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Superposition states at finite temperature
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We describe a method to create superposition states from a mixed state of a harmonic oscillator. If the initial
state is described by a thermal state, then the resulting superposition state will be a “hot” superposition state.
Such a state can be distinguished from a statistical mixture by its coherence properties. Here we suggest how
to demonstrate the coherence of the superposition state by observing interference fringes when the two parts of
the wave packet are overlapped. In the case of the mixed superposition state, a partial overlap may not be
sufficient to observe the presence of fringes. We introduce therefore the idea of a coherence length for the wave
packet and demonstrate its relevance for interferometry of mixed states. We illustrate our ideas with the
example of superposition states for the motion of a single trapped ion.
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[. INTRODUCTION estingly, the superposition of two mixed states can also be
seen as a mixture of pure superposition states. This concept
Cat states have been the subject of a great interest sintéghlights the importance of the coherence of the motional
Schralinger’s idea of generating a superposition of a macrowave packet. In order to distinguish between a simple mix-
scopic objec{1]. In the original idea a real cat was brought ture of two wave packets and a mixed cat state, one has to
into a superposition of being alive and dead by creating afrobe the coherence between the two wave packets. This
entanglement of the macroscopic cat with a radioactive parhay be achieved by causing these wave packets to interfere
ticle. This idea has inspired numerous theoretical investiga@nd measuring the visibility of the resulting interference
tions [2] as such macroscopic superposition states are ndtinges. In a mixture, the two wave packets are not coherent
observed in classical physics. The difficulty for the creationand thus do not interfere. A pure cat state shows perfect
and the observation of superposition states is mainly due tgoherence and the interference fringes depend only on the
the fast decay of the coherend@. In these studies, super- overlap region of the wave packets. In the case of a mixture
positions of coherent states of the harmonic oscillator differOf cat states, each of the pure states from the statistical mix-
ing by a macroscopic parameter are usua”y called 'Schrdure generates interference fr|ngeS that dlffer in pOSition, giV-
dinger cats. The two states of the cat are here associated withd rise to a loss of total visibility. In this case, a partial
two coherent states with different mean positions and/or veoverlap of the two wave packets is not a sufficient criterion
locities of the harmonic oscillator. These states have beefPr the observation of interference fringes. The interference
analyzed experimentally in both cavity QEB] and in jon  €xhibited by a pure Schdinger cat state is analogous to
traps[5]. In cavity QED, the superposition of two coherent optical single mode interference, while that for a hot cat state
states of the field is created by exploiting their entanglemenis more like white-light interference.
with electronic states of an atom. In the case of an ion In this paper, we first describe the general properties of a
trapped by external electromagnetic fields in a harmonic poMixed cat state and introduce the notion of a coherence
tential, the superposition of two coherent states has bed§ngth for the harmonically trapped particle. This length can
achieved by entangling the motional states with the internaPe defined as the normalized root-mean-square width of the
states of the ion. squared symmetrically ordered characteristic function of the
So far, most of the studies have concentrated on the quagtate. This definition is analogous to that of the optical co-
tum superposition of two pure states; however, one may alsBerence time in respect to the d.egree of first-order coherence
consider the superposition of two mixed cat states, for inl7]. We then demonstrate the importance of the coherence
stance two displaced thermal stafé In this wider defini- ~ length in the analysis of a mixed cat state. We show that the
tion of a cat state, the particle would not be in a superposit€quirement to observe a hot Sctliger cat for the motion
tion of two macroscopically distinct pure states but in aOf & trapped ion can be expressed in terms of our coherence
superposition of probability distributions centered aroundength.
two different phase-space points.
The possibility of creating mixed cat states may also be Il. PROPERTIES OF CAT STATES
important from an experimental point of view. In particular,
this would allow the realization of mesoscopic quantum The superposition of two displaced coherent states such as
states without the requirement of preparing an initial pure _
state. In the case of trapped ions, this means that cooling to |Vo)=|ag+e’|—a), ()
the initial ground state is not necessary to realize a cat state.
The initial state could be described by a thermal state and theonstitutes the usual Schiioger cat state, provided that the
resulting superposition state will be a “hot cat” state. Inter- two wave packets are separated in phase space. This implies
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o A o cat state shares with the pure cat state two characteristic
C(ac) length scales: the distanee between the two wave packets
- GG--. and the widthAx, of the initial state. The latter will, in
. | general, have a different value for mixed and pure states.
45:3 Or There is, in addition, a third significant length scale for
® mixed cat states. This is the coherence length of the wave
packet that can be defined in analogy to optics. In optics, the
coherence time is the decay time of the first-order coherence
FIG. 1. Schematic representation of the effect of the cat operatodr autocorrelation of the electric field. Similarly, the first-
C onto a wave packet. Note that a proper quantum picture based dder coherence for a harmonic oscillator is defined to be the
a quasiprobability distribution would show interference fringes.  symmetrically ordered characteristic functisi

