casein 

hydrolysis is an effective means to maintain the strength of the cheese matrix during 
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ripening, maintaining higher levels of intact β-casein or insoluble calcium content 

(or both) within the cheese matrix results in reduced levels of shortness or brittleness 

of cheese texture. For the first time, dynamic microscopy was applied to understand 

the microstructural changes occurring in semi-hard eye-type cheeses during large-

strain tensile deformation. It was observed that pre-existing micro-defects within 

cheese matrices led to the formation of undesirable slits or cracks. Gas behaviour, 

including solubility, is considered one of the critical factors for development of eyes, 

and also slits or cracks within cheese matrices. Therefore, CO2 solubility behaviour 

was studied in casein matrices, representing the protein-water phase of cheese 

matrices. It was observed that the CO2 solubility of casein matrices largely depends 

on the moisture-to-protein ratio, salt-in-moisture content, pH and temperature. 

Overall, this research provides a knowledge base to minimize or avoid development 

of splits or cracks defects and thus improves the quality and consistency of 

continental-type cheeses. 
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1.1 Abstract 

The quality and commercial value of cheese are primarily determined by its 

physico-chemical properties (e.g., melt, stretch, flow, and color), specific sensory 

attributes (e.g., flavor, texture, and mouthfeel), usage characteristics (e.g., 

convenience), and nutritional properties (e.g., nutrient profile, bioavailability, and 

digestibility). Many of these functionalities are determined by cheese structure, 

requiring an appropriate understanding of the relationships between structure and 

functionality to design bespoke functionalities. This review provides an overview of 

a broad range of functional properties of cheese and how they are influenced by the 

structural organization of cheese components and their interactions, as well as how 

they are influenced by environmental factors (e.g., pH and temperature). 
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1.2 Introduction 

Overall, the global consumption of cheese has been increasing continuously 

and is projected to increase by ~13.5% between 2016 and 2025 (OECD/FAO, 2016). 

Simultaneously, consumers/end-users have increasingly been demanding enhanced 

physico-chemical properties, sensory and nutritional quality, and optimal usage 

characteristics of cheese, all at a reasonable cost. This is primarily driven by factors 

such as growing consumer awareness of the role of diet in health and well-being, the 

potential to use structure to influence flavor release and sensory experience, and the 

extensive use of cheese as an ingredient in food retail applications. Such expanding 

consumer demands have triggered the focus of food researchers and cheese 

producers toward the improvement in the quality of existing products or the design 

of new innovative products. 

It is now well recognized that many of the desirable properties of cheese are 

largely determined by its structure. For example, structure plays an important role in 

determining the mechanical, rheological and cooking properties of heated and 

unheated cheese (Lucey, Johnson, & Horne, 2003; Guinee, 2016), eye-formation in 

several types of hard (e.g., Swiss-type or Emmental) and semi-hard (e.g., Maasdam 

type) cheese (Daly, McSweeney, & Sheehan, 2010), and texture perception (Rogers 

et al., 2009). More recently, it has also been reported that food structure plays a key 

role in flavor release (Taylor, 2002) and in the digestion and the absorption of 

nutrients (Parada & Aguilera, 2007; Singh, Ye, & Ferrua, 2015). Apart from 

containing basic nutrients, the nutritional value of food can also be enhanced by 

introducing health-promoting and bioactive compounds, such as polyphenols and 

peptides. In this context, the cheese matrix can potentially be used as a delivery 

vehicle for bioactives and probiotics (Sharp, McMahon, & Broadbent, 2008; 
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Rashidinejad, Birch, & Everett, 2016). Thus, a better understanding of the complex 

interrelationship between structure and functionality, i.e., the so-called structure-

function relationship, is necessary to design of cheese types with specific 

functionalities. However, the full extent of the relationships between structure and 

functionality of cheese is not fully understood. The aim of this review is to provide 

an appropriate knowledge of how cheese structure may be manipulated to control 

and predict the functional properties of cheese. 

1.3 Cheese components and structure 

Caseins, the main structural component of cheese, are present in the form of a 

network in the cheese matrix in which fat globules, water, minerals, bacteria, and 

dissolved solutes such as lactose, lactic acid, soluble salts, and peptides are all 

interspersed. The spatial arrangements of these components and their interactions 

determines the structure of cheese, which is influenced by relative volume fractions 

of each component and their properties (e.g., residual charge on the casein, 

composition of membrane materials of fat globules, and state of minerals, water, and 

fat), cheese manufacturing procedures, maturation conditions, and environmental 

conditions (e.g., pH, temperature, and solvent quality/ionic strength), among other 

factors. 

Like other food types, cheese encompasses a hierarchical structure, with 

scales that span from the molecular to the macroscale (Figure 1.1). At a macroscopic 

level, cheese is the assembly of curd particles (resulting from cutting of the gel in the 

case of brine-salted cheeses), or curd chips or pieces (resulting from milling of curds 

and dry salting, such as in Cheddar and Stilton cheese manufacture) (Guinee, 2016). 

Eyes, slits/cracks, visible crystals and mechanical openness are also macro-structural 
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features of cheese. At microscopic level, cheese is composed of microstructural 

components, such as the casein network, fat globules, and water droplets. At further 

higher levels of magnification (nano or molecular scale), microstructural components 

of cheese are formed from molecules and atoms. Structures at the macro, micro, 

nano and molecular levels of organization all have an important role in various 

properties of cheese. Various techniques to study cheese structure, such as 

microscopy, rheology, magnetic resonance, dynamic light scattering, have been 

reviewed extensively (e.g., Everett & Auty, 2008; El-Bakry & Sheehan, 2014). 

 

 

 

 

Figure 1.1. Characteristic length scales in cheese. HFG = homogenized fat globules, 

CGJ = curd granule junction. 

From a materials science perspective, cheese can be viewed as a 2-phase 

composite material (also called “filled gels” or “gelled emulsions”) containing fat 

globules as a filler in a protein gel matrix (Barden, Osborne, McMahon, & 

Foegeding, 2015). Several researchers used this approach to study the role of milk 

fat and protein network on the mechanical and rheological properties of cheese 

(Rogers, McMahon, Daubert, Berry, & Foegeding, 2010; Barden et al., 2015; 

Thionnet, Havea, Gillies, Lad, & Golding, 2017). 
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1.4 Molecular interactions within the cheese matrix 

Various molecular forces and interactions that act between the cheese 

components are considered important as they can influence the functionality of 

cheese. For example, it is suggested that the localized balance of the attractive and 

repulsive forces between caseins controls the melting of heated cheese (Lucey et al., 

2003). Moreover, the nature and extent of interactions of flavor compounds and 

nutrients with the food matrix can influence their release patterns in the mouth 

during mastication and in the gut during digestion, and this can in turn affect the 

sensorial and nutritional properties of food (Parada et al., 2007; Gierczynski, 

Guichard, & Laboure, 2011). For such reasons, knowledge of molecular interactions 

and forces that act between cheese components is vital. 

Some studies have characterized the interactive forces in milk gels and 

cheese curd using different dissociating agents such as urea, sodium dodecyl sulfate 

(SDS), and ethylenediaminetetraacetic acid (EDTA) (Lefebvre-Cases et al., 1998; 

Gagnaire, Trotel, Graët, & Léonil, 2002; Zamora, Trujillo, Armaforte, Waldron, & 

Kelly, 2012). These dissociating agents are known to disrupt specific types of bond 

or interaction; for example, hydrophobic interactions and hydrogen bonds can be 

disrupted by SDS or urea, respectively, whereas ionic bonds involving calcium salts 

are broken by the chelating effects of EDTA (Zamora et al., 2012). Lefebvre-Cases 

et al. (1998) characterized the interactive forces in rennet- and acid-induced milk 

gels using different dissociating agents, and the results of their study suggested that 

hydrophobic interactions and calcium bonds were the most important forces for the 

stabilization of the structure of rennet milk gels. The contribution of hydrogen bonds 

seemed comparatively less important for the stability of rennet gel structure than the 



Chapter 1 

 

7 
 

aforementioned forces. In acid-induced milk gels, hydrophobic and electrostatic 

interactions and hydrogen bonds have been shown to be important forces, whereas 

the contribution of calcium bonds have been found to be less important, most 

probably due to solubilization of colloidal calcium at low pH (Lefebvre-Cases et al., 

1998). Calcium bonding, electrostatic interactions, and hydrogen bonds (to a lesser 

degree) contribute to the formation and stability of the para-casein matrix (after 

pressing) in Emmental cheese (Gagnaire et al., 2002). The major interaction forces 

responsible for the structural organization of cheese components are defined as 

outlined below. 

1.4.1 Electrostatic interactions 

Electrostatic interactions are important for food components that have a 

permanent electrical charge, such as dipoles or ions (McClements, Decker, Park, & 

Weiss, 2009). Cheese is a complex system, and many components present in the 

cheese matrix are known to have electrical charge. For example, casein contains 

several amino acid residues with ionizable groups along their polypeptide chains, 

including phosphoseryl residues (Horne, 1998). 

Electrostatic interactions between charged species are sensitive to the 

surrounding environment, particularly pH and ionic strength. The electrical charge of 

ionizable groups of food components depends on their pKa values relative to the pH 

of the surrounding aqueous solution (McClements et al., 2009). The aqueous phase 

of the cheese matrix contains several monovalent (e.g., Na
+
) and multivalent ions 

(e.g., Ca
2+

), and their levels determines the ionic strength of the aqueous phase of the 

cheese matrix. The magnitude and range of the electrostatic repulsion between the 

caseins in the cheese matrix may decrease with increasing ionic strength of the 



Literature review 

 

 

8 
 

surrounding aqueous solution due to electrostatic screening effects (McClements et 

al., 2009). 

Calcium-sensitive caseins can cross-link with free calcium ions via calcium 

bridging, which is a type of electrostatic interaction (Dalgleish, 1983). Such 

interactions are considered important for the aggregation of renneted casein micelles 

during coagulation of milk (Dalgleish & Corredig, 2012). The binding of calcium by 

casein is suggested to decrease with increasing ionic strength and with decreasing 

temperature (< 40°C) (Horne & Lucey, 2014). 

1.4.2 Hydrophobic interactions 

Hydrophobic interactions are strong attractive forces between hydrophobic 

side groups of molecules in aqueous solution. The molecular origin of hydrophobic 

interactions is the fact that water molecules can form relatively strong hydrogen 

bonds with other water molecules, but not with non-polar groups (McClements et al., 

2009). Caseins have a significant fraction of non-polar regions along their 

polypeptide chain (Horne, 1998). Thus, it is expected that the hydrophobic 

interactions may play an important role in determining the casein interactions in the 

cheese matrix (Lucey et al., 2003). The strength of hydrophobic interaction tends to 

increase with increasing temperature (McClements et al., 2009). Thus, it is believed 

that these interactions may make a significant contribution to the functionality of 

heated cheese (Lucey et al., 2003). 

1.4.3 Hydrogen bonding 

Hydrogen bonds are simply an interaction between an electronegative atom 

(e.g., O, N, F and Cl) and a hydrogen atom covalently bound to similar 
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electronegative atoms. This is the one type of electrostatic force which tends to 

decrease in strength as the temperature increases (McClements et al., 2009). 

Hydrogen bonding is known to play a major role in hydration of proteins (Petukhov, 

Rychkov, Firsov, & Serrano, 2004). Proteins, including caseins, contain several 

groups, such as carbonyl, amine, amide, and hydroxyl, which are able to interact 

with water through hydrogen bonding. Hydration of casein is considered important 

for the development of desirable texture and cooking properties of some cheese-

types, such as Mozzarella (Guo, Gilmore, & Kindstedt, 1997). Moreover, several 

studies have also suggested that the texture and cooking properties of low-fat cheeses 

can partially be improved by increasing the water-binding capacity of the protein 

matrix through approaches, such as modulation of pH, and varying the level of 

colloidal calcium phosphate (CCP) and sodium chloride (NaCl) of the cheese matrix 

(Paulson, McMahon, & Oberg, 1998; Sheehan & Guinee, 2004; McMahon, Paulson, 

& Oberg, 2005; Johnson, Kapoor, McMahon, McCoy, & Narasimmon, 2009). 

1.4.4 Disulfide bonding 

Disulfide bonds are a covalent bond formed between two thiol groups. This 

bond is considered important for cheese made from high heat-treated milk (e.g., 

Queso Blanco). High heat treatment of cheese milk unfolds heat sensitive whey 

proteins, exposing thiol groups which can form disulfide links with other reactive 

thiol groups of whey protein and casein through classical thiol-disulfide exchange 

reactions (Kethireddipalli & Hill, 2015). This type of reaction is influenced by redox 

potential (Poole, 2015) although there is little published on this with regard to cheese 

matrices. 
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1.5 Functional properties of cheese 

1.5.1 Key properties for use as an ingredient 

Cheese is extensively used as an ingredient in many foods. Two main 

functional requirements of cheese when used as an ingredient are: (1) machinability 

(the ability of cheese to be shredded/diced/cut/sliced); and (2) specific cooking and 

melting properties (Lucey, 2008). Functional requirements of cheese largely depend 

on end-use application. For example, when cheese is used a topping on pizzas and 

lasagna, it needs to melt and stretch in a specific manner, whereas melting is 

undesirable when visual identity and shape of cheese on cooking is required, such as 

for Queso-Blanco and Paneer, although a certain degree of softening is desirable 

(Guinee, 2016). The various functional properties required when cheese is used as 

ingredients have been extensively discussed (Lucey, 2008; Guinee, 2016). 

1.5.2 Texture perception 

Texture is an important factor determining the quality and identity of food, 

including cheese (Lawrence, Creamer, & Gilles, 1987; Foegeding & Drake, 2007). 

For cheese, the main evaluation of texture occurs in the hand (touch/feel/bend) and 

mouth (during mastication). However, in some eye-forming cheese types, such as 

Emmental and Maasdam, visual properties are also important. Proper eye 

development, such as number, size, shape, luster and distribution, is an important 

textural property in those cheese types (Lucey et al., 2003; Daly et al., 2010). 

During consumption, food is subjected to a complex series of oral 

manipulations, including ingestion, size reduction, and mixing with saliva, to form a 

bolus for safe swallowing, collectively termed as oral processing (Foegeding, Çakır, 
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& Koç, 2010). Behavior of food during oral processing, such as breakdown patterns 

and extent of interaction (coating) with the oral surfaces, is thought to play an 

important role in the texture perception, and the structure and chemical composition 

of food can influence their behavior during oral manipulation (van Vliet, van Aken, 

de Jongh, & Hamer, 2009; Foegeding et al., 2010). For example, the desirable 

texture of full-fat Cheddar cheeses compared to low-fat cheeses is considered to be 

partly due to role of fat in the desirable breakdown patterns of cheese during oral 

manipulation (Rogers et al., 2009; Foegeding et al., 2010). Similarly, the desirable 

texture of aged cheese is attributed to the age-related structural changes in the 

protein matrix, resulting in specific breakdown pattern during chewing (Rogers et al., 

2009). Moreover, several studies of emulsion gels have reported that the properties 

of emulsion droplets, extent of droplet-matrix interactions, distribution of emulsion 

droplets, and characteristics of the gel matrix can all influence texture perception 

(Sala, van de Velde, Cohen Stuart, & van Aken, 2007; Liu, Stieger, van der Linden, 

& van de Velde, 2015; Oliver, Berndsen, van Aken, & Scholten, 2015). Thus, a 

fundamental knowledge of how the structure of cheese influences a specific textural 

response could be useful for designing cheese with desired texture profiles. 

1.5.3 Flavor release and perception 

Like texture, flavor (comprising taste and aroma) is also an important 

attribute of cheese. The heterogeneous mixture of several hundred volatile and 

nonvolatile flavor compounds in cheese are the result of complex biochemical 

reactions during maturation, such as proteolysis, lipolysis and glycolysis 

(McSweeney, 2004). During consumption, flavor compounds are released from the 

food matrix and diluted with saliva, which need to be transported to the flavor 

receptors in the mouth and nose for flavor perception to occur (Taylor, 2002). The 
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correct balance and concentration of a wide range of flavor compounds, their release 

profile during oral processing, and the concentration and the rate at which those 

flavor compounds reach the receptors can all influence overall flavor perception 

(Taylor, 2002). 

Food structure appears to play a key role on release of flavor compounds. 

Several studies on pure gels (e.g., protein gels, carrageenan gels), mixed gels (e.g., 

whey protein-polysaccharides), emulsion-filled gels (where emulsion droplets are 

embedded within a gel matrix) or solid lipoproteic colloid foods have shown that the 

gel structure affects volatiles and tastant release profile (Stieger & van de Velde, 

2013; Kuo & Lee, 2014); in general, weaker gel textures and more porous structures 

had higher flavor compound release during mastication. For example, Kuo et al. 

(2014) reported that the rate of sodium release increased with increasing porosity and 

pore size of solid lipoproteic colloid foods. Proteolysis weakens the structure of 

protein network due to breakdown of the protein network; thus, it may be assumed 

that proteolysis facilitates the release of sapid compounds during mastication (Sousa, 

Ardö, & McSweeney, 2001). 

Other factors, such as properties of the flavor compounds (e.g., volatility, 

solubility and affinity towards the food matrix), and the subject’s oral processing 

behavior (e.g., chewing, saliva flow rate, and air flow rate through the mouth and 

nose), can also influence the release of flavor compounds from the food matrix 

during oral manipulation (Taylor, 2002; Gierczynski et al., 2011). In addition, it is 

now well accepted that overall flavor perception can also be influenced by perceptual 

interactions between various sensory modalities (e.g., aroma, taste and texture). For 

example, Visschers et al. (2006) reported that the intensity of aroma perceived by 
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subjects decreased with increasing firmness of the food. In another study, the odor of 

Comté cheese enhanced the perception of saltiness in model cheeses (Lawrence et 

al., 2011). 

Based on the above considerations, it is clear that the flavor profile of 

food/cheese can potentially be enhanced by modifying food structure. This approach 

could be manipulated to facilitate reduction of sodium and saturated fat without 

significantly altering flavor attributes or to ameliorate flavor defects in reduced-fat 

and reduced-salt cheeses. Such approaches merit further research. 

1.5.4 Nutritional properties 

Cheese, a nutrient-dense dairy product, is a good source of proteins, vitamins, 

and minerals, particularly calcium, and phosphorous. However, the traditional 

method for evaluation of the nutritional quality of food, i.e., based on its 

composition, has recently been criticized since the method often neglects the effect 

of food matrix (structure) on nutrient release and absorption (Parada et al., 2007; 

Singh et al., 2015). For example, in an in vivo study using six mini-pigs, Barbé et al. 

(2013) reported that a renneted-gel matrix slowed down the rate of digestion of 

protein and absorption of amino acids as compared to liquid milk, probably due to 

lesser accessibility for digestive enzymes. In another study, Lamothe, Corbeil, 

Turgeon, and Britten (2012) studied the digestion pattern of Cheddar and Mozzarella 

cheeses using an in vitro stomach model. The results of their study suggested that the 

degradation of protein and the kinetics of fatty acid release are closely associated 

with the physical characteristics of the cheese matrix; cheeses that exhibited greater 

cohesiveness and elasticity were more slowly degraded during digestion and gave 

slower rates of fatty acid release. More recently, some studies have reported that 
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calcium in cheese can influence the free fatty acid bioaccessibility by producing 

insoluble calcium soaps with long-chain fatty acids at intestinal pH conditions 

(Ayala-Bribiesca, Turgeon, & Britten, 2017). A better understanding of the role of 

cheese structure on digestion and absorption of nutrients within the gastrointestinal 

environment is a key to design cheese with enhanced nutritional quality. This area 

has been reviewed in detail recently by Singh et al. (2015). 

1.5.5 Delivery of bioactives and probiotics 

Several studies have reported the potential for using the cheese matrix as a 

delivery vehicle for bioactives, such as, vitamins (Madziva, Kailasapathy, & Phillips, 

2006), minerals, and polyphenols (Rashidinejad et al., 2016). For example, 

Rashidinejad et al. (2016) successfully used full-fat hard cheese as a delivery vehicle 

for liposomal nanoencapsulated green tea catechins. Moreover, the cheese matrix can 

also serve as a vehicle for probiotic delivery (Sharp et al., 2008). High buffering 

capacity and the dense protein network of cheese are thought to protect probiotic 

bacteria against the harsh acid environment in the stomach (Gomes da Cruz, Alonso 

Buriti, Batista de Souza, Fonseca Faria, & Isay Saad, 2009), making cheese a 

potentially suitable carrier for probiotics. 

However, it should be noted that many bioactives have an undesirable taste 

and odor, such as, metallic taste of mineral salts, bitter taste of peptides, and fishy 

taste and odor of marine oils rich in omega-3 fatty acids (Augustin & Sanguansri, 

2008), which can alter the sensory properties of cheese. Moreover, the metabolites 

from high numbers of viable and metabolically active bacterial cells can also alter 

the sensory attributes of cheese. Therefore, these details need consideration when 

using cheese as a delivery vehicle for bioactive compounds and probiotics. 



Chapter 1 

 

15 
 

1.6 Role of structural elements and their interactions on functional properties of 

cheese 

The composition and the structural organization of cheese determine its 

functionality. In this section, we therefore focus on how the properties and the 

structural organization of the different phases of cheese, and the interactions between 

them influence cheese functionality. For the sake of simplicity, we have divided 

cheese structure into four phases: (1) protein phase, (2) fat phase, (3) aqueous phase, 

and (4) gas phase, particularly carbon dioxide (CO2). 

1.6.1 Protein phase 

1.6.1.1 Formation and rearrangement of protein network 

Formation of a protein network is a crucial step in cheese manufacture. The 

destabilization of casein micelles is one of the first steps in the manufacture of 

cheese. The mechanisms of destabilization of casein micelles by different means 

have been discussed extensively elsewhere (Dalgleish et al., 2012). The destabilized 

casein micelles aggregate into chain and clusters, leading to formation of a three-

dimensional gel. 

Several studies have reported that the factors, such as, concentration of casein 

(Karlsson, Ipsen, & Ardö, 2007), properties of casein micelle (e.g., casein micelle 

size) (Logan et al., 2014), and coagulation conditions (e.g., pH, temperature, and 

concentration of rennet) (Wium, Pedersen, & Qvist, 2003; Ong, Dagastine, Auty, 

Kentish, & Gras, 2011a; Ong, Dagastine, Kentish, & Gras, 2012), can all influence 

the coagulation process. This may influence the arrangement of casein into protein 

matrix and also the microstructure and the quality of the final cheese. For example, 
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milk renneted at lower pH (pH 6.1) gave gels with more compact protein network 

than in gels renneted at higher pH (pH > 6.3) (Ong et al., 2012). Moreover, the 

texture of resulted Cheddar cheese was different, i.e., cheese made using milk 

renneted at lower pH (pH 6.1) had lower chewiness, gumminess, cohesiveness and 

springiness than cheese made using milk renneted at higher pH (pH 6.7 or 6.5). 

Increased solubilization of CCP, accelerated rennet activity and reduced charge 

repulsion between micelles at a lower milk pH are most likely to alter the rate and 

extent of aggregation, possibly leading to different microstructures of gels and 

cheese curds (Ong et al., 2012). In other studies, the coarseness of the protein 

network of the gel or cheese increased with increasing coagulation temperature 

(Wium et al., 2003; Ong et al., 2011a). This is probably due to enhancement of the 

rearrangement of protein network and increasing strength of hydrophobic 

interactions at higher coagulation temperatures. Moreover, the calcium-binding by 

para-casein is suggested to increase with increasing temperature within the normal 

milk-coagulation temperature regime, which may influence the aggregation kinetics 

of fully renneted casein micelles (Dalgleish, 1983; Horne & Lucey, 2014). This 

suggests that the functionality of the final cheese can be modified by optimization or 

modulation of initial cheese-making conditions. Thus, the influence of initial cheese-

making conditions on the final properties of cheese should not be underestimated. 

Rennet-induced gels are inherently unstable and likely to undergo 

intraparticle, interparticle and interstrand rearrangements (Mellema, Walstra, Van 

Opheusden, & Van Vliet, 2002). An ultimate result of such rearrangements is 

syneresis (expulsion of whey) (Mellema et al., 2002). The rate and extent of 

syneresis is promoted by various cheese-making processes, such as, cutting, stirring, 

scalding and pressing (Dejmek & Walstra, 2004). Syneresis is considered as an 
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essential step during cheese manufacture since it affects the composition and texture 

of final cheese, as reviewed extensively by Dejmek et al. (2004). However, in some 

cheese-types, such as Quark (also called Quarg) and cottage cheese, syneresis can 

also occur in the finished product during storage, termed wheying-off, which is 

generally considered as undesirable (Guinee, 2016). 

To date, there is significant knowledge on how milk composition and 

renneting conditions affect the gel structure. However, the link between gel structure 

and macroscopic behavior of the gel, such as, syneresis and water-holding, is not yet 

fully understood. Structural parameters, such as, dimensions of protein strands, 

network pore size, and volume fraction of the pores and protein network can be 

characterized at different structural levels by using different microscopic techniques 

(Langton & Hermansson, 1996; Ong, Dagastine, Kentish, & Gras, 2011b). Such 

structural information is relevant in understanding the effects of milk composition 

and gelation conditions on the macroscopic behavior of gels, such as, syneresis and 

water-holding properties of gel. 

1.6.1.2 Casein-mineral interactions 

In cheese, significant levels of minerals are associated with the protein 

network (Lucey & Fox, 1993). Calcium (Ca) and phosphate (PO4) are the two most 

important minerals found in cheese, and are present in both soluble and in colloidal 

form. However, it is well recognized that the calcium and phosphate associated with 

the casein are an important structural unit in cheese. The level of calcium associated 

with casein (micellar calcium) varies widely between cheese types, ranging from less 

than 5 mg/g
 
protein in Feta and Cottage cheese to ~ 24 mg/g protein in Gouda and 

Emmental cheese (Remillard & Britten, 2011). 
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Modulation of levels of colloidal calcium in the cheese matrix can alter the 

texture and cooking properties of cheese. For example, decreased levels of colloidal 

calcium is associated with the softening of cheese texture (at least in Cheddar; 

O'Mahony, Lucey, and McSweeney, 2005) and increased melt and flow properties 

(O'Mahony, McSweeney, & Lucey, 2006; Choi, Horne, Johnson, & Lucey, 2008), 

attributed to the reduction in calcium-induced casein-casein interactions (Lucey et 

al., 2003). This mechanism is supported by the studies of Pastorino, Hansen, and 

McMahon (2003a) and McMahon et al. (2005), who observed a more homogenous 

microstructure in cheeses with low levels of calcium than those with high levels of 

calcium, when observed using scanning electron microscopy (SEM); this indicated 

the proteins in the former were less aggregated than in the latter cheeses. 

Micellar calcium levels in cheese are considered important in conferring an 

elastic texture to cheese (Lucey et al., 1993), which is important in the case of eye-

forming cheese types, such as, Emmental and Gouda, to accommodate gas produced 

during warm-room ripening for smooth eye formation (Daly et al., 2010). Moreover, 

an elastic texture is also important for sliceability of cheese without fracturing or 

crumbling or sticking to cutting devices (Guinee, 2016). 

It has also been reported that increased hardness due to increase in micellar 

calcium levels slowed down the disintegration during in vitro digestion, which in 

turn can affect nutrient bioaccessibility (Ayala-Bribiesca, Lussier, Chabot, Turgeon, 

& Britten, 2016). 
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1.6.1.3 Age-related changes in the protein matrix 

During maturation, the structure of the protein network changes due to 

complex physical and biochemical changes in the cheese matrix, such as, proteolysis 

by various proteolytic agents, demineralization of casein, and hydration of the casein 

networks (at least in Mozzarella) as reviewed by Guinee (2016). 

Recently, fermentation-produced camel chymosin has received attention 

because of its much higher ratio of milk clotting to general proteolytic activity than 

bovine chymosin (Kappeler et al., 2006). Cheddar cheeses made using recombinant 

camel chymosin were generally found to be harder with less bitter and brothy 

flavors, and with lower levels of proteolysis than cheeses made from bovine 

chymosin or microbial rennet (Hannilase) (Bansal et al., 2009; Soodam, Ong, 

Powell, Kentish, & Gras, 2015). Moynihan et al. (2014) suggested the use of 

recombinant camel chymosin to extend the techno-functional shelf-life performance 

of low-moisture part skim Mozzarella since its baking properties, such as, blister 

quantity, strand thickness, hardness, and chewiness, on baked pizzas were 

maintained for a longer time during storage than in cheeses made with bovine calf 

chymosin. Apart from residual coagulants, indigenous milk enzymes and enzymes 

produced by starter and non-starter bacteria also contribute to the proteolysis of 

cheese, particularly in high-cooked cheese varieties in which the residual chymosin 

activity is very low, most probably due to heat-denaturation of chymosin (Sousa et 

al., 2001; Sheehan, Oliveira, Kelly, & McSweeney, 2007). Plasmin is considered the 

most important indigenous milk proteolytic enzyme, and its activity in high cook 

cheese varieties (e.g., Emmental and grana-type cheeses) is comparatively higher 

than those in low-cook cheese varieties, (e.g., Cheddar), most probably due to 

thermal inactivation of inhibitors of both plasminogen activators and plasmin 
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(Sheehan, 2013). Plasmin has an optimum pH of ~ 7.5 and thus has a major 

contribution in the ripening of cheese types with high pH (~7), such as, mold-ripened 

(e.g., Camembert) and smear-ripened (e.g., Tilsit) cheese varieties (McSweeney, 

2004; Sheehan, 2013). The role of plasmin and other indigenous milk enzymes in 

casein hydrolysis and their contribution to the quality of cheese has been extensively 

reviewed (Sousa et al., 2001; Kelly & McSweeney, 2003; McSweeney, 2004; Kelly, 

O’Flaherty, & Fox, 2006). 

Varying degree of hydrolysis of casein in different cheese types have been 

reported (Table 1.1). The rate and extent of casein hydrolysis is influenced by 

factors, such as, cheese type, ripening temperature, level and types of coagulant and 

cheese compositions (e.g., moisture in non-fat substance, MNFS) (Table 1.1). αs1-

Casein has been considered to be the principal structural element in several cheese 

varieties, such as, Cheddar and Emmental (Lawrence et al., 1987; Gagnaire et al., 

2002), with the hydrolysis of αs1-casein thus being associated with a weakening of 

the protein network (Creamer & Olson, 1982). However, more recent studies have 

shown that softening of cheese in the early stages of ripening is primarily due to 

solubilization of CCP (O'Mahony et al., 2005). 
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Table 1.1. Extent of hydrolysis of casein in different cheese varieties 

Cheese type 
Level of casein 

hydrolysis 
Age Coagulant type 

% 

MNFS
4
 

% S/M
4
 Methods References 

Cheddar 
48.8%, αs1-CN

1
 

16.8%, β-CN
1
 

45 d at 7°C 
single strength 

calf rennet extract (0.15 mL/kg milk) 
55 3.75 urea-PAGE Bogenrief et al. (1995) 

Cheddar 
44.7%, αs1-CN

1
 

59.8%, β-CN
1
 

45 d at 7°C Cryphonectria parasitica (0.051 mL/kg milk) 55.7 3.69 urea-PAGE Bogenrief et al. (1995) 

Cheddar 
~80-85%, αs1-CN

1
 

~10%, β-CN
1
 

90 d at 8°C chymosin (0.3 mL/L milk) 57 2.85 urea-PAGE 
O'Mahony et al. 

(2005) 

Cheddar ~78%, αs1-CN
1
 180 d at 8°C 

fermentation-produced calf chymosin 

(0.3 mL/L milk) 
56 3.3 urea-PAGE Bansal et al. (2009) 

Cheddar ~50%, αs1-CN
1
 180 d at 8°C 

fermentation-produced camel chymosin 

(0.035 mL/L milk) 
56 3.3 urea-PAGE Bansal et al. (2009) 

Part-skim Mozzarella ~50-80%, α-CN
1
 28 d at 4°C 

single strength 

calf rennet extract (0.42 mL/L milk) 
64-66 ND

4
 SDS-PAGE

4
 

Fife, McMahon, and 

Oberg (1996) 

Mozzarella (direct 

acidification) 

~55%, αs1-CN
2
 

~15%, β-CN
3
 

15 d at 5°C 
double-strength rennet, chymosin (0.025 mL/kg 

milk) 
66 2.5 

capillary 

electrophoresis 

Dave, McMahon, 

Oberg, and Broadbent 

(2003) 

Mozzarella (direct 

acidification) 

~90%, αs1-CN
2
 

~50%, β-CN
3
 

15 d at 5°C 
double-strength rennet, chymosin (0.1 mL/kg 

milk) 
66 2.5 

capillary 

electrophoresis 
Dave et al. (2003) 

Swiss cheese 
~75-80%, αs1-CN 

~75-80%, β-CN 

60 d (7d at 4°C, 21 d 

at 21°C, and 32 d at 

4°C) 

Cryphonectria parasitica (0.05 mL/kg milk) 55 ND
4
 

capillary 

electrophoresis 

White, Broadbent, 

Oberg, and McMahon 

(2003) 

Emmental 
~50%, αs1-CN 

~40%, β-CN 

40 d (20d at 12°C, 

and 20 d at 24°C) 
calf rennet (0.3 mL/kg milk) 54 ND

4
 urea-PAGE 

Sadat-Mekmene et al. 

(2013) 
1
Expressed as % levels at 1d of ripening 

2
Initial (100%) intact αs1-CN level is based on the peak area of day-1 αs1-CN plus the peak area of day-1 αs1-CN (f24-199) times 1.1314 (to account for the loss of 23 of the 198 peptide bonds in 

αS1-CN) 
3
Initial (100%) intact β-CN level is based on the peak area of β-CN at day 1 

4
ND = not determined; 

4
MNFS = Moisture in non-fat substance; 

4
S/M = salt-to-moisture ratio; 

4
SDS-PAGE = sodium dodecyl sulfate polyacrylamide gel electrophoresis 



Literature review 

 

 

22 
 

Some studies indicated that the specific hydrolysis patterns of casein and the 

resulting peptide profiles can influence the melting and stretching properties of 

cheese. For example, Bogenrief and Olson (1995) observe that a degree of melt of 

Cheddar cheese was more closely related to the extent of β-casein hydrolysis than 

the hydrolysis of αs1-casein. In another study, Emmental cheeses made with 

Lactobacillus helveticus as a starter culture exhibited greater stretchability (2.5 times 

higher) than those with Lactobacillus delbrueckii (Richoux, Aubert, Roset, & 

Kerjean, 2009). Moreover, the stretchability of cheese was strongly correlated with 

the proportion of hydrophobic peptides in the pH 4.6-soluble nitrogen fraction. This 

finding is further supported by the study of Sadat-Mekmene et al. (2013), who also 

observed high stretchability in Swiss-type cheese made with two different strains of 

Lactobacillus helveticus, i.e., ITGLH77 and ITGLH1. Moreover, the stretchability 

was correlated with hydrophobic peptides, regardless of casein origin (i.e., whether 

αs1-CN, αs2-CN or β-CN), and with a lower degree of proteolysis. These hydrophobic 

peptides may interact with the protein matrix or with other large peptides via 

hydrophobic forces, possibly forming fibers in the cheese matrix (Richoux et al., 

2009). 

1.6.2 Fat phase  

During cheese manufacture, milk fat globules are entrapped within the 

protein gel network, and processes, such as, scalding, cheddaring, hot water 

stretching and pressing, can cause aggregation, coalescence and disruption of the fat 

globules. In the cheese matrix, fat globules can exist as intact (spherical fat globules 

covered with native membrane materials), aggregated (clumps of circular fat 

globules), coalesced (spherical but larger than typical milk fat globules), elongated 
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(especially in pasta-filata cheese-types), or even non-globular forms (Michalski et 

al., 2007; Rogers et al., 2010; Ong et al., 2011b) (Figure 1.2). The microstructure of 

fat globules can influence the physical properties of cheese. For example, although 

Everett and Olson (2003) did not find a correlation between fat-globule-circularity 

and free-oil formation in Cheddar cheese, fat globule size (Feret’s diameter) in 

Mozzarella cheese has been positively correlated with meltability and free-oil in a 

study by Ma, James, Zhang, and Emanuelsson-Patterson (2013). 

Several factors, such as, the fatty acid compositions, native milk fat globule 

(NMFG) size, the level of fat, and the properties of fat globule membrane materials 

can all influence various properties of cheese, such as, texture, opacity, and 

rheological and cooking properties of cheese. 

1.6.2.1 Fatty acid composition 

The fatty acid composition of milk fat (which is influenced by factors, such 

as, stage of lactation, breed of cow, genetics, and diet composition; Månsson, 2008) 

can alter the rheological and textural properties of cheese. Palmitic acid (C16:0) and 

oleic acid (C18:1) are the major saturated and unsaturated fatty acids in milk that 

have high and low melting points, respectively (Coppa et al., 2011); a higher ratio of 

C18:1 to C16:0 is known to produce more creamy and less firm cheese (Coppa et al., 

2011; Bocquel et al., 2016). Bocquel et al. (2016) observed ~ 30% decreases in 

hardness of Raclette cheese when the ratio of C18:1 to C16:0 in cheese milk 

increased from 0.8 to 1.0. In the case of Raclette cheese, the increased hardness 

increases the risk of cracks forming, which significantly affects the quality of cheese 

(Bocquel et al., 2016). The impact of fatty acid composition on the “mouthfeel” of 

cheese is not yet fully understood. However, it may be assumed that the complex 
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crystallization behavior due to fatty acid composition can alter the in-mouth 

coalescence of fat globules during oral processing, which can in turn affect the fat-

related sensory perception. For example, high solid fat content in emulsion droplets 

enhances the coalescence of emulsion droplets and reduces friction during oral 

processing of emulsion-filled gels (Liu et al., 2015).  

1.6.2.2 Native milk fat globule size 

The size of NMFG ranges from < 0.2 to > 15 µm, with an average diameter 

of ~ 4 µm (Huppertz & Kelly, 2006). Studies have shown that the cheese 

manufactured from milk with different fat globule size differ compositionally and 

texturally. For example, Camembert and Emmental cheese produced from milk with 

small fat globules (SFG, ~ 3 µm), separated using microfiltration, had higher 

moisture content, softer texture, and underwent greater proteolysis during ripening 

than cheese made from milk with large fat globules (LFG, ~ 6 µm) (Michalski et al., 

2003; Michalski et al., 2004). More recently, Logan et al. (2017) reported that the 

Cheddar cheese made from milk with SFG (~ 2.7 µm) was less firm at the early 

stages of ripening, and was less cohesive, less chewy and less springy throughout 

maturation than cheese made from milk with LFG (~ 5 µm). However, the exact 

effect of NMFG size on cheese properties was not determined in these studies since 

the effect of NMFG size is confounded with the cheese moisture level. 

In another study, Michalski et al. (2007) made Emmental cheeses from milk 

with SFG and control milk, and adapted the process to obtain similar moisture 

content. The authors found that Emmental cheeses with SFG exhibited higher 

stretchability and elasticity, and improved sensory characteristics compared with 

control cheeses, despite the moisture content being similar for both cheeses. This 
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may be attributed to the impact of NMFG size on microstructure of cheese. 

Emmental (Michalski et al., 2007) and Cheddar (Logan et al., 2017) cheeses made 

from SFG appeared less aggregated and less coalesced than control cheeses or 

cheeses made from LFG, when observed using confocal laser scanning microscopy 

(CLSM). Moreover, more intact fat globules covered with phospholipids were 

observed in Cheddar cheeses from SFG than those from LFG when observed using 

CLSM (Logan et al., 2017). A recent study of an emulsion-filled gel system has 

reported that the mechanical properties of emulsion gels were influenced by the 

magnitude of droplet clustering or aggregation. Droplet clustering or aggregation 

enhanced the stiffness of emulsion-filled gels (Oliver et al., 2015). 

Moreover, the fat globule size can alter the casein strand formation during 

rennet-induced coagulation of milk; this could be another reason for observed 

differences in the properties between the cheeses made from milk with small and 

large fat globules. Depending on the size of NMFG and the pore size of the protein 

network, the NMFG can act as an “inert-filler”, “structure-breaker” (Michalski, 

Cariou, Michel, & Garnier, 2002) or has even been suggested as being held weakly 

within the protein matrix (Everett & Olson, 2000; Logan et al., 2015). 
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Figure 1.2. Column A shows confocal laser scanning microscopy images (100 μm × 

100 μm) of Cheddar cheese (age: 12 wk) at 3 different fat levels (8.5%, 20.3% and 

33.3%). Column B shows a schematic representation of Cheddar cheese 

microstructure, with intact fat globules, aggregated fat globules, coalesced fat 

globules, and nonglobular fats. The dark and gray areas represent fat globules and 

protein network within the cheese matrix, respectively. Adapted from Rogers et al. 

(2010) with permission. 
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1.6.2.3 Level of fat 

A reduction in levels of fat without a proportionate increase in the levels of 

moisture will increase the concentration of casein in the protein matrix, leading to a 

compact protein matrix and a lower degree of fat coalescence (at least in Cheddar) 

(Guinee, Auty, & Fenelon, 2000; Rogers et al., 2010) (Figure 1.2). Such changes on 

the cheese structure may have consequences for texture, opacity, and rheological and 

cooking properties of cheese (Guinee et al., 2000; Johnson et al., 2009; Rogers et al., 

2009; Rogers et al., 2010). The impact of fat reduction on texture, flavor, cooking 

properties and color of cheese has been reviewed by Johnson et al. (2009). 

To better understand the role of milk fat content on the mechanical and 

rheological properties of cheese, and to simplify the complex cheese system, model 

filler particles, such as, Sephadex beads (Barden et al., 2015) or glass beads 

(Thionnet et al., 2017) have been used instead of milk fat in some studies. These 

studies suggested that the mechanical properties of cheese depend on the rheological 

properties of both the gel matrix and filler particle and on the volume within the 

cheese occupied by the filler particles (Barden et al., 2015; Thionnet et al., 2017). 

This knowledge may be useful in developing the replacement of milk fat in low-fat 

cheeses with other fat-like components, such as, hydrocolloids (Thionnet et al., 

2017). 

1.6.2.4 Interactions between fat globules and protein matrix 

The interactions between milk fat globules and the protein matrix in cheese 

largely depend on the composition of fat globule membrane materials. Although a 

subject of debate (Everett et al., 2008), it is generally accepted that the native milk 

fat globule membrane, which is composed mainly of specific proteins and 
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phospholipids, does not chemically interact with the surrounding protein matrix 

(Michalski et al., 2002). 

The nature and extent of interactions between fat globules and protein 

network can be controlled by modifying the surface properties of fat globules. Such 

modulation of fat-protein interactions can alter the cheese structure, which in turn 

can affect the mechanical, rheological, and sensorial properties of cheese. For 

example, Everett et al. (2003) compared the microstructure and rheological 

properties of Cheddar cheese manufactured from recombined milk containing fat 

globules coated with casein or whey proteins. The microstructure of fat globules 

appeared elongated and clustered in cheeses made from milk with fat globules coated 

with αs2-casein (a relatively poor emulsifier) compared to other experimental cheeses 

in which fat globules were coated with other proteins. Moreover, the former cheeses 

fractured at a lower strain and with a lower stress than the other experimental 

cheeses. 

The impact of interactions between fat globules and protein matrix on texture 

perception of cheese is not yet fully understood. However, several studies on 

emulsion-filled gel systems reported a significant impact of filler-matrix interactions 

on the texture perception. Emulsion-filled gels are prepared by embedding emulsion 

droplets into a gel matrix, and are a representative model food system for a broad 

variety of food products, including cheese (Sala et al., 2007). Depending on the 

properties of the emulsifiers on the surface of emulsion droplets, emulsion droplets 

can either be bound to the gel-matrix (called bound filler) or not (called unbound 

filler) (Sala et al., 2007). Unbound fat has been found to be related to the 

enhancement of fat-related sensory perception rather than bound fat droplets in 
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emulsion-filled gels (Sala et al., 2007; Liu et al., 2015). The unbound droplets 

underwent more coalescence than bound droplets during oral manipulation, leading 

to lower friction and enhancement of fat-related sensory perceptions (Liu et al., 

2015). 

1.6.3 Aqueous/serum phase  

1.6.3.1 Water 

Water in cheese can be broadly classified as bound or bulk water. Bound 

water is strongly associated with protein and other components of the cheese matrix, 

and this water is not available as a solvent, whereas bulk water is loosely associated 

within the protein matrix, and retains a large solvent capacity and is freezable at 

−40°C (McMahon, Fife, & Oberg, 1999). Bulk water may be either present within 

the channels surrounding the fat (free water) or entrapped within the protein matrix 

(entrapped water). The distribution and state of water in cheese depends on factors, 

such as, cheese-type and age. In most cheese varieties, most of the water is present 

within the protein matrix. However, in young Mozzarella cheese, a significant 

amount of water is present in the fat-serum channel. During aging, this water is 

gradually absorbed into the protein matrix, which has been confirmed by studies 

undertaken using nuclear magnetic resonance technique (Kuo, Gunasekaran, 

Johnson, & Chen, 2001; Smith, Vogt, Seymour, Carr, & Codd, 2017). Moreover, 

during maturation, hydrolysis of each peptide bond releases two new charged groups 

(NH3
+
/COO

-
) which can bind the available free water and thus can alter the state of 

water in cheese (Creamer et al., 1982). This might be a possible reason for a slight 

decrease in water activity (aw) in Cheddar cheese during ripening, from a mean of ~ 

0.965 at 1 d to ~ 0.956 at 270 d (Hickey, Guinee, Hou, & Wilkinson, 2013). 
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Cheese generally becomes softer as the levels of moisture increase. Two 

main reasons have been reported for the texture softening effect of moisture, i.e., (1) 

water in the cheese matrix plays the role of a plasticizer (low-viscosity lubricant) 

(Marshall, 1990), and (2) increasing the levels of moisture results in a corresponding 

decrease in the levels of casein, which is the principal structuring component 

(McMahon et al., 2005). However, the impact of water on melt properties of cheese 

is rather complex. Increasing total moisture content of cheese does not necessarily 

increase the meltability of cheese (Pastorino, Ricks, Hansen, & McMahon, 2003c; 

McMahon et al., 2005). Instead, melt properties of cheese are reported to be more 

related to casein-water interactions (which are largely influenced by pH, ionic 

strength and the levels of CCP) than total moisture content (McMahon et al., 1999). 

1.6.3.2 Components of the aqueous/serum phase 

The components present in the aqueous phase, such as nitrogen fractions 

(whey proteins, enzymes, peptides or free amino acids), minerals, carbohydrates 

(lactose, galactose and glucose) and organic acids, and their levels influence the 

environment, mainly pH, aw and ionic-strength, of the cheese matrix (Salaün, 

Mietton, & Gaucheron, 2005; Hickey et al., 2013). This can in turn affect the 

structure of the protein phase in cheese and thus on the texture, rheological and 

cooking properties. Moreover, the correct balance and concentration of components 

of the serum phase can influence the flavor profile of cheese. Components, such as 

hydrophobic peptides, lactose, lactate, and free amino acids, have been found to be 

positively associated with bitter, sweet, sour and umami flavor intensities, 

respectively (Møller, Rattray, Bredie, Høier, & Ardö, 2013). 
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The level of ions and their valance determines the ionic strength of serum 

phase of the cheese matrix, which can alter protein interactions. Salt (NaCl) has a 

major contribution to the ionic strength of the cheese matrix, since a varying amount 

of salt, ranging from ~ 0.5% (w/w) to 6% (w/w), is added in cheese, mainly for 

flavor and preservation (Guinee, 2004). Addition of salt up to certain concentrations 

can promote protein-water interactions, probably due to a “salting-in” effect, leading 

to hydration and swelling of the casein matrix (Guinee, 2004). Several studies have 

elucidated the role of salt in hydration and solubilization of casein. Guo et al. (1997) 

observed higher levels of intact casein in the serum phase obtained from 

centrifugation (~12500 × g for 75 min at 25°C) of brine-salted Mozzarella cheese 

than in unsalted cheese. Pastorino, Hansen, and McMahon (2003b) observed a more 

homogeneous protein matrix with less serum pockets in Munster cheese injected 

with salt than cheese without salt injection, as observed by SEM. Everett, Guinee, 

and Johnson (2014) reported an increase in NaCl-soluble proteins with increasing 

concentration of salt solution up to 6% (w/w) when unsalted Cheddar curd was 

immersed in varying brine concentrations (0 - 25%, w/w). However, very high salt 

concentrations can promote protein-protein interactions, probably due to a “salting-

out” effect, leading to protein aggregation and contraction of the cheese matrix. 

Salt in the cheese matrix not only contributes to the saltiness of cheese, but 

can also enhance the flavor intensity of sapid compounds; moreover, salt can 

suppress the unwanted flavor, e.g., bitterness (Møller et al., 2013). Thus, reduction in 

salt content is sometimes associated with flavor defects. For example, the flavor 

profile of Cheddar cheese deteriorated when the level of salt was reduced by 50% 

(Møller et al., 2013). In another study, consumer liking for low-salt cheeses was low 
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and they were able distinguish even a 30% salt reduction (Ganesan, Brown, Irish, 

Brothersen, & McMahon, 2014). 

The impact of salt in structure, texture, rheological and cooking properties of 

cheese has been discussed extensively (Guinee, 2004; Everett et al., 2014). A general 

overview of the roles of salt in cheese is depicted in Figure 1.3. 
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Figure 1.3. Role of salt in cheese. S/M: salt-to-moisture ratio. 
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1.6.4 Gas phase (particularly carbon dioxide) 

Formation of smooth eyes in eye-forming cheese types, such as, Emmental 

and Maasdam, is considered an important quality parameter. Cheese matrix 

structure, the rate and extent of gas production and its behavior in the cheese matrix 

(e.g., solubility and diffusivity), and the presence of nuclei are known to play an 

important role in desirable eye formation (Daly et al., 2010). In this section of 

review, we focus on the role of CO2 in the eye formation. 

An appropriate understanding of CO2 production, and its solubility and 

diffusivity in the cheese matrix, is necessary to obtain desirable quality of eyes 

without splits and cracks. Carbon dioxide in the cheese matrix is mainly produced 

due to lactate fermentation by propionic acid bacteria (PAB) during the warm room 

ripening. The rate and extent of CO2 production is influenced by factors, such as, 

strains of PAB, ripening temperature, and cheese composition (Daly et al., 2010). 

Acerbi, Guillard, Aliani, Guillaume, and Gontard (2016a) determined the rate of 

production of CO2 in semi-hard cheese to be ~ 10 - 15 mmol kg/day at constant 

temperature (25°C) and salt-to-moisture ratio (S/M, 2%, w/w). Carbon dioxide 

solubilizes in the fat and aqueous phases of cheese. However, its solubility is largely 

temperature-dependent, i.e., the solubility of CO2 in the fat phase is lower at low 

temperature (e.g., 4°C) than at high temperature (at least up to 20°C); the opposite 

holds true for the solubility of CO2 in water (Jakobsen, Jensen, & Risbo, 2009). The 

solubility of CO2 in semi-hard cheese was determined as ~ 37 mmol/kg at 2°C and ~ 

30 mmol/kg at 25°C (Acerbi, Guillard, Guillaume, & Gontard, 2016b). Thus, any 

changes in the ripening conditions or cheese composition or both can alter the 

solubility of CO2 within the cheese matrix, which in turn can affect the internal 
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pressure of cheese. It is necessary to control the internal pressure of cheese, since 

over-pressure can lead to slits or cracks, which are unappealing to consumers. 

Moreover, these cheeses can produce a lot of fines or broken portions during size 

reduction operations, such as slicing and dicing, resulting in lost revenue to 

manufacturers (Martley & Crow, 1996). On the other hand, small or no eyes (“blind” 

cheese) will be formed if the gas pressure is inadequate. 

Carbon dioxide produced in the cheese matrix diffuses within the cheese 

matrix or escapes from the cheese. The diffusion of CO2 within the cheese is thought 

to obey the second law of Fick [Equation 1.1; where D is the effective diffusivity 

coefficient (m
2
/s)], which describes the change in concentration (c) with time (t) at 

any place (x) as a function of the local concentration gradient for a mono-directional 

diffusion (Acerbi, Guillard, Guillaume, Saubanere, & Gontard, 2016c). 

                                                  
2

2

dc d c
D

dt dx

 
  

 
                [1.1] 

Diffusion of CO2 to nuclei generates pressure at nuclei which are the primary 

site for eye formation. Diffusivity of CO2 within the cheese matrix is one of the most 

important factors impacting eye growth in eye-forming cheese types, and it is 

influenced by cheese composition and structure, and ripening conditions. For 

example, a higher level of diffusivity of CO2 has been observed in more aged semi-

hard cheeses compared to young cheeses, and this has been attributed to age-related 

changes in the cheese matrix, such as, proteolysis and demineralization of casein 

(Acerbi et al., 2016c). 
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1.7 Impact of environmental factors on structural and functional properties of 

cheese 

1.7.1 pH 

It is widely recognized that pH has a strong influence on the texture, 

rheological and cooking properties of cheese, mainly via altering the casein-casein, 

mineral-casein and casein-water interactions, through its effect on casein charge and 

calcium solubility. At higher pH values (~5.4), the proportion of calcium associated 

with casein (micellar calcium) is relatively higher than at low pH (unless colloidal 

calcium is solubilized by other means, such as addition of calcium chelators; Choi et 

al., 2008; McAuliffe, Kilcawley, Sheehan, and McSweeney, 2016). Higher levels of 

micellar calcium promote casein-casein interactions within the cheese matrix. Such 

strong casein-casein interactions are known to increase the structural rigidity of the 

cheese matrix; as a consequence, cheese tends to be more firm, elastic and less 

meltable (McMahon et al., 2005). At intermediate pH (~ 5.1), casein-casein 

interactions decrease as the negatively charged regions of the casein (e.g., 

phosphoserine residues) are exposed due to partial solubilization of micellar calcium, 

and the resultant cheese tends to be softer and more meltable (Lucey et al., 2003). 

However, lowering the pH toward 4.7 increases the strong casein-casein interactions 

as the casein approach their isoelectric point, and adversely affects the melt, flow 

and stretch properties of cheese (Lucey et al., 2003; Pastorino et al., 2003a). 

It seems that that pH may have an indirect effect related to its influence on 

the distribution of calcium (soluble or casein-associated) at pH above 5 (at least in 

Cheddar and direct-acidified non-fat Mozzarella cheese) (Pastorino et al., 2003a; 

McMahon et al., 2005). Below 5, pH seems to have a direct effect, i.e., charge 
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neutralization. If the cheese curd has very low levels of calcium, then increasing pH 

may simply increase protein-water interactions, probably due to increases in 

electrostatic repulsion forces between the charged groups of protein, which is 

illustrated by the work of Monteiro, Tavares, Kindstedt, and Gigante (2009). Those 

authors investigated the effect of pH on the microstructure and functionality of hot-

pack cream cheese, in which calcium level is very low, by using exposure to acetic 

acid or ammonia vapor to modulate pH post-manufacture. The microstructure of 

cheese appeared more continuous or swollen with increasing pH (Figure 1.4), 

indicating that the casein are increasingly hydrated with increasing pH; moreover, 

cheese firmness decreased, whereas cheese meltability increased, with increasing 

pH. 

The pH of cheese can alter the size of the protein aggregates and their 

arrangement in the protein matrix (Hall & Creamer, 1972; Lawrence et al., 1987; 

Pastorino et al., 2003a). Pastorino et al. (2003a) developed a model for the protein 

matrix of cheese at different pH, and reported that the diameter of protein aggregates 

were relatively higher at pH 5.3 (10 to12 nm) than at pH 4.7 (2 to 4 nm) in their 

model. Moreover, the protein aggregates at pH 5.3 have relatively more well-defined 

structure than those at pH 4.7. The proposed model is in agreement with the study of 

Hall et al. (1972), who observed bigger protein aggregates (10 to 15 nm) in Gouda 

cheese (pH, ~ 5.3) than in Cheshire cheese (3 to 4 nm), with relatively low pH (~ 

4.6), when examined using SEM; moreover, the protein in latter cheese is less well-

organized.  
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Figure 1.4. Scanning electron micrographs (9,000 ×) of hot pack cream cheese with 

different pH values. Cheese sample were exposed to ammonia vapor to increase the 

pH or acetic acid vapour to decrease the pH. The pH of the untreated control cheese 

was 4.92. P = protein matrix, F = spherical imprints in the protein matrix left by fat 

globules that were extracted during sample preparation. Scale bar represents 1 µm. 

Adapted from Monteiro et al. (2009) with permission. Copyright (2009) Institute of 

Food Technologists. 
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Taneya, Izutsu, Kimura, and Shioya (1992) also reported a less well-defined 

protein network structure of curd at pH 5.0 than at pH 5.4 when observed with 

transmission electron microscopy, and the authors concluded that curd having pH 5.4 

was suitable for stretching during manufacture of string cheese. Pastorino et al. 

(2003a) speculated that the size of the protein aggregates and their arrangement in 

the cheese matrix may alter the texture, rheological and cooking properties of cheese, 

since the strength of material is known to be influenced by factors such as the extent 

of cross-linking, and the orientation or the structural regularity of the constituents of 

the material (Pastorino et al., 2003a). 

It is well known that mold-ripened cheeses (e.g., Camembert and Brie), have 

a macroscopic pH-gradient between the surface and interior of cheese (McSweeney, 

2004). However, it has recently been found that cheese can have a microscopic pH 

gradient. Burdikova et al. (2015) observed pH micro-heterogeneity in natural cheese 

matrices using fluorescence lifetime imaging microscopy (FLIM) (Figure 1.5). The 

local variation of pH in cheese matrix may influence the molecular interactions at the 

local level, which may lead to local heterogeneity in the microstructure of cheese. 

Nevertheless, more research is needed to gain greater understanding in this area. 
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Figure 1.5. Fluorescence lifetime imaging microscopy (FLIM) image of natural 

cheese sample stained with Oregon Green 488. Shown are apparent local variations 

of fluorescence lifetime and thus pH. Localized spots with pH as low as 4.0 are 

observed. The dark areas most likely represent fat within the cheese matrix. The 

pseudocolor scale of the FLIM images is calibrated both in lifetime (τm) and pH 

values. Reprinted with permission from Burdikova et al. (2015). Copyright (2015) 

Lausanne: Frontiers Research Foundation. 
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1.7.2 Temperature 

Temperature influences the structure of cheese through its effect on the 

components of cheese and their interactions, including changes in the physical state 

of fat and the molecular interactions between the casein. These changes in the 

structure of cheese are important to the textural, rheological and cooking properties 

of heated or unheated cheese. At low temperatures (below 20°C), a significant 

proportion of milk fat is in a solid state (Lopez, Briard-Bion, Camier, & Gassi, 

2006). Lopez et al. (2006) observed more than half (~54% of total fat content) of the 

milk fat present in Emmental cheese is in crystallized form at 4°C. Solid milk fat in 

cheese is known to act as reinforcing fillers, contributing to elastic properties of 

unheated cheese (Rogers et al., 2010; Shima & Tanimoto, 2016). Moreover, it has 

been suggested that the contact area between the casein increases with decreasing 

temperature as they expand at low temperature, probably due to weakening of 

hydrophobic interactions (Lucey et al., 2003). Thus, the firmer texture of cheese at 

low temperature (< 20°C) is considered due to the combined effect of higher 

proportion of solid fat and increased contact area between casein. The firm texture of 

cheese at low temperature is generally suitable for size reduction operation since it is 

easier to cut cheese cleanly than at higher or ambient temperature (Lucey, 2008). 

During heating of cheese, the proportion of liquid fat increase dramatically; 

at ~ 40°C, almost all fat in cheese is in liquid state (Lopez et al., 2006). Liquid fat 

acts as a plasticizer between casein strands, making cheese softer and flexible 

(Shima et al., 2016). Although fat has an important role in the initial softening of 

cheese during heating, it is now well accepted that the casein interactions have the 

major role on the melt properties of cheese. Lucey et al. (2003) proposed a 

mechanism for melting of cheese during heating based on the dual-binding model 
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proposed by Horne (1998). The authors speculated that the localized balance of the 

attractive and repulsive forces between casein controls the cheese melting and the 

behavior of cheese at elevated temperature. During heating, casein networks in 

cheese are thought to contract, probably due to strengthening of hydrophobic 

interactions. Magnetic resonance studies have also indicated that the contraction of 

the protein network in cheese with increasing temperature, since levels of free water 

in cheese increased as it was heated from 20 to 60°C (Vogt et al., 2015; Smith et al., 

2017). Contraction of the casein network is suggested to reduce the size of the 

contact area between casein, leading to weakening of the cheese matrix (Lucey et al., 

2003). Weakening of the cheese matrix during heating is indicated by the changes in 

the rheological parameters, i.e., decreases in dynamic moduli (G' and Gʺ) and an 

increase of loss tangent with increasing temperature. More recently, mid-infrared and 

synchronous fluorescence spectroscopies, coupled with chemometrics, have been 

suggested as valuable tools for understanding the role of temperature on the melt 

behavior of cheese (Boubellouta & Dufour, 2012). 

