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Abstract 

 Using quantum chemical calculations, we investigate surface reactions of copper precursors 

and diethylzinc as the reducing agent for effective Atomic Layer Deposition (ALD) of Cu. 

The adsorption of various commonly used Cu(II) precursors is explored. The precursors vary 

in the electronegativity and conjugation of the ligands, and flexibility of the whole molecule. 

Our study shows that the overall stereochemistry of the precursor governs the adsorption onto 

its surface. Formation of different Cu(II)/Cu(I)/Cu(0) intermediate complexes from the 

respective Cu(II) compounds on the surface is also explored. The surface model is a (111) 

facet of a Cu55 cluster.  Cu(I) compounds are found to cover the surface after the precursor 

pulse, irrespective of the precursor chosen.  We provide new information about the surface 

chemistry of Cu(II) versus Cu(I) compounds. A pair of CuEt intermediates or the dimer 

Cu2Et2 reacts in order to deposit a new Cu atom and release gaseous butane. In this reaction, 
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two electrons from the Et anions are donated to copper for reduction to metallic form. This 

indicates that a ligand exchange between the Cu and Zn is important for the success of this 

transmetallation reaction. The effect of the ligands in the precursor on the electron density 

before and after adsorption onto the surface has also been computed through population 

analysis. In the Cu(I) intermediate, charge is delocalized between the Cu precursor and the 

bare copper surface, indicating metallic bonding as the precursor densifies to the surface. 

Keywords: Cu, ALD, ZnEt2, Cu(I) compounds, geometry, adsorption onto the surface, .  

I. Introduction 
 Copper has low electrical resistivity and a high electromigration resistance1. For this 

reason it is used as the material for electronic interconnects. Previously Al was used as 

interconnect and the change to Cu caused a radical change in the back end of line process. 

Hence, the damascene process2 was introduced, where copper is electrochemically deposited 

onto an underlying seed layer1a by filling of narrow features. The seed layer should be ~2 nm 

thick and for adequate conductivity, it should be a continuous film. The Atomic Layer 

Deposition (ALD) technique can in principle be used to deposit this seed layer, but Cu tends 

to agglomerate into islands rather than forming a uniform continuous film3. The International 

Technology Roadmap for Semiconductors (ITRS)4 regards the formation of a sufficiently 

thin seed layer as one of its main challenges for the upcoming years.  

 ALD is a unique nanofabrication technique where for many materials a uniform layer 

of a desired thickness can be deposited, provided suitable precursor compounds are found. 

The ALD method relies on alternate pulsing of the precursor gases onto the substrate surface 

causing chemisorption with the surface atoms. This is followed by purging away excess 

precursor molecules from the surface. The same reaction is repeated for the second set of co-

reagents. This leads to surface reaction of the two compounds, generating the desired material 

and forming by-products. S. George et al. review5 the basic concepts of ALD. 
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 Many attempts have been made to develop an ALD process for copper metal using 

existing copper precursors. Various combinations of copper precursor and reducing agent 

have been tried. Cu(hfac)2 and alcohol (hfac = 1,1,1,5,5,5-hexafluoro-3,5-pentanedionate)6 at 

300°C, CuCl and hydrogen as the reducing agent7 at  T > 360°C, Cu(thd)2 and hydrogen at 

260°C8 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) are three ALD processes that allow 

deposition of Cu at relatively high temperatures. However, one of the main requirements for 

Cu deposition is that the ALD process operates at a low reaction temperature ~100°C. A three 

step deposition technique was developed by Knisley et al.9 using Cu(dmap)2 as the precursor 

and formic acid and hydrazine for further reduction (dmap = OCHMeCH2-NMe2). Indirect 

methods like reduction of CuO by isoproponal10, Cu2O by formic acid over ruthenium11 and 

Cu3N by H2
12 have also been tried. Kalutarage et al.13 have reported the use of BH3(NHMe2) 

as a new reducing agent along with alkoxides of first row transition metals. Cu(I)amidinate 

compounds were described by Li et al.14  as promising precursors for Cu ALD. However, 

later through the study of Ma et al.15 it has become apparent that these reactions resemble 

thermal CVD rather than ALD. This indicates that Cu(I) molecules have a tendency to 

decompose at the surface.  

Lee et al.16 used the organometallic reagent diethylzinc (ZnEt2) as a reducing agent and 

Cu(dmap)2 as the precursor for Cu(0) deposition via transmetallation according to equation 1.  

Cu(dmap)2(g) + ZnEt2(g)  Cu(s) + Zn(dmap)2(g) + butane(g)  ….(1) 

They reported low temperature ALD at around 100°C. The Cu layers were reported to be 

uniform, thin, conformal and without any contamination. The reaction was self-terminating, 

and so was used to coat patterned octadecylsiloxane self-assembled monolayers. Similar 

transmetallation reactions are used for the preparation of non-aqueous metal colloids17. 

The work of Lee et al. was followed by that of Vidjayacoumar et al.18 who checked 

triethylborane and trimethylaluminium as alternative reducing agents in solution. They came 
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to the conclusion that diethylzinc is the best of the three reducing agents for copper 

deposition. But there was 10% deposition of zinc along with copper resulting in formation of 

brass rather than pure copper metal.  

A gas-phase model was used by Dey et al.19 to propose probable reactions that might take 

place during transmetallation ALD. Here ZnEt2 was considered as the reducing agent. 

Broadly the overall transmetallation reactions were broken down into disproportionation, 

ligand exchange and reductive elimination. It was found that copper and zinc reaction 

energies were comparable and hence, it is inevitable that there is co-deposition of zinc along 

with copper. The pathway by which Cu(0) can be deposited was found to be the 

disproportionation reaction of the Cu(I)
2Et2 compound. This indicates that ligand exchange 

between the two metals (Cu and Zn) is very important as a way to bring Cu and Et together. 

The paper mentioned that similar type of ligands have similar features and can be grouped 

together. Cu(I)
2L2 (L = ligand) compounds play a crucial role in understanding the 

mechanism. This is because after the precursor pulse, the copper compounds always tend to 

form these Cu(I) compounds. The paper also mentioned other side reactions that might take 

place. 

However, ALD is predominantly a surface phenomenon and the gas phase model could 

only give a view of probable reactions that might take place at the surface. Finding a stable 

intermediate species on the surface indicates a pathway for the ALD reactions. Computed 

adsorption energies of the different species are a measure of their relative stability, thus 

revealing the dominant surface compounds that can be found after different ALD pulses. In 

some cases, the gas phase reactions show exothermic reaction energies, indicating a probable 

pathway for the reaction mechanism, but the same reactions might not take place on the 

surface due to slow kinetics, lack of interaction between the intermediates or a strong 

substrate effect.  
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The mechanism of a reaction is the atomically-resolved pathway that is followed by the 

reactants in order to form the products via the intermediates. It is important to understand the 

mechanism in order to determine the kinetics, possible side reactions and also impurities. 

