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PREDICTION OF THE FREE-SURFACE ELEVATION FOR
ROTATIONAL WATER WAVES USING THE RECOVERY OF

PRESSURE AT THE BED

DAVID HENRY AND GARETH P. THOMAS

Abstract. This paper considers the pressure–streamfunction relationship for a
train of regular water waves propagating on a steady current, which may possess
an arbitrary distribution of vorticity, in two dimensions. The application of such
work is to both nearshore and offshore environments, and in particular for linear
waves we provide a description of the role which the pressure function on the sea-
bed plays in determining the free-surface profile elevation. Our approach is shown
to provide a good approximation for a range of current conditions.

1. Introduction

Determining the relationship between the pressure distribution and the wave sur-
face profile is a topic which is both fascinating from a theoretical viewpoint, while
being of the utmost importance in practical considerations. Measuring the surface
of water waves directly is extremely difficult and costly, particularly in the ocean.
A commonly employed alternative is to calculate the free-surface profile of water
waves by way of the so-called pressure transfer function [1,17,26,38], which recovers
the free-surface elevation using measurements from submerged pressure transducers,
which are most conveniently located on the sea-bed. The key to the success of this
approach is in the derivation of a suitable candidate for the pressure transfer func-
tion, an issue which is the subject of a large body of experimental and theoretical
research; this is outlined and reviewed below. Most theoretical studies, to this point,
have focussed exclusively on irrotational travelling water waves, with much of this
work primarily in the linear setting.

The dearth of literature, detailing the role that the pressure function plays in
flows with vorticity, is not surprising. From a theoretical perspective, chief among
the reasons for this deficit are the severe mathematical complications inherent in
rotational flows [8, 13]. As an illustration of this, we note that while it has been
rigorously proven that the profile-recovery problem is well-posed for solitary water
waves with general vorticity distributions [20], no such result currently exists for
periodic water waves. Additionally, the paucity of mathematical research analysing
the pressure function in its own right no doubt stems from the fact that, for a per-
fect (incompressible and inviscid) and homogeneous fluid, the pressure distribution
function serves primarily as a Lagrange multiplier maintaining the divergence-free

Key words and phrases. water waves, wave–current interactions, pressure recovery.
1



2

constraint on the velocity field of the flow. Nevertheless, although it plays an appar-
ently indirect mathematical role in prescribing the fluid kinematics, it is noteworthy
that direct, rigorous mathematical analyses of the pressure distribution function it-
self have recently gleaned rich and detailed qualitative information concerning the
fluid motion underlying various irrotational water waves prescribed by the fully non-
linear, exact governing equations [14, 19, 27]. Physically, this is not surprising since
the pressure appears as the diagonal term in the stress tensor and is the driving
force in the equation of motion.

However, converse to these mathematical difficulties, it is well known that flows
with vorticity are relevant in a physical context, for instance being vital in the mod-
elling of wave-current interactions [31, 35–37]. This is particularly pertinent when
considering that pressure sensors are frequently located on the sea-bed, a region
where currents are ubiquitous (accounting for sediment transport, for instance).
Furthermore, a detailed knowledge of the pressure function is important in under-
standing the wave-induced force-loading experienced by various offshore maritime
structures; admitting vorticity in the fluid enables us to incorporate the effects of
currents, and wave-current interactions [37].

Compelled by these physical considerations, the aim of this paper is to present
a systematic analysis of the role that the pressure distribution, and in particular
the dynamic pressure, plays in the kinematics of rotational flows, with the primary
focus being how the pressure at the bed prescribes the surface profile. We derive
a new pressure-streamfunction reformulation of the governing equations, which is
particularly amenable to determining the connection between the pressure function
and the fluid kinematics, and obtain explicit relations by way of series solutions
for the pressure, streamfunction and the vorticity distribution. In this context, we
remark that interesting experimental and numerical work examining various aspects
of the relationship between the dynamic pressure and fluid kinematics can be found
in [2, 32, 34]. However, it is noteworthy that all theoretical and modelling consider-
ations contained therein apply solely to irrotational flows, a shortcoming that this
study aims to go some way to addressing.

The layout of the paper is as follows: in Section 2 the governing equations are
presented, while in Section 3 we review previous approaches for addressing the
surface-profile recovery problem, both for linear and nonlinear waves, which have
almost universally focussed on irrotational flows. Section 4 offers a novel pressure-
streamfunction reformulation of the fully-nonlinear, exact governing equations for
flows with general vorticity distributions. Regular solutions expressed as a series of
harmonic expansions are sought, and the appropriate relations for the series hierar-
chy are derived here (and in Appendix A.1). In Section 5 an analysis of first-order
wavelike solutions will be presented for flows with arbitrary vorticity, leading to the
derivation of expressions for the pressure transfer function (5.8) and the pressure
amplification factor (5.9). Further implementation of a moderate current approxi-
mation renders these expressions more tractable, in the process leading to the elegant
and explicit formulae (5.22) and (5.23).
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2. Governing equations

For a perfect fluid, that is, inviscid and incompressible, the equations of motion
take the form of the Euler equation

∂~u

∂t
+ (~u · ∇) ~u = −∇p

ρ
− g~̂z,

and the incompressiblity equation

∇ · ~u = 0. (2.1a)

Here ~u denotes the velocity field, p represents the pressure distribution, ρ is the
fluid density (hereupon assumed to be constant) and g is the standard gravitational
constant of acceleration. In this paper our focus is restricted to two-dimensional
fluid motion, defining a local Cartesian coordinate system in which the x−axis

is horizontal and the z−axis points vertically upwards (with ~̂z the unit vector in
this direction), and furthermore spatial periodicity is assumed with respect to the
x−variable. The origin O is chosen to lie in the mean water level: if z = η(x, t)
represents the unknown free-surface, and λ > 0 is the characteristic wavelength, we
must have ∫ λ

0

η(x, t)dx = 0.

The choice of reference frame implies that z = −h denotes the location of the
impermeable flat bed, which is assumed to be locally horizontal and where h is
the mean water depth. The Euler equation expressed component-wise in terms of
~u = (u(x, z, t), 0, w(x, z, t)) takes the form

ut + uux + wuz = −px
ρ
,

wt + uwx + wwz = −pz
ρ
− g. (2.1b)

On the flat bed the kinematic boundary condition gives

w = 0 on z = −h, (2.1c)

and at the free-surface the kinematic and dynamic conditions take the form

w = ηt + uηx, (2.1d)

p = constant on z = η(x, t). (2.1e)

Typically, the constant atmospheric pressure, denoted pa, is taken as the free-surface
value in (2.1e) and the pressure can be written as

p = pa − ρgz + pd(x, z, t), (2.2)

where pd denotes the dynamic pressure, measuring the deviation from the hydro-
static pressure. The nonlinear free-boundary value problem specified by the system
of equations (2.1) represents the full governing equations for water waves in two
dimensions. The vorticity prescribed by fluid motion is defined as the curl of the
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fluid velocity field, Ω = ∇ × ~u, which reduces in two-dimensions to Ω = (0,Ω, 0),
leading to the scalar vorticity equation

Ω(x, z, t) = uz − wx. (2.3)

3. Profile recovery from pressure measurements: a brief review

3.1. Irrotational flow.

3.1.1. Linear waves. The most elementary approach to estimating the free-surface
from pressure measurements is to invoke the hydrostatic approximation

η(x, t) =
pd(x,−h, t)

ρg
.