that the distanc« | between the two wave packets has to x(a)=TrpD(a)]. (5)

exceed their width. The given cat state can be mathemati-

cally prepared by applying the operator This becomes apparent in the fringe visibility of a single-ion
o o interferometer[10]. Here the visibility of the interference
C=D(ay)+€'D(—ay), (2)  fringes is given by the modulus of the characteristic function

) _ in the same way, as the fringe visibility of an optical inter-
to the vacuum state of the harmonic oscillator, wheréferometer is given by the modulus of the first order coher-
D(ag) =expla’— a*a) is the Glauber displacement opera- ence function. To illustrate the relationship betwgeand an

tor. Figure 1 represents the effect of the operdloonto a  autocorrelation in phase space, we expreésr|e’™) as a
state centered aroung=0 in phase space. The operafr function of the quadrature operator. For a statistical mixture

. T )\
creates a superposition of the original state described by th%f the stategy,,) with probabilitiesPy, x(|«|e™) can be

density operatop displaced by ac. The resulting cat state expressed as
is therefore given by the density operaf8l

Ann x(a)= ; PnJ' ‘//n(xarg(a))(/f:(xarg(a)_ \/E|a|)dxarg(a) .

- @3 ®)
pe Tr(pC'C)’
. Note thaty depends on, since (X)) ={X,| ).
To illustrate the effect of the operat@, we first consider its The coherence length of a motional state is related to the

action on the vacuum state of the harmonic oscilld@r ~ symmetrically ordered characteristic function in the same

The operatorC transforms this state into the usual Schro way as the coherence time of the electric field is related to

dinger cat state described in Ed) with a density operator the first order coherence function. Accordingly, we will de-
fine the coherence length as

;’c:[|ac><acl+|_ac><_ac|+|_ac><a'c|e_i0

+lad(~adeVx, @ [ elxr e
L£2== , 7
where|a) designs the coherent state of the harmonic oscil- 2 f ()2 d2a @
lator and x=2(1+e 2%d’cosh) is a normalization factor.
This can be generalized to cat states generated from any pure o o
state such as Fock or squeezed states. For these states erea,=(ae " +a*e )/\/E-A o
distance 2« between the two wave packets, which is a It follows from the relationaD(a)=[a,D(«)] that
characteristic of the cat operatérdefined in Eq(2), should R R
strictly be larger than the width ax(a)=2 Tr(pr—xxpx)\).
Ax, = VTr(pX2) — Tr(pxy)? We can then apply Weyl's theorefi1] to express the co-
herence length as
of the initial state, so that there is a superposition of distinct
values ofx, . Herex,=(ae *+a'e'*)/\2 represents the , Tr(p?x%) = Tr(px,pXy)
qguadrature operator for the oscillator. For some states, such Ly= Trp? . (8)

as squeezed statesx, depends on the directiox. In this

case, the two wave packets are separated in phase spacq:}fo m this expression, we notice that=Ax, for any pure
AXarg(ac)<|ac|-

o _ . _ _ state. For a thermal state(a) = exd — $(2n+1)|/?], and the
If the initial density operatop describes a mixed state, ~onerence length becomes

then the action of the operat@r creates a mixed cat state as
described by the density operatbg in Eq. (3). The mixed Ly=1/ 2(2F+ 1). 9)
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FIG. 2. Schematic representation of the effect of the analyzing PG PR S R /R . SR E S I
operatorA onto a wave packet. Note that describes the phase -2 -1 0 1 2 3
difference between the two displaced wave packets and cannot b p
visualized in this figure.