Kim, Lim, and Gunasekaran (2011) investigated the impact of baking 

temperature (180°C for 25 min) on the properties of reduced-fat and full-fat Cheddar 

cheeses by reacting heated cheeses with different dissociating agents, such as, SDS, 

EDTA, and urea; the results indicated that the skin formation in reduced-fat cheeses 

was the result of a high degree of protein-protein interactions, which involved 

disulfide bonds and hydrophobic interactions and, to some extent ionic bonds with 

calcium. 
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1.8 Conclusions 

This review summarizes the current understanding on structure-function 

relationships in cheese. A fundamental knowledge of how the structure of cheese 

influences various functionalities is necessary to design cheeses with enhanced 

physico-chemical properties, and of optimal sensory and nutritional quality. Such 

knowledge is particularly important for the improvement of the quality of cheeses, 

such as, those with low fat content, since fat reduction is often associated with 

undesirable changes in texture, flavor and cooking properties. Similarly, reduction in 

sodium has also been linked particularly with flavor defects. Cheese structures have 

been shown to play an important role in texture perception and in release of flavor 

compounds during mastication. Structuring of the cheese matrix for controlled 

release of nutrients, and delivery of bioactives and probiotics is an area of key 

importance in the development of functional cheese with beneficial properties 

beyond basic nutrition. A detailed knowledge of molecular interactions and forces 

that act between cheese components is vital as they can influence the functionalities 

of cheese, such as physico-chemical properties of heated and unheated cheese, and 

also the release patterns of flavor compounds or nutrients in mouth during 

mastication or in the gut during digestion. This also creates a need to further develop 

analytical methods for determination of molecular forces or interactions within the 

cheese matrix. Similarly, advanced microscopy techniques allied with image 

analysis, mathematical modeling, and computer simulations will also help to 

establish a greater knowledge of the link between structure and functionality of 

cheese. In addition, the growing number of studies using model food systems, such 

as, emulsion-filled gels, offers potential and such approaches need to be applied to 

research and innovation in natural cheeses. Overall, an appropriate knowledge of 
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structure-function relationship is key to the design of future cheese types with 

specific functionalities. 
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2.1 Abstract 

This study investigated the impact of centrifugation (9,000 × g), as well as 

the incorporation of high heat-treated (HHT) centrifugate into cheese milk on the 

composition, texture and ripening characteristics of Maasdam cheese. Neither 

centrifugation nor incorporation of HHT centrifugate into cheese milk had a 

pronounced impact on the compositional parameters of any experimental cheeses, 

except for moisture and moisture in non-fat substance (MNFS) levels. Incorporation 

of HHT centrifugate at a rate of 6 to 10% of the total milk weight back into 

centrifuged milk increased the level of denatured whey protein in the cheese milk 

and also increased the level of MNFS in the resultant cheese compared to cheeses 

made from centrifuged milk and control cheeses; moreover, the former cheese had 

~3% higher moisture content on average than the latter cheeses. Centrifugation of 

cheese-milk reduced the somatic cell count by ~95% relative to the somatic cell 

count in raw milk. Neither centrifugation nor incorporation of HHT centrifugate into 

cheese milk had a significant impact on age-related changes in pH, lactate content 

and levels of primary and secondary proteolysis. However, the value for hardness 

was significantly lower for cheeses made from milk containing HHT centrifugate 

than for other experimental cheese types. Overall, centrifugation appeared to have 

little impact on composition, texture and ripening characteristics of Maasdam cheese. 

However, care should be taken when incorporating HHT centrifugate into cheese 

milk, because such practices can influence the level of moisture, MNFS and texture 

(particularly hardness) of resultant cheeses. Such differences may have the potential 

to influence subsequent eye development characteristic, although no definitive trends 

were observed in the present study and further research on this is recommended. 
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2.2 Introduction 

Various milk pre-treatment methods have been applied prior to cheese-

making to enhance quality, consistency and functionality of different cheese varieties 

(Kelly, Huppertz, & Sheehan, 2008; Johnson, 2017). Centrifugation of milk using a 

special centrifuge (also called Bactofuge
TM

) at a centrifugal force of ~9,000 × g is a 

pre-treatment methods widely used by the cheese industry for removal of 

Clostridium spores prior to cheese-making. After centrifugation, milk is divided into 

two streams, i.e., (i) centrifuged milk containing low bacterial cells and spores count, 

which account for ~97% of the feed volume and (ii) centrifugate containing high 

bacterial cells and spores count, which account for ~3% of the feed volume 

(Kosikowski & Mistry, 1990). 

Some cheese producers apply high heat treatment to the centrifugate to 

inactivate bacterial cells and spores and recycle the stream back into centrifuged 

milk prior to cheese-making, to minimize protein losses as it contains ~7% protein 

(Kosikowski et al., 1990). High heat treatment of milk results in denaturation of 

whey proteins (Rynne, Beresford, Kelly, & Guinee, 2004), which can form 

complexes with whey proteins (in the serum phase) and casein micelles (Donato & 

Guyomarc'h, 2009). Such complexes are believed to hinder the aggregation of 

destabilized casein micelles during rennet-induced coagulation of milk (Vasbinder, 

Rollema, & de Kruif, 2003) and thus reduce the ability of the gels to synerese, 

leading to cheese curd with higher levels of moisture and moisture in non-fat 

substance (MNFS). Moisture in the cheese matrix acts as a plasticizer between the 

protein strands and softens the cheese texture (Lamichhane, Kelly, & Sheehan, 

2017). Moreover, the higher moisture and MNFS content within the cheese matrix 

can enhance the microbial and enzymatic activities (Beresford, Fitzsimons, Brennan, 
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& Cogan, 2001), which can alter the ripening characteristics of cheese (Rynne et al., 

2004; Rynne, Beresford, Kelly, & Guinee, 2007).  

Some Clostridium spp. have been reported to be associated with late blowing 

defect (LBD) of cheese, which is manifest as production of gas (e.g., CO2 and H2) 

and formation of high levels of butyric acid, resulting in down-graded cheeses (Klijn, 

Nieuwenhof, Hoolwerf, van der Waals, & Weerkamp, 1995; Le Bourhis et al., 2007; 

Garde, Arias, Gaya, & Nuñez, 2011). Although the impact of centrifugation on 

efficacy of removal of Clostridium spores from milk and LBD of cheese have been a 

research focus for several studies (Langeveld, 1971; Su & Ingham, 2000), its impact 

on composition, texture and ripening characteristics of cheese has to date received 

little attention. As well as removal of Clostridium spores from milk, centrifugation 

also removes milk bacterial cells and somatic cells from milk, by ~87% and 75-95% 

of the total count, respectively (Te Giffel & Van Der Horst, 2004; Wieking, 2004). 

Maasdam is a brine-salted, large-eye forming semi-hard cheese combining 

the traits of both Swiss and Dutch-type cheeses. Both lactic and citric acid 

fermentation occur during the first 24 h of manufacture and propionic acid 

fermentation occurs during warm-room ripening. Very little research has been 

published on the physicochemical properties and ripening characteristics of 

Maasdam and similar cheese-types, such as Jarlsberg. 

The aim of this study was to evaluate the effect of (i) centrifugation and (ii) 

the incorporation of the high heat-treated (HHT) centrifugate into cheese-milk on the 

composition, pH, primary and secondary proteolysis, lactic acids levels and texture 

of Maasdam cheese during ripening. In this study, centrifugation refers to the 
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separation of bacteria and spores at a centrifugal force of ~9,000 × g whereas 

centrifugal separation refers to separation of milk into cream and skim milk. 

2.3 Materials and methods 

2.3.1 Milk supply and treatments 

Raw whole milk was obtained from a local dairy company. From raw milk, 

three different cheese milk streams were prepared (Figure 2.1). Part of the raw milk 

was separated at 55°C (centrifuge disc separator, Westfalia) to give skim milk and 

cream. Control cheese milk (CT) was prepared by adding a portion of the resultant 

cream to skim to achieve a protein: fat ratio of 1.13: 1. The remaining whole milk 

was centrifuged (Bactofuge Disc Separator, Alfa Laval, type: D3187M) at a 

centrifugal force of ~9,000 × g to provide centrifuged whole milk and ‘centrifugate’ 

(also called ‘sludge’ or ‘bactofugate’), which accounts for approximately 3-6% of 

the total milk feed. Centrifuged whole milk was then separated to give skim and 

cream. Centrifuged cheese milk (CF) was prepared by adding portions of the cream 

into the skim milk to achieve a protein: fat ratio of 1.13: 1. High heat treatment 

(120°C for 26 s, APV plate heat exchanger) was applied to centrifugate to inactivate 

spores and bacteria, and this centrifugate was combined with a portion of centrifuged 

cream and skim milk to produce the third cheese milk, i.e., centrifuged milk 

containing HHT centrifugate (CFHHT). As the protein content of centrifugate after 

high heat treatment varied between 3.76 and 6.36 (%, wt/wt) between trials, HHT 

centrifugate was added to centrifuged milk on a protein basis rather than weight 

basis, i.e., approximately 12% (wt/wt) of the total protein was from HHT 

centrifugate in CFHHT milk (on weight basis, HHT centrifugate was added at a level 

of 6.6 to 10.3%, wt/wt, depending on the protein content of HHT centrifugate). All 
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cheese milk types (CT, CF and CFHHT) were standardized to a protein to fat ratio of 

~1.13: 1, and pasteurized (72°C for 15 s) before cheese manufacture. 

2.3.2 Cheese manufacture 

Three experimental Maasdam cheese types, i.e., cheese made from control 

milk (CT cheese), centrifuged milk (CF cheese) and centrifuged milk containing 

HHT centrifugate (CFHHT cheese), were each manufactured on three different 

occasions in replicate cheese-making trials over a 3 month period. Standardized and 

pasteurized cheese milks were pumped into cylindrical, jacketed cheese vats. Each 

vat contained automated variable speed cutting and stirring equipment (APV 

Schweig AG, Worb, Switzerland). All cheese milks (380 kg/vat) were inoculated at 

31°C with frozen direct vat inoculate cultures (Chr. Hansen Ltd., Cork, Ireland): (1) 

mixed strains of mesophilic bacteria (C950, 18 mg/kg milk), consisting of 

Lactococcus lactis ssp. cremoris, Lactococcus lactis ssp. lactis, and Leuconostoc; (2) 

Lactobacillus helveticus (LH-B01, 4.8 mg/kg milk); and (3) propionic acid bacteria 

(PAB) (PS-60, 7 mg/kg  milk). Calcium chloride (34%, wt/vol) was added at a level 

of 0.3 mL/kg milk to each vat. Rennet (Chy-Max Plus, ~200 IMCU/mL; Chr. 

Hansen Ltd., Cork, Ireland), diluted ~1:10 with deionized water, was added at a level 

of 0.2 mL/kg milk after a 40-min ripening period at 31°C.  
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Separation

Pasteurization
PasteurizationPasteurization

Raw milk

Separation Centrifugation at 9000 x g

Skim milk Cream Centrifuged whole milk Centrifugate 

Cream Skim milk HHT-centrifugate

CFHHTCF Control

HHT (120°C
for 26 s)

 

Figure 2.1. Flow charts of the preparation of cheese milks, i.e., control, centrifuged (CF) and centrifuged milk containing high heat-treated 

centrifugate (CFHHT). Abbreviations: HHT, high heat treatment, HHT-centrifugate, high heat-treated centrifugate 
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All gels were cut at a constant firmness (Gʹ) value of 35 Pa (as measured 

using a small-amplitude oscillatory rheometer, AR 2000ex, TA Instruments, New 

Castle, DE, USA) and the resultant curd particle/whey mixture was allowed to heal 

for 7 min before being stirred continuously for another 7 min. Stirring was then 

stopped and a portion of whey (34 kg/100 kg cheese milk) was removed. After whey 

removal, reverse osmosis (RO) water at ~50°C (23 kg/100 kg cheese milk) was used 

to cook the curd to 37°C at a rate of 0.2°C/min with continuous stirring. After the 

curd washing and cooking steps, whey and curd were drained into a pre-press vat 

and curds were vertically pre-pressed under warm whey for 25 min, with increasing 

pressure from 3 to 5 kPa. Whey was then drained from the pre-press vat and 

subsequently the pre-pressed curd was cut into 10 kg wheels (3 wheels from each 

vat), placed into 10-kg molds and pressed vertically under increasing pressure from 

3.3 to 14 kPa for ~3.5 hours. When the pH of the cheese curds reached around 5.49 

to 5.51, cheese wheels were transferred to a saturated brine solution (23% , wt/wt, 

NaCl, 0.56% CaCl2, pH 5.2 and 18°C) for 24 hours. After brining, cheese wheels 

were vacuum-packed in CO2 permeable bags, and transferred to the ripening room. 

The cheeses were ripened at 8°C for 10 d (pre-ripening), at 23°C for 30 d (warm-

room ripening), and finally stored at 4°C for 140 d. 

2.3.3 Rennet coagulation properties 

In all three replicate cheese-making trials, 2 min after rennet addition and 

stirring, a representative sample of milk was removed from the vat and placed into a 

cell of a small amplitude oscillatory rheometer (AR 2000ex, TA Instruments). A 

concentric-cylinder measuring geometry, consisting of a cylindrical bob and cup, 

was used. The dynamic changes in rheology during the coagulation process were 
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monitored using a dynamic time sweep analysis with an angular frequency of 1.0 Hz, 

and a strain of 0.01 at 31°C, within the linear viscoelastic region (strain < 0.03) 

reported for rennet milk gels (Mateo et al., 2010). Total time to reach a Gʹ value of 

gels of 35 Pa (at which cutting of the gel in the cheese vat was initiated) after rennet 

addition was calculated. 

2.3.4 Milk and cheese composition analysis 

The composition of raw milk, centrifugate and pasteurized cheese milks were 

analyzed using a Fourier Transform Infrared spectrophotometer (MilkoScan FT 120, 

Foss Electric, Hillerød, Denmark). Raw milk and centrifuged milk samples were 

analyzed for somatic cell count (SCC, cells/mL) with a fluoro-opto-electronic 

counter (Fossomatic FC, Foss, Hillerød, Denmark). Casein number, non-protein 

nitrogen, and levels of whey protein denaturation as percentage of total whey protein 

of HHT centrifugate and pasteurized cheese milk samples of one representative trial 

were determined as described by Rynne et al. (2004). Grated cheese samples were 

analyzed at 11 d at least in duplicate for moisture, fat, protein, salt, calcium and pH, 

as described by Sheehan, Fenelon, Wilkinson, and McSweeney (2007a). 

For determination of lactose and galactose content, cheese samples were 

extracted as described by Zeppa, Conterno, and Gerbi (2001). Grated cheese samples 

(10 g) were mixed with 50 mL 0.013 N H2SO4 and stomached for 10 min using a 

stomacher (Iul Instruments, Barcelona, Spain) before centrifugation at 7,000 × g for 

5 min. The supernatant was then filtered using a 0.2-µm nylon filter. The extracted 

samples were then analyzed by HPLC (Waters Alliance 2695 separation module, 

Milford, MA) with an Aminex HPX-87C Carbohydrate column 300 × 7.8 mm 

(Biorad, Hertfordshire, UK) under the following working conditions: injection 
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volume, 50 µL; mobile phase, 0.009 N H2SO4; flow rate, 0.5 mL/min; column 

temperature, 60°C; refractive index detection (Waters 2414 RI detector, Milford, 

MA). Quantification of lactose and galactose was based on the external standard 

method as described by Hou, McSweeney, Beresford, and Guinee (2014). 

2.3.5 SDS-PAGE analysis 

The individual proteins in the raw milk, centrifugate before and after HHT, 

and cheese milks were identified by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). All milk samples were diluted, using Milli-Q water, to 

a protein concentration of ~6 μg/μL. A portion of the diluted samples were further 

diluted with SDS sample buffer [NuPAGE LDS Sample Buffer (4X), comprised of 

lithium salt, glycerine, sulphuric acid and monododecyl ester]. For reducing SDS-

PAGE, samples were treated with dithiothreitol [NuPAGE Sample Reducing Agent 

(10X), Carlsbad, CA; concentration, 500 mmol/L] at a level of 10% (vol/vol) of the 

total sample volume mixture. All samples were heated at 70°C for 10 min, cooled, 

and loaded on SDS-PAGE gels (NuPAGE 12% Bis-Tris mini gels, Carlsbad, CA) at 

a rate of 10 µg per well before running in SDS running buffer [NuPAGE MOPS SDS 

Running Buffer (1X), Carlsbad, CA] at constant voltage of 200 V for 50 min using 

Mini Gel Tank (XCell SureLock Mini, Thermo Scientific, Dublin, Ireland). After 

electrophoresis, the gels were stained as described by McCarthy et al. (2012). SDS-

PAGE gels were scanned using an Epson V700 film scanner (Epson, Suwa, Nagano, 

Japan). The identities of principal protein bands in the milk samples were determined 

using prestained protein molecular weight marker (PageRuler Prestained Protein 

Ladder, 10 to 180 kDa, Thermo Scientific, Dublin, Ireland). 
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2.3.6 pH and, L- and D-lactate analysis 

The pH of cheese samples were measured on cheese slurry prepared by 

mixing 20 g of grated cheese and 12 g of de-ionised water at different time points 

throughout ripening (Sheehan et al., 2007a). 

The sample extraction method as outlined for lactose and galactose content 

was used for D- and L-lactic acid content determination. The extracted samples were 

analyzed for D- and L-lactic acid content using HPLC (Waters Alliance 2695 

separation module, Milford, MA) equipped with chiral column [Chirex 3126 (D)-

penicillamine, column 150 x 4.6 mm, Phenomenex, Cheshire, UK] as described by 

Hou et al. (2014). 

2.3.7 pH 4.6 soluble nitrogen (% of total nitrogen) and free amino acids 

The levels of pH 4.6 soluble-nitrogen and free amino acids (FAA) of the 

cheeses were measured after 1, 11, 41, 65, 97, 140 and 180 d as described by 

Fenelon and Guinee (2000) and Sheehan et al. (2007a), respectively. 

2.3.8 Texture profile analysis of cheese 

Texture properties were analyzed by TAHDi texture profile analyzer (TPA; 

Stable Micro Systems, Goldalming, Surrey, England), equipped with a 70 mm 

(diameter) compression plate and a 100 kg load cell. Cheese was cut into six cube-

shaped samples (25 mm
3
), using a Cheese Blocker (Bos Kaasgreedschap, 

Bodengraven, the Netherlands), wrapped in tin foil and stored overnight at 4°C. 

Cheese samples (~4°C) were compressed to 40% of its original height in two 

consecutive bites at a rate of 60 mm/min (Henneberry, Wilkinson, Kilcawley, Kelly, 
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& Guinee, 2015). TPA parameters were calculated as previously described by 

Chevanan, Muthukumarappan, Upreti, and Metzger (2006). 

2.3.9 Statistical analysis 

Three experimental cheese types were each manufactured on three different 

occasions in replicate cheese-making trials. Analysis of variance, using IBM SPSS 

software version 24 (IBM Corp., 2016), was applied to determine the effect of 

treatment on milk and cheese composition. A split-plot design was used to determine 

the effects of treatments (centrifugation or addition of HHT centrifugate into cheese 

milk), ripening time and their interactions on pH, lactic acid to protein ratio, lactic 

acid, proteolysis, and texture. Analysis for the split-plot design was carried out using 

the PROC MIXED procedure of SAS software version 9.3 (SAS Institute Inc., 

2011). Tukey’s multiple-comparison test was used for paired comparison of 

treatment means at a 5% level of significance. IBM SPSS software version 24 (IBM 

Corp., 2016) was used to perform Pearson correlation between lactate to protein ratio 

and pH. 

2.4 Results and discussion 

2.4.1 Raw milk, centrifugate and cheese-milk composition 

The average fat, protein, and lactose contents of raw milk used for the three 

replicate cheese making trials were 4.01(%, wt/wt), 3.41(%, wt/wt), and 4.73 (%, 

wt/wt), respectively. Somatic cell counts (SCC) of the raw milk between trials 

ranged between 1.2 × 10
5
 and 2.4 × 10

5
 cells/mL. The SCC of milk depends on 

factors such as breed and parity, stage of lactation, udder health, and also individual 

and environmental factors, as well as management practices (Li et al., 2017; Panthi, 
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Jordan, Kelly, & Sheehan, 2017). In general, the SCC of milk from healthy cows is 

less than 2 × 10
5 

(Li, Richoux, Boutinaud, Martin, & Gagnaire, 2014). The efficacy 

of centrifugation process (9,000 × g) for removal of SCC was ~95% relative to the 

SCC in raw milk, in close agreement with the study of Wieking (2004), who 

reported the efficacy of centrifugation as ~95%. It is generally accepted that the SCC 

of cheese milk negatively influences the cheese making and final cheese quality 

(Panthi et al., 2017). However, in contrast, a recent study (Li et al., 2017) suggested 

that the somatic cells per se have minimal impact on the cheese making and final 

cheese quality. This suggests that more research is needed to better understand the 

role of somatic cells in cheese quality. 

The composition of centrifugate before and after HHT and cheese milks is 

shown in Table 2.1. The level of whey protein denaturation (WPD, as percentage of 

total whey protein) in centrifugate after HHT was 68.30%. It is widely recognized 

that HHT denatures whey proteins; for example, Rynne et al. (2004) observed that 

34% of total whey protein was denatured when milk was heated at 87°C for 26 s. 

The protein and lactose content of centrifugate decreased, although not significantly, 

after HHT. This was probably due to slight dilution with process flush water when 

utilizing a low volume of centrifugate (~40-45 kg) in pilot-scale processing.  

Although fat, protein, lactose contents of cheese milks were not statistically 

different, the level of WPD was ~2.5-3 fold higher in CFHHT milk (14.2%) than in 

CT (5.8%) and CF (4.8%) milks. The low level of WPD in CT and CF milk was 

attributed to pasteurization (72°C for 15 s) of milk, whereas the level of WPD in 

CFHHT milk was attributed to both pasteurization and incorporation of HHT 
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centrifugate. The level of WPD in pasteurized milk was in close agreement with that 

reported by Rynne et al. (2004). 
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Table 2.1. Composition of centrifugate and pasteurized cheese milks
1
 

Compositional 

parameters 

Centrifugate
2
  Cheese milks

3
 

Before HHT After HHT  CT CF 
CFHH

T 

Protein (%, wt/wt)  6.10
A
 5.11

A
  3.38

a
 3.29

a
 3.32

a
 

Fat (%, wt/wt)  0.23
A
 0.22

A
  2.98

a
 2.90

a
 2.92

a
 

Lactose (%, wt/wt) 4.52
A
 4.05

A
  4.74

a
 4.66

a
 4.64

a
 

Protein/Fat  - -  1.134
a
 1.135

a
 1.137

a
 

Casein number  79.22 89.72  79.56 79.16 80.69 

NPN (%, wt/wt) 5.91 5.57  6.33 6.57 6.47 

Native whey protein (% 

total) 
14.86 4.71  14.11 14.27 12.85 

WPD (% total whey 

protein) 
- 68.30  5.81 4.77 14.24 

1
Abbreviations: HHT, high heat treatment, CT, Control milk, CF, centrifuged milk; 

CFHHT, centrifuged milk containing high heat-treated centrifugate; NPN, non-

protein nitrogen; WPD, whey protein denaturation. 

2, 3
Data presented are the mean of data from three replicate trials for protein, fat, 

lactose and protein/fat; for other parameters, data are from one representative trial. 

Values within a row not sharing common superscripts differ (P < 0.05) in the case of 

protein, fat, lactose and protein/fat. For parameters without superscripts, statistical 

analysis was not carried out because the data are from only 1 representative trial. 
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2.4.2 SDS-PAGE analysis 

The individual proteins in raw milk, centrifugate before and after HHT, and 

cheese milks were analyzed using SDS-PAGE (Figure 2.2). The SDS-PAGE patterns 

of centrifugate before HHT were different compared to centrifugate after HHT, with 

a lower intensity of the bands corresponding to α-lactalbumin, β-lactoglobulin and 

other minor proteins, such as, lactoferrin and bovine serum albumin, in HHT 

centrifugate. Moreover, some large protein aggregates were observed at the top of 

the stacking gel in the HHT centrifugate, as denoted by X in Figure 2.2A. Similar to 

our result, Patel, Singh, Anema, and Creamer (2006) also observed heat-induced 

large aggregates in HHT milk samples. Heat-denatured whey proteins can form 

complexes with themselves and with caseins, particularly κ-casein, through disulfide 

interchange reactions and hydrophobic forces (Jean, Renan, Famelart, & 

Guyomarc’h, 2006; Patel et al., 2006; Kethireddipalli & Hill, 2015). In reducing 

SDS-PAGE, the large heat-induced aggregates in HHT centrifugate disappeared 

when the samples were reduced with dithiothreitol; moreover, the SDS-PAGE 

patterns in reduced gels appeared similar (Figure 2.2B). This suggests that the 

protein aggregates in HHT centrifugate may be bonded by various molecular forces, 

such as, hydrophobic forces and disulphide bonding (Donato et al., 2009). 

The SDS-PAGE patterns of raw milk and cheese milks appeared similar, 

although the level of denatured whey protein was higher in cheese milks, especially 

CFHHT, than in raw milk. This suggests that the SDS-PAGE analysis is not very 

sensitive for differentiating between low levels of whey protein denaturation. 
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Figure 2.2. SDS-PAGE patterns of milk samples under (A) non-reducing and (B) reducing conditions. Lane 1 and 8 = prestained protein molecular weight 

marker, lane 2 = centrifugate before high heat treatment, lane 3 = centrifugate after high heat treatment, lane 4 = raw milk, lane 5 = pasteurized (72°C for 15 s) 

control cheese-milk, lane 6 = pasteurized centrifuged milk containing high heat-treated (HHT) centrifugate, and lane 7 = pasteurized centrifuged milk. Protein 

aggregates in HHT centrifugate are denoted by X. Abbreviations: LF, lactoferrin; BSA, bovine serum albumin; CN, casein; β-LG, β-lactoglobulin; α-LA, α-

lactalbumin. Samples shown are from one representative trial. 
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2.4.3 Rennet coagulation characteristics 

The average time to reach an elastic shear modulus (Gʹ) value of 35 Pa for 

CFHHT CT and CF milks after rennet addition was 45.1, 38.7 and 40 min, 

respectively. Several factors can influence the rennet-induced coagulation of milk, 

such as, milk composition and renneting conditions (e.g., pH, temperature and ionic 

strength) (Guinee, O’Kennedy, & Kelly, 2006; Ong, Dagastine, Auty, Kentish, & 

Gras, 2011; Ong, Dagastine, Kentish, & Gras, 2012). Some studies have reported 

that the heat-induced complexes formed between whey protein and κ-CN on the 

surface of the casein micelles inhibit the primary phase of rennet coagulation, i.e., 

decrease the accessibility of enzyme to κ-CN (Van Hooydonk, De Koster, & 

Boerrigter, 1987). However, more recent studies have suggested that whey protein 

denaturation has minimal impact on the primary phase of rennet coagulation; instead, 

whey protein denaturation has more clear effect on the secondary phase of rennet 

coagulation, i.e., aggregation (fusion) of destabilized casein micelles (Vasbinder et 

al., 2003). The casein-whey protein and whey protein aggregates (in serum phase) 

can sterically hinder the aggregation of destabilized casein micelles (Waungana, 

Singh, & Bennett, 1996; Vasbinder et al., 2003). In the current study, although the 

level of denatured whey protein of CFHHT was ~2.5-3 fold higher than that of CT 

and CF milks, the rennet coagulation time of CFHHT milk did not differ statistically 

significantly to the others. The levels of WPD (as percent of total whey protein) for 

all experimental cheese milk were below 15%, and its seems that such levels of 

WPD had no pronounced impact on the rennet-induced coagulation of milk. More 

pronounced effects were reported previously for severely heat-treated milk (Rynne et 

al., 2004).  
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2.4.4 Cheese composition 

The composition of the experimental cheeses is shown in Table 2.2. 

Centrifugation of milk had no significant effect on mean levels of moisture, MNFS, 

protein, fat, salt, total calcium, lactose and galactose of final cheeses. However, 

incorporation of HHT centifugate into the centrifuged milk increased (P < 0.05) the 

mean levels of MNFS of the resultant cheeses. The average moisture content of 

CFHHT cheese was ~3% higher than control and CF cheeses, which is expected and 

sizeable in magnitude for cheese moisture; however, the difference was not 

statistically significant (P = 0.057). This is explained by a degree of variation in the 

compositional data between trials, which influenced the statistical analysis of the 

data. The coefficients of variation of average moisture content of the experimental 

cheeses between three trials were below 5%, which is considered acceptable 

(Thomsson, Ström-Holst, Sjunnesson, & Bergqvist, 2014). 

Higher moisture and MNFS levels in CFHHT cheeses are partly attributed to 

the negative effect of HHT centrifugate on syneresis (expulsion of whey) of rennet-

induced milk gels. Denatured whey protein present in HHT centrifugate can 

sterically hinder the aggregation (fusion) of destabilized casein micelles as described 

before, and thus hinders syneresis (Pearse, Linklater, Hall, & Mackinlay, 1985; 

Walstra, Van Dijk, & Geurts, 1985; Vasbinder et al., 2003). Moreover, the high 

water-binding capacity of the denatured whey proteins may increase the level of 

MNFS in the CFHHT cheeses (Donato et al., 2009). These results are in agreement 

with the results of Guinee et al. (1998) and Rynne et al. (2004), who observed 

increased moisture and MNFS of Cheddar cheese with increasing levels of denatured 

whey protein. 
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Table 2.2. Compositional parameters and pH at 11 d of ripening in Maasdam 

cheeses
1
 

Compositional factors 

Cheese types
2
 

SEM P- value 
CT CF CFHHT 

Moisture (%, wt/wt) 44.83
a
 44.15

a
 47.83

a
 0.72 0.057 

MNFS (%, wt/wt) 58.9
a
 58.14

a
 61.78

b
 0.63 0.013 

Protein (%, wt/wt) 24.04
a
 24.57

a
 23.44

a
 0.30 0.348 

Fat (%, wt/wt) 23.9
a
 24.07

a
 22.61

a
 0.44 0.376 

FDM (%, wt/wt) 43.31
a
 43.07

a
 43.29

a
 0.35 0.966 

Salt (%, wt/wt) 1.53
a
 1.50

a
 1.73

a
 0.05 0.183 

S/M (%, wt/wt) 3.41
a
 3.40

a
 3.61

a
 0.07 0.450 

Total calcium (mg/100 g) 821
a
 800

a
 837

a
 12.19 0.514 

pH (11 d) 5.28
a
 5.31

a
 5.27

a
 0.01 0.548 

Lactose (mg/100 g)      

1d 54.39
a 

41.82
a 

66.72
a 

16.26 0.861 

11 d 20.42
a 

43.72
a 

62.63
a 

15.07 0.585 

41 d 0.00
a
 0.00

a
 0.00

a
 0.00 - 

Galactose (mg/100 g)      

1 d 28.09
a
 29.57

a
 35.34

a
 4.11 0.798 

11 d 27.61
a 

27.26
a 

30.82
a 

4.22 0.947 

41 d 0.00
a
 0.00

a
 0.00

a
 0.00 - 

1
Abbreviations: CT, control cheese; CF, cheese made from centrifuged milk; 

CFHHT, cheese made from centrifuged milk containing high heat-treated 

centrifugate; MNFS, moisture in non-fat substance; FDM, fat in dry matter; S/M, 

salt-to-moisture ratio.
 

2
Values within a row not sharing common superscripts differ (P < 0.05); data are the 

mean of data from three replicate trials. 
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Some studies also observed a decrease in the level of total calcium in cheese 

made from HHT milk (Guinee et al., 1998). However, such results were not 

observed in the current study. The mean levels of lactose and galactose were very 

low, with below ~67 and ~36 mg/100 g cheese respectively until 11 d of ripening, 

and lactose and galactose were not detected after warm-room ripening (Table 2.2). 

Low lactose and galactose contents within this cheese-type are expected, as the 

lactose contents of cheese curd were reduced by curd-washing. 

2.4.5 Age-related changes in pH 

The pH of all experimental cheeses increased (P < 0.001) over the 180 d of 

ripening (Figure 2.3A, Table 2.3), from a mean value of ~5.2 at 1 d to ~5.7 at 180 d. 

This trend is in agreement with that reported in a previous study of Gouda cheese by 

Lawrence, Creamer, and Gilles (1987), who also observed increase in pH from ~5.15 

at 1 d to ~5.5-5.9 at 150 d of ripening. The increase in the pH is attributed to a 

number of factors, including the proteolytic liberation of basic compounds, such as 

ammonia, free basic AA and amines (Fenelon et al., 2000; McSweeney, 2004). A 

reduction in lactate to protein ratio during maturation of cheese (Figure 2.3B) is 

known to increase the buffering capacity of cheese (Sheehan et al., 2007a), which 

may contribute to some extent to the increase in cheese pH during ripening. The pH 

of the cheese curd was significantly (P < 0.001) negatively correlated (adjusted R
2
 = 

0.53)
 
with lactate to protein ratio (Figure 2.3C). 
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Figure 2.3. The effect of milk pre-treatments on (A) pH and (B) lactate to protein 

ratio of Maasdam cheese during maturation. Milk pre-treatments: control (●); 

centrifugation (▼); and centrifuged milk containing high heat-treated centrifugate 

(○). Data presented are means of data from three replicate trials. (C) Relationship 

between pH and lactate to protein ratio; data were obtained from all experimental 

cheeses produced in three replicate trials and analyzed over a 180 d of ripening. 
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In some brine-salted cheese types, such as Gouda, Edam and Maasdam, the 

pH after brining is controlled by adjusting the residual curd lactose content by 

techniques such as curd washing or whey dilution (Lawrence et al., 1987). More 

recently, membrane separation techniques, such as ultrafiltration, have also been 

utilized for standardization of lactose content of cheese-milk prior to cheese-making 

(Moynihan et al., 2016). In the present study, ~34% (wt/wt) of whey was replaced 

with ~23% (wt/wt) warm reverse-osmosis (RO) water to control the post-

manufacture reduction of pH. In contrast, O’Sullivan, McSweeney, Cotter, Giblin, 

and Sheehan (2016) observed a decrease in pH at the early stages of ripening in 

Swiss-type cheese (where whey was not replaced by warm water); however, the 

post-brining pH was higher (~5.6) than that of the cheese in the current study (~5.3). 

The decrease in the pH at the early stages of ripening has been attributed to continual 

metabolism of residual lactose and galactose to lactate by starter and non-starter 

lactic acid bacteria (NSLAB) (O’Sullivan et al., 2016). Shakeel-Ur-Rehman, 

Waldron, and Fox (2004) also observed a decrease in the pH during ripening when 

Cheddar cheeses was made from milk supplemented with lactose. Regulation of pH 

is critical for proper eye development in some eye-forming cheese types, and a 

reduction in pH can reduce the levels of colloidal calcium, which are considered 

essential for elastic texture of cheese (Lucey & Fox, 1993), and can also inhibit the 

growth of PAB (Sheehan, Wilkinson, & McSweeney, 2008). Elastic texture is 

important in the case of eye-forming cheese types to accommodate gas produced 

during warm-room ripening for smooth eye formation (Daly, McSweeney, & 

Sheehan, 2010). No significant effect of treatment on the mean cheese pH during 

maturation was observed (Table 2.3). 
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Table 2.3. Summary of the effects of treatment, ripening time and their interactions 

on properties of Maasdam cheeses
1
 

Parameter Treatment Time 
Interactive effect 

(treatment × time) 

pH NS *** NS 

Total lactate to protein 

ratio 
NS *** NS 

L-lactate NS *** NS 

D-lactate NS *** NS 

Total lactate NS *** NS 

pH 4.6-SN (% TN) NS *** NS 

Total FAA NS *** NS 

Hardness * NS NS 

Springiness NS * NS 

Cohesiveness NS *** NS 

Resilience NS ** NS 
1
Abbreviations: pH 4.6-SN (% TN), soluble nitrogen at pH 4.6 as percentage of total 

nitrogen; FAA, free AA 

*P < 0.05, **P < 0.01, ***P < 0.001, NS = P > 0.05 
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2.4.6 Levels of L-, D- and total lactate 

The mean level of L-lactate of all experimental cheeses was ~1.5 (%, wt/wt) 

until 11 d of ripening, which is most likely due to fermentation of glucose, lactose 

and galactose by starter lactic acid bacteria, including Lactococcus lactis ssp. 

cremoris, Lactococcus lactis ssp. lactis and Lactobacillus helveticus, during 

production of cheese (Beresford et al., 2001). However, the level of L-lactate 

decreased (P < 0.001) over ripening in all experimental cheeses especially during 

warm room ripening from a mean of ~1.5 (%, wt/wt) at 11 d to ~0.4 (%, wt/wt) at 41 

d (Figure 2.4A). This trend is in agreement with that reported in previous studies for 

different cheese varieties, such as Swiss-style cheese (Sheehan et al., 2008; 

O’Sullivan et al., 2016), Grevé (eye-forming semi-hard cheese types) (Rehn et al., 

2011) and Cheddar (Rynne et al., 2007). This is expected as L-lactate is metabolized 

by starter and non-starter bacteria to different metabolites, such as, propionate, 

acetate, butyrate, formate, succinate, DL-lactate, CO2, H2 and H2O (McSweeney, 

2004; Agarwal, Sharma, Swanson, Yüksel, & Clark, 2006). D-lactate was virtually 

absent for all experimental cheeses at 1 and 11 d of ripening. 
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Figure 2.4. The effect of milk pre-treatments on the mean level of (A) L-lactate, (B) 

D-lactate, (C) total lactate of Maasdam cheeses during ripening. Milk pre-treatments: 

control (●); centrifugation (▼); and centrifuged milk containing high heat-treated 

centrifugate (○). Data presented are means of data from three replicate trials. 
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However, unlike L-lactate, the level of D-lactate increased (P < 0.001) during 

warm room ripening, from a mean of ~0.01 (%, wt/wt) at 11 d to ~0.2-0.3 at 41d 

(Figure 2.4B). D-lactate within cheese matrix typically arises either from 

fermentation of glucose, lactose or galactose by microorganisms, including 

Lactobacillus helveticus and some Leuconostoc spp. (Beresford et al., 2001), or by 

racemization of L-lactate by NSLAB (Agarwal et al., 2006). Since the levels of 

residual lactose and galactose were very low in all experimental cheeses before 

warm room ripening (below 70 and 40 mg/100 g, respectively), due to curd washing, 

it may be assumed that the contribution of residual lactose and galactose for 

formation of D-lactate is minimal. The formation of D-lactate was most likely due to 

racemization of L-lactate to DL-lactate by NSLAB because the level of NSLAB 

reached ~10
8
 cfu/g in all cheeses at 41 d of ripening (data not shown). 

Similar trends have previously been reported in different cheese varieties, 

such as half-fat Cheddar (Rynne et al., 2007) and Swiss-type cheese (O’Sullivan et 

al., 2016). However, interestingly, the level of D-lactate decreased gradually after 65 

d of ripening, probably due to its metabolism by microorganisms within the cheese 

matrix such as PAB (O’Sullivan et al., 2016). The degradation pathways of D-lactate 

in the cheese matrix are not yet fully understood. No significant effect of treatment 

was observed in the levels of L-lactate, D-lactate and total lactate (Figure 2.4C) 

throughout ripening (Table 2.3). 

2.4.7 Proteolysis 

2.4.7.1 Soluble nitrogen at pH 4.6 (% of total nitrogen) 

Primary proteolysis in cheeses was assessed by measuring the level of 

nitrogen soluble at pH 4.6, as a percentage of total nitrogen, which increased (P < 
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0.001) in all cheeses over the 180 d of ripening, especially during warm-room 

ripening, from ~5% of total nitrogen before warm room ripening (11 d) to ~17% of 

total nitrogen at the end of warm room ripening (41 d) in all experimental cheeses 

(Figure 2.5A). The levels in all cheeses reached ~22% at 180 d. The increase was of 

the same order of magnitude as that previously reported for semi-hard cheeses 

(Exterkate & Alting, 1995; Sheehan, Oliveira, Kelly, & McSweeney, 2007b; Huc, 

Challois, Monziols, Michon, & Mariette, 2014). However, no significant effect of 

treatment on level of nitrogen soluble at pH 4.6, as a percentage of total nitrogen was 

observed (Table 2.3). 

2.4.7.2 Total and individual free amino acids 

The mean levels of total FAA increased (P < 0.001) during ripening, 

especially when the cheeses entered the hot-room ripening phase, from ~3000 mg/kg 

at 11 d to ~7000-8000 mg/kg at 41 d (Figure 2.5B). Enzymes from starter and non-

starter microorganisms and somatic cells, such as, proteases and peptidases, where 

present within the cheese matrix contribute to primary and secondary proteolysis, 

and thereby to liberation of FAA during ripening (McSweeney, 2004; Kelly, 

O’Flaherty, & Fox, 2006). No significant effect of treatment was observed (Table 

2.3), although it was expected that the centrifugation process can alter secondary 

proteolysis, as the process can remove ~86-92% of total bacteria and ~95% of 

somatic cells from cheese milk (Te Giffel et al., 2004; Wieking, 2004). In the current 

study, the centrifugation process also reduced the SCC by ~95%. 
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Figure 2.5. The effect of milk pre-treatments on mean level of (A) pH 4.6-soluble 

nitrogen of percentage of total nitrogen (pH 4.6-SN, % TN), and (B) total free amino 

acids (FAA) of Maasdam cheeses during ripening. Milk pre-treatments: control (●); 

centrifugation (▼); and centrifuged milk containing high heat-treated centrifugate 

(○). Data presented are means of data from three replicate trials. 
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The concentrations of individual FAA (mg/kg) in cheeses at 140 d of 

ripening are shown in Figure 2.6. Leucine was the most abundant FAA found in all 

experimental cheeses, with ~2300 mg/kg at 140 d, followed by Glu, Phe, Val, Lys, 

Pro and Thr. Similar to this result, O’Sullivan et al. (2016) also observed a high level 

of Glu, Leu, Val, Lys, and Pro in Swiss-type cheese at 95 d of ripening. In contrast, 

the concentrations of Asp, Ser, Gly, Cys, Tyr, and Arg were amongst the lowest of 

the FAA. Free AA are important precursors for the formation of different classes of 

volatiles, such as, amines, aldehydes, alcohols, acids and sulphur compounds 

(Engels, Dekker, de Jong, Neeter, & Visser, 1997; Yvon & Rijnen, 2001). No 

significant effect of treatment on the mean levels of individual FAA at 140 d of 

ripening was observed. 

 



Chapter 2 

 

85 
 

Amino Acid

A
s
p

T
h
r

S
e

r

G
lu

G
ly

A
la

C
ys

V
a

l

M
e

t

Ile

L
e

u

T
yr

P
h
e

H
is

L
ys

A
rg

P
ro

F
re

e
 a

m
in

o
 a

c
id

s
 (

m
g
 k

g
-1

)

0

500

1000

1500

2000

2500

3000

3500

Control
BF
BF+HHT

 

Figure 2.6. The effect of milk pre-treatments on the mean levels of individual free amino acids in pH 4.6-soluble nitrogen extracts from 

Maasdam cheeses at 140 d of ripening. Milk pre-treatments: control (█), centrifugation (█); and centrifuged milk containing high heat-treated 

centrifugate (█). Data presented are means of data from three replicate trials. Error bars show the standard error of mean from three replicate 

trials. 



Pre-treatment of milk for Maasdam cheese 

 

 

86 
 

2.4.8 Texture profile analysis 

The incorporation of HHT centrifugate into cheese-milk decreased (P < 0.05) 

the mean level of instrumentally measured hardness of the resultant cheeses 

compared to CT and CF cheeses (Figure 2.7). This was attributed to significantly 

higher MNFS level in the CFHHT cheeses than CT and CF cheeses; MNFS is 

considered a good indicator of moisture associated with proteins (Lawrence, Gilles, 

& Creamer, 1993). Moisture in the cheese matrix acts as a plasticizer between the 

protein strands, making cheese softer and more flexible. Moreover, during 

coagulation, the whey protein and whey protein-casein micelle aggregates may 

hinder the close approach of casein micelles during aggregation (fusion) of 

destabilized casein micelles; this may result in a weaker gel and curd texture 

(Waungana et al., 1996). From a materials science perspective, the strength of a 

material is known to be influenced by factors such as the extent of cross-linking, and 

the orientation or the structural regularity of the constituents of the material 

(Pastorino, Hansen, & McMahon, 2003; Lamichhane et al., 2017). It may be 

assumed that denatured whey protein can alter the extent of cross-linking of casein 

micelles, and the orientation or the structural regularity of casein networks within the 

cheese matrix. 

 

 

 

 

 



Chapter 2 

 

87 
 

 

 

 

 

Figure 2.7. The effect of milk pre-treatments on mean levels of hardness between 1 

d (●) and 11 d (▲) of ripening. Experimental cheese types: CT = control cheese, CF 

= cheese made from centrifuged milk, CFHHT = cheese made from centrifuged milk 

containing high heat-treated centrifugate. Error bars show the standard error of mean 

from two replicate trials. 
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No significant effects of treatment on mean levels of cohesiveness, resilience 

and springiness in the cheeses were observed (Table 2.3); however, the values for 

these texture parameters decreased (P < 0.05) between 1 and 11 d of ripening (data 

not shown). Although the exact reasons for this are unknown, this may be attributed 

to solubilization of colloidal calcium during the early stages of ripening (O'Mahony, 

Lucey, & McSweeney, 2005). O'Mahony et al. (2005) also observed rapid decrease 

in the value for springiness and cohesiveness of Cheddar cheese between 1 and 21 d 

of ripening. Levels of insoluble calcium were not determined in cheeses in the 

present study, and the authors suggest that this should be a focus for future studies in 

Maasdam-type cheese. There was no significant difference in the mean level of 

hardness of cheese between 1 and 11 d of ripening, contrary to the results obtained 

by O'Mahony et al. (2005), who observed rapid decrease in the texture value within 

first 21 d of ripening of Cheddar cheese; this discrepancy may be attributed to 

different cheese types and different manufacturing steps. We were unable to analyze 

the texture profile of cheese after 11 d of ripening due to eye-formation. 

2.5 Conclusions 

We demonstrated the impact of centrifugation and incorporation of HHT 

centrifugate on the composition, texture and ripening characteristics of Maasdam 

cheese. Interestingly, centifugation of cheese-milk prior to cheese-making appeared 

to have minimal impact on composition and age-related changes on texture, pH, 

proteolysis and lactate levels of Maasdam cheese. However, incorporation of HHT 

centrifugate into cheese milk at levels of approximately 6 to 10 % (wt/wt), 

depending on the protein content of centrifugate, into cheese milk significantly 

increased MNFS levels and also significantly decreased cheese hardness compared 
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to control cheeses and cheeses made from centrifuged milk. Composition and 

strength of curd are considered important for eye-development characteristics of 

cheese without slits and cracks. In the current study, no clear trend for eye 

characteristics was observed between the treatments, and thus we are unable to draw 

a conclusion regarding the impact of the treatments applied on eye quality of cheese. 

The authors proposed that this should be the focus of further research, possibly 

requiring analysis of a large number of commercial samples over the course of a 

manufacture season. 



Pre-treatment of milk for Maasdam cheese 

 

 

90 
 

2.6 References 

Agarwal, S., Sharma, K., Swanson, B. G., Yüksel, G. Ü., & Clark, S. (2006). 

Nonstarter lactic acid bacteria biofilms and calcium lactate crystals in 

Cheddar cheese. Journal of Dairy Science, 89, 1452-1466. 

Beresford, T. P., Fitzsimons, N. A., Brennan, N. L., & Cogan, T. M. (2001). Recent 

advances in cheese microbiology. International Dairy Journal, 11, 259-274. 

Chevanan, N., Muthukumarappan, K., Upreti, P., & Metzger, L. E. (2006). Effect of 

calcium and phosphorus, residual lactose and salt-to-moisture ratio on 

textural properties of Cheddar cheese during ripening. Journal of Texture 

Studies, 37, 711-730. 

Daly, D. F. M., McSweeney, P. L. H., & Sheehan, J. J. (2010). Split defect and 

secondary fermentation in Swiss-type cheeses – A review. Dairy Science & 

Technology, 90, 3-26. 

Donato, L., & Guyomarc'h, F. (2009). Formation and properties of the whey 

protein/κ-casein complexes in heated skim milk – A review. Dairy Science 

and Technology, 89, 3-29. 

Engels, W. J. M., Dekker, R., de Jong, C., Neeter, R., & Visser, S. (1997). A 

comparative study of volatile compounds in the water-soluble fraction of 

various types of ripened cheese. International Dairy Journal, 7, 255-263. 

Exterkate, F. A., & Alting, A. C. (1995). The role of starter peptidases in the initial 

proteolytic events leading to amino acids in Gouda cheese. International 

Dairy Journal, 5, 15-28. 

Fenelon, M. A., & Guinee, T. P. (2000). Primary proteolysis and textural changes 

during ripening in Cheddar cheeses manufactured to different fat contents. 

International Dairy Journal, 10, 151-158. 

Garde, S., Arias, R., Gaya, P., & Nuñez, M. (2011). Occurrence of Clostridium spp. 

in ovine milk and Manchego cheese with late blowing defect: Identification 

and characterization of isolates. International Dairy Journal, 21, 272-278. 

Guinee, T. P., Fenelon, M. A., Mulholland, E. O., O'Kennedy, B. T., O'Brien, N., & 

Reville, W. J. (1998). The influence of milk pasteurization temperature and 

pH at curd milling on the composition, texture and maturation of reduced fat 

Cheddar cheese. International Journal of Dairy Technology, 51, 1-10. 

Guinee, T. P., O’Kennedy, B. T., & Kelly, P. M. (2006). Effect of milk protein 

standardization using different methods on the composition and yields of 

Cheddar cheese. Journal of Dairy Science, 89, 468-482. 

Henneberry, S., Wilkinson, M., Kilcawley, K., Kelly, P., & Guinee, T. (2015). 

Interactive effects of salt and fat reduction on composition, rheology and 

functional properties of mozzarella-style cheese. Dairy Science & 

Technology, 95, 613-638. 



Chapter 2 

 

91 
 

Hou, J., McSweeney, P. L. H., Beresford, T. P., & Guinee, T. P. (2014). Effect of 

curd washing on the properties of reduced-calcium and standard-calcium 

Cheddar cheese. Journal of Dairy Science, 97, 5983-5999. 

Huc, D., Challois, S., Monziols, M., Michon, C., & Mariette, F. (2014). Spatial 

characterisation of eye-growing kinetics in semi-hard cheeses with propionic 

acid fermentation. International Dairy Journal, 39, 259-269. 

IBM Corp. (2016). IBM SPSS Statistics for Windows, Version 24.0, IBM Corp. 

Armonk, NY. 

Jean, K., Renan, M., Famelart, M.-H., & Guyomarc’h, F. (2006). Structure and 

surface properties of the serum heat-induced protein aggregates isolated from 

heated skim milk. International Dairy Journal, 16, 303-315. 

Johnson, M. E. (2017). A 100-Year Review: Cheese production and quality. Journal 

of Dairy Science, 100, 9952-9965. 

Kelly, A. L., Huppertz, T., & Sheehan, J. J. (2008). Pre-treatment of cheese milk: 

Principles and developments. Dairy Sci. Technol., 88, 549-572. 

Kelly, A. L., O’Flaherty, F., & Fox, P. F. (2006). Indigenous proteolytic enzymes in 

milk: A brief overview of the present state of knowledge. International Dairy 

Journal, 16, 563-572. 

Kethireddipalli, P., & Hill, A. R. (2015). Rennet coagulation and cheesemaking 

properties of thermally processed milk: Overview and recent developments. 

Journal of Agricultural and Food Chemistry, 63, 9389-9403. 

Klijn, N., Nieuwenhof, F. F., Hoolwerf, J. D., van der Waals, C. B., & Weerkamp, 

A. H. (1995). Identification of Clostridium tyrobutyricum as the causative 

agent of late blowing in cheese by species-specific PCR amplification. 

Applied and Environmental Microbiology, 61, 2919-2924. 

Kosikowski, F. V., & Mistry, V. V. (1990). Microfiltration, ultrafiltration, and 

centrifugation separation and sterilization processes for improving milk and 

cheese quality. Journal of Dairy Science, 73, 1411-1419. 

Lamichhane, P., Kelly, A. L., & Sheehan, J. J. (2017). Symposium review: 

Structure-function relationships in cheese. Journal of Dairy Science,101, 

2692-2709. 

Langeveld, L. P. M. (1971). Effect of the bactofugation of milk on the butyric acid 

fermentation in Gouda cheese. Netherlands Milk and Dairy Journal, 25, 11-

18. 

Lawrence, R. C., Creamer, L. K., & Gilles, J. (1987). Texture development during 

cheese ripening. Journal of Dairy Science, 70, 1748-1760. 

Lawrence, R. C., Gilles, J., & Creamer, L. K. (1993). Cheddar cheese and related 

dry-salted cheese varieties. In P. F. Fox (Ed.), Cheese: Chemistry, Physics 

and Microbiology, vol. 2 (pp. 1-38). Boston, MA: Springer US. 



Pre-treatment of milk for Maasdam cheese 

 

 

92 
 

Le Bourhis, A.-G., Doré, J., Carlier, J.-P., Chamba, J.-F., Popoff, M.-R., & 

Tholozan, J.-L. (2007). Contribution of C. beijerinckii and C. sporogenes in 

association with C. tyrobutyricum to the butyric fermentation in Emmental 

type cheese. International Journal of Food Microbiology, 113, 154-163. 

Li, N., Richoux, R., Boutinaud, M., Martin, P., & Gagnaire, V. (2014). Role of 

somatic cells on dairy processes and products: A review. Dairy Science & 

Technology, 94, 517-538. 

Li, N., Richoux, R., Leconte, N., Bevilacqua, C., Maillard, M.-B., Parayre, S., 

Aubert-Frogerais, L., Warlouzel, J., Moya-Leclair, E., Denis, C., Martin, P., 

& Gagnaire, V. (2017). Somatic cell recovery by microfiltration 

technologies: A novel strategy to study the actual impact of somatic cells on 

cheese matrix. International Dairy Journal, 65, 5-13. 

Lucey, J. A., & Fox, P. F. (1993). Importance of calcium and phosphate in cheese 

manufacture: A review. Journal of Dairy Science, 76, 1714-1724. 

Mateo, M. J., O’Callaghan, D. J., Everard, C. D., Castillo, M., Payne, F. A., & 

O’Donnell, C. P. (2010). Evaluation of on-line optical sensing techniques for 

monitoring curd moisture content and solids in whey during syneresis. Food 

Research International, 43, 177-182. 

McCarthy, N. A., Kelly, A. L., O’Mahony, J. A., Hickey, D. K., Chaurin, V., & 

Fenelon, M. A. (2012). Effect of protein content on emulsion stability of a 

model infant formula. International Dairy Journal, 25, 80-86. 

McSweeney, P. L. H. (2004). Biochemistry of cheese ripening. International Journal 

of Dairy Technology, 57, 127-144. 

Moynihan, A. C., Govindasamy-Lucey, S., Molitor, M., Jaeggi, J. J., Johnson, M. E., 

McSweeney, P. L. H., & Lucey, J. A. (2016). Effect of standardizing the 

lactose content of cheesemilk on the properties of low-moisture, part-skim 

Mozzarella cheese. Journal of Dairy Science, 99, 7791-7802. 

O'Mahony, J. A., Lucey, J. A., & McSweeney, P. L. H. (2005). Chymosin-mediated 

proteolysis, calcium solubilization, and texture development during the 

ripening of Cheddar cheese. Journal of Dairy Science, 88, 3101-3114. 

O’Sullivan, D. J., McSweeney, P. L. H., Cotter, P. D., Giblin, L., & Sheehan, J. J. 

(2016). Compromised Lactobacillus helveticus starter activity in the presence 

of facultative heterofermentative Lactobacillus casei DPC6987 results in 

atypical eye formation in Swiss-type cheese. Journal of Dairy Science, 99, 

2625-2640. 

Ong, L., Dagastine, R. R., Auty, M. A. E., Kentish, S. E., & Gras, S. L. (2011). 

Coagulation temperature affects the microstructure and composition of full 

fat Cheddar cheese. Dairy Science & Technology, 91, 739. 

Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2012). The effect of pH at 

renneting on the microstructure, composition and texture of Cheddar cheese. 

Food Research International, 48, 119-130. 



Chapter 2 

 

93 
 

Panthi, R. R., Jordan, K. N., Kelly, A. L., & Sheehan, J. J. (2017). Selection and 

treatment of milk for cheesemaking. In P. L. H. McSweeney, P. F. Fox, P. D. 

Cotter & D. W. Everett (Eds.), Cheese: Chemistry, Physics & Microbiology,  

(pp. 23-50). San Diego: Academic Press. 

Pastorino, A. J., Hansen, C. L., & McMahon, D. J. (2003). Effect of pH on the 

chemical composition and structure-function relationships of Cheddar cheese. 

Journal of Dairy Science, 86, 2751-2760. 

Patel, H. A., Singh, H., Anema, S. G., & Creamer, L. K. (2006). Effects of heat and 

high hydrostatic pressure treatments on disulfide bonding interchanges 

among the proteins in skim milk. Journal of Agricultural and Food 

Chemistry, 54, 3409-3420. 

Pearse, M. J., Linklater, P. M., Hall, R. J., & Mackinlay, A. G. (1985). Effect of heat 

induced interaction between β-lactoglobulin and κ-casein on syneresis. 

Journal of Dairy Research, 52, 159-165. 

Rehn, U., Vogensen, F. K., Persson, S. E., Hallin Saedén, K., Nilsson, B. F., & Ardö, 

Y. (2011). Influence of microflora on texture and contents of amino acids, 

organic acids, and volatiles in semi-hard cheese made with DL-starter and 

propionibacteria. Journal of Dairy Science, 94, 1098-1111. 

Rynne, N. M., Beresford, T. P., Kelly, A. L., & Guinee, T. P. (2004). Effect of milk 

pasteurization temperature and in situ whey protein denaturation on the 

composition, texture and heat-induced functionality of half-fat Cheddar 

cheese. International Dairy Journal, 14, 989-1001. 

Rynne, N. M., Beresford, T. P., Kelly, A. L., & Guinee, T. P. (2007). Effect of milk 

pasteurisation temperature on age-related changes in lactose metabolism, pH 

and the growth of non-starter lactic acid bacteria in half-fat Cheddar cheese. 

Food Chemistry, 100, 375-382. 

SAS Institute Inc. (2011). SAS/STAT 9.3 User’s Guide. Cary, NC: SAS Institute 

Inc. 

Shakeel-Ur-Rehman, Waldron, D., & Fox, P. F. (2004). Effect of modifying lactose 

concentration in cheese curd on proteolysis and in quality of Cheddar cheese. 

International Dairy Journal, 14, 591-597. 

Sheehan, J. J., Fenelon, M. A., Wilkinson, M. G., & McSweeney, P. L. H. (2007a). 

Effect of cook temperature on starter and non-starter lactic acid bacteria 

viability, cheese composition and ripening indices of a semi-hard cheese 

manufactured using thermophilic cultures. International Dairy Journal, 17, 

704-716. 

Sheehan, J. J., Oliveira, J. C., Kelly, A. L., & McSweeney, P. L. H. (2007b). Effect 

of cook temperature on primary proteolysis and predicted residual chymosin 

activity of a semi-hard cheese manufactured using thermophilic cultures. 

International Dairy Journal, 17, 826-834. 

Sheehan, J. J., Wilkinson, M. G., & McSweeney, P. L. H. (2008). Influence of 

processing and ripening parameters on starter, non-starter and propionic acid 



Pre-treatment of milk for Maasdam cheese 

 

 

94 
 

bacteria and on the ripening characteristics of semi-hard cheeses. 

International Dairy Journal, 18, 905-917. 

Su, Y.-C., & Ingham, S. C. (2000). Influence of milk centrifugation, brining and 

ripening conditions in preventing gas formation by Clostridium spp. in 

Gouda cheese. International Journal of Food Microbiology, 54, 147-154. 

Te Giffel, M. C., & Van Der Horst, H. C. (2004). Comparison between 

bactofugation and microfiltration regarding efficiency of somatic cell and 

bacteria removal. Bulletin-International Dairy Federation, 389, 49-53. 

Thomsson, O., Ström-Holst, B., Sjunnesson, Y., & Bergqvist, A.-S. (2014). 

Validation of an enzyme-linked immunosorbent assay developed for 

measuring cortisol concentration in human saliva and serum for its 

applicability to analyze cortisol in pig saliva. Acta Veterinaria Scandinavica, 

56, 55. 

Van Hooydonk, A. C. M., De Koster, P. G., & Boerrigter, I. J. (1987). The renneting 

properties of heated milk. Netherlands Milk and Dairy Journal, 41, 3-18. 

Vasbinder, A. J., Rollema, H. S., & de Kruif, C. G. (2003). Impaired rennetability of 

heated milk; study of enzymatic hydrolysis and gelation kinetics. Journal of 

Dairy Science, 86, 1548-1555. 

Walstra, P., Van Dijk, H. J. M., & Geurts, T. J. (1985). The syneresis of curd. 1. 

General considerations and literature review. Netherlands Milk and Dairy 

Journal, 39, 209-246. 

Waungana, A., Singh, H., & Bennett, R. J. (1996). Influence of denaturation and 

aggregation of β-lactoglobulin on rennet coagulation properties of skim milk 

and ultrafiltered milk. Food Research International, 29, 715-721. 

Wieking, W. (2004). Removal of somatic cells from raw milk by state-of-the-art 

centrifugal technology. Bulletin-International Dairy Federation, 389, 45-47. 

Yvon, M., & Rijnen, L. (2001). Cheese flavour formation by amino acid catabolism. 

International Dairy Journal, 11, 185-201. 

Zeppa, G., Conterno, L., & Gerbi, V. (2001). Determination of organic acids, sugars, 

diacetyl, and acetoin in cheese by high-performance liquid chromatography. 

Journal of Agricultural and Food Chemistry, 49, 2722-2726. 



 

 
 

 Effect of milk centrifugation and incorporation of high Chapter 3:

heat-treated centrifugate on the microbial composition and levels of 

volatile organic compounds of Maasdam cheese 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as: 

Lamichhane, P., Pietrzyk, A., Feehily, C., Cotter, P. D., Mannion, D. T., Kilcawley, 

K. N., Kelly, A. L., & Sheehan, J. J. (2018). Effect of milk centrifugation and 

incorporation of high heat-treated centrifugate on the microbial composition and 

levels of volatile organic compounds of Maasdam cheese. Journal of Dairy Science, 

101, 5738-5750. 