This provides a simplistic shallow water wave approximation which nevertheless is
employed in the field in certain instances, an example being open-ocean buoys for
tsunami detection. In order to incorporate the effects of wave motion, the following
approach may be taken. In the particular setting of an irrotational fluid (Ω ≡ 0)
it follows from (2.3) that a potential φ(x, z, t) may be defined for the velocity field
and the governing equations (2.1) recast in terms of this, thereby reducing the
number of unknowns in the problem. Physically, irrotationality corresponds either to
waves entering a fluid region, which is initially motionless (and hence irrotationality
persists as a result of Kelvin’s Circulation Theorem), or to a region where waves
propagate on the surface of a constant, uniform current. Initially it is assumed that
there is no underlying current. Following a standard linearisation procedure [8, 37]
and choosing the ansatz

η(x, t) = a cos(kx− ωt) (3.1)

for a regular linear wave solution, the linearised form of (2.1) may be solved for
waves satisfying the irrotationality condition leading to

u = aω
cosh k(z + h)

sinh kh
cos(kx− ωt), w = aω

sinh k(z + h)

sinh kh
sin(kx− ωt), (3.2)

and

pd(x, z, t) = ρag
cosh k(z + h)

cosh kh
cos(kx− ωt). (3.3)

Here a is the wave amplitude, k = 2π/λ is the wavenumber and ω is the phase
frequency; these quantities are not independent but are related by c = ω/k, where
c is the wave phasespeed. In the present setting of linear waves over a flat bed it
may be shown that the dispersion relation ω2 = gk tanh kh holds, leading to the
prescription of the wave phase-speed as

c = c(k) =
√
g tanh kh/k. (3.4)

Comparing (3.1) and (3.3) leads to the so-called transfer function formula

η(x, t) =
pd(x, z, t)

ρgKp(z)
(3.5)
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where Kp(z) = cosh k(z + h)/ cosh kh is the so-called pressure response factor. The
effectiveness of the transfer function formula (3.5) has been widely tested in the
engineering literature, through field data and experiments: cf. [4] for an interesting
comparison and contrast between a number of different data-sets, for both regular
and irregular waves. At this point we remark that while some interesting experi-
mental and numerical analyses of the pressure distribution have been undertaken for
irregular waves in the literature, for example in [2,4,29], this paper will be focussed
primarily on regular waves.

Among the issues considered in [4] is the need to offset any potential inaccura-
cies between theory and observations by multiplying the right-hand side of (3.5)
with an empirical correction factor N , a constant which may vary depending on
the local environment to which the particular data set relates. The authors out-
line the wide-differences of opinion which prevail regarding the necessity for, and
possible behaviour of, this empirical correction factor. They conclude that such
a factor is probably unnecessary — that is, it is reasonable to choose N = 1 —
with any perceived discrepancies between theory and observation being accounted
for by issues such as inaccurate measurements, instrument limitations, and analysis
methods. Furthermore, they assert that “linear theory is adequate to compensate
pressure data and give reliable estimates of surface wave heights” for most of the
wave amplitudes considered.

We note that further experimental studies of interest regarding the transfer func-
tion are found in [26], where the authors consider a purely empirical expression for
the transfer function which is derived through dimensional-analysis considerations;
it is shown in [1] that this formula may be regarded as a version of the theoretically
derived formula (3.5). Further analysis of these issues was undertaken in the more
recent paper [38].

Two particular topics addressed throughout these studies are of relevance to the
considerations of the current paper. Firstly, one source of speculation for possible
discrepancies between theory and observation in the pressure transfer function (3.5)
is the presence of depth-varying currents, for which the assumption of irrotationality
is invalid and vorticity much be included in the fluid model. For instance, following
their review of various field data and laboratory experiments, Bishop & Donelan [4]
conclude that “when measuring waves with pressure transducers in shallow water the
linear theory pressure response factor may require modification to account for cur-
rents”. This aspiration is achieved below in the formulae (5.8) and (5.22). Secondly,
much experimental work has been undertaken (cf. [4]) to establish if the transfer
function is sensitive to the relative-depth at which the pressure transducers are lo-
cated: we can see that the formula (3.5) for irrotational waves applies regardless of
the depth at which the pressure is measured, and in particular pressure sensors need
not be located on the sea-bed. The formulae that we derive below for waves with
vorticity — (5.8), (5.9) and (5.22), (5.23) respectively — are similarly unrestricted
with regard to the exact location of the pressure measurements, and it is a reference
pressure level that is required.
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Additional literature of relevance in the context of this paper are the experimen-
tal and numerical investigations found in [2, 32, 34], which analyse the relationship
between the dynamic pressure and aspects of the fluid kinematics. These papers
suffer from the common restriction that all theoretical and modelling considerations
contained therein apply solely to irrotational flows. In this paper we go some way
towards addressing this shortcoming, whereby we derive new relations between the
dynamic pressure and the fluid kinematics which allow for the effects of vorticity, at
the level of both linear and nonlinear waves.

We conclude by noting that a physical quantity which is of practical significance
is an amplification factor Q, relating the dynamic pressure at the free surface to the
dynamic pressure at the bed: expressing pd(x, z, t) = Pd(z) cos(kx − ωt), we have
Q = Pd(0)/Pd(−h). This ratio is an important quantity since the magnitude of Q
may influence the acceptability of the predictive process; in the current setting of
irrotational linear waves, with pressure prescribed by (2.2), we find

Q = cosh kh, (3.6)

and setting z = −h in (3.5) leads to

η(x, t) =
Q

ρg
pd(x,−h, t).

The notion of an amplification factor may be extended in order to relate the dynamic
pressure at the surface to the dynamic pressure of the fluid at any arbitrary depth
−h ≤ z < 0, through defining

Q(z) =
Pd(0)

Pd(−z)
. (3.7)

We deduce immediately from (3.5) that, for linear irrotational water waves, we have

η(x, t) =
Q(z)

ρg
pd(x, z, t), (3.8)

and so Q(z) = 1/Kp(z). In our investigation of the surface–profile recovery problem
for waves with vorticity we will find it more expedient to work directly with the
amplification factor Q(z) rather than the pressure-transfer function Kp(z), although
it is clear that these two entities are closely related and, as alluded to previously,
the formulae derived below for the amplification factor for waves with vorticity will
exhibit freedom with regard to the exact location of the pressure measurements.

The considerations involved in the derivation of (3.1)–(3.4), and the subsequent
pressure recovery formulae, may be readily adapted to accommodate an irrotational
velocity field of the form (u + U, 0, w), where U(z) ≡ U is a constant underlying
current, cf. [31,34,37]. In so doing, the form of the trigonometric terms in the wave
velocity field (u, 0, w) matches those given by formula (3.2), however wherever the
‘absolute’ wave frequency ω appears as a coefficient to the trigonometric functions in
(3.2) it must be directly replaced by the ‘relative’ wave frequency σ := ω− kU : the
presence of a constant underlying current amounts to a form of Doppler shift in the
wave motion. These modifications have a number of interesting ramifications, not
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least that it may be discerned directly from the modified dispersion relation σ2 =
gk tanh kh as to which wave motions, depending on the magnitude and direction
(adverse or following) of the current, are admissible, cf. Peregrine [31].