This indicates that the coherence length decreases as the ter B
perature increases contrary to the width of the wave packe o % °‘
V(2n+1)/2, which increases with temperature. The coher- B SOl
ence length, like the width, depends on the direckoiow- & o

ever, we will consider symmetriunsqueezedstates in the
following. For a nonsymmetric state, the same analysis
would be valid by taking\ =arg(«).

FIG. 3. Top: Visibility of the interference fringes for a hot
Schralinger cat(gray ling and for a statistical mixturédashed
The coherence length, as defined in EG$.and(8) is an  line) for B real and withn=2 anda,.= 2. Bottom: Schematic rep-
important parameter to demonstrate the successful creatigasentation of the different peaks in phase space. The visibility ob-
of a mixed cat state since the inequality, < . assures the tained for a statistical mixture shows only one peak centerg@l at
separation but not the coherence between the two wave pack-0 corresponding to the total overlap of the wave packets as
ets. In analogy with optics, we can probe the coherence beshown in the center of the lower picture. The visibility for the cat
tween the two wave packets with an interferometer. The obstate, however, shows two additional peaks centerefl=at-2a.
servation of fringes then indicates the presence of dhat ari§e from a partial overlap as indicated on the left and right
superposition state rather than a statistical mixture. An optilower pictures.
cal interferometer generates two outputs, each of them being
in a superposition of two time-delayed wave packets and & Tr[p.D(8)] represents the symmetrically ordered charac-
measurement of the intensity gives the field autocorrelationteristic function of the cat state that can be written as
For the cat states, each of the two outputs of the interferom-
eter is a superposition of two goherently _shifted wave pack-Xc(lg):{X(lg)[eaﬁ B-ach* | g “ZB+“cﬁ*]+X(,3+ 2a.)e 10
ets in phase spadd0]. The action of the interferometer on

Ill. THE ANALYSIS OF A MIXED CAT STATE

the input state can be described by the operator +x(B—2a0)e}[2+{e” x(2ac)
1 +e'%x(=2a0)}]. (12)
A=_[1+€¢D 1
2[ eDB)]. (10 The visibility of the interference fringes of the probability

(12) is then given by the modulus of this function. If the state
whose effect in phase space is depicted in Fig. 2. Transfor; - was not a cat state but a mixture of two displaced wave
mations of this kind can be applied to the motional state of gyackets described by
trapped ion[5] or to the field state in a higl) microwave
cavity [4] by manipulating the electronic state of an ion or R 1 . A . A
Rydberg atom, respectively. prc=5[D(a)pD(—a)+D(-a)pD(a)], (13

We apply operatoA (see Fig. 3 to the cat state. and
measure one of the outputs of the interferometer with a probthen the visibility would be
ability

1 * B—ap* —a* B+ aB*
P(¢,8)=Tr(ATpA) V(B)ne=5x(B)Le” PP +e " PrefT]| (14)

_1 This function takes its maximum value of one @t0
2[1+ x(B)lcod ¢ardxe( ADH. (1D and is proportional to the modulus of the characteristic func-
tion of the initial state as shown in Fig. 3. The width of
The state is detected in the second output of the interferomyv( ), is given by the coherence length of the initial state as
eter with a probability *P(¢,8). Here xJdB) defined in Eq(7). The observed fringes are similar to those
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observed in optical interferometry with white light when the between the two Raman beaifi2]. The population of ex-
two paths of the interferometer have approximately the sameited and ground state was then exchanged viapulse in

length. order to generate the state
For a Schrdinger cat state the displacement is larger o
than the coherence length and the visibility contains three |0,+)—ie'?D(a)|0,—)
maxima, centered gB=0 and =2, as indicated by the 2 : (18)

solid line in Fig. 3. The peak observed@t 0 is the same as
for the non-cat-state and is not an intrinsic feature of a cafinally, the excited state was displaced by an amount of

state. The visibility of the peaks centered @t +2a. is  — « and ar pulse at the carrier frequency generates the state
given by
1 . N
1 —=[D(—a)[0,~)—ie'?D(a)|0,+)]. (19
V(B)=5|x(BF2ac)]. (15 V2