Microbial and volatile profile of Maasdam cheese 

 

 

96 
 

3.1 Abstract 

Centrifugation is a common milk pre-treatment method for removal of 

Clostridium spores which, on germination, can produce high levels of butyric acid 

and gas, resulting in rancid, gassy cheese. The aim of this study was to determine the 

effect of centrifugation of milk, as well as incorporation of high heat-treated (HHT) 

centrifugate into cheese milk, on the microbial and volatile profile of Maasdam 

cheese. To facilitate this, 16S rRNA amplicon sequencing in combination with 

selective media-based approach were used to study the microbial composition of 

cheese during maturation, and volatile organic compounds within the cheese matrix 

were analyzed by HPLC and solid-phase microextraction (SPME) coupled with gas 

chromatography–mass spectrometry (GC–MS). Both culture-based and molecular 

approaches revealed major differences in microbial populations within the cheese 

matrix between pre- and post-warm room ripening. During warm room ripening, an 

increase in counts of propionic acid bacteria (by ~10
1.5 

cfu) and non-starter lactic 

acid bacteria (by ~10
8
 cfu) and a decrease in the counts of Lactobacillus helveticus 

(by ~10
2.5

) were observed. Lactococcus species dominated the curd population 

throughout ripening, followed by Lactobacillus, Propionibacterium and 

Leuconostoc, and the relative abundance of these accounted for more than 99% of 

the total genera, as revealed by high-throughput sequencing. Among sub-dominant 

microflora, the overall relative abundance of Clostridium sensu stricto was lower in 

cheeses made from centrifuged milk than control cheeses, which coincided with 

lower levels of butyric acid. Centrifugation as well as incorporation of HHT 

centrifugate into cheese-milk seemed to have little impact on the volatile profile of 

Maasdam cheese, except for butyric acid levels. Overall, this study suggests that 

centrifugation of milk prior to cheese-making is a suitable method for controlling 
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undesirable butyric acid fermentation without significantly altering the levels of 

other volatile organic compounds of Maasdam cheese. 

3.2 Introduction 

Centrifugation at ~9,000 × g is a milk pre-treatment method for removal of 

Clostridium spores. Some Clostridium spp., on germination, can produce gas and a 

high level of butyric acid via butyric acid fermentation, resulting in down-graded 

cheeses (Su & Ingham, 2000; Le Bourhis et al., 2007). As well as removal of 

bacterial spores, centrifugation removes bacterial cells present in milk (Te Giffel & 

Van Der Horst, 2004). Some of these milk microorganisms can survive 

pasteurization and can grow during ripening of cheese (Grappin & Beuvier, 1997; 

Jordan & Cogan, 1999; Quigley et al., 2013; Sheehan, 2013). Therefore, it may be 

assumed that the reduction in microbial load in cheese-milk by centrifugation may 

influence the microbial composition of cheese during maturation, as the environment 

would be less competitive, thus further favoring the growth of the most abundant 

bacteria. The microbial composition within the cheese matrix is known to play an 

important role in determining biochemical and ripening characteristics, including 

flavor development through production of enzymes and metabolites, of different 

varieties of cheese (Beuvier et al., 1997; Beresford, Fitzsimons, Brennan, & Cogan, 

2001; Montel et al., 2014; Guarrasi et al., 2017). 

Although traditional culture-based approaches are effective for quantifying 

common starter or non-starter bacteria, these approaches are not sensitive to those 

microorganisms that are difficult to culture or are present as subdominant 

populations or both (Quigley et al., 2013; O'Sullivan et al., 2015). Moreover, recent 

studies based on culture-independent approaches have suggested that some bacterial 

cells in a highly stressed condition are viable but not culturable (Quigley et al., 2013; 
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Ruggirello, Dolci, & Cocolin, 2014; Hickey, Fallico, Wilkinson, & Sheehan, 2018). 

Alternatively, molecular approaches, including high-throughput sequencing, can 

provide a detailed insight into the composition of both dominant and sub-dominant 

microflora. More recently, 16S rRNA amplicon sequencing is being increasingly 

used in the study of microbial composition within fermented food products, 

including cheese (Quigley et al., 2012; O'Sullivan et al., 2015; Alessandria et al., 

2016). For the first time, this study profiled the microbiota of cheese made from 

centrifuged milk, as well as cheese made from centrifuged milk containing high 

heat-treated (HHT) centrifugate compared to control cheeses, using high-throughput 

sequencing. 

Maasdam is a washed-curd, brine-salted, large eye forming, semi-hard 

cheese, which was developed by combining the cultures and technologies of 

Emmental and Gouda cheese. Apart from thermophilic lactobacilli, mesophilic 

mixed-strain cultures comprising Lactococcus and Leuconostoc are used as starters 

(as in Gouda cheese) and propionic acid bacteria (PAB) are used as secondary 

starters (as in Emmental cheese). To date, very little has been published regarding 

the microbial and volatile profile of Maasdam cheese; a better understanding of 

which will aid manufacturers to consistently achieve the desirable cheese aroma 

profile (Johnson & Lucey, 2006). 

The objective of this study was to investigate the impact of (i) centrifugation 

and (ii) the incorporation of the HHT centrifugate into cheese-milk on microbial 

composition and levels of volatile organic compounds (VOC) of Maasdam cheese 

during maturation. In this study, centrifugation refers to the separation of bacteria 

and spores at a centrifugal force of ~9,000 × g [in some studies this is also referred 
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as bactofugation; Te Giffel et al. (2004)], whereas centrifugal separation refers to 

separation of milk into cream and skim milk. A parallel study was conducted 

investigating the effect of milk centrifugation and incorporation of HHT 

centrifugation on the composition, texture and ripening characteristics of Maasdam 

cheese (Lamichhane et al., 2018). 

3.3 Materials and methods 

3.3.1 Cheese manufacture 

Cheese milks were prepared as described by Lamichhane et al. (2018) and in 

Supplementary Figure 3.1. In summary, raw milk from a local dairy company was 

divided into two portions. One portion of the raw milk was separated into skim milk 

and cream using a cream separator. Control milk (CT) was prepared by adding a 

portion of cream and skim milk obtained from cream separator to achieve a protein 

to fat ratio of 1.13: 1. Another portion of the raw milk was centrifuged at 9,000 × g 

resulting in centrifuged whole milk and centrifugate. Centrifuged whole milk was 

separated into cream and skim milk while high heat treatment (120°C for 26 s) was 

applied to centrifugate. A second cheese milk type (i.e., centrifuged milk, CF) was 

prepared by adding a portion of cream and skim milk obtained from separation of 

centrifuged whole milk, whereas a third cheese milk type (CFHHT) was prepared by 

mixing a portion of cream and skim milk obtained from separation of centrifuged 

whole milk and HHT centrifugate (at a level of 6 to 10%, wt/wt, depending on the 

protein content of centrifugate). The protein to fat ratio of all cheese milks were 

standardized to 1.13: 1. All cheese milks were pasteurized prior to Maasdam cheese 

manufacture. Maasdam cheeses were manufactured as per Lamichhane et al. (2018). 

Three experimental Maasdam cheese types, i.e., cheese made from control milk (CT 
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cheese), centrifuged milk (CF cheese) and centrifuged milk containing HHT 

centrifugate (CFHHT cheese), were each manufactured on three different occasions 

in replicate cheese-making trials over a 3 month period as per Lamichhane et al. 

(2018). Starters and secondary starters (frozen direct vat inoculate, Chr. Hansen Ltd., 

Cork, Ireland) used for the manufacture of Maasdam cheese were: (1) mesophilic 

mixed-strain (C950, 18 mg/kg milk), consisting of Lactococcus lactis ssp. cremoris, 

Lactococcus lactis ssp. lactis, and Leuconostoc; (2) Lactobacillus helveticus (LH-

B01, 4.8 mg/kg milk); and (3) PAB (PS-60, 7.0 mg/kg milk). 

3.3.2 Enumeration of starter lactic acid bacteria, propionic acid bacteria and 

non-starter lactic acid bacteria 

Samples were aseptically removed from cheese wheels using a cheese trier, at 

1, 11, 41, 65, 97, 140 and 180 d of ripening. The cheese samples (10 g) were placed 

in a sterile stomacher bag (Grade, Leicestershire, UK), diluted (10-fold) with 2% 

(wt/vol) trisodium citrate buffer (VWR, Dublin, Ireland) and stomached for 10 min 

using a stomacher (Iul Instruments, Barcelona, Spain). Serial dilutions of 10-fold 

diluted cheese samples were made using maximum recovery diluent, containing low 

levels of peptone (1 g/L) and sodium chloride (8.5 g/L). Total numbers of non-starter 

lactic acid bacteria (NSLAB) cells were enumerated on Lactobacillus selection agar 

(BD, Oxford, UK), with an overlay, after aerobic incubation for 5 d at 30°C. Viable 

cells of PAB were enumerated on sodium lactate agar, supplemented with 

kanamycin sulphate (Sigma-Aldrich, Arklow, Ireland) at a level of 4 mg/100 mL 

sodium lactate agar, after anaerobic incubation for 7 d at 30°C, and only light brown 

colonies were counted as PAB (Rehn et al., 2011). Lactobacillus helveticus cells 

were enumerated on de Man, Rogosa and Sharpe agar (BD, Oxford, UK) pH 5.4 
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after anaerobic incubation for 3 d at 42°C (Hickey, Auty, Wilkinson, & Sheehan, 

2017). Anaerobic conditions were maintained through the use of anaerobic gas jars 

(Oxoid, Basingstoke, UK) and AnaeroGen system (Oxoid, Basingstoke, UK). 

3.3.3 Study of microbial composition using high-throughput sequencing 

3.3.3.1 Sampling and nucleic acid extraction 

Aseptic samples were removed using a cheese trier, at 1, 11, 41, 65, 97 and 

180 d of ripening. Cheese samples (5 g) were homogenized in 45 mL of Ringer’s 

solution (¼ strength, Sigma-Aldrich, Arklow, Ireland) in a stomacher (BagMixer 

400P, Interscience, Saint Nom, France). Enzymatic lysis of homogenized cheese 

samples was conducted prior to DNA extraction and included treatment with 

lysozyme (1 mg/mL, EC 3.2.1.17, Sigma-Aldrich, Arklow, Ireland) and proteinase K 

(5 mg/mL, EC 3.4.21.64, Sigma-Aldrich, Arklow, Ireland) followed by incubation at 

37°C for 30 min, and 55°C for 15 min respectively. DNA was extracted using the 

PowerFood Microbial DNA Isolation Kit (MoBio Laboratories Inc, Carlsbad, USA). 

3.3.3.2 PCR amplification of the microbial 16s rRNA gene 

Extracted DNA was amplified using primers targeting the V3 and V4 regions 

of the bacterial 16S rRNA gene. Illummina adapter overang nucleotide sequences 

were added to the primers. Therefore, the primer set used included the 16S Amplicon 

PCR Forward Primer (5’- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA

G) and the 16S Amplicon PCR Reverse Primer (5’-

GTCTCGTGGGCTCGGAGATGTGTAAGAGACAGGACTACHVGGGTATCTA

ATCC). Identification of individual sequences from the pooled samples was 
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achieved by incorporating dual indexing strategy where two unique pairs of 8 base 

indices were attached to each sample. Prepared samples were purified by using 

AMPure XP purification system (Beckman Coulter, Takeley, UK) prior to 

sequencing.  

Amplicon PCR reactions contained 25 µL of 2x KAPA HiFi HotStart 

ReadyMix (Roche Diagnostics, West Sussex, England), 10 µL of each of the 

primers, and 5 µL of the DNA template. Therefore, the total volume of the reaction 

mix was 50 µL. PCR amplification was carried out using a 2720 Thermal Cycler 

(Applied Biosystems, Foster City, California, USA). The amplification parameters 

were as follows: initial denaturation at 95°C for 3 min followed by 30 cycles 

consisting of three 30 s steps including denaturation at 95°C, annealing at 55°C, and 

extension at 72°C. The process was completed by final elongation stage at 72°C for 

2 min. Obtained amplicons were quantified by using Quan-It dsDNA High 

Sensitivity Assay Kit (Invitrogen, USA). Additionally, samples were normalized by 

dilution to equimolar concentrations prior to library preparation and sequencing. 

3.3.3.3 High-throughput sequencing 

16S rRNA amplicons from the V3 and V4 regions were sequenced on a 

MiSeq platform in the Teagasc sequencing facility, in accordance with standard 

Illumina sequencing protocols. Paired-end reads were assembled using FLASH 

(FLASH: fast length adjustment of short reads to improve genome assemblies). 

Denoising, chimera detection and clustering into operational taxonomic units were 

performed using USEARCH (Version 7.0-64 bit). Taxonomy was assigned using 

BLAST against the SILVA database release 123. Alpha diversity was calculated in 
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QIIME (v1.9.0) (http://qiime.org). Further data analysis was carried out using 

Phyloseq package in R (www.r-project.org). 

3.3.4 Analysis of acetic, propionic and butyric acid 

Acetic, propionic and butyric acids were recovered from cheese matrix by 

steam distillation and subsequently quantified by ligand exchange, ion-exclusion 

HPLC as described by Kilcawley, Wilkinson, and Fox (2001), with slight 

modifications. Briefly, 5 g of grated cheese samples, 10 mL of 10% (wt/vol) H2SO4 

(Sigma-Aldrich, Arklow, Ireland), 1 mL of valeric acid (Sigma-Aldrich, Arklow, 

Ireland) of concentration 1 mg/mL, one drop of silicon antifoaming agent (Sigma-

Aldrich, Arklow, Ireland), and 10 mL of distilled water were added to a distillation 

tube prior to distillation (2100 Kjeltec Distillation unit, Foss). The first 100 mL of 

distillate was collected into a flask, mixed gently and representative distillate 

samples were filtered using 0.2-μm nylon syringe filters (Agilent Technologies, 

Germany) into HPLC vials (Agilent Technologies, Germany). Recovery of short-

chain carboxylic acids from cheese matrix by steam distillation was checked based 

on recovery of valeric acid, which was added as an internal standard. 

The filtered samples were then analyzed for acetic, propionic and butyric acid 

content using HPLC (1260 Infinity, Agilient Technologies) equipped with Rezex 

RHM-Monosaccharide H+ (8%) column (Phenomenex, Cheshire, UK) under the 

following working conditions: sample injection volume, 40 µL; mobile phase, 0.01 

N sulphuric acid (isocratic); flow rate, 0.7 mL/min; column temperature, 50°C; run 

time, 50 min; detection at 220 nm (UV detector). The quantification of analytes was 

based on the external standard method as described by Kilcawley et al. (2001). 

Results were expressed as mg/kg of cheese samples. 



Microbial and volatile profile of Maasdam cheese 

 

 

104 
 

3.3.5 Analysis of volatiles 

Volatiles in cheese at 140 d of ripening were determined using gas 

chromatography–mass spectrometry (GC-MS). Grated cheese samples (4 g) were 

placed in a 20 mL screw capped amber SPME vial (Apex Scientific, Maynooth, 

Ireland) and equilibrated to 40°C for 10 min with pulsed agitation of 5 s at 500 rpm. 

Sample introduction was accomplished using a Shimadzu AOC 5000 Autosampler. 

A single 50/30 µm CarboxenTM/divinylbenzene/polydimethylsiloxane 

(DVB/CAR/PDMS; Agilent Technologies) fiber was used. The SPME fiber was 

exposed to the headspace above the samples for 20 min at depth of 1 cm at 40°C. 

The fiber was retracted and injected into the GC inlet and desorbed for 2 min at 

250°C. Injections were made on a Shimadzu 2010 Plus GC with an Agilent DB-624 

UI (60 m × 0.32 mm ×1.8 μm) column using a split/splitless injector with a 1/10 

split. A merlin microseal was used as the septum. The temperature of the column 

oven was set at 40°C, held for 5 min, increased at 5°C/min to 230°C, then increased 

at 15°C/min to 260°C, yielding total GC run time of 50 min. The carrier gas was 

helium held at a constant flow of 1.2 mL/min. The detector was a Shimadzu TQ8030 

mass spectrometer detector, run in single quadrupole. The ion source temperature 

was 220°C and the interface temperature was set at 260°C. The MS mode was 

electronic ionization (70 V) with the mass range scanned between 35 and 250 amu. 

Compounds were identified using mass spectra comparisons to the NIST 2014 mass 

spectral library, a commercial flavor and fragrance library (FFNSC 2, Shimadzu 

Corporation, Kyoto, Japan) and an in-house library created using authentic 

compounds with target and qualifier ions and linear retention indices for each 

compound. Linear retention indices were calculated as per van Den Dool and Kratz 

(1963). Spectral deconvolution was also performed to confirm identification of 
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compounds using AMDIS. Batch processing of samples was carried out using 

metaMS (Wehrens, Weingart, & Mattivi, 2014). An auto-tune of the GC-MS was 

carried out prior to the analysis, to ensure optimal GC-MS performance. All analyses 

were performed in triplicate. 

3.3.6 Statistical analysis 

Three experimental cheese types (CT, CF and CFHHT) were each 

manufactured on three different occasions in replicate cheese-making trials. Analysis 

of variance (ANOVA), using IBM SPSS software version 24 (IBM Corp., 2016), 

was applied to determine the effect of treatment on formation of VOC. A split-plot 

design was used to determine the effect of treatment, ripening time and their 

interactions on Lactobacillus helveticus, PAB and NSLAB count and levels of short-

chain carboxylic acids (acetate, propionate and butyrate). Analysis for the split-plot 

design was carried out using the PROC MIXED procedure of SAS software version 

9.3 (SAS Institute Inc., 2011). Tukey’s multiple-comparison test was used for paired 

comparison of treatment means at a 5% level of significance. 

3.4 Results and discussion 

3.4.1 Cheese composition 

The compositional parameters of cheeses were described in detail by 

Lamichhane et al. (2018) and in Supplementary Table 3.1. Briefly, except for levels 

of moisture in non-fat substance, all other compositional parameters of experimental 

cheeses were not statistically different. Cheeses made from cheese milk containing 

HHT centrifugate had higher (P < 0.05) levels of moisture in non-fat substance than 

cheeses made from centrifuged milk or control cheeses. This was attributed to the 
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negative effect of HHT centrifugate (incorporated at levels of approximately 6 to 10 

% of the total cheese milk weight, depending on the protein content of centrifugate) 

on syneresis of rennet-induced milk gels. The mean moisture content of CFHHT 

cheese was ~3% higher than that of CT and CF cheeses; however, the data did not 

differ statistically (P = 0.057). 

3.4.2 Growth and viability of Lactobacillus helveticus, PAB, and NSLAB 

Mean viable counts of Lactobacillus helveticus in all experimental cheeses 

decreased (P < 0.001) from ~10
7 

cfu/g at 1 d and 11 d to ~10
4.5

 cfu/g at 41 d (Figure 

3.1A), indicating lysis during warm room ripening. Similar trends have previously 

been reported in Swiss-type cheese (White, Broadbent, Oberg, & McMahon, 2003; 

Sheehan, Wilkinson, & McSweeney, 2008; O’Sullivan, McSweeney, Cotter, Giblin, 

& Sheehan, 2016). As the increased number of NSLAB would influence the 

accuracy of Lactobacillus helveticus counts (O’Sullivan et al., 2016), we did not 

enumerate Lactobacillus helveticus beyond 41 d. As expected, the mean viable count 

of PAB increased (P < 0.001) in all experimental cheeses during the warm room 

ripening, from ~10
6.5 

cfu/g at 11 d to ~10
8
 cfu/g at 41 d (Figure 3.1B). The increase 

in PAB count during the warm room ripening stage was consistent with previous 

results for Grevé (Rehn et al., 2011) and Swiss-type cheeses (O’Sullivan et al., 

2016). The count decreased slightly thereafter to ~10
7
 cfu/g during cold storage 

(4°C). 
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Figure 3.1. The effect of milk pre-treatments on average count of (A) Lactobacillus 

helveticus, (B) propionic acid bacteria (PAB), and (C) non-starter lactic acid bacteria 

(NSLAB) of Maasdam cheeses during ripening. Milk pre-treatments: control (●); 

centrifugation (▼); and centrifuged milk containing high heat-treated centrifugate 

(○). Data are means of data from three replicate trials. 

 

Ripening time (day)

0 10 20 30 40 50

L
. 

h
e

lv
e

ti
c

u
s
 (

lo
g

 c
fu

/g
 c

h
e
e
s
e
)

0

1

2

3

4

5

6

7

8

Control 

CF+HHT

CF

A

 

Ripening time (day)

0 20 40 60 80 100 120 140 160 180 200

P
A

B
 (

lo
g

 c
fu

/g
 c

h
e
e

s
e
)

0

1

2

3

4

5

6

7

8

Control 

Bactofuged + UHT-treated bactofugate

Bactofuged 

B

 

Ripening time (day)

0 20 40 60 80 100 120 140 160 180 200

N
S

L
A

B
 (

lo
g

 c
fu

/g
 c

h
e

e
s

e
)

0

1

2

3

4

5

6

7

8

Control 

Bactofuged + UHT-treated bactofugate

Bactofuged 

C



Microbial and volatile profile of Maasdam cheese 

 

 

108 
 

Although counts of NSLAB were very low at 1 and 11 d of ripening, their 

levels in all cheeses increased to ~10
8
 cfu/g at 41 d of ripening and leveled-off 

during further storage (Figure 3.1C). Sheehan et al. (2008) also observed a similar 

trend in Swiss-style cheeses. NSLAB in cheese can originate from milk, processing 

equipment or the processing environment, and counts are reported to be less than 10
2
 

cfu/g in young cheese made under good sanitary conditions with high quality milk 

(Steele, Budinich, Cai, Curtis, & Broadbent, 2006). Pasteurization of milk drastically 

reduces the number of milk microorganisms; however, some of these milk 

microorganisms can survive pasteurization and can grow during ripening of cheese 

(Grappin et al., 1997; Jordan et al., 1999; Johnson, 2001; Quigley et al., 2013). 

Contrary to our result, O’Sullivan et al. (2016) observed high levels of NSLAB 

(~10
6
 cfu/g) at 1 d of ripening in Swiss-type cheese, and the authors speculated that 

they might have originated from the processing environment during cheese 

manufacture. The rapid increase in numbers of NSLAB during warm room ripening 

is attributed to elevated temperature (23°C), which accelerates the metabolic 

activities of microorganisms (Beresford et al., 2001; De Filippis, Genovese, Ferranti, 

Gilbert, & Ercolini, 2016), and availability of substrates, such as sugars, nucleic 

acids and lactate, from metabolism of starters and their cell lysate (Steele, 

Broadbent, & Kok, 2013; Ortakci, Broadbent, Oberg, & McMahon, 2015). NSLAB 

contribute to cheese maturation through production of enzymes and metabolites 

(Settanni & Moschetti, 2010). No significant effect of treatment was observed for 

mean counts of NSLAB, L. helveticus, and PAB during ripening (Table 3.1). 
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Table 3.1. Summary of the effects of treatment, ripening time and their interactions 

on microbiology and short-chain carboxylic acids profile of Maasdam cheeses
1
 

Parameter Treatment Time Interactive effect 

(treatment × time) 

L. helveticus NS *** NS 

PAB NS *** NS 

NSLAB NS *** NS 

Acetic acid  NS *** NS 

Propionic acid NS *** NS 

Butyric acid *** *** NS 

1
Abbreviations: PAB, Propionic acid bacteria; NSLAB, non-starter lactic acid 

bacteria 

***P < 0.001, NS = P > 0.05 
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3.4.3 Microbial composition of Maasdam cheese 

Post-DNA extraction, amplicons of the bacterial 16S rRNA gene were 

generated by PCR. These amplicons were then subjected to next-generation 

sequencing, generating an average of 253,870 good quality reads per sample. Alpha-

diversity was calculated for each sample to analyze species richness and diversity 

within each sample. Chao 1 values, which represent species richness, ranged from 16 

to 65 while the Shannon index ranged from 0.20 to 2.66. Analysis of these data 

revealed that the bacterial diversity fluctuated throughout ripening ; however, an 

overall increase in diversity was observed, in contrast to a similar study conducted 

by O'Sullivan et al. (2015) in Swiss-type cheese with thermophilic starters 

Streptococcus thermophilus and Lactobacillus helveticus. 

Differences in microbial taxa and shifts in relative abundance of the 

population were revealed between CT, CF and CFHHT cheeses. Phylogenetic 

assignment of the sequences revealed presence of bacteria belonging to 7 phyla: 

Actinobacteria, Bacteroidetes, Cyanobacteria, Deferribacteres, Firmicutes, 

Proteobacteria, and Saccharibacteria. As expected, Firmicutes dominated across all 

samples, with relative abundance ranging between 78.72-99.96% in the CT cheeses, 

67.83-99.86% in the CF cheeses and 76.63-99.89% in the CFHHT cheeses. The 

second most abundant phylum was Actinobacteria, followed by Proteobacteria. In 

addition, a rapid increase in abundance of the bacteria belonging to Actinobacteria 

phylum can be observed after 41d of ripening (post warm room stages) in all 

experimental cheese types. 

Lactococcus, Lactobacillus, Propionibacterium and Leuconostoc were the 

dominant genera of Maasdam cheese throughout ripening, accounting for more than 
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99% relative abundance altogether (Figure 3.2). Before warm room ripening (i.e., 

until 11 d post-production), the relative abundance of major microorganisms (at 

genus level) were similar between treatments; Lactococcus spp. (ranged from 86.8 to 

94.5%) dominated the curd population followed by Lactobacillus (4.8-12.4%). 

Leuconostoc (0.15-0.4%) and Propionibacterium (0.14-0.35%) were detected in very 

small proportions during this period. These results were expected as all these genera 

were added as starters or secondary starters at a similar proportion for all 

experimental cheeses. 

In agreement with the results from the culture-based approach, the molecular 

approach also revealed major differences in microbial populations within the cheese 

matrix between pre- and post-warm room ripening. As expected, the relative 

abundance of Propionibacterium was higher after warm room ripening than before 

warm room ripening in all experimental cheeses. An increase in the level of PAB by 

~10
1.5

 cfu/g during warm room ripening was also observed in the culture-based 

method. Although the overall relative abundance of Lactococcus decreased after 

warm room ripening, it was still the most dominant genus in all experimental 

cheeses; Lactobacillus and Propionibacterium were the second most abundant 

genera followed by Leuconostoc. During maturation, in general, some lactic acid 

bacteria (LAB) within the starter cultures die off, and their metabolites (e.g., lactate) 

and carbon sources from cell lysate (e.g., ribose) favor the growth of secondary 

starter, such as PAB, and NSLAB (Ortakci et al., 2015). Moreover, the elevated 

temperature (23°C) during warm room ripening accelerates the metabolic activity of 

microorganisms (Beresford et al., 2001; De Filippis et al., 2016).
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Figure 3.2. Relative abundance of bacteria at genus level within the three experimental cheese types during maturation, i.e., CT = control 

cheese, CF = cheese made from centrifuged milk, CFHHT = cheese made from centrifuged milk containing high heat-treated centrifugate. Data 

are means of data from three replicate trials. 
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Subtle differences were observed in the composition of dominant microflora 

(i.e., Lactococcus, Lactobacillus, Propionibacterium and Leuconostoc) between 

treatments; however, the differences were not consistent throughout ripening. This 

suggests that milk centrifugation as well as incorporation of HHT centrifugate into 

cheese milk had minimal impact in the composition of major genera of Maasdam 

cheese, which is consistent with the results from selective-media based approach. 

Apart from major microflora, many (~40) other genera were also detected; 

however, their relative abundances were very low, altogether ranging from 0.04 to 

0.95%. Among these subdominant genera, Enterococcus, Stenotrophomonas, 

Paenibacillus, Pseudomonas, and Acinetobacter were detected in relatively higher 

abundance. The presence of Enterococcus was detected at all-time points in CT and 

CF cheeses and its population increased rapidly from 41 d of ripening. This genus 

was not detected in CFHHT cheeses at 1 d of ripening; however, it was detected 

thereafter. Enterococci have been previously isolated from traditional cheeses 

produced with raw or pasteurized milk and are considered to originate from bulk 

tank, milking machine, processing equipment or the processing environment 

(Gelsomino, Vancanneyt, Cogan, Condon, & Swings, 2002; Nieto-Arribas et al., 

2011). Although enterococci have shown a potential role in ripening and flavor 

development in some artisanal cheeses and cheeses made from raw milk (Beuvier et 

al., 1997; Beresford et al., 2001; Nieto-Arribas et al., 2011), the significance of the 

presence of this genus within Maasdam cheese matrix is not yet fully understood, 

and requires further investigation. 

Pseudomonas, Stenotrophomonas, and Acinetobacter were present in all 

experimental cheese types but in different proportions. The highest abundance of 

Pseudomonas was observed in CT cheeses, particularly at 1, 11 and 97 d of ripening. 
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Pseudomonas spp. (psychrotrophic bacteria) have previously been isolated from 

cheese matrix (O'Sullivan et al., 2015), which can cause flavor and texture defects in 

cheese if they are present in high numbers (Champagne et al., 1994). 

Stenotrophomonas was present uniformly across the sample groups but not across 

time points. Although Acinetobacter has frequently been detected in several types of 

cheese, such as Camembert (Addis, Fleet, Cox, Kolak, & Leung, 2001) and Swiss-

style (O'Sullivan et al., 2015), its role on ripening of cheese is not fully understood. 

Clostridium sensu stricto is a subset of the species of Clostridium that form a 

distinct cluster in the 16S rRNA tree (cluster I) (Gupta & Gao, 2009). Nearly all 

species within this genus produce butyric acid as a major fermentation product 

(Wiegel, 2009). Clostridium spp. associated with late blowing defect (LBD) of 

cheese, including Clostridium tyrobutyricum and Clostridium butyricum, also fall 

within this group (Collins et al., 1994; Brändle, Domig, & Kneifel, 2016). Although 

the overall percentage relative abundance of Clostridium sensu stricto was very low 

(below 0.05%), the overall percentage relative abundance in CT cheeses (ranged 

between 0.00 and 0.02% throughout ripening) was relatively higher than those in CF 

(0.00 to 0.002%) and CFHHT (0.00 to 0.003 %) cheeses. This may be explained by 

the removal of Clostridium spores from milk by centrifugation. It is well known that 

the centrifugation can remove more than 97% of Clostridium spores from milk (Su et 

al., 2000; Te Giffel et al., 2004). 

3.4.4 Levels of acetic, propionic and butyric acids 

Short-chain carboxylic acids contribute to the aroma profile of most cheese 

varieties (Kilcawley et al., 2001). Starter, secondary starter and non-starter bacteria 

present in the cheese matrix can produce short-chain volatile carboxylic acids, 
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including propionic, acetic and butyric acids. Propionic acid is one of the major 

products of lactate metabolism by PAB, and hence it was detected in all 

experimental cheeses at high levels (Figure 3.3A), particularly during warm room 

ripening, with a mean level of ~50 mg/kg cheese at 11 d (at start of warm ripening) 

and ~4,000 mg/kg cheese at 41 d (at end of warm room ripening). Similar trends 

have been reported in other studies (Huc, Challois, Monziols, Michon, & Mariette, 

2014; O’Sullivan et al., 2016). No significant effect of treatment was observed 

(Table 3.1). In Swiss-type cheese, propionic acid contributes to “sweet” or “nutty” 

notes characteristic of these varieties (Kilcawley et al., 2001). 

The production of acetic acid followed a similar trend to that of propionic 

acid during ripening of cheese. Acetic acid in cheese can be formed from several 

pathways, including propionic acid fermentation by PAB, and metabolism of lactate 

and citrate by LAB (Sheehan et al., 2008; Huc et al., 2014). The mean level of acetic 

acid at 1 and 11 d of ripening was only ~200 mg/kg cheese. However, the level 

increased rapidly during warm room ripening to ~2,200 mg/kg cheese at 41 d (Figure 

3.3B). The production of acetate in all experimental cheeses during warm room 

ripening was most likely due to activity of starter LAB, NSLAB and PAB. No 

significant effect of treatment was observed (Table 3.1). 

 



Microbial and volatile profile of Maasdam cheese 

 

 

116 
 

 

Figure 3.3. The effect of milk pre-treatments on the mean level of (A) propionic 

acid, (B) acetic acid, (C) butyric acid during ripening of Maasdam cheeses. Milk pre-

treatments: control (●); centrifugation (▼); and centrifuged milk containing high 

heat-treated centrifugate (○). Data are means of data from three replicate trials. 
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Significant effects of treatment and time were observed for mean levels of 

butyric acid during maturation (Table 3.1). The mean levels of butyric acid in CT 

cheeses were higher (P < 0.05) than in CF and CFHHT cheeses (Figure 3.3C), which 

coincided with the higher relative abundance of Clostridium sensu stricto in CT 

cheeses than CF and CFHHT cheeses, as revealed by high-throughput sequencing. 

Higher levels of butyric acid in the CT cheeses were most probably due to butyric 

acid fermentation by Clostridium, which may be removed during centrifugation in 

CF and CFHHT milks. 

A high level of butyric acid can influence the flavor profile of cheese and 

may result in down-graded cheese. Some species of Clostridium produces carbon 

dioxide and hydrogen via butyric acid fermentation, which can impair the quality of 

eyes and also increase the risk of slits and crack formation in cheese (Sheehan, 2011; 

Gómez-Torres, Garde, Peirotén, & Ávila, 2015). The level of butyric acid in late-

blown cheeses varies among studies; in semi-hard (Bogovič Matijašić, Koman 

Rajšp, Perko, & Rogelj, 2007) and Gouda cheese (Klijn, Nieuwenhof, Hoolwerf, van 

der Waals, & Weerkamp, 1995), butyric acid contents higher than 200 mg/kg
 
have 

been found to be associated with the LBD, and the severity of this defect was greater 

when the level of butyric acid was higher. However, it should be noted that butyric 

acid within the cheese matrix can also originate from lipolysis during ripening (Le 

Bourhis et al., 2007; Garde, Ávila, Gaya, Arias, & Nuñez, 2012). Although the level 

of butyric acid was significantly higher in CT cheeses than CF and CFHHT cheeses, 

we did not observe LBD in the CT cheeses. In the current study, the level of butyric 

acid was below 200 mg/kg in all experimental cheeses over six months of ripening. 

These results are in agreement with the studies of Le Bourhis et al. (2007) and 

Beuvier et al. (1997), who also observed butyric acid contents of less than 200 
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mg/kg in normal Swiss-type cheeses. The comparatively low level of butyric acid in 

the CT cheeses was most probably due to low levels of Clostridium spores in the 

cheese milk obtained from a local dairy company during spring-summer (May-July); 

during this period, contamination of milk with Clostridium is less likely, since the 

milk supply was from spring-calving herds fed on pasture grass rather than silage 

[the main source of clostridial spore contamination in milk; Sheehan (2011)]. The 

levels of butyric acid between CF and CFHHT cheeses were not statistically 

different. 

3.4.5 Volatile profile of Maasdam cheese 

In total, 28 major volatile compounds were identified at 140 d of ripening, 

consisting of 8 ketones, 7 acids, 4 alcohols, 4 esters, 2 aldehydes, 2 sulphur 

compounds and a hydrocarbon (Table 3.2). The volatile flavor compounds in cheese 

are the result of complex biochemical reaction during maturation, such as, 

proteolysis, lipolysis and glycolysis (McSweeney, 2004). The correct balance and 

concentration of a wide range of flavor compounds gives the characteristic flavor of 

different cheese varieties. Centrifugation of cheese milk and incorporation of HHT 

centrifugate into centrifuged milk had virtually no impact on the formation of 

volatile compounds at 140 d of ripening of Maasdam cheese. However, as expected, 

the mean relative abundance of butanoic acid (butyric acid) was lower (P < 0.05) in 

CF and CFHHT cheeses than in CT cheeses (Table 3.2), attributed to the removal of 

butyrate-fermenting Clostridium spores from cheese-milk by the centrifugation 

process. Although butanoic acid at low levels contributes positively to the aroma of 

the cheese, it gives an undesirable rancid note at high concentration (Curioni & 

Bosset, 2002). Propionic and acetic acid were also detected in higher abundance in 
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all experimental cheeses, as expected. The presence of hexanoic and octanoic acids 

within the experimental cheeses was attributed to lipolytic activity of enzymes 

(Delgado, González-Crespo, Cava, García-Parra, & Ramírez, 2010). 

Only two aldehydes, i.e., benzaldehyde and 2-methylbutanal, were detected 

in all experimental cheeses, and these are derived from Phe and Ile, respectively 

(Yvon & Rijnen, 2001) via α-keto acids by the transaminase pathway (Smit, Smit, & 

Engels, 2005). Branched chain aldehydes, including 2-methylbutanal, are generally 

detected in high levels in cheese containing PAB (Thierry, Maillard, Richoux, 

Kerjean, & Lortal, 2005), and are responsible for dark chocolate/malty aroma notes 

(Singh, Drake, & Cadwallader, 2003; Bertuzzi et al., 2017). Aldehydes are relatively 

unstable compounds and thus can further catabolize to other groups of volatile 

compounds, such as, alcohols or carboxylic acids. It has been reported that 3-

methylbutanal and 2-methylbutanal can oxidize to 3-methylbutanoic acid and 2-

methylbutanoic acid, respectively, and these acids contribute to cheesy/sweaty/rancid 

notes in cheese (Yvon et al., 2001). Alcohol dehydrogenase from LAB can convert 

2-methylbutanal to 2-methyl-1-butanol which has fruity/waxy/sweaty-fatty acid 

aroma notes (Singh et al., 2003). 

Ketone flavor compounds, such as, 2,3-butanedione (responsible for 

creamy/buttery aroma note), acetoin and 2-butanone, are considered important 

volatile compounds in Maasdam cheese, and are likely generated from metabolism 

of citrate by Lactococcus lactis and Leuconostoc spp. (Engels, Dekker, de Jong, 

Neeter, & Visser, 1997; Le Bars & Yvon, 2008). Detection of these ketone flavor 

compounds in all experimental cheeses at higher abundance is not surprising because 

Lactococcus and Leuconostoc spp. were added as starter culture, and these genera 

were also detected within the cheese matrix throughout ripening, as revealed by 
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high-throughput sequencing. Interestingly, 2,3-pentanedione was only detected in CF 

and CFHHT cheeses, whereas 2-hexanone was only detected in CT cheeses; 

however, these compounds were detected in only one trial out of three trials. 

Pentane-2,3-dione has been suggested to be produced from an intermediate of Ile 

metabolism (Imhof, Glättli, & Bosset, 1995). Heptan-2-one, one of the important 

methyl ketones in Parmigiano-Reggiano cheese types (Qian & Reineccius, 2002), 

derived from the oxidation of octanoic acid, was also present in all experimental 

cheeses and likely contributes to cheesy/fruity aroma notes. 

Ethanol and 2-butanol were the two most abundant alcohols detected in all 

experimental cheeses. Ethanol may be produced by the heterofermentative LAB 

present within the cheese matrix (Thierry, Maillard, Richoux, & Lortal, 2006). The 

abundance of ethanol and short-chain acids, such as, propionic, butyric and hexanoic 

acids, inevitably results in ethyl esters via esterification or alcoholysis from 

microbial activity (Hong et al., 2018). Ethanol is considered as the limiting factor for 

ethyl esters formation in different cheese types, including Swiss cheese (Thierry et 

al., 2006). Therefore, modulation of ethanol level can potentially alter the fruity 

flavor of Swiss (Thierry et al., 2006) and Camembert (Hong et al., 2017) cheeses.  

Esters, especially ethyl esters, are responsible for fruity aroma notes in some 

cheese varieties, such as Parmesan and Swiss-type cheeses (Engels et al., 1997; 

Thierry et al., 2006). Ethyl propanoate was one of the most abundant esters in all 

experimental cheeses, in agreement with the results previously reported by other 

authors for cheeses containing PAB (Thierry et al., 2005; Thierry et al., 2006). Ethyl 

butanoate, propyl propanoate and ethyl hexanoate were also detected.  
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Volatile sulphur compounds are considered to be an important contributor to 

the flavor of different cheese types, and these compounds are reported to have very 

low-odor threshold values (Martínez-Cuesta, Peláez, & Requena, 2013). Dimethyl 

sulfide [responsible for rotten cabbage/cheese/vegetative/sulphur aroma notes; Smit 

et al. (2005)] and carbon disulfide were the two sulphur compounds present in all 

experimental cheeses at 140 d of ripening, which are considered important flavor 

compounds of Swiss cheese released from metabolic activity of PAB (Adda, Gripon, 

& Vassal, 1982). These sulphur-containing compounds are derived from the 

catabolism of sulphur AA (Met and Cys) by microorganisms during ripening (Smit 

et al., 2005; Liu, Prakash, Nauta, Siezen, & Francke, 2012). 

Toluene was detected in all experimental cheeses, and may originate from the 

degradation of β-carotene (Verzera et al., 2010; O'Callaghan et al., 2017). Some 

studies have observed high levels of toluene in milk of cows fed on pasture grass 

(Villeneuve et al., 2013) and also in cheese made from milk of cows fed on pasture 

grass (O'Callaghan et al., 2017).  
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Table 3.2. Mean volatile compound peak areas from Maasdam cheese samples at 140 d of ripening
1
 

Volatile compounds LRI Ref. LRI
3
 

Experimental cheese groups
2
 

SEM P-value CT CF CFHHT 

Acids        

  Acetic acid 690 720 937,050
a
 892,939

a
 863,495

a
 42,910 NS 

  Propanoic acid 784 813 1,780,403
a
 1,796,587

a
 1,574,464

a
 138,686 NS 

  Butanoic acid 864 883 507,815
a
 200,039

b
 187,989

b
 63,928 * 

  3-Methylbutanoic   acid 917 924 17,441
a
 19,946

a
 15,435

a
 2,355 NS 

  2-Methylbutanoic acid 924 945 34,971
a
 38,769

a
 27,595

a
 5,155 NS 

  Hexanoic acid 1,052 1,074 109,023
a
 102,471

a
 93,513

a
 10,345 NS 

  Octanoic acid 1,244 1,264 9,755
a
 10,307

a
 9,382

a
 811 NS 

Alcohols        

  Ethanol 506 - 328,148
a 

277,956
a
 295,035

a
 30,099 NS 

  1-Propanol 612 611 11,263
a
 11,044

a
 25,842

a
 3,461 NS 

  2-Butanol 648 624 229,554
a
 69,075

a
 614,349

a
 179,338 NS 

  2-Methyl-1-butanol 789 794 22,266
a
 32,545

a
 25,350

a
 2,937 NS 

Aldehydes        

  2-Methylbutanal 700 700 8,163
a
 12,268

a
 10,572

a
 1,239 NS 

  Benzaldehyde 1,032 1,016 151,680
a
 101,440

a
 90,813

a
 32,465 NS 

Esters        

  Ethyl propanoate 737 744 44,917
a
 38,659

a
 42,970

a
 4,493 NS 

  Ethyl butanoate 826 830 24,229
a
 18,161

a
 17,146

a
 2,645 NS 

  Propyl propanoate 835 - 10,310
a
 6,582

a
 8,226

a
 1,274 NS 

  Ethyl hexanoate 1,024 1,028 6,041
a
 5,502

a
 4,455

a
 615 NS 

Ketones        

  Acetoin 778 782 2,423,512
a
 2,345,157

a
 1,829,257

a
 370,152 NS 

  Acetone 533 529 20,569
a
 12,568

a
 7,144

a
 3,736 NS 

  2,3-Butanedione 631 632 339,191
a
 308,814

a
 246,050

a
 44,948 NS 

  2-Butanone 639 630 1,705,995
a
 1,780,078

a
 4,570,336

a
 857,979 NS 
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Table 3.2 continue        

  2-Pentanone 730 733 18,254
a
 22,489

a
 20,644

a
 1,033 NS 

  2,3-Pentanedione 736 740 0.00
a
 5,465

a
 17,682

a
 5,943 NS 

  2-Hexanone 834 834 10,146
a
 0.00

a
 0.00

a
 3,378 NS 

  2-Heptanone 936 933 58,171
a
 38,408

a
 37,236

a
 6,968 NS 

Sulphur compounds        

  Dimethyl sulfide 538 532 593
a
 1,099

a
 814

a
 195 NS 

  Carbon disulfide 546 538 10,454
a
 10,360

a
 6,091

a
 1,212 NS 

Hydrocarbon        

  Toluene 794 788 42,593
a
 48,265

a
 41,576

a
 4,741 NS 

1
LRI = linear retention index; Ref. LRI = reference linear retention index 

2
Values within a row not sharing common superscripts differ significantly; data presented are the means of data from three replicate 

trials. CT, control cheese; CF, cheese made from centrifuged milk; CFHHT, cheese made from centrifuged milk containing high heat-

treated centrifugate 
3
Reference LRI for ethanol or propyl propanoate were not found; however, they have been identified correctly. 

*P < 0.05, NS = P > 0.05 
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It is well known that heat treatment changes the flavor profile of milk 

through production of volatile compounds from proteins (e.g., sulphur compounds 

from heat denaturation of whey protein), carbohydrates (via the non-enzymatic 

browning reactions) and lipids (e.g., formation of methyl ketones, lactones and 

aldehydes from degradation of milk fat; Calvo and de la Hoz, 1992). However, the 

volatile profile of cheese made from CF and CFHHT was not statistically different, 

suggesting that the VOC solely generated by the heat-treatment given to the 

centrifugate have minimal impact on the volatile profile of final cheese. 

Overall, the treatments applied to the milk had minimal impact on the volatile 

profile of Maasdam cheese, except for butyric acid levels, suggesting that 

centrifugation was a suitable method for controlling undesirable butyric acid 

fermentation without significantly altering the other VOC in Maasdam cheese. The 

level of butyric acid in the current study was not high (below 200 mg/kg cheese) in 

all experimental cheeses, suggesting that the milk was contaminated by low levels of 

Clostridium spores. Although levels of Clostridium spores may be higher in milk 

supplies other than those studied, this would not influence the findings of the current 

study, as it was focused on the influence of the milk pre-treatments (i.e., 

centrifugation and high heat treatment of centrifugate) on the microbial and volatile 

profile of the cheese and not on the influence of clostridia per se. 

Based on the relative abundance of volatiles present in the current study and 

the previous study of Engels et al. (1997), acetoin, 2-butanone, propionic acid, acetic 

acid, 2,3-butanedione, and butyric acid (at low levels) can be considered as key 

aroma compounds of Maasdam cheese. Sensory analysis of the cheeses would 

complement the volatile results, and this could be the focus for future studies. 
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3.5 Conclusions 

High-throughput sequencing in combination with a selective media-based 

approach revealed distinct differences in the composition of microbiota between pre- 

and post-warm room ripening. High-throughput sequencing facilitated a more 

detailed insight into the complexity of microbes within the Maasdam cheese matrix, 

and revealed subtle changes in both dominant and subdominant microbiota between 

treatments. Interestingly, except for butyric acid, treatments applied had minimal 

impact on other VOC in the fully ripened Maasdam cheeses. Overall, high-

throughput sequencing proved to be a useful method to profile the complex 

microbial population structure of Maasdam cheese during maturation; moreover, the 

centrifugation of milk prior to cheese-making can potentially control the level of 

butyric acid in Maasdam cheese without significantly altering the levels of other 

VOC. 
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3.6 Supplementary materials  

 

 

Separation

Pasteurization
PasteurizationPasteurization

Raw milk

Separation Centrifugation at 9000 x g

Skim milk Cream Centrifuged whole milk Centrifugate 

Cream Skim milk HHT-centrifugate

CFHHTCF Control

HHT (120°C
for 26 s)

 

Supplementary Figure 3.1. Flow charts of the preparation of cheese milks, i.e., 

control, centrifuged (CF) and centrifuged milk containing high heat-treated 

centrifugate (CFHHT). Abbreviations: HHT, high heat treatment, HHT-centrifugate, 

high heat-treated centrifugate. 
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Supplementary Table 3.1. Compositional parameters and pH at 11 d of ripening in 

Maasdam cheeses
1
 

Compositional factors 
Cheese types

2
 

SEM P- value 
CT CF CFHHT 

Moisture (%, wt/wt) 44.83
a
 44.15

a
 47.83

a
 0.72 0.057 

MNFS (%, wt/wt) 58.9
a
 58.14

a
 61.78

b
 0.63 0.013 

Protein (%, wt/wt) 24.04
a
 24.57

a
 23.44

a
 0.30 0.348 

Fat (%, wt/wt) 23.9
a
 24.07

a
 22.61

a
 0.44 0.376 

FDM (%, wt/wt) 43.31
a
 43.07

a
 43.29

a
 0.35 0.966 

Salt (%, wt/wt) 1.53
a
 1.50

a
 1.73

a
 0.05 0.183 

S/M (%, wt/wt) 3.41
a
 3.40

a
 3.61

a
 0.07 0.450 

Total calcium (mg/100 g) 821
a
 800

a
 837

a
 12.19 0.514 

pH (11 d) 5.28
a
 5.31

a
 5.27

a
 0.01 0.548 

Lactose (mg/100 g)      

1d 54.39
a 

41.82
a 

66.72
a 

16.26 0.861 

11 d 20.42
a 

43.72
a 

62.63
a 

15.07 0.585 

41 d 0.00
a
 0.00

a
 0.00

a
 0.00 - 

Galactose (mg/100 g)      

1 d 28.09
a
 29.57

a
 35.34

a
 4.11 0.798 

11 d 27.61
a 

27.26
a 

30.82
a 

4.22 0.947 

41 d 0.00
a
 0.00

a
 0.00

a
 0.00 - 

1
Abbreviations: CT, control cheese; CF, cheese made from centrifuged milk; 

CFHHT, cheese made from centrifuged milk containing high heat-treated 

centrifugate; MNFS, moisture in non-fat substance; FDM, fat in dry matter; S/M, 

salt-to-moisture ratio.
 

2
Values within a row not sharing common superscripts differ (P < 0.05); data are the 

mean of data from three replicate trials. 
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4.1 Abstract 

The individual roles of hydrolysis of αS1- and β-caseins, and calcium 

solubilization on the fracture properties of semi-hard cheeses, such as, Maasdam and 

other eye-type cheeses, remain unclear. In this study, the hydrolysis patterns of 

casein were selectively altered by adding a chymosin inhibitor to the curd/whey 

mixture during cheese manufacture, by substituting fermentation-produced bovine 

chymosin (FPBC) with fermentation-produced camel chymosin (FPCC), or by 

modulating ripening temperature. Moreover, the level of insoluble calcium during 

ripening was quantified in all cheeses. Addition of a chymosin inhibitor, substitution 

of FPBC with FPCC, or ripening of cheeses at a consistent low temperature (8 °C) 

decreased the hydrolysis of αS1-casein by ~95%, ~45%, or ~30%, respectively, after 

90 d of ripening, whereas ~35% of β-casein was hydrolysed in that time for all 

cheeses, except for those ripened at a lower temperature (~17%). The proportion of 

insoluble calcium as a percentage of total calcium decreased significantly from 

~75% to ~60% between 1 and 90 d. The rigidity or strength of the cheese matrix was 

found to be higher (as indicated by higher fracture stress) in cheeses with lower 

levels of proteolysis or higher levels of intact caseins, primarily αS1-casein. 

However, contrary to the expectation that shortness of cheese texture is associated 

with αS1-casein hydrolysis, fracture strain was significantly positively correlated with 

the level of intact β-casein and insoluble calcium content, indicating that the cheeses 

with low levels of intact β-casein or insoluble calcium content were more likely to be 

shorter in texture (i.e., lower fracture strain). Overall, this study suggests that the 

fracture properties of cheese can be modified by selective hydrolysis of caseins, 

altering the level of insoluble calcium or both. Such approaches could be applied to 

design cheese with specific properties. 
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4.2 Introduction 

Knowledge of fracture properties of cheese is important for understanding 

breakdown properties of cheese during mastication, in designing cheese texture 

suitable for size reduction operations (e.g., slicing, dicing or grating), and in 

understanding the reasons for formation of undesirable texture defects within the 

cheese matrix, such as, slits and cracks (Luyten, 1988). 

Development of undesirable slits and cracks within the cheese matrix is an 

international problem in the manufacture of Swiss, Dutch and related eye-type 

cheeses, leading to downgrading of the product, resulting in lost revenue to 

manufacturers (Grappin, Lefier, Dasen, & Pochet, 1993; White, Broadbent, Oberg, 

& McMahon, 2003; Guggisberg et al., 2015). To date, the exact causes for 

development of such defects are not known. However, excessive production of gas, 

an unsuitable cheese texture, or both, have been considered as root causes for 

occurrence of this defect (Daly, McSweeney, & Sheehan, 2010; Rehn et al., 2011). If 

the cheese texture is short or brittle (i.e., fracturing of cheese matrix at a relatively 

small deformation), the cheese matrix is no longer able to withstand increased gas 

pressure during eye-formation or storage, leading to formation of cracks and splits. 

Although the exact reasons for a cheese to become short or brittle during ripening are 

not yet fully understood, proteolysis, partial solubilization of colloidal calcium 

phosphate associated with para-casein matrix of the curd during ripening, or both, 

have been considered as possible reasons (Lucey, Johnson, & Horne, 2003; Daly et 

al., 2010). However, the role of primary proteolysis and level of insoluble calcium 

on fracture behaviour of brine-salted semi-hard cheese has not yet been fully 

elucidated. 
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From a structural perspective, αS1-casein and β-casein are the two important 

caseins within the cheese matrix, and these undergo varying degree of hydrolysis 

during ripening in different cheese varieties through the action of residual coagulant 

and plasmin, respectively (Sheehan, O’Sullivan, & Guinee, 2004b; Kelly, 

O’Flaherty, & Fox, 2006; Lamichhane, Kelly, & Sheehan, 2018b). Studies have 

suggested that the caseins have different hydrophilic and hydrophobic blocks. For 

example, αS1-casein has a hydrophilic region between strong hydrophobic regions, 

whereas the β-casein has a hydrophilic and a hydrophobic region at N- and C-

terminal, respectively (Lucey et al., 2003). Thus, these caseins are held together by 

various molecular forces within the cheese matrix. Moreover, calcium associated 

with casein enhances the cross-linking of casein within the cheese matrix. Therefore, 

it is reasonable to assume that both hydrolysis patterns of casein and solubilization of 

colloidal calcium during ripening alter the casein interactions, which may in turn 

influence the textural, rheological and fracture behaviour of cheese. A better 

understanding of the individual contribution of such factors may allow the 

development of specific strategies to design cheese with specific properties. 

Unlike high maximum scald temperatures (~55°C) in Emmental cheese 

manufacture, cheese curds are cooked only to ~40°C during manufacture of most 

semi-hard cheeses, such as Maasdam and Jarlsberg (Fröhlich-Wyder et al., 2017), 

which is not sufficient to inactivate or reduce the residual chymosin activity, 

resulting in extensive breakdown of αS1-casein during ripening (McGoldrick & Fox, 

1999). The role of chymosin-mediated proteolysis on texture properties of Cheddar 

cheese has previously been studied by inhibition of the residual chymosin by the 

addition of a chymosin inhibitor to the curd-whey mixture (O'Mahony, Lucey, & 

McSweeney, 2005). However, little is known about the role of chymosin-mediated 
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proteolysis on the fracture behavior of semi-hard Swiss, Dutch and related eye-type 

cheeses. Some semi-hard eye-type cheeses are ripened in a warm room (~23°C) for 

4-6 weeks for the development of eyes. However, the effect of such elevated 

ripening temperature on solubilization of calcium and hydrolysis of casein is also not 

fully understood. 

The aim of this study was to decouple and explore the individual role of 

primary proteolysis (both of αS1- and β-casein) and insoluble calcium on the fracture 

properties of washed-curd brine-salted semi-hard cheese. 

4.3 Materials and methods 

4.3.1 Milk supply and cheese manufacture 

Raw milk was obtained from the Teagasc Animal and Grassland Research 

and Innovation Centre, Moorepark, Ireland. Raw milk was first separated into skim 

milk and cream using bench top centrifugal separator. Using skim milk and cream, 

cheese milks were standardized to a protein to fat ratio of 1.10:1.00, with an average 

protein and fat content of 3.52 % (w/w) and 3.21 % (w/w), respectively. The 

standardized cheese-milks were then pasteurized at 72°C for 15 sec (MicroThermics, 

Raleigh, NC, USA) and stored at 4°C overnight prior to cheese manufacture. 

Washed-curd brine-salted semi-hard cheeses were manufactured in triplicate 

trials over a 3 month period. Standardized and pasteurized cheese milks were placed 

into jacketed cheese vats (Pierre Guerin Technologies, Niort, France) with each vat 

containing 11 kg cheese milk, for each replication. Each vat contained automated 

variable speed cutting and stirring equipment. All cheese milks were inoculated at 

32°C with frozen direct vat inoculation cultures: consisting of (1) R-604 (180 mg/kg 

milk; Chr. Hansen Ltd., Cork, Ireland), containing Lactococcus lactis ssp. cremoris, 
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Lactococcus lactis ssp. lactis; and (2) LH-B02 (9 mg/kg milk; Chr. Hansen Ltd., 

Cork, Ireland), containing Lactobacillus helveticus. Propionic acid bacteria were not 

inoculated into the cheese milks to avoid subsequent eye-formation during ripening 

of cheese which would not permit measurement of texture parameters.  

All cheese milks were pre-acidified to 6.55 using 4% (w/v) lactic acid 

(Sigma-Aldrich, Arklow, Co. Wicklow, Ireland) prior to rennet addition. After 40 

min of pre-ripening, the coagulant, fermentation-produced bovine chymosin (FPBC; 

CHY-MAX Plus, ~200 international milk clotting units (IMCU)/mL; Chr. Hansen 

Ltd., Cork, Ireland) was added at a level of 2 mL/11 kg cheese milk in 3 out of 4 

vats, whereas fermentation-produced camel chymosin (FPCC; CHY-MAX M, ~200 

IMCU/mL; Chr. Hansen Ltd., Cork, Ireland), was added at a level of 1.5 mL/11 kg 

cheese milk in the fourth vat. Coagulants were diluted ~1:10 with deionized water 

prior addition. The addition rates of both FPBC and FPCC to milk were 

predetermined through a series of rheological experiments where the levels of the 

coagulants were adjusted to achieve coagula of similar gel strength (35 Pa) after a set 

period of ~45 min. 

All gels were cut at a constant firmness (Gʹ) value of 35 Pa (as measured 

using a small-amplitude oscillatory rheometer, AR 2000ex, TA Instruments, New 

Castle, DE, USA) and the resultant curd/whey mixture was allowed to heal for 5 min 

before being stirred continuously for another 10 min. Stirring was then stopped and a 

portion of whey (0.35 kg/kg cheese milk) was removed. Just after whey removal, in 

one vat out of four vats, Pepstatin A (synthetic; Enzo life science, Colleton Cres, 

Exeter, UK) was added to the curd/whey mixture at a rate of 10.0 μmol/kg cheese 

milk and evenly distributed by continuous stirring during cooking. Pepstatin A is an 

inhibitor of aspartic proteases, including chymosin, pepsin, and cathepsin D 
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(Marciniszyn, Hartsuck, & Tang, 1976). After whey removal, reverse osmosis water 

at ~50°C (0.25 kg/kg cheese milk) was added to each cheese vat to cook the curd to 

37°C at a rate of 0.2°C/min with continuous stirring. 

Whey was drained when the curd pH reached 6.35, and the curds were 

collected into moulds and pressed vertically under increasing pressure from 40 to 75 

kPa for ~4.5 hours. When the pH of the cheese curds reached ~5.50, the cheese 

wheels (~600 g each) were transferred to a saturated brine solution (23%, w/w, 

NaCl, 0.56%, w/w, CaCl2, and pH 5.2) for 7.5 h at 8°C. After brining, cheese wheels 

were vacuum-packed (Falcon 52, Original Henkelman vacuum system, 's-

Hertogenbosch, the Netherlands), and transferred to the ripening room. Cheese 

wheels were ripened at 8°C for 20 d (pre-ripening), at 23°C for 28 d (warm-room 

ripening) or 8°C for 28 d (without warm room ripening), and finally stored at 4°C for 

42 d. A summary of the experimental plan is shown in Table 4.1. 

4.3.2 Milk and cheese composition 

The composition of raw and pasteurized (72°C for 15 s) cheese milks were 

analyzed as described by Lamichhane, Kelly, and Sheehan (2018a). Grated cheese 

samples were analyzed at 20 d of ripening in duplicate for moisture, fat, protein and 

salt as described by Hickey et al. (2018b). Cheese pH was measured at 1, 20, 48 and 

90 d as described by Sheehan, Fenelon, Wilkinson, and McSweeney (2007). 
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Table 4.1. General overview of the treatments and ripening regimens used in the 

study
1
 

Treatment 
Cheese type

2
 

Control noWR CC PepA 

Rennet type FPBC FPBC FPCC FPBC 

Chymosin inhibitor Not added Not added Not added Added 

Ripening regimen 

8 °C for 20 d 

23 °C for 28 d 

4 °C for 39 d 

8 °C for 20 d 

8 °C for 28 d 

4 °C for 39 d 

8 °C for 20 d 

23 °C for 28 

d 

4 °C for 39 d 

8 °C for 20 d 

23 °C for 28 

d 

4 °C for 39 d 
1
FPBC, fermentation-produced bovine chymosin; FPCC, fermentation-produced 

camel chymosin 
2
noWR, cheese without warm room ripening; CC, cheese made using fermentation-

produced camel chymosin as a coagulant; PepA, cheese containing chymosin 

inhibitor, i.e., pepstatin A, which was added to the curd/whey mixture during cheese 

manufacture. 
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4.3.3 Enumeration of starter and nonstarter lactic acid bacteria 

Samples were removed from cheese wheels using a cheese trier at 1, 20, 48 

and 90 d of ripening. Cheese samples were prepared as described by Lamichhane et 

al. (2018c). Viable Lactococcus lactis cells were enumerated on M17 (Difco 

Laboratories; Detroit, MI) medium, supplemented with 0.5% (w/v) lactose, after 

aerobic incubation at 25°C for 3 d (Ruggirello et al., 2018). Total numbers of 

Lactobacillus helveticus cells were enumerated on de Man, Rogosa, and Sharpe agar 

(BD, Oxford, UK) at pH 5.4 after anaerobic incubation for 3 d at 42°C (Lamichhane 

et al., 2018c). Nonstarter lactic acid bacteria (NSLAB) cells were enumerated on 

Lactobacillus selection agar (BD), with an overlay, after aerobic incubation for 5 d at 

30°C (Lamichhane et al., 2018c). 