3.1.2. Nonlinear travelling waves. While the extant literature, particularly in an
engineering context, focusses predominantly on the linear wave regime, it has been
observed [4] that for very large amplitude, or steep, waves it is important to take into
account the effects of nonlinearity. In the setting of nonlinear waves of permanent
form travelling with constant speed c, a number of recent theoretical investigations
have been undertaken which have successfully extracted exact surface profile recov-
ery formulae from the pressure measurements on the flat bed for exact nonlinear
water waves. Subsequent to a theoretical and experimental study of the pressure
function for finite amplitude solitary waves [12], Constantin obtained an explicit
parametric recovery formula for solitary waves in [9] which may be expressed (in the
notation of the current paper) as

x(q) = q +

∫ q

−∞
F−1

{
cosh rhF

[
c√

c2 − 2p
− 1

]
(r)

}
(s)ds,

η(q) = F−1
{

sinh rh

r
F
[

c√
c2 − 2p

− 1

]
(r)

}
(q), (3.9)

where q is a parameter, p = pd(x,−h, t) is the dynamic pressure evaluated at the flat
bed, all variables are in a reference frame moving with wavespeed c and F ,F−1 de-
notes the Fourier transform and its inverse, respectively. A key step in the derivation
of this formula involves transforming the governing equations for the free-bounary
problem (2.1) to a fixed domain by way of a conformal hodograph change of vari-
ables (x, z) 7→ (q, p) :=

(
−1
c
φ(x, z),−1

c
Ψ(x, z)

)
, where φ is the velocity potential

and Ψ is the streamfunction (defined below in (4.1)).
For periodic waves, it was shown in [25] that a similar approach, employing the

same conformal hodograph transformation, may be adapted to yield an explicit
parametric recovery formula analogous to (3.9). An interesting alternative to the
conformal mapping approach was provided by Clamond & Constantin [7] where the
authors, in this instance working directly with the physical variables, establish that
standard iterative procedures determine the wave amplitude η0 as the unique fixed
point of the mapping

s 7→ (ReP) (0, s)/g − d,
where P is a holomorphic function whose restriction to the flat bed has a zero
imaginary part, and a real part equal to the normalised pressure relative to the
atmosphere. Subsequently, the wave surface is prescribed as the unique solution of
the ordinary differential equation

ηx(x) =
ImP(x, η)

B − gη − (ReP) (x, η) + gd

with the initial data η(0) = η0 and where B > 0 is the Bernoulli constant. This
approach is particularly useful for numerical considerations, as is illustrated by the
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authors with various examples. Numerical considerations motivate an alternative,
implicit reconstruction approach provided in [6] by Clamond. Finally, we note that
an approach providing reconstruction formulae for exact nonlinear waves by way
of a nonlocal reformulation of the governing equations is presented in [30]. While
these formulae have the drawback of being implicit, and somewhat more entangled
than (3.9), this paper features some interesting experimental data for solitary waves.
Estimates of bounds on the wave height, which depend on pressure measurements
from the flat bed, are provided in [3, 10] for travelling gravity water waves without
limitation on the wave amplitudes. We note that the theoretical considerations
outlined above are all strongly contingent on the flow being irrotational.

3.2. Rotational flows. As outlined in the introduction, there is a striking paucity
of results concerning recovery formulae for flows with vorticity; to the best of our
knowledge, even in the linear setting a formula analogous to (3.5) has not been
derived for rotational water waves until now (cf. Section 5). This is primarily due
to the technical complications that waves with vorticity pose towards mathematical
analysis. Some theoretical considerations which have been established are worthy of
mention however. For a current possessing constant vorticity, whereby the wavefield
is irrotational, an approach similar to [30] has been implemented in [40] in order
to derive a nonlocal reformulation of the governing equations. In doing so, the
authors establish certain relations between the surface profile and the pressure in
the fluid. A recent paper [5] has attempted to include currents with arbitrary
vorticity but does not progress beyond the stage of formulation. For general, analytic
vorticity distributions it was proven in [20] that the profile-recovery problem is well-
posed for solitary waves of any magnitude, in the sense that the wave surface profile
of a solitary wave with vorticity, described by the fully nonlinear exact governing
equations (2.1), is uniquely determined by the pressure function on the flat bed. We
note that, at this point, no similar result has been rigorously proven for periodic
waves.

4. General pressure-streamfunction formulation

In this section we present a new pressure–streamfunction formulation of the gov-
erning equations (2.1), which is particularly amenable to our analysis of the rela-
tionship between the dynamic pressure and the wave-field kinematics. For waves
interacting with non-uniform currents the fluid possesses non-zero vorticity [31, 37]
and, in general, a velocity potential does not exist. Alternatively, and as a conse-
quence of (2.1a), define the stream function Ψ(x, z, t) by

u =
∂Ψ

∂z
, w = −∂Ψ

∂x
, (4.1)

and it follows immediately from (2.3) and (4.1) that

∇2Ψ = Ω, (4.2)
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where ∇2 represents the (two-dimensional) Laplacian operator. The streamfunction
has a natural representation in terms of the (path-independent) line integral

Ψ(x, z, t) =

∫ (x,z)

(0,−h)
[udz − wdx] , (4.3)

and by choosing first the path from (0,−h) to (x,−h) (where (2.1c) applies and
dz ≡ 0), followed by the path from (x,−h) to (x, z) (where dx ≡ 0), (4.3) reduces
to the volume flux measure

Ψ(x, z, t) =

∫ z

−h
u(x, z, t)dz.

It follows immediately that Ψ is itself a periodic function with respect to the
x−variable. Eliminating p in (2.1b) and using (4.1), we obtain the equation

∇2Ψt + Ψz∇2Ψx −Ψx∇2Ψz = 0. (4.4)

This equation is commonly referred to as the Helmholtz Vorticity Equation, partic-
ularly when Ω is deployed via (4.2). In this paper attention is focussed on regular
wave solutions, by which we mean that the only x, t dependence can occur via a
phase function θ(x, t) = kx− ωt, giving the x− and t−derivatives by

∂

∂x
= k

∂

∂θ
,

∂

∂t
= −ω ∂

∂θ
. (4.5)

For regular waves the streamfunction has a particularly elegant form, with rich
structural properties being easily established upon transforming to a reference frame
moving with the constant wave phasespeed, cf. [8,37]. With ω and k assumed to be
locally constant, (4.4) can be written as

(ω − kΨz) ∇2Ψθ + kΨθ∇2Ψz = 0. (4.6)

With respect to applications in water waves, this equation provides the basis for the
method introduced by Dean [16] for computing the kinematics of nonlinear waves,
albeit specifically for irrotational motion (Ω ≡ 0) when (4.6) reduces to ∇2Ψ = 0,
matching (4.2). This was extended by Dalrymple [15] for nonlinear waves interacting
with a rotational current. Although it may be possible to formulate the governing
equations in terms of p or Ψ alone, as in (4.6) for Ψ, it should be noted that the
two quantities are in fact related via the dynamic surface boundary condition (2.1e);
we remark that although (2.1e) appears quite innocuous, it transforms to a highly
complex, nonlinear Bernoulli relation when expressed in terms of the streamfunction.

In the present approach, attention is directed at the pressure as specified by
(2.1b), and it is assumed that (4.6) can be solved, as required, even for rotational
flow. Returning to (2.1b), and employing (4.1), enables the first equation to be
expressed as

1

ρ
px = − ∂

∂t
Ψz −

∂

∂x

[
1

2

(
Ψ2
x + Ψ2

z

)
−Ψ∇2Ψ

]
−Ψ∇2Ψx,
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and the second equation, following some rearrangement, becomes

1

ρ
pz = −g +

∂

∂t
Ψx −

∂

∂z

[
1

2

(
Ψ2
x + Ψ2

z

)
−Ψ∇2Ψ

]
−Ψ∇2Ψz.