) To analyze this state, a/2 pulse was applied and the prob-
These peaks arise from the overlap of one part of the wavgpjity of the ion being in the ground state was measured.
packet with the other part of the displaced wave packetrhe presence of interference fringes then showed the exis-
Their presence, therefore, demonstrates the coherence Rgpce of a superposition rather than a statistical mixture.
tween the two wave packets and is a characteristic of a \with another method, proposed in REE3], Schralinger
Schralinger cat. Accordingly, the visibility at these second- 45 could be obtained by sending twé? laser pulses in the
ary peaks is one-half and their width is the coherence Iengtgtrong excitation regime. In this regime,m2 pulse travel-

as for the central peak. The fact that the secondary peakg,q toward the positivex altered the wave function of an ion
have the same width as the central peak may be important fgg 5 pure motional statgs) and in its electronic statds:) as
the experimental observation of a mixed Sclinger cat

with an unknown coherence length. If the central peak is |s,t>—>|s,i)tiei”’f)(1i77)|s,1>. (20)
resolved and there is no secondary peak, then the state is a

statistical mixture. Interestingly, the decay of these secondrere ¢ is the phase difference between the two Raman
ary peaks could be used to study the decoherence of a hptilses constituting ther/2 pulse. The effect of ar/2 pulse

cat. traveling in the negative- direction can be calculated by
changingzn to — . We note that, due to the oscillation of the
IV. HOT CAT STATE FOR THE MOTION ion in the trapping potential, the effect of a pulse traveling

OF A TRAPPED ION toward the negativ& sent at the timé=0 is the same as the

effect of a pulse traveling toward the positixesent at time
%=m/v, where v is the trapping frequency. Most ion-trap
daxperiments are run in the Lamb-Dicke regime, wheris a
small parameter that limits the possible displacement per
light pulse. It is possible, however, to reach large values of
y applying sequences af pulses[13]. The formula(20)
can therefore be extended to large valuegyof
To create a Schdinger cat from the pure motional state
?5,—}, one applies twar/2 pulses from opposite directions
with a time delay of a multiple of the period of the trap, see
right of Fig. 4. The ion is then in a superposition of four
states; two associated with the electronic ground state and
o two with the excited state. By measuring the ground-state
0,—)—ie'’|0,+) probability with the usual quantum jump technique], the
J2 ' wave function is projected onto the excited state if no fluo-
rescence is observed. Otherwise, the wave function is de-
The excited part of this state was then displaced in phasgtroyed and the experiment has to be restarted. With this
space by applying a Raman transition between two motionanethod the following Schidinger cat state is generated,

levels of the excited state, so that the state was transformed R _ o )
into [D(ine'¢)+e '%D(—ine '%)]|s,+). (21)

Schralinger cats have been realized experimentally b
preparing a single trapped ion in a superposition of two sp
tially separated wave packdis]. This was achieved by en-
tangling the motional state of the ion with its electronic
states. The ion was first cooled to its motional and electroni
ground states$)=|0)| —), where = represents the ground

and the excited states of the atom, wHil® is the vacuum

excited state by ar/2 pulse, using a Raman transitioria a
third leve) two-photon resonant with the transition from
| =) to|+). This creates the state

(16)

10,~)—ie"D(a)[0,+) Here Oc= 0>~ 0, is the phase difference between the second
! A (17) and the first laser pulse and the phasevt results from the
V2 evolution of the cat state after its creation.