4.3.4 Proteolysis 

4.3.4.1 pH 4.6-soluble nitrogen (% of total nitrogen) 

The levels of nitrogen soluble (expressed as % of total nitrogen) at pH 4.6 

was measured after 1, 20, 48, and 90 d as described by Fenelon and Guinee (2000). 

4.3.4.2 Urea-polyacrylamide gel electrophoresis 

Urea-polyacrylamide gel electrophoresis (PAGE) of the cheeses at 1, 20, 48 

and 90 d was performed, in duplicate, on a Protean II xi vertical slab gel unit (Biorad 

Laboratories Ltd., Watford, Herts, UK), as described by Sheehan and Guinee 

(2004a). Briefly, grated cheese samples (equivalent to 4 mg protein) were dissolved 

in 1 mL sample buffer, incubated at 55°C for 10 min and each sample was loaded at 

a level of 12 µL per well. Sodium caseinate powder (Kerry Ingredients, Listowel) 

was used as an intact casein control. The samples initially ran through the stacking 
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gel at 280 V and then through the separating gel at 300 V. The resulting gels were 

stained and scanned as described by McCarthy, Wilkinson, and Guinee (2017). 

Densitometry analysis was performed on the scanned images using image analysis 

software, i.e., ImageJ (NIH, Bethesda, MD, USA; http://rsb.info.nih.gov/ij/). Eight 

major bands corresponding to caseins or its breakdown products were used for 

calculation: 1, β-CN (f106–209) (γ2); 2, β-CN (f29–209) (γ1); 3, β-CN (f108–209) 

(γ3); 4, β-casein; 5, β-CN (f1–192); 6, αS1-casein; 7, αS1-CN (f102–199); 8, αS1-CN 

(f24–199). The area of each protein band was expressed as a percentage of total band 

area of these eight major bands. Levels of intact αS1-casein and β-casein over 

ripening were expressed as a percentage of level at 1 d. 

4.3.5 Determination of total and insoluble calcium content 

The total calcium content of milk and cheese samples (after 20 d) was 

determined using atomic absorption spectroscopy (IDF, 2007). The cheese insoluble 

calcium contents, expressed as percentage of total calcium, were determined after 1, 

20, 48, and 90 d of ripening using an acid-base titration method as described by 

Hassan, Johnson, and Lucey (2004). 

4.3.6 Fracture properties 

Eight to 10 cylindrical samples (height 15 mm and diameter 12 mm) of each 

cheese were removed, using a borer and a wire cutter, at 20, 48 and 90 d of ripening. 

The cheese samples were wrapped in tin foil to prevent moisture loss; half of the 

cylindrical cheese samples were stored at 4°C and the remainder was stored at 23°C 

for at least 4 hours. These specific temperatures were chosen to mimic the warm-

room ripening (23°C) and subsequent cheese storage temperature (4°C). Cheese 

samples (at 4°C or 23°C) were compressed at a rate of 60 mm/min until fracture. 

http://rsb.info.nih.gov/ij/
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True stress (σ; Equation 4.1) and Hencky strain (εH; Equation 4.2) were calculated, 

assuming a constant volume deformation (Rehn et al., 2011): 

0 0

tFH

A H
               (4.1) 

0

ln t
H

H

H
             (4.2) 

where F is a load applied, Ht  is the sample height at time t, and A0 and H0 are the 

initial cross-sectional area and height of sample, respectively. Fracture stress (σf) and 

fracture strain (εf) values of cheese samples were determined from the inflection 

point of the stress-strain curve (Rehn et al., 2011). 

4.3.7 Visualization of cheese microstructure 

Cheese microstructure was observed using cryogenic-scanning electron 

microscopy (cryo-SEM). This was conducted using an SEM system (SEM-Zeiss 

Supra 40VP field emission, Carl Zeiss AG, Darmstadt, Germany) with a cryogenic 

transfer system attached (Gatan Alto 2500, Gatan, UK). Fresh cheese samples (after 

90 d of ripening) were taken from the middle of each experimental cheese wheel and 

rapidly immersed into a liquid nitrogen slush (-200°C) in a cryo-preparation 

chamber. The samples were transferred under vacuum into the high vacuum cryo-

preparation chamber at -185°C, etched at -95°C over a period of 15 min, sputter-

coated at -125°C and finally transferred onto the SEM cold stage at -125°C. Cryo-

SEM images were acquired at -125°C. 

The microstructure of cheese samples was also visualised using confocal 

laser scanning microscopy (Leica TCS SP5, Leica Microsystems, Baden-

Württemberg, Germany). Rectangular cheese samples (5 mm × 5 mm × 2 mm) were 
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removed from cheeses using a sharp scalpel. Solutions of the protein specific dye 

Fast Green (Sigma Aldrich) and fat specific dye Nile Red (Sigma Aldrich) were 

prepared at a concentration of 0.01% (w/v) in deionized water and 1,2-propanediol 

(Sigma Aldrich), respectively, which were then mixed at a ratio of 3:1. The prepared 

dye mixture (40 μL) was applied to the surface of cheese samples; a cover slip was 

gently placed on top and the sample was held at 4°C for 10 min prior to imaging. 

The protein and fat phases of the cheese samples were visualised by exciting the Fast 

Green dye (using a He–Ne laser; excitation wavelength of 633 nm and emission 

wavelength range of 650-700 nm) and Nile Red dye (using an Argon laser; 

excitation wavelength of 488 nm and emission wavelength range of 500-580 nm) 

respectively as described by Abhyankar, Mulvihill, and Auty (2014). All images 

were acquired using an oil immersion objective with a numerical aperture of 1.4 and 

a magnification of 63× (Leica Microsystems, Baden-Württemberg, Germany). 

4.3.8 Statistical analysis 

One way ANOVA, using SPSS software version 24 (IBM Corp., Armonk, 

NY), was performed to determine the effect of treatment on cheese composition. A 

split-plot design was used to determine the effect of treatment, ripening time, and 

their interactions on pH, counts of Lactococcus lactis and Lactobacillus helveticus, 

levels of pH 4.6-SN (% TN), insoluble calcium (% of total calcium) and fracture 

properties (stress and strain at fracture) of cheese. Analysis for the split-plot design 

was carried out using the PROC MIXED procedure of SAS software version 9.3 

(SAS Institute Inc., 2011). Tukey's multiple comparison tests was used for paired 

comparison of treatment means at a 5% level of significance. Pearson correlation 

analysis was performed between fracture parameters, pH 4.6-SN (% TN), insoluble 
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calcium (% of total calcium), intact β-casein level and intact αS1-casein level using 

SPSS software version 24 (IBM Corp., Armonk, NY). 

4.4 Results and discussion 

4.4.1 Milk and cheese composition 

The average fat, protein, and lactose contents of the standardized and 

pasteurized cheese-milk used for the three replicate cheese-making trials were 3.21, 

3.52, and 4.87 % (w/w), respectively. The composition of the experimental cheeses 

at 20 d of ripening is shown in Table 4.2. The cheeses had a composition similar to 

those of Maasdam-type cheese reported by Lamichhane et al. (2018a). The 

treatments applied had no significant effect on the mean levels of moisture, moisture 

in non-fat substance, protein, fat, fat-in-dry matter, salt, salt-in-moisture and pH (at 1 

d of ripening) of the experimental cheeses. 

4.4.2 pH 

The pH of all experimental cheeses increased significantly (P < 0.001; Table 

4.3) during ripening from 5.18-5.23 at 1 d to 5.35-5.40 at 90 d (Figure 4.1a). The pH 

trend during ripening is consistent with that typical of washed-curd cheese types, 

such as Maasdam (Lamichhane et al., 2018a). No significant effect of treatment was 

observed for the mean value of pH during ripening. 
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Table 4.2. Compositional parameters at 20 d and pH at 1 d of ripening in semi-hard cheeses
1
 

Compositional 

factors 

Cheese types
2
 P-

value Control noWR CC PepA 

Moisture (%, w/w) 40.83 ± 1.61
a
 40.89 ± 2.47

a
 40.95 ± 3.36

a
 41.84 ± 2.51

a
 0.96 

MNFS (%, w/w) 56.24 ± 1.54
a
 56.11 ± 2.20

a
 56.26 ± 3.11

a
 57.05 ± 2.28

a
 0.96 

Protein (%, w/w) 25.32 ± 0.90
a
 25.57 ± 1.47

a
 25.44 ± 1.56

a
 25.39 ± 1.48

a
 0.98 

Fat (%, w/w) 27.42 ± 1.06
a
 27.16 ± 1.77

a
 27.29 ± 1.98

a
 26.70 ± 1.65

a
 0.95 

FDM (%, w/w) 46.33 ± 0.91
a
 45.92 ± 1.46

a
 46.18 ± 0.85

a
 45.88 ± 1.28

a
 0.96 

Salt (%, w/w) 1.34 ± 0.12
a
 1.38 ± 0.14

a
 1.38 ± 0.09

a
 1.36 ± 0.08

a
 0.96 

S/M (%, w/w) 3.28 ± 0.31
a
 3.39 ± 0.51

a
 3.38 ± 0.41

a
 3.25 ± 0.08

a
 0.95 

Total calcium 

(mg/100 g cheese) 
867 ± 30

a
 861 ± 30

a
 837 ± 34

a
 842 ± 27

a
 0.60 

pH (1 d) 5.18 ± 0.03
a
 5.21 ± 0.03

a
 5.19 ± 0.03

a
 5.23 ± 0.03

a
 0.28 

1
MNFS, moisture in non-fat substance; FDM, fat in dry matter; S/M, salt-to-moisture ratio; 

Control, control cheeses; noWR, cheeses without warm room ripening; CC, cheeses made 

using fermentation-produced camel chymosin; PepA, cheeses containing chymosin inhibitor 

i.e., pepstatin A, which was added to the curd/whey mixture during cheese manufacture. 

2
Values within a row not sharing common superscripts differ (P < 0.05); data are the mean ± 

standard deviation of data from three replicate trials. 
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4.4.3 Growth and viability of Lactococcus lactis, Lactobacillus helveticus and 

NSLAB 

A significant effect of ripening time and treatment was observed for the 

counts of Lactococcus lactis (Table 4.3). The counts of Lactococcus lactis decreased 

in all cheeses during ripening from 10
9.4

-10
9.7

 cfu/g at 1 d to 10
7.4

-10
9
 cfu/g at 90 d, 

indicating cell death and potentially lysis of some Lactococcus lactis during 

ripening. Moreover, the count of Lactococcus lactis was significantly higher (P < 

0.05) in noWR cheeses than other cheeses, suggesting that the death and possibly 

lysis of Lactococcus lactis was accelerated by the warm room ripening. 

No significant effect of treatment and ripening time was observed for counts 

of Lactobacillus helveticus until 20 d of ripening, at which time the average count 

was 10
5
-10

6.5
 cfu/g. After warm-room ripening (48 d), the typical colonies of 

Lactobacillus helveticus were not observed, suggesting that either the cells were in a 

stressed condition, which may be viable but not culturable, or may have lysed due to 

changes in the cheese-ripening environment, such as, microbial composition, 

depletion of energy sources (e.g., low residual lactose), production of metabolites 

(Steele, Broadbent, & Kok, 2013) or inward diffusion of salt (Hickey, Fallico, 

Wilkinson, & Sheehan, 2018a). 

NSLAB counts were variable between trials, although one trial did show that 

the average counts of NSLAB increased during ripening from 10
4.3

-10
5 

cfu/g at 20 d 

(before warm room ripening) to 10
6.7

-10
7.7

 cfu/g at 48 d (after warm-room ripening). 

Moreover, the average count of NSLAB was ~1 log lower in noWR cheeses than for 

the other cheeses at 48 d of ripening. 
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Figure 4.1. Age-related changes in the (a) pH and (b) level of nitrogen soluble at pH 

4.6, expressed as percentage of total nitrogen, pH 4.6-SN (% TN). Data are the mean 

of data from three replicate trials; error bars represent standard error of mean. 

Experimental cheese variants were Control (control cheeses), noWR (cheeses 

without warm-room ripening), CC (cheeses made from fermentation-produced camel 

chymosin as a coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., 

pepstatin A). 
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4.4.4 Proteolysis 

4.4.4.1 Nitrogen soluble at pH 4.6 (% of total nitrogen) 

A significant (P < 0.001, Table 4.3) interaction was observed between the 

effect of treatment and ripening time for levels of nitrogen soluble at pH 4.6 [% of 

total nitrogen; pH 4.6-SN (% TN)] in all experimental cheeses. The mean levels of 

pH 4.6-SN (% TN) increased with increasing ripening time in all experimental 

cheeses (Figure 4.1b). However, the extent of the increase in pH 4.6-SN (% TN) 

level during ripening was higher in control cheeses than for other experimental 

cheese variants, which increased from 6.95 at 20 d to 19.27 at 90 d. The level of pH 

4.6-SN (% TN) in control cheeses is in close agreement with that previously reported 

for semi-hard (Huc, Challois, Monziols, Michon, & Mariette, 2014) and Maasdam 

(Lamichhane et al., 2018a) cheeses.  

Although propionic acid bacteria were not inoculated into the cheese milks of 

the current study, the levels and trend of pH 4.6-SN (% TN) during ripening of 

cheeses were found to be similar to semi-hard cheeses with propionic acid bacteria, 

suggesting that propionic acid bacteria play only a minor role in the proteolysis of 

washed-curd brine-salted semi-hard cheese (Gagnaire, Thierry, & Léonil, 2001). 

Moreover, the autolysis of propionic acid bacteria and the release of proteases from 

their cell have been shown to be limited in cheese (Valence, Richoux, Thierry, Palva, 

& Lortal, 1998). 
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Table 4.3. Summary of the effects of treatment, time and their interactions on 

properties of semi-hard cheeses
1
 

Parameter Treatment Time Interactive effect 

(treatment × time) 

pH NS *** NS 

Lactococcus lactis count ** *** NS 

Lactobacillus helveticus count NS NS NS 

pH 4.6-SN (% TN) *** *** *** 

Insoluble Ca (% of total Ca) NS *** NS 

Fracture stress (kPa, measured at 

4 °C) 

*** ** NS 

Fracture stress (kPa, measured at 

23 °C) 

*** *** NS 

Fracture strain (measured at 4 

°C) 

** *** NS 

Fracture strain (measured at 23 

°C) 

** ** NS 

1
pH 4.6-SN (% TN), soluble nitrogen at pH 4.6 as percentage of total nitrogen. 

***P < 0.001; **P < 0.01; NS, P > 0.05 
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As expected, the mean level of pH 4.6-SN (% TN) in PepA cheeses was 

approximately two-fold lower that of control cheeses at 90 d; O'Mahony et al. (2005) 

has previously reported a similar trend for Cheddar cheese. The low level of 

proteolysis in the PepA cheeses was due to inhibition of residual chymosin by 

pepstatin A (which was added to the curd-whey mixture at a level of 10 μmol/L). 

The level of pH 4.6-SN (% TN) in PepA cheese was found similar to that reported 

for Emmental cheese at 90 d of ripening (O’Sullivan, McSweeney, Cotter, Giblin, & 

Sheehan, 2016); in Emmental, residual coagulant is largely or wholly inactivated by 

use of a high cook temperature during cheese manufacture. 

The mean levels of pH 4.6-SN (% TN) in noWR and CC cheeses were 12.73 

and 13.49, respectively, after 90 d of ripening, which were significantly lower than 

in the control cheeses. A higher average level of proteolysis in control cheeses 

compared to the noWR cheeses was attributed to an increase in the rate of 

proteolysis due to elevated ripening temperature (Sheehan et al., 2004b; Soodam, 

Ong, Powell, Kentish, & Gras, 2017). The lower levels of pH 4.6-SN (% TN) in CC 

cheese compared to control cheeses was attributed to the lower general proteolytic 

activity of FPCC compared to FPBC (Kappeler et al., 2006; Bansal et al., 2009). 

4.4.4.2 Urea-polyacrylamide gel electrophoresis 

During ripening, αS1- and β-caseins were progressively hydrolyzed to an 

extent dependent on the treatment applied and ripening temperature, while 

breakdown products simultaneously accumulated (Figure 4.2 and Supplementary 

Figure 4.1). Extensive hydrolysis of αS1-casein was observed for control cheeses 

during ripening (i.e., more than 90 % of levels at 1 d), with the rate of hydrolysis 

being most rapid during warm room ripening stages, whereas the hydrolysis of αS1-
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casein was ~30% and ~45% less in noWR and CC cheeses at 90 d, respectively, 

compared to control cheeses (Figure 4.2b). 

Less hydrolysis of αS1-casein in noWR cheeses compared to control cheeses 

was attributed to the influence of temperature on the residual coagulant activity 

(Sheehan et al., 2004b). Less extensive breakdown of αS1-casein in CC cheeses 

compared to control cheese was attributed to the lower proteolytic activity of FPCC 

compared to FPBC (Bansal et al., 2009; McCarthy et al., 2017). 

Limited breakdown of αS1-casein, i.e., ~5%, was observed in PepA cheeses in 

agreement with the previous studies (Shakeel-Ur-Rehman, Feeney, McSweeney, & 

Fox, 1998; O'Mahony et al., 2005), suggesting that the addition of chymosin 

inhibitor, i.e., pepstatin A, to the curd/whey mixture during cheese manufacture was 

an effective means for greatly reducing the chymosin-mediated hydrolysis of αS1-

casein within the semi-hard cheese during ripening. 
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Figure 4.2. (a) Urea-polyacrylamide gel electrophoretograms of semi-hard cheeses 

after 1, 20, 48 or 90 d. Sodium caseinate (lane NaCn) was included as an intact 

casein control. Protein bands were identified according to McCarthy et al. (2017): 1, 

β-CN (f106–209) (γ2); 2, β-CN (f29–209) (γ1); 3, β-CN (f108–209) (γ3); 4, β-

casein; 5, β-CN (f1–192); 6, αS1-casein; 7, αS1-CN (f102–199); 8, αS1-CN (f24–199).  

Level of (b) intact αS1-casein and (c) intact β-casein as a percentage of the level at 1 

d. Error bars represent standard error of mean. Experimental cheese variants were 

Control (control cheeses), noWR (cheeses without warm-room ripening), CC 

(cheeses made from fermentation-produced camel chymosin as a coagulant), and 

PepA (cheeses containing chymosin inhibitor, i.e., pepstatin A). 
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Hydrolysis of β-casein was observed in all cheeses during ripening (Figure 

4.2c), most likely due to plasmin activity (Kelly et al., 2006). The extent of 

hydrolysis of β-casein was similar for control, CC and pepA cheeses (i.e., ~35 % of 

levels at 1 d), suggesting that neither the substitution of FPBC with FPCC nor 

addition of chymosin inhibitor to the curd/whey mixture influenced the hydrolysis of 

β-casein in agreement with the previous studies (O'Mahony et al., 2005; Bansal et 

al., 2009). However, the extent of breakdown was relatively lower in noWR cheeses 

(i.e., less than 20% of levels at 1 d) than other cheeses, suggesting that warm room 

ripening accelerates the degradation of β-casein. Overall, these results suggest that 

the various hydrolysis patterns of casein can be achieved by using different 

coagulant types, modulating ripening temperature or inhibiting residual chymosin 

activity, although inhibition of the latter using pepstatin A is obviously not 

commercially viable. 

4.4.5 Insoluble calcium contents of cheeses 

The mean level of insoluble calcium (percentage of total calcium) decreased 

significantly (P < 0.001, Table 4.3) during ripening (Figure 4.3), especially at the 

early stage of ripening, from ~75% at 1 d to ~66% at 20 d. After 20 d of ripening, the 

rate of decrease in the level of insoluble calcium was slower than at the early stages 

of ripening, which is in agreement with the previous studies in different cheese types 

(O'Mahony et al., 2005; Lee, Johnson, Govindasamy-Lucey, Jaeggi, & Lucey, 2010). 

The effect of warm-room ripening on solubilization of colloidal calcium in 

brine-salted cheese varieties has not previously been studied. Therefore, the rate of 

calcium solubilization was compared between cheeses subjected to warm room 

ripening (control cheeses) and without warm room ripening (noWR cheeses). 
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Interestingly, the mean insoluble calcium content of noWR cheeses was ~3% higher 

than that of the control cheese after 48 d of (after warm room ripening); however, the 

difference observed was not statistically significant, suggesting that, at best, the 

warm room ripening had only a minor effect on the solubilization of calcium. 

Hydrolysis of β-casein is known to release phosphopeptides (Gagnaire, Mollé, 

Herrouin, & Léonil, 2001), which could contribute to decreases in the level of 

casein-bound calcium. As expected, substitution of FPBC with FPCC as a coagulant 

or addition of pepstatin A to the curd/whey mixture during cheese manufacture had 

no significant effect on insoluble calcium content. 
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Figure 4.3. Changes in the percentage insoluble Ca (expressed as a percentage of 

total cheese Ca) as a function of ripening time in semi-hard cheeses. Data are the 

mean of data from three replicate trials and error bars represent standard error of 

mean. Experimental cheese variants were Control (control cheeses), noWR (cheeses 

without warm-room ripening), CC (cheeses made from fermentation-produced camel 

chymosin as a coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., 

pepstatin A). 
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4.4.6 Fracture properties 

The fracture properties of experimental cheeses were studied at two different 

temperatures, i.e., 4°C or 23°C (Figure 4.4), to mimic the temperature conditions 

during cold storage or warm-room ripening, respectively. The stress at fracture (σf) 

and strain at fracture (εf) were significantly influenced by treatment and ripening 

time (Table 4.3). 

Fracture stress (σf), the force required to cause fracture of cheese, represents 

the strength, or rigidity, of the cheese matrix. The σf measured at 4°C or 23°C 

significantly decreased (Figure 4.4a-b; Table 4.3) in all cheeses over maturation. 

However, the σf was significantly higher (P < 0.05) in PepA, noWR and CC cheeses 

compared to control cheeses. A lower σf in the control cheeses compared to other 

experimental cheese types was attributed to higher levels of protein breakdown in the 

control compared to PepA, noWR and CC cheeses (Figure 4.1b). A significant 

negative correlation (Table 4.4) between pH 4.6-SN (% TN) and σf was observed for 

the experimental cheeses, which was in agreement with previous studies on Cheddar 

cheese (McCarthy, Wilkinson, Kelly, & Guinee, 2016). Moreover, the σf value was 

significantly positively (Table 4.4) correlated with intact αS1-casein. Intact β-casein 

level was also significantly positively correlated with the value of σf; however, the 

correlation coefficient (r) value was lower for intact β-casein (Table 4.4) as 

compared to intact αS1-casein. This suggested that the intact αS1-casein was the 

principal load-bearing protein within the semi-hard cheese matrix. No significant 

correlation was found between the σf and insoluble calcium content (Table 4.4), 

indicating that the extent of solubilization of calcium after 20 d of ripening had no 

pronounced influence on the strength of the cheese matrix. 
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Figure 4.4. Changes in (a-b) fracture stress (σf, n = 2) and (c-d) fracture strain (εf, n = 

3), measured at 4 °C (closed symbols) and 23 °C (open symbols), in semi-hard 

cheese during ripening. Error bars represent standard error of mean. Experimental 

cheese variants were Control (control cheeses), noWR (cheeses without warm-room 

ripening), CC (cheeses made from fermentation-produced camel chymosin as a 

coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., pepstatin A). 
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Fracture strain (εf) represents the shortness or brittleness of cheese texture; 

cheeses with a lower fracture strain value are susceptible to fracture at small 

deformation (Grappin et al., 1993; Sharma, Munro, Dessev, Wiles, & Foegeding, 

2018). The εf measured at both 4°C or 23°C significantly decreased for control, CC 

and PepA cheeses, especially during warm room ripening, from 1.0-1.2 at 20 d to 

0.75-0.8 at 48 d (Figure 4.4c-d).  

Although αS1-casein was hydrolyzed to varying degrees among the control, 

CC and PepA cheeses after 48 d of ripening (ranging from ~5% in PepA to ~90% in 

control cheeses; Figure 4.2), no significant difference in εf was observed among 

these cheeses. In the current study, hydrolysis of αS1-casein mainly occurred at 

Phe23-Phe24 during ripening, yielding peptides αS1-CN (f1-23) and αS1-CN (f24-199). 

The former peptide may be hydrolyzed rapidly by proteinases of the starter micro-

organisms (Shakeel-Ur-Rehman et al., 1998), whereas the latter peptide accumulated 

during ripening (Figure 4.2a). Therefore, the results from this study suggest that the 

primary breakdown of αS1-casein into the large peptide fragment, i.e., αS1-CN (f24-

199) had no pronounced effect on the εf in semi-hard cheese during ripening. Since 

the peptide fraction αS1-CN (f24-199) is so large, it is likely that this fraction may 

remain attached to the protein network rather than becoming part of the serum phase 

(Luyten, 1988; Lucey et al., 2003). Further breakdown of αS1-CN (f24-199) 

(secondary breakdown) into small peptides may decrease the εf of cheese (Luyten, 

1988). In the current study, no noticeable breakdown of αS1-CN (f24-199) was 

observed during 90 d of ripening (Figure 4.2a); therefore, the role of secondary 

breakdown of αS1-CN (f24-199) on shortness of cheese could not be elucidated.  

Similar to the current study, Luyten (1988) also did not observe a clear link between 

the primary breakdown of αS1-casein and εf in Gouda cheese. A significant decrease 
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in εf in control, CC and PepA cheeses during warm-room ripening may be due to 

other age-related changes within the cheese matrix rather than primary breakdown of 

αS1-casein. 

Interestingly, the εf for the noWR cheeses remained almost the same or 

decreased slightly over the ripening period (Figure 4.4c-d). Moreover, the εf for 

noWR cheeses was significantly higher (P < 0.05) at 48 and 90 d as compared to 

control, PepA and CC cheeses (which were subjected to warm room ripening stage). 

Similarly, Luyten (1988) also observed considerably lower εf in Gouda cheeses 

ripened at higher temperature (i.e., 18 °C) than ripened at lower temperature (i.e., 8 

°C) during ripening. Furthermore, similar to the current study, εf of the Gouda 

cheeses ripened at 8 °C decreased slightly from 1.3 at 14 d to 1.2 at 42 d of ripening, 

whereas εf of the Gouda cheese ripened at 18 °C decreased considerably from 1.3 to 

0.8 over the same ripening period. Although the exact reasons for such an influence 

of ripening temperature on fracture behaviour of cheese are unknown, it can be 

assumed that temperature-induced changes within the cheese matrix, such as, rate of 

solubilization of colloidal calcium, specific hydrolysis patterns of casein and the 

resultant peptide profiles, could be possible reasons. 

In the current study, insoluble calcium (expressed as a percentage of total 

calcium) and intact β-casein were significantly positively correlated with εf (Table 

4.4). Furthermore, levels of intact β-casein (Figure 4.2c) and insoluble calcium 

(Figure 4.3) were on average ~15% and ~3% higher, respectively, in noWR cheeses 

than in the other cheeses after 48 d of ripening. This suggested that the breakdown of 

intact β-casein, solubilization of colloidal calcium during ripening, or both may have 

contributed to the shorter texture (i.e., lower εf) observed in control, CC and PepA 

than noWR cheeses. Therefore, the results from this study suggested that the 



Microstructure and fracture properties of cheese 

 

 

162 
 

influence of varying degrees of hydrolysis of β-casein, or level of colloidal calcium, 

on shortness of cheese texture merits further research. 

It is now well established that the calcium associated with casein is an 

important structural component, which enhances the cross-linking of caseins within 

the cheese matrix (Lucey et al., 2003; O'Mahony et al., 2005; Lamichhane et al., 

2018b). Thus, it was reasonable to assume that the solubilization of colloidal calcium 

during ripening within the cheese matrix was one of the possible reasons for shorter 

texture of cheese. Moreover, studies have suggested that the caseins have different 

hydrophilic and hydrophobic blocks. For example, αS1-casein has a hydrophilic 

region between strong hydrophobic regions, whereas the β-casein has a hydrophilic 

and a hydrophobic region at N and C termini, respectively (Lucey et al., 2003). 

Therefore, it is likely that the specific hydrolysis of caseins during ripening may alter 

their molecular interactions within cheese matrix, which in turn may influence the 

texture, rheological and fracture behaviour of cheese. For example, Bogenrief and 

Olson (1995) observed that degree of melt of Cheddar cheese  was more closely 

related to the extent of β-casein hydrolysis than the hydrolysis of αS1-casein. 

Overall, the fracture behaviour of cheese can be modulated by specific 

hydrolysis of casein, modulation of colloidal calcium associated with casein, or both. 

Such knowledge is particularly important for designing cheese with desired texture 

profiles or for designing cheese texture suitable for withstanding increased gas 

pressures during ripening in some eye-type cheeses, which may help to reduce the 

incidence of undesirable splits and cracks (Daly et al., 2010). Studies have reported 

that the occurrence of cracks within the cheese matrix is higher for cheeses with 

lower εf (short or brittle texture) (Grappin et al., 1993; Rehn et al., 2011). However, 
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it should be noted that unsuitable cheese texture is one possible contributing factor, 

amongst other factors, for the development of undesirable splits or cracks, such as; 

rate and extent of gas production and its behavior (e.g., solubility and diffusivity) 

within the cheese matrix; late gas production; and the presence of micro-defects 

within the cheese matrix (Daly et al., 2010). 
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Table 4.4. Pearson correlation coefficients between fracture parameters, primary proteolysis, insoluble calcium, and intact β-casein and αS1-

casein
1
 

 
σf (measured at 4 °C) εf (measured at 4 °C) σf (measured at 23 °C) εf (measured at 23 °C) 

pH 4.6-SN (% TN) -0.77** -0.62** -0.88** -0.54** 

Insoluble Ca (% of total Ca) 0.23
NS

 0.66** 0.33
NS

 0.53** 

Intact β-casein 0.50* 0.75** 0.68** 0.60** 

Intact αS1-casein 0.79** 0.25
NS

 0.83** 0.19
NS

 

1
σf, stress at fracture; εf, strain at fracture; pH 4.6-SN (% TN), soluble nitrogen at pH 4.6 as percentage of total nitrogen; data were obtained from 

all experimental cheeses over a 90 d of ripening. 

** P < 0.01; *P < 0.05; 
NS

P > 0.05 
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The σf of cheeses measured at 4 °C (Figure 4.4a) was considerably higher as 

compared to same cheeses measured at 23 °C (Figure 4.4b) at all stages of ripening, 

which was attributed to the temperature-induced changes on the components of 

cheese and their interactions (Lamichhane et al., 2018b). At low temperature (~4 

°C), more than half of the milk fat present within the cheese matrix is in a 

crystallized form, and acts as a reinforcing filler, contributing to the elastic texture of 

cheese (Lopez, Briard-Bion, Camier, & Gassi, 2006; Lamichhane et al., 2018b). 

However, the test temperature (4 °C or 23 °C) had no pronounced effect on the εf of 

cheeses at all stages of ripening. 

4.4.7 Microstructure 

The microstructure of cheese (at 90 d of ripening) observed by cryo-SEM 

was shown in Figure 4.5. The microstructure of the control cheese was clearly 

different from that of the other experimental cheese types; the microstructure 

observed for the control cheese was more open than that of the other experimental 

cheeses. The open structure may be attributed to significantly higher levels of 

proteolysis in the control cheeses compared to the other cheese types. For other 

experimental cheeses, the microstructure looked visually similar. During proteolysis, 

the intact caseins, which are responsible for network formation, breakdown into 

small and medium size peptides and free amino acids and these peptides and amino 

acids are released into the serum fraction of the cheese (Sousa, Ardö, & McSweeney, 

2001). Soodam, Ong, Powell, Kentish, and Gras (2015) also observed a less open 

structure of cheese with low levels of primary proteolysis than in cheeses with high 

levels. 
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Figure 4.5. Selected cryo-SEM micrographs of (a, e) Control, (b, f) noWR, (c, g) CC, and (d, h) PepA cheeses after 90 d of ripening. 

Experimental cheese variants were Control (control cheeses), noWR (cheeses without warm-room ripening), CC (cheeses made from 

fermentation-produced camel chymosin as a coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., pepstatin A). P = protein matrix, 

F = fat globules, short arrows = spherical imprints in the protein matrix left by fat globules that were removed during sample preparation, and 

long arrows = remnant fat from globules partially removed during sample preparation. 
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The microstructure of the cheeses (at 90 d ripening) was also visualized using 

CLSM (Supplementary Figure 4.2). In agreement with the previous studies (Lopez, 

Camier, & Gassi, 2007), non-globular, coalesced and aggregated fat globules were 

observed within the cheese matrix, which was attributed to the aggregation, 

coalescence, and disruption of the fat globules due to the various cheese manufacture 

steps, such as cooking and pressing (Lopez et al., 2007). The microstructures of all 

experimental cheeses were visually similar. 

4.5 Conclusions 

The roles of primary proteolysis and calcium solubilization on the fracture 

properties of washed-curd brine-salted semi-hard cheese were investigated. Addition 

of a chymosin inhibitor (i.e., pepstatin A) to the curd/whey mixture during cheese 

manufacture, substitution of FPBC with FPCC or modulating ripening temperature 

altered the hydrolysis patterns of the caseins during ripening. Moreover, 

solubilization of colloidal calcium was also observed in all cheeses during ripening. 

The rigidity or strength of the cheese matrix was found to be higher (as 

indicated by higher stress at fracture) in cheeses with lower levels of proteolysis or 

higher levels of intact caseins, primarily αS1-casein. However, contrary to 

expectation, shortness or brittleness (as indicated by lower strain at fracture) of 

cheese texture was negatively associated particularly with the level of intact β-casein 

and also with insoluble calcium content. 

The results from this study suggested that modulation of hydrolysis of αS1-

casein was an effective means for maintaining the strength of the cheese matrix 

during ripening. This could be achieved by inhibition of residual chymosin activity, 

substitution of FPBC with FPCC or modulating ripening temperature. However, 
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shortness or brittleness of cheese texture could potentially be altered by maintaining 

higher levels of intact β-casein or insoluble calcium content, or both, within the 

cheese matrix. Shortness or brittleness of cheese has previously been associated with 

undesirable slits or cracks. Therefore, the role of intact β-casein or insoluble calcium 

content on fracture behaviour, especially fracture strain, merits further research. 
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4.6 Supplementary materials 
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Supplementary Figure 4.1. Average relative abundance (%, n = 2) of caseins or 

their breakdown products of experimental cheeses at 1, 20, 48 and 90 d. 

Experimental cheese variants were Control (control cheeses), noWR (cheeses 

without warm-room ripening), CC (cheeses made from fermentation-produced camel 

chymosin as a coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., 

pepstatin A). 
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Supplementary Figure 4.2. Confocal laser scanning micrographs of cheese samples 

after 90 d of ripening. Experimental cheese variants were Control (control cheeses), 

noWR (cheeses without warm-room ripening), CC (cheeses made from 

fermentation-produced camel chymosin as a coagulant), and PepA (cheeses 

containing chymosin inhibitor, i.e., pepstatin A). The protein phase appears red while 

the fat phase appears green. 
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5.1 Abstract 

Changes in the microstructure of semi-hard cheeses were observed in situ 

under tensile deformation by placing a microtensile stage directly under a confocal 

scanning laser microscope, and recording force/displacement data simultaneously. 

On tensile deformation, detachment of fat globules and their subsequent release from 

the cheese matrix were observed, suggesting that they were weakly bonded to, or 

entrapped, within the cheese matrix. Moreover, an inherent micro-defect was 

observed at a curd granule junction within the cheese matrix, which fractured along 

the curd granule junction under tensile deformation, suggesting that such micro-

defects could be a key to the formation of undesirable slits or cracks. Furthermore, 

the fracture behaviour of semi-hard cheese varied with ripening temperature, 

coagulant type, and inhibition of residual chymosin activity. Overall, this study 

demonstrated the potential of dynamic in situ imaging of cheese microstructure for 

developing a greater understanding of the breakdown behaviour of cheese matrices. 
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5.2 Introduction 

Food matrices go through a series of structure formation (e.g., gel formation) 

and breakdown (e.g., during mastication) processes during manufacture, storage and 

consumption. Understanding these processes from a structural point of view is of 

growing interest to researchers and food producers, as many of the desirable 

properties/functionalities of foods are determined by their structure (Lamichhane, 

Kelly, & Sheehan, 2018a). 

To date, considerable success has been achieved in visualization of food 

microstructure at multiple scales by utilising various microscopy techniques (Everett 

& Auty, 2008; Everett & Auty, 2017). More recently, several studies have shown the 

potential of dynamic in situ imaging of food microstructure for comprehensive 

understanding of the physical changes to food structure when subjected to various 

conditions relevant to processing, storage or consumption, such as heating/cooling, 

shearing, compression and tension. For example, Auty, Fenelon, Guinee, Mullins, 

and Mulvihill (1999) studied the milk gelation and cheese melting process using a 

hot-stage placed under a confocal scanning laser microscope (CSLM). Other studies 

investigated the structural and mechanical changes under large deformation of pure, 

mixed and emulsion-filled gels (Brink, Langton, Stading, & Hermansson, 2007; 

Abhyankar, Mulvihill, & Auty, 2011; Abhyankar, Mulvihill, & Auty, 2014) and 

meat (James & Yang, 2011) using a microtensile stage coupled with CSLM or 

environmental scanning electron microscopy (ESEM). Boitte, Hayert, and Michon 

(2013) visualized the microstructure of dough under shear (relevant to dough 

processing condition) using a rheo-optical device. Liu, Stieger, van der Linden, and 
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van de Velde (2015) observed the microstructure of gels under shear to better 

understand the role of fat droplet characteristics on fat-related sensory perception. 

Although a number of studies have monitored the structure of model food 

systems or complete foods, there is no published data on the physical changes to the 

structure of cheese under large-strain deformation. Cheese is an inhomogeneous 

composite material, in which individual curd granules bind together, and where 

granule junctions remain between individual curd granules. Visualization of cheese 

microstructure under large-strain deformation may help to understand sensory 

perception, flavour and nutrient release, and the mechanisms of formation of 

undesirable slits and cracks within the cheese matrix. It is believed that texture 

perception is largely determined by structural rearrangements during the deformation 

process (Brink et al., 2007). Moreover, dynamic in situ imaging may help to identify 

weak spots within the cheese matrix, which are seeds for the development of 

slits/cracks within the cheese matrix. Development of undesirable slits and cracks is 

a major problem in the manufacture of Swiss, Dutch and related eye-type cheeses, 

leading to downgrading of the product and lost revenue to manufacturers (White, 

Broadbent, Oberg, & McMahon, 2003; Guggisberg et al., 2015). 

The breakdown properties of cheese depends on composition, manufacturing 

procedures, maturation profile, environmental conditions (e.g., pH, temperature, and 

solvent quality/ionic strength), and the presence of defects (such as, mechanical 

holes, slits and cracks), among other factors (Luyten, 1988; Visser, 1991). Extensive 

hydrolysis of αS1-casein has been reported in some semi-hard eye-type cheeses 

(McGoldrick & Fox, 1999), especially during the warm-room ripening stage, mainly 

due to residual chymosin activity. Intact αS1-casein is considered important for 
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maintaining the elastic texture of eye-type cheeses, which is vital to accommodate 

gas produced by microorganisms (Daly, McSweeney, & Sheehan, 2010). Previous 

studies have shown that the substitution of fermentation-produced bovine chymosin 

(FPBC) with fermentation-produced camel chymosin (FPCC) reduced the primary 

hydrolysis of αS1-casein during ripening in different cheese types (Bansal et al., 

2009; Soodam, Ong, Powell, Kentish, & Gras, 2015). 

Although previous studies have investigated the influence of factors, such as, 

maturation, chymosin-mediated proteolysis, ripening temperature and coagulant 

types, on texture and fracture properties of different cheese varieties (O'Mahony, 

Lucey, & McSweeney, 2005; Soodam et al., 2015; McCarthy, Wilkinson, & Guinee, 

2017; Lamichhane, Sharma, Kennedy, Kelly, & Sheehan, 2019), there is limited 

understanding on the influence of such factors on changes to the microstructure of 

cheese under large-strain deformation. 

The primary objective of this study was to achieve dynamic in situ imaging 

of cheese microstructure under tensile deformation. The secondary objective of this 

study was to investigate the effect of maturation, ripening temperature, coagulant 

type and chymosin-mediated proteolysis on changes in microstructure and fracture 

behaviour of cheeses under tensile deformation, using a microtensile stage and 

CSLM. The current study was undertaken as an element of a larger study to 

differentiate the effects of primary proteolysis and calcium solubilization on the 

fracture properties of semi-hard cheese (Lamichhane et al., 2019). Levels of primary 

proteolysis, pH, breakdown patterns of caseins, and insoluble calcium content of the 

cheeses of the current study have been characterized therein. 
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5.3 Materials and methods 

5.3.1 Cheese manufacture 

Four variants of a washed-curd, brine-salted semi-hard cheese, i.e., control 

cheese, cheese without warm-room ripening (noWR), cheese made using FPCC as a 

coagulant (CC), and cheese containing a chymosin inhibitor, i.e., pepstatin A, which 

was added to the curd/whey mixture during cheese manufacture (PepA), were 

manufactured in three replicate trials as reported in Lamichhane et al. (2019). 

Briefly, all cheese milks used in this study were standardized (protein to fat ratio of 

1.1: 1.0) and pasteurized (72 °C for 15 s). Frozen direct vat inoculation cultures 

(Chr. Hansen Ltd., Cork, Ireland) were used as a starter cultures: (1) R-604 (180 mg 

kg
-1

 milk), containing Lactococcus lactis ssp. cremoris, Lactococcus lactis ssp. 

lactis; and (2) LH-B02 (9 mg kg
-1

 milk), containing Lactobacillus helveticus. For 

control, noWR and PepA cheeses, FPBC (CHY-MAX Plus, ~200 international milk 

clotting units (IMCU) mL
-1

; Chr. Hansen Ltd., Cork, Ireland) was added at a level of 

0.18 mL kg
-1

 cheese milk, whereas FPCC (CHY-MAX M, ~200 IMCU mL
-1

; Chr. 

Hansen Ltd.) was added at a level of 0.14 mL kg
-1

 cheese milk for CC cheeses. Curd 

granules were washed by removing 35% of whey with subsequent addition of 23% 

warm (50 °C) reverse-osmosis water as a percentage of the total milk weight. 

Chymosin inhibitor, i.e., pepstatin A, was added at a rate of 10.0 μmol kg
-1

 cheese 

milk into the curd/whey mixture for PepA cheese manufacture. Whey was drained 

when the curd pH reached 6.35, and the curds were collected into moulds and 

pressed vertically. After pressing, each cheese wheel (600 g) was placed in a 

saturated brine solution for 7.5 h at 8 °C prior to vacuum packaging (Falcon 52, 

Original Henkelman vacuum system, 's-Hertogenbosch, the Netherlands). A 
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summary of the experimental plan, including ripening regimens, is shown in 

Supplementary Table 1. 

5.3.2 Cheese composition 

Grated cheese samples were analysed in duplicate for content of moisture, 

fat, protein, salt, and total calcium and for pH as reported in Lamichhane et al. 

(2019). 

5.3.3 Tensile testing and in situ imaging of cheese microstructure 

A schematic of the experimental set-up for tensile testing is shown in Figure 

5.1. Cylindrical samples of diameter 30 mm were removed from each experimental 

cheese using a stainless steel borer. From each cylindrical sample, thin cheese discs 

(thickness ~4 mm and diameter 30 mm) were prepared using a 4-mm thick plastic 

ring and sharp scalpel. Cheese samples of dimensions 25 mm × 10 mm × 4 mm were 

removed from these thin cheese discs, and a small indentation (~1.5 mm), also called 

a notch, was made in the centre of the each test piece using a sharp scalpel. The 

exact thickness of samples was determined afterwards using a vernier caliper. The 

test samples were then clamped between the grips of a micro-tensile stage (Deben, 

UK), equipped with 2 N load cell and motorised gear box. The gap between the 

clamps was 10 mm. Fast Green (protein specific dye; Sigma Aldrich, Arklow Co 

Wicklow, Ireland ) and Nile Red (fat specific dye; Sigma Aldrich) of concentration 

0.01% (w/v), prepared in deionized water and in 1,2-propanediol, respectively, were 

mixed in a ratio of 1:3 (Le Tohic et al., 2018). The prepared dye (10 μL) was poured 

on the cheese samples and a cover slip (diameter = 9 mm, VWR International 

Limited, Dublin, Ireland) was gently placed on the clamped test samples to avoid the 

entrapment of air bubbles. The micro-tensile stage was placed directly under the 



Dynamic in situ imaging of cheese microstructure 

 

 

182 
 

CSLM (Leica Microsystems, Baden-Württemberg, Germany). Protein and fat phases 

in the cheese samples were visualised by exciting the Fast Green (using a helium-

neon laser) and Nile Red (using an argon laser) dyes, respectively, as described by 

Abhyankar et al. (2014). The test samples were elongated at a constant tensile speed 

of 2 mm min
-1

 and images of cheese microstructure were simultaneously taken using 

air objectives of magnification of 5× or 10× (zoom factor 2 or 3). Load and 

displacement data of the test samples were recorded every 500 ms, which were then 

converted to true stress (σ; Equation 5.1) and Hencky strain (εH; Equation 5.2; 

Abhyankar et al., 2011): 
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            (5.2) 

where F is the extensional force, A is original cross sectional area of the sample, L0  

is original length of the sample and ΔL is change in length of sample. The crack 

length of test samples during tensile deformation was measured as described by 

Abhyankar et al. (2011), using the Leica Application Suit X software (Leica 

Microsystems, Baden-Württemberg, Germany). Crack length was defined as the 

perpendicular distance between the tip of an artificial notch (at time zero) and the tip 

of the new fracture surface (at time t) during tensile deformation. Young’s modulus 

was calculated from the slope of the initial linear region of stress-strain curve. 

Fracture stress and fracture strain values of cheese samples were determined from 

the inflection point of the stress-strain curve. At least four samples, from two 

independent replicate trials, of each cheese were tested on the microtensile unit to 
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determine the effect of maturation and treatment on the structural breakdown 

behaviour of experimental cheeses. All measurements were conducted at room 

temperature (~20 °C). 
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Figure 5.1. Schematic of experimental set-up for microtensile testing, showing 

sample preparation and accessories related to microtensile testing. 
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5.3.4 Statistical analysis 

Statistical analyses of the data were performed using SigmaPlot version 14 

(Systat Software, Inc., San Jose, California, USA). The effect of maturation and 

treatment on cheese fracture parameters was determined performing one way 

ANOVA followed by posthoc Tukey tests. Before ANOVA evaluation, data were 

checked for normality and homoschedasticity by performing Shapiro–Wilk and 

Brown-Forsythe tests, respectively. When these assumptions were not verified, 

appropriate non-parametric and post hoc tests were applied. The level of significance 

was set at P ≤ 0.05. 

5.4 Results and discussion 

5.4.1 Cheese composition 

The compositional parameters of the cheeses analysed here were described in 

detail by Lamichhane et al. (2019) and in Supplemental Table 2. The cheeses had a 

composition typical of that of Maasdam-type cheese (Lamichhane, Kelly, & 

Sheehan, 2018; Lamichhane et al., 2018b; Panthi et al., 2019). Treatment had no 

significant effect on mean levels of moisture, moisture-in non-fat substance, protein, 

fat, fat-in-dry matter, salt, salt-in-moisture, total calcium and pH (at 1 d of ripening) 

of the cheeses. 

5.4.2 Effect of maturation on structural breakdown behaviour of cheese 

To determine the effect of maturation on structural breakdown behaviour of 

cheese, control cheese samples at 20 d (before warm-room ripening), 48 d (after 

warm-room ripening) and 90 d of ripening were tested on the microtensile unit. The 

stress-strain relationships of cheese samples before warm-room ripening (20 d) were 
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found to be different compared to those of cheese samples after warm-room ripening 

(48 d and 90 d) (Figure 5.2a). 

Changes to the microstructure of cheeses before warm-room ripening (20 d) 

and after warm-room ripening (48 d) were similar under tensile deformation 

(micrographs not shown), i.e., widening of the notch, stretching of the protein 

network near the leading point of notch and propagation of notch. However, the 

stress profile during notch propagation was different between cheeses before warm-

room ripening and after warm-room ripening, which can be visualized by plotting 

stress versus crack length (a perpendicular distance between the tip of an artificial 

notch and the tip of the new fracture surface during tensile deformation as measured 

from the CSLM time-series micrographs). Such an approach has previously been 

applied to study the breakdown behaviour of different kinds of gels, such as, whey 

protein, mixed biopolymer or emulsion-filled gels (Öhgren, Langton, & 

Hermansson, 2004; Brink et al., 2007; Abhyankar et al., 2011). 

For cheese samples at 48 d or 90 d of ripening, true stress increased gradually 

until the cheese sample started to fracture from the notch tip. Once the cheese started 

to fracture from the notch tip, the stress required to further break-down cheese 

samples leveled off, or decreased, with further increase in the crack length (Figure 

5.2b). However, the stress required to break down cheese at 20 d of ripening 

continued to increase until the crack length of cheese reached ~4 mm, followed by a 

decrease in the stress with further increases in the crack length (Figure 5.2b). This 

suggests that, as expected, the young semi-hard cheeses can resist fracture to a 

greater extent compared to mature cheeses, which was further supported by the 

fracture parameters obtained from stress-strain curve; Young’s modulus (Figure 
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5.2c), fracture stress and fracture strain (Figure 5.2d) values were significantly 

higher (P < 0.05) for cheeses before warm-room ripening than after warm-room 

ripening. Young’s modulus measures the stiffness of the material; a higher value of 

Young’s modulus corresponds to a higher material stiffness (Vandenberghe, 

Choucharina, De Ketelaere, De Baerdemaeker, & Claes, 2014). Fracture stress 

measures the rigidity of the material whereas the fracture strain measures the 

brittleness or shortness of the material. 

Overall, semi-hard cheese structure becomes weak, brittle and less stiff (as 

indicated by lower fracture stress, fracture strain and Young’s modulus values) 

during maturation, especially during warm-room (23 °C) ripening, which is 

attributed to age-related structural changes on the cheese matrix, such as proteolysis 

and partial solubilization of colloidal calcium (O'Mahony et al., 2005). During 

ripening, intact caseins (which are responsible for network formation) are 

hydrolyzed by proteolytic enzymes into small and medium-sized peptides. 

Moreover, the calcium associated with the casein (which enhances the cross-linking 

of casein within the cheese matrix) partially solubilizes during ripening (O'Mahony 

et al., 2005). The level of insoluble calcium of the cheeses of the current study 

significantly decreased whereas the level of primary proteolysis increased, especially 

during warm-room ripening (Lamichhane et al., 2019). 
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Figure 5.2. Effect of maturation on the fracture behaviour of control cheese: (a) 

typical true stress and Hencky strain  relationships; (b) stress profile as a function of 

crack length; (c) Young’s modulus; and (d) fracture stress and strain profile for 

cheese at 20, 48 and 90 d of ripening. Data presented are means of data from two 

replicate trials. Error bars represent standard errors of means. 
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5.4.3 Effect of treatment on structural breakdown behaviour of cheese 

The effect of three different treatments, i.e., (1) warm-room ripening, (2) 

chymosin-mediated proteolysis, and (3) coagulant type, on structural breakdown 

behaviour of the semi-hard cheeses at 48 d of ripening was studied. Typical true 

stress and Hencky strain relationships for each experimental cheese types were 

shown in Figure 5.3a. The CC, noWR and PepA cheeses showed similar stress-strain 

relationships. However, the stress-strain relationships for control cheeses were 

different from the other cheeses. Moreover, the fracture parameters obtained from 

strain-stress curve was found to be significantly different between experimental 

cheese variants; Young’s modulus (Figure 5.3c) and fracture stress (Figure 5.3d) 

values of CC, noWR and PepA cheeses were significantly higher than the control 

cheese at 48 d of ripening. In agreement with the fracture strain results obtained from 

uniaxial compression test in a parallel study (Lamichhane et al., 2019), the mean 

fracture strain value of noWR cheeses obtained from the tension test was relatively 

higher than for the other cheese variants (Figure 5.3d). However, the difference 

observed was not statistically significant. 

Although changes to the microstructure of experimental cheeses variants at 

48 d of ripening were observed to be similar under tensile deformation (micrographs 

not shown), stress profile as a function of crack length was found to be different 

between these cheeses (Figure 5.3b). Stress increased until the control cheese sample 

started to fracture from the notch tip during tensile deformation, followed by a 

levelling off, or decrease, in the stress with further increase in the crack length. 

However, for CC, noWR and PepA cheeses, the stress required for 

breakdown of cheese samples continued to increase until the crack length reached ~2 
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mm, followed by a decrease in the stress with further increase in the crack length. 

Fracture may occur once the stress exceeds the cohesive strength of the material 

(Foegeding et al., 2011). This suggests that the cohesive strength of the CC, noWR 

and PepA cheeses was higher as compared to the control cheeses. The different 

fracture behaviour of the control cheeses compared to the noWR cheeses was 

attributed to temperature-induced biochemical changes, mainly proteolysis, in the 

cheese matrix (Soodam, Ong, Powell, Kentish, & Gras, 2017), as the latter cheeses 

were not subjected to warm-room ripening. 

The different fracture behaviour of the control and CC cheeses at 48 d of 

ripening was attributed to the different proteolytic activities of residual coagulants; 

FPBC was used as a coagulant in control cheeses, whereas in CC cheeses FPCC was 

used. Studies have reported that the proteolytic activity of FPCC was much lower as 

compared to FPBC (Kappeler et al., 2006). The extent of primary proteolysis has 

been found to be lower in different cheese types made with FPCC than in cheeses 

made with FPBC, such as Cheddar (Bansal et al., 2009; McCarthy et al., 2017), 

Mozzarella (Moynihan et al., 2014), and Italian soft cheese (Alinovi et al., 2018). In 

the current study, substitution of FPBC with FPCC as coagulant reduced the primary 

proteolysis of cheese during ripening (Lamichhane et al., 2019). 

The different fracture behaviour of PepA cheeses as compared to control 

cheeses is attributed to the inhibition of residual chymosin activity (Shakeel-Ur-

Rehman, Feeney, McSweeney, & Fox, 1998; O'Mahony et al., 2005) in the former 

cheeses where a chymosin inhibitor, i.e., pepstatin A, was added to the curd/whey 

mixture. This suggested that the activity of residual chymosin may have an important 

influence on the fracture behaviour of semi-hard cheese. 
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Figure 5.3. Effect of treatment on fracture behaviour of semi-hard cheese at 48 d of 

ripening: (a) typical true stress and Hencky strain  relationships; (b) stress profile as 

a function of crack length; (c) Young’s modulus; and (d) fracture stress and strain 

profile for experimental cheese variants: Control, control cheeses; noWR, cheese 

without warm-room ripening; CC, cheese made using fermentation-produced camel 

chymosin as a coagulant; PepA, cheese containing chymosin inhibitor, i.e., pepstatin 

A, which was added to the curd-whey mixture during cheese manufacture. Data 

presented are means of data from two replicate trials. Error bars represent standard 

errors of means. 
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5.4.4 Dynamic visualization of cheese microstructures under tensile 

deformation 

Changes to the microstructures of cheese during tensile deformation were 

obtained using CSLM. Widening of the notch (Figure 5.4a), stretching of the protein 

network (in the direction of tensile force) near the notch tip (Figure 5.4b-c) and 

initiation of fracture from the leading point of notch (Figure 5.4d) were all observed 

prior to propagation (i.e., rapid growth of fracture surface) of a notch (Figure 5.4e-f) 

during tensile deformation, in all experimental cheeses, regardless of maturation 

level or applied treatment. Stretching of the protein network near the notch tip is due 

to stress concentration (Luyten, 1988). 

Moreover, on tensile deformation, the fat globules near the notch tip 

appeared disconnected from the stretched protein networks (Figure 5.4c-f), 

suggesting that the fat globules within the semi-hard cheese matrix were unbound to 

the protein matrix or weakly held (entrapped) within the protein matrix. 

Furthermore, fracture propagated through protein network in all cheeses leaving fat 

globules/pools intact. Abhyankar et al. (2014) also reported a similar observation in a 

particulate gel, i.e., whey-protein-emulsion-filled gels prepared at pH 5.4. 
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Figure 5.4. Selected confocal scanning laser microscopy (CSLM) micrographs of cheese obtained during tensile deformation of a notched 

sample, illustrating; (a) opening of the notch, (b-c) stretching of the protein network near the notch tip and (d-f) fracturing from notch tip. The 

arrow in the micrograph (a) shows the artificial notch tip. The protein phase appears red while the fat phase appears green. Arrows beside the 

micrographs indicate the direction of tensile deformation. 
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Selected CSLM micrographs taken during tensile deformation of an 

artificially notched sample are shown in Figure 5.5. The time-series micrographs 

clearly show release of fat from the cheese matrix. The fat pool within the circle 

(Figure 5.5a-c) is the same fat pool observed at different time points during tensile 

deformation. Utilizing image analysis, the diameter of the fat pool within the circle 

(Figure 5.5a), was found to be ~20 µm, which was higher than the average diameter 

of native milk fat globules, i.e., 4 µm (Lopez, 2005), suggesting that the fat pool was 

either coalesced fat (resulting from fusion of individual fat globules) or non-globular 

fat (Lopez, Camier, & Gassi, 2007). Cheese manufacture steps, such as, cooking and 

pressing, can cause aggregation, coalescence and disruption of fat globules, with the 

formation of non-globular fat or free fat (Lopez et al., 2007). Release of fat from the 

protein matrix was not only observed at the initial stages of notch propagation, but 

was also observed at the advanced stages of notch propagation. Furthermore, the 

release of fat from the cheese matrix was observed at all stages of ripening 

(micrographs not shown). These results suggest that the applied technique is suitable 

for understanding fat-protein interactions within semi-hard cheese matrix. 
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Figure 5.5. Selected confocal scanning laser microscopy (CSLM) micrographs of cheese (90 d of ripening) during tensile deformation of a 

notched sample, illustrating release of fat globules from the cheese matrix. The fat globule within the circle represents the same globule at 

different time points during tensile deformation. The protein phase appears red while the fat phase appears green. Arrows beside the micrographs 

indicate the direction of tensile deformation. 
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From a materials science perspective, cheese can be viewed as a 2-phase 

composite material containing fat globules as a filler in a protein gel matrix (Barden, 

Osborne, McMahon, & Foegeding, 2015; Lamichhane et al., 2018a). The sensory 

perception of foods is largely determined by properties of the filler, the extent of 

filler-matrix interactions, distribution of the filler, and characteristics of the gel 

matrix (Lamichhane et al., 2018a). A better understanding of interactions between 

the protein matrix and fat globules is desirable to understand the release patterns of 

fat globules in the mouth during mastication, which in turn will influence texture and 

potentially flavour perception. Studies have shown that emulsion-filled gels with 

unbound fat droplets exhibit stronger fat-related sensory perceptions than bound fat 

droplets (Sala, van de Velde, Cohen Stuart, & van Aken, 2007; Liu et al., 2015). 

To better understand the fracture behaviour at a macroscopic level, changes 

in cheese structure were also observed at low magnification during tensile 

deformation. The fracture initiated from the leading point of notch and then 

propagated in an irregular zig-zag manner, probably due to the inhomogeneous 

nature of the cheese matrix. Similar fracture behaviour has previously been reported 

in whey-protein-emulsion-filled gels prepared at pH 5.4 (Abhyankar et al., 2014). 

It is possible to observe, in real time, whether the fracture goes through 

individual curd granule or along curd granule junctions by observing cheese 

microstructure at low magnification. The density of the protein network at the curd 

granule junction (Figure 5.6, short arrow) is higher compared to the interior of curd 

granules, due to leaching of the fat from the curd granule surface to whey during 

cheese manufacture. Selected CSLM micrographs (Figure 5.6) taken during tensile 

deformation of an artificially notched sample clearly show the fracturing of cheese 
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sample partly along a curd granule junction. This suggested the presence of localized 

weak zones along the curd granule junctions within the cheese matrix, which 

wasprobably due to the strength and types of bond formed between the networks of 

curd granules. 
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Figure 5.6. Sequence of confocal scanning laser microscopy (CSLM) images of cheese obtained during tensile deformation of a notched cheese 

sample after 20 d of ripening, illustrating the growth of a crack partly along a curd granule junction. Long and short arrows show the crack tip 

and curd granule junction respectively. The protein phase appears red while the fat phase appears green. Arrows beside the micrographs indicate 

the direction of tensile deformation. 
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An inherent micro-defect (~32 µm; Figure 5.7a) located at a curd granule 

junction was observed within the cheese matrix. During tensile deformation, the 

cheese sample not only fractured from the artificial notch but also fractured from the 

inherent defect located at this curd granule junction (Figure 5.7b-e), and finally both 

cracks merged together (Figure 5.7f). Interestingly, the inherent defect fractured 

along the curd granule junction. This suggested that defect within the semi-hard 

cheese matrix was most likely to be present at the curd granule junction, in 

agreement with previous reports (Huc, Moulin, Mariette, & Michon, 2013; Huc et 

al., 2014). Moreover, defects at curd granule junctions tend to fracture along curd 

granule junction under deformation. This leads us to hypothesize that the presence of 

micro-cracks within the cheese matrix could be precursors to splits and cracks 

observed in some eye-type cheeses; micro-cracks may grow gradually during 

ripening due to the stress exerted by the gas produced by micro-organisms, 

especially during warm-room ripening, when diffusion of gas at nuclei may create a 

tensile force within the cheese matrix. 