Imposing the quest for wavelike solutions onto these two equations by way of (4.5)
finally gives the form

1

ρ

∂p

∂θ
=
∂H

∂θ
−Ψ∇2Ψθ,

1

ρ

∂p

∂z
=
∂H

∂z
− ω

k
∇2Ψ−Ψ∇2Ψz, (4.7)

H(θ, z) = −gz +
ω

k
Ψz −

1

2

{
Ψ2
z + k2Ψ2

θ

}
+ Ψ∇2Ψ.

The function H(θ, z) here represents a form of integrability in the equations and also
contains a contribution from the vorticity ∇2Ψ. Those terms on the right-hand side
of (4.7) not included in H(θ, z) are strictly rotational terms. Note that (4.7) reduces
to (4.6) on the elimination of p, and furthermore that the system can be integrated
to a form equivalent to a Bernoulli condition for irrotational flow. Although no
link has been established, it may well be that the form of (4.7) plays a role in the
variational formulation [22] of the equations of water waves with vorticity.

Writing the terms not included in H(θ, z) in the two pressure equations of (4.7)
as −F (θ, z) and −G(θ, z), respectively, enables an integration of the form

1

ρ
p(θ, z) = H(θ, z)−

∫ θ

F (θ, z)dθ − A(z)

= H(θ, z)−
∫ z

G(θ, z)dz −B(θ). (4.8)

Evaluation of each equation should, in principle, enable A(z) and B(θ) to be de-
termined. In the absence of analytic solutions this will still prove a difficult task.
It may appear that the A(z) and B(θ) terms in (4.8) are unimportant. This is not
the case, as together with the p0(z) term they will describe mean flow contributions
from currents and waves.

4.1. Series solutions. When analytic or semi-analytic solutions are sought in a
pressure-streamfunction formulation, it is usual to represent the streamfunction and
the pressure-type terms as

Ψ(θ, z) =
∞∑
n=0

ψn(z) cosnθ,

p(θ, z) = −ρgz +
∞∑
n=0

pn(z) cosnθ,
(4.9)



11

where p is now the pressure relative to the atmospheric pressure. For convenience,
we also write the vorticity Ω(= ∇2Ψ) in the same way,

Ω (θ, z) =
∞∑
n=0

[
ψ′′n(z)− n2k2ψn(z)

]
cosnθ =

∞∑
n=0

Ωn(z) cosnθ, (4.10)

where ′ indicates differentiation with respect to z. It is known that analytic solutions
have been obtained only for the special cases of Ω0 = 0 or Ω0 =constant, both cor-
responding to irrotational wave motions. Also, from (4.7) and (4.9), the hydrostatic
component of the pressure is identified explicitly and need not be included in the
forthcoming analysis.

With the forms for Ψ, p and Ω from (4.9) and (4.10) utilised, the resulting expres-
sions for H(θ, z), F (θ, z) and G(θ, z) are given in Appendix 1. In particular, from
(4.8) we have ∫ θ

F (θ, z)dθ + A(z) =

∫ z

G(θ, z)dz +B(θ)

and examining (A.7) and (A.8) suggests that

A(z) = A0 +
ω

k

∫ z

Ω0(z)dz +

∫ z

ψ0(z)Ω′0(z)dz +
1

2

∞∑
n=1

{∫ z

ψn(z)Ω′n(z)dz

}
, (4.11)

where A0 is some constant that can only be determined by the imposition of ap-
propriate physical conditions. The importance of A(z) is that it is associated with
mean-flow quantities and particularly those associated with the vorticity.

4.2. Hierarchy of series harmonics. Collecting the terms on the right-hand side
of the first equation in (4.8), from (A.6), (A.7) and (4.11), gives the full pressure-
streamfunction relationship. With the hydrostatic component omitted, following
some manipulation, the final form of the dynamic pressure is

1

ρ

∞∑
n=0

pn(z) cosnθ = −A0 −
1

2
(ψ′0(z))

2
+

∫ z

ψ′0(z)Ω0(z)dz

− 1

4

∞∑
m=1

[
(ψ′m(z))

2
+ (mkψm(z))2 − 2

∫ z

ψ′m(z)Ωm(z)dz

]

+
∞∑
n=1

{
ω

k
ψ′n(z)− 1

2
[ψ′n(z)ψ′0(z)− 2ψn(z)Ω0(z)]

}
cosnθ (4.12)

− 1

4

∞∑
n=0

∞∑
m=1

[
ψ′n(z)ψ′m(z)− nmk2ψn(z)ψm(z)− 2n

m+ n
ψn(z)Ωm(z)

]
cos(n+m)θ

− 1

4

∞∑
n=0

∞∑
m=1
m 6=n

[
ψ′n(z)ψ′m(z) + nmk2ψn(z)ψm(z) +

2n

m− n
ψn(z)Ωm(z)

]
cos(m− n)θ,
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where the identity Ω0 = ψ′′0 has been employed. This relation is valid up to constants
of integration, which vanish identically since (4.3) implies that ψn(−h) = 0 for all
n ≥ 0.

The next step is to match the harmonic components on each side. Taking just
the n = 0 term initially from (4.12) we have

1

ρ
p0(z) = −A0 −

1

2
(ψ′0(z))

2
+

∫ z

ψ′0(z)Ω0(z)dz

−1

4

∞∑
m=1

[
(ψ′m(z))

2
+ (mkψm(z))2 − 2

∫ z

ψ′m(z)Ωm(z)dz

]
, (4.13)

in which the presence of the vorticity is immediately identifiable.
Three contexts arise in the flow of waves over a horizontal bed and a free-surface,

depending on the base vorticity Ω0(z). Firstly, if the base vorticity is zero, then
Ω0 = 0 and the motion will be irrotational. This corresponds to Ωn = 0 for all
n ≥ 1 throughout (4.12) and (4.13), and applies to a constant current and in the
absence of an imposed current. The pressure p0 from (4.13) becomes

1

ρ
p0(z) = −A0 −

1

2
(ψ′0(z))

2 − 1

4

∞∑
m=1

[
(ψ′m(z))

2
+ (mkψm(z))2

]
.

In this setting it is more usual to employ a velocity potential than a streamfunction,
via Bernoulli’s equation, and the historical context is discussed in [23] by Jonsson
& Kofoed-Hansen.

Secondly, if Ω0 is constant, then the current possesses a linear profile. The wave-
field is still irrotational, as shown by Tsao [39], and a velocity potential may be
employed as Ωn = 0 for n ≥ 1. Analytic solutions are not easy to obtain beyond the
first three terms in a Stokes-type approach but there is a unexpected cancellation
in (4.10) to give

1

ρ
p0(z) = −A0 −

1

4

∞∑
m=1

[
(ψ′m(z))

2
+ (mkψm(z))2

]
.

A numerical method for this case based upon the streamfunction has been given by
Dalrymple (1974) in [15].