ALD reaction mechanisms have been studied in many cases. For example, Mui20 et al. 

studied silicon nitride formation using a cluster model, Elam21 et al. studied ALD of ZrO2 

using in situ mass spectrometry and first principle calculations, Heyman22 studied different 

cycles in ALD of Al2O3 using AlCl3 and H2O, Leskela23 and co-workers studied ALD of Ru 

and Pt using an in situ quadrupole mass spectrometer (QMS) and a quartz crystal 

microbalance (QCM) and Widjaja24 et al. studied ALD of HfO2 from HfCl4 and H2O using 

first principle calculations.  

Ab initio calculations can give valuable insights into the mechanism of ALD reactions25. 

Short-lived intermediates can also be studied using these calculations, which might not be 

possible through experiments26. In most of the cases, Density Functional Theory (DFT) has 

been the preferred level of computation, because it provides a reliable description of chemical 

reactions at reasonable computational cost. It is computationally cheaper than other first 

principle techniques like Møller–Plesset second order perturbation theory or Coupled 

Cluster27 and so allows larger systems to be computed. Computational study builds a bridge 

between the theoretical understanding and experimental data for various chemical reactions 

in ALD. 

The ligand in the precursor plays a crucial role in ALD mechanism. It dictates the volatility 

of the precursor, surface adsorption and densification on the surface. Computing surface 

adsorption shows the structures of the precursors on the surface.  Densification is defined as 

the increase in density due to improved metal (M) and ligand (L) M-L packing, associated 

with an increase in coordination numbers of metal and ligand28. Although densification has 

been shown to be important in ALD of oxides29, it has hardly been discussed before for 
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metals25. The computed adsorption structures for Cu compounds show the densification that 

can take place for this metal. 

In our current work, we use a surface model to study the cycles in Cu ALD during the 

transmetallation reaction as proposed in equation 1 (Figure 1). We compare various 

copper(II) precursors and consider ZnEt2 as the reducing agent. Each ALD cycle comprises a 

precursor pulse and a co-reagent pulse30. Different surface reactions take place during each 

pulse. During a precursor pulse (denoted as pulse 1), the copper complexes CuL2 come onto a 

surface covered with Et ligands from the previous co-reagent pulse. During the reducing 

agent pulse (denoted as pulse 2), ZnEt2 comes onto a surface already covered with ligands (L) 

from the precursor. Thereafter, during either or both pulses, reactions may take place at the 

surface between ligands and Et groups and volatile by-products may be produced. After 

saturation has been reached, a particular type of ligand always dominates the surface.  

In order to study these reactions, we have divided them into parts as shown in Figure 1. 

Each ALD pulse is conceptually broken into parts ‘a’ and ‘b’. Based on our prior study of this 

system19, we expect that the following reactions take place in part 1a where co-reagent is 

present at the surface.  

 Ligand exchange between the two metals (Cu/Zn). 

 Formation of half and fully ligand exchanged Cu and Zn surface intermediates 

like LZnEt and LCuEt and volatile products like ZnL2 and butane. 

 Further reactions and decomposition of these intermediates. 

 Formation of new Cu surface layer. 

In part 1b, we study the system when an excess of the copper precursor is admitted to the 

bare copper surface without any co-reagent left. The following reactions are expected to take 

place. 

 Adsorption of unreacted Cu precursors onto a bare surface. 
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 Dissociation of the copper precursor on the surface. 

Part 2 deals with the reactions during the reducing agent pulse. All the reactions that take 

place in 1a are also expected to take place in 2a. However, in this case the surface is initially 

covered with precursor ligand (L).  

In part 2b, the following reactions are expected to take place.  

 Adsorption of ZnEt2 onto a bare copper surface. 

 Reaction of Et ligands with surface Cu atoms. 

The transition from part ‘a to b’ in both pulses ‘1 and 2’ is marked by the formation of a 

new copper layer. In pulse 1, copper deposits from the copper precursor and in pulse 2, 

copper deposits from the Cu(I) intermediates. This course of the reaction is cyclic as seen in 

the following: 

1a  Cunew-layer  1b 2a Cunew-layer 2b 1a …….  

In this paper we will study the reactions in parts 1b and 2b that take place on a bare copper 

surface. This can be assumed to be the situation in the latter half of every pulse after complete 

exhaustion of the other ligand. For this reason we start from a bare Cu surface and study the 

adsorption of each precursor and the stability of Cu(I) intermediates25 at the surface stable 

adsorbates as they are an important prerequisite for growth as otherwise the unreacted 

precursor  complex will be expelled out of the reactor. Just as important, Cu-containing 

surface intermediates should not desorb and other by-products should desorb cleanly so as to 

avoid impurities in the film. We therefore compute the adsorption/desorption energies of the 

copper precursors CuL2, intermediate compounds Cu2L2 and by-products ZnL2, Et-Et and L-

Et . The potential energy change for the transformation from Cu(II) to Cu(I) for three different 

ligands is also studied. These are all the possible reaction steps that may be followed in part 

1b of the pathway for Cu(0) deposition.  
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For part 2b of the ALD cycle, we study the interaction of ZnEt2, the reducing agent, 

with a bare copper surface. This takes place when all the surface bound ligands from the 

precursors have interacted with the incoming ZnEt2 compounds and have been eliminated.  

The excess ZnEt2 that is present may then interact with the newly formed bare copper surface.  

Our aim is to screen many reactions and precursors and map out the likely pathway from 

the thermodynamic reaction energies. Given the large number of possible species, we do not 

consider the kinetics of competing reaction steps and so no transition states have been 

computed in this study. 

 

II. Methods  

We have used first principles Density Functional Theory as implemented in the 

TURBOMOLE 5.8 program31. The Perdew-Burke-Ernzerhof (PBE)32 functional was used 

with the resolution of identity (RI) approximation33. A valence double zeta with polarization 

basis set denoted by def-SV(P)33a was used for all electrons. We used the larger triple zeta 

basis set TZVPP34 and dispersion functional D335 to check the accuracy of the level of 

calculation in a previous study36. It was seen that energy difference changed by 4-8%, 

especially when using the dispersion functional D3. However, the computational cost of these 

calculations was much higher and the qualitative results in terms of reaction mechanism were 

not affected. Therefore, due to its adequate accuracy, we have used the PBE/def-SV(P) 

method in this study.  

An fcc Cu55 cluster, which is in the shape of a coin with (111) faces, was taken as a surface 

model. The bare cluster has C3v symmetry (Figure 2). The copper coin is an open shell 

doublet system with a HOMO - LUMO energy difference of 1.8 kJ/mol. The Cu(II) 

precursors are open shell doublets. Therefore, all the calculations with adsorbate on the 

cluster were open shell triplet calculations computed within the unrestricted DFT formalism 
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with negligible spin contamination. This is the same model as used by Larsson et al.37 and in 

our previous studies36, 38. There are few studies done previously of organic and 

organometallic adsorption onto a copper surface by Crispin et al.39.  

Some of the adsorbates cover the entire copper surface and overlap the edges of the cluster. 

However, a bigger cluster is computationally very expensive. The edge effect that arises is 

already discussed in our previous study36. Correcting for this gives an energy difference of 

~8% and the qualitative adsorption energies do not change. Hence, the adsorption energies 

quoted in this work have an error limit in this range.  