Other studies have also observed micro-cracks (size ranging from 50-200 

µm) in eye-type cheeses (Huc et al., 2013; Huc et al., 2014). The actual reasons for 

occurrence of inherent defects (micro-cracks) within the cheese matrix are not fully 

understood. However, entrapment of whey pockets, air bubbles or free fat between 

curd granules are considered as possible reasons, which may inhibit the formation of 

bonds between the network of curd granules (Akkerman, Walstra, & Van Dijk, 1989; 

Luyten & Van Vliet, 1996). It may also be possible that temperature variations 

between cheese curd granules during pressing and localized differences in 

composition and pH within the cheese matrix (Burdikova et al., 2015) could be 

contributory factors. 
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Figure 5.7. Sequence of confocal scanning laser microscopy (CSLM) images of cheese taken during tensile deformation of a notched cheese 

sample after 90 d of ripening, illustrating the fracture behaviour in the presence of an inherent defect at a curd granule junction. The circle, in the 

micrograph and in the inset (a), shows the inherent defect (~32 µm) at a curd granule junction and the arrow shows the curd granule junction. 

Both the inherent defect and the notch (b-e) grew gradually and (f) merged during tensile deformation. The protein phase appears red while the 

fat phase appears green. Arrows beside the micrographs indicate the direction of tensile deformation. 
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5.5 Conclusions 

This study successfully achieved dynamic visualization of semi-hard cheese 

microstructure under large-strain tensile deformation. On deformation, the fat 

globules/pools were detached from the protein network and subsequently released, 

confirming that the fat globules within semi-hard cheese matrix are not bonded to the 

protein matrix but rather weakly held/entrapped within the proteins matrix. 

Moreover, the cheese matrix fractured (at least in part) along curd granule junctions, 

suggesting the presence of localized weak spots along the curd granule junctions 

within the cheese matrix. Inherent micro-defects were observed within the cheese 

matrix, and these defects were most likely to be present at the curd granule junction. 

It was proposed that these micro-defects could be a key underlying factor in the 

formation of undesirable slits or cracks. During fracturing, stress profiles of 

experimental cheeses varied with the levels of maturation, ripening temperature, 

coagulant type or residual chymosin activity, suggesting that the fracture behaviour 

of semi-hard cheese can be modulated by changing maturation levels, ripening 

temperature, using a different coagulant type, or inhibiting the residual chymosin 

activity. Overall, this study demonstrated the applicability of dynamic in situ 

imaging of cheese microstructure to better understand fat-protein interactions as well 

as predicting weak zones within a cheese matrix. Such structural information is 

particularly relevant for understanding texture and flavour perception, as well as 

mechanisms of formation of undesirable slits and cracks within the cheese matrix. 

Furthermore, the approach used in this study could be applied to establish a greater 

understanding of structure-fracture relationships in cheese, as well as other food 

products. 
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5.6 Supplementary materials 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1. General overview of the treatments and ripening regimens 

used in the study
1
 

Treatment 
Cheese type

2
 

Control  noWR  CC  PepA  

Rennet type FPBC FPBC FPCC FPBC 

Chymosin 

inhibitor  

Not added  Not added Not added Added 

Ripening 

regimen 

8 °C for  20 d  

23 °C for 28 d 

4 °C for 39 d 

8 °C for  20 d 

8 °C for 28 d 

4 °C for 39 d 

8 °C for  20 d 

23 °C for 28 

d 

4 °C for 39 d 

8 °C for  20 

d 

23 °C for 28 

d 

4 °C for 39 d 
1
FPBC = fermentation-produced bovine chymosin; FPCC = fermentation-produced 

camel chymosin 
2
noWR = cheese without warm room ripening; CC = cheese made using 

fermentation- produced camel chymosin as a coagulant; PepA = cheese containing 

chymosin inhibitor i.e., pepstatin A, which was added to the curd/whey mixture 

during cheese manufacture. 
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Supplementary Table 2. Compositional parameters at 20 d and pH at 1 d of ripening in semi-hard 

cheeses
1
 

Compositional factors 
Cheese types

2
 P-

value Control noWR CC PepA 

Moisture (%, w/w) 40.83 ± 1.61
a
 40.89 ± 2.47

a
 40.95 ± 3.36

a
 41.84 ± 2.51

a
 0.96 

MNFS (%, w/w) 56.24 ± 1.54
a
 56.11 ± 2.20

a
 56.26 ± 3.11

a
 57.05 ± 2.28

a
 0.96 

Protein (%, w/w) 25.32 ± 0.90
a
 25.57 ± 1.47

a
 25.44 ± 1.56

a
 25.39 ± 1.48

a
 0.98 

Fat (%, w/w) 27.42 ± 1.06
a
 27.16 ± 1.77

a
 27.29 ± 1.98

a
 26.70 ± 1.65

a
 0.95 

FDM (%, w/w) 46.33 ± 0.91
a
 45.92 ± 1.46

a
 46.18 ± 0.85

a
 45.88 ± 1.28

a
 0.96 

Salt (%, w/w) 1.34 ± 0.12
a
 1.38 ± 0.14

a
 1.38 ± 0.09

a
 1.36 ± 0.08

a
 0.96 

S/M (%, w/w) 3.28 ± 0.31
a
 3.39 ± 0.51

a
 3.38 ± 0.41

a
 3.25 ± 0.08

a
 0.95 

Total calcium (mg/100 g 

cheese) 
867 ± 30

a
 861 ± 30

a
 837 ± 34

a
 842 ± 27

a
 0.60 

pH (1 d) 5.18 ± 0.03
a
 5.21 ± 0.03

a
 5.19 ± 0.03

a
 5.23 ± 0.03

a
 0.28 

1
MNFS, moisture in non-fat substance; FDM, fat in dry matter; S/M, salt-to-moisture ratio; Control, 

control cheeses; noWR, cheeses without warm room ripening; CC, cheeses made using fermentation-

produced camel chymosin; PepA, cheeses containing chymosin inhibitor i.e., pepstatin A, which was 

added to the curd/whey mixture during cheese manufacture. 

2
Values within a row not sharing common superscripts differ (P < 0.05); data are the mean ± standard 

deviation of data from three replicate trials. 
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6.1 Abstract 

The contribution of individual components of cheese matrices on CO2 

solubility, especially the protein or moisture phases, remains unclear. Therefore, this 

study investigated the solubility behaviour of CO2 in model casein matrices, 

representing the moisture-protein phase of cheese. Renneted casein matrices were 

prepared from micellar casein concentrate (MCC) and the salt and pH levels of the 

gels were modulated by adding salt and glucono delta-lactone to the MCC solutions 

prior to renneting. Different moisture-to-protein levels were achieved by freeze-

drying, incubation of samples at different relative humidity, or by applying varying 

pressures during gel manufacture. The CO2 solubility of samples decreased (P < 

0.05) linearly with both increasing temperature (between 5 °C and 25 °C) and salt-

in-moisture content (between 0.06 and 3.2%), whereas solubility of CO2 increased (P 

< 0.05) with increasing pH (between 5.4 and 6.2). A complex relationship was 

observed between CO2 solubility and the moisture-to-protein ratio of experimental 

samples; the CO2 solubility first decreased with increasing moisture-to-protein ratio 

(M/P) from ~0.03 to ~1.7, followed by a gradual increase with increasing M/P from 

~1.7 to 2.5. Overall, the solubility or absorption capacity of protein matrices were 

significantly influenced by varying levels of moisture-to-protein ratio, salt content, 

pH, temperature and partial pressure. This knowledge may be applied to improve the 

quality and consistency of eye-type cheese, and in particular to avoid development of 

undesirable splits and cracks. 
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6.2 Introduction 

In some eye-type cheeses, such as Emmental and Maasdam, propionic acid 

bacteria produce a high level of carbon dioxide, especially during warm-room 

ripening. The rate and extent of gas production and its behaviour in the cheese 

matrix (e.g., solubility and diffusivity) are considered important factors for the 

development of eyes, but are also implicated in the undesired development of slits or 

cracks within those cheese types (Daly, McSweeney, & Sheehan, 2010b). It is 

believed that CO2 produced within the cheese matrix first solubilizes/dissolves 

within the components of the cheese matrix. Once the cheese body becomes 

saturated with gas, it then diffuses to the nuclei for eye-development or diffuses 

outward through the cheese rind. It is reported that the ~50% of the total CO2 gas 

produced is dissolved in the cheese body (Walstra, Wouters, & Geurts, 2005). 

Studies have suggested that the solubility capacity of the cheese matrix 

largely depends on factors such as cheese composition, temperature, and partial 

pressure.  Carbon dioxide solubilises in both the aqueous and fat phases of cheese; 

however, the solubility capacity of each phase is temperature-dependent (Jakobsen, 

Jensen, & Risbo, 2009). CO2 solubility in the aqueous phase of cheese has been 

reported to decrease with increasing temperature whereas the CO2 solubility in the 

fat phase has been reported to increase with increasing temperature (Jakobsen et al., 

2009). Acerbi, Guillard, Guillaume, and Gontard (2016) studied the effect of 

temperature, partial pressure, salt and moisture content on the solubility behaviour of 

CO2 in semi-hard cheese. Those authors observed a decrease in CO2 solubility with 

increasing temperature and salt level. However, a complex relationship was observed 

with moisture level, which has been attributed to concomitant changes in protein 
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content with changing moisture levels. Those authors recommended conducting 

further research to clarify the influence of nitrogen content on CO2 solubility in 

cheese. 

Although several studies have investigated CO2 solubility behaviour in food 

matrices (Acerbi et al., 2016) or in pure fat (Jakobsen et al., 2009; Truong, Palmer, 

Bansal, & Bhandari, 2017), solubility behaviour of CO2 in dairy protein matrices is 

not yet fully understood. In fact, studies have neglected the effect of protein content 

on the CO2 solubility (Jakobsen et al., 2009; Acerbi et al., 2016). However, it is 

difficult to investigate the effect of each individual component on solubility 

behaviour in a multi-component food system, as changing of one compositional 

parameter results in consequential changes to other compositional parameters. 

Therefore, studies using model systems may be better suited to understand the effect 

of each component individually on solubility behaviour of CO2. 

The primary aim of this study was to investigate the effect of moisture-to-

protein ratio on solubility of CO2 in renneted-casein gel matrices rather than simply 

in a protein-only matrix, as it is not possible to vary protein content without 

changing the moisture level. In the majority of food matrices, protein is mostly 

present in a hydrated state, and its level of hydration is dependent on product type; 

for example, there are low levels of protein hydration in dairy powders as compared 

to cheese. An additional aim of this study was to elucidate the effect of varying 

levels of salt, pH, temperature and partial pressure on the solubility of CO2 in model 

renneted-casein gel matrices.  
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6.3 Materials and methods 

6.3.1 Preparation of renneted casein matrix 

Liquid micellar casein concentrate (MCC; protein content = 14.55%, w/w; 

total solids: 18.34%, w/w) was produced as reported by Xia et al. (unpublished data) 

and stored at -18 °C. Prior to use in experiments, the MCC was thawed in a water 

bath at 50 °C and an aliquot (400 g) was placed in a 500 mL beaker with 0.03 % 

(w/w) sodium azide (BDH Chemicals, Poole, England) as a preservative. The desired 

salt concentration and pH levels of the final gels, were achieved by mixing varying 

levels of NaCl (0, 1.5, or 2.5%, w/w) and glucono-δ-lactone (GDL; 0.5, 1.2, or 2%, 

w/w; Sigma-Aldrich) into the MCC with a magnetic stirrer. Three minutes after salt 

and GDL addition, fermentation-produced bovine chymosin (FPBC; CHY-MAX 

Plus, ~200 international milk clotting units (IMCU)/mL; Chr. Hansen Ltd., Cork, 

Ireland) was added at a level of 0.82 mL/kg MCC. Rennet addition was based on 

MCC protein content. All renneted milk concentrates were incubated at 32 °C for 30 

min to induce gel formation and stored overnight at 4 °C for completion of GDL 

hydrolysis. 

On the following day, all gels were incubated in a water bath at 40 °C for 1 h 

to promote expulsion of whey/moisture. Each gel was then collected into a mould 

and pressed vertically under increasing pressure (up to 195 kPa) for 3 h to obtain the 

desired final moisture content. All gels were then vacuum-packed (Falcon 52, 

Original Henkelman vacuum system, 's-Hertogenbosch, the Netherlands), and stored 

at 4 °C. 
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6.3.1.1 Preparation of a model system to investigate the effect of partial 

pressure and temperature  

To investigate the effect of partial pressure and temperature on CO2 

solubility, three identical casein matrices were prepared of moisture and salt content 

~60% (w/w) and ~2% (w/w), respectively, and with a pH of ~6.8.  

6.3.1.2 Preparation of a model system to investigate the effect of salt  

To investigate the effect of salt on the CO2 solubility, three casein matrices 

were prepared in triplicate, by adding three different salt levels, i.e., 0, 1.5, and 2.5%, 

w/w, to the MCC. Other parameters, including levels of protein and moisture, and 

pH, were all kept constant. 

6.3.1.3 Preparation of a model system to investigate the effect of pH 

To investigate the effect of pH on the CO2 solubility, three casein matrices, 

of three different pHs, were prepared in triplicate, by adding varying levels of GDL 

(0.5, 1.2, or 2%, w/w) to the MCC. Other parameters, including levels of salt, protein 

and moisture, were all kept constant. A series of preliminary experiments were 

conducted to determine the levels of GDL necessary to achieve the desired pH value, 

ranging between 5.4 and 6.2. 

6.3.1.4 Preparation of a model system to investigate the effect of moisture to 

protein ratio 

Approaches, such as application of variable pressure during manufacture, 

freeze-drying, or incubation of samples in various relative humidity environments, 

were applied to achieve desired hydration levels of the casein matrices. Increasing 

pressing pressure up to 98 kPa for 2 h was applied to achieve casein matrices with a 

moisture content of ~67% (w/w), whereas increasing pressure up to 197 kPa for 3 h 
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was applied to achieve casein matrices with a moisture content of ~59% (w/w). 

Casein matrices with a moisture content of ~47% (w/w) or ~34% (w/w) were 

prepared by incubating small slices of casein gel (each of ~2 g, initial moisture 

content of ~59%) for 1 to 2 weeks, at 4 °C, in desiccators containing a saturated 

solution of LiCl. Casein matrices of very low moisture content (~2%, w/w) were 

prepared by freeze drying. Some freeze-dried samples were rehydrated to achieve a 

moisture content of 15% (w/w) or 19% (w/w) by incubating (for 2 weeks at 25 °C) 

in a hermetically sealed container maintaining a relative humidity of 97% (using 

saturated potassium sulphate) or 100% (using pure water), respectively.  

6.3.2 Composition analysis 

Moisture, protein and salt contents were determined as described by 

Lamichhane, Kelly, and Sheehan (2018a). The fat content of samples was 

determined using the Röse-Gottlieb method (IDF, 1996). The pH of gel samples was 

determined by directly inserting a penetrating pH probe (HQ11d, Hach) into gel 

samples. 

6.3.3 Determination of freezable and non-freezable moisture 

Levels of freezable and bound moisture were determined using a differential 

scanning calorimeter (DSC; Q200, TA Instruments, New Castle, DE, USA) as 

described by McMahon, Fife, and Oberg (1999). Freezable moisture is defined as 

water freezeable at -40 °C, whereas non-freezable moisture was defined as the water 

that did not freeze at 40 °C (McMahon et al., 1999).  

6.3.4 Modified atmosphere packaging 

In triplicate, experimental samples of 1.5 to 2 g, were each individually 

packaged into pouches (length = 25 cm, width = 18.5 cm; Amcor Flexibles, 
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Denmark) of high gas impermeability using a modified atmosphere packaging 

machine equipped with a two-gas mixture (A 300; Multivac, Germany). To 

investigate the effect of partial pressure and temperature on CO2 solubility, samples 

were packed with a CO2:N2 gas mixture of 0:100; 30:70; 60:40 and 100:0 and stored 

at 5 °C, 12 °C and 25 °C for 2 d. To investigate the effect of salt, pH and casein 

hydration, samples were packed under 100% CO2 and stored at 5 °C for 2 days.  

6.3.5 Determination of the concentration of CO2 in the headspace of modified 

atmosphere packages 

The concentration of CO2 in the headspace of modified atmosphere packages 

was determined using a headspace gas analyser (CheckMate 9900, PBI-Dansensor 

A/S, Ringsted, Denmark). To prevent gas leakage from the packaging material 

during measurement, a septum (diameter = 15 mm, MACON Europe A/S, Denmark) 

was attached to the top of the packaging materials, which was pierced by the needle 

of the headspace gas analyser. 

6.3.6 Determination of the concentration of CO2 in renneted-casein matrices 

The concentration of carbon dioxide in the renneted-casein matrix was 

determined using a titration method as described in previous studies (Gill, 1988; 

Jakobsen et al., 2009; Truong et al., 2017). Briefly, a pair of side-armed conical 

flasks (100 mL; Pyrex), one containing 10 mL of 0.5 M H2SO4 and another 

containing 3 mL of 0.1 N  Ba(OH)2, connected by a reinforced PVC tube, were used 

for extraction and subsequent scavenging of CO2 from experimental samples. 

Experimental samples (~1.5 g) held under modified atmosphere packaging were 

transferred immediately to the flask containing 0.5 M H2SO4, which was sealed 

using a neoprene stopper. Therein, the CO2 evolved from the experimental sample 

reacted with Ba(OH)2 (present in the other flask) and produced a BaCO3 precipitate. 
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After at least 24 h, the residual Ba(OH)2 was titrated against a standard HCl solution 

(0.1 M) using phenolphthalein as an indicator.  

6.3.7 Statistical analysis 

Statistical analyses of the data were performed using SigmaPlot version 14 

(Systat Software, Inc., San Jose, California, USA). The effect of treatment on CO2 

solubility of casein matrices was determined performing one way ANOVA followed 

by posthoc Student-Newman-Keuls tests. Before ANOVA evaluation, data were 

checked for homoschedasticity and normality by performing Brown-Forsythe and 

Shapiro–Wilk tests, respectively. The level of significance was set at P ≤ 0.05. 

Regression analyses of the data were performed using SigmaPlot version 14 (Systat 

Software, Inc., San Jose, California, USA).  

6.4 Results and discussions 

6.4.1 Effects of partial pressure and temperature on solubility of CO2 

A linear relationship was observed between the concentrations of CO2 in the 

experimental samples and the CO2 partial pressure of the headspace of 

corresponding samples at all three temperatures investigated (Figure 6.1a). These 

results are in agreement with previous studies on cheese (Jakobsen et al., 2009; 

Acerbi et al., 2016) and on anhydrous milk fat (Truong et al., 2017). The linear 

regression equations obtained had very high coefficients of determination (R
2 

= 0.98-

0.99), thus validating Henry’s law for the casein matrix studied.  However, a small 

deviation from the origin was observed at zero CO2 partial pressure. This deviation 

in CO2 solubility of samples ranged between 0 and 2.68 mmol/kg. Similar deviations 

from the origin have previously been observed in cheese (Jakobsen et al., 2009; 

Acerbi et al., 2016) and in anhydrous milk fat (Truong et al., 2017) and were 
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attributed to the inherent presence of carbamate or carbonate species within the 

sample (Jakobsen et al., 2009; Acerbi et al., 2016). We believe that such a small 

offset plays a negligible role in the overall determination of the relationship between 

the physicochemical parameters of the matrix and CO2 solubility. 

The influence of temperature on CO2 solubility in cheese (containing fat, 

protein and moisture) (Jakobsen et al., 2009; Acerbi et al., 2016) and in pure fat 

systems (Truong et al., 2017) has been previously studied, with a decrease in CO2 

solubility being observed with increasing temperature in semi-hard cheeses. 

Based on CO2 solubility behaviour in pure water and pure butterfat, Jakobsen 

et al. (2009) concluded that the solubility of CO2 in the aqueous phase of cheese 

decreased with increasing temperature, whereas CO2 solubility in the fat phase 

increased with increasing temperature. However, those authors did not take into 

account the influence of protein content, which was present in a considerable amount 

(30.6%, w/w) within the semi-hard cheese matrices studied. Moreover, the aqueous 

phase of cheese is more complex than pure water. Therefore, we investigated the role 

of temperature on solubility behaviour of CO2 in casein matrices. The casein 

matrices had a moisture-to-protein ratio of ~1.8, similar to those found in some semi-

hard cheese types such as Maasdam (Lamichhane et al., 2018a). 
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Figure 6.1. (a) Carbon dioxide concentration in casein matrices as a function of 

carbon dioxide partial pressure in the headspace of modified atmosphere packages 

and temperature. (b) Carbon dioxide concentration in the casein matrices as a 

function of temperature; (▲), mean of data from three replicate experiments; (●), 

individual data points; P represents P-value. Error bars represent standard deviations 

of means (n = 3). Average composition (± standard deviation) of samples: moisture 

content = 61.43±1.32 (%, w/w), protein content = 31.20±0.05 (%, w/w), fat content: 

0.39±0.10 (%, w/w), salt content = 1.90±0.05 (%, w/w), salt-in-moisture content = 

3.09±0.05 (%, w/w), and pH = 5.84±0.02. 
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It was observed in this study that the solubility of CO2 in a casein matrix 

decreased (P < 0.05) linearly (R
2
 = 0.96) as the temperature increased, with ~35% 

lower CO2 solubility observed at 25 °C than at 5 °C (Figure 6.1b). It is proposed that 

the random molecular motion of the CO2 gas molecules increases with increasing 

temperature (Cofie-Agblor, Muir, Sinicio, Cenkowski, & Jayas, 1995), thereby 

reducing the forces of attraction between CO2 gas and the casein matrix, with 

subsequent release of CO2 from the casein matrix.  

Slits and cracks are usually observed during cold room storage and therefore 

we propose that the changes in CO2 solubility with changing ripening temperature 

may contribute to the occurrence of such defects. Cheeses, such as, Maasdam and 

Emmental are pre-ripened for 1 to 2 weeks at 8-10 °C before warm room ripening 

(~23 °C) for 4-6 weeks for the development of eyes, and are finally stored at 2-4 °C. 

Propionic acid bacteria produce a high level of CO2, especially during warm-room 

ripening, and a proportion of CO2 produced dissolves in the cheese body, while the 

remainder diffuses to nuclei for eye-formation or diffuses outward through the 

cheese rind. Diffusion of CO2 to nuclei causes expansion of cheese; it is reported that 

the Emmental cheese volume increases by ~25% due to production of CO2 gas 

(Walstra et al., 2005). However, during cold storage (2-4 °C), it is expected that a 

proportion of carbon dioxide present in nuclei may solubilize in the cheese body as 

the solubility capacity of the cheese increases with decreasing temperature, which 

may result in a contraction of cheese. Moreover, the temperature of commercial cold 

rooms may fluctuate due to a range of circumstances, such as, increased external 

ambient temperature, or the arrival of new batches of cheese (from warm rooms) into 

the cold rooms. Such fluctuations in storage temperature may lead to contraction and 

expansion of the cheese body, resulting weakening of cheese structure, and thereby 
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contributing to the formation of cracks and slits. Further research is recommended to 

validate this hypothesis. 

6.4.2 Effect of salt content on solubility of CO2 

The effect of three different salt concentrations on CO2 solubility within the 

casein matrices was studied (Figure 6.2). Carbon dioxide solubility in the casein 

matrices decreased (P = 0.004) by ~22% with increasing average salt content from 

0.04% (salt-in-moisture content: 0.06%, w/w) to 1.89% (salt-in-moisture content: 

3.13%, w/w). This decrease in solubility may be attributed to a salting-out effect on 

the solubility of CO2 in the aqueous phase of the casein matrix by NaCl in 

accordance with previous studies (Liu, Hou, Yang, & Han, 2011; Carvalho, Pereira, 

Gonçalves, Queimada, & Coutinho, 2015; Acerbi et al., 2016).  

Although the effect of salt on CO2 solubility behaviour in water and in 

aqueous solutions is well known, the role of NaCl on CO2 solubility behaviour in 

solid food matrices is less documented. Acerbi et al. (2016) studied the impact of salt 

content on CO2 solubility behaviour in semi-hard cheese matrices and, in agreement 

with our results, observed a significant decrease in CO2 solubility (by ~25%) on 

increasing salt levels from 0.0 to 2.7 % (w/w). 
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Figure 6.2. Effect of salt-in-moisture content on the solubility of carbon dioxide in 

casein matrices; (▲), mean of data from three replicate experiments; (●), individual 

data points; P represent P-value. Error bars represent standard deviations of means (n 

= 3). Average composition (± standard deviation) of samples: moisture content = 

61.38±1.30 (%, w/w), protein content = 31.11±1.78 (%, w/w), fat content = 

0.39±0.08 (%, w/w), and pH = 5.37±0.03. 
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The salt (or salt-in-moisture) concentration range selected was similar to 

those found in eye-type cheeses and those involving propionic acid bacteria (PAB) 

fermentation cheeses (Guinee, 2004; Lamichhane, Sharma, Kennedy, Kelly, & 

Sheehan, 2019). In brine-salted cheese types, salt diffuses inward from the rind to the 

centre of the cheese matrices, resulting in a decreasing salt gradient from the rind to 

the centre (Guinee, 2004). Time for attainment of equilibrium in salt-in-moisture 

content within the cheese matrix depends on composition, size and shape of the 

cheese and ripening conditions, among other factors. It has been reported that Gouda 

(10 kg wheel) and Emmental (60-130 kg wheel) cheese takes 7-9 weeks and > 4 

months, respectively, for attainment of equilibrium in salt-in-moisture content within 

the cheese matrix (Guinee, 2004; Daly, McSweeney, & Sheehan, 2010a). Salt 

content in cheese can vary from batch to batch due to manufacture derived variables 

(e.g., temperature of brine and brining time), or over season due to variation in the 

composition of milk. Daly et al. (2010a) observed a significantly higher salt content 

in the interior area of Emmental cheese blocks produced in late in the season of 

manufacture than those produced at early in the season. Such intra-cheese and inter-

cheese variation in salt content will likely result in heterogeneity in the local 

concentration of CO2 within, or between, cheese blocks, leading to variable internal 

pressure within or between cheeses. This may result in some areas of the cheese 

matrices or some batches of cheeses, which may be more prone to development of 

slits or cracks. Although no specific locations for development of splits and cracks 

within the cheese matrices has been reported, a lower number of eyes have been 

found near the rind of Emmental cheese, where salt content is higher, than in the 

centre of the cheese (Guggisberg et al., 2015; Bisig et al., 2019). 
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6.4.3 Effect of pH on solubility of CO2 

Solubility CO2 within the casein matrices increased (P < 0.001) by ~41% on 

increasing pH from 5.4 to 6.15 (Figure 6.3) with a quadratic relationship (R
2
 = 0.93) 

providing a better fit than a linear relationship (R
2
 = 0.84). Interestingly, the CO2 

solubility increased (P = 0.026) by ~14% on increasing pH from 5.4 to 5.8, whereas 

the CO2 solubility increased (P = 0.001) by ~24% on increasing pH from 5.4 to 6.2. 

Such an increase in solubility is attributed to dissociation of an increasing fraction of 

the dissolved CO2 as HCO3
-  

with increasing pH (Gill, 1988). In solution, CO2 can 

exist as dissolved CO2, carbonic acid, bicarbonate or carbonate ions, and the fraction 

of carbonic acid, bicarbonate or carbonate ions in solution depends on the pH of that 

solution (Equation 6.1). With increasing pH from 5.4 to 6.15, increasing quantities of 

carbonic acid will dissociate as bicarbonate ions (HCO3
-
) and hydrogen ions (H

+
). As 

a result, higher quantities of CO2 will dissolve in the aqueous phase of the casein 

matrix (Jakobsen & Bertelsen, 2002). At pH values below 8, the carbonate ions 

(CO3
-
) in solution are present in negligible amounts (Dixon & Kell, 1989). 

 (6.1) 

Very little is known regarding the effect of pH on CO2 solubility in solid 

food systems and no consensus have been found among the studies. Gill (1988) on 

investigating the effect of pH of the muscle tissue of beef, pork and lamb observed a 

linear increase in the solubility of CO2 with increasing pH from 5.4 to 6.9. Similarly, 

Jakobsen and Bertelsen (2006) reported a slightly higher solubility in meat tissue 

with higher pH (5.83) than lower pH (5.66). However, a difference of 0.5 pH units in 

the two meat types or fish types did not influence the solubility of CO2 (Sivertsvik, 

Rosnes, & Jeksrud, 2004; Sivertsvik & Jensen, 2005). This discrepancy may be 
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attributed to a comparison of data between different samples with different 

compositions and possibly of different buffering capacity.  

Dissolution of CO2 in the aqueous phase of food matrices can decrease pH 

because of formation of carbonic acid (Singh, Wani, Karim, & Langowski, 2012). 

There was a concern that addition of CO2 to the protein matrices would have resulted 

in reduction in pH in the samples, thus confounding our results relating to the effect 

of pH on CO2 solubility. Therefore, the pH of the samples was measured before and 

after packaging in a modified atmosphere. It was observed that storage of small 

pieces (~10 g) of the casein matrices (3.1 % salt-in-moisture, 60% moisture content, 

and 32% protein content) under a 100% CO2 environment for 2 d reduced the pH by 

~0.1 unit (data not shown). However, for water samples of similar initial pH and 

salt-in-moisture content, pH decreased by ~2.3 units when stored under 100% CO2 

environment for 2 d (data not shown). The comparatively small decrease in pH of the 

casein matrices as compared to water may be attributed to its high buffering 

capacity, as food matrices of higher buffering capacity are expected to exhibit a 

greater resistance to pH change. Buffering capacity of food matrices largely depends 

on their composition. Proteins, inorganic phosphate and organic acids are the main 

constituents contributing to its buffering capacity of cheese (Salaün, Mietton, & 

Gaucheron, 2005).  

During ripening, pH within the eye-type cheese matrices increases, due to the 

proteolytic liberation of basic compounds and metabolism of lactic acid by propionic 

acid bacteria, among other factors (Sheehan, Fenelon, Wilkinson, & McSweeney, 

2007; Lamichhane et al., 2018a). Studies have reported an increase in pH from 5.2-

5.3 at 7-11 d (before warm-room ripening) to ~5.5 at 35-41 d (after warm-room 
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ripening) and 6.0-6.1 at 270 d of ripening in Swiss, Dutch and related eye-type 

cheeses (Govindasamy-Lucey, Jaeggi, Martinelli, Johnson, & Lucey, 2011; 

Lamichhane et al., 2018a). Therefore, an increase in pH, especially above pH 5.8, 

during ripening of cheese may contribute to an increase in solubility of CO2 within 

the cheese matrices. Moreover, natural cheese matrices can have both macroscopic 

and microscopic pH gradients (Burdikova et al., 2015), which may lead to 

heterogeneity in the concentration of CO2 within the cheese matrices.  
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Figure 6.3. Effect of pH on carbon dioxide solubility in the casein matrices; (▲), 

mean of data from three replicate experiments; (●), individual data points; P 

represent P-value. Error bars represent standard deviation of mean (n = 3). Average 

composition (± standard deviation) of samples: moisture content = 61.05±0.9 (%, 

w/w), protein content = 31.81±0.96 (%, w/w), fat content = 0.39±0.08 (%, w/w), and 

salt content = 1.92±0.03 (%, w/w), salt-in-moisture content = 3.14±0.08 (%, w/w).  
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6.4.4 Effect of moisture-to-protein ratio on CO2 solubility 

To investigate the effect of moisture-to-protein ratio on CO2 solubility, casein 

matrices having different moisture and protein contents were prepared. 

Casein matrices with an average moisture-to-protein ratio of 0.027±0.009 

[corresponding to an average moisture and protein content of 2.10±0.67% (w/w) and 

78.72±1.26% (w/w) respectively] retained a considerable amount of CO2, i.e., 

161.7±24.68 mmol kg
-1

 atm
-1

 at 5 °C (Figure 6.4), in agreement with the results of 

Mitsuda, Kawa, Yamamoto, and Nakajima (1975). Those authors observed that dried 

casein and gelatin powders retained a considerable amount of CO2 when stored under 

high CO2 partial pressure. Although the exact reasons are not known, CO2 

adsorption by reactive sites in protein is considered as an important factor (Mitsuda 

et al., 1977; Cundari et al., 2009). Mitsuda et al. (1977) investigated the reactivity of 

certain particular functional groups involved in CO2 gas adsorption by protein. The 

authors concluded that the α-amino, ε-amino and guanidinium groups are the 

preferred sites for CO2 adsorption by protein in the gas-solid phase system. Cundari 

et al. (2009) analysed the binding of CO2 to protein utilizing a combination of 

bioinformatics, molecular modelling, and first-principles quantum mechanics, and 

concluded that the hydrogen bonds between the functional groups of the amino acids 

and the oxygen sites on the carbon dioxide were involved in the CO2 adsorption 

process. 

The relationship between moisture-to-protein ratio and CO2 solubility was 

non-linear (Figure 6.4), and can be divided into three distinct regions: (1) a rapid 

decrease in CO2 solubility on increasing the moisture-to-protein ratio from ~0.03 to 

~0.5; (2) a relatively slower decrease in CO2 solubility with increasing moisture-to-

protein ratio from ~0.5 to ~1.7; and (3) a small but significant increase in CO2 
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solubility on increasing moisture-to-protein ratio from ~1.7 to ~2.5. Around a 4-fold 

decrease in CO2 solubility was observed when the average moisture-to-protein ratio 

of casein matrices increased from ~0.03 to 0.5. Mitsuda et al. (1975) also reported 

similar solubility behaviour of CO2 in dried casein and gelatine powder as a function 

of moisture content. The solubility of CO2 in casein or gelatine powder decreased by 

>90% when their moisture content increased from ~5 or 10% (w/w) to 20 or 40% 

(w/w). The authors also observed a rapid decrease in CO2 solubility of casein or 

gelatine powder prior to a gradual decrease in their CO2 solubility on increasing 

moisture levels. Pre-adsorbed water may interact with the reactive sites of casein 

matrixes making those reactive sites unavailable for interaction with CO2, thus 

decreasing the CO2 adsorption/solubilisation capacity of hydrated casein matrices. A 

similar moisture-dependent CO2 adsorption behaviour has also been observed in 

other non-food materials. For example, Ozdemir and Schroeder (2009) observed a 

lower CO2 adsorption capacity of wet coals to that of dried coals. Those authors 

speculated that the adsorbed water occupies the pore space or the active sites for the 

adsorption of CO2.  
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Figure 6.4. Relationships between moisture-to-protein ratio and (▲) CO2 solubility 

or (■) non-freezable moisture (% of the total moisture) in renneted-casein matrices; 

(●) individual data points. Inset: magnification of CO2 solubility data for casein 

matrices of moisture-to-protein ratio between 0.5 and 2.5; means with different 

letters differ (P < 0.05). Error bars represent standard deviations of means (n = 3). 
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Water in casein matrices is either present as a bulk (freezable at -40 °C) or 

bound form (non-freezable at -40 °C) (McMahon et al., 1999; Lamichhane, Kelly, & 

Sheehan, 2018b), and the latter is typically considered to be so-called primary 

hydration water and primarily related to the solvation of polar and charged residues 

(Huppertz et al., 2017). In casein matrices of moisture-to-protein ratio up to 0.5, 

almost all moisture (>98% of total moisture) was found to be in non-freezable form 

(Figure 6.4). This result further supports the hypothesis that the pre-adsorbed water 

may interact with the reactive sites (e.g., polar and charged residues) of casein 

matrices and making those reactive sites unavailable for CO2 interaction. 

The CO2 solubility in casein matrices first decreased (P < 0.05) by ~23% 

with increasing moisture-to-protein ratio from ~0.5 to ~1.7 and then increased (P < 

0.05) by ~21% with increasing moisture-to-protein ratio from ~1.7 to ~2.5 (Figure 

6.4, inset). Such complex relationships observed between CO2 solubility and 

moisture-to-protein ratio may be attributed to interactive effects of moisture and 

protein content on CO2 solubility. This suggests that both water and protein 

components of casein matrices have an important role on CO2 solubility.  

In eye-type cheeses, the moisture-to-protein ratio is between 1.2 and 2.0, 

such as ~1.8 in Maasdam (Lamichhane et al., 2018a), ~1.7 in Edam (Guinee, 2016), 

and ~1.25 in Emmental (Deegan et al., 2013). Therefore, the CO2 solubility studied 

in casein matrices with a protein-to-moisture ratio between 1.0 and 2.0 are 

particularly important for hard and semi-hard eye-type cheeses. Moisture-to-protein 

ratios in cheese may also vary on a batch-to-batch basis, due to seasonal variations in 

the composition of milk and thus the resultant cheeses. Therefore, these results could 

form the basis for development of a robust model for prediction of CO2 solubility in 
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a wide variety of cheeses of different compositions, as models reported in previous 

studies were limited to the cheese type under study (Jakobsen et al., 2009; Acerbi et 

al., 2016).  

Although the CO2 solubility behaviour studied in casein matrices with a 

protein-to-moisture ratio below 1.0 is not relevant to natural cheese matrices, such 

knowledge may be useful when designing modified atmosphere packaging for 

cheese powders, where the protein to moisture ratio in spray-dried cheese powders 

was reported to vary between 0.05 and 0.12 (Felix da Silva, Larsen, Hougaard, & 

Ipsen, 2017). 

6.5 Conclusions 

This study investigated the solubility behaviour of CO2 in casein matrices, 

representing varying conditions of the protein-water phase of semi-hard cheese 

matrices. Both compositional (i.e, moisture-to-protein ratio and salt-in-moisture 

content) and ripening-related (i.e., pH and temperature) parameters had a significant 

influence on CO2 solubility of casein matrices.  

It is proposed that fluctuation in the ripening and storage temperature may 

lead to contraction and expansion of the cheese body, resulting in weakening of 

cheese structure, and thereby contributing for the formation of cracks and slits. 

Further research is recommended to validate this hypothesis. Another possibility is 

that the cheese matrix becomes oversaturated with CO2 gas, it can no longer contain 

all the solubilized gas due to changes in ripening related parameters, such as, 

temperature and pH, and rather than creating eyes the gas accumulates at the weak 

points in the matrix, e.g., at micro-defects and this leads to the formation of a slit or 

crack. 
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Variation in the cheese composition from batch to batch due to differences in 

milk composition or manufacture derived variables, such as time of the day of 

manufacture, plant temperature, temperature of brine and brining times, and rennet-

to-casein ratio, may result in certain batches being more at risk for development of 

slits and cracks. 

Overall, the result obtained from this study could form the basis for 

development of a robust model for CO2 solubility in a wide variety of cheese types 

or where the composition of cheese may vary within a commercial cheese production 

plant. Such knowledge may help to improve the quality and consistency of eye-type 

cheese by minimizing or avoiding development of splits and cracks.  
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7.1 General discussion 

Ireland produces over 200,000 tonnes cheese per annum, over 90% of which 

is exported, to a value of €815 million. The UK is the largest export market, 

accounting for €407 million in exports in 2018 (Central Statistics Office, 2019), 

followed by Germany, the Netherlands, Algeria and France. In 2018, Cheddar 

accounted for ~67% of total cheese exports, predominantly to the UK (Central 

Statistics Office, 2019). However, there has also been growth in the export of 

continental and eye-type cheeses and this is projected to grow further, resulting from 

the development of a new 20,000 tonne per annum Jarlsberg cheese plant and a 

45,000 tonne per annum Gouda type cheese plant in Ireland.  

Abolition of milk quotas in 2015 has significantly increased Irish milk 

production and cheese has been targeted as a vital end-product for this increased 

milk pool due to continued increases in global cheese consumption, its high end-use 

versatility, its potential for significant added value, and as a profitable outlet for 

surplus milk fat (Sheehan, 2013).  

In response to the increased milk production, increased market growth and 

consumer demand for other non-Cheddar cheese types in emerging markets, the Irish 

cheese industry is substantially investing to diversify from a heavy dependence on 

the production of Cheddar cheese into other cheese varieties. Similarly, changes to or 

creation of new trade agreements and barriers, such as through Brexit, have created a 

further trigger for Irish cheese industries to diversify their product portfolio and 

markets. 

Recently, a public-private partnership between Teagasc and Ornua focused 

on developing a continental eye-type cheese for a key European export market. 

However, technological challenges exist to converting a highly seasonal Irish milk 
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supply of varying composition into Continental-type cheeses of consistent physico-

chemical composition, with consistent mechanical and structural properties, ripening 

patterns and ultimately sensory quality from a textural, aesthetic and flavour 

perspective. Moreover, very little research has been published on the 

physicochemical, microstructural, textural and rheological properties, and ripening 

characteristics of mesophilic Continental semi-hard type cheeses with a propionic 

acid fermentation, such as Maasdam.  

It is noteworthy that consistency in quality for Continental cheese types can 

be much more demanding to achieve than for Cheddar, not least in the development 

of eyes or of absence of undesired slits and cracks. Such defects result in poor 

aesthetic quality (a key retail requirement) and poor performance under high speed 

slicing for global food service markets, with consequent economic loss. Resolving 

this issue for Irish cheese producers would offer a very significant competitive 

advantage in key international markets. 

Development of textural defects, such as, slits and cracks within the cheese 

matrix is an international problem in the manufacture and ripening of Swiss-, Dutch- 

and related eye-type cheeses, leading to downgrading of the product. The root cause 

is often linked to four specific areas (Daly, McSweeney, & Sheehan, 2010b): (1) 

initial physicochemical and textural defects arising due to variations in the cheese 

manufacture processes; (2) weakening during ripening of the structural integrity of 

the cheese matrix linked to calcium solubilisation and/or protein hydrolysis; (3) 

microbial activity resulting in late-gas formation; or (4) variable levels of carbon 

dioxide solubility within the individual moisture, fat and protein phases of the cheese 

matrix linked to conditions of changing temperature during ripening. Therefore, the 
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aim of this PhD study was to explore these parameters individually to understand 

and control the underlying causes. 

It is now well recognized that many of the desirable properties and 

functionalities of cheese are largely determined by its structure; thus, Chapter 1 

reviewed the most recent literature to provide a comprehensive review on structure-

function relationships in cheese. In particular it provides an overview of how 

functional properties of cheese are influenced by the structural organization of 

cheese components and their interactions, as well as by environmental factors (e.g., 

pH and temperature). 

The first research chapters investigated the effects of milk centrifugation, at a 

centrifugal force of ∼9,000 × g, and incorporation of high heat-treated centrifugate 

on Maasdam cheese characteristics (Chapter 2 & 3). This was to determine the 

influence of the commercial process of centrifugation of milk to remove clostridia 

spores in particular, and other materials from milk. As expected, Maasdam cheeses 

made from centrifuged milk has significantly lower butyric acid levels (Chapter 3). 

However, no further significant influence of centrifugation was observed on the 

composition, texture, primary and secondary proteolysis (Chapter 2), and volatile 

organic compounds (except butyric acids; Chapter 3) of Maasdam cheese in 

comparison to control cheeses. This suggests that centrifugation of milk before 

cheese-making is a suitable method for controlling undesirable butyric acid 

fermentation without significantly altering the texture and other ripening 

characteristics of Maasdam cheese. However, some studies have reported a drastic 

reduction in the number of eyes in cheeses made from centrifuged or microfiltered 

milk (Thierry et al., 2010; Guggisberg et al., 2015) and this has been attributed to 

removal of micro-particles from the cheese-milk; these microparticles are known to 
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act as nuclei for development of eyes within the cheese matrices. Moreover, a 

reduction in the number of eyes within the cheese matrix may result in higher CO2 

overpressure, which can increase in the development of slits or cracks (Guggisberg 

et al., 2015). No definitive trends for eye and cracks or slits characteristics were 

observed in this study and further research is recommended, possibly including 

analysis of a large number of commercial samples over the course of a 

manufacturing season. 

Reincorporation of the high heat-treated centrifugate into cheese-milk, as 

practised commercially to retain cheese yield, resulted in increased moisture in non-

fat substance levels and decreased hardness levels in Maasdam cheeses in the current 

study. This has the potential to influence the structural properties of the cheese 

matrix and thus its ability to retain eye-quality, so care is required when 

incorporating high heat-treated centrifugate into the cheese matrix. However, given 

that the protein content of high heat-treated centrifugate is ~7% (w/w), not 

reincorporating this stream into cheese will lead to economic loss to the 

manufacturer (Kosikowski & Mistry, 1990); therefore, we propose two potential 

solutions to this problem: (1) slight modifications to the cheese-making procedure to 

counteract any increase in cheese moisture content, such as cutting curds to a smaller 

size or extending the vat residence time (i.e., time from cut to pitch); or (2) using this 

stream for manufacture of other dairy products (if possible), such as, yoghurt and 

high-heat milk powder. 

Cheese fracture properties, especially shortness or brittleness have previously 

been associated with development of undesirable slits or cracks (Grappin, Lefier, 

Dasen, & Pochet, 1993; Rehn et al., 2011). Proteolysis and solubilisation of colloidal 
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calcium are two important age-related parameters determining the textural and 

rheological properties of cheeses (O'Mahony, Lucey, & McSweeney, 2005). 

However, no previous studies have been conducted to elucidate the effects of 

specific hydrolysis of αS1- and β-caseins as well as different levels of insoluble 

calcium on the fracture behaviour of washed-curd brine-salted semi-hard cheeses in 

a single study. Therefore, an experiment was designed to investigate the individual 

contribution of primary proteolysis and solubilisation of colloidal calcium on 

fracture properties of washed-curd brine-salted semi-hard cheeses (Chapter 4). 

Specific hydrolysis of caseins in the semi-hard cheeses was achieved during ripening 

through the following approaches: (1) addition of a chymosin inhibitor, i.e., pepstatin 

A, to the curd/whey mixture during cheese manufacture; (2) substitution of 

fermentation-produced bovine chymosin (FPBC) with fermentation-produced camel 

chymosin (FPCC); and (3) modulation of ripening temperature. The study showed 

that cheeses with lower levels of proteolysis or higher levels of intact caseins, 

primarily αS1-casein, were found to be more rigid, indicating that modulation of 

hydrolysis of αS1-casein was an effective means for maintaining the strength of the 

cheese matrix during ripening. However, cheeses with low levels of intact β-casein 

or insoluble calcium content were more likely to be shorter in texture, suggesting 

that these parameters are potentially significant causes of development of slits and 

cracks in eye-type cheeses. 

For the first time, a novel dynamic in situ imaging technique was applied to 

understand the microstructural changes occurring in semi-hard eye-type cheeses 

under large-strain tensile deformation (Chapter 5). Tensile deformation was used to 

mimic the effects of eye formation which results in some curd granules being moved 

apart. We observed micro-cracks within the semi-hard cheese matrices, especially at 
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curd granule junctions, and these developed into larger cracks which fractured along 

the curd granule junctions under tensile deformation. Based on these results, we 

propose that the presence of micro-cracks within the cheese matrix could be one 

possible factor for development of splits and cracks defects within the semi-hard 

cheese matrices. Therefore, it is suggested that research needs to be directed towards 

removing or reducing those defects within the cheese matrix, for example, by 

avoiding the entrapment of whey pockets, air bubbles or free fat between curd 

granules during cheese manufacture. Furthermore, this approach could be applied to 

establish a greater understanding of structure-fracture relationships in cheese, as well 

as other food products. 

Among other factors, the behaviour of CO2 gas within the cheese matrix, 

including solubility, is considered a critical factor in the development of eyes and 

splits or cracks within the cheese matrices (Acerbi, Guillard, Guillaume, & Gontard, 

2016; Lamichhane, Kelly, & Sheehan, 2018). However, very little is known in 

relation to the solubility of CO2 in various components of cheese matrices, especially 

the protein-moisture phase. Therefore, we investigated the solubility behaviour of 

CO2 in a range of casein matrices, representing varying conditions of the protein-

moisture phase of semi-hard cheese matrices (Chapter 6). The CO2 solubility of 

casein matrices significantly depends on the protein-to-moisture ratio as well as on 

environmental factors, such as, pH, salt, and temperature. The moisture-to-protein 

ratio, pH and salt level in cheese have been reported to vary from batch to batch due 

to manufacture-derived variables (e.g., time of day of manufacture) or over season 

due to variation in the composition of milk (White, Broadbent, Oberg, & McMahon, 

2003; Daly, McSweeney, & Sheehan, 2010a). Moreover, moisture, salt and pH 

gradients within brine-salted cheeses have been reported in previous studies (Guinee 
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& Fox, 2004; Burdikova et al., 2015). Such intra-cheese and inter-cheese variation in 

cheese composition will likely result in heterogeneity in the concentration of CO2 

within or between cheese blocks, leading to variable internal pressure within or 

between cheeses. This may result in some areas in cheese matrices or some batches 

of cheeses being more prone to development of slits or cracks. In addition, changing 

ripening temperature or fluctuations in storage temperature may lead to contraction 

and expansion of the cheese body due to the exchange of CO2 between cheese eyes 

and body, resulting in weakening of the cheese structure, and thereby contributing to 

the formation of cracks and slits.  

In conclusion, research undertaken in this thesis on the underlying factors 

associated with development of undesirable splits and cracks within semi-hard eye-

type cheeses has greatly expanded knowledge in the area. Its key findings are: 

 Incorporating high heat-treated centrifugate (also called bactofugate) into 

cheese-milk increased the level of moisture in non-fat substances and 

decreased the hardness of resultant cheeses, which will have the potential to 

influence subsequent eye characteristics, and split or crack development; 

 Cheeses with low levels of intact β-casein or insoluble calcium were found to 

be shorter in texture, suggesting that these parameters are potentially 

significant causes of development of slits and cracks in eye-type cheeses; 

 When the curds are stretched in a manner mimicking eye formation, micro-

cracks transformed into slits and cracks. Thus micro-cracks are proposed to 

be a key basis for the formation of undesirable slits or cracks within the 

cheese; 

 Carbon dioxide solubility within a casein matrix depends significantly on its 

composition (i.e., protein-to-moisture ratio and salt-in-moisture content) and 
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ripening-related parameters (i.e., pH and temperature). It is proposed that 

such variations will alter CO2 gas concentration in the cheese body and 

subsequently in the eyes, leading to contraction (when CO2 gas present in 

eyes is solubilised in the cheese body) or expansion (when CO2 gas diffuses 

from the cheese body to eyes). Such expansion and contraction may result in 

mechanical fatigue or weakening of the cheese structure, and thereby 

contribute to the formation of cracks and slits. 

Overall, incorporation of high heat-treated centrifugate into cheesemilk, 

specific hydrolysis of caseins and solubilisation of colloidal calcium during ripening, 

and the presence of inherent micro-cracks within cheese matrices have all been 

shown to contribute to weakening of cheese structure. Furthermore, changes in CO2 

solubility relating to variable cheese composition, or with changing ripening 

parameters, are proposed to produce mechanical strain (contraction or expansion) in 

cheese matrices due to the exchange of CO2 between the eyes and body of the 

cheese, resulting in mechanical fatigue or weakening of the cheese structure. 

Another possibility is that the cheese matrix becomes oversaturated with CO2 gas, it 

can no longer contain all the solubilized gas due to changes in ripening related 

parameters, such as, temperature and pH, and rather than creating eyes the gas 

accumulates at the weak points in the matrix, e.g., at micro-defects and this leads to 

the formation of a slit or crack. It is expected that the combined effect of all 

parameters may lead to an overall weakening of cheese structure and thereby 

contribute to the development of undesirable slits and cracks (Figure 7.1). 
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Figure 7.1 Schematic overview of key findings of this PhD thesis; MNFS, moisture in non-fat substance.  
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7.2 Recommendations for future research  

Similar to centrifugation (at a centrifugal force of ~9,000 × g), microfiltration 

(pore size = 1.4 µm) is also widely used by cheese industries for removal of 

Clostridium spores from cheese-milk prior to continental cheese manufacture 

(Beuvier et al., 1997). However, very little is published on investigating the effect of 

microfiltration on the microbiological, physico-chemical and ripening characteristics 

as well as on eye-development characteristics of semi-hard continental cheese types. 

Such knowledge could be beneficial to cheese industries that use microfiltration as a 

milk-pretreatment method for removal of Clostridium spores. Sensory analysis of 

Maasdam cheese made from centrifuged milk, as well as cheese made from 

centrifuged milk containing high heat-treated (HHT) centrifugate may also provide 

corroborating support to the volatile results obtained by gas-chromatography mass-

spectrometry analysis in the current study. 

Shortness or brittleness of cheese has previously been associated with 

undesirable slits or cracks (Grappin et al., 1993; Rehn et al., 2011). Thus, strategies 

for maintaining higher levels of intact β-casein or insoluble calcium in the cheese 

curd during ripening could be applied to reduce the shortness of cheese texture, 

which in turn may help to reduce or avoid the incidence of undesirable slits or cracks 

within the cheese matrix. High levels of β-casein may be achieved by greater 

retention of inhibitors of plasmin or plasminogen activators; studies have also 

reported inhibition of plasmin activity by whey proteins (Bastian, Hansen, & Brown, 

1993; Politis, Zavizion, Barbano, & Gorewit, 1993). Milk plasmin content is 

reported to be lower in early lactation and higher in late lactation (Bastian, Brown, & 

Ernstrom, 1991; Sheehan, 2013). Similarly, approaches to retain higher levels of 

insoluble calcium, perhaps through fortification could also be the subject of further 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/clostridium
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/spores
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research. Addition of calcium chloride to the curd/whey mixture during cheese 

manufacture may increase the serum calcium, which may prevent solubilisation of 

colloidal calcium from the casein micelles. However, addition of calcium chloride to 

the curd-whey mixture may alter other cheese-making parameters, which need to be 

taken into consideration. 

It is recommended that further investigations should focus on the causes of 

micro-defects within the cheese matrix, which in turn may allow the development of 

strategies to avoid formation of those defects in cheese matrices. Such investigations 

could focus on: 

 The properties of curd granules, such as, composition, surface charge, degree 

of para-casein hydration (g water/ g protein), protein-to-fat ratio, solid-to-

liquid fat ratio, which determines their potential to deform and flow into, and 

fuse with, other curd particles when subjected to moulding and pressing 

(Guinee, 2016); 

 Size distribution and surface area of curd granules, which affects the packing 

arrangement of curd granules within cheese matrices (Guinee, 2016); 

 Pressing conditions, such as, temperature and pressure, which are known to 

affect the solid-to-liquid fat ratio, and molecular interactions between the 

networks of curd granules (Guinee, 2016). 

Application of microscopy and spectroscopy techniques, such as, atomic 

force microscopy (AFM) and Raman spectroscopy, may provide a more detailed 

insight into the composition of, and molecular interactions between, the networks of 

curd granules. 

The application of advanced non-invasive techniques, such as, X-ray 

computed tomography (CT) and magnetic resonance imaging (MRI) (Guggisberg et 
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al., 2015; O’Sullivan, McSweeney, Cotter, Giblin, & Sheehan, 2016) could be 

applied to investigate the distribution and growth kinetics of splits or cracks during 

ripening of semi-hard eye-type cheeses. 

Further research should be applied to investigate the effect of primary and 

secondary proteolysis, lipolysis and fatty acid composition on CO2 solubility in 

semi-hard cheeses, which would achieve a greater understanding of the influence of 

age-related changes on CO2 solubility within cheese matrices. 

Overall, the research undertaken in this thesis provides a greater 

understanding of underlying issues leading to the development of undesirable split or 

crack defects and also recommends areas for further research. The knowledge gained 

through this thesis will help to develop strategies to minimize or remove split and 

crack defects within semi-hard cheese matrices made from a seasonal milk supply. 
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ABSTRACT

The quality and commercial value of cheese are pri-
marily determined by its physico-chemical properties 
(e.g., melt, stretch, flow, and color), specific sensory 
attributes (e.g., flavor, texture, and mouthfeel), usage 
characteristics (e.g., convenience), and nutritional prop-
erties (e.g., nutrient profile, bioavailability, and digest-
ibility). Many of these functionalities are determined by 
cheese structure, requiring an appropriate understand-
ing of the relationships between structure and func-
tionality to design bespoke functionalities. This review 
provides an overview of a broad range of functional 
properties of cheese and how they are influenced by 
the structural organization of cheese components and 
their interactions, as well as how they are influenced by 
environmental factors (e.g., pH and temperature).
Key words: cheese, structure, function, interaction

INTRODUCTION

Overall, the global consumption of cheese is in-
creasing continuously and is projected to increase by 
~13.5% between 2016 and 2025 (OECD/FAO, 2016). 
Simultaneously, consumers/end-users have increasingly 
been demanding enhanced physico-chemical proper-
ties, sensory and nutritional quality, and optimal usage 
characteristics of cheese, all at a reasonable cost. This 
is primarily driven by factors such as growing consumer 
awareness of the role of diet in health and well-being, 
the potential to use structure to influence flavor release 
and sensory experience, and the extensive use of cheese 
as an ingredient in food retail applications. Such ex-
panding consumer demands have triggered the focus 
of food researchers and cheese producers toward the 
improvement in the quality of existing products or the 
design of new innovative products.

It is now well recognized that many of the desirable 
properties of cheese are largely determined by its struc-
ture. For example, structure plays an important role in 
determining the mechanical, rheological, and cooking 
properties of heated and unheated cheese (Lucey et 
al., 2003; Guinee, 2016), eye formation in several types 
of hard (e.g., Swiss type or Emmental) and semi-hard 
(e.g., Maasdam type) cheese (Daly et al., 2010), and 
texture perception (Rogers et al., 2009). More recently, 
it has also been reported that food structure plays a key 
role in flavor release (Taylor, 2002) and in the digestion 
and the absorption of nutrients (Parada and Aguilera, 
2007; Singh et al., 2015). Apart from containing basic 
nutrients, the nutritional value of food can also be en-
hanced by introducing health-promoting and bioactive 
compounds, such as polyphenols and peptides. In this 
context, the cheese matrix can potentially be used as 
a delivery vehicle for bioactives and probiotics (Sharp 
et al., 2008; Rashidinejad et al., 2016). Thus, a better 
understanding of the complex interrelationship between 
structure and functionality (i.e., the so-called structure-
function relationship) is necessary to design of cheese 
types with specific functionalities. However, the full 
extent of the relationships between structure and func-
tionality of cheese is not fully understood. The aim of 
this review is to provide an appropriate knowledge of 
how cheese structure may be manipulated to control 
and predict the functional properties of cheese.

CHEESE COMPONENTS AND STRUCTURE

Caseins, the main structural component of cheese, are 
present in the form of a network in the cheese matrix 
in which fat globules, water, minerals, bacteria, and 
dissolved solutes such as lactose, lactic acid, soluble 
salts, and peptides are all interspersed. The spatial ar-
rangements of these components and their interactions 
determines the structure of cheese, which is influenced 
by relative volume fractions of each component and 
their properties (e.g., residual charge on the casein, 
composition of membrane materials of fat globules, and 
state of minerals, water, and fat), cheese manufacturing 
procedures, maturation conditions, and environmental 
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conditions (e.g., pH, temperature, and solvent quality/
ionic strength), among other factors.

Like other food types, cheese encompasses a hierarchi-
cal structure, with scales that span from the molecular 
to the macroscale (Figure 1). At a macroscopic level, 
cheese is the assembly of curd particles (resulting from 
cutting of the gel in the case of brine-salted cheeses), 
or curd chips or pieces (resulting from milling of curds 
and dry salting, such as in Cheddar and Stilton cheese 
manufacture; Guinee, 2016). Eyes, slits/cracks, visible 
crystals, and mechanical openness are also macrostruc-
tural features of cheese. At the microscopic level, cheese 
is composed of microstructural components, such as the 
casein network, fat globules, and water droplets. At fur-
ther higher levels of magnification (nano or molecular 
scale), microstructural components of cheese are formed 
from molecules and atoms. Structures at the macro, 
micro, nano, and molecular levels of organization all 
have an important role in various properties of cheese. 
Various techniques to study cheese structure, such as 
microscopy, rheology, magnetic resonance, and dynamic 
light scattering, have been reviewed extensively (e.g., 
Everett and Auty, 2008; El-Bakry and Sheehan, 2014).

From a materials science perspective, cheese can be 
viewed as a 2-phase composite material (also called 
“filled gels” or “gelled emulsions”) containing fat glob-
ules as a filler in a protein gel matrix (Barden et al., 
2015). Several researchers used this approach to study 
the role of milk fat and protein network on the me-
chanical and rheological properties of cheese (Rogers 
et al., 2010; Barden et al., 2015; Thionnet et al., 2017).

MOLECULAR INTERACTIONS WITHIN  
THE CHEESE MATRIX

Various molecular forces and interactions that act 
between the cheese components are considered impor-
tant as they can influence the functionality of cheese. 
For example, it is suggested that the localized balance 

of the attractive and repulsive forces between casein 
controls the melting of heated cheese (Lucey et al., 
2003). Moreover, the nature and extent of interactions 
of flavor compounds and nutrients with the food matrix 
can influence their release patterns in the mouth during 
mastication and in the gut during digestion, and this 
can in turn affect the sensorial and nutritional proper-
ties of food (Parada and Aguilera, 2007; Gierczynski 
et al., 2011). For such reasons, knowledge of molecular 
interactions and forces that act between cheese compo-
nents is vital.

Some studies have characterized the interactive forces 
in milk gels and cheese curd using different dissociating 
agents such as urea, SDS, and EDTA (Lefebvre-Cases 
et al., 1998; Gagnaire et al., 2002; Zamora et al., 2012). 
These dissociating agents are known to disrupt specific 
types of bond or interaction; for example, hydrophobic 
interactions and hydrogen bonds can be disrupted by 
SDS or urea, respectively, whereas ionic bonds involv-
ing calcium salts are broken by the chelating effects 
of EDTA (Zamora et al., 2012). Lefebvre-Cases et al. 
(1998) characterized the interactive forces in rennet- 
and acid-induced milk gels using different dissociating 
agents, and the results of their study suggested that 
hydrophobic interactions and calcium bonds were the 
most important forces for the stabilization of the struc-
ture of rennet milk gels. The contribution of hydrogen 
bonds seemed comparatively less important for the sta-
bility of rennet gel structure than the aforementioned 
forces. In acid-induced milk gels, hydrophobic and elec-
trostatic interactions and hydrogen bonds have been 
shown to be important forces, whereas the contribution 
of calcium bonds have been found to be less important, 
most probably due to solubilization of colloidal calcium 
at low pH (Lefebvre-Cases et al., 1998). Calcium bond-
ing, electrostatic interactions, and hydrogen bonds (to a 
lesser degree) contribute to the formation and stability 
of the para-casein matrix (after pressing) in Emmental 
cheese (Gagnaire et al., 2002). The major interaction 

Figure 1. Characteristic length scales in cheese. HFG = homogenized fat globules, CGJ = curd granule junction.
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forces responsible for the structural organization of 
cheese components are defined as follows.