The third case is when Ω0(z) is considered to be arbitrary and is of interest here.
Note that from (4.10)

ψ′m(z)Ωm (z) = ψ′m(z)
[
ψ′′m(z)− (mk)2 ψm(z)

]
=

1

2

[
(ψ′m(z))

2 − (mkψm(z))2
]′
,

enabling integration in (4.13). If Ωm (z) does not vanish, then

1

ρ
p0(z) = −A0 −

1

2

∞∑
m=1

(mkψm(z))2 , (4.14)
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which is a rather surprising result and can only be interpreted in a discussion con-
cerning A0. In all three cases, A0 must be chosen to ensure that p0(0) = 0, bearing
in mind the boundary condition (2.1e) and the decompostion (2.2).

The harmonic expansions for the pressure, streamfunction and vorticity in (4.9)
and (4.10) do not assume any ordering on the relative magnitudes of the functions
of z. With reference to (4.12) for the matching of cos qθ, for a strictly positive
integer q, to enable the determination of pq(z), an assessment of the individual
terms shows a single term (n = q), a finite series (m+ n = q) and an infinite series
(|m − n| = q). For the practical implementation of these methods for irrotational
waves, the series (4.9) is curtailed to be finite and, as discussed in [33] by Rienecker &
Fenton (1981), this characterises a numerical method capable of describing nonlinear
waves. Nonetheless, it is shown numerically that the magnitudes of the unknown
functions decrease in magnitude with increasing q. In the present context, the waves
are considered to be weakly nonlinear and it is appropriate to introduce the usual
scaling parameter ε = ak (the wave slope) so that pq(z) is of O(εq). Equivalence
with Stokes’ waves can be obtained by expanding ψq(z) as a series in ε,

ψq(z) = εq
[
ψq0(z) + εψq1(z) + ε2ψq2(z) + . . .

]
, q = 1, 2, . . . ,

as in equation (B1) of [36].
Before proceeding with arbitrary Ω0(z), it is salient to make important com-

ments about the first two cases identified above. It was shown by Ismail (1984)
in [21] that, for regular wave-current interactions in two-dimensions, the current can
be modelled by a constant and linear profile for following and opposing currents
respectively. This was subsequently confirmed by Groeneweg & Klopman (1998)
in [18]. A consequence is that for two-dimensional applications, and provided that
the current is not generated by an external mechanism, then it may be sufficient in
the first instance to employ irrotational wave models. Such an approach has obvious
advantages if higher order solutions are required.

5. First order solutions

The first order terms in (4.9) capture linear wave motion and wave-current inter-
actions. If the current takes the form (U(z), 0, 0), then from (4.1) and (4.9), ψ0(z)
can be easily determined to be

ψ0(z) =

∫ z

−h
U(z)dz. (5.1)

At first order, with the assumption that ψq(z) is of O (εq), the combination of (4.6)
and (4.9) yield the following equation for ψ1(z):

ψ′′1(z)−
(
k2 − kU ′′(z)

ω − kU(z)

)
ψ1(z) = 0. (5.2)

This is the Rayleigh equation of hydrodynamic stability theory, or the inviscid form
of the Orr-Sommerfeld equation. An alternative formulation to (5.2), expressed in
terms of p1(z) rather than ψ1(z), may be employed for linear solutions and this is
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described in Appendix 2. For regular waves over a horizontal bed with mean water
depth h, the appropriate boundary conditions at the bed z = −h and surface z = 0
are

(c− U(0))ψ′′1(0) + [(c− U(0))U ′(0)− g]ψ1(0) = 0,

ψ1(0) = a (c− U(0)) on z = 0, (5.3)

ψ1(−h) = 0 on z = −h,
where a is the wave amplitude, defined to be the magnitude of the first harmonic of
the surface elevation series, and c = ω/k is the phase velocity. In the derivation of
the surface conditions the usual assumptions of linearity apply.

The first harmonic of dynamic pressure p1(z) is obtained from (4.12), with the
appropriate ordering implemented and (5.1) utilised, resulting in

p1(z)

ρ
=
(ω
k
− U(z)

)
ψ′1(z) + U ′(z)ψ1(z). (5.4)

Bearing in mind (4.9), the decomposition (2.2) and the standard linear wave profile
(3.1), p1(z) must also satisfy

p1(0) = ρga (5.5)

to ensure that condition (2.1e) holds. A noteworthy consequence of (5.5) is that
pn(0) = 0 for the higher order (n ≥ 2) dynamic pressure terms. Thus, if ψ1(z) can
be determined from (5.2) and (5.3), then p1(z) can be obtained from (5.4).

For the pressure recovery problem, the aim is to measure the dynamic bed-pressure
pb = p1(−h) and use this to determine the surface amplitude a. In this formulation,
the opposite approach is taken, namely that a is used to determine ψ1(z) and hence
the pressure via (5.4). However, ψ1(z) is linearly proportional to a, as can be seen
from (5.2) and (5.3), so we can write

ψ1(z) = aχ1(z), (5.6)

and from (5.4),

pb = p1(−h) = ρ [c− U(−h)]ψ′1(−h) = ρa [c− U(−h)]χ′1(−h), (5.7)

as ψ0(−h) = ψ1(−h) = 0 from (5.1) and (5.3). Thus if pb is the known quantity,
then

a =
pb

ρ [c− U(−h)]χ′1(−h)
. (5.8)

The amplification factor Q(−h), defined in (3.7), relating the pressure at the free
surface to the pressure at the bed now follows directly from (5.5) and (5.7):

Q(−h) =
g

[c− U(−h)]χ′1(−h)
. (5.9)

This formula is the generalisation of (3.6) to the setting of water waves with general
vorticity distributions; formula (3.6) for irrotational waves is recovered immediately
upon setting U(z) ≡ U , where U is a constant underlying current. This is easily
verified by taking U = 0, using the dispersion relation (3.4) for the wave phase
speed c and (3.2) for determining χ′1(z). Furthermore, it is clear from our approach
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that we are not restricted to working at the flat bed (z = −h) in taking pressure
measurements, although matters are slightly more complicated otherwise; indeed,
we may choose instead to derive Q(z) = p1(0)/p1(z), working again with (5.5) and
inputting an arbitrary depth −h ≤ z < 0 in formula (5.4), leading to a generalisation
of (5.7) and (5.9).

The drawback of the described approach of using (5.4) in analysing the relation-
ship between the dynamic pressure and the wave-field kinematics is that, for arbi-
trary U(z), (5.2) and (5.3) can only be solved numerically as described by Thomas
in [35], and for this reason approximate solutions are required in general. Neverthe-
less, in the special cases of a uniform underlying current U (z) = Uc (zero vorticity),
and also for constant vorticity distributions (representing a linearly–sheared current
profile U (z) = Us + Ωz), solutions analogous to (3.2) and (3.4) can be derived, cf.
Thomas & Klopman [37], in which case the recovery formula (5.9) is applicable. Ac-
cordingly, it is worthy of mention that many current profiles can be approximated by
a number of linear components and with appropriate matching conditions applied
at the interfaces.

5.1. The Moderate Current Approximation. Although numerical solutions are
not difficult to obtain at this order, the lack of an analytic solution prevents simple
insights to be gained. For this reason a perturbation approach is developed for
weakly nonlinear waves, consistent with Stokes waves for irrotational wave motion
and with the pressure–streamfunction formulation developed in §4. In contrast to
most procedures in water waves, two non-dimensional perturbation parameters are
employed — the wave slope ε, already utilised above, and δ as a measure of the
current strength relative to the phase speed of the waves: typically δ = Û/c, with Û
a characteristic current measure. The presence of δ is formally recognised by writing

U(z) = δV (z) , (5.10)

so that V (z) has the same dimensions as the current but is of comparable magnitude
to the wave phase speed c.