In this paper we have focused on the surface reactions of copper precursors onto a copper 

surface. After ligands have been removed during each pulse of the ALD cycle it is assumed 

that there is a new layer of bare copper and that any incoming precursors will react with this 

new copper surface. Such a surface is likely to occur in its most stable geometry at the scale 

of individual precursor molecules (although it is known that islanding occurs at longer scales) 

and hence, we choose the most stable smooth copper surface for our study, Cu(111).    

A comparative study of the reactive adsorption of the more commonly used Cu(II)precursors 

onto the surface has been carried out. The precursors are copper(II)acetylacetonate Cu(acac)2, 

copper(II)pyrrolylaldehyde Cu(PyrAld)2, copper(II)N-isopropyl-2-pyrrolylaldiminate 

Cu(PyrImiPr)2, copper(II)dimethylamino-2-propoxide Cu(dmap)2 and copper(II)-bis(4N-

(ethylamino)pent-3-en-2-onate commonly known as AbaCus(TM). The precursors vary in the 

electronegativity of the ligating atom, π conjugation present in the ligands and also steric 

hindrance in the coordination shell (Figure 3).  

The energy of adsorption of the precursors to the bare surface has been calculated by 

this equation: 

∆Ead = E(Pre+Coin) –E(Coin)-E(Pre)  …(4) 
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where  E(Pre+Coin) denotes the total energy of the optimized geometry of the copper 

precursor adsorbed onto the bare copper surface, E(Coin) denotes the total energy of the 

optimized bare copper surface model, and E(Pre)  denotes the total energy of the relaxed 

copper precursor in the gas phase.  

The entropy of the precursor molecules S(Pre) has also been calculated in the gas phase 

from vibrational analysis using TURBOMOLE40. The entropy has been calculated at  T = 393 

K as this is a typical target temperature for Cu ALD. After the precursor is adsorbed onto the 

surface, it loses its translational and rotational degrees of freedom and this is probably the 

major contribution to the entropy change. It is therefore assumed that S(Pre+Coin) ≈ S(Coin) 

+ Svibr(Pre) and so the entropy change is ∆Sad ≈ -Strans+rot(Pre). ∆Gad = ∆Ead - T∆Sad denotes the 

free energy needed by the precursors to be adsorbed onto the surface. A lower more negative 

∆Gad value for the precursors indicates that the adsorption is favored. Likewise a higher more 

positive value for the by-products means that desorption is favored. The change in molecular 

structures from the free to the adsorbed state is also noted. Ab initio Molecular Dynamics 

(aiMD) using the same PBE functional and def-SV(P) basis set has been conducted on the 

ZnEt2 molecule from an initial temperature of 393 K within the isothermal and isobaric 

ensemble. The total duration of the aiMD simulation was 2.17 ps. 

 All the precursors feature copper in formal oxidation state II and some of the surface 

intermediates studied here like Cu2L2 have copper in the oxidation state I. However, 

population analysis has been carried out in order to understand the actual charge distribution 

in different structures. Natural Population Analysis (NPA)41 has been chosen as it exhibits 

better numerical stability for compounds containing metal atoms than other methods like 

Mulliken population analysis42. Nevertheless we note that these results are subject to the 

systematic problem of approximate DFT in localizing electrons in partially occupied metal d 

states (e.g. Cu(I) vs Cu(II)). 
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III. Results 

 This section is divided into four parts. In section III.a we study the copper precursor 

adsorption onto a bare copper surface for various precursors. In section III.b we study the 

stability of Cu2L2 compounds on the surface. In section III.c, we study the change in charge 

distribution of the copper compound, from the gas phase, to the adsorbed CuL2 and Cu2L2 

compounds. Section III.d considers the interaction of the ZnEt2 with the bare copper surface. 

The initial three sections are relevant to part 1b of the ALD cycle and the latter section to part 

2b. 

III.a. Adsorption of copper precursors onto bare copper surface:  
Five different precursors that differ in electronegativity of the ligating atom, π conjugative 

stability in the ligands and steric hindrance have been considered here. The comparison 

allows us to understand their adsorption onto a bare copper surface. A precursor that has 

strong adsorption is beneficial, as it will not be purged out of the reactor without first 

saturating the surface. Stronger adsorption energies of intermediates give an idea of the 

dominant species that can be present at any time during the ALD reaction. 

 Cu(acac)2 (Figure 3(i)) has O atoms in the ligand attached to the copper center. The 

ligand has conjugated O-C-C-C-O π system in which the negative charge is 

delocalized. 

 Cu(PyrAld)2 (Figure 3(ii)) has both N and O as ligating atoms and has conjugated 

bonds present in O-C-C-N fused to a pyrrole ring. It has a distorted tetrahedral 

structure about the Cu center. It has mirror symmetry across a horizontal plane 

through the copper center.  
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 Cu(PyrImiPr)2 (Figure 3(iii)) is similar to Cu(PyrAld)2 except that (a) it has higher 

steric hindrance due to the presence of an isopropyl group attached to the imine 

nitrogen and (b) the electronegative atoms attached to the copper are N and N, not N 

and O as in the case of PyrAld.  

 Cu(dmap)2 (Figure 3(iv)) is different from the above precursors as the ligand does not 

have any conjugation present. Otherwise, it is comparable to Cu(PyrAld)2 as it has 4-

atom O-C-C-N ligating unit, but no fused ring. It does not have a mirror plane and 

ligating atoms are arranged anti around Cu.  

 Copper-bis(4N-(ethylamino)pent-3-en-2-onate) AbaCus(TM) (Figure 3(v)) is a 

precursor that is similar to Cu(dmap)2 but has conjugation present in its ligand. It does 

not have a mirror plane and ligating atoms are arranged anti around Cu.  

The difference between gaseous and adsorbed structures is shown in Table 1 for copper 

precursors. The bond length between the metal Cu and the O/N atom in ligand, as well as the 

distance from the nearest surface copper atom is noted. When some of the precursors are 

adsorbed onto the coin, there is considerable change in metal-ligand bonding and the dihedral 

angle between the four ligating atoms. For example, the ∟O-N-O-N angle in Cu(dmap)2 

changes from 0.6° to 104°. 

We see that the structure of the precursor affects the adsorption onto the surface. A planar 

complex like Cu(acac)2 that is free of any bulky substituent, has better access to the surface 

copper atoms. There is partial transfer of the ligand from the complex to the surface, where 

the ligands form extra bonds with the surface copper atoms (Figure 4 (i)). The bond length 

between the Cupre (in the precursor) and ligand O lengthens from 1.95 Å to > 2.10 Å.  

The Cu(PyrAld)2 precursor is also free of  steric hindrance from bulky substituents but it 

has an almost tetrahedral structure around Cupre. In order for the precursor to adsorb, the 

Cupre-O bond dissociates to a length of 2.61/2.72 Å, much longer than the normal Cu-O bond 
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found in an organometallic compound43 (1.92 Å) (Figure 4 (ii)). The O remains unbonded to 

both Cupre and Cusurf. 