Electrostatic Interactions

Electrostatic interactions are important for food com-
ponents that have a permanent electrical charge, such 
as dipoles or ions (McClements et al., 2009). Cheese is 
a complex system, and many components present in 
the cheese matrix are known to have electrical charge. 
For example, casein contains several AA residues with 
ionizable groups along their polypeptide chains, includ-
ing phosphoseryl residues (Horne, 1998).

Electrostatic interactions between charged species 
are sensitive to the surrounding environment, particu-
larly pH and ionic strength. The electrical charge of 
ionizable groups of food components depends on their 
pKa values relative to the pH of the surrounding aque-
ous solution (McClements et al., 2009). The aqueous 
phase of the cheese matrix contains several monovalent 
(e.g., Na+) and multivalent ions (e.g., Ca2+), and their 
level determines the ionic strength of the aqueous phase 
of the cheese matrix. The magnitude and range of the 
electrostatic repulsion between the casein in the cheese 
matrix may decrease with increasing ionic strength of 
the surrounding aqueous solution due to electrostatic 
screening effects (McClements et al., 2009).

Calcium-sensitive casein can cross-link with free 
calcium ions via calcium bridging, which is a type of 
electrostatic interaction (Dalgleish, 1983). Such inter-
actions are considered important for the aggregation 
of renneted casein micelles during coagulation of milk 
(Dalgleish and Corredig, 2012). The binding of calcium 
by casein is suggested to decrease with increasing ionic 
strength and with decreasing temperature (<40°C; 
Horne and Lucey, 2014).

Hydrophobic Interactions

Hydrophobic interactions are strong attractive forces 
between hydrophobic side groups of molecules in aque-
ous solution. The molecular origin of hydrophobic 
interactions is the fact that water molecules can form 
relatively strong hydrogen bonds with other water mol-
ecules, but not with nonpolar groups (McClements et 
al., 2009). Caseins have a significant fraction of nonpo-
lar regions along their polypeptide chain (Horne, 1998). 
Thus, it is expected that the hydrophobic interactions 
may play an important role in determining the casein 
interactions in the cheese matrix (Lucey et al., 2003). 
The strength of hydrophobic interaction tends to in-
crease with increasing temperature (McClements et al., 
2009). Thus, it is believed that these interactions may 

make a significant contribution to the functionality of 
heated cheese (Lucey et al., 2003).

Hydrogen Bonding

Hydrogen bonds are simply an interaction between 
an electronegative atom (e.g., O, N, F, and Cl) and a 
hydrogen atom covalently bound to similar electronega-
tive atoms. This is the one type of electrostatic force 
that tends to decrease in strength as the temperature 
increases (McClements et al., 2009). Hydrogen bonding 
is known to play a major role in hydration of proteins 
(Petukhov et al., 2004). Protein, including casein, con-
tains several groups, such as carbonyl, amine, amide, 
and hydroxyl, which are able to interact with water 
through hydrogen bonding. Hydration of casein is 
considered important for the development of desirable 
texture and cooking properties of some cheese types, 
such as Mozzarella (Guo et al., 1997). Moreover, several 
studies have also suggested that the texture and cooking 
properties of low-fat cheeses can partially be improved 
by increasing the water-binding capacity of the protein 
matrix through approaches, such as modulation of pH, 
and varying the level of colloidal calcium phosphate 
(CCP) and sodium chloride (NaCl) of the cheese ma-
trix (Paulson et al., 1998; Sheehan and Guinee, 2004; 
McMahon et al., 2005; Johnson et al., 2009).

Disulfide Bonding

Disulfide bonds are a covalent bond formed between 
2 thiol groups. This bond is considered important for 
cheese made from high heat-treated milk (e.g., queso 
blanco). High heat treatment of cheese milk unfolds 
heat sensitive whey proteins, exposing thiol groups 
that can form disulfide links with other reactive thiol 
groups of whey protein and casein through classical 
thiol-disulfide exchange reactions (Kethireddipalli and 
Hill, 2015). This type of reaction is influenced by redox 
potential (Poole, 2015), although little is published on 
this with regard to cheese matrices.

FUNCTIONAL PROPERTIES OF CHEESE

Key Properties for Use as an Ingredient

Cheese is extensively used as an ingredient in many 
foods. Two main functional requirements of cheese 
when used as an ingredient are (1) machinability (the 
ability of cheese to be shredded/diced/cut/sliced), and 
(2) specific cooking and melting properties (Lucey, 
2008). Functional requirements of cheese largely de-
pend on end-use application. For example, when cheese 
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is used a topping on pizzas and lasagna, it needs to 
melt and stretch in a specific manner, whereas melting 
is undesirable when visual identity and shape of cheese 
on cooking is required, such as for queso blanco and 
paneer, although a certain degree of softening is desir-
able (Guinee, 2016). The various functional properties 
required when cheese is used as ingredients have been 
discussed extensively (Lucey, 2008; Guinee, 2016).

Texture Perception

Texture is an important factor determining the qual-
ity and identity of food, including cheese (Lawrence 
et al., 1987; Foegeding and Drake, 2007). For cheese, 
the main evaluation of texture occurs in the mouth 
(during mastication). However, in some eye-forming 
cheese types, such as Emmental and Maasdam, visual 
properties are also important. Proper eye development, 
encompassing number, size, shape, luster, and distribu-
tion, is an important textural property in those cheese 
types (Lucey et al., 2003; Daly et al., 2010).

During consumption, food is subjected to a complex 
series of oral manipulations, including ingestion, size 
reduction, and mixing with saliva, to form a bolus for 
safe swallowing, collectively termed as oral processing 
(Foegeding et al., 2010). Behavior of food during oral 
processing, such as breakdown patterns and extent of 
interaction (coating) with the oral surfaces, is thought 
to play an important role in the texture perception, 
and the structure and chemical composition of food can 
influence their behavior during oral manipulation (van 
Vliet et al., 2009; Foegeding et al., 2010). For example, 
the desirable texture of full-fat Cheddar cheeses com-
pared with low-fat cheeses is considered to be partly 
due to role of fat in the desirable breakdown patterns 
of cheese during oral manipulation (Rogers et al., 
2009; Foegeding et al., 2010). Similarly, the desirable 
texture of aged cheese is attributed to the age-related 
structural changes in the protein matrix, resulting in 
specific breakdown pattern during chewing (Rogers et 
al., 2009). Moreover, several studies of emulsion gels 
have reported that the properties of emulsion droplets, 
extent of droplet-matrix interactions, distribution of 
emulsion droplets, and characteristics of the gel matrix 
can all influence texture perception (Sala et al., 2007; 
Liu et al., 2015; Oliver et al., 2015). Thus, a fundamen-
tal knowledge of how the structure of cheese influences 
a specific textural response could be useful for design-
ing cheese with desired texture profiles.

Flavor Release and Perception

Like texture, flavor (comprising taste and aroma) is 
also an important attribute of cheese. The heteroge-

neous mixture of several hundred volatile and nonvola-
tile flavor compounds in cheese are the result of com-
plex biochemical reactions during maturation, such as 
proteolysis, lipolysis, and glycolysis (McSweeney, 2004). 
During consumption, flavor compounds are released 
from the food matrix and diluted with saliva, which 
need to be transported to the flavor receptors in the 
mouth and nose for flavor perception to occur (Taylor, 
2002). The correct balance and concentration of a wide 
range of flavor compounds, their release profile during 
oral processing, and the concentration and the rate at 
which those flavor compounds reach the receptors can 
all influence overall flavor perception (Taylor, 2002).

Food structure appears to play a key role on release 
of flavor compounds. Several studies on pure gels (e.g., 
protein gels, carrageenan gels), mixed gels (e.g., whey 
protein-polysaccharides), emulsion-filled gels (where 
emulsion droplets are embedded within a gel matrix), 
or solid lipoproteic colloid foods have shown that the 
gel structure affects volatiles and tastant release profile 
(Stieger and van de Velde, 2013; Kuo and Lee, 2014); in 
general, weaker gel textures and more porous structures 
gave higher flavor compound release during mastication. 
For example, Kuo and Lee (2014) reported that the rate 
of sodium release increased with increasing porosity 
and pore size of solid lipoproteic colloid foods. Prote-
olysis weakens the structure of protein network due to 
breakdown of the protein network; thus, it may be as-
sumed that proteolysis facilitates the release of sapid 
compounds during mastication (Sousa et al., 2001).

Other factors, such as properties of the flavor com-
pounds (e.g., volatility, solubility, and affinity toward 
the food matrix), and the subject’s oral processing be-
havior (e.g., chewing, saliva flow rate, and air flow rate 
through the mouth and nose), can also influence the 
release of flavor compounds from the food matrix dur-
ing oral manipulation (Taylor, 2002; Gierczynski et al., 
2011). In addition, it is now well accepted that overall 
flavor perception can also be influenced by perceptual 
interactions between various sensory modalities (e.g., 
aroma, taste, and texture). For example, Visschers et 
al. (2006) reported that the intensity of aroma per-
ceived by subjects decreased with increasing firmness 
of the food. In another study, the odor of Comté cheese 
enhanced the perception of saltiness in model cheeses 
(Lawrence et al., 2011).

Based on the above considerations, it is clear that 
the flavor profile of food/cheese can potentially be 
enhanced by modifying food structure. This approach 
could be manipulated to facilitate reduction of sodium 
and saturated fat without significantly altering flavor 
attributes or to ameliorate flavor defects in reduced-fat 
and reduced-salt cheeses. Such approaches merit fur-
ther research.
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Nutritional Properties

Cheese, a nutrient-dense dairy product, is a good 
sources of proteins, vitamins, and minerals, particu-
larly calcium, and phosphorus. However, the traditional 
method for evaluation of the nutritional quality of food 
(i.e., based on its composition) has recently been criti-
cized because the method often neglects the effect of 
food matrix (structure) on nutrient release and absorp-
tion (Parada and Aguilera, 2007; Singh et al., 2015). 
For example, in an in vivo study using 6 mini-pigs, 
Barbé et al. (2013) reported that a renneted-gel matrix 
slowed down the rate of digestion of protein and ab-
sorption of AA as compared with liquid milk, probably 
due to lesser accessibility for digestive enzymes. In an-
other study, Lamothe et al. (2012) studied the digestion 
pattern of Cheddar and Mozzarella cheese using an in 
vitro stomach model. The results of their study sug-
gested that the degradation of protein and the kinet-
ics of fatty acid release are closely associated with the 
physical characteristics of the cheese matrix; cheeses 
that exhibited greater cohesiveness and elasticity were 
more slowly degraded during digestion and gave slower 
rates of fatty acid release. More recently, some studies 
have reported that calcium in cheese can influence the 
free fatty acid bioaccessibility by producing insoluble 
calcium soaps with long-chain fatty acids at intestinal 
pH conditions (Ayala-Bribiesca et al., 2017). A better 
understanding of the role of cheese structure on diges-
tion and absorption of nutrients within the gastroin-
testinal environment is key to designing cheese with 
enhanced nutritional quality. This area was reviewed in 
detail recently by Singh et al. (2015).

Delivery of Bioactives and Probiotics

Several studies have reported the potential for using 
the cheese matrix as a delivery vehicle for bioactives, 
such as vitamins (Madziva et al., 2006), minerals, and 
polyphenols (Rashidinejad et al., 2016). For example, 
Rashidinejad et al. (2016) successfully used full-fat 
hard cheese as a delivery vehicle for liposomal nano-
encapsulated green tea catechins. Moreover, the cheese 
matrix can also serve as a vehicle for probiotic delivery 
(Sharp et al., 2008). High buffering capacity and the 
dense protein network of cheese are thought to protect 
probiotic bacteria against the harsh acid environment 
in the stomach (Gomes da Cruz et al., 2009), making 
cheese a potentially suitable carrier for probiotics.

However, it should be noted that many bioactives 
have an undesirable taste and odor, such as metallic 
taste of mineral salts, bitter taste of peptides, and fishy 
taste and odor of marine oils rich in n-3 fatty acids 
(Augustin and Sanguansri, 2008), which can alter the 

sensory properties of cheese. Moreover, the metabolites 
from high numbers of viable and metabolically active 
bacterial cells can also alter the sensory attributes 
of cheese. Therefore, these details need consideration 
when using cheese as a delivery vehicle for bioactive 
compounds and probiotics.

ROLE OF STRUCTURAL ELEMENTS  
AND THEIR INTERACTIONS ON FUNCTIONAL 

PROPERTIES OF CHEESE

The composition and the structural organization of 
cheese determine its functionality. In this section, we 
therefore focus on how the properties and the structural 
organization of the different phases of cheese, and the 
interactions between them influence cheese functional-
ity. For the sake of simplicity, we have divided cheese 
structure into 4 phases: (1) protein phase, (2) fat phase, 
(3) aqueous phase, and (4) gas phase, particularly car-
bon dioxide (CO2).

Protein Phase

Formation and Rearrangement of Protein 
Network. Formation of a protein network is a crucial 
step in cheese manufacture. The destabilization of ca-
sein micelles is one of the first steps in the manufacture 
of cheese. The mechanisms of destabilization of casein 
micelles by different means have been discussed exten-
sively elsewhere (Dalgleish and Corredig, 2012). The 
destabilized casein micelles aggregate into chain and 
clusters, leading to formation of a 3-dimensional gel.

Several studies have reported that the factors, such 
as concentration of casein (Karlsson et al., 2007), 
properties of casein micelle (e.g., casein micelle size; 
Logan et al., 2014), and coagulation conditions (e.g., 
pH, temperature, and rennet concentration; Wium et 
al., 2003; Ong et al., 2011a, 2012), can all influence 
the coagulation process. This may influence the ar-
rangement of casein into protein matrix and also the 
microstructure and the quality of the final cheese. For 
example, milk renneted at lower pH (pH 6.1) gave 
gels with more compact protein network than in gels 
renneted at higher pH (pH >6.3; Ong et al., 2012). 
Moreover, the texture of resulted Cheddar cheese was 
different; that is, cheese made using milk renneted at 
lower pH (pH 6.1) had lower chewiness, gumminess, 
cohesiveness, and springiness than cheese made using 
milk renneted at higher pH (pH 6.7 or 6.5). Increased 
solubilization of CCP, accelerated rennet activity, and 
reduced charge repulsion between micelles at a lower 
milk pH are most likely to alter the rate and extent of 
aggregation, possibly leading to different microstruc-
tures of gels and cheese curds (Ong et al., 2012). In 
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other studies, the coarseness of the protein network of 
the gel or cheese increased with increasing coagulation 
temperature (Wium et al., 2003; Ong et al., 2011a). 
This is probably due to enhancement of the protein 
network rearrangement and increasing strength of hy-
drophobic interactions at higher coagulation tempera-
tures. Moreover, the calcium-binding by para-casein 
is suggested to increase with increasing temperature 
within the normal milk-coagulation temperature regi-
men, which may influence the aggregation kinetics of 
fully renneted casein micelles (Dalgleish, 1983; Horne 
and Lucey, 2014). This suggests that the functionality 
of the final cheese can be modified by optimization or 
modulation of initial cheese-making conditions. Thus, 
the influence of initial cheese-making conditions on the 
final properties of cheese should not be underestimated.

Rennet-induced gels are inherently unstable and likely 
to undergo intraparticle, interparticle, and interstrand 
rearrangements (Mellema et al., 2002). The ultimate 
result of such rearrangements is syneresis (expulsion 
of whey; Mellema et al., 2002). The rate and extent of 
syneresis is promoted by various cheese-making pro-
cesses, such as cutting, stirring, scalding, and pressing 
(Dejmek and Walstra, 2004). Syneresis is considered as 
an essential step during cheese manufacture because it 
affects the composition and texture of final cheese, as 
reviewed extensively by Dejmek and Walstra (2004). 
However, in some cheese types, such as Quark (also 
called Quarg) and cottage cheese, syneresis can also 
occur in the finished product during storage, termed 
wheying-off, which is generally considered as undesir-
able (Guinee, 2016).

To date, there is significant knowledge on how milk 
composition and renneting conditions affect the gel 
structure. However, the link between gel structure and 
macroscopic behavior of the gel, such as syneresis and 
water-holding, is not yet fully understood. Structural 
parameters, such as dimensions of protein strands, 
network pore size, and volume fraction of the pores 
and protein network, can be characterized at differ-
ent structural levels by using different microscopic 
techniques (Langton and Hermansson, 1996; Ong et 
al., 2011b). Such structural information is relevant in 
understanding the effects of milk composition and gela-
tion conditions on the macroscopic behavior of gels, 
such as syneresis and water-holding properties of gel.

Casein-Mineral Interactions. In cheese, signifi-
cant levels of minerals are associated with the protein 
network (Lucey and Fox, 1993). Calcium and phos-
phate (PO4) are the 2 most important minerals found 
in cheese, and are present in both soluble and colloidal 
form. However, it is well recognized that the calcium 
and phosphate associated with the casein are an im-
portant structural unit in cheese. The level of calcium 

associated with casein (micellar calcium) varies widely 
between cheese types, ranging from less than 5 mg/g 
of protein in feta and cottage cheese to ~24 mg/g of 
protein in Gouda and Emmental cheese (Remillard and 
Britten, 2011).

Modulation of levels of colloidal calcium in the cheese 
matrix can alter the texture and cooking properties of 
cheese. For example, decreased levels of colloidal cal-
cium is associated with the softening of cheese texture 
[at least in Cheddar; O’Mahony et al. (2005)] and 
increased melt and flow properties (O’Mahony et al., 
2006; Choi et al., 2008), attributed to the reduction 
in calcium-induced casein-casein interactions (Lucey et 
al., 2003). This mechanism is supported by the studies 
of Pastorino et al. (2003a) and McMahon et al. (2005), 
who observed a more homogeneous microstructure 
in cheeses with low levels of calcium than those with 
high levels of calcium, when observed using scanning 
electron microscopy; this indicates the proteins in the 
former are less aggregated than in the latter cheeses.

Micellar calcium levels in cheese are considered 
important in conferring an elastic texture to cheese 
(Lucey and Fox, 1993), which is important in the case 
of eye-forming cheese types, such as Emmental and 
Gouda, to accommodate gas produced during warm-
room ripening for smooth eye formation (Daly et al., 
2010). Moreover, an elastic texture is also important for 
sliceability of cheese without fracturing or crumbling or 
sticking to cutting implements (Guinee, 2016).

It has also been reported that increased hardness due 
to increase in micellar calcium levels slowed down the 
disintegration during in vitro digestion, which in turn 
can affect nutrient bioaccessibility (Ayala-Bribiesca et 
al., 2016).

Age-Related Changes in the Protein Matrix. 
During maturation, the structure of the protein net-
work alters due to complex physical and biochemical 
changes in the cheese matrix, such as proteolysis by 
various proteolytic agents, demineralization of casein, 
and hydration of the casein networks (at least in Moz-
zarella), as reviewed by Guinee (2016).

Recently, fermentation-produced camel chymosin has 
received attention because of its much higher ratio of 
milk clotting to general proteolytic activity than bo-
vine chymosin (Kappeler et al., 2006). Cheddar cheeses 
made using recombinant camel chymosin were generally 
found to be harder with less bitter and brothy flavors, 
and with lower levels of proteolysis than cheeses made 
from bovine chymosin or microbial rennet (Hannilase; 
Bansal et al., 2009; Soodam et al., 2015). Moynihan 
et al. (2014) suggested the use of recombinant camel 
chymosin to extend the shelf-life performance of low-
moisture partly skim Mozzarella because its baking 
properties, such as blister quantity, strand thickness, 
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hardness, and chewiness, on baked pizzas were main-
tained for a longer time in storage than in cheeses made 
with bovine calf chymosin. Apart from residual coagu-
lants, indigenous milk enzymes and enzymes produced 
by starter and nonstarter bacteria also contribute to 
the proteolysis of cheese, particularly in high-cooked 
cheese varieties in which the residual chymosin activity 
is very low, most probably due to heat denaturation 
of chymosin (Sousa et al., 2001; Sheehan et al., 2007). 
Plasmin is considered the most important indigenous 
milk proteolytic enzyme, and its activity in high-
cook cheese varieties (e.g., Emmental and grana-type 
cheeses) is comparatively higher than those in low-cook 
cheese varieties, (e.g., Cheddar), most probably due to 
thermal inactivation of inhibitors of both plasminogen 
activators and plasmin (Sheehan, 2013). Plasmin has an 
optimum pH of ~7.5 and thus makes a major contribu-
tion to the ripening of cheese types with high pH (~7), 
such as mold-ripened (e.g., Camembert) and smear-
ripened (e.g., Tilsit) cheese varieties (McSweeney, 
2004; Sheehan, 2013). The role of plasmin and other 
indigenous milk enzymes in casein hydrolysis and their 
contribution to the quality of cheese has been reviewed 
extensively (Sousa et al., 2001; Kelly and McSweeney, 
2003; McSweeney, 2004; Kelly et al., 2006).

Varying degree of hydrolysis of casein in different 
cheese types have been reported (Table 1). The rate 
and extent of casein hydrolysis is influenced by fac-
tors, such as cheese type, ripening temperature, level 
and types of coagulant, and cheese compositions (e.g., 
moisture in nonfat substance, Table 1). αS1-Casein has 
been considered to be the principal structural element 
in several cheese varieties, such as Cheddar and Em-
mental (Lawrence et al., 1987; Gagnaire et al., 2002), 
with the hydrolysis of αS1-CN thus being associated 
with a weakening of the protein network (Creamer and 
Olson, 1982). However, more recent studies have shown 
that softening of cheese in the early stages of ripening 
is primarily due to solubilization of CCP (O’Mahony 
et al., 2005).

Some studies indicated that the specific hydrolysis 
patterns of casein and the resulting peptide profiles 
can influence the melting and stretching properties 
of cheese. For example, Bogenrief and Olson (1995) 
observe a degree of melt of Cheddar cheese is more 
closely related to the extent of β-CN hydrolysis than 
the hydrolysis of αS1-CN. In another study, Emmen-
tal cheeses made with Lactobacillus helveticus as a 
starter culture exhibited greater stretchability (2.5 
times higher) than those with Lactobacillus delbrueckii 
(Richoux et al., 2009). Moreover, the stretchability of 
cheese was strongly correlated with the proportion of 
hydrophobic peptides in the pH 4.6-soluble nitrogen 
fraction. This finding is further supported by the study 

of Sadat-Mekmene et al. (2013), who also observed high 
stretchability in Swiss-type cheese made with 2 different 
strains of Lactobacillus helveticus (i.e., ITGLH77 and 
ITGLH1). Moreover, the stretchability was correlated 
with hydrophobic peptides, regardless of casein origin 
(i.e., whether αS1-CN, αS2-CN, or β-CN), and with a 
lower degree of proteolysis. These hydrophobic peptides 
may interact with the protein matrix or with other 
large peptides via hydrophobic forces, possibly forming 
fibers in the cheese matrix (Richoux et al., 2009).

Fat Phase

During cheese manufacture, milk fat globules are en-
trapped within the protein gel network, and processes 
such as scalding, cheddaring, hot water stretching, 
and pressing, can cause aggregation, coalescence, and 
disruption of the fat globules. In the cheese matrix, 
fat globules can exist as intact (spherical fat globules 
covered with native membrane materials), aggregated 
(clumps of circular fat globules), coalesced (spherical 
but larger than typical milk fat globules), elongated 
(especially in pasta-filata cheese-types), or even non-
globular forms (Michalski et al., 2007; Rogers et al., 
2010; Ong et al., 2011b) (Figure 2). The microstructure 
of fat globules can influence the physical properties 
of cheese. For example, although Everett and Olson 
(2003) did not find a correlation between fat-globule-
circularity and free-oil formation in Cheddar cheese, fat 
globule size (Feret’s diameter) in Mozzarella cheese has 
been positively correlated with meltability and free oil 
in a study by Ma et al. (2013).

Several factors, such as fatty acid compositions, na-
tive milk fat globule (NMFG) size, level of fat, and 
properties of fat globule membrane materials, can influ-
ence various properties of cheese.

Fatty Acid Composition. The fatty acid composi-
tion of milk fat [which is influenced by factors such as 
stage of lactation, breed of cow, genetics, and diet com-
position, Månsson (2008)] can alter the rheological and 
textural properties of cheese. Palmitic acid (C16:0) and 
oleic acid (C18:1) are the major saturated and unsatu-
rated fatty acids in milk that have high and low melting 
points, respectively (Coppa et al., 2011); a higher ratio 
of C18:1 to C16:0 is known to produce more creamy 
and less firm cheese (Coppa et al., 2011; Bocquel et al., 
2016). Bocquel et al. (2016) observed ~30% decrease in 
hardness of Raclette cheese when the ratio of C18:1 to 
C16:0 in cheese milk increased from 0.8 to 1.0. In the 
case of Raclette cheese, increased hardness increases 
the risk of cracks forming, which significantly affects 
the quality of cheese (Bocquel et al., 2016). The effect 
of fatty acid composition on the mouthfeel of cheese is 
not yet fully understood. However, it may be assumed 
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that the complex crystallization behavior due to fatty 
acid composition can alter the in-mouth coalescence of 
fat globules during oral processing, which can in turn 
affect the fat-related sensory perception. For example, 
high solid fat content in emulsion droplets enhances the 
coalescence of emulsion droplets and reduces friction 
during oral processing of emulsion-filled gels (Liu et 
al., 2015).

Native Milk Fat Globule Size. The size of NMFG 
ranges from <0.2 to >15 µm, with an average diameter 
of ~4 µm (Huppertz and Kelly, 2006). Studies have 
shown that the cheese manufactured from milk with 
different fat globule size differ compositionally and tex-
turally. For example, Camembert and Emmental cheese 
produced from milk with small fat globules (SFG, 
~3 µm), separated using microfiltration, had higher 

moisture content, softer texture, and underwent greater 
proteolysis during ripening than cheese made from milk 
with large fat globules (LFG, ~6 µm; Michalski et al., 
2003, 2004). More recently, Logan et al. (2017) reported 
that the Cheddar cheese made from milk with SFG 
(~2.7 µm) was less firm at the early stages of ripen-
ing, and was less cohesive, less chewy, and less springy 
throughout maturation than cheese made from milk 
with LFG (~5 µm). However, the exact effect of NMFG 
size on cheese properties was not determined in these 
studies because the effect of NMFG size is confounded 
with the cheese moisture level.

In another study, Michalski et al. (2007) made Em-
mental cheeses from milk with SFG and control milk, 
and adapted the process to obtain similar moisture con-
tent. The authors found that Emmental cheeses with 
SFG exhibited higher stretchability and elasticity, and 
improved sensory characteristics compared with control 
cheeses, despite the moisture content being similar for 
both cheeses. This may be attributed to the effect of 
NMFG size on microstructure of cheese. Emmental 
(Michalski et al., 2007) and Cheddar (Logan et al., 
2017) cheeses made from SFG appeared less aggregated 
and less coalesced than control cheeses or cheeses made 
from LFG, when observed using confocal laser scan-
ning microscopy. Moreover, more intact fat globules 
covered with phospholipids were observed in Cheddar 
cheeses from SFG than those from LFG when observed 
using confocal laser scanning microscopy (Logan et al., 
2017). A recent study of an emulsion-filled gel system 
has reported that the mechanical properties of emulsion 
gels are influence by the magnitude of droplet cluster-
ing or aggregation. Droplet clustering or aggregation 
enhanced the stiffness of emulsion-filled gels (Oliver et 
al., 2015).

Moreover, the fat globule size can alter the casein 
strand formation during rennet-induced coagulation 
of milk; this could be another reason for observed dif-
ferences in the properties between the cheeses made 
from milk with small and large fat globules. Depending 
on the size of NMFG and the pore size of the pro-
tein network, the NMFG can act as an “inert-filler,” 
“structure-breaker” (Michalski et al., 2002), or has even 
been suggested as being held weakly within the protein 
matrix (Everett and Olson, 2000; Logan et al., 2015).

Level of Fat. A reduction in levels of fat without 
a proportionate increase in the levels of moisture will 
increase the concentration of casein in the protein ma-
trix, leading to a compact protein matrix and a lower 
degree of fat coalescence (at least in Cheddar; Guinee 
et al., 2000; Rogers et al., 2010; Figure 2). Such changes 
on the cheese structure may have consequences for tex-
ture, opacity, and rheological and cooking properties of 
cheese (Guinee et al., 2000; Johnson et al., 2009; Rogers 

Figure 2. Column A shows the confocal laser scanning microscopy 
images (100 µm × 100 µm) of Cheddar cheese (age: 12 wk) at 3 dif-
ferent fat levels (8.5, 20.3, and 33.3%). Column B is the schematic 
representation of Cheddar cheese microstructure, with intact fat glob-
ules, aggregated fat globules, coalesced fat globules, and nonglobular 
fats. The dark and gray areas represent fat globules and protein net-
work within the cheese matrix, respectively. Adapted from Rogers et 
al. (2010) with permission. Copyright (2010) American Dairy Science 
Association.
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et al., 2009; Rogers et al., 2010). The effect of fat reduc-
tion on texture, flavor, cooking properties, and color of 
cheese has been reviewed by Johnson et al. (2009).

To better understand the role of milk fat content 
on the mechanical and rheological properties of cheese, 
and to simplify the complex cheese system, model filler 
particles, such as Sephadex beads (Barden et al., 2015) 
or glass beads (Thionnet et al., 2017), have been used 
instead of milk fat in some studies. These studies sug-
gested that the mechanical properties of cheese depend 
on the rheological properties of both the gel matrix 
and filler particle and on the volume within the cheese 
occupied by the filler particles (Barden et al., 2015; 
Thionnet et al., 2017). This knowledge may be useful 
in developing the replacement of milk fat in low-fat 
cheeses with other fat-like components, such as hydro-
colloids (Thionnet et al., 2017).

Interactions Between Fat Globules and Pro-
tein Matrix. The interactions between milk fat glob-
ules and the protein matrix in cheese largely depend on 
the composition of fat globule membrane materials. Al-
though a subject of debate (Everett and Auty, 2008), it 
is generally accepted that the NMFG membrane, which 
is composed mainly of specific proteins and phospholip-
ids, does not chemically interact with the surrounding 
protein matrix (Michalski et al., 2002).

The nature and extent of interactions between fat 
globules and protein network can be controlled by 
modifying the surface properties of fat globules. Such 
modulation of fat-protein interactions can alter the 
cheese structure, which in turn can affect the mechani-
cal, rheological, and sensorial properties of cheese. For 
example, Everett and Olson (2003) compared the 
microstructure and rheological properties of Cheddar 
cheese manufactured from recombined milk containing 
fat globules coated with casein or whey proteins. The 
microstructure of fat globules appeared elongated and 
clustered in cheeses made from milk with fat globules 
coated with αS2-CN (a relatively poor emulsifier) com-
pared with other experimental cheeses in which fat 
globules were coated with other proteins. Moreover, the 
former cheeses fractured at a lower strain and with a 
lower stress than the other experimental cheeses.

The effect of interactions between fat globules and 
protein matrix on texture perception of cheese is not 
yet fully understood. However, several studies on 
emulsion-filled gel systems reported a significant effect 
of filler-matrix interactions on the texture perception. 
Emulsion-filled gels are prepared by embedding emul-
sion droplets into a gel matrix, and are a representative 
model food system for a broad variety of food products, 
including cheese (Sala et al., 2007). Depending on the 
properties of the emulsifiers on the surface of emulsion 
droplets, emulsion droplets can either be bound to the 

gel matrix (called bound filler) or not (called unbound 
filler; Sala et al., 2007). Unbound fat has been found 
to be related to the enhancement of fat-related sensory 
perception rather than bound fat droplets in emulsion-
filled gels (Sala et al., 2007; Liu et al., 2015). The 
unbound droplets underwent more coalescence than 
bound droplets during oral manipulation, leading to 
lower friction and enhancement of fat-related sensory 
perceptions (Liu et al., 2015).

Aqueous/Serum Phase

Water. Water in cheese can be broadly classified as 
bound or bulk water. Bound water is strongly associ-
ated with protein and other components of the cheese 
matrix, and this water is not available as a solvent, 
whereas bulk water is loosely associated within the pro-
tein matrix and retains a large solvent capacity and is 
freezable at −40°C (McMahon et al., 1999). Bulk water 
may be either present within the channels surrounding 
the fat (free water) or entrapped within the protein 
matrix (entrapped water). The distribution and state of 
water in cheese depends on factors such as cheese-type 
and age. In most cheese varieties, most of the water is 
present within the protein matrix. However, in young 
Mozzarella cheese, a significant amount of water is 
present in the fat-serum channel. During aging, this 
water is gradually absorbed into the protein matrix, 
which has been confirmed by studies undertaken us-
ing nuclear magnetic resonance technique (Kuo et al., 
2001; Smith et al., 2017). Moreover, during maturation, 
hydrolysis of each peptide bond releases 2 new charged 
groups (NH3

+/COO−) that can bind the available free 
water and thus can alter the state of water in cheese 
(Creamer and Olson, 1982). This might be a possible 
reason for a slight decrease in water activity (aw) in 
Cheddar cheese during ripening, from a mean of ~0.965 
at 1 d to ~0.956 at 270 d (Hickey et al., 2013).

Cheese generally becomes softer as the levels of mois-
ture increase. Two main reasons have been reported for 
the texture softening effect of moisture: (1) water in the 
cheese matrix plays the role of a plasticizer (low-viscos-
ity lubricant; Marshall, 1990), and (2) increasing the 
levels of moisture results in a corresponding decrease in 
the levels of casein, which is the principal structuring 
component (McMahon et al., 2005). However, the effect 
of water on melt properties of cheese is rather complex. 
Increasing total moisture content of cheese does not 
necessarily increase the meltability of cheese (Pastorino 
et al., 2003c; McMahon et al., 2005). Instead, melt 
properties of cheese are reported to be more related to 
casein-water interactions (which are largely influenced 
by pH, ionic strength, and the levels of CCP) than total 
moisture content (McMahon et al., 1999).
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Components of the Aqueous/Serum Phase. 
The components present in the aqueous phase, such 
as nitrogen fractions (water-soluble protein, enzymes, 
peptides, or free AA), minerals, carbohydrates (lactose, 
galactose, and glucose) and organic acids, and their 
level influence the environment, mainly pH, aw, and 
ionic strength, of the cheese matrix (Salaün et al., 2005; 
Hickey et al., 2013). This can in turn affect the struc-
ture of the protein phase in cheese and thus on the tex-
ture, rheological, and cooking properties. Moreover, the 
correct balance and concentration of components of the 
serum phase can influence the flavor profile of cheese. 
Components, such as hydrophobic peptides, lactose, 
lactate, and free AA, have been found to be positively 
associated with bitter, sweet, sour, and umami flavor 
intensities, respectively (Møller et al., 2013).

The level of ions and their valance determines the ion-
ic strength of serum phase of the cheese matrix, which 
can alter protein interactions. Salt (NaCl) has a major 
contribution to the ionic strength of the cheese matrix, 
because a varying amount of salt, ranging from ~0.5% 
(wt/wt) to 6% (wt/wt), is added in cheese, mainly for 
flavor and preservation (Guinee, 2004). Addition of 
salt up to certain concentrations can promote protein-
water interactions, probably due to a “salting-in” effect, 
leading to hydration and swelling of the casein matrix 
(Guinee, 2004). Several studies have elucidated the role 
of salt in hydration and solubilization of casein. Guo et 
al. (1997) observed a higher levels of intact casein in 
the serum phase obtained from centrifugation (~12,500 
× g for 75 min at 25°C) of brine-salted Mozzarella 
cheese than in unsalted cheese. Pastorino et al. (2003b) 
observed a more homogeneous protein matrix with less 
serum pockets in Munster cheese injected with salt 
than cheese without salt injection, as observed by scan-
ning electron microscopy. Everett et al. (2014) reported 
an increase in NaCl-soluble proteins with increasing 
concentration of salt solution up to 6% (wt/wt) when 
unsalted Cheddar curd was immersed in varying brine 
concentrations (0–25%, wt/wt). However, very high 
salt concentrations can promote protein-protein inter-
actions, probably due to a “salting-out” effect, leading 
to protein aggregation and contraction of the cheese 
matrix.

Salt in the cheese matrix not only contributes to 
the saltiness of cheese, but can also enhance the flavor 
intensity of sapid compounds; moreover, salt can sup-
press the unwanted flavor, e.g., bitterness (Møller et 
al., 2013). Thus, reduction in salt content is sometimes 
associated with flavor defects. For example, the flavor 
profile of Cheddar cheese deteriorated when the level 
of salt was reduced by 50% (Møller et al., 2013). In 
another study, consumer liking for low-salt cheeses was 

low and they were able distinguish even a 30% salt 
reduction (Ganesan et al., 2014).

The effect of salt in structure, texture, rheological, 
and cooking properties of cheese has been discussed 
extensively (Guinee, 2004; Everett et al., 2014). A gen-
eral overview of the role of salt in cheese is depicted in 
Figure 3.

Gas Phase (Particularly Carbon Dioxide)

Formation of smooth eyes in eye-forming cheese 
types, such as Emmental and Maasdam, is consid-
ered an important quality parameter. Cheese matrix 
structure, the rate and extent of gas production and 
its behavior in the cheese matrix (e.g., solubility and 
diffusivity), and the presence of nuclei are known to 
play an important role in desirable eye formation (Daly 
et al., 2010). In this section of review, we focus on the 
role of CO2 in the eye formation.

An appropriate understanding of CO2 production, 
and its solubility and diffusivity in the cheese matrix, 
is necessary to obtain desirable quality of eyes without 
splits and cracks. Carbon dioxide in the cheese matrix 
is mainly produced due to lactate fermentation by pro-
pionic acid bacteria during the warm room ripening. 
The rate and extent of CO2 production is influenced 
by factors, such as strains of propionic acid bacteria, 
ripening temperature, and cheese composition (Daly et 
al., 2010). Acerbi et al. (2016a) determined the rate of 
production of CO2 in semi-hard cheese to be ~10 to 15 
mmol/kg∙d at constant temperature (25°C) and salt-to-
moisture ratio (2%, wt/wt). Carbon dioxide solubilizes 
in the fat and aqueous phases of cheese. However, its 
solubility is largely temperature dependent [i.e., the 
solubility of CO2 in the fat phase is lower at low tem-
perature (e.g., 4°C) than at high temperature (at least 
up to 20°C)]; the opposite holds true for the solubility 
of CO2 in water (Jakobsen et al., 2009). The solubil-
ity of CO2 in semi-hard cheese was determined as ~37 
mmol/kg∙atm at 2°C and ~30 mmol/kg∙atm at 25°C 
(Acerbi et al., 2016b). Thus, any changes in the ripen-
ing conditions or cheese composition or both can alter 
the solubility of CO2 within the cheese matrix, which 
in turn can affect the internal pressure of cheese. It 
is necessary to control the internal pressure of cheese, 
because overpressure can lead to slits or cracks, which 
are unappealing to consumers. Moreover, these cheeses 
can produce a lot of fines or broken portions during 
size reduction operations, such as slicing and dicing, 
resulting in lost revenue to manufacturers (Martley 
and Crow, 1996). On the other hand, small or no eyes 
(“blind” cheese) will be formed if the gas pressure is 
inadequate.
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Carbon dioxide produced in the cheese matrix diffus-
es within the cheese matrix or escapes from the cheese. 
The diffusion of CO2 within the cheese is thought to 
obey the second law of Fick [Equation [1]; where D is 
the effective diffusivity coefficient (m2/s)], which de-
scribes the change in concentration (c) with time (t) at 
any place (x) as a function of the local concentration 
gradient for a mono-directional diffusion (Acerbi et al., 
2016c).

 
dc
dt

D d c
dx

=










2

2
. [1]

Diffusion of CO2 to nuclei generates pressure at nuclei 
which are the primary site for eye formation. Diffusiv-
ity of CO2 within the cheese matrix is one of the most 
important factors affecting eye growth in eye-forming 
cheese types, and it is influenced by cheese composition 
and structure, and ripening conditions. For example, 
a higher level of diffusivity of CO2 has been observed 
in more aged semi-hard cheeses compared with young 
cheeses, and this has been attributed to age-related 

changes in the cheese matrix, such as proteolysis and 
demineralization of casein (Acerbi et al., 2016c).

EFFECT OF ENVIRONMENTAL FACTORS  
ON STRUCTURAL AND FUNCTIONAL  

PROPERTIES OF CHEESE

pH

It is widely recognized that pH has a strong influence 
on the texture, rheological, and cooking properties of 
cheese, mainly via altering the casein-casein, mineral-
casein, and casein-water interactions, through its effect 
on casein charge and calcium solubility. At higher pH 
values (~5.4), the proportion of calcium associated with 
casein (micellar calcium) is relatively higher than at 
low pH [unless colloidal calcium is solubilized by other 
means, such as addition of calcium chelators; Choi et 
al. (2008); McAuliffe et al. (2016)]. Higher levels of 
micellar calcium promote casein-casein interactions 
within the cheese matrix. Such strong casein-casein in-
teractions are known to increase the structural rigidity 
of the cheese matrix; as a consequence, cheese tends 

Figure 3. Role of salt in cheese. S/M = salt-to-moisture ratio.
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to be more firm, elastic, and less meltable (McMahon 
et al., 2005). At intermediate pH (~5.1), casein-casein 
interactions decrease as the negatively charged regions 
of the casein (e.g., phosphoserine residues) are exposed 
due to partial solubilization of micellar calcium, and 
the resultant cheese tends to be softer and more melt-
able (Lucey et al., 2003). However, lowering the pH 
toward 4.7 increases the strong casein-casein interac-
tions as the casein approach their isoelectric point, and 
adversely affects the melt, flow, and stretch properties 
of cheese (Lucey et al., 2003; Pastorino et al., 2003a).

It seems that that pH may have an indirect effect 
related to its influence on the distribution of calcium 
(soluble or casein-associated) at pH above 5 (at least in 
Cheddar and direct-acidified nonfat Mozzarella cheese; 
Pastorino et al., 2003a; McMahon et al., 2005). Be-
low 5, pH seems to have a direct effect (i.e., charge 
neutralization). If the cheese curd has very low levels 
of calcium, then increasing pH may simply increase 
protein-water interactions, probably due to increases 
in electrostatic repulsion forces between the charged 
groups of protein, which is illustrated by the work of 
Monteiro et al. (2009). Those authors investigated the 
effect of pH on the microstructure and functionality of 
hot-pack cream cheese, in which calcium level is very 
low, by using exposure to acetic acid or ammonia vapor 
to modulate pH after manufacture. The microstructure 
of cheese appeared more continuous or swollen with 
increasing pH (Figure 4), indicating that the casein is 
increasingly hydrated with increasing pH; moreover, 
cheese firmness decreased, whereas cheese meltability 
increased, with increasing pH.

The pH of cheese can alter the size of the protein 
aggregates and their arrangement in the protein matrix 
(Hall and Creamer, 1972; Lawrence et al., 1987; Pasto-
rino et al., 2003a). Pastorino et al. (2003a) developed a 
model for the protein matrix of cheese at different pH, 
and reported that the diameter of protein aggregates 
were relatively higher at pH 5.3 (10 to 12 nm) than at 
pH 4.7 (2 to 4 nm) in their model. Moreover, the protein 
aggregates at pH 5.3 have relatively more well-defined 
structure than those at pH 4.7. The proposed model 
is in agreement with the study of Hall and Creamer 
(1972), who observed bigger protein aggregates (10 to 
15 nm) in Gouda cheese (pH, ~5.3) than in Cheshire 
cheese (3 to 4 nm), with relatively low pH (~4.6), when 
examined using scanning electron microscopy; more-
over, the protein in latter cheese is less well organized. 
Taneya et al. (1992) also reported a less well-defined 
protein network structure of curd at pH 5.0 than at pH 
5.4 when observed with transmission electron microsco-
py, and the authors concluded that curd having pH 5.4 
is suitable for stretching during manufacture of string 
cheese. Pastorino et al. (2003a) speculated that the size 

of the protein aggregates and their arrangement in the 
cheese matrix may alter the texture, rheological, and 
cooking properties of cheese because the strength of 
material is known to be influenced by factors such as 
the extent of cross-linking, and the orientation or the 
structural regularity of the constituents of the material 
(Pastorino et al., 2003a).

It is well known that mold-ripened cheeses (e.g., 
Camembert and Brie), have a macroscopic pH gradient 
between the surface and interior of cheese (McSweeney, 
2004). However, it has recently been found that cheese 
can have a microscopic pH gradient. Burdikova et al. 
(2015) observed pH micro-heterogeneity in natural 
cheese matrices using fluorescence lifetime imaging mi-
croscopy (Figure 5). The local variation of pH in cheese 
matrix may influence the molecular interactions at lo-
cal level, which may lead to local heterogeneity in the 
microstructure of cheese. Nevertheless, more research is 
needed to gain greater understanding in this area.

Temperature

Temperature influences the structure of cheese 
through its effect on the components of cheese and their 
interactions, including changes in the physical state of 
fat and the molecular interactions between the casein. 
These changes in the structure of cheese are important 
to the textural, rheological, and cooking properties of 
heated or unheated cheese. At low temperatures (below 

Figure 4. Scanning electron micrographs (9,000×) of hot pack 
cream cheese with different pH values. Cheese sample were exposed to 
ammonia vapor to increase the pH or acetic acid vapor to decrease the 
pH. The pH of the untreated control cheese was 4.92. P = protein ma-
trix, F = spherical imprints in the protein matrix left by fat globules 
that were extracted during sample preparation. Scale bar represents 1 
µm. Adapted from Monteiro et al. (2009) with permission. Copyright 
(2009) Institute of Food Technologists. Color version available online.
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20°C), a significant proportion of milk fat is in a solid 
state (Lopez et al., 2006). Lopez et al. (2006) observed 
more than half (~54% of total fat content) of the milk 
fat present in Emmental cheese is in crystallized form 
at 4°C. Solid milk fat in cheese is known to act as re-
inforcing fillers, contributing to elastic properties of 
unheated cheese (Rogers et al., 2010; Shima and Tani-
moto, 2016). Moreover, it has been suggested that the 
contact area between the casein increases with decreas-
ing temperature as they expand at low temperature, 
probably due to weakening of hydrophobic interactions 
(Lucey et al., 2003). Thus, the firmer texture of cheese 
at low temperature (<20°C) is considered due to the 
combined effect of higher proportion of solid fat and 
increased contact area between casein. The firm tex-
ture of cheese at low temperature is generally suitable 
for size reduction operation because it is easier to cut 
cheese cleanly (Lucey, 2008).

During heating of cheese, the proportion of liquid 
fat increases dramatically; at ~40°C, almost all fat in 
cheese is in a liquid state (Lopez et al., 2006). Liquid 
fat acts as a plasticizer between casein strands, making 
cheese more soft and flexible (Shima and Tanimoto, 
2016). Although fat has an important role in the ini-
tial softening of cheese during heating, it is now well 
accepted that the casein interactions have a major 
role on the melting properties of cheese. Lucey et al. 
(2003) proposed a mechanism for melting of cheese 
during heating based on the dual-binding model pro-

posed by Horne (1998). The authors speculated that 
the localized balance of the attractive and repulsive 
forces between casein controls the cheese melting and 
the behavior of cheese at elevated temperature. Dur-
ing heating, casein networks in cheese are thought to 
contract, probably due to strengthening of hydrophobic 
interactions. Magnetic resonance studies have also indi-
cated that contraction of the protein network occurs in 
cheese with increasing temperature, since levels of free 
water in cheese increased as it was heated from 20 to 
60°C (Vogt et al., 2015; Smith et al., 2017). Contraction 
of the casein network is suggested to reduce the size of 
the contact area between casein, leading to weakening 
of the cheese matrix (Lucey et al., 2003). Weakening 
of the cheese matrix during heating is indicated by the 
changes in the rheological parameters, that is, decreases 
in dynamic moduli (G′ and G″) and an increase of loss 
tangent with increasing temperature. More recently, 
mid-infrared and synchronous fluorescence spectrosco-
pies, coupled with chemometrics, have been suggested 
as valuable tools for understanding the role of tempera-
ture on the melt behavior of cheese (Boubellouta and 
Dufour, 2012).

Kim et al. (2011) investigated the effect of baking 
temperature (180°C for 25 min) on the properties of 
reduced-fat and full-fat Cheddar cheeses by reacting 
heated cheeses with different dissociating agents, such 
as SDS, EDTA, and urea; the results indicated that 
the skin formation in reduced-fat cheeses is the result 
of a high degree of protein-protein interactions, which 
involve disulfide bonds and hydrophobic interactions 
and, to some extent, ionic bonds with calcium.

CONCLUSIONS

This review documents the current understanding on 
structure-function relationships in cheese. A fundamen-
tal knowledge of how the structure of cheese influences 
various functionalities is necessary to design cheeses 
with enhanced physico-chemical properties, and of op-
timal sensory and nutritional quality. Such knowledge 
is particularly important for the improvement of the 
quality of cheeses such as those with low fat content 
because fat reduction is often associated with undesir-
able changes in texture, flavor, and cooking properties. 
Similarly, reduction in sodium has also been linked 
particularly with flavor defects. Cheese structures have 
been shown to play an important role in texture per-
ception and in release of flavor compounds during mas-
tication. Structuring of the cheese matrix for controlled 
release of nutrients, and delivery of bioactives and pro-
biotics is an area of key importance in the development 
of functional cheese with beneficial properties beyond 
basic nutrition. A detailed knowledge of molecular 

Figure 5. Fluorescence lifetime imaging microscopy (FLIM) im-
age of natural cheese sample stained with Oregon Green 488. Shown 
are apparent local variations of fluorescence lifetime and thus pH. 
Localized spots with pH as low as 4.0 are observed. The dark areas 
most likely represent fat within the cheese matrix. The pseudocol-
or scale of the FLIM images is calibrated both in lifetime (τm) and 
pH values. Reprinted with permission from Burdikova et al. (2015). 
Copyright (2015) Lausanne: Frontiers Research Foundation. Color ver-
sion available online.
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interactions and forces that act between cheese compo-
nents is vital as they can influence the functionality of 
cheese, such as physico-chemical properties of heated 
and unheated cheese, and also the release patterns 
of flavor compounds or nutrients in mouth during 
mastication or in the gut during digestion. This also 
creates a need to further develop analytical methods 
for determination of molecular forces or interactions 
within the cheese matrix. Similarly, advanced micros-
copy techniques allied with image analysis, mathemati-
cal modeling, and computer simulations will also help 
to establish a greater knowledge of the link between 
structure and functionality of cheese. In addition, the 
growing number of studies using model food systems, 
such as emulsion-filled gels and solid lipoproteic colloid 
foods, offers potential, and such approaches need to be 
applied to research and innovation in natural cheeses. 
Overall, an appropriate knowledge of structure-function 
relationship is key to the design of future cheese types 
with specific functionalities.
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ABSTRACT

This study investigated the effect of centrifugation 
(9,000 × g, 50°C, flow rate = 1,000 L/h), as well as 
the incorporation of high-heat-treated (HHT) centrifu-
gate into cheese milk on the composition, texture, and 
ripening characteristics of Maasdam cheese. Neither 
centrifugation nor incorporation of HHT centrifugate 
into cheese milk had a pronounced effect on the compo-
sitional parameters of any experimental cheeses, except 
for moisture and moisture in nonfat substance (MNFS) 
levels. Incorporation of HHT centrifugate at a rate of 
6 to 10% of the total milk weight into centrifuged milk 
increased the level of denatured whey protein in the 
cheese milk and also increased the level of MNFS in 
the resultant cheese compared with cheeses made from 
centrifuged milk and control cheeses; moreover, cheese 
made from centrifuged milk had ~3% higher moisture 
content on average than control cheeses. Centrifugation 
of cheese milk reduced the somatic cell count by ~95% 
relative to the somatic cell count in raw milk. Neither 
centrifugation nor incorporation of HHT centrifugate 
into cheese milk had a significant effect on age-related 
changes in pH, lactate content, and levels of primary 
and secondary proteolysis. However, the value for hard-
ness was significantly lower for cheeses made from milk 
containing HHT centrifugate than for other experimen-
tal cheese types. Overall, centrifugation appeared to 
have little effect on composition, texture, and ripen-
ing characteristics of Maasdam cheese. However, care 
should be taken when incorporating HHT centrifugate 
into cheese milk, because such practices can influence 
the level of moisture, MNFS, and texture (particularly 
hardness) of resultant cheeses. Such differences may 
have the potential to influence subsequent eye develop-
ment characteristic, although no definitive trends were 
observed in the present study and further research on 
this is recommended.

Key words: centrifugation, heat-treatment, Maasdam 
cheese, texture, ripening characteristic

INTRODUCTION

Various milk pretreatment methods have been ap-
plied before cheesemaking to enhance quality, consis-
tency, and functionality of different cheese varieties 
(Kelly et al., 2008; Johnson, 2017). Centrifugation of 
milk using a special centrifuge (also called Bactofuge, 
Alfa Laval, Richmond, VA) at a centrifugal force of 
~9,000 × g (at 50°C) is a pretreatment method widely 
used by the cheese industry for removal of Clostridium 
spores before cheesemaking. After centrifugation, milk 
is divided into 2 streams, namely (1) centrifuged milk 
containing low bacterial cells and spores count, which 
account for ~97% of the feed volume, and (2) centrifu-
gate containing high bacterial cells and spores count, 
which account for ~3% of the feed volume (Kosikowski 
and Mistry, 1990).

Some cheese producers apply high heat treatment to 
the centrifugate to inactivate bacterial cells and spores 
and recycle the stream back into centrifuged milk 
before cheesemaking to minimize protein losses, as it 
contains ~7% protein (Kosikowski and Mistry, 1990). 
High heat treatment of milk results in denaturation of 
whey proteins (Rynne et al., 2004), which can form 
complexes with whey proteins (in the serum phase) 
and casein micelles (Donato and Guyomarc’h, 2009). 
Such complexes are believed to hinder the aggregation 
of destabilized casein micelles during rennet-induced 
coagulation of milk (Vasbinder et al., 2003), and thus 
reduce the ability of the gels to undergo syneresis, 
leading to cheese curd with higher levels of moisture 
and moisture in nonfat substance (MNFS). Moisture 
in the cheese matrix acts as a plasticizer between the 
protein strands and softens the cheese texture (Lamich-
hane et al., 2018a). Moreover, the higher moisture and 
MNFS content within the cheese matrix can enhance 
the microbial and enzymatic activities (Beresford et al., 
2001), which can alter the ripening characteristics of 
cheese (Rynne et al., 2004, 2007).
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Some Clostridium spp. have been reported to be as-
sociated with late blowing defect of cheese, which is 
manifest as production of gas (e.g., CO2 and H2) and 
formation of high levels of butyric acid, resulting in 
downgraded cheeses (Klijn et al., 1995; Le Bourhis et 
al., 2007; Garde et al., 2011). Although the effect of 
centrifugation on efficacy of removal of Clostridium 
spores from milk and late blowing defect of cheese have 
been a research focus for several studies (Langeveld, 
1971; Su and Ingham, 2000), its effect on composition, 
texture, and ripening characteristics of cheese has to 
date received little attention. As well as removal of 
Clostridium spores from milk, centrifugation also re-
moves indigenous milk bacterial cells and somatic cells 
from milk by ~87 and 75 to 95% of the total count, 
respectively (Te Giffel and Van Der Horst, 2004; Wiek-
ing, 2004).

Maasdam is a brine-salted, large-eye forming, semi-
hard cheese combining the traits of both Swiss and 
Dutch-type cheeses. Both lactic and citric acid fermen-
tation occur during the first 24 h of manufacture and 
propionic acid fermentation occurs during warm-room 
ripening. Very little research has been published on the 
physicochemical properties and ripening characteristics 
of Maasdam and similar cheese types, such as Jarlsberg.

The aim of our study was to evaluate the effect of 
(1) centrifugation and (2) the incorporation of the 
high-heat-treated (HHT) centrifugate into cheese milk 
on the composition, pH, primary and secondary pro-
teolysis, lactic acids levels, and texture of Maasdam 
cheese during ripening. In our study, centrifugation 
refers to the separation of bacteria and spores at a cen-
trifugal force of ~9,000 × g (at 50°C with a flow rate 
of 1,000 L/h), whereas centrifugal separation refers to 
separation of milk into cream and skim milk. A parallel 
study was conducted investigating the effect of milk 
centrifugation and incorporation of HHT centrifugate 
on microbial composition and the levels of volatile or-
ganic compounds of Maasdam cheese (Lamichhane et 
al., 2018b).

MATERIALS AND METHODS

Milk Supply and Treatments

Raw whole milk was obtained from a local dairy com-
pany. From raw milk, 3 different cheese milk streams 
were prepared (Figure 1). Part of the raw milk was 
separated at 55°C (centrifuge disc separator, GEA 
Westfalia, Oelde, Germany) to give skim milk and 
cream. Control cheese milk (CT) was prepared by 
adding a portion of the resultant cream to skim to 
achieve a protein-to-fat ratio of 1.13:1. The remaining 
whole milk was centrifuged (Bactofuge disc separator, 

type: D3187M, Alfa Laval, Richmond, VA) at a cen-
trifugal force of ~9,000 × g (at 50°C with a flow rate 
of 1,000 L/h) to provide centrifuged whole milk and 
centrifugate (also called sludge or bactofugate), which 
accounts for approximately 3 to 6% of the total milk 
feed. Centrifuged whole milk was then separated to give 
skim and cream. Centrifuged cheese milk (CF) was 
prepared by adding portions of the cream into the skim 
milk to achieve a protein-to-fat ratio of 1.13:1. High 
heat treatment (120°C for 26 s, plate heat exchanger, 
APV Schweig AG, Worb, Switzerland) was applied to 
centrifugate to inactivate spores and bacteria, and this 
centrifugate was combined with a portion of centrifuged 
cream and skim milk to produce the third cheese milk; 
that is, centrifuged milk containing HHT centrifugate 
(CFHHT). As the protein content of centrifugate af-
ter high heat treatment varied between 3.76 and 6.36% 
(wt/wt) between trials, HHT centrifugate was added to 
centrifuged milk on a protein basis rather than weight 
basis [i.e., approximately 12% (wt/wt) of the total pro-
tein was from HHT centrifugate in CFHHT milk; on 
weight basis, HHT centrifugate was added at a level of 
6.6 to 10.3% (wt/wt), depending on the protein content 
of HHT centrifugate]. All cheese milk types (CT, CF, 
and CFHHT) were standardized to a protein-to-fat 
ratio of ~1.13:1 and pasteurized (72°C for 15 s) before 
cheese manufacture.

Cheese Manufacture

Three experimental Maasdam cheese types [i.e., 
cheese made from control milk (CT cheese), centri-
fuged milk (CF cheese), and centrifuged milk contain-
ing HHT centrifugate (CFHHT cheese)] were each 
manufactured on 3 different occasions in replicate 
cheesemaking trials over a 3-mo period. Standard-
ized and pasteurized cheese milks were pumped into 
cylindrical, jacketed cheese vats. Each vat contained 
automated variable speed cutting and stirring equip-
ment (APV Schweig AG). All cheese milks (380 kg/vat) 
were inoculated at 31°C with frozen direct vat inoculate 
cultures (Chr. Hansen Ltd., Cork, Ireland), including 
(1) mixed strains of mesophilic bacteria (C950, 18 mg/
kg of milk), consisting of Lactococcus lactis ssp. cremo-
ris, Lactococcus lactis ssp. lactis, and Leuconostoc; (2) 
Lactobacillus helveticus (LH-B01, 4.8 mg/kg of milk); 
and (3) propionic acid bacteria (PAB; PS-60, 7 mg/kg 
of milk). Calcium chloride (34%, wt/vol) was added at 
a level of 0.3 mL/kg of milk to each vat. Rennet (Chy-
Max Plus, ~200 IMCU/mL; Chr. Hansen Ltd.), diluted 
~1:10 with deionized water, was added at a level of 0.2 
mL/kg of milk after a 40-min ripening period at 31°C. 
All gels were cut at a constant firmness (storage or 
elastic modulus, G′) value of 35 Pa (as measured using 
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a small-amplitude oscillatory rheometer, AR 2000ex, 
TA Instruments, New Castle, DE), and the resultant 
curd particle/whey mixture was allowed to heal for 
7 min before being stirred continuously for another 7 
min. Stirring was then stopped and a portion of whey 
(34 kg/100 kg of cheese milk) was removed. After whey 
removal, reverse osmosis water at ~50°C (23 kg/100 
kg of cheese milk) was used to cook the curd to 37°C 
at a rate of 0.2°C/min with continuous stirring. After 
the curd washing and cooking steps, whey and curd 
were drained into a prepress vat and curds were verti-
cally prepressed under warm whey for 25 min, with 
increasing pressure from 3 to 5 kPa. Whey was then 
drained from the prepress vat and the prepressed curd 
was subsequently cut into 10-kg wheels (3 wheels from 
each vat), placed into 10-kg molds, and pressed verti-
cally under increasing pressure from 3.3 to 14 kPa for 
~3.5 h. When the pH of the cheese curds reached 5.49 
to 5.51, cheese wheels were transferred to a saturated 
brine solution (23% wt/wt NaCl, 0.56% CaCl2, pH 5.2, 
and 18°C) for 24 h. After brining, cheese wheels were 
vacuum-packed in CO2-permeable bags and transferred 
to the ripening room. The cheeses were ripened at 8°C 
for 10 d (preripening), at 23°C for 30 d (warm-room 
ripening), and finally stored at 4°C for 140 d.