Perturbation solutions for the streamfunction Ψ, surface elevation η and pressure
p are sought of the form

Ψ = Ψ00 + δΨ01 + δ2 Ψ02 + · · ·+ ε (Ψ10 + δΨ11 + · · · ) + ε2 (Ψ20 + δΨ21 + · · · ) + ...

η = η00 + δ η01 + δ2 η02 + · · ·+ ε (η10 + δ η11 + · · · ) + ε2 (η20 + δ η21 + · · · ) + ... (5.11)

p = −ρgz + p00 + δ p01 + δ2p02 + · · ·+ ε (p10 + δ p11 + · · · ) + ε2 (p20 + δ p21 + · · · ) + ...

An intuitive interpretation of the representation defined by (5.11) is that the formal
setting δ = 0 removes the imposed current but permits mean flows associated with
the waves, depending upon the choice of reference frame. Similarly the setting ε = 0
corresponds to the case of a current alone in the absence of waves and mixed terms
of O(εiδj) describe the interaction terms. To maintain consistency with established
practice in Stokes wave theory, it is also necessary to expand the frequency ω of the
waves (or phase speed c) in a similar manner,

ω = ω00 + δω01 + δ2ω02 + · · ·+ ε (ω10 + δω11 + · · · ) + ..., (5.12)
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and this is only meaningful when ε is non-zero.
The scheme in (5.11) and (5.12) requires the imposition of a relative ordering upon

ε and δ. Thomas & Klopman [37] proposed a classification scheme of three regimes
based upon the relative magnitude of the parameters, together with a discussion
of the salient issues involved. In the terminology of that paper, the Moderate
Current Approximation (MCA) is defined by the regime ε << δ << 1 and is the
one of interest here. It is noted that the Strong Current Approximation defined by
ε << 1, δ ∼ O(1) is the same as the one employed linearly earlier in §5.

Implementation involves substituting the series for Ψ, η and ω into (4.6) and
formulating a hierarchy in the usual manner. It is hoped that these can be solved
when appropriate boundary conditions are applied and p can then be obtained from
(4.7). As mentioned previously (cf. Appendix B), the problem can be formulated
in terms of the pressure at O (ε) but this cannot be readily extended beyond O (ε)
and thus Ψ is employed here. The basic current term is at O (δ) and is given by

Ψ01(z) =

∫ z

−h
V (z) dz . (5.13)

The first wavelike term at O (ε) is the incident wave in the absence of a current. As
the streamfunction component Ψ10(z, θ) satisfies ∇2Ψ10 = 0 and is the known linear
wave solution we have (cf. (3.1), (3.2) and the analogous dispersion relation)

η10 =
1

k
cos θ(x, t), Ψ10 =

ω00

k2
sinh k(z + h)

sinh kh
cos θ(x, t), ω2

00(k) = gk tanh kh .

(5.14)
If kinematic evaluation is required, then the wave slope ε = ak must be included as
in (5.11).

The primary interaction term occurs at O (εδ) and the streamfunction component
Ψ11 has previously been obtained in [37] and presented here in a slightly different
form. If S(z), C(z), S2(z) and C2(z) denote sinh k(z+h), cosh k(z+h), sinh 2k(z+h)
and cosh 2k(z + h) respectively, and the functions Is(z) and Ic(z) are defined by

Is(z) =

∫ z

−h
V (z) sinh 2k(z + h) dz , Ic(z) =

∫ z

−h
V (z) cosh 2k(z + h) dz ,

then if Ψ11 (θ, z) is written as Ψ̃11(z) cos θ (x, t), Ψ̃11(z) is given by

Ψ̃11 = −S(z)

S(0)
.
V (z)

k
+

2

S(0)
.

[
Ic(z)C(z)− C2(0)

S2(0)
.Ic(0)S(z)

]
+ 2

S(z)

S(0)
. [Is(0)− Is(z)]

(5.15)
and necessitates that the unknown function ω01(k) satisfies

ω01(k) =
2k2

sinh 2kh

∫ 0

−h
V (z) cosh 2k(z + h)dz. (5.16)

Thus from (5.12), the dispersion relation at this order is

ω = ω00(k)+δ ω01(k)+ ... =
√
gk tanh kh+δ

2k2

sinh 2kh

∫ 0

−h
V (z) cosh 2k(z+h)dz+ ...,
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In terms of the physical current U(z) and correct to the order of working, this can
also be written as

(ω − kŨ(k))2 = gk tanh kh, Ũ(k) =
2k

sinh 2kh

∫ 0

−h
U(z) cosh 2k(z + h)dz (5.17)

which enables k to be determined once ω, h and U(z) are specified.
To obtain the pressure, it is necessary to take the perturbation respresentation

for Ψ and p from (5.11) and (5.12) and substitute into (4.7) or (4.12). Comparison
of the appropriate εmδn combination will give pmn in terms of the Ψmn. For waves
alone, this is

1

ρ
p10 =

ω00

k
.
∂Ψ10

∂z
. (5.18)

At O (εδ), the two equations from (4.7), relating equations relating p11, Ψ11 and Ψ10

are

1

ρ

∂p11
∂θ

=
∂H11

∂θ
−Ψ01∇2

(
∂Ψ10

∂θ

)
−Ψ10∇2

(
∂Ψ01

∂θ

)
,

1

ρ

∂p11
∂z

=
∂H11

∂z
− 1

k

[
ω00∇2Ψ11 + ω01∇2Ψ10 + ω10∇2Ψ01

]
−Ψ01∇2

(
∂Ψ10

∂z

)
−Ψ10∇2

(
∂Ψ01

∂z

)
,

H11(θ, z) =
1

k

{
ω00

∂Ψ11

∂z
+ ω01

∂Ψ10

∂z
+ ω10

∂Ψ01

∂z

}
− ∂Ψ01

∂z
.
∂Ψ10

∂z
+ k2

∂Ψ01

∂θ
.
∂Ψ10

∂θ

+Ψ01∇2Ψ10 + Ψ10∇2Ψ01 .

Considerable simplification is possible, as Ψ01 is a function of z, from (5.12), and
Ψ10(θ, z) satisfies Laplace’s equation. It is straightforward, though tedious, to show
that the two equations possess the solution

1

ρ
p11(θ, z) =

1

k

{
ω00

∂Ψ11

∂z
+ ω01

∂Ψ10

∂z

}
− ∂Ψ01

∂z
.
∂Ψ10

∂z

+k2
∂Ψ01

∂θ
.
∂Ψ10

∂θ
+ Ψ01∇2Ψ10 + Ψ10∇2Ψ01 + γ11

where the arbitrary constant γ11 can be shown to be zero by application of the
boundary conditions. Employing the predetermined properties of Ψ01(z), Ψ10(θ, z)
and Ψ11(θ, z) from (5.12)-(5.14), enables this expression to be determined as

1

ρ
p11(θ, z) =

ω00

k

∂Ψ11

∂z
+
(ω01

k
− V (z)

) ∂Ψ10

∂z
+ Ψ10

dV

dz
. (5.19)
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The physical wavelike pressure component at this order is retrieved by including ε
and δ to give

p (θ, z) = ε (p10 + δ p11)

= ρa

[
ω00.