When the lowest energy isomer of Cu(PyrImiPr)2 is put onto a bare copper surface, it is seen 

in the calculations that it does not chemisorb. This is because of the bulky iPr groups, which 

are on the opposite sides of the plane of the precursor compound (Figure 5). The steric 

hindrance is lower with an alternative isomer where the iPr groups are on the same side of the 

plane (Figure 4(iii)). The difference in energy between the two gas phase isomers is 5 kJ/mol. 

We see molecular adsorption of the precursor only after the transformation.  

Cu(dmap)2 also shows molecular adsorption onto the surface. The ligand O atoms form 

extra bonds with the surface atoms (Figure 4(iv)). However, the Cu-ligand bonds of the 

precursor complex do not dissociate.  

In AbaCus, (Figure 4(v)), the steric hindrance that arises from the Et group on imino N in 

the ligand does not hinder the adsorption. The Et groups occupy the space above the plane of 

the molecule while the Cupre atom adsorbs to the surface below. The O atoms in the precursor 

break from the Cupre and bond to the Cusurf. The Cusurf-O distances are 2.55 Å and 2.17 Å.  

The computed energies for the adsorption of Cu precursors and desorption of the by-

products are reported in Table 2. The data can be interpreted as in the following example. It is 

computed that Cu(acac)2 has an adsorption energy of ∆Ead = -258 kJ/mol at 0 K. However, it 

faces an energy of ∆G393
ad = -79 kJ/mol at 393 K because of the entropy factor ∆Sad = -0.5 

kJ/mol.K and T∆Sad = -179 kJ/mol. A similar interpretation with different results can be made 

for all the complexes in Table 2. From these data we see that the less sterically hindered acac 

precursor has the highest ∆Ead. This is followed closely by PyrImiPr, dmap and AbaCus 

precursors. The least negative ∆Ead is for PyrAld. It is seen that, except for Cu(PyrAld)2, all 

other precursor complexes show favorable adsorption at ALD temperatures, ∆G393
ad< 0. 
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Adsorption of CuEt2 has also been explored as this compound might be formed after a 

ligand exchange with ZnEt2. It is seen that ∆Ead is strongest in this case as against any of the 

above precursors.  

 The Cupre forms a cap over copper surface after adsorption. The Cupre encircles three 

Cusurf atoms (Figure 4 (i), (ii), (iii), (v)). This is seen for all precursors except dmap (Figure 4 

(iv)) where the dmap bridges between two Cusurf. The adjacent O atoms bind to the surface 

for acac, dmap and AbaCus. The O adsorbs onto the coordinately unsaturated copper surface. 

It is seen from Table 1 that the Cu-O bond always lengths more compared to Cu-N bond in 

precursor ligands, which have both (N, O) atoms like dmap, PyrAld etc.  

III.b. Adsorbed Intermediates 
 It seems that Cu(I)

2L2 is an important intermediate that can be formed during the 

transmetallation reaction18-19. This stems from our previous study of the gas phase 

transmetallation reaction, where it was seen that after the precursor pulse, the surface is likely 

to be covered with these Cu(I) intermediates. Comproportionation of Cu(II)  and Cu(0) to Cu(I) 

was found to be exothermic. However, the previous study did not explicitly consider surface 

reactions.  

In the current study, we find that all Cu2L2 intermediates exist as molecules adsorbed on the 

surface. The theoretical adsorption energies of these intermediates are reported in Table 3 in 

order to assess their stability against desorption. The Cu(I) intermediates seem to release the 

strain present in the corresponding Cu(II) precursors (Table 2). The open structure of Cu2L2 

allows better access for the Cu(I) centers to the surface Cu atoms for bonding. This allows 

stronger adsorption to the surface (Table 3). 

We have previously identified three types of Cu(I) compounds19: in Cu2L2 each ligand is 

attached to two copper atoms; in CuL there is no Cu-Cu bond and each ligand is attached to 

only one Cu atom and in Cu2L there is only one ligand attached to two copper atoms (Figure 
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6). In Cu2L one of the Cu is formally in oxidation state zero and the other is in +1 oxidation 

state. In the current study, we find similar possibilities for Cu(I) adsorbates, validating the 

previous study (Figure 6). 

Various reactions are possible for the Cu(I) intermediate. It can desorb from the 

surface or transform into another type of Cu(I) intermediate or else disproportionate into Cu(II) 

compounds and Cu(0). The computed energetics for these possibilities are shown in Figure 7 

for L = dmap and Figure 8 for L = PyrImiPr. The desorption energies (∆Edes) and free energies 

(∆Gdes) that include ∆S are also shown in the graphs. It is known that entropy always favors 

desorption. Hence, ∆Gdes is always less than ∆Edes irrespective of the system studied. 

Conversion from one stable intermediate to another stable intermediate with a transition from 

a higher intermediate might indicate an activation barrier for this reaction. We see that 

amongst all the surface species, the Cu(I) intermediates are the most stable for all the ligands 

studied.  

 As seen in Figure 7 and Figure 8, the reaction energies for Cu(II) and surface Cu(0) 

atoms to comproportionate into Cu(I)  are < -100 kJ/mol. Therefore, subject to overcoming the 

unknown kinetic barriers, the reaction is expected to take place. For the dmap ligand the most 

stable surface intermediates are Cu(I)
2L2 and Cu2L (Figure 7) and for L = PyrImiPr, Cu2L is the 

most stable (Figure 8). The desorption of the Cu(I) intermediates is not likely for the dmap 

ligand as the energies required are ΔGdes
393 > 300 kJ/mol. However, PyrImiPr compounds 

have more probability for desorption of the Cu(I) compounds (ΔGdes
393 = -111 kJ/mol). This is 

because they show more tendency than dmap to retain the Cu(I) structure rather than Cu(II). 

This was seen in the gas phase studies as well19. However, Cu(II)L2 is energetically more 

likely to desorb than Cu(I)Lx in all the cases. Thus during step 1b of the copper precursor 

pulse, when all the pre-existing ligands from the reducing agent have been expelled from the 

system, the surface becomes covered with Cu(I) complexes. 
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III.c. Population Analysis of PyrImiPr, dmap and AbaCus precursors: 
Table 4 shows the population analysis using NPA of three CuL2 compounds before and 

after adsorption onto the surface. They are chosen such that the ligand varies in 

electronegativity (N, O as in dmap and AbaCus but N,N in PyrImiPr), flexibility in the 

precursor (conjugation in the ligands AbaCus, PyrImiPr but no conjugation in dmap) and size 

of the ring including copper (five membered ring in dmap and PyrImiPr but six membered 

ring AbaCus). For CuL2 adsorption in all three cases, each ligand gains -0.3 negative charge 

on adsorption to the Cu (111) surface and the surface donates this amount of charge. The 

exception is for the second ligand in the PyrImiPr precursor, which is an artifact of the 

calculation because the ligand is bound towards the edge of the copper cluster. The positive 

charge initially on the Cu atom in the precursor becomes shared between the surface and 

adsorbed Cu (Table 4). This delocalization may contribute to stabilization of the adsorbed 

copper complexes and can be interpreted as metallic bonding. The redistribution of charge 

over the copper surface is less for the Cu2L2 compound compared to CuL2. The charge left on 

the two adsorbed Cu2L2 centers and the ligands are roughly the same, regardless of precursor. 