Rennet Coagulation Properties

In all 3 replicate cheesemaking trials, 2 min after ren-
net addition and stirring, a representative sample of 
milk was removed from the vat and placed into a cell 

of a small amplitude oscillatory rheometer (AR 2000ex, 
TA Instruments). A concentric-cylinder measuring ge-
ometry, consisting of a cylindrical bob and cup, was 
used. The dynamic changes in rheology during the co-
agulation process were monitored using a dynamic time 
sweep analysis with an angular frequency of 1.0 Hz, 
and a strain of 0.01 at 31°C, within the linear viscoelas-
tic region (strain <0.03) reported for rennet milk gels 
(Mateo et al., 2010). Total time to reach a G′ value of 
gels of 35 Pa (at which cutting of the gel in the cheese 
vat was initiated) after rennet addition was calculated.

Milk and Cheese Composition Analysis

The composition of raw milk, centrifugate, and pas-
teurized cheese milks were analyzed using a Fourier 
transform infrared spectrophotometer (MilkoScan FT 
120, Foss Electric, Hillerød, Denmark). Raw milk and 
centrifuged milk samples were analyzed for SCC (cells/
mL) with a fluoro-opto-electronic counter (Fossomatic 
FC, Foss). Casein number, NPN, and levels of whey pro-
tein denaturation as percentage of total whey protein of 
HHT centrifugate and pasteurized cheese milk samples 
of 1 representative trial were determined as described 
by Rynne et al. (2004). Grated cheese samples were 
analyzed at 11 d at least in duplicate for moisture, fat, 
protein, salt, calcium, and pH, as described by Sheehan 
et al. (2007a).

For determination of lactose and galactose content, 
cheese samples were extracted as described by Zeppa 
et al. (2001). Grated cheese samples (10 g) were mixed 

Figure 1. Flowcharts of the preparation of cheese milks [i.e., control, centrifuged (CF), and centrifuged milk containing high-heat-treated 
centrifugate (CFHHT)]. HHT = high heat treatment; HHT-centrifugate = high-heat-treated centrifugate.
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with 50 mL of 0.013 N H2SO4 and stomached for 10 min 
using a stomacher (Iul Instruments, Barcelona, Spain) 
before centrifugation at 7000 × g for 5 min. The su-
pernatant was then filtered using a 0.2-µm nylon filter. 
The extracted samples were then analyzed by HPLC 
(Waters Alliance 2695 separation module, Waters, 
Milford, MA) with an Aminex HPX-87C Carbohydrate 
column 300 × 7.8 mm (Bio-Rad, Hertfordshire, UK) 
under the following working conditions: injection vol-
ume of, 50 µL; mobile phase of 0.009 N H2SO4; flow 
rate of 0.5 mL/min; column temperature of 60°C; and 
refractive index detection (Waters 2414 RI detector). 
Quantification of lactose and galactose was based on 
the external standard method as described by Hou et 
al. (2014).

SDS-PAGE Analysis

The individual proteins in the raw milk, centrifugate 
before and after HHT, and cheese milks were identified 
by SDS-PAGE. All milk samples were diluted, using 
Milli-Q water (Millipore, Billerica, MA), to a protein 
concentration of ~6 µg/µL. A portion of the diluted 
samples were further diluted with SDS sample buffer 
[NuPAGE LDS Sample Buffer (4×; Thermo Fisher 
Scientific, Waltham, MA), composed of lithium salt, 
glycerine, sulfuric acid, and monododecyl ester]. For 
reducing SDS-PAGE, samples were treated with di-
thiothreitol [NuPAGE Sample Reducing Agent (10×); 
concentration = 500 mmol/L] at a level of 10% (vol/
vol) of the total sample volume mixture. All samples 
were heated at 70°C for 10 min, cooled, and loaded on 
SDS-PAGE gels (NuPAGE 12% Bis-Tris mini gels) at 
a rate of 10 µg/well before running in SDS running 
buffer [NuPAGE MOPS SDS Running Buffer (1×)] at 
constant voltage of 200 V for 50 min using Mini Gel 
Tank (XCell SureLock Mini, Thermo Fisher Scientific). 
After electrophoresis, the gels were stained as described 
by McCarthy et al. (2012). The SDS-PAGE gels were 
scanned using an Epson V700 film scanner (Epson, 
Suwa, Nagano, Japan). The identities of principal pro-
tein bands in the milk samples were determined using 
prestained protein molecular weight marker (PageRuler 
Prestained Protein Ladder, 10 to 180 kDa, Thermo 
Fisher Scientific).

pH and l- and d-Lactate Analysis

The pH of cheese samples were measured on cheese 
slurry prepared by mixing 20 g of grated cheese and 12 
g of deionized water at different time points throughout 
ripening (Sheehan et al., 2007a). The sample extraction 

method, as outlined for lactose and galactose content, 
was used for d- and l-lactic acid content determina-
tion. The extracted samples were analyzed for d- and 
l-lactic acid content using HPLC (Waters Alliance 
2695 separation module) equipped with chiral column 
[Chirex 3126 (d)-penicillamine, column 150 × 4.6 mm, 
Phenomenex, Cheshire, UK], as described by Hou et 
al. (2014).

pH 4.6-Soluble Nitrogen and Free Amino Acids

The levels of pH 4.6-soluble N (% of total N) and 
free amino acids (FAA) of the cheeses were measured 
after 1, 11, 41, 65, 97, 140, and 180 d as described by 
Fenelon and Guinee (2000) and Sheehan et al. (2007a), 
respectively.

Texture Profile Analysis of Cheese

Texture properties were analyzed by TAHDi texture 
profile analyzer (Stable Micro Systems, Goldalming, 
Surrey, UK), equipped with a 70-mm (diameter) com-
pression plate and a 100-kg load cell. Cheese was cut 
into 6 cube-shaped samples (25 mm3) using a Cheese 
Blocker (Bos Kaasgreedschap, Bodengraven, the Neth-
erlands), wrapped in tin foil, and stored overnight at 
4°C. Cheese samples (~4°C) were compressed to 40% of 
their original height in 2 consecutive bites at a rate of 
60 mm/min (Henneberry et al., 2015). Texture profile 
analyzer parameters were calculated as previously de-
scribed by Chevanan et al. (2006).

Statistical Analysis

Three experimental cheese types were each manufac-
tured on 3 different occasions in replicate cheesemaking 
trials. An ANOVA, using IBM SPSS software version 
24 (IBM Corp., 2016), was applied to determine the 
effect of treatment on milk and cheese composition. 
A split-plot design was used to determine the effects 
of treatments (centrifugation or addition of HHT cen-
trifugate into cheese milk), ripening time, and their 
interactions on pH, lactic acid-to-protein ratio, lactic 
acid, proteolysis, and texture. Analysis for the split-
plot design was carried out using the PROC MIXED 
procedure of SAS software version 9.3 (SAS Institute 
Inc., 2011). Tukey’s multiple-comparison test was used 
for paired comparison of treatment means at a 5% level 
of significance. IBM SPSS software version 24 (IBM 
Corp., 2016) was used to perform Pearson correlation 
between lactate-to-protein ratio and pH.
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RESULTS AND DISCUSSION

Raw Milk, Centrifugate, and Cheese  
Milk Composition

The average fat, protein, and lactose contents of raw 
milk used for the 3 replicate cheesemaking trials were 
4.01, 3.41, and 4.73% (wt/wt), respectively. Somatic 
cell counts of the raw milk between trials ranged be-
tween 1.2 × 105 and 2.4 × 105 cells/mL. The SCC of 
milk depends on factors such as breed and parity, stage 
of lactation, udder health, and also individual and envi-
ronmental factors, as well as management practices (Li 
et al., 2017; Panthi et al., 2017). In general, the SCC of 
milk from healthy cows is less than 2 × 105 (Li et al., 
2014). The efficacy of centrifugation process (9,000 × 
g at 50°C with a flow rate of 1,000 L/h) for removal of 
SCC was ~95% relative to the SCC in raw milk, in close 
agreement with the study of Wieking (2004), who re-
ported the efficacy of centrifugation as ~95%. It is gen-
erally accepted that the SCC of cheese milk negatively 
influences the cheese making and final cheese quality 
(Panthi et al., 2017). However, in contrast, a recent 
study (Li et al., 2017) suggested that the somatic cells 
have minimal effect per se on the cheesemaking and 
final cheese quality. This suggests that more research is 
needed to better understand the role of somatic cells in 
cheese quality.

The composition of centrifugate before and after 
HHT and cheese milks is shown in Table 1. The level 
of whey protein denaturation (WPD; as a percentage 
of total whey protein) in centrifugate after HHT was 
68.30%. It is widely recognized that HHT denatures 
whey proteins; for example, Rynne et al. (2004) ob-
served that 34% of total whey protein was denatured 

when milk was heated at 87°C for 26 s. The protein 
and lactose content of centrifugate decreased, although 
not significantly, after HHT. This is probably due to 
slight dilution with process flush water when utilizing 
a low volume of centrifugate (~40–45 kg) in pilot-scale 
processing. Although fat, protein, and lactose contents 
of cheese milks were not statistically different, the level 
of WPD was ~2.5- to 3-fold higher in CFHHT milk 
(14.2%) than in CT (5.8%) and CF (4.8%) milks. The 
low level of WPD in CT and CF milk is attributed to 
pasteurization (72°C for 15 s) of milk, whereas the level 
of WPD in CFHHT milk is attributed to both pas-
teurization and incorporation of HHT centrifugate. The 
level of WPD in pasteurized milk is in close agreement 
with that reported by Rynne et al. (2004).

SDS-PAGE Analysis

The individual proteins in raw milk, centrifugate be-
fore and after HHT, and cheese milks were analyzed us-
ing SDS-PAGE (Figure 2). The SDS-PAGE patterns of 
centrifugate before HHT were different compared with 
centrifugate after HHT, with a lower intensity of the 
bands corresponding to α-LA, β-LG, and other minor 
proteins, such as lactoferrin and BSA, in HHT cen-
trifugate. Moreover, some large protein aggregates were 
observed at the entry of stacking gel in the HHT cen-
trifugate, as denoted by X in Figure 2A. Similar to our 
result, Patel et al. (2006) also observed heat-induced 
large aggregates in HHT milk samples. Heat-denatured 
whey proteins can form complexes with themselves 
and with caseins, particularly κ-CN, through disulfide 
interchange reactions and hydrophobic forces (Jean et 
al., 2006; Patel et al., 2006; Kethireddipalli and Hill, 

Table 1. Composition of centrifugate and pasteurized cheese milks1

Compositional parameter

Centrifugate2

 

Cheese milk2

Before HHT After HHT CT CF CFHHT

Protein (%, wt/wt) 6.10a 5.11a  3.38b 3.29b 3.32b

Fat (%, wt/wt) 0.23a 0.22a  2.98b 2.90b 2.92b

Lactose (%, wt/wt) 4.52a 4.05a  4.74b 4.66b 4.64b

Protein/fat — —  1.134b 1.135b 1.137b

Casein number 79.22 89.72  79.56 79.16 80.69
NPN (%, wt/wt) 5.91 5.57  6.33 6.57 6.47
Native whey protein (% of total) 14.86 4.71  14.11 14.27 12.85
WPD3 (% of total whey protein) — 68.30  5.81 4.77 14.24
a,bValues within a row not sharing common superscripts differ (P < 0.05) in the case of protein, fat, lactose 
and protein/fat.
1HHT = high heat treatment; CT = control milk; CF = centrifuged milk; CFHHT = centrifuged milk contain-
ing high-heat-treated centrifugate. 
2Data presented are the mean of data from 3 replicate trials for protein, fat, lactose, and protein/fat; for other 
parameters, data are from 1 representative trial. For parameters without superscripts, statistical analysis was 
not carried out because the data are from only 1 representative trial.
3WPD = whey protein denaturation.
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2015). In reducing SDS-PAGE, the large heat-induced 
aggregates in HHT centrifugate disappeared when the 
samples were reduced with dithiothreitol; moreover, the 
SDS-PAGE patterns in reduced gels appeared similar 
(Figure 2B). This suggests that the protein aggregates 
in HHT centrifugate may be bonded by various mo-
lecular forces, such as hydrophobic forces and disulfide 
bonding (Donato and Guyomarc’h, 2009).

The SDS-PAGE patterns of raw milk and cheese milks 
appeared similar, although the level of denatured whey 
protein was higher in cheese milks, especially CFHHT, 
than in raw milk. This suggests that the SDS-PAGE 
analysis is not very sensitive for differentiating between 
low levels of whey protein denaturation.

Rennet Coagulation Characteristics

The average time to reach an elastic shear modulus 
(G′) value of 35 Pa for CFHHT, CT, and CF milks af-
ter rennet addition was 45.1, 38.7, and 40 min, respec-
tively. Several factors can influence the rennet-induced 
coagulation of milk, such as milk composition and 
renneting conditions (e.g., pH, temperature, and ionic 
strength; Guinee et al., 2006; Ong et al., 2011, 2012). 

Some studies have reported that the heat-induced com-
plexes formed between whey protein and κ-CN on the 
surface of the casein micelles inhibit the primary phase 
of rennet coagulation (i.e., decrease the accessibility of 
enzyme to κ-CN; Van Hooydonk et al., 1987). However, 
more recent studies have suggested that WPD has min-
imal effect on the primary phase of rennet coagulation; 
instead, WPD has a more clear effect on the secondary 
phase of rennet coagulation [i.e., aggregation (fusion) 
of destabilized casein micelles; Vasbinder et al., 2003]. 
The casein-whey protein and whey protein aggregates 
(in serum phase) can sterically hinder the aggregation 
of destabilized casein micelles (Waungana et al., 1996; 
Vasbinder et al., 2003). In the current study, although 
the level of denatured whey protein of CFHHT was 
~2.5- to 3-fold higher than that of CT and CF milks, 
the rennet coagulation time of CFHHT milk did not 
differ statistically significantly to the others. The levels 
of WPD (as a percent of total whey protein) for all ex-
perimental cheese milks were below 15%, and it seems 
that such levels of WPD had no pronounced effect 
on the rennet-induced coagulation of milk. More pro-
nounced effects were reported previously for severely 
heat-treated milk (Rynne et al., 2004).

Figure 2. The SDS-PAGE patterns of milk samples under (A) nonreducing and (B) reducing conditions. Lane 1 and 8 = prestained protein 
molecular weight marker; lane 2 = centrifugate before high heat treatment; lane 3 = centrifugate after high heat treatment; lane 4 = raw milk; 
lane 5 = pasteurized (72°C for 15 s) control cheese milk; lane 6 = pasteurized centrifuged milk containing high-heat-treated (HHT) centrifugate; 
and lane 7 = pasteurized centrifuged milk. Protein aggregates in HHT centrifugate are denoted by X. LF = lactoferrin. Samples shown are from 
1 representative trial.
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Cheese Composition

The composition of the experimental cheeses is 
shown in Table 2. Centrifugation of milk had no signifi-
cant effect on mean levels of moisture, MNFS, protein, 
fat, salt, total calcium, lactose, and galactose of final 
cheeses. However, incorporation of HHT centrifugate 
into the centrifuged milk increased (P < 0.05) the mean 
levels of MNFS of the resultant cheeses. The average 
moisture content of CFHHT cheese was ~3% higher 
than control and CF cheeses, which was expected and 
sizeable in magnitude for cheese moisture; however, the 
difference was not statistically significant (P = 0.057). 
This is explained by a degree of variation in the compo-
sitional data between trials, which influenced the statis-
tical analysis of the data. The coefficients of variation 
of average moisture content of the experimental cheeses 
between 3 trials were below 5%, which is considered 
acceptable (Thomsson et al., 2014). Higher moisture 
and MNFS levels in CFHHT cheeses are partly at-
tributed to the negative effect of HHT centrifugate on 
syneresis (expulsion of whey) of rennet-induced milk 
gels. Denatured whey protein present in HHT centrifu-
gate can sterically hinder the aggregation (fusion) of 
destabilized casein micelles, as described before, and 
thus hinders syneresis (Pearse et al., 1985; Walstra et 
al., 1985; Vasbinder et al., 2003). Moreover, the high 
water-binding capacity of the denatured whey proteins 
may increase the level of MNFS in the CFHHT cheeses 
(Donato and Guyomarc’h, 2009). These results are in 

agreement with the results of Guinee et al. (1998) and 
Rynne et al. (2004), who observed increased moisture 
and MNFS of Cheddar cheese with increasing levels of 
denatured whey protein.

Some studies also observed a decrease in the level of 
total calcium in cheese made from HHT milk (Guinee 
et al., 1998); however, such results were not observed 
in the current study. The mean levels of lactose and 
galactose were very low, below ~67 and ~36 mg/100 g 
of cheese, respectively, until 11 d of ripening, and lac-
tose and galactose were not detected after warm-room 
ripening (Table 2). Low lactose and galactose contents 
within this cheese type were expected, as the lactose 
contents of cheese curd were reduced by curd washing.

Age-Related Changes in pH

The pH of all experimental cheeses increased (P < 
0.001) over the 180 d of ripening (Figure 3A, Table 3) 
from a mean value of ~5.2 at 1 d to ~5.7 at 180 d. This 
trend is in agreement with that reported in a previous 
study of Gouda cheese by Lawrence et al. (1987), who 
also observed an increase in pH from ~5.15 at 1 d to 
~5.5 to 5.9 at 150 d of ripening. The increase in the pH 
is attributed to several factors, including the proteo-
lytic liberation of basic compounds, such as ammonia, 
free basic AA, and amines (Fenelon and Guinee, 2000; 
McSweeney, 2004). A reduction in lactate-to-protein 
ratio during maturation of cheese (Figure 3B) is known 
to increase the buffering capacity of cheese (Sheehan 

Table 2. Compositional parameters and pH at 11 d of ripening in Maasdam cheeses1

Compositional parameter2

Cheese type

SEM P-valueCT CF CFHHT

Moisture (%, wt/wt) 44.83a 44.15a 47.83a 0.72 0.057
MNFS (%, wt/wt) 58.9a 58.14a 61.78b 0.63 0.013
Protein (%, wt/wt) 24.04a 24.57a 23.44a 0.30 0.348
Fat (%, wt/wt) 23.9a 24.07a 22.61a 0.44 0.376
FDM (%, wt/wt) 43.31a 43.07a 43.29a 0.35 0.966
Salt (%, wt/wt) 1.53a 1.50a 1.73a 0.05 0.183
S/M (%, wt/wt) 3.41a 3.40a 3.61a 0.07 0.450
Total calcium (mg/100 g) 821a 800a 837a 12.19 0.514
pH (11 d) 5.28a 5.31a 5.27a 0.01 0.548
Lactose (mg/100 g)      
 1 d 54.39a 41.82a 66.72a 16.26 0.861
 11 d 20.42a 43.72a 62.63a 15.07 0.585
 41 d 0.00a 0.00a 0.00a 0.00 —
Galactose (mg/100 g)      
 1 d 28.09a 29.57a 35.34a 4.11 0.798
 11 d 27.61a 27.26a 30.82a 4.22 0.947
 41 d 0.00a 0.00a 0.00a 0.00 —
a,bValues within a row not sharing common superscripts differ (P < 0.05); data are the mean of data from 3 
replicate trials.
1CT = control cheese; CF = cheese made from centrifuged milk; CFHHT = cheese made from centrifuged milk 
containing high-heat-treated centrifugate.
2MNFS = moisture in nonfat substance; FDM = fat in DM; S/M = salt-to-moisture ratio.
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et al., 2007a), which may contribute to some extent to 
the increase in cheese pH during ripening. The pH of 
the cheese curd was significantly (P < 0.001) negatively 
correlated (adjusted R2 = 0.53) with lactate-to-protein 
ratio (Figure 3C).

In some brine-salted cheese types, such as Gouda, 
Edam, and Maasdam, the pH after brining is con-
trolled by adjusting the residual curd lactose content 
by techniques such as curd washing or whey dilution 
(Lawrence et al., 1987). More recently, membrane 
separation techniques, such as ultrafiltration, have 
also been used for standardization of lactose content 
of cheese milk before cheesemaking (Moynihan et al., 
2016). In the present study, ~34% (wt/wt) of whey 
was replaced with ~23% (wt/wt) warm reverse-osmosis 
water to control the postmanufacture reduction of 
pH. In contrast, O’Sullivan et al. (2016) observed a 
decrease in pH at the early stages of ripening in Swiss-
type cheese (where whey was not replaced by warm 
water); however, the postbrining pH was higher (~5.6) 
than that of the cheese in the current study (~5.3). 
The decrease in the pH at the early stages of ripening 
has been attributed to continual metabolism of residual 
lactose and galactose to lactate by starter and non-
starter lactic acid bacteria (NSLAB; O’Sullivan et al., 
2016). Shakeel-Ur-Rehman et al. (2004) also observed 
a decrease in the pH during ripening when Cheddar 
cheese was made from milk supplemented with lactose. 
Regulation of pH is critical for proper eye development 
in some eye-forming cheese types, and a reduction in 
pH can reduce the levels of colloidal calcium, which 
are considered essential for elastic texture of cheese 
(Lucey and Fox, 1993), and inhibit the growth of PAB 
(Sheehan et al., 2008). Elastic texture is important in 
the case of eye-forming cheese types to accommodate 
gas produced during warm-room ripening for smooth 
eye formation (Daly et al., 2010). No significant effect 
of treatment on the mean cheese pH during maturation 
was observed (Table 3).

Levels of l-, d- and Total Lactate

The mean level of l-lactate of all experimental 
cheeses was ~1.5% (wt/wt) until 11 d of ripening, 
which is most likely due to fermentation of glucose, 
lactose, and galactose by starter lactic acid bacteria, 
including Lactococcus lactis ssp. cremoris, Lactococcus 
lactis ssp. lactis, and Lactobacillus helveticus, during 
production of cheese (Beresford et al., 2001). However, 
the level of l-lactate decreased (P < 0.001) over ripen-
ing in all experimental cheeses, especially during warm 
room ripening from a mean of ~1.5% (wt/wt) at 11 
d to ~0.4% (wt/wt) at 41 d (Figure 4A). This trend 
is in agreement with that reported in previous studies 

Figure 3. The effect of milk pretreatments on (A) pH and (B) 
lactate to protein ratio of Maasdam cheese during maturation. Milk 
pretreatments were control (●); centrifugation (▼); and centrifuged 
milk containing high-heat-treated centrifugate (○). Data presented are 
means of data from 3 replicate trials. (C) Relationship between pH 
and lactate-to-protein ratio; data were obtained from all experimental 
cheeses produced in 3 replicate trials and analyzed over a 180 d of 
ripening.
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for different cheese varieties, such as Swiss-style cheese 
(Sheehan et al., 2008; O’Sullivan et al., 2016), Grevé 
(eye-forming, semihard cheese types; Rehn et al., 2011), 
and Cheddar (Rynne et al., 2007). This was expected, 
as l-lactate is metabolized by starter and nonstarter 
bacteria to different metabolites, such as propionate, 
acetate, butyrate, formate, succinate, dl-lactate, CO2, 
H2, and H2O (McSweeney, 2004; Agarwal et al., 2006).

d-Lactate was virtually absent for all experimental 
cheeses at 1 and 11 d of ripening. However, unlike l-
lactate, the level of d-lactate increased (P < 0.001) 
during warm room ripening, from a mean of ~0.01% 
(wt/wt) at 11 d to ~0.2 to 0.3% (wt/wt) at 41 d 
(Figure 4B). d-Lactate within cheese matrix typically 
arises either from fermentation of glucose, lactose, or 
galactose by microorganisms, including Lactobacillus 
helveticus and some Leuconostoc spp. (Beresford et 
al., 2001), or by racemization of l-lactate by NSLAB 
(Agarwal et al., 2006). As the levels of residual lactose 
and galactose were very low in all experimental cheeses 
before warm-room ripening (below 70 and 40 mg/100 g, 
respectively) due to curd washing, it may be assumed 
that the contribution of residual lactose and galactose 
for formation of d-lactate is minimal. The formation 
of d-lactate is most likely due to racemization of l-
lactate to dl-lactate by NSLAB because the level of 
NSLAB reached ~108 cfu/g in all cheeses at 41 d of 
ripening (data not shown). Similar trends have previ-
ously been reported in different cheese varieties, such 
as half-fat Cheddar (Rynne et al., 2007) and Swiss-type 
cheese (O’Sullivan et al., 2016). Interestingly, the level 
of d-lactate decreased gradually after 65 d of ripen-
ing, probably due to its metabolism by microorganisms 
within the cheese matrix such as PAB (O’Sullivan et 
al., 2016). The degradation pathways of d-lactate in 
the cheese matrix are not yet fully understood. No sig-

nificant effect of treatment was observed in the levels 
of l-lactate, d-lactate, and total lactate (Figure 4C) 
throughout ripening (Table 3).

Proteolysis

Nitrogen Soluble at pH 4.6. Primary proteolysis 
in cheeses was assessed by measuring the level of nitro-
gen soluble at pH 4.6, as a percentage of total nitrogen, 
which increased (P < 0.001) in all cheeses over the 180 
d of ripening, especially during warm-room ripening, 
from ~5% of total nitrogen before warm-room ripen-
ing (11 d) to ~17% of total nitrogen at the end of 
warm-room ripening (41 d) in all experimental cheeses 
(Figure 5A). The levels in all cheeses reached ~22% at 
180 d. The increase was of the same order of magnitude 
as that previously reported for semihard cheeses (Ex-
terkate and Alting, 1995; Sheehan et al., 2007b; Huc et 
al., 2014). However, no significant effect of treatment 
on level of nitrogen soluble at pH 4.6, as a percentage 
of total nitrogen was observed (Table 3).

Total and Individual FAA. The mean levels of 
total FAA increased (P < 0.001) during ripening, espe-
cially when the cheeses entered the hot-room ripening 
phase, from ~3,000 mg/kg at 11 d to ~7,000 to 8,000 
mg/kg at 41 d (Figure 5B). Enzymes from starter and 
nonstarter microorganisms and somatic cells, such as 
proteases and peptidases, contribute to primary and 
secondary proteolysis where present within the cheese 
matrix, and thereby to liberation of FAA during ripen-
ing (McSweeney, 2004; Kelly et al., 2006). No significant 
effect of treatment was observed (Table 3), although 
it was expected that the centrifugation process could 
alter secondary proteolysis, as the process can remove 
~86 to 92% of total indigenous bacteria and ~95% of 
somatic cells from cheese milk (Te Giffel and Van Der 

Table 3. Summary of the effects of treatment, time, and their interactions on properties of Maasdam cheeses1

Parameter2 Treatment Time
Interactive effect  

(treatment × time)

pH NS (0.81) *** NS (1.00)
Total lactate-to-protein ratio NS (0.33) *** NS (0.99)
l-Lactate NS (0.70) *** NS (0.99)
d-Lactate NS (0.32) *** NS (0.99)
Total lactate NS (0.53) *** NS (0.99)
pH 4.6-SN (% TN) NS (0.65) *** NS (1.00)
Total FAA NS (0.74) *** NS (0.96)
Hardness * NS (0.29) NS (0.97)
Springiness NS (0.71) * NS (0.40)
Cohesiveness NS (0.08) *** NS (0.57)
Resilience NS (1.00) ** NS (0.96)
1Digits in parentheses after NS represent P-value.
2pH 4.6-SN (% TN) = soluble nitrogen at pH 4.6 as percentage of total nitrogen; FAA = free AA.
*P < 0.05, **P < 0.01, ***P < 0.001, NS = P > 0.05.
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Horst, 2004; Wieking, 2004). In the current study, the 
centrifugation process also reduced the SCC by ~95%.

The concentrations of individual FAA (mg/kg) in 
cheeses at 140 d of ripening are shown in Figure 6. 
Leucine was the most abundant FAA found in all ex-
perimental cheeses, with ~2,300 mg/kg at 140 d, fol-
lowed by Glu, Phe, Val, Lys, Pro, and Thr. Similar to 
this result, O’Sullivan et al. (2016) also observed a high 
level of Glu, Leu, Val, Lys, and Pro in Swiss-type cheese 
at 95 d of ripening. In contrast, the concentrations 
of Asp, Ser, Gly, Cys, Tyr, and Arg were among the 
lowest of the FAA. Free AA are important precursors 
for the formation of different classes of volatiles, such 
as amines, aldehydes, alcohols, acids, and sulfur com-
pounds (Engels et al., 1997; Yvon and Rijnen, 2001). 

Figure 4. The effect of milk pretreatments on the mean level of 
(A) l-lactate, (B) d-lactate, and (C) total lactate of Maasdam cheeses 
during ripening. Milk pretreatments were control (●); centrifugation 
(▼); and centrifuged milk containing high-heat-treated centrifugate 
(○). Data presented are means of data from 3 replicate trials.

Figure 5. The effect of milk pretreatments on mean level of (A) 
pH 4.6-soluble nitrogen of percentage of total nitrogen (pH 4.6-SN, % 
TN), and (B) total free amino acids (FAA) of Maasdam cheeses during 
ripening. Milk pretreatments were control (●); centrifugation (▼); and 
centrifuged milk containing high-heat-treated centrifugate (○). Data 
presented are means of data from 3 replicate trials.
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No significant effect of treatment on the mean levels of 
individual FAA at 140 d of ripening was observed.

Texture Profile Analysis

The incorporation of HHT centrifugate into cheese 
milk decreased (P < 0.05) the mean level of instru-
mentally measured hardness of the resultant cheeses 
compared with CT and CF cheeses (Figure 7). This 
was attributed to significantly higher MNFS level in 
the CFHHT cheeses than CT and CF cheeses; MNFS 
is considered a good indicator of moisture associated 
with proteins (Lawrence et al., 1993). Moisture in the 
cheese matrix acts as a plasticizer between the protein 
strands, making cheese softer and more flexible. More-
over, during coagulation, the whey protein and whey 
protein-casein micelle aggregates may hinder the close 
approach of casein micelles during aggregation (fusion) 
of destabilized casein micelles; this may result in a 
weaker gel and curd texture (Waungana et al., 1996). 
From a materials science perspective, the strength of a 
material is known to be influenced by factors such as 
the extent of cross-linking and the orientation or the 
structural regularity of the constituents of the mate-

rial (Pastorino et al., 2003; Lamichhane et al., 2018a). 
It may be assumed that denatured whey protein can 
alter the extent of cross-linking of casein micelles and 
the orientation or the structural regularity of casein 
networks within the cheese matrix.

Figure 6. The effect of milk pretreatments on the mean levels of individual free AA in pH 4.6-soluble nitrogen extracts from Maasdam 
cheeses at 140 d of ripening. Milk pretreatments were control (black bars), centrifugation (white bars); and centrifuged milk containing high-
heat-treated centrifugate (gray bars). Data presented are means of data from 3 replicate trials. Error bars show the SEM from 3 replicate trials.

Figure 7. The effect of milk pretreatments on mean levels of hard-
ness between 1 (●) and 11 d (▲) of ripening. Experimental cheese 
types were CT = control cheese, CF = cheese made from centrifuged 
milk, CFHHT = cheese made from centrifuged milk containing high-
heat-treated centrifugate. Error bars show the SEM from 2 replicate 
trials. Color version available online.
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No significant effects of treatment on mean levels of 
cohesiveness, resilience, and springiness in the cheeses 
were observed (Table 3); however, the values for these 
texture parameters decreased (P < 0.05) between 1 and 
11 d of ripening (data not shown). Although the exact 
reasons for this are unknown, this may be attributed 
to solubilization of colloidal calcium during the early 
stages of ripening (O’Mahony et al., 2005). O’Mahony 
et al. (2005) also observed rapid decrease in the value 
for springiness and cohesiveness of Cheddar cheese 
between 1 and 21 d of ripening. Levels of insoluble 
calcium were not determined in cheeses in the pres-
ent study, and we suggest that this should be a focus 
for future studies in Maasdam-type cheese. We found 
no significant difference in the mean level of hardness 
of cheese between 1 and 11 d of ripening, contrary to 
the results obtained by O’Mahony et al. (2005), who 
observed rapid decrease in the texture value within first 
21 d of ripening of Cheddar cheese; this discrepancy 
may be attributed to different cheese types and differ-
ent manufacturing steps. We were unable to analyze 
the texture profile of cheese after 11 d of ripening due 
to eye formation.

CONCLUSIONS

We demonstrated the effect of centrifugation and 
incorporation of HHT centrifugate on the composi-
tion, texture, and ripening characteristics of Maasdam 
cheese. Interestingly, centrifugation of cheese milk be-
fore cheesemaking appeared to have minimal effect on 
composition and age-related changes on texture, pH, 
proteolysis, and lactate levels of Maasdam cheese. How-
ever, incorporation of HHT centrifugate into cheese 
milk at levels of approximately 6 to 10% (wt/wt), 
depending on the protein content of centrifugate, into 
cheese milk significantly increased MNFS levels and 
also significantly decreased cheese hardness compared 
with control cheeses and cheeses made from centrifuged 
milk. Composition and strength of curd are considered 
important for eye-development characteristics of cheese 
without slits and cracks. In the current study, no clear 
trend for eye characteristics was observed between the 
treatments, and thus we were unable to draw a conclu-
sion regarding the effect of the treatments applied on 
eye quality of cheese. We propose that this should be 
the focus of further research, possibly requiring analy-
sis of a large number of commercial samples over the 
course of a manufacture season.
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ABSTRACT

Centrifugation is a common milk pretreatment meth-
od for removal of Clostridium spores which, on ger-
mination, can produce high levels of butyric acid and 
gas, resulting in rancid, gassy cheese. The aim of this 
study was to determine the effect of centrifugation of 
milk, as well as incorporation of high heat-treated cen-
trifugate into cheese milk, on the microbial and volatile 
profile of Maasdam cheese. To facilitate this, 16S rRNA 
amplicon sequencing in combination with a selective 
media-based approach were used to study the microbial 
composition of cheese during maturation, and volatile 
organic compounds within the cheese matrix were 
analyzed by HPLC and solid-phase microextraction 
coupled with gas chromatography–mass spectrometry. 
Both culture-based and molecular approaches revealed 
major differences in microbial populations within the 
cheese matrix before and after warm room ripening. 
During warm room ripening, an increase in counts of 
propionic acid bacteria (by ~101.5 cfu) and nonstarter 
lactic acid bacteria (by ~108 cfu) and a decrease in 
the counts of Lactobacillus helveticus (by ~102.5 cfu) 
were observed. Lactococcus species dominated the curd 
population throughout ripening, followed by Lactoba-
cillus, Propionibacterium, and Leuconostoc, and the 
relative abundance of these accounted for more than 
99% of the total genera, as revealed by high-through-
put sequencing. Among subdominant microflora, the 
overall relative abundance of Clostridium sensu stricto 
was lower in cheeses made from centrifuged milk than 
control cheeses, which coincided with lower levels of 
butyric acid. Centrifugation as well as incorporation 
of high heat-treated centrifugate into cheese milk 

seemed to have little effect on the volatile profile of 
Maasdam cheese, except for butyric acid levels. Overall, 
this study suggests that centrifugation of milk before 
cheesemaking is a suitable method for controlling unde-
sirable butyric acid fermentation without significantly 
altering the levels of other volatile organic compounds 
of Maasdam cheese.
Key words: centrifugation, microbial composition, 
high-throughput sequencing, volatile profile, Maasdam 
cheese

INTRODUCTION

Centrifugation at ~9,000 × g is a milk pretreatment 
method for removal of Clostridium spores. Some species 
of Clostridium, on germination, can produce gas and a 
high level of butyric acid via butyric acid fermentation, 
resulting in rancid, gassy cheeses (Su and Ingham, 2000; 
Le Bourhis et al., 2007). As well as removal of bacte-
rial spores, centrifugation removes indigenous bacterial 
cells present in milk (Te Giffel and Van Der Horst, 
2004). Some of these indigenous milk microorganisms 
can survive pasteurization and can grow during rip-
ening of cheese (Grappin and Beuvier, 1997; Jordan 
and Cogan, 1999; Quigley et al., 2013; Sheehan, 2013). 
Therefore, it may be assumed that the reduction in 
microbial load in cheese milk by centrifugation may 
influence the microbial composition of cheese during 
maturation, as the environment would be less com-
petitive, thus further favoring the growth of the most 
abundant bacteria. The microbial composition within 
the cheese matrix is known to play an important role in 
determining biochemical and ripening characteristics, 
including flavor development through production of en-
zymes and metabolites, of different varieties of cheese 
(Beuvier et al., 1997; Beresford et al., 2001; Montel et 
al., 2014; Guarrasi et al., 2017).

Although traditional culture-based approaches are 
effective for quantifying common starter or nonstarter 
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bacteria, these approaches are not sensitive to those 
microorganisms that are difficult to culture, present as 
subdominant populations, or both (Quigley et al., 2013; 
O’Sullivan et al., 2015). Moreover, recent studies based 
on culture-independent approaches have suggested that 
some bacterial cells in a highly stressed condition are 
viable but not culturable (Quigley et al., 2013; Rug-
girello et al., 2014; Hickey et al., 2018). Alternatively, 
molecular approaches, including high-throughput 
sequencing, can provide a detailed insight into the 
composition of both dominant and subdominant mi-
croflora. More recently, 16S rRNA amplicon sequencing 
has been increasingly used in the study of microbial 
composition within fermented food products, including 
cheese (Quigley et al., 2012; O’Sullivan et al., 2015; 
Alessandria et al., 2016). For the first time, we profiled 
the microbiota of cheese made from centrifuged milk, 
as well as cheese made from centrifuged milk containing 
high heat-treated (HHT) centrifugate compared with 
control cheeses, using high-throughput sequencing.

Maasdam is a washed-curd, brine-salted, large eye-
forming, semihard cheese, which is developed by com-
bining the cultures and technologies of Emmental and 
Gouda cheese. Apart from thermophilic lactobacilli, 
mesophilic mixed-strain cultures comprising Lactococ-
cus and Leuconostoc are used as starters (as in Gouda 
cheese) and propionic acid bacteria (PAB) are used as 
secondary starters (as in Emmental cheese). To date, 
very little has been published regarding the microbial 
and volatile profile of Maasdam cheese, a better under-
standing of which will aid manufacturers to consistently 
achieve the desirable cheese aroma profile (Johnson and 
Lucey, 2006).

The objective of our study was to investigate the 
effect of (1) centrifugation and (2) the incorporation 
of the HHT centrifugate into cheese milk on microbial 
composition and levels of volatile organic compounds 
(VOC) of Maasdam cheese during maturation. In our 
study, centrifugation refers to the separation of bacteria 
and spores at a centrifugal force of ~9,000 × g (in some 
studies this is also referred as bactofugation; Te Giffel 
and Van Der Horst, 2004), whereas centrifugal separa-
tion refers to separation of milk into cream and skim 
milk. A parallel study was conducted investigating the 
effect of milk centrifugation and incorporation of HHT 
centrifugation on the composition, texture, and ripen-
ing characteristics of Maasdam cheese.

MATERIALS AND METHODS

Cheese Manufacture

Cheese milks were prepared as described by Lami-
chhane et al. (2018) and in Supplemental Figure S1 

(https:// doi .org/ 10 .3168/ jds .2017 -14180). In summary, 
raw milk from a local dairy company (Dairygold Co 
Operative Society Limited, Cork, Ireland) was divided 
into 2 portions. One portion of the raw milk was sepa-
rated into skim milk and cream using a cream separator. 
Control milk (CT) was prepared by adding a portion of 
cream and skim milk obtained from cream separator to 
achieve a protein to fat ratio of 1.13: 1. Another portion 
of the raw milk was centrifuged at 9,000 × g (at 50°C 
with flow rate of 1,000 L/h), resulting in centrifuged 
whole milk and centrifugate. Centrifuged whole milk 
was separated into cream and skim milk and high heat 
treatment (120°C for 26 s) was applied to centrifugate. 
A second cheese milk type (i.e., centrifuged milk; CF) 
was prepared by adding a portion of cream and skim 
milk obtained from separation of centrifuged whole 
milk, and a third cheese milk type was prepared by 
mixing a portion of cream and skim milk obtained 
from separation of centrifuged whole milk and HHT 
centrifugate (CFHHT; at a level of 6 to 10%, wt/
wt, depending on the protein content of centrifugate). 
The protein-to-fat ratio of all cheese milks were stan-
dardized to 1.13: 1. All cheese milks were pasteurized 
before Maasdam cheese manufacture. Maasdam cheeses 
were manufactured as per Lamichhane et al. (2018). 
Three experimental Maasdam cheese types [i.e., cheese 
made from control milk (CT cheese), centrifuged milk 
(CF cheese) and centrifuged milk containing HHT cen-
trifugate (CFHHT cheese)] were each manufactured on 
3 different occasions in replicate cheesemaking trials 
over a 3-mo period as per Lamichhane et al. (2018). 
Starters and secondary starters (frozen direct vat in-
oculate, Chr. Hansen Ltd., Cork, Ireland) used for the 
manufacture of Maasdam cheese were (1) mesophilic 
mixed-strain (C950, 18 mg/kg of milk), consisting of 
Lactococcus lactis ssp. cremoris, Lactococcus lactis ssp. 
lactis, and Leuconostoc; (2) Lactobacillus helveticus 
(LH-B01, 4.8 mg/kg of milk); and (3) PAB (PS-60, 7.0 
mg/kg of milk).

Enumeration of Starter and Nonstarter  
Lactic Acid Bacteria and PAB

Samples were aseptically removed from cheese wheels 
using a cheese trier at 1, 11, 41, 65, 97, 140, and 180 d 
of ripening. The cheese samples (10 g) were placed in a 
sterile stomacher bag (Grade, Leicestershire, UK), di-
luted (10-fold) with 2% (wt/vol) trisodium citrate buf-
fer (VWR, Dublin, Ireland), and stomached for 10 min 
using a stomacher (Iul Instruments, Barcelona, Spain). 
Serial dilutions of 10-fold diluted cheese samples were 
made using maximum recovery diluent, containing low 
levels of peptone (1 g/L) and sodium chloride (8.5 
g/L). Total numbers of nonstarter lactic acid bacteria 
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(NSLAB) cells were enumerated on Lactobacillus se-
lection agar (BD, Oxford, UK), with an overlay, after 
aerobic incubation for 5 d at 30°C. Viable cells of PAB 
were enumerated on sodium lactate agar, supplemented 
with kanamycin sulfate (Sigma-Aldrich, Arklow, Ire-
land) at a level of 4 mg/100 mL of sodium lactate agar, 
after anaerobic incubation for 7 d at 30°C, and only 
light brown colonies were counted as PAB (Rehn et al., 
2011). Lactobacillus helveticus cells were enumerated on 
de Man, Rogosa, and Sharpe agar (BD) at pH 5.4 after 
anaerobic incubation for 3 d at 42°C (Hickey et al., 
2017). Anaerobic conditions were maintained through 
the use of anaerobic gas jars and AnaeroGen system 
(Oxoid, Basingstoke, UK).

Study of Microbial Composition Using High-
Throughput Sequencing

Sampling and Nucleic Acid Extraction. Aseptic 
samples were removed using a cheese trier, at 1, 11, 
41, 65, 97, and 180 d of ripening. Cheese samples (5 g) 
were homogenized in 45 mL of Ringer’s solution (1/4 
strength, Sigma-Aldrich) in a stomacher (BagMixer 
400P, Interscience, Saint Nom, France). Enzymatic 
lysis of homogenized cheese samples was conducted 
before DNA extraction and included treatment with 
lysozyme (1 mg/mL, EC 3.2.1.17, Sigma-Aldrich) and 
proteinase K (5 mg/mL, EC 3.4.21.64, Sigma-Aldrich), 
followed by incubation at 37°C for 30 min and 55°C 
for 15 min, respectively. The DNA was extracted using 
the PowerFood Microbial DNA Isolation Kit (MoBio 
Laboratories Inc., Carlsbad, CA).

PCR Amplification of the Microbial 16S 
rRNA Gene. Extracted DNA was amplified us-
ing primers targeting the V3 and V4 regions of the 
bacterial 16S rRNA gene. Illumina (San Diego, CA) 
adapter overhang nucleotide sequences were added to 
the primers. Therefore, the primer set used included 
the 16S amplicon PCR forward primer (5′-TCGTCG-
GCAGCGTCAGATGTGTATAAGAGACAGCCTAC-
GGGNGGCWGCAG) and the 16S amplicon PCR 
reverse primer (5′-GTCTCGTGGGCTCGGAGATGT-
GTAAGAGACAGGACTACHVGGGTATCTAATCC). 
Identification of individual sequences from the pooled 
samples was achieved by incorporating a dual indexing 
strategy, where 2 unique pairs of 8 base indices were at-
tached to each sample. Prepared samples were purified 
by using AMPure XP purification system (Beckman 
Coulter, Takeley, UK) before sequencing.

Amplicon PCR reactions contained 25 µL of 2× 
KAPA HiFi HotStart ReadyMix (Roche Diagnostics, 
West Sussex, UK), 10 µL of each of the primers, and 5 
µL of the DNA template. Therefore, the total volume 
of the reaction mix was 50 µL. The PCR amplification 

was carried out using a 2720 Thermal Cycler (Applied 
Biosystems, Foster City, CA). The amplification pa-
rameters were initial denaturation at 95°C for 3 min, 
followed by 30 cycles consisting of three 30-s steps in-
cluding denaturation at 95°C, annealing at 55°C, and 
extension at 72°C. The process was completed by final 
elongation stage at 72°C for 2 min. Obtained amplicons 
were quantified by using Quan-It dsDNA High Sensitiv-
ity Assay Kit (Invitrogen, Carlsbad, CA). Additionally, 
samples were normalized by dilution to equimolar con-
centrations before library preparation and sequencing.

High-Throughput Sequencing. The 16S rRNA 
amplicons from the V3 and V4 regions were sequenced 
on a MiSeq (Illumina, San Diego, CA) platform in 
the Teagasc sequencing facility, in accordance with 
standard Illumina sequencing protocols (document no. 
15044223; https:// www .illumina .com/ content/ dam/ 
illumina -marketing/ documents/ products/ appnotes/ 
16S -Metagenomic -Library -Prep -Guide .pdf). Paired-
end reads were assembled using FLASH (fast length 
adjustment of short reads to improve genome assem-
blies). Denoising, chimera detection, and clustering 
into operational taxonomic units were performed using 
USEARCH (Version 7.0–64 bit; http:// www .drive5 
.com/ usearch/ ). Taxonomy was assigned using BLAST 
against the SILVA database release 123 (https:// www 
.arb -silva .de/ ). Alpha diversity was calculated in QI-
IME (v1.9.0; http:// qiime .org). Further data analysis 
was carried out using Phyloseq package in R (www .r 
-project .org).

Analysis of Acetic, Propionic, and Butyric Acid

Acetic, propionic, and butyric acids were recovered 
from cheese matrix by steam distillation and subse-
quently quantified by ligand exchange, ion-exclusion 
HPLC, as described by Kilcawley et al. (2001) with 
slight modification. Briefly, 5 g of grated cheese sam-
ples, 10 mL of 10% (wt/vol) H2SO4 (Sigma-Aldrich), 
1 mL of valeric acid (Sigma-Aldrich) of concentration 
1 mg/mL, 1 drop of silicon antifoaming agent (Sigma-
Aldrich), and 10 mL of distilled water were added to 
a distillation tube before distillation (2100 Kjeltec 
Distillation unit, Foss Analytic, Hillerød, Denmark). 
The first 100 mL of distillate was collected into a flask, 
mixed gently, and representative distillate samples were 
filtered using 0.2-µm nylon syringe filters into HPLC 
vials (Agilent Technologies, Santa Clara, CA). Recov-
ery of short-chain carboxylic acids from cheese matrix 
by steam distillation was checked based on recovery of 
valeric acid, which was added as an internal standard.

The filtered samples were then analyzed for acetic, 
propionic, and butyric acid content using HPLC (1260 
Infinity, Agilient Technologies) equipped with Rezex 

https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/16S-Metagenomic-Library-Prep-Guide.pdf
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RHM-Monosaccharide H+ (8%) column (Phenomenex, 
Cheshire, UK) under the following working conditions: 
sample injection volume, 40 µL; mobile phase, 0.01 N 
sulfuric acid (isocratic); flow rate, 0.7 mL/min; column 
temperature, 50°C; run time, 50 min; detection at 220 
nm (UV detector). The quantification of analytes was 
based on the external standard method as described 
by Kilcawley et al. (2001). Results were expressed as 
milligrams per kilogram of cheese samples.

Analysis of Volatiles

Volatiles in cheese at 140 d of ripening were deter-
mined using GC-MS. Grated cheese samples (4 g) were 
placed in a 20-mL screw capped amber solid-phase mi-
croextraction vial (Apex Scientific, Maynooth, Ireland) 
and equilibrated to 40°C for 10 min with pulsed agita-
tion of 5 s at 500 rpm. Sample introduction was ac-
complished using a Shimadzu AOC 5000 Autosampler 
(Shimadzu Corporation, Kyoto, Japan). A single 50/30 
µm Carboxen/divinylbenzene/polydimethylsiloxane 
(Agilent Technologies) fiber was used. The solid-phase 
microextraction fiber was exposed to the headspace 
above the samples for 20 min at depth of 1 cm at 40°C. 
The fiber was retracted and injected into the GC inlet 
and desorbed for 2 min at 250°C. Injections were made 
on a Shimadzu 2010 Plus GC with an Agilent DB-624 
UI (60 m × 0.32 mm × 1.8 µm; Agilent Technologies, 
Cork, Ireland) column using a split/splitless injector 
with a 1/10 split. A Merlin microseal (Sigma-Aldrich) 
was used as the septum. The temperature of the column 
oven was set at 40°C, held for 5 min, increased at 5°C/
min to 230°C, then increased at 15°C/min to 260°C, 
yielding total GC run time of 50 min. The carrier gas 
was helium held at a constant flow of 1.2 mL/min. The 
detector was a Shimadzu TQ8030 mass spectrometer 
detector (Mason Technology, Dublin, Ireland), run in 
single quadrupole. The ion source temperature was 
220°C and the interface temperature was set at 260°C. 
The MS mode was electronic ionization (70 V) with the 
mass range scanned between 35 and 250 amu. Com-
pounds were identified using mass spectra compari-
sons to the NIST 2014 mass spectral library (https:// 
www .nist .gov/ srd/ nist -standard -reference -database 
-1a -v14), a commercial flavor and fragrance library 
(FFNSC 2, Shimadzu Corporation), and an in-house 
library created using authentic compounds with target 
and qualifier ions and linear retention indices for each 
compound. Linear retention indices were calculated as 
per Vandendool and Kratz (1963). Spectral deconvo-
lution was also performed to confirm identification of 
compounds using an automated mass spectral decon-
volution and identification system (AMDIS; http:// 
chemdata .nist .gov/ dokuwiki/ doku .php ?id = chemdata: 

amdis). Batch processing of samples was carried out 
using metaMS (Wehrens et al., 2014). An autotune 
of the GC-MS was carried out before the analysis to 
ensure optimal GC-MS performance. All analyses were 
performed in triplicate.

Statistical Analysis

Three experimental cheese types (CT, CF, and CF-
HHT) were each manufactured on 3 different occasions 
in replicate cheese-making trials. An ANOVA, using 
IBM SPSS software version 24 (IBM Corp., 2016), 
was applied to determine the effect of treatment on 
formation of VOC. A split-plot design was used to 
determine the effect of treatment, ripening time, and 
their interactions on Lactobacillus helveticus, PAB, 
and NSLAB count and levels of short-chain carboxylic 
acids (acetate, propionate, and butyrate). Analysis for 
the split-plot design was carried out using the PROC 
MIXED procedure of SAS software version 9.3 (SAS 
Institute Inc., 2011). Tukey’s multiple comparison test 
was used for paired comparison of treatment means at 
a 5% level of significance.

RESULTS AND DISCUSSION

Cheese Composition

The compositional parameters of cheeses were de-
scribed in detail by Lamichhane et al. (2018) and in 
Supplemental Table S1 (https:// doi .org/ 10 .3168/ jds 
.2017 -14180). Briefly, except for levels of moisture in 
nonfat substances, all other compositional parameters 
of experimental cheeses were not statistically different. 
Cheeses made from cheese milk containing HHT cen-
trifugate had higher (P < 0.05) levels of moisture in 
nonfat substances than cheeses made from centrifuged 
milk or control cheeses. This is attributed to the nega-
tive effect of HHT centrifugate (incorporated at levels of 
approximately 6 to 10% of the total cheese milk weight, 
depending on the protein content of centrifugate) on 
syneresis of rennet-induced milk gels. The mean mois-
ture content of CFHHT cheese was ~3% higher than 
that of CT and CF cheeses; however, the data were not 
differ statistically (P = 0.057).

Growth and Viability of Lactobacillus helveticus, 
PAB, and NSLAB

Mean viable counts of Lactobacillus helveticus in 
all experimental cheeses decreased (P < 0.001) from 
~107 cfu/g at 1 and 11 d to ~104.5 cfu/g at 41 d (Fig-
ure 1A), indicating lysis during warm room ripening. 
Similar trends have previously been reported in Swiss-

https://www.nist.gov/srd/nist-standard-reference-database-1a-v14
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type cheese (White et al., 2003; Sheehan et al., 2008; 
O’Sullivan et al., 2016). As the increased number of 
NSLAB would influence the accuracy of Lactobacillus 
helveticus counts (O’Sullivan et al., 2016), we did not 
enumerate Lactobacillus helveticus beyond 41 d. As 
expected, the mean viable count of PAB increased (P 
< 0.001) in all experimental cheeses during the warm 
room ripening, from ~106.5 cfu/g at 11 d to ~108 cfu/g 
at 41 d (Figure 1B). The increase in PAB count during 
the warm room ripening stage is consistent with previ-
ous results for Grevé (Rehn et al., 2011) and Swiss-type 
cheeses (O’Sullivan et al., 2016). The count decreased 
slightly thereafter to ~107 cfu/g during cold storage 
(4°C).

Although counts of NSLAB were very low at 1 and 
11 d of ripening, their levels in all cheeses increased to 
~108 cfu/g at 41 d of ripening and leveled off during 
further storage (Figure 1C); Sheehan et al. (2008) also 
observed a similar trend in Swiss-style cheeses. The 
NSLAB in cheese can originate from milk, processing 
equipment, or the processing environment, and counts 
are reported to be less than 102 cfu/g in young cheese 
made under good sanitary conditions with high-quality 
milk (Steele et al., 2006). Pasteurization of milk drasti-
cally reduces the number of indigenous milk flora; how-
ever, some of these indigenous milk microorganisms can 
survive pasteurization and can grow during ripening of 
cheese (Grappin and Beuvier, 1997; Jordan and Cogan, 
1999; Johnson, 2001; Quigley et al., 2013). Contrary to 
our results, O’Sullivan et al. (2016) observed high levels 
of NSLAB (~106 cfu/g) at 1 d of ripening in Swiss-type 
cheese, and those authors speculated that they might 
have originated from the processing environment dur-
ing cheese manufacture. The rapid increase in numbers 
of NSLAB during warm room ripening is attributed 
to elevated temperature (23°C), which accelerates the 
metabolic activities of microorganisms (Beresford et al., 
2001; De Filippis et al., 2016), and availability of sub-
strates, such as sugars, nucleic acids and lactate, from 
metabolism of starters and their cell lysate (Steele et 
al., 2013; Ortakci et al., 2015). The NSLAB contribute 
to cheese maturation through production of enzymes 
and metabolites (Settanni and Moschetti, 2010). No 
significant effect of treatment was observed for mean 
counts of NSLAB, L. helveticus, and PAB during ripen-
ing (Table 1).

Microbial Composition of Maasdam Cheese

After DNA extraction, amplicons of the bacterial 16S 
rRNA gene were generated by PCR. These amplicons 
were then subjected to next-generation sequencing, 
generating an average of 253,870 good-quality reads 
per sample. Alpha diversity was calculated for each 

Figure 1. The effect of milk pretreatments on average count of (A) 
Lactobacillus helveticus, (B) propionic acid bacteria (PAB), and (C) 
nonstarter lactic acid bacteria (NSLAB) of Maasdam cheeses during 
ripening. Milk pretreatments were control (●); centrifugation (▼); and 
centrifuged milk containing high heat-treated centrifugate (○). Data 
are means of data from 3 replicate trials.
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sample to analyze species richness and diversity within 
each sample. Chao 1 values, which represented species 
richness, ranged from 16 to 65, whereas the Shannon 
index ranged from 0.20 to 2.66. Analysis of these data 
revealed that the bacterial diversity fluctuated through-
out the ripening process; however, an overall increase 
in diversity was observed, in contrast to a similar study 
conducted by O’Sullivan et al. (2015) in Swiss-type 
cheese with thermophilic starters Streptococcus ther-
mophilus and Lactobacillus helveticus.

Differences in microbial taxa and shifts in relative 
abundance of the population were revealed between 
CT, CF, and CFHHT cheeses. Phylogenetic assignment 
of the sequences revealed presence of bacteria belonging 
to 7 phyla: Actinobacteria, Bacteroidetes, Cyanobacte-
ria, Deferribacteres, Firmicutes, Proteobacteria, and 
Saccharibacteria. As expected, Firmicutes dominated 
across all samples, with relative abundance ranging 
between 78.72 and 99.96% in the CT cheeses, 67.83 to 
99.86% in the CF cheeses, and 76.63 to 99.89% in the 
CFHHT cheeses. The second most abundant phylum 
was Actinobacteria, followed by Proteobacteria. In ad-
dition, a rapid increase in abundance of the bacteria 
belonging to Actinobacteria phylum can be observed 
after 41 d of ripening (after warm room stages) in all 
experimental cheese types.

Lactococcus, Lactobacillus, Propionibacterium, and 
Leuconostoc were the dominant genera of Maasdam 
cheese throughout ripening, accounting for more than 
99% relative abundance altogether (Figure 2). Before 
warm room ripening (i.e., until 11 d postproduction), 
the relative abundance of major microorganisms (at 
genus level) were similar between treatments; Lactococ-
cus spp. (ranging from 86.8 to 94.5%) dominated the 
curd population followed by Lactobacillus (4.8–12.4%). 
Leuconostoc (0.15–0.4%) and Propionibacterium (0.14–
0.35%) were detected in very small proportions during 
this period. These results were expected, as all these 
genera were added as starters or secondary starters at 
a similar proportion for all experimental cheeses.

In agreement with the results from the culture-based 
approach, the molecular approach also revealed major 
differences in microbial populations within the cheese 
matrix before and after warm room ripening. As ex-
pected, the relative abundance of Propionibacterium 
was higher after warm room ripening than before warm 
room ripening in all experimental cheeses. An increase 
in the level of PAB by ~101.5 cfu/g during warm room 
ripening was also observed in the culture-based method. 
Although the overall relative abundance of Lactococcus 
decreased after warm room ripening, it was still the 
most dominant microflora in all experimental cheeses; 
Lactobacillus and Propionibacterium were the second 
most abundant genera, followed by Leuconostoc. During 
maturation, in general, some lactic acid bacteria (LAB) 
within the starter cultures die off and their metabolites 
(e.g., lactate) and carbon sources from cell lysate (e.g., 
ribose) favor the growth of secondary starter, such as 
PAB and NSLAB (Ortakci et al., 2015). Moreover, the 
elevated temperature (23°C) during warm room ripen-
ing accelerates the metabolic activity of microorgan-
isms (Beresford et al., 2001; De Filippis et al., 2016).

Subtle differences were observed in the composition 
of dominant microflora (i.e., Lactococcus, Lactobacillus, 
Propionibacterium, and Leuconostoc) between treat-
ments; however, the differences were not consistent 
throughout ripening. This suggests that milk centrifu-
gation as well as incorporation of HHT centrifugate 
into cheese milk had minimal effect on the composition 
of major genera of Maasdam cheese, which is consistent 
with the results from selective media-based approach.

Apart from major microflora, many (~40) other genera 
were also detected; however, their relative abundances 
were very low, ranging from 0.04 to 0.95%. Among these 
subdominant genera, Enterococcus, Stenotrophomonas, 
Paenibacillus, Pseudomonas, and Acinetobacter were 
detected in relatively higher abundance. The presence 
of Enterococcus was detected at all time points in CT 
and CF cheeses, and its population increased rapidly 
from 41 d of ripening. This genus was not detected 

Table 1. Summary of the effects of treatment, ripening time, and their interactions on microbiology and short-
chain carboxylic acids profile of Maasdam cheeses1

Parameter  Treatment  Time  
Interactive effect  
(treatment × time)

Lactobacillus helveticus  NS (0.71) *** NS (0.37)
PAB  NS (0.52) *** NS (0.99)
NSLAB  NS (0.37) *** NS (0.99)
Acetic acid  NS (0.49) *** NS (0.99)
Propionic acid  NS (0.55) *** NS (1.00)
Butyric acid  *** *** NS (0.28)
1Digits in parentheses after NS represent P-values; abbreviations: PAB = propionic acid bacteria; NSLAB = 
nonstarter lactic acid bacteria.
***P < 0.001, NS = P > 0.05.
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in CFHHT cheeses at 1 d of ripening; however, it was 
detected thereafter. Enterococci have been previously 
isolated from traditional cheeses produced with raw or 
pasteurized milk and are considered to originate from 
bulk tank, milking machine, and processing equipment 
or the processing environment (Gelsomino et al., 2002; 
Nieto-Arribas et al., 2011). Although enterococci have 
shown a potential role in ripening and flavor develop-
ment in some artisanal cheeses and cheeses made from 
raw milk (Beuvier et al., 1997; Beresford et al., 2001; 
Nieto-Arribas et al., 2011), the significance of the pres-
ence of this genus within Maasdam cheese matrix is not 
yet fully understood and requires further investigation.