∂Ψ10

∂z
+ ω00

∂Ψ11

∂z
+
(ω01

k
− U(z)

) ∂Ψ10

∂z
+ Ψ10

dU

dz

]
= ρa

[
(ω00 + ω01 − kU(z)) .

∂Ψ10

∂z
+ ω00

∂Ψ11

∂z
+ Ψ10 k

dU

dz

]
(5.20)

and is the MCA equivalent of (5.4) correct to O (εδ). As the θ−dependency is the
same in all terms of (5.20), it is convenient to write (5.20) as

p (θ, z) = ρa Π (z) cos θ . (5.21)

A similar analysis to that conducted in the earlier part of this section may now be
undertaken, with the difference being that Π (z) is known and can be evaluated. If
the bed and surface pressures are written as

p (θ,−h) = ρa Π (−h) cos θ = pb cos θ, p (θ, 0) = a Π(0) cos θ,

then the surface elevation a is

a =
pb

ρΠ (−h)
, (5.22)

and the pressure ampification factor Q is

Q =
Π (0)

Π (−h)
. (5.23)

In contrast to the corresponding expressions for a and Q in (5.8) and (5.9), all terms
in (5.22) and (5.23) are known and can be evaluated for a given current profile U (z).
Also, with Π(−h) obtained from (5.20) and (5.21) with z = −h, the last term in the
expression is zero since Ψ10 (θ,−h) = 0 by construction. Furthermore, in common
with the considerations of previous sections there is no restriction here on the depth
−h ≤ z < 0 at which pressure measurements are taken, and we may choose to work
with Q(z) = Π (0) /Π (z) as required.

6. Discussion

The accuracy of the adopted approach depends upon the profile of the input
current velocity U (z). Writing U(z) = UM + [U(z)− UM ], where UM is the depth-
averaged value of U (z), enables (5.17) to be interpreted as

Ũ(k) = UM +
2k

sinh 2kh

∫ 0

−h
[U(z)− Um] cosh 2k(z + h)dz

and the contribution from the integral term represents the difference of U(z) from
its mean value over the profile. More specifically, it is the difference from the mean
with a weighting towards the upper part of the profile due to the presence of the
cosh 2k (z + h) term within the integral. Kirby & Chen [24] suggest that the ω12

term in (5.12) is required to approximate the dispersion for some profiles in water of
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finite depth, whereas Thomas & Klopman [37] confirm good kinematics agreement
for a single corrective term alone. Both ω12 and Ψ12 are known but the increase
in complexity, for Ψ12 in particular, does not seem to justify their inclusion at this
stage. This remains an area of investigation with particular emphasis placed upon
those profiles encountered in the physical environment.

The problem has been formulated in terms of the measured bed pressure being
employed to predict the free surface elevation, albeit within the application given
only to the linear wave regime. There are inherent reservations associated with such
an approach and these are worthy of investigation. If the pressure amplification
factor Q is large, corresponding to deep-water waves, then an error in pb will result
in an increased error at the surface; this decreases as the wave regime moves more
towards shallow water. A better procedure, as proposed by some authors (such as
Sobey & Hughes [34]), might be to take a reference pressure from a transducer placed
above the bed, say at z = −hr, where 0 < hr < h. The reference pressure will
be larger in this case and the influence of possible viscous effects from the vicinity
of the bed will also be less; to use another reference pressure simply requires the
replacement of Π (−h) by Π (−hr) in (5.22) and (5.23).

An important aspect of the practical implementation of the present method is
that U(z) must provide a good approximation to the physical current. This is
not an issue within the laboratory environment, where measuring systems can be
controlled for purposes of model validation, but it is certainly more challenging in
the targeted physical field. However, the development and utilisation of Acoustic
Doppler Current Profilers (ADCPs) in recent years has enabled the acquisition of
good-quality current information over the vertical profile; while ADCPs may lose
some accuracy close to the free surface, it is widely acknowledged that they are
capable of providing important inputs to predictive models.

The linear approach described herein via the MCA may not be deemed sufficient
for waves bordering upon the limits of the approximation and an extension to O (ε2)
and O (ε2δ) may be considered desirable. There is a considerable difference be-
tween the the two terms, Ψ20 and Ψ21 respectively. The term Ψ20 corresponds
to the standard second order term of the Stokes wave expansion, represented as a
streamfunction rather than as the usual velocity potential. In contrast, Ψ21 denotes
a higher order reference term and is correspondingly more complex. The forms for
Ψ21 and the pressure p21 have been determined but not utilised in any meaningful
manner.

The two-parameter expansion of (5.11) and (5.12), employed intially to obtain
approximate solutions to (5.2), is discussed in detail by Thomas & Klopman [37]
and where three regimes were readily identified. Only the parameter balance of the
MCA enables progress to be made within an analytical framework and without the
recourse to numerical models. It is readily acknowledged that it provides only a
first step to obtaining a prediction of the free surface but the availability of a model
that avoids compution and possesses the possibility of accuracy and extension is
worthy of further study.
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7. Conclusion

A preliminary study on the prediction of the surface waves following the recovery
of pressure at the bed, in the presence of a current, has been undertaken. The waves
are regular and restricted to two dimensions, though the current may possess an arbi-
trary distribution of vorticity. A short review of existing methods utilising pressure
recovery is presented initially, with an emphasis on work related to the presence
of current; these are mainly restricted to constant currents or those with constant
vorticity, for which the wavefield is irrotational. The pressure–streamfunction re-
lations are then presented for the general case of regular waves interacting with a
current possessing an arbitrary profile and the importance of the vorticity is iden-
tified. Although such an approach normally requires numerical evaluation, the
Moderate Current Approximation is employed to provide a good description of the
bed pressure – surface elevation relationship in water of finite depth.
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Appendix A. Appendix 1

A.1. The function H(θ, z). Neglecting the gravitational component, H(θ, z) is
given by (4.7) as

H(θ, z) =
ω

k
Ψz −

1

2

{
Ψ2
z + k2Ψ2

θ

}
+ Ψ∇2Ψ. (A.1)

and with the expansion given in (4.9) and (4.10) each term needs to be represented
in a form analogous to the harmonic series employed. The first term in (A.1) is

ω

k
Ψz =

ω

k

∞∑
n=0

ψ′n(z) cosnθ. (A.2)
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The first term in the kinetic energy in (A.1), with the constant omitted, is

Ψ2
z =

{
∞∑
n=0

ψ′n(z) cosnθ

}{
∞∑
m=0

ψ′m(z) cosmθ

}

=
∞∑
n=0

∞∑
m=0

ψ′n(z)ψ′m(z) cosnθ cosmθ

=
1

2

∞∑
n=0

∞∑
m=0

ψ′n(z)ψ′m(z) [cos(m+ n)θ + cos(m− n)θ]

=
1

2

∞∑
n=0

∞∑
m=0

ψ′n(z)ψ′m(z) cos(m+ n)θ +
1

2

∞∑
n=0

∞∑
m=0

ψ′n(z)ψ′m(z) cos(m− n)θ

=
1

2

∞∑
n=0

[ψ′n(z)]
2

+
1

2

∞∑
n=0

∞∑
m=0

ψ′n(z)ψ′m(z) cos(m+ n)θ

+
1

2

∞∑
n=0

ψ′n(z)


∞∑
m=0
m6=n

ψ′m(z) cos(m− n)θ

 . (A.3)