Error! Reference source not found. shows the charge difference for Cu(dmap)2 precursor 

before and after adsorption to the copper surface. 

III.d. Interaction of ZnEt2 with a bare copper surface:  

 In this section, we explore the ZnEt2 interaction with a bare copper surface. This takes 

place in an ALD chamber when there is an excess of the reducing agent and the previously-

adsorbed ligands from the precursors are exhausted. This can be assumed to take place at the 

latter half of the reducing agent pulse (Figure 1, step 2b). 

 After finding the minimum energy structure of ZnEt2 adsorbed on the copper surface, 

we have conducted an aiMD study of this adsorbate at typical ALD temperature. Within the 
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very short simulation time of 2.17 ps, we see that the adsorbate ZnEt2 dissociates into ZnEt 

and Et fragments and that these two fragments attach themselves to the copper cluster. This 

might indicate no activation barrier for this reaction at this temperature. The bond distance 

between the Zn and the detached Et is 2.37 Å as opposed to 2.08 Å in ZnEt2. Figure 10 shows 

the steps that take place in the above reactions. The adsorption of ZnEt to the copper surface 

(∆Ead = -264 kJ/mol) is computed to be stronger than that of ZnEt2 (∆Ead = -115 kJ/mol) and 

so desorption of the ZnEt fragment is unlikely. The adsorption of ZnEt is even stronger than 

all the copper precursors studied here. Therefore, at the end of the reducing agent pulse we 

predict that there are fragments of Cusurf-Et and ZnEt on the copper surface.  

 We suggest that Cusurf-Et can undergo similar surface reactions as outlined for Cu-

dmap and Cu-PyrImiPr in the previous section (III.b). Therefore, we explore the stability of 

the Et ligand attached to Cu(I) or Cu(II) at the surface and desorption of the respective 

complexes. Figure 11 shows the graph for this study. Once again, various Cu(I) surface 

compounds are found to be more stable intermediates than those of Cu(II). Formation of CuEt2 

and its desorption is not favored. However, it is striking that in this case the deposition of 

Cu(0) and the desorption of butane from the surface is energetically favored (ΔE = -156 

kJ/mol relative to two neighboring CuEt intermediates).  

IV Discussion: 
 Through the above adsorption energies, we can assess whether adsorption of the 

precursors onto the surface plays an over-riding role in the overall process of Cu ALD. A 

weak adsorption of the compounds (e.g. Cu(PyrAld)2) might indicate poor surface coverage. 

The energetics also show that auxiliary reactions that lead to the formation of Cu2L2 type 

surface compounds are inevitable in the precursor pulse. These are discussed below in 

sections IV.(a) and IV.(b). The interaction of the ZnEt2 with the bare copper surface during 

the co-reagent pulse is discussed in the last section.   
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IV.(a). Adsorption of CuL2 onto the surface: 
 The strength of adsorption (∆Ead in Table 2) for different copper precursors CuL2 (L= 

ligand) onto the bare Cu (111) surface is computed to be in the following order: 

L = Et>acac >dmap > PyrImiPr > AbaCus>>PyrAld 

We see that the entropy factor is of similar range for most of the precursor compounds 

(Table 2). Therefore, the difference between the adsorption energies ∆Ead is primarily 

responsible for the difference between the free energies (∆G393
ad).  

 The factors determining ∆Ead are discussed in the following paragraphs. The bond 

distance between the copper atom in the adsorbed precursor (Cupre) and the nearest copper 

atom in the surface (Cusurf) follows the order (Table 1): 

PyrImiPr>PyrAld>dmap >AbaCus> acac>Et.  

The distances are in the range 2.37 Å – 2.72 Å. It might be expected that the adsorption is 

strongest for the precursor that has the shortest distance to the Cusurf. However, comparing the 

two trends presented above, we see that this holds for the most strongly bound two 

compounds (Et and acac), but not for the rest. An alternative explanation might be the steric 

hindrance and the overall strain present in the precursor complex that hinders adsorption. The 

extra bonds formed between the precursor ligands and Cusurf atoms after adsorption might 

also be important.  

To examine this, we first consider the Cu(acac)2 precursor. The complex is planar as 

expected for a Cu(II) compound44. The complex does not have any bulky substituents above or 

below the plane. In addition no inter-ligand interaction distorts the complex (Figure 3 (i)). 

This planar complex can thus easily approach the Cu(111) surface, allowing Cupre to access 

the surface Cu atoms. The favorable adsorption geometry is reflected in a short Cupre - Cusurf 

distance and high ∆Ead for Cu(acac)2. Indeed, Cu(acac)2 adsorbs dissociatively, forming 

strong bonds between the O (in the ligand) and Cusurf. This might also contribute to its 
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stronger adsorption than the other precursors. However, formation of these extra bonds with 

the Cusurf  may be a disadvantage for the overall process, as it may be difficult for the ligand 

to be eliminated from the system. Hence, ∆Gad of the precursor solely is not enough to 

determine the quality of the precursor and a detailed mechanistic study for the ligand 

exchange reactions is also important. 

The lowest energy isomer of Cu(PyrImiPr)2 features bulky ligands (iPr) that point 

perpendicular to the plane of the precursor complex (Figure 3 (iii)). This brings in a high 

steric hindrance between the precursor molecule and the surface. This also distorts the Cu(II) 

complex out of the planar geometry (Table 1). The bulky substituents prevent the approach of 

the Cupre center to the surface and no adsorption geometry could be found. However, in the 

modified precursor (Figure 5), one side of the complex is free of bulky substituents, which 

allows the Cupre to approach the surface and adsorb (Figure 4 (iii)). This example shows that 

steric hindrance between the precursor complex and the flat (111) surface is important for 

determining adsorption to the surface. It is likely that adsorption onto a rough or defective 

surface would be easier. 

Adsorption energies for the PyrImiPr and dmap precursors are comparable (Table 2). From 

its geometry the modified PyrImiPr isomer (Figure 4 (iii)) seems to experience comparable 

steric hindrance to the dmap complex (Figure 4(iv)) during adsorption. This is because both 

these precursor molecules have flexible alkyl groups perpendicular to the plane of the 

complex that can be oriented away from the surface. The dmap ligand has two methyl groups 

attached to the amino nitrogen while PyrImiPr has iPr substitution on the imine nitrogen. Both 

the precursors show molecular adsorption onto the surface. However, the PyrImiPr ligand is 

based on a conjugated π system, while dmap is not. This makes the dmap ligand more 

flexible than PyrImiPr. The dmap ligand thus forms extra bonds between O and the surface Cu 

atoms, without breaking that of Cupre-O which contributes to stronger adsorption. The Cusurf - 
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Cupre distance is 2.72 Å for PyrImiPr and 2.62 Å for dmap. The electronegativity of ligating 

atoms (N,N vs O,N) and the charge distribution of the two precursors is different (Table 4) 

but this does not seem to be the primary factor dictating the adsorption of the precursor. 