, Neither of the methods presented above involves the pho-
with a=7Qq7e~'%. Here 7 is the Lamb-Dicke parameter, non number of the initial motional state of the ion. They can
Q4 denotes the coupling strength of the displacement beantherefore be generalized to arbitrary motional states, includ-
7 is the duration of the pulse angl is the phase difference ing thermal states. However, “hot” cat states can be more
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ARSI

(23

oy, o

free
evolution
for
t=o/v

-+
a,
ag In order to have a macroscopic separation of the two wave
packets of the cat state, we need to assume that the width
ay, oy,
9] 63
2% o — 0%
a,
% g

AXx, of the statesis much smaller thamy, and consequently

I+
¢
terms like (s|D(7)|s) can be neglected compared to 1. A
ox perfect overlap of the two wave packets is achieved ondy if

valve

is a multiple of 7 and we will find a non vanishing visibility

Qg

of the interference fringes only in the vicinity @f~nar. In

£

0, 8 this regime we can linearize the geometrical functions of the
R %% —> <\ . .
‘ O o displacement parameteasandb and we find
* % S lRe[<s|f>(2a)|s>ei<9c* oa)] (24)

M ‘ Og T Og M
The visibility of the resulting interference fringes is then
given by

FIG. 4. At the left the creation of a Schdimger cat state in the
strong excitation regime is indicated. For this twg2 Raman
pulses from opposite directions are followed by the detection of the
ground state probability and subsequent collapse into the cat state.
The right part of the figure shows the pulse sequence with which thevhich is the modulus of the characteristic function of the
cat state can be analyzed. motional states).

In the following, we investigate the analysis of different
difficult to observe than pure cat states as their coherenceotional states and, in particular, of mixed states. The pre-
length decreases with temperature. In the following we introvious calculation may also be applied to a density opejator
duce a method to analyze a general Sdimger cat state, formed as a statistical mixture of the pure motional states
employing the strong excitation regime. As both methods ar¢y,,) with probabilitiesP,,,
mathematically very similar, the results can be extended also
to the method employing the weak excitation regime used in
[5]. PIOYIng J p:ngo Pn|’ﬂn><¢n|-

The analysis of the cat sta21) involves a similar pulse
sequence as the one used for its creation, described abovea Schralinger cat state is created from such a mixed state
We also introduce a varying mismatch in the timing of theand then analyzed by its interference, then the visibility of
next laser pulse in order to analyze the precision required fothe interference fringes is given by
the observation of a mixed cat state. After the tigle, the

1 .
v=2KsiB(2a)ls)] 25

+ oo

third pulse is sent and a fourth pulse traveling in the opposite = -
direction is applied after the periodmd/v. The wave func- V=3 nzo Pn(¥nlD(2a])|¢n) (26)
tion is therefore split into eight wave packets, four being in
the ground state and four in the excited state. We mentioned earlier that a Scklinger cat state gener-
ated from a thermal state can be understood as a thermal
=l )+l -) (220 mixture of Schrdinger cat states generated from Fock states.
_ This is reflected in the coherence properties of the cat state.
with The visibility of a thermal cat state is given by a thermal
mixture of the visibilities of the different Fock stat¢Eq.
[ )=D(im)[e %D(a)+e'® ID(~ib) (26)].
) . , . In order to illustrate this, we first consider a cat state that
—€e@*WD(ib) - e'(Pa~ =D (~a)]]s), is generated from thaeth Fock state of the motion. The vis-

ibility of its interference fringes can be calculated to be
ly_)=—ie e 19D(a)+e'(’A*®)D(ib)

1 2 2
; A . N =_@ 27% 22
+e7|(ic+D(_ib)+el((}A76’C7®)D(_a)]|S>_ Vn 29 |Ln(477 ¢ )|, (27)

Here 6,=6,— 05 is the phase difference between the lastwhereL, is thenth Laguerre polynomial and we used the
two laser pulses and we use the ph#&®e 7°sing and  fact that(n|D(a)|n)=exp(—|d|¥2)L.(|a|?). As the accu-
the displacement parametera=27e '¢?sing/2, b  mulated phase between creation and analysis of the state is
=2ne '¢2cosel2. The probability that a measurement will varied, h+ 1 maxima are observed. These correspond to the
show the ion to be in its ground state is possible overlaps of the two wave packets, each haxing
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L0 , - 20 10 ; ; o1 In the analysis of thermal Schiimger cat states, the full
08 08} ] width at half maximum of the visibility can be expressed via
%0.6 Eos the coherence length as
= e
204