The second term in the kinetic energy in (A.1), with the constant omitted, is

Ψ2
θ =

∞∑
n=1

∞∑
m=1

nmψn(z)ψm(z) sinnθ sinmθ

where the series starts at 1 because there will be a zero contribution when either
n or m are zero. Using the relation sinnθ sinmθ = 1

2
[cos(m− n)θ − cos(m+ n)θ]

gives

Ψ2
θ =

1

2

∞∑
n=1

∞∑
m=1

nmψn(z)ψm(z) [cos(m− n)θ − cos(m+ n)θ]

= −1

2

∞∑
n=1

∞∑
m=1

nmψn(z)ψm(z) cos(m+ n)θ +
1

2

∞∑
n=1

∞∑
m=1

nmψn(z)ψm(z) cos(m− n)θ

=
1

2

∞∑
n=1

n2ψ2
n(z)− 1

2

∞∑
n=1

∞∑
m=1

nmψn(z)ψm(z) cos(m+ n)θ

+
1

2

∞∑
n=1

nψn(z)


∞∑
m=1
m6=n

mψm(z) cos(m− n)θ

 . (A.4)
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The last term in (A.1) is Ψ∇2Ψ and this can be written down immediately as

Ψ∇2Ψ =
1

2

∞∑
n=0

ψn(z)Ωn(z) +
1

2

∞∑
n=0

∞∑
m=0

ψn(z)Ωm(z) cos(m+ n)θ

+
1

2

∞∑
n=0

ψn(z)


∞∑
m=0
m6=n

Ωm(z) cos(m− n)θ

 . (A.5)

Collecting up the terms from (A.2)–(A.5) and substituting into (A.1) gives

H(θ, z) =
ω

k

∞∑
n=0

ψ′n(z) cosnθ − 1

4

∞∑
n=0

{
(ψ′n(z))

2
+ k2n2 (ψn(z))2 − 2ψn(z)Ωn(z)

}
− 1

4

∞∑
n=0

∞∑
m=0

[
ψ′n(z)ψ′m(z)− nmk2ψn(z)ψm(z)− 2ψn(z)Ωm(z)

]
cos(n+m)θ

− 1

4

∞∑
n=0

∞∑
m=0
m 6=n

[
ψ′n(z)ψ′m(z) + nmk2ψn(z)ψm(z)− 2ψn(z)Ωm(z)

]
cos(m− n)θ.

(A.6)

A.2. The function F (θ, z). From (4.7) and (4.8) the function F (θ, z) is given by

F (θ, z) = Ψ∇2Ψθ = Ψ
∂

∂θ

[
∇2Ψ

]
= −

{
∞∑
n=0

ψn(z) cosnθ

}{
∞∑
m=0

mΩm(z) sinmθ

}

= −
∞∑
n=0

∞∑
m=1

mψn(z)Ωm(z) cosnθ sinmθ

= −1

2

∞∑
n=0

∞∑
m=1

mψn(z)Ωm(z) [sin(m+ n)θ + sin(m− n)θ]

= −1

2

∞∑
n=0

∞∑
m=1

mψn(z)Ωm(z) sin(m+ n)θ − 1

2

∞∑
n=0

∞∑
m=1
m 6=n

mψn(z)Ωm(z) sin(m− n)θ.

Accordingly,∫ θ

F (θ, z)dθ =
1

2

∞∑
n=0

∞∑
m=1

m

m+ n
ψn(z)Ωm(z) cos(m+ n)θ

+
1

2

∞∑
n=0

∞∑
m=1
m 6=n

m

m− n
ψn(z)Ωm(z) cos(m− n)θ. (A.7)
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A.3. The function G(θ, z). From (4.7) and (4.8), G(θ, z) is composed of two com-
ponents. The first is

ω

k
∇2Ψ =

ω

k
Ω =

ω

k

∞∑
n=0

Ωn(z) cosnθ,

and the second is

Ψ∇2Ψz =

{
∞∑
n=0

ψn(z) cosnθ

}{
∞∑
m=0

Ω′m(z) cosmθ

}

=
∞∑
n=0

∞∑
m=0

ψn(z)Ω′m(z) cosnθ cosmθ

=
1

2

∞∑
n=0

∞∑
m=0

ψn(z)Ω′m(z) [cos(m+ n)θ + cos(m− n)θ] .

Hence, we have∫ z

G(θ, z)dz =
ω

k

∞∑
n=0

{∫ z

Ωn(z)dz

}
cosnθ

+
1

2

∞∑
n=0

∞∑
m=0

{∫ z

ψn(z)Ω′m(z)dz

}
[cos(m+ n)θ + cos(m− n)θ]

=
ω

k

∫ z

Ω0(z)dz +
ω

k

∞∑
n=1

{∫ z

Ωz(z)dz

}
cosnθ

(A.8)

+
1

2

[∫ z

ψ0(z)Ω′0(z) +
∞∑
n=1

{∫ z

[ψ0(z)Ω′n(z) + ψnΩ′0(z)] dz

}
cosnθ

+
∞∑
n=1

∞∑
m=1

{∫ z

ψn(z)Ω′m(z)dz

}
cos(m+ n)θ

]

+
1

2

 ∞∑
n=0

{∫ z

ψn(z)Ω′n(z)dz

}
+
∞∑
n=0

∞∑
m=0
m6=n

{∫ z

ψn(z)Ω′m(z)dz

}
cos(m− n)θ

 .

Appendix B. Appendix 2

B.1. Pressure version of the Rayleigh equation (5.2). There exists an alter-
native approach for computing the amplification factor Q(z) to that described in
Section 5. Rather than working with the Rayleigh equation expressed in terms of
the streamfunction, (5.2), we may derive a version (cf. Peregrine [31]) in which the
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linear dynamic pressure is the unknown. Denoting p1(z) = P (z), we must solve

P ′′(z) +

[
2kU ′

ω − kU

]
P ′(z)− k2P (z) = 0 (B.1)

subject to the boundary conditions

P (z) = Pb on z = −h
P ′ (z) = 0 on z = −h (B.2)

(ω − kU)2 = g
P ′ (z)

P (z)
on z = 0 .

The conditions (B.2) are analogues of (5.3), with the second and third conditions
given in [31], whereas the first is not but is required here to derive the solution.
With the first two conditions imposed, the surface condition in (B.2) is equivalent
to the dispersion relation and is required to obtain the wavenumber k.

Peregrine notes that (B.1) can only be solved analytically for a few simple profiles.
The two simplest for a non-zero current are the constant current U (z) = Uc and
the linear profile U (z) = Us + Ωz, though many profiles can be approximated by a
number of linear components and with appropriate matching conditions applied at
the interfaces. If U (z) is arbitrary, a numerical solution to (B.1) is required; the
imposed bottom boundary conditions in (B.2) ensure an initial-value problem that
should not cause numerical difficulties. This is in contrast to the method employed
by Thomas [35] when the solution for arbitrary U (z) is driven by the given surface
elevation amplitude a.

We note that the description of the water wave problem given in terms of the
pressure, (B.1)–(B.2), is appropriate only for linear waves; it does not extend readily
to higher order. Remarkably, however, the two-dimensional equations (B.1)–(B.2)
do have a generalisation in three-dimensions, cf. [28]. In order to work with a higher-
than-linear order wave, in two-dimensions the streamfunction approach outlined in
(4) may be implemented, or more generally (and, in three-dimensions, necessarily)
a numerical method may be used.
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