Cu(dmap)2 precursors have been reported to undergo decomposition by β-hydride 

elimination45, which is a pathway to uncontrolled CVD and not ALD. Hence, Cu(dmap)2 type 

precursors should be used with caution when tested for ALD reactions.  

AbaCus is a six membered complex with an ethyl group on the amino nitrogen. The 

substituents and the π conjugation affect the orientation of the ligands around the copper 

center, giving a torsional angle of 131° between the four ligating atoms in the gas phase. The 

ethyl substituents both point towards one side of the distorted plane of the complex, which 

makes the other side of the plane free for adsorption. The results are a short bond distance 

between the Cusurf and Cupre atoms and new Cu-O bonds (Figure 4(v)). However, there is 

evidently substantial strain in the adsorbed complex, possibly because of distortion of the π 

system, as indicated by the lengthening of the Cu-O/N bonds by 0.5 Å, and the overall 

adsorption energy is low.  

The PyrAld precursor has a torsional angle ~ 30° between the two ligands attached to the 

copper center. This is due to inter-ligand repulsion between H’s of the two fused pyrrole rings 

in the two ligands (Figure 3 (ii)). This non-planarity makes it hard for the Cupre to approach 

the surface copper atoms. The O in the precursor does not bond to the surface copper atoms 

as it is a part of the fused ring. The five membered Cu-containing ring of the PyrAld complex 

increases the strain compared to the six membered AbaCus, although the torsional angle of 

AbaCus is greater than that of PyrAld. The Cusurf – Cupre distance is 2.67 Å. The PyrAld 

complex remains poorly chemisorbed onto the surface (ΔE = -127 kJ/mol, Figure 4(ii)). 

When combined with entropy at typical temperatures, these computed energetics indicates 

that adsorption is not thermodynamically favored. The pyrrole ring does seem to affect the 
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adsorption structure of PyrAld and PyrImiPr as in both cases there is a longer Cupre - Cusurf 

bond with new ligand to surface bonds. 

In a review paper Puurunen46 has described the intrinsic advantage of less hindered 

precursor molecules for adsorption onto the surface. The author mentions that chemisorbed 

sterically crowded precursors can shield reactive sites at the surface from being accessible to 

other unreacted precursor molecules and that this may result in irregular growth of film. 

Thus, among the studied precursors, acac and dmap are expected to have the intrinsic quality 

of higher surface coverage compared to the other precursor compounds, leading to higher 

growth rate and better film quality in ALD.  

The above discussion shows that access of the Cupre atom to the surface is the most 

important factor in chemisorption of these complexes. The tendency for Cu(II) complexes to 

be planar is therefore advantageous. However, when there are bulky ligands present, 

especially on the ligating electronegative atoms adjacent to the Cu atom, the gas-phase 

complex twists itself to form a tetrahedral structure.  The metal center is then well 

encapsulated within the ligand shell, which makes it difficult for Cupre to access the surface47 

(e.g. PyrImiPr). In these cases the adsorption energy is low. In the other planar precursors, 

Cupre bonds to Cusurf and we find that the ligating atoms can also bond to the surface metal 

atoms, contributing extra adsorption energy.  The exception is when a fused pyrrole ring 

makes the ligand too rigid (PyrAld and PyrImiPr). This might be valid for precursor molecules 

of other metals too, particularly planar d9 cations. Figure 12 summarizes how possible 

substitution sites in the precursor complex can affect the adsorption to the copper surface. 

The same can be concluded for precursors of other metals. 

 The adsorption free energies (Table 1, ∆Ead) for the copper precursors to the bare 

copper surface indicate strong bonding between most complexes and the surface. Strong 

bonding may in principle be due to ionic, covalent or metallic bonding and it seems that all 
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three contribute to this case, giving rich behavior that varies with precursor stereochemistry. 

The additional effect of dispersion interaction certainly merits future study. Focusing on the 

metallic Cupre-Cusurf interaction, this may be interpreted as a move towards higher 

coordination for Cupre as it chemisorbs. This is therefore another example of densification as a 

key driving force during ALD reactions. Zydor et al.48 have simulated the effect of a bulky 

ligand in the Ti(CpMe5)(OMe)3 and H2O ALD process that explains the experimentally 

observed lack of ALD of the oxide as due to the inability of the hindered Ti center to 

chemisorb on the substrate. Here we observe similar results but for Cu precursors and ALD 

of metals. Thus, our study shows that the most sterically hindered precursors do not 

chemisorb to the surface and so may not participate in all subsequent reactions that lead to 

metal ALD.  

IV.(b). Non-ALD reactions of Cu2L2: 
Regardless of the ligand, Cu(I) compounds are computed to have stronger adsorption (Table 

3) to the surface than Cu(II)L2 (Table 2). This means that desorption of the Cu(I) intermediates 

is less likely. The potential energy diagrams illustrate this point (Figure 7, Figure 8 and 

Figure 11). This is probably because of less steric crowding around the Cu2 core compared to 

the corresponding Cu(II) precursor compound (Figure 6). The Cu(I) has better access to the 

surface copper atoms and the bond distance to Cusurf is always lower than for the 

corresponding copper precursors. This is seen for all the ligands we have studied here. The 

ligand atoms also form extra bonds with the under-coordinated surface copper atoms, thus 

increasing the adsorption energy. There is no difference in charge distribution over the Cu 

atoms between ligands with and without conjugated π systems (Table 4).  

 The potential energy diagram is different for the two precursors (L = dmap in Figure 7 

and L=PyrImiPr in Figure 8). We see that the desorption energy for the various Cu(I) species is 

higher with the dmap ligand than with PyrImiPr. This is probably due to the flexibility present 
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in the dmap ligand, which allows the ligand to break from Cupre and bind to the surface 

copper atoms more strongly than its PyrImiPr counterpart. The conjugation present in the 

PyrImiPr ligand does not allow the ligand to form additional bonds with the surface atoms and 

so desorption of the complexes is easier, which would be determined for ALD.  

 The Cu(I) compounds are formed from the incoming Cu(II) precursors and Cu(0)
surf 

atoms, which means that surface Cu(0)
surf atoms are temporarily consumed in step 1b. 

However, in the subsequent ZnEt2 pulse (step 2a), there is formation of intermediate CuEt or 

Cu2Et2, which decompose to form Cu(0) and butane (Figure 11). Likewise, ZnEt2 consumes 

some surface Cu(0) during dissociative chemisorption in step 2b, but this is restored along 

with new Cu(0) in the subsequent step 1a of the Cu pulse. The transmetallation ALD cycle 

thus involves redox cycling of the entire Cu surface, with comproportionation to Cu(I) in steps 

1b and 2b followed by reductive elimination of butane in steps 2a and 1a. Only the latter 

steps contribute to net growth of Cu(0) at the surface, which is likely to be a fraction of the 

overall Cu undergoing redox cycling. A similar picture has been described and quantified for 

redox ALD of noble metals49. 