02} 9 02
0.0 . 0.0 . In2 \/§|n2
0.0 0.5 1.0 1.5 2 .0 05 1.0 15 2

S SO 5L 520 A erwhm= = Ly (29)
10 ‘ (,p/n — 10 ‘ Lt o n\V2n+1 K
08| 08 [ J
:-L?o,(, F ;—?0.6 E B
Z o4 Zoa This shows that the detection of a “hot” Schtinger cat
025{\(\ 02 /WJ\W\ /W& state requires a timing mismatch of less than the correspond-
oo 00 WW ing coherence length. As the coherence length decreases with
00 05 10 15 20 00 05 10 15 20 increasing average motional quantum numfsere Eq.(9)],
o o/ the required precision in the timing of the analyzing pulses
L0 10 rises with the temperature of the hot cat state.
osh =21 Ll =10, We point out that for simplicity we have assumed a per-
- 1 Bl ] fect timing between the two pulses that constitute the gen-
2 S eration and analysis of the cat state, and have investigated
504 o4y 1 only a mismatch in the delay between those sets of pulses.
02 02 However, the required precision in the timing of all pulses
00 o5 o i3 20 Moo T 0 depends on the coherence length and therefore on the tem-

o/n o/n perature of the initial motional state.

FIG. 5. The visibility of the interference fringes for Sctinger
cat states generated from the Fock std®s |1), |2), and|3)
showsn+ 1 maxima(top). For thermal states the side peaks of the V. CONCLUSION
visibility average out and the width of the central peak decreases
with increasingn (bottom). For the calculation we assumeg-=3
and 0= /2.

We have shown that mixed Schilioger cat states can be
generated from single-trapped ions in arbitrary motional
states, and in particular from thermal states. In contrast to
existing schemes, this allows the realization of mesoscopic
+1 maxima. The width of these side peaks is decreasinguantum states without the requirement of first cooling the
with ianeaSingn. The V|S|b|||ty of the zeroth to third Fock ion down to the motional ground state. We have provided a
state as a function of the delgyis shown in the upper part method to distinguish between mixed Satiirger cat states
of Fig. 5. _ _ and mixtures of two displaced wave packets by examining
An initial thermal state can be considered as a mixture ofjeir coherence properties. In analogy with the optical-
the different Fock states weighted with the thermal distribu-operence time, a coherence length was defined as a measure
tion and the visibility in this case becomes for the coherence of matter waves. For thermal states of ions,
the coherence length decreases with temperature and thus
1 - makes the detection of “hot” Schdinger cat states more
V= EGXF{—ZUZ(ZH'*‘D(PZ]- (28 difficult. In particular, the allowed mismatch in the timing of
the analysis of the Schdinger cat was shown to be propor-
tional to the coherence length of the original wave packet.

As the side peaks of the different Fock states occur at differ:rhIS places greater restrictions on the accuracy required to

ent values of the phase, they average out in the thermal analyze hot cat states.
o phase, they 9 . : The possibility to create hot Schtimger cat states allows
distribution. Interference fringes occur onlydfis an integer

multiple of 7 (see lower part of Fig. )5 The width of these us to explore superpositions of increasingly macroscopic ob-

S . e : jects. We believe that the coherence length will play an im-
remaining maxima decreases with increasing temperature Srtant role in describing these superpositions
1N2~n+1.

A somewhat similar situation occurs for optical white-
light interferometry, where the visibility of interference
fringes depends crucially on the difference in the path length
of the two interferometer arms. The broader the frequency We thank Professor Rainer Blatt for first asking us about
distribution, the more accurately the optical path lengthsuperpositions of mixed states and for his helpful advice.
must match in order to see interference. In other words, th&his work was supported by the TMR program of the Com-
allowed mismatch is directly related to the coherence time ofnission of the European Union through the Quantum Struc-
the light source. tures Network.
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