Pseudomonas, Stenotrophomonas, and Acinetobacter 
were present in all experimental cheese types but in 
different proportions. The highest abundance of Pseu-
domonas was observed in CT cheeses, particularly at 1, 
11, and 97 d of ripening. Pseudomonas (psychrotrophic 
bacteria) have previously been isolated from cheese 
matrix (O’Sullivan et al., 2015), which can cause flavor 
and texture defects in cheese if they are present in high 
numbers (Champagne et al., 1994). Stenotrophomonas 
was present uniformly across the sample groups but 
not across time points. Although Acinetobacter has 
frequently been detected in several types of cheese, 
such as Camembert (Addis et al., 2001) and Swiss-style 
(O’Sullivan et al., 2015), its role on ripening of cheese 
is not fully understood.

Clostridium sensu stricto is a subset of the species 
of Clostridium that form a distinct cluster in the 16S 
rRNA tree (cluster I; Gupta and Gao, 2009). Nearly all 
species within this genus produce butyric acid as a ma-
jor fermentation product (Wiegel, 2009). Clostridium 
spp. associated with late blowing defect (LBD) of 
cheese, including Clostridium tyrobutyricum and Clos-
tridium butyricum, also fall within this genus (Collins 
et al., 1994; Brändle et al., 2016). Although the overall 
percentage relative abundance of Clostridium sensu 
stricto was very low (below 0.05%), the overall percent-
age relative abundance in CT cheeses (ranging between 
0.00 and 0.02% throughout ripening) was relatively 
higher than those in CF (0.00 to 0.002%) and CFHHT 
(0.00 to 0.003%) cheeses; this may be explained by the 
removal of Clostridium spores from milk by centrifuga-
tion. It is well known that the centrifugation can remove 
more than 97% of Clostridium spores from milk (Su and 
Ingham, 2000; Te Giffel and Van Der Horst, 2004).

Levels of Acetic, Propionic, and Butyric Acids

Short-chain carboxylic acids contribute to the aroma 
profile of most cheese varieties (Kilcawley et al., 2001). 
Starter, secondary starter, and nonstarter bacteria 
present in the cheese matrix can produce short-chain 
volatile carboxylic acids, including propionic, acetic, 
and butyric acids. Propionic acid is one of the major 

Figure 2. Relative abundance of bacteria at genus level within the 3 experimental cheese types during maturation: CT = control cheese, CF 
= cheese made from centrifuged milk, CFHHT = cheese made from centrifuged milk containing high heat-treated centrifugate. Data are means 
of data from 3 replicate trials. Color version available online.
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products of lactate metabolism by PAB; hence, it was 
detected in all experimental cheeses at high levels (Fig-
ure 3A), particularly during warm room ripening, with 
a mean level of ~50 mg/kg of cheese at 11 d (start of 
warm ripening) and ~4,000 mg/kg of cheese at 41 d 
(end of warm room ripening). Similar trends have been 
reported in other studies (Huc et al., 2014; O’Sullivan 
et al., 2016). No significant effect of treatment was ob-
served (Table 1). In Swiss-type cheese, propionic acid 
contributes to sweet or nutty notes characteristic of 
these varieties (Kilcawley et al., 2001).

The production of acetic acid followed a similar trend 
to that of propionic acid during ripening of cheese. Ace-
tic acid in cheese can be formed from several pathways, 
including propionic acid fermentation by PAB, and me-
tabolism of lactate and citrate by LAB (Sheehan et al., 
2008; Huc et al., 2014). The mean level of acetic acid at 
1 and 11 d of ripening was only ~200 mg/kg of cheese; 
however, the level increased rapidly during warm room 
ripening to ~2,200 mg/kg of cheese at 41 d (Figure 3B). 
The production of acetate in all experimental cheeses 
during warm room ripening is most likely due to activ-
ity of starter LAB, NSLAB, and PAB. No significant 
effect of treatment was observed (Table 1).

Significant effects of treatment and time were ob-
served for mean levels of butyric acid during maturation 
(Table 1). The mean levels of butyric acid in CT cheeses 
were higher (P < 0.05) than in CF and CFHHT cheeses 
(Figure 3C), which coincided with the higher relative 
abundance of Clostridium sensu stricto in CT cheeses 
than CF and CFHHT cheeses, as revealed by high-
throughput sequencing. Higher levels of butyric acid in 
the CT cheeses are most probably due to butyric acid 
fermentation by Clostridium, which may be removed 
during centrifugation in CF and CFHHT milks.

A high level of butyric acid can influence the flavor 
profile of cheese and may result in down-graded cheese. 
Some species of Clostridium produces carbon dioxide 
and hydrogen via butyric acid fermentation, which can 
impair the quality of eyes and also increase the risk 
of slits and crack formation in cheese (Sheehan, 2011; 
Gómez-Torres et al., 2015). The level of butyric acid in 
late-blown cheeses varies among studies; in semihard 
(Bogovič Matijašić et al., 2007) and Gouda cheese 
(Klijn et al., 1995), butyric acid contents higher than 
200 mg/kg have been found to be associated with the 
LBD, and the severity of this defect was greater when 
the level of butyric acid was higher. However, it should 
be noted that butyric acid within the cheese matrix can 
also originate from lipolysis during ripening (Le Bourhis 
et al., 2007; Garde et al., 2012). Although the level of 
butyric acid was significantly higher in CT cheeses than 
CF and CFHHT cheeses, we did not observe LBD in the 
CT cheeses. In the current study, the level of butyric 

Figure 3. The effect of milk pretreatments on the mean level of (A) 
propionic acid, (B) acetic acid, and (C) butyric acid during ripening of 
Maasdam cheeses. Milk pretreatments were control (●); centrifugation 
(▼); and centrifuged milk containing high heat-treated centrifugate 
(○). Data are means of data from 3 replicate trials.
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acid was below 200 mg/kg in all experimental cheeses 
over 6 mo of ripening. These results are in agreement 
with the studies of Le Bourhis et al. (2007) and Beuvier 
et al. (1997), who also observed butyric acid contents 
of less than 200 mg/kg in normal Swiss-type cheeses. 
The comparatively low level of butyric acid in the CT 
cheeses is most probably due to low levels of Clostridium 
spores in the cheese milk obtained from a local dairy 
company during spring-summer (May–July); during 
this period, contamination of milk with Clostridium is 
less likely, as the milk supply was from spring-calving 
herds fed on pasture grass rather than silage (the main 
source of clostridial spore contamination in milk; Shee-
han, 2011). The levels of butyric acid between CF and 
CFHHT cheeses were not statistically different.

Volatile Profile of Maasdam Cheese

In total, 28 major volatile compounds were identified 
at 140 d of ripening, consisting of 8 ketones, 7 acids, 4 
alcohols, 4 esters, 2 aldehydes, 2 sulfur compounds, and 
a hydrocarbon (Table 2). The volatile flavor compounds 
in cheese are the result of complex biochemical reac-
tion during maturation, such as proteolysis, lipolysis, 
and glycolysis (McSweeney, 2004). The correct balance 
and concentration of a wide range of flavor compounds 
gives the characteristic flavor of different cheese variet-
ies. Centrifugation of cheese milk and incorporation of 
HHT centrifugate into centrifuged milk had virtually 
no effect on the formation of volatile compounds at 140 
d of ripening of Maasdam cheese. However, as expected, 
the mean relative abundance of butanoic acid (butyric 
acid) was lower (P < 0.05) in CF and CFHHT cheeses 
than in CT cheeses (Table 2), attributed to the removal 
of butyrate-fermenting Clostridium spores from cheese 
milk by the centrifugation process. Although butanoic 
acid at low levels contributes positively to the aroma of 
the cheese, it gives an undesirable rancid note at high 
concentration (Curioni and Bosset, 2002). Propionic 
and acetic acid were also detected in higher abundance 
in all experimental cheeses, as expected. The presence 
of hexanoic and octanoic acids within the experimental 
cheeses is attributed to lipolytic activity of enzymes 
(Delgado et al., 2010).

Only 2 aldehydes (i.e., benzaldehyde and 2-meth-
ylbutanal) were detected in all experimental cheeses, 
and these are derived from Phe and Ile, respectively 
(Yvon and Rijnen, 2001), via α-keto acids by the trans-
aminase pathway (Smit et al., 2005). Branched-chain 
aldehydes, including 2-methylbutanal, are generally de-
tected in high levels in cheese containing PAB (Thierry 
et al., 2005) and are responsible for dark chocolate/
malty aroma notes (Singh et al., 2003; Bertuzzi et al., 

2017). Aldehydes are relatively unstable compounds 
and can further catabolize to other groups of volatile 
compounds, such as alcohols or carboxylic acids. It has 
been reported that 3-methylbutanal and 2-methylbu-
tanal can oxidize to 3-methylbutanoic acid and 2-meth-
ylbutanoic acid, respectively, and these acids contrib-
ute to cheesy, sweaty, or rancid notes in cheese (Yvon 
and Rijnen, 2001). Alcohol dehydrogenase from lactic 
acid bacteria can convert 2-methylbutanal to 2-methyl-
1-butanol, which has fruity, waxy, or sweaty-fatty acid 
aroma notes (Singh et al., 2003).

Ketone flavor compounds, such as 2,3-butanedione 
(responsible for creamy/buttery aroma note), acetoin, 
and 2-butanone, are considered important volatile 
compounds in Maasdam cheese and are likely gener-
ated from metabolism of citrate by Lactococcus lactis 
and Leuconostoc spp. (Engels et al., 1997; Le Bars and 
Yvon, 2008). Detection of these ketone flavor com-
pounds in all experimental cheeses at higher abundance 
is not surprising because Lactococcus and Leuconostoc 
spp. were added as starter culture, and these genera 
were also detected within the cheese matrix throughout 
ripening, as revealed by high-throughput sequencing. 
Interestingly, 2,3-pentanedione was only detected in CF 
and CFHHT cheeses, whereas 2-hexanone was only de-
tected in CT cheeses; however, these compounds were 
detected in only 1 out of 3 trials. Pentane-2,3-dione has 
been suggested to be produced from intermediate of Ile 
metabolism (Imhof et al., 1995). Heptan-2-one, one of 
the important methyl ketones in Parmigiano-Reggiano 
cheese types (Qian and Reineccius, 2002), derived from 
the oxidation of octanoic acid, was also present in all 
experimental cheeses and likely contributes to cheesy or 
fruity aroma notes.

Ethanol and 2-butanol were the 2 most abundant 
alcohols detected in all experimental cheeses. Ethanol 
may be produced by the heterofermentative LAB pres-
ent within the cheese matrix (Thierry et al., 2006). 
The abundance of ethanol and short-chain acids, such 
as propionic, butyric, and hexanoic acids, inevitably 
results in ethyl esters via esterification or alcoholysis 
from microbial activity (Hong et al., 2018). Ethanol is 
considered as the limiting factor for ethyl ester forma-
tion in different cheese types, including Swiss cheese 
(Thierry et al., 2006). Therefore, modulation of ethanol 
level can potentially alter the fruity flavor of Swiss 
(Thierry et al., 2006) and Camembert (Hong et al., 
2017) cheeses.

Esters, especially ethyl esters, are responsible for 
fruity aroma notes in some cheese varieties, such as 
Parmesan and Swiss-type cheeses (Engels et al., 1997; 
Thierry et al., 2006). Ethyl propanoate was one of 
the most abundant esters in all experimental cheeses, 
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in agreement with the results previously reported by 
other authors for cheeses containing PAB (Thierry et 
al., 2005; Thierry et al., 2006). Ethyl butanoate, propyl 
propanoate, and ethyl hexanoate were also detected.

Volatile sulfur compounds are considered to be an 
important contributor to the flavor of different cheese 
types, and these compounds are reported to have very 
low-odor threshold values (Martínez-Cuesta et al., 
2013). Dimethyl sulfide (responsible for rotten cab-
bage/cheese/vegetative/sulfur aroma notes; Smit et al., 
2005) and carbon disulfide were the 2 sulfur compounds 
present in all experimental cheeses at 140 d of ripening, 
which are considered important flavor compounds of 
Swiss cheese released from metabolic activity of PAB 

(Adda et al., 1982). These sulfur-containing compounds 
are derived from the catabolism of sulfur AA (Met and 
Cys) by microorganisms during ripening (Smit et al., 
2005; Liu et al., 2012).

Toluene was detected in all experimental cheeses 
and may originate from the degradation of β-carotene 
(Verzera et al., 2010; O’Callaghan et al., 2017). Some 
studies observed high levels of toluene in milk of cows 
fed on pasture grass (Villeneuve et al., 2013) and also 
in cheese made from milk of cows fed on pasture grass 
(O’Callaghan et al., 2017).

It is well known that heat treatment changes the fla-
vor profile of milk through production of volatile com-
pounds from proteins (e.g., sulfur compounds from heat 

Table 2. Mean volatile compound peak areas from Maasdam cheese samples at 140 d of ripening1

Volatile compound LRI Ref. LRI2

Experimental cheese groups3

SEM P-valueCT CF CFHHT

Acid            
 Acetic acid 690 720 937,050a 892,939a 863,495a 42,910 NS
 Propionic acid 784 813 1,780,403a 1,796,587a 1,574,464a 138,686 NS
 Butanoic acid 864 883 507,815a 200,039b 187,989b 63,928 *
 3-Methylbutanoic acid 917 924 17,441a 19,946a 15,435a 2,355 NS
 2-Methylbutanoic acid 924 945 34,971a 38,769a 27,595a 5,155 NS
 Hexanoic acid 1,052 1,074 109,023a 102,471a 93,513a 10,345 NS
 Octanoic acid 1,244 1,264 9,755a 10,307a 9,382a 811 NS
Alcohol            
 Ethanol 506 — 328,148a 277,956a 295,035a 30,099 NS
 1-Propanol 612 611 11,263a 11,044a 25,842a 3,461 NS
 2-Butanol 648 624 229,554a 69,075a 614,349a 179,338 NS
 2-Methyl-1-butanol 789 794 22,266a 32,545a 25,350a 2,937 NS
Aldehyde            
 2-Methylbutanal 700 700 8,163a 12,268a 10,572a 1,239 NS
 Benzaldehyde 1,032 1,016 151,680a 101,440a 90,813a 32,465 NS
Ester            
 Ethyl propanoate 737 744 44,917a 38,659a 42,970a 4,493 NS
 Ethyl butanoate 826 830 24,229a 18,161a 17,146a 2,645 NS
 Propyl propanoate 835 — 10,310a 6,582a 8,226a 1,274 NS
 Ethyl hexanoate 1,024 1,028 6,041a 5,502a 4,455a 615 NS
Ketone            
 Acetoin 778 782 2,423,512a 2,345,157a 1,829,257a 370,152 NS
 Acetone 533 529 20,569a 12,568a 7,144a 3,736 NS
 2,3-Butanedione 631 632 339,191a 308,814a 246,050a 44,948 NS
 2-Butanone 639 630 1,705,995a 1,780,078a 4,570,336a 857,979 NS
 2-Pentanone 730 733 18,254a 22,489a 20,644a 1,033 NS
 2,3-Pentanedione 736 740 0.00a 5,465a 17,682a 5,943 NS
 2-Hexanone 834 834 10,146a 0.00a 0.00a 3,378 NS
 2-Heptanone 936 933 58,171a 38,408a 37,236a 6,968 NS
Sulfur compound            
 Dimethyl sulfide 538 532 593a 1,099a 814a 195 NS
 Carbon disulfide 546 538 10,454a 10,360a 6,091a 1,212 NS
Hydrocarbon            
 Toluene 794 788 42,593a 48,265a 41,576a 4,741 NS
a,bValues within a row not sharing common superscripts differ significantly (P < 0.05); data presented are the means of data from 3 replicate 
trials. 
1LRI = linear retention index; Ref. LRI = reference linear retention index.
2Reference LRI for ethanol or propyl propanoate were not found; however, they have been identified correctly.
3CT = control cheese; CF = cheese made from centrifuged milk; CFHHT = cheese made from centrifuged milk containing high heat-treated 
centrifugate.
*P < 0.05, NS = P > 0.05.
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denaturation of whey protein), carbohydrates (via the 
nonenzymatic browning reactions), and lipids (e.g., for-
mation of methyl ketones, lactones, and aldehydes from 
degradation of milk fat; Calvo and de la Hoz, 1992). 
However, the volatile profile of cheese made from CF 
and CFHHT was not statistically different, suggesting 
that the VOC solely generated by the heat-treatment 
given to the centrifugate have minimal effects on the 
volatile profile of final cheese.

Overall, the treatments applied to the milk had mini-
mal effect on the volatile profile of Maasdam cheese, 
except for butyric acid levels, suggesting that centrifu-
gation is a suitable method for controlling undesirable 
butyric acid fermentation without significantly altering 
the other VOC in Maasdam cheese. The level of butyric 
acid in the current study was not high (below 200 mg/
kg of cheese) in all experimental cheeses, suggesting that 
the milk was contaminated by low levels of Clostridium 
spores. Although levels of Clostridium spores may be 
higher in milk supplies other than those studied, this 
would not influence the findings of the current study, 
as it was focused on the influence of the milk pretreat-
ments (i.e., centrifugation and high heat treatment of 
centrifugate) on the microbial and volatile profile of 
the cheese and not on the influence of clostridia per se.

Based on the relative abundance of volatiles present 
in the current study and the previous study of Engels 
et al. (1997), acetoin, 2-butanone, propionic acid, 
acetic acid, 2,3-butanedione, and butyric acid (at low 
levels) can be considered as key aroma compounds of 
Maasdam cheese. Sensory analysis of the cheeses would 
complement the volatile results, and this could be the 
focus for future studies.

CONCLUSIONS

High-throughput sequencing in combination with a 
selective media-based approach revealed distinct dif-
ferences in the composition of microbiota before and 
after warm room ripening. High-throughput sequencing 
facilitated a more detailed insight into the complex-
ity of microbes within the Maasdam cheese matrix 
and revealed subtle changes in both dominant and 
subdominant microbiota between treatments. Inter-
estingly, except for butyric acid, treatments applied 
had minimal effect on other VOC in the fully ripened 
Maasdam cheeses. Overall, high-throughput sequencing 
proved to be a useful method to profile the complex 
microbial population structure of Maasdam cheese dur-
ing maturation; moreover, the centrifugation of milk 
before cheesemaking can potentially control the level of 
butyric acid in Maasdam cheese without significantly 
altering the levels of other VOC.
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A B S T R A C T

The individual roles of hydrolysis of αS1- and β-caseins, and calcium solubilization on the fracture properties of
semi-hard cheeses, such as Maasdam and other eye-type cheeses, remain unclear. In this study, the hydrolysis
patterns of casein were selectively altered by adding a chymosin inhibitor to the curd/whey mixture during
cheese manufacture, by substituting fermentation-produced bovine chymosin (FPBC) with fermentation-pro-
duced camel chymosin (FPCC), or by modulating ripening temperature. Moreover, the level of insoluble calcium
during ripening was quantified in all cheeses. Addition of a chymosin inhibitor, substitution of FPBC with FPCC,
or ripening of cheeses at a consistent low temperature (8 °C) decreased the hydrolysis of αS1-casein by ~95%,
~45%, or ~30%, respectively, after 90 d of ripening, whereas ~35% of β-casein was hydrolysed in that time for
all cheeses, except for those ripened at a lower temperature (~17%). The proportion of insoluble calcium as a
percentage of total calcium decreased significantly from ~75% to ~60% between 1 and 90 d. The rigidity or
strength of the cheese matrix was found to be higher (as indicated by higher fracture stress) in cheeses with
lower levels of proteolysis or higher levels of intact caseins, primarily αS1-casein. However, contrary to the
expectation that shortness of cheese texture is associated with αS1-casein hydrolysis, fracture strain was sig-
nificantly positively correlated with the level of intact β-casein and insoluble calcium content, indicating that the
cheeses with low levels of intact β-casein or insoluble calcium content were more likely to be shorter in texture
(i.e., lower fracture strain). Overall, this study suggests that the fracture properties of cheese can be modified by
selective hydrolysis of caseins, altering the level of insoluble calcium or both. Such approaches could be applied
to design cheese with specific properties.

1. Introduction

Knowledge of fracture properties of cheese is important for under-
standing breakdown properties of cheese during mastication, in de-
signing cheese texture suitable for size reduction operations (e.g., sli-
cing, dicing or grating), and in understanding the reasons for formation
of undesirable texture defects within the cheese matrix, such as slits and
cracks (Luyten, 1988).

Development of undesirable slits and cracks within the cheese ma-
trix is an international problem in the manufacture of Swiss, Dutch and
related eye-type cheeses, leading to downgrading of the product, re-
sulting in lost revenue to manufacturers (Grappin, Lefier, Dasen, &
Pochet, 1993; Guggisberg et al., 2015; White, Broadbent, Oberg, &
McMahon, 2003). To date, the exact reasons for development of such
defects are not known. However, excessive production of gas, an un-
suitable cheese texture or both have been considered as root causes for

occurrence of this defect (Daly, McSweeney, & Sheehan, 2010; Rehn
et al., 2011). If the cheese texture is short or brittle (i.e., fracturing of
cheese matrix at a relatively small deformation), the cheese matrix is no
longer able to withstand increased gas pressure during eye-formation or
storage, leading to formation of cracks and splits. Although the exact
reasons for a cheese to become short or brittle during ripening are not
yet fully understood, proteolysis, partial solubilization of colloidal
calcium phosphate associated with para-casein matrix of the curd
during ripening, or both, have been considered as possible reasons
(Daly et al., 2010; Lucey, Johnson, & Horne, 2003). However, the role
of primary proteolysis and level of insoluble calcium on fracture be-
haviour of brine-salted semi-hard cheese has not yet been fully eluci-
dated.

From a structural perspective, αS1-casein and β-casein are the two
important caseins within the cheese matrix, and these undergo varying
degree of hydrolysis during ripening in different cheese varieties
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through the action of residual coagulant and plasmin, respectively
(Kelly, O'Flaherty, & Fox, 2006; Lamichhane, Kelly, & Sheehan, 2018b;
Sheehan, O'Sullivan, & Guinee, 2004). Studies have suggested that the
caseins have different hydrophilic and hydrophobic blocks. For ex-
ample, αS1-casein has a hydrophilic region between strong hydrophobic
regions, whereas β-casein has a hydrophilic and a hydrophobic region
at its N- and C-terminal, respectively (Lucey et al., 2003). Thus, these
caseins are held together by various molecular forces within the cheese
matrix. Moreover, calcium associated with casein enhances the cross-
linking of casein within the cheese matrix. Therefore, it is reasonable to
assume that both hydrolysis patterns of casein and solubilization of
colloidal calcium during ripening alter casein-casein interactions,
which may in turn influence the textural, rheological and fracture be-
haviour of cheese. A better understanding of the individual contribution
of such factors may allow the development of strategies to design
cheese with specific properties.

Unlike high maximum scald temperatures (~55 °C) in Emmental
cheese manufacture, cheese curds are cooked only to ~40 °C during
manufacture of most semi-hard cheeses, such as Maasdam and Jarlsberg
(Fröhlich-Wyder et al., 2017), which is not sufficient to inactivate or
reduce the residual chymosin activity, resulting in extensive breakdown
of αS1-casein during ripening (McGoldrick & Fox, 1999). The role of
chymosin-mediated proteolysis on texture properties of Cheddar cheese
has previously been studied by inhibition of the residual chymosin by
the addition of a chymosin inhibitor to the curd-whey mixture
(O'Mahony, Lucey, & McSweeney, 2005). However, little is known
about the role of chymosin-mediated proteolysis on the fracture beha-
vior of semi-hard Swiss, Dutch and related eye-type cheeses. Some
semi-hard eye-type cheeses are ripened in a warm room (~23 °C) for
4–6weeks for the development of eyes. However, the effect of such
elevated ripening temperature on solubilization of calcium and hydro-
lysis of casein is also not fully understood.

The aim of this study was to decouple and explore the individual
role of primary proteolysis (both of αS1- and β-casein) and insoluble
calcium on the fracture properties of washed-curd brine-salted semi-
hard cheese.

2. Materials and methods

2.1. Milk supply and cheese manufacture

Raw milk was obtained from the Teagasc Animal and Grassland
Research and Innovation Centre, Moorepark, Ireland. Raw milk was
first separated into skim milk and cream using a bench top centrifugal
separator. Using skim milk and cream, cheese milks were standardized
to a protein to fat ratio of 1.10:1.00, with an average protein and fat
content of 3.52% (w/w) and 3.21% (w/w), respectively. The standar-
dized cheese-milks were then pasteurized at 72 °C for 15 s
(MicroThermics, USA) and stored at 4 °C overnight prior to cheese
manufacture.

Washed-curd brine-salted semi-hard cheeses were manufactured in
triplicate trials over a 3month period. Standardized and pasteurized
cheese milks were placed into jacketed cheese vats (Pierre Guerin
Technologies, Niort, France) with each vat containing 11 kg cheese
milk, for each replication. Each vat contained automated variable speed
cutting and stirring equipment. All cheese milks were inoculated at
32 °C with frozen direct vat inoculation cultures: consisting of (1) R-604
(180mg/kg milk; Chr. Hansen Ltd., Cork, Ireland), containing
Lactococcus lactis ssp. cremoris, Lactococcus lactis ssp. lactis; and (2) LH-
B02 (9mg/kg milk; Chr. Hansen Ltd., Cork, Ireland), containing
Lactobacillus helveticus. Propionic acid bacteria were not inoculated into
the cheese milks to avoid subsequent eye-formation during ripening of
cheese which would not permit measurement of texture parameters.

All cheese milks were pre-acidified to 6.55 using 4% (w/v) lactic
acid (Sigma-Aldrich) prior to rennet addition. After 40min of pre-ri-
pening, the coagulant, fermentation-produced bovine chymosin (FPBC;

CHY-MAX Plus, ~200 international milk clotting units (IMCU)/mL;
Chr. Hansen Ltd., Cork, Ireland) was added at a level of 2mL/11 kg
cheese milk in 3 out of 4 vats, whereas fermentation-produced camel
chymosin (FPCC; CHY-MAX M, ~200 IMCU/mL; Chr. Hansen Ltd.,
Cork, Ireland), was added at a level of 1.5 mL/11 kg cheese milk in the
fourth vat. Coagulants were diluted ~1:10 with deionized water prior
addition. The addition rates of both FPBC and FPCC to milk were pre-
determined through a series of rheological experiments where the levels
of the coagulants were adjusted to achieve coagula of similar gel
strength (35 Pa) after a set period of ~45min.

All gels were cut at a constant firmness (G′) value of 35 Pa (as
measured using a small-amplitude oscillatory rheometer, AR 2000ex,
TA Instruments) and the resultant curd/whey mixture was allowed to
heal for 5min before being stirred continuously for another 10min.
Stirring was then stopped and a portion of whey (0.35 kg/kg cheese
milk) was removed. Just after whey removal, in one vat out of four vats,
Pepstatin A (synthetic; Enzo life science, Exeter, UK) was added to the
curd/whey mixture at a rate of 10.0 μmol/kg cheese milk and evenly
distributed by continuous stirring during cooking. Pepstatin A is an
inhibitor of aspartic proteases, including chymosin, pepsin, cathepsin
D, and renin (Marciniszyn, Hartsuck, & Tang, 1976). After whey re-
moval, reverse osmosis water at ~50 °C (0.25 kg/kg cheese milk) was
added to each cheese vat to cook the curd to 37 °C at a rate of 0.2 °C/
min with continuous stirring.

Whey was drained when the curd pH reached 6.35, and the curds
were collected into moulds and pressed vertically under increasing
pressure from 40 to 75 kPa for ~4.5 h. When the pH of the cheese curds
reached ~5.50, the cheese wheels (~600 g each) were transferred to a
saturated brine solution (23%, w/w, NaCl, 0.56%, w/w, CaCl2, and
pH 5.2) for 7.5 h at 8 °C. After brining, cheese wheels were vacuum-
packed (Falcon 52, Original Henkelman vacuum system, the
Netherlands), and transferred to the ripening room. Cheese wheels were
ripened at 8 °C for 20 d (pre-ripening), and then at 23 °C for 28 d (warm-
room ripening) or 8 °C for 28 d (without warm room ripening), and
finally stored at 4 °C for 42 d. A summary of the experimental plan is
shown in Table 1.

2.2. Milk and cheese composition

The composition of raw and pasteurized (72 °C for 15 s) cheese
milks were analyzed as described by Lamichhane, Kelly, and Sheehan
(2018a). Grated cheese samples were analyzed in duplicate at 20 d of
ripening for moisture, fat, protein and salt as described by Hickey et al.
(2018). Cheese pH was measured at 1, 20, 48 and 90 d as described by
Sheehan, Fenelon, Wilkinson, and McSweeney (2007).

Table 1
General overview of the treatments and ripening regimens used in the studya.

Treatment Cheese typeb

Control NoWR CC PepA

Rennet type FPBC FPBC FPCC FPBC
Chymosin inhibitor Not added Not added Not added Added
Ripening regimen 8 °C for 20 d 8 °C for 20 d 8 °C for 20 d 8 °C for 20 d

23 °C for 28 d 8 °C for 28 d 23 °C for
28 d

23 °C for 28 d

4 °C for 39 d 4 °C for 39 d 4 °C for 39 d 4 °C for 39 d

a FPBC, fermentation-produced bovine chymosin; FPCC, fermentation-pro-
duced camel chymosin.

b NoWR, cheese without warm room ripening; CC, cheese made using fer-
mentation- produced camel chymosin as a coagulant; PepA, cheese containing
chymosin inhibitor, i.e., pepstatin A, which was added to the curd/whey mix-
ture during cheese manufacture.
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2.3. Enumeration of starter and nonstarter lactic acid bacteria

Samples were removed from cheese wheels using a cheese trier at 1,
20, 48 and 90 d of ripening. Cheese samples were prepared as described
by Lamichhane et al. (2018). Viable Lactococcus lactis cells were en-
umerated on M17 (Difco Laboratories; Detroit, MI) medium, supple-
mented with 0.5% (w/v) lactose, after aerobic incubation at 25 °C for
3 d (Ruggirello et al., 2018). Total numbers of Lactobacillus helveticus
cells were enumerated on de Man, Rogosa, and Sharpe agar (BD, Ox-
ford, UK) at pH 5.4 after anaerobic incubation for 3 d at 42 °C
(Lamichhane, Pietrzyk, et al., 2018). Nonstarter lactic acid bacteria
(NSLAB) cells were enumerated on Lactobacillus selection agar (BD),
with an overlay, after aerobic incubation for 5 d at 30 °C (Lamichhane,
Pietrzyk, et al., 2018).

2.4. Proteolysis

2.4.1. pH 4.6-soluble nitrogen (% of total nitrogen)
The levels of nitrogen soluble (expressed as % of total nitrogen) at

pH 4.6 were measured after 1, 20, 48, and 90 d as described by Fenelon
and Guinee (2000).

2.4.2. Urea-polyacrylamide gel electrophoresis
Urea-polyacrylamide gel electrophoresis (PAGE) of the cheeses at 1,

20, 48 and 90 d was performed, in duplicate, on a Protean II xi vertical
slab gel unit (Biorad Laboratories Ltd., Watford, Herts, UK), as de-
scribed by Sheehan and Guinee (2004). Briefly, grated cheese samples
(equivalent to 4mg protein) were dissolved in 1mL sample buffer, in-
cubated at 55 °C for 10min and each sample was loaded at a level of
12 μL per well. Sodium caseinate powder (Kerry Ingredients, Listowel)
was used as an intact casein control. The samples ran initially through
the stacking gel at 280 V and then through the separating gel at 300 V.
The resulting gels were stained and scanned as described by McCarthy,
Wilkinson, and Guinee (2017). Densitometry analysis was performed on
the scanned images using image analysis software, i.e., ImageJ (NIH,
Bethesda, MD, USA; http://rsb.info.nih.gov/ij/). Eight major bands
corresponding to caseins or its breakdown products were used for cal-
culation: 1, β-casein(f106–209) (γ2); 2, β-casein(f29–209) (γ1); 3, β-
casein(f108–209) (γ3); 4, β-casein; 5, β-casein(f1–192); 6, αS1-casein; 7,
αS1-casein(f102–199); 8, αS1-casein(f24–199). The area of each protein
band was expressed as a percentage of total band area of these eight
major bands. Levels of intact αS1-casein and β-casein over ripening
were expressed as a percentage of their level at 1 d.

2.5. Determination of total and insoluble calcium content

The total calcium content of milk and cheese samples (after 20 d)
was determined using atomic absorption spectroscopy (IDF, 2007). The
cheese insoluble calcium contents, expressed as percentage of total
calcium, were determined after 1, 20, 48, and 90 d of ripening using an
acid-base titration method as described by Hassan et al. (2004).

2.6. Fracture properties

Eight to 10 cylindrical samples (height 15mm and diameter 12mm)
of each cheese were removed, using a borer and a wire cutter, at 20, 48
and 90 d of ripening. The cheese samples were wrapped in tin foil; half
of the cylindrical cheese samples were stored at 4 °C and the remainder
was stored at 23 °C for at least 4 h. Cheese samples (at 4 °C or 23 °C)
were compressed at a rate of 60mm/min until fracture. True stress (σ;
Eq. 1) and Hencky strain (εH; Eq. 2) were calculated, assuming a con-
stant volume deformation (Rehn et al., 2011):

=σ FH
A H

t

0 0 (1)

=ε H
H

lnH
t

0 (2)

where F is a load applied, Ht is the sample height at time t, and A0 and
H0 are the initial cross-sectional area and height of sample, respectively.
Fracture stress (σf) and fracture strain (εf) values of cheese samples
were determined from the inflection point of the stress-strain curve
(Rehn et al., 2011).

2.7. Visualization of cheese microstructure

Cheese microstructure was observed using cryogenic-scanning
electron microscopy (cryo-SEM). This was conducted using an SEM
system (SEM-Zeiss Supra 40VP field emission, Carl Zeiss AG, Darmstadt,
Germany) with a cryogenic transfer system attached (Gatan Alto 2500,
Gatan UK). Fresh cheese samples (after 90 d of ripening) were taken
from the middle of each experimental cheese wheel and rapidly im-
mersed into a liquid nitrogen slush (−200 °C) in a cryo-preparation
chamber. The samples were transferred under vacuum into the high
vacuum cryo-preparation chamber at −185 °C, etched at −95 °C over a
period of 15min, sputter-coated at−125 °C and finally transferred onto
the SEM cold stage at −125 °C. Cryo-SEM images were acquired at
−125 °C.

The microstructure of cheese samples was also visualised using
confocal laser scanning microscopy (Leica TCS SP5, Leica
Microsystems, Baden-Württemberg, Germany). Rectangular cheese
samples (5 mm×5mm×2mm) were removed from cheeses using a
sharp scalpel. Solutions of the fat specific dye Nile Red (Sigma Aldrich)
and protein specific dye Fast Green (Sigma Aldrich) were prepared at a
concentration of 0.01% (w/v) in 1,2-propanediol (Sigma Aldrich) and
deionized water respectively, which were then mixed at a ratio of 3:1.
The prepared dye mixture (40 μL) was applied to the surface of cheese
samples; a cover slip was gently placed on top and the sample was held
at 4 °C for 10min prior to imaging. The protein and fat phases of the
cheese samples were visualised by exciting the Fast Green dye (using a
HeeNe laser; excitation wavelength of 633 nm and emission wave-
length range of 650–700 nm) and Nile Red dye (using an Argon laser;
excitation wavelength of 488 nm and emission wavelength range of
500–580 nm) respectively as described by Abhyankar, Mulvihill, and
Auty (2014). All images were acquired using an oil immersion objective
with a numerical aperture of 1.4 and a magnification of 63× (Leica
Microsystems, Baden-Württemberg, Germany).

2.8. Statistical analysis

One way ANOVA, using SPSS software version 24 (IBM Corp.,
Armonk, NY), was performed to determine the effect of treatment on
cheese composition. A split-plot design was used to determine the effect
of treatment, ripening time, and their interactions on pH, counts of
Lactococcus lactis and Lactobacillus helveticus, levels of pH 4.6-SN (%
TN), insoluble calcium (% of total calcium) and fracture properties
(stress and strain at fracture) of cheese. Analysis for the split-plot design
was carried out using the PROC MIXED procedure of SAS software
version 9.3 (SAS Institute Inc, 2011). Tukey's multiple comparison tests
was used for paired comparison of treatment means at a 5% level of
significance. Pearson correlation analysis was performed between
fracture parameters, pH 4.6-SN (% TN), insoluble calcium (% of total
calcium), intact β-casein level and intact αS1-casein level using SPSS
software version 24 (IBM Corp., Armonk, NY).

3. Results and discussion

3.1. Milk and cheese composition

The average fat, protein, and lactose contents of the standardized
and pasteurized cheese-milk used for the 3 replicate cheese-making
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trials were 3.21, 3.52, and 4.87% (w/w), respectively. The composition
of the experimental cheeses at 20 d of ripening is shown in Table 2. The
cheeses had a composition similar to those of Maasdam-type cheese
reported by Lamichhane, Kelly, and Sheehan (2018a). The treatments
applied had no significant effect on the mean levels of moisture,
moisture in non-fat substance, protein, fat, fat-in-dry matter, salt, salt-
in-moisture and pH (at 1 d of ripening) of the experimental cheeses.

3.2. pH

The pH of all experimental cheeses increased significantly
(P < 0.001; Table 3) during ripening from 5.18–5.23 at 1 d to
5.35–5.40 at 90 d (Fig. 1a). The pH trend during ripening is consistent
with that typical of washed-curd cheese types, such as Maasdam
(Lamichhane, Kelly, & Sheehan, 2018a). No significant effect of treat-
ment was observed for the mean value of pH during ripening.

3.3. Growth and viability of Lactococcus lactis, Lactobacillus helveticus and
NSLAB

A significant effect of ripening time and treatment was observed for
the counts of Lactococcus lactis (Table 3). The counts of Lactococcus lactis
decreased in all cheeses during ripening from 109.4–109.7 cfu/g at 1 d to
107.4–109 cfu/g at 90 d, indicating cell death and potentially lysis of

some Lactococcus lactis during ripening. Moreover, the count of Lacto-
coccus lactis was significantly higher (P < 0.05) in noWR cheeses than
other cheeses, suggesting that the death and possibly lysis of Lacto-
coccus lactis was accelerated by the warm room ripening.

No significant effect of treatment and ripening time was observed

Table 2
Compositional parameters at 20 d and pH at 1 d of ripening in semi-hard cheeses1.

Compositional factors Cheese types2 P-value

Control noWR CC PepA

Moisture (%, w/w) 40.83 ± 1.61a 40.89 ± 2.47a 40.95 ± 3.36a 41.84 ± 2.51a 0.96
MNFS (%, w/w) 56.24 ± 1.54a 56.11 ± 2.20a 56.26 ± 3.11a 57.05 ± 2.28a 0.96
Protein (%, w/w) 25.32 ± 0.90a 25.57 ± 1.47a 25.44 ± 1.56a 25.39 ± 1.48a 0.98
Fat (%, w/w) 27.42 ± 1.06a 27.16 ± 1.77a 27.29 ± 1.98a 26.70 ± 1.65a 0.95
FDM (%, w/w) 46.33 ± 0.91a 45.92 ± 1.46a 46.18 ± 0.85a 45.88 ± 1.28a 0.96
Salt (%, w/w) 1.34 ± 0.12a 1.38 ± 0.14a 1.38 ± 0.09a 1.36 ± 0.08a 0.96
S/M (%, w/w) 3.28 ± 0.31a 3.39 ± 0.51a 3.38 ± 0.41a 3.25 ± 0.08a 0.95
Total calcium (mg/100 g cheese) 867 ± 30a 861 ± 30a 837 ± 34a 842 ± 27a 0.60
pH (1 d) 5.18 ± 0.03a 5.21 ± 0.03a 5.19 ± 0.03a 5.23 ± 0.03a 0.28

1 MNFS, moisture in non-fat substance; FDM, fat in dry matter; S/M, salt-to-moisture ratio; Control, control cheeses; noWR, cheeses without warm room ripening;
CC, cheeses made using fermentation-produced camel chymosin; PepA, cheeses containing chymosin inhibitor i.e., pepstatin A, which was added to the curd/whey
mixture during cheese manufacture.

2 Values within a row not sharing common superscripts differ (P < 0.05); data are the mean ± standard deviation of data from three replicate trials.

Table 3
Summary of the effects of treatment, time and their interactions on properties of
semi-hard cheesesa.

Parameter Treatment Time Interactive effect
(treatment× time)

pH NS ⁎⁎⁎ NS
Lactococcus lactis count ⁎⁎ ⁎⁎⁎ NS
Lactobacillus helveticus count NS NS NS
pH 4.6-SN (% TN) ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

Insoluble Ca (% of total Ca) NS ⁎⁎⁎ NS
Fracture stress (kPa,

measured at 4 °C)

⁎⁎⁎ ⁎⁎ NS

Fracture stress (kPa,
measured at 23 °C)

⁎⁎⁎ ⁎⁎⁎ NS

Fracture strain (measured at
4 °C)

⁎⁎ ⁎⁎⁎ NS

Fracture strain (measured at
23 °C)

⁎⁎ ⁎⁎ NS

NS, P > 0.05.
⁎⁎ P < 0.01
⁎⁎⁎ P < 0.001
a pH 4.6-SN (% TN), soluble nitrogen at pH 4.6 as percentage of total ni-

trogen.

Fig. 1. Age-related changes in the (a) pH and (b) level of nitrogen soluble at
pH 4.6 in experimental cheeses, expressed as percentage of total nitrogen,
pH 4.6-SN (% TN). Data are the mean of data from three replicate trials; Error
bars represent standard error of mean. Experimental cheese variants were
Control (control cheeses), noWR (cheeses without warm-room ripening), CC
(cheeses made from fermentation-produced camel chymosin as a coagulant),
and PepA (cheeses containing chymosin inhibitor, i.e., pepstatin A).
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for counts of Lactobacillus helveticus until 20 d of ripening, at which time
the average count was 105–106.5 cfu/g. After warm-room ripening
(48 d), the typical colonies of Lactobacillus helveticus were not observed,
suggesting that either the cells were in a stressed condition which may
be viable but not culturable, or may have lysed due to changes in the
cheese-ripening environment, such as microbial composition, depletion
of energy sources (e.g., low residual lactose), production of metabolites
(Steele, Broadbent, & Kok, 2013) or inward diffusion of salt (Hickey,
Fallico, Wilkinson, & Sheehan, 2018).

NSLAB counts were variable between trials, although one trial did
show that the average counts of NSLAB increased during ripening from
104.3–105 cfu/g at 20 d (before warm room ripening) to 106.7–107.7 cfu/
g at 48 d (after warm-room ripening). Moreover, the average count of
NSLAB was ~1 log lower in noWR cheeses than for the other cheeses at
48 d of ripening.

3.4. Proteolysis

3.4.1. Nitrogen soluble at pH 4.6 (% of total nitrogen)
A significant (P < 0.001, Table 3) interaction was observed be-

tween the effect of treatment and ripening time for levels of nitrogen
soluble at pH 4.6 [% of total nitrogen; pH 4.6-SN (% TN)] in all ex-
perimental cheeses. The mean levels of pH 4.6-SN (% TN) increased
with increasing ripening time in all experimental cheeses (Fig. 1b).
However, the extent of the increase in pH 4.6-SN (% TN) level during
ripening was higher in control cheeses than for other experimental
cheese variants, which increased from 6.95 at 20 d to 19.27 at 90 d. The
level of pH 4.6-SN (% TN) in control cheeses is in close agreement with
that previously reported for semi-hard (Huc, Challois, Monziols,
Michon, & Mariette, 2014) and Maasdam (Lamichhane, Kelly, &
Sheehan, 2018a) cheeses.

Although propionic acid bacteria were not inoculated into the
cheese milks of the current study, the levels and trend of pH 4.6-SN (%
TN) during ripening of cheeses were found to be similar to semi-hard
cheeses with propionic acid bacteria, suggesting that propionic acid
bacteria have a minor role in the proteolysis of washed-curd brine-
salted semi-hard cheese (Gagnaire, Thierry, & Léonil, 2001). Moreover,
the autolysis of propionic acid bacteria and the release of proteases
from their cell have been shown to be limited in cheese (Valence,
Richoux, Thierry, Palva, & Lortal, 1998).

As expected, the mean level of pH 4.6-SN (% TN) in PepA cheeses
was approximately two-fold lower that of control cheeses at 90 d;
O'Mahony et al. (2005) has previously reported a similar trend for
Cheddar cheese. The low level of proteolysis in the PepA cheeses is due
to inhibition of residual chymosin by pepstatin A (which was added to
the curd-whey mixture at a level of 10 μmol/L). The level of pH 4.6-SN
(% TN) in PepA cheese was found similar to that reported for Emmental
cheese at 90 d of ripening (O'Sullivan, McSweeney, Cotter, Giblin, &
Sheehan, 2016); in Emmental, residual coagulant is largely or wholly
inactivated by use of a high cook temperature during cheese manu-
facture.

The mean levels of pH 4.6-SN (% TN) in noWR and CC cheeses were
12.73 and 13.49, respectively, after 90 d of ripening, which were sig-
nificantly lower than in the control cheeses. A higher average level of
proteolysis in control cheeses compared to the noWR cheeses is at-
tributed to an increase in the rate of proteolysis due to elevated ri-
pening temperature (Sheehan et al., 2004; Soodam, Ong, Powell,
Kentish, & Gras, 2017). The lower levels of pH 4.6-SN (% TN) in CC
cheese compared to control cheeses is attributed to the lower general
proteolytic activity of FPCC compared to FPBC (Bansal et al., 2009;
Kappeler et al., 2006).

3.4.2. Urea-polyacrylamide gel electrophoresis
During ripening, αS1- and β-caseins were hydrolyzed progressively

to an extent dependent on the treatment applied and ripening tem-
perature, while breakdown products accumulated simultaneously

(Fig. 2 and Supplementary Fig. 1). Extensive hydrolysis of αS1-casein
was observed for control cheeses during ripening (i.e., > 90% of levels
at 1 d), with the rate of hydrolysis being most rapid during the warm
room ripening stages, whereas the hydrolysis of αS1-casein was ~30%
and ~45% less in noWR and CC cheeses at 90 d, respectively, compared
to control cheeses (Fig. 2b).

Less hydrolysis of αS1-casein in noWR cheeses compared to control
cheeses was attributed to the influence of temperature on the residual
coagulant activity (Sheehan et al., 2004). Less extensive breakdown of
αS1-casein in CC cheeses compared to control cheese is attributed to the
lower proteolytic activity of FPCC compared to FPBC (Bansal et al.,
2009; McCarthy et al., 2017).

Limited breakdown of αS1-casein, i.e., ~5%, was observed in PepA
cheeses in agreement with the previous studies (O'Mahony et al., 2005;
Shakeel-Ur-Rehman, Feeney, McSweeney, & Fox, 1998), suggesting that
the addition of chymosin inhibitor, i.e., pepstatin A, to the curd/whey
mixture during cheese manufacture was an effective means for greatly
reducing the chymosin-mediated hydrolysis of αS1-casein within the
semi-hard cheese during ripening.

Hydrolysis of β-casein was observed in all cheeses during ripening
(Fig. 2c), most likely due to plasmin activity (Kelly et al., 2006). The
extent of hydrolysis of β-casein was similar for control, CC and pepA
cheeses (i.e., ~35% of levels at 1 d), suggesting that neither the sub-
stitution of FPBC with FPCC nor addition of chymosin inhibitor to the
curd/whey mixture influenced the hydrolysis of β-casein in agreement
with the previous studies (Bansal et al., 2009; O'Mahony et al., 2005).
However, the extent of breakdown was relatively lower in noWR
cheeses (i.e., < 20% of levels at 1 d) than other cheeses, suggesting that
warm room ripening accelerates the degradation of β-casein. Overall,
these results suggest that the various hydrolysis patterns of casein can
be achieved by using different coagulant types, modulating ripening
temperature or inhibiting residual chymosin activity, although inhibi-
tion of the latter using pepstatin A is obviously not commercially viable.

3.5. Insoluble calcium contents of cheeses

The mean level of insoluble calcium (percentage of total calcium)
decreased significantly (P < 0.001, Table 3) during ripening (Fig. 3),
especially at the early stage of ripening, from ~75% at 1 d to ~66% at
20 d. After 20 d of ripening, the rate of decrease in the level of insoluble
calcium was slower than at the early stages of ripening, which is in
agreement with the previous studies in different cheese types (Lee,
Johnson, Govindasamy-Lucey, Jaeggi, & Lucey, 2010; O'Mahony et al.,
2005).

The effect of warm-room ripening on solubilization of colloidal
calcium in brine-salted cheese varieties has not previously been studied.
Therefore, the rate of calcium solubilization was compared between
cheeses subjected to warm room ripening (control cheeses) and without
warm room ripening (noWR cheeses). Interestingly, the mean insoluble
calcium content of noWR cheeses was ~3% higher than that of the
control cheese after 48 d of (after warm room ripening); however, the
difference observed was not statistically significant, suggesting that, at
best, the warm room ripening had only a minor effect on the solubili-
zation of calcium. Hydrolysis of β-casein is known to release phos-
phopeptides (Gagnaire, Mollé, Herrouin, & Léonil, 2001), which could
contribute to decreases in the level of casein-bound calcium. As ex-
pected, substitution of FPBC with FPCC as a coagulant or addition of
pepstatin A to the curd/whey mixture during cheese manufacture had
no significant effect on insoluble calcium content.

3.6. Fracture properties

The fracture properties of experimental cheeses were studied at two
different temperatures, i.e., 4 °C or 23 °C (Fig. 4). The stress at fracture
(σf) and strain at fracture (εf) were significantly influenced by treatment
and ripening time (Table 3).
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Fracture stress (σf), the force required to cause fracture of cheese,
represents the strength or rigidity of the cheese matrix. The σf measured
at 4 °C or 23 °C decreased significantly (Fig. 4a–b; Table 3) in all cheeses
over maturation. However, the σf was significantly higher (P < 0.05)
in PepA, noWR and CC cheeses compared to control cheeses. A lower σf
in the control cheeses compared to other experimental cheese types was
attributed to higher levels of protein breakdown in the control com-
pared to PepA, noWR and CC cheeses (Fig. 1b). A significant negative
correlation (Table 4) between pH 4.6-SN (% TN) and σf was observed
for the experimental cheeses, which is in agreement with previous
studies on Cheddar cheese (McCarthy, Wilkinson, Kelly, & Guinee,
2016). Moreover, the σf value was significantly positively (Table 4)
correlated with level of intact αS1-casein. Intact β-casein level was also
significantly positively correlated with the value of σf; however, the
correlation coefficient (r) value was lower for intact β-casein (Table 4)
as compared to intact αS1-casein. This suggests that intact αS1-casein is
the principle load-bearing protein within the semi-hard cheese matrix.
No significant correlation was found between the σf and insoluble cal-
cium content (Table 4), indicating that the extent of solubilization of
calcium after 20 d of ripening had no pronounced influence on the
strength of the cheese matrix.

Fracture strain (εf) represents the shortness or brittleness of cheese
texture; cheeses with a lower fracture strain value are susceptible to
fracture at small deformation (Grappin et al., 1993; Sharma, Munro,

Dessev, Wiles, & Foegeding, 2018). The εf measured at 4 °C or 23 °C
decreased significantly for control, CC and PepA cheeses, especially
during warm room ripening, from 1.0–1.2 at 20 d to 0.75–0.8 at 48 d
(Fig. 4c-d).

Although αS1-casein was hydrolyzed to varying degrees among the
control, CC and PepA cheeses after 48 d of ripening (ranging from ~5%
in PepA to ~90% in control cheeses; Fig. 2), no significant difference in
εf was observed among these cheeses. In the current study, hydrolysis of
αS1-casein mainly occurred at Phe23-Phe24 during ripening, yielding
peptides αS1-casein (f1–23) and αS1-casein (f24–199). The former
peptide may be hydrolyzed rapidly by proteinases of the starter micro-
organisms (Shakeel-Ur-Rehman et al., 1998), whereas the latter peptide
accumulated during ripening (Fig. 2a). Therefore, the results of this
study suggest that the primary breakdown of αS1-casein into the large
peptide fragment, i.e., αS1-casein (f24–199) had no pronounced effect
on the εf in semi-hard cheese during ripening. Since the peptide fraction
αS1-casein (f24–199) is so large, it is likely that this fraction may remain
attached to the protein network rather than becoming part of the serum
phase (Lucey et al., 2003; Luyten, 1988). Further breakdown of αS1-
casein (f24–199) (secondary breakdown) into small peptides may de-
crease the εf of cheese (Luyten, 1988). In the current study, no no-
ticeable breakdown of αS1-casein (f24–199) was observed during 90 d
of ripening (Fig. 2a); therefore, the role of secondary breakdown of αS1-
casein (f24–199) on shortness of cheese could not be elucidated. Similar

Fig. 2. (a) Urea-polyacrylamide gel electrophoretograms of semi-hard cheeses after 1, 20, 48 or 90 d. Sodium caseinate (lane NaCn) was included as an intact casein
control. Protein bands were identified according to McCarthy et al. (2017): 1, β-casein(f106–209) (γ2); 2, β-casein(f29–209) (γ1); 3, β-casein(f108–209) (γ3); 4, β-
casein; 5, β-casein(f1–192); 6, αS1-casein; 7, αS1-casein(f102–199); 8, αS1-casein(f24–199). Level of (b) intact αS1-casein and (c) intact β-casein as a percentage of the
level at 1 d. Error bars represent standard error of mean. Experimental cheese variants were Control (control cheeses), noWR (cheeses without warm-room ripening),
CC (cheeses made from fermentation-produced camel chymosin as a coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., pepstatin A).
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to the current study, Luyten (1988) also didn't observe a clear link
between the primary breakdown of αS1-casein and εf in Gouda cheese. A
significant decrease in εf in control, CC and PepA cheeses during warm-
room ripening may be due to other age-related changes within the
cheese matrix rather than primary breakdown of αS1-casein.

Interestingly, the εf for the noWR cheeses remained almost the same
or decreased slightly over the ripening period (Fig. 4c–d). Moreover,
the εf for noWR cheeses was significantly higher (P < 0.05) at 48 and
90 d as compared to control, PepA and CC cheeses (which were sub-
jected to warm room ripening stage). Similarly, Luyten (1988) also
observed considerably lower εf in Gouda cheeses ripened at higher
temperature (i.e., 18 °C) than ripened at lower temperature (i.e., 8 °C)
during ripening. Furthermore, similar to the current study, εf of the
Gouda cheeses ripened at 8 °C decreased slightly from 1.3 at 14 d to 1.2
at 42 d of ripening, whereas εf of the Gouda cheese ripened at 18 °C
decreased considerably from 1.3 to 0.8 over the same ripening period.
Although the exact reasons for such an influence of ripening tempera-
ture on fracture behaviour of cheese are unknown, it may be assumed
that temperature-induced changes within the cheese matrix, such as
rate of solubilization of colloidal calcium, specific hydrolysis patterns of
casein and the resultant peptide profiles, could be possible reasons.

In the current study, insoluble calcium (expressed as a percentage of
total calcium) and intact β-casein were significantly positively corre-
lated with εf (Table 4). Furthermore, levels of intact β-casein (Fig. 2c)
and insoluble calcium (Fig. 3) were on average ~15% and ~3% higher,
respectively, in noWR cheeses than in the other cheeses after 48 d of

Ripening time (d)

0 20 40 60 80 100

a
Clatot

fo
%

a
sa

a
C

elbulosni
%

50

60

70

80

90

Control
noWR
CC
PepA

Fig. 3. Changes in the percentage insoluble Ca (expressed as a percentage of
total cheese Ca) as a function of ripening time in semi-hard cheeses. Data are
the mean of data from three replicate trials and error bars represent standard
error of mean. Experimental cheese variants were Control (control cheeses),
noWR (cheeses without warm-room ripening), CC (cheeses made from fer-
mentation-produced camel chymosin as a coagulant), and PepA (cheeses con-
taining chymosin inhibitor, i.e., pepstatin A).

Fig. 4. Changes in (a-b) fracture stress (σf, n= 2) and (c-d) fracture strain (εf, n= 3), measured at 4 °C (closed symbols) and 23 °C (open symbols), in semi-hard
cheese during ripening. Error bars represent standard error of mean. Experimental cheese variants were Control (control cheeses), noWR (cheeses without warm-
room ripening), CC (cheeses made from fermentation-produced camel chymosin as a coagulant), and PepA (cheeses containing chymosin inhibitor, i.e., pepstatin A).
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ripening. This suggests that the breakdown of intact β-casein, solubi-
lization of colloidal calcium during ripening, or both may contribute to
a shorter texture (i.e., lower εf) observed in control, CC and PepA than
noWR cheeses. Therefore, the results from this study suggest that the
influence of varying degrees of hydrolysis of β-casein or level of col-
loidal calcium on shortness of cheese texture merits further research.

It is now well established that the calcium associated with casein is
an important structural component, which enhances the cross-linking of
caseins within the cheese matrix (Lamichhane, Kelly, & Sheehan,
2018b; Lucey et al., 2003; O'Mahony et al., 2005). Thus, it is reasonable
to assume that the solubilization of colloidal calcium during ripening
within the cheese matrix is one of the possible reasons for shorter
texture of cheese. Moreover, studies have suggested that the caseins
have different hydrophilic and hydrophobic blocks. For example, αS1-
casein has a hydrophilic region between strong hydrophobic regions,
whereas the β-casein has a hydrophilic and a hydrophobic region at N
and C termini, respectively (Lucey et al., 2003). Therefore, it is likely
that the specific hydrolysis of caseins during ripening may alter their
molecular interactions within cheese matrix which in turn may influ-
ence the texture, rheological and fracture behaviour of cheese. For
example, Bogenrief and Olson (1995) observed a degree of melt of
Cheddar cheese which was more closely related to the extent of β-CN
hydrolysis than the hydrolysis of αS1-CN.

Overall, the fracture behaviour of cheese can be modulated by
specific hydrolysis of casein, modulation of colloidal calcium associated
with casein, or both. Such knowledge is particularly important for de-
signing cheese with desired texture profiles or for designing cheese
texture suitable for withstanding increased gas pressures during ri-
pening in some eye-type cheeses, which may help to reduce the in-
cidence of undesirable splits and cracks (Daly et al., 2010). Studies have
reported that the occurrence of cracks within the cheese matrix is
higher for cheeses with lower εf (short or brittle texture) (Grappin et al.,
1993; Rehn et al., 2011). However, it should be noted that unsuitable
cheese texture is one possible contributing factor among other factors
for the development of undesirable splits or cracks, such as; rate and
extent of gas production and its behavior (e.g., solubility and diffu-
sivity) within the cheese matrix; late gas production; and the presence
of micro-defects within the cheese matrix (Daly et al., 2010).

The σf of cheeses measured at 4 °C (Fig. 4a) was considerably higher
as compared to same cheeses measured at 23 °C (Fig. 4b) at all stages of
ripening, which is attributed to the temperature-induced changes on the
components of cheese and their interactions (Lamichhane, Kelly, &
Sheehan, 2018b). At low temperature (~4 °C), more than half of the
milk fat present within the cheese matrix is in a crystallized form, and
acts as a reinforcing filler, contributing to the elastic texture of cheese
(Lamichhane, Kelly, & Sheehan, 2018b; Lopez, Briard-Bion, Camier, &
Gassi, 2006). However, the test temperature (4 °C or 23 °C) had no
pronounced effect on the εf of cheeses at all stages of ripening.

3.7. Microstructure

The microstructure of cheese (at 90 d of ripening) observed by cryo-
SEM is shown in Fig. 5. The microstructure of the control cheese is

clearly different from that of the other experimental cheese types; the
microstructure observed for the control cheese was more open than that
of the other experimental cheeses. The open structure may be attributed
to significantly higher levels of proteolysis in the control cheeses
compared to the other cheese types. For other experimental cheeses, the
microstructure looks visually similar. During proteolysis, the intact
caseins, which are responsible for network formation, breakdown into
small and medium size peptides and free amino acids and these pep-
tides and amino acids are released into the serum fraction of the cheese
(Sousa, Ardö, & McSweeney, 2001). Soodam, Ong, Powell, Kentish, and
Gras (2015) also observed a less open structure of cheese with low le-
vels of primary proteolysis than in cheeses with high levels.

The microstructure of the cheeses (at 90 d ripening) was also vi-
sualised using CLSM (Supplementary Fig. 2). In agreement with the
previous studies (Lopez, Camier, & Gassi, 2007), non-globular, coa-
lesced and aggregated fat globules were observed within the cheese
matrix, which is attributed to the aggregation, coalescence, and dis-
ruption of the fat globules due to the various cheese manufacture steps,
such as cooking and pressing (Lopez et al., 2007). The microstructures
of all experimental cheeses were visually similar.

4. Conclusions

The roles of primary proteolysis and calcium solubilization on the
fracture properties of washed-curd brine-salted semi-hard cheese were
investigated. Addition of a chymosin inhibitor i.e., pepstatin A, to the
curd/whey mixture during cheese manufacture, substitution of FPBC
with FPCC or modulating ripening temperature altered the hydrolysis
patterns of the caseins during ripening. Moreover, solubilization of
colloidal calcium was also observed in all cheeses during ripening.

The rigidity or strength of the cheese matrix was found to be higher
(as indicated by higher stress at fracture) in cheeses with lower levels of
proteolysis or higher levels of intact caseins, primarily αS1-casein.
However, contrary to expectation, shortness or brittleness (as indicated
by lower strain at fracture) of cheese texture was negatively associated
particularly with the level of intact β-casein and also with insoluble
calcium content.

The results from this study suggest that modulation of hydrolysis of
αS1-casein is an effective means for maintaining the strength of the
cheese matrix during ripening. This could be achieved by inhibition of
residual chymosin activity, substitution of FPBC with FPCC or mod-
ulating ripening temperature. However, shortness or brittleness of
cheese texture could potentially be altered by maintaining higher levels
of intact β-casein or insoluble calcium content or both within the cheese
matrix. Shortness or brittleness of cheese has previously been asso-
ciated with undesirable slits or cracks. Therefore, the role of intact β-
casein or insoluble calcium content on fracture behaviour, especially
fracture strain, merits further research.
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