 The higher adsorption energies for the Cu(I) compounds of dmap ligands studied here 

suggest that a Cu(I) precursor should be preferred over a Cu(II) precursor. This holds true 

provided other requisite precursor properties are also fulfilled (e.g. volatility). There have 

been reports of Cu(I) compounds used as ALD precursors15-16, 50 . In a recent study we have 

seen that Cu(I)carbene compounds are promising precursors38, 51. However, Cu(I) compounds 

can disproportionate and deposit metal through a CVD pathway rather than through self-

limiting ALD, so that stability may limit the use of Cu(I) compounds in ALD. 

IV.(c). Interaction of co-reagent ZnEt2 with the surface: 
 The advantages of ZnEt2 as a reducing agent are that it is volatile and cheaply 

available.  But the co-deposition of Zn with Cu makes it a poor choice. As seen from the 
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adsorption energy, Zn(I) has stronger adsorption than Zn(II). Thus, Zn may persist in (I) 

oxidation state instead of desorbing as ZnL2, unless a ligand exchange reaction between the 

Cu and Zn takes place. The interaction of the ZnEt2 fragments with a mixed surface of 

ligands from the precursor will be examined in another study later. The current study has 

clearly shown how CuEt fragments, formed either by ligand exchange or decomposition of 

ZnEt2, are ultimately unstable against butane and Cu(0) formation.  

IV. Conclusion: 
We have computationally explored a part of the surface reactions during the 

transmetallation process for Cu ALD using DFT. Interactions of Cu(II) precursor molecules 

and the ZnEt2 molecule with a bare copper surface have been studied (parts 1b and 2b, Figure 

1). In this paper, we did not consider the interaction of the compounds in a mixed surface 

during the early part of the ALD pulse (as depicted in parts 1a and 2a). This is the subject of a 

forthcoming paper.  

The general tendency of gas-phase Cu(II) complexes is to be planar. However, distortions 

occur due to bulky ligand groups interacting with each other. We see that precursors with less 

steric hindrance and planar geometry have strong adsorption to the surface, which is a 

positive indication for ALD. This is because the precursor can access the surface atoms 

relatively easily and form strong metallic bonds with the under coordinated surface Cu atoms. 

Ligands may also bond to surface Cu and/or dissociate from the adsorbate complex.  At the 

end of the Cu precursor pulse, we predict that the surface will be covered in ligands attached 

to Cu(I) atoms. In all the cases studied here, we see that the adsorption does not depend so 

much on the electronegativity of the ligands as on the flexibility of the precursor complex and 

the orientation of alkyl substituents. Examining five precursors, we see that the Cu(dmap)2 

precursor adsorbs more strongly onto the surface due to the flexibility present in the ligand. 

Hence, we conclude that dmap-type ligands are best for the ALD of Cu and other transition 
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metals. Cu(dmap)2 has also been previously used in experiments due to its high 

decomposition temperatures, low non-volatile residue and high sublimation rate52 

 ZnEt2 is found to dissociate into a ZnEt fragment and Et on a bare copper surface. The 

ZnEt adsorbs to the copper surface more strongly than ZnEt2 and then many Cu precursors. 

Therefore, impurities from residual ZnEt are inevitable during the ALD reaction unless there 

is complete exchange of Et with the ligands from the copper precursor. Hence, there is a need 

to find other reducing co-reagents that have less probability of producing impurities.  

Achieving a surface covered with Cusurf-Et is the key step for the deposition and growth of 

Cu(0), since a pair of these surface intermediates self-decomposes forming butane and 

liberating two electrons in order to deposit an atom of Cu metal. Overall in this 

transmetallation reaction it is the Et ligand that donates the electron to copper for its 

reduction to copper metal.  
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Figure 1: ALD cycle for proposed transmetallation reaction between copper precursor CuL2 

and reducing agent ZnEt2. Each ALD pulse has been divided conceptually into two halves (a, 

b). The Cu precursor pulse on the right side with light pink shade is denoted as pulse 1 and 

the reducing agent pulse on the left side with light blue shade is denoted as pulse 2. Part 1a 

describes the reaction in a mixed surface between the incoming copper precursor and 

http://pubs.acs.org
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previously adsorbed Et ligands. Part 1b describes the reaction when the Et ligand has been 

exhausted and fresh copper precursor adsorbs onto a bare copper surface. Part 2a involves the 

same reactions as 1a but during the reducing agent pulse when incoming ZnEt2 interacts with 

previously adsorbed ligands from the Cu precursor. Part 2b shows the reaction when an 

excess of reducing agent adsorbs onto a bare copper surface.  

 

Figure 2: Side view and top view of the 3-layer deep Cu55 cluster, which is used as a model 

for the Cu(111) surface to investigate the adsorption of the copper precursors, intermediates 

and by-products.  

 

Figure 3: Lowest energy isomer computed in gas phase for potential ALD Cu precursors. (i) 

Cu(acac)2 (ii) Cu(PyrAld)2 (iii) Cu(PyrImiPr)2 (iv) Cu(dmap)2 (v) AbaCus(TM). Structural 
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parameters are quoted in Table 1. Color code: Red = oxygen, Blue = nitrogen, Grey = carbon, 

White = hydrogen, Light brown = copper. 

 

 

Figure 4: Optimized structures of precursors adsorbed onto the bare copper (111) surface. (i) 

Cu(acac)2, (ii) Cu(PyrAld)2, (iii) Cu(PyrImiPr)2, (iv) Cu(dmap)2, (v) AbaCus(TM). The 

adsorption energy is in Table 2 and the structural changes in the precursor before and after 

adsorption in Table 1. Color code: Red = oxygen, Grey = carbon, White = hydrogen, Light 

brown = copper, Blue = nitrogen. 
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Figure 5: Lowest energy isomer of PyrImiPr precursor, which does not chemisorb in any 

orientation onto the copper surface due to steric hindrance (Figure 4 (iii)). Color code: Red = 

oxygen, Blue = nitrogen, Grey = carbon, White = hydrogen, Light brown = copper. 

 

    (i) 

 

 

(ii) 

 

Figure 6: (i) The Cu2L2 (L=dmap) intermediate where there are two ligands, each attached to 

two adsorbed copper atoms. The corresponding gas phase structure is shown to the right. In 

the gas phase the distance between the two Cu atoms is |Cu(I)-Cu(I)|(g) = 2.48 Å and after 

adsorption onto the surface the distance is |Cu-Cu|surf = 3.55 Å. (ii) Cu2L + L where the first 
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ligand is attached to two adsorbed copper atoms. The corresponding gas phase structure is 

also shown. In this case  |Cu-Cu|(g) = 2.51 Å and |Cu-Cu|surf = 2.67 Å. 

 

Figure 7: Energetics of surface intermediates during transmetallation when L = dmap is the 

ligand. The lower the energy in the graph, the more stable the system.  (i) Red lines: The 

energy ∆E needed to transform the intermediate species into another on a bare copper 

surface. (ii) Green triangles: The desorption energy (∆Edes) of the respective species into the 

gas phase relative to the red line. In the first structure the desorbed molecule is CuL2, second 

Cu2L2, third CuL, and the last Cu2L. (iii) Horizontal blue lines: The free energy (∆G393) 

including the entropy factor at 393 K needed for the species to desorb into the gas phase 

relative to the red line. Any particular intermediate has the probability of either desorption 

from the surface (red  blue) or else can form another surface intermediate (red  red). The 

data are presented in the supplementary information. No barriers have been computed. 
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Figure 8: The graph shows similar results to that of Figure 7 but using L = PyrImiPr as the 
ligand. 

 

Figure 9: Optimized structure of Cu(dmap)2 adsorbed on the (111) face of the copper coin. 

The differences in NPA charges on the Cu, O and N atoms between the gas phase precursor 

and the adsorbed precursor have been shown. The charges are more delocalized in the 

adsorbed structure compared to the gas phase. There are also changes in the surface with a 
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total change of charge ~0.40. Color code: Red = Oxygen, Blue = Nitrogen, Grey = Carbon, 

White = Hydrogen, Light brown = Copper. 

 (i) (ii)  

   (iii)  

Figure 10: Ab initio Molecular Dynamics study for ZnEt2 on Cu(111) surface. (i) Time t=0 

shows ZnEt2 attached to the surface. (ii) At time t=1.17 ps breaking of one C-Zn bond is 

apparent. Distance between C-Zn is 2.38 Å (C from the ethyl group). (iii) At time t=2.17ps, 

ZnEt and Et are separately attached to the copper surface. Structures (ii) and (iii) are not 

optimized geometries. Color code: brown=copper, blue-grey=zinc, grey=carbon and 

white=hydrogen. 

 



33 
 

 

Figure 11: The graph shows similar results to that of Figure 7 but using L = Et as the ligand. 

The most important reaction shown in the graph is the interaction between two CuEt leading 

to the formation of butane with deposition of Cu(0). The same reaction can also take place 

when the Cu2Et2 dimer dissociates. The last intermediate has two new Cu atoms adsorbed to 

the surface and butane in gaseous form. 

 

 

Figure 12: Schematic of substitution patterns on ligands affecting chemisorption of copper 

(II) precursors that are otherwise planar. In (i) the substitution is in opposite directions 
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perpendicular to the plane and there is no adsorption as the Cupre cannot access the surface. In 

(ii) the substitution is in one direction perpendicular to the plane, which makes the other 

plane available for adsorption. In (iii) the substitution is in the same plane as the copper 

complex, which does not hinder adsorption.  
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Table 1: Comparison of the structural properties of copper precursors when in the gas phase and after molecular adsorption onto the surface. 

Comparison has also been made with possible copper(I) intermediate. The dihedral angle is between the four coordinating atoms to the copper in 

the precursor, for example in Cu(acac)2 the angle is between four oxygen atoms ∟O-O-O-O. The distance from the copper in the precursor to 

the nearest copper atom on the surface has also been noted and is represented as Cu-Cu. Here L = ligand in the precursor. 

Precursors CuL2 in the gas phase CuL2 adsorbed onto the 
surface 

Cu(I)L adsorbed onto the 
surface 

Cu(acac)2 Cu-O (Å) 1.95 2.10/2.13/4.08 2.05 

∟O-O-O-O  (°) 0.1 9.73 6.57 

Cu-Cu (Å) - 2.49 2.50 

Cu(PyrAld)2 Cu-N (Å) 1.97 1.95/1.96 2.03 

Cu-O (Å) 2.03 2.72/2.61 2.05 

∟O-N-O-N  (°) 158.81 167.98 15.09 

Cu-Cu (Å) -  2.48 

Cu(PyrIm)2
R 

R=iPr 

Cu-NAr(Å) 1.98 1.94 2.06/2.00 

Cu-NAli(Å) 2.04 1.96 2.00 

∟N-N-N-N  (°) 38.73 71.41 19.78 

Cu-Cu (Å) - 2.72 2.44 



36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cu(dmap)2 Cu-O (Å) 1.91 1.95 2.13 

Cu-N(Å) 2.09 2.09 2.16 

∟O-N-O-N   (°) 0.6 104.25 114.54 

Cu-Cu (Å) - 2.62 2.46 

AbaCuS Cu-O (Å) 1.99 2.55 2.04 

Cu-N(Å) 1.99 2.03 2.02 

∟O-N-O-N   (°) 131.39 141.15 0.03 

Cu-Cu (Å) - 2.53 2.44 

CuEt2 Cu-C(Å) 1.97/1.96 2.00/1.99 - 

∟C-Cu-C   (°) 137.95 152.12 - 

Cu-Cu (Å) - 2.37 - 
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Table 2:  Computed molecular adsorption energy (∆Ead) of copper precursors onto the copper 

surface along with the computed entropy contribution (T∆Sad) of the molecules at T = 393 K. 

∆Gad
393 denotes the free energy. All the values are in kJ/mol. Figure 3 shows the gas phase 

structure of precursor compounds and Figure 4 the adsorbed counterparts. 

Ligand ∆Ead T∆Sad ∆Gad
393 

acac -258 -179 -79 

PyrAld -127 -171 44 

PyrImiPr -251 -200 -51 

dmap -249 -184 -64 

AbaCus -207 -175 -32 

Et -279 129 -150 

 

Table 3: Computed adsorption energy (∆Ead), entropy contribution at 393 K (T∆Sad) and free 

energy (∆G393
ad) of possible intermediates Cu2

(I)L2 on the Cu surface during transmetallation 

reaction. All the values are in kJ/mol. 

Ligand Molecule ∆Ead T∆Sad ∆G393
ad 

dmap Cu(I)
2(dmap)2 -504 -193 -311 

PyrImiPr Cu(I)
2(PyrImiPr)2 -316 -207 -109 

acac Cu(I)
2(acac)2 -309 -186 -123 

AbaCus Cu(I)
2(Aba)2 -307 -186 -121 
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Table 4: Population analysis with NPA of the net charge in units of electronic charge on groups of atoms in the CuL2 precursor, both in the gas 

phases (Figure 3) and then adsorbed onto the surface (Figure 4). Negative sign indicates negative charge. The same study has been done for the 

corresponding Cu(I)
2L2 surface intermediate. Cluster surface refers to the copper atoms of the whole coin.  

 

 

 

 

 

 

Ligand Gas Phase CuL2 CuL2 on the surface Gas Phase Cu2L2 Cu2L2 intermediate on surface 

Ligand 

1 

Ligand 

2 

Cu Ligand 

1 

Ligand 

2 

Cu Cluster 

surface 

Ligand 

1 

Ligand 

2 
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PyrImiPr -0.82 -0.82 1.64 -1.14 -0.75* 0.98 0.96 -0.66 -0.66 0.66 0.66 -0.92 -0.96 0.69 0.69 0.44 

dmap -0.56 -0.56 1.13 -0.88 -0.87 1.09 0.62 -0.64 -0.63 0.64 0.63 -0.69 -0.70 0.62 0.52 0.25 

AbaCus -0.59 -0.59 1.18 -0.94 -0.90 0.91 0.93 -0.68 -0.67 0.68 0.68 -0.86 -0.76 0.69 0.71 0.22 
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