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Abstract  
 

The long-running “food versus fuel” debate has focussed on the impact of biofuels 

on food security, and, therefore, the justification of government policies to encourage 

biofuel production. There has been particular criticism of the impact of US and EU 

biofuel policies on food availability and food prices, with many reports suggesting 

that rising biofuel production has been largely responsible for reduced global food 

supplies and higher food prices.  

 

There has been less coverage of the impact of biofuel operations in food-insecure 

countries, many of which are well suited to producing the highest-yielding biofuel 

feedstocks and would most benefit from jobs and renewable energy supplies in rural, 

poverty-stricken areas. Part of the difficulty in assessing the impact of biofuels at the 

local level is the wide variety of indicators used to measure food security. Whilst 

many indicators have been developed to measure “status”, it is more difficult to 

measure “impact” and the reasons behind any significant status change.  

 

The objectives of this thesis therefore focus on whether biofuel policies reduce 

availability and access to food in food insecure countries, how best to measure food 

security outcomes and whether different types of biofuel operations in developing 

countries impact on household food security status. 

 

Following an appraisal of existing food security indicators, a novel indicator was 

developed to measure the nutrient deficiency of households from reported foods 

consumed, in order to provide a better means of linking status, impact and 

mitigation. This led to the development of the “household nutrient deficit score”, 

helping to link nutrition outcomes to household decisions on food production and 

purchases. 

 

Mozambique and Tanzania represent two of the most food-insecure countries with 

potential for biofuel production. Household surveys were conducted in both 

countries where biofuel operations had recently been established, from which 

reliable results were achieved for five operations with different production models 

and feedstocks. A detailed analysis was also conducted of the global biofuel sector in 
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order to garner reliable data on biofuel production and feedstock areas over the past 

decade and to assess the impact of biofuels on staple commodity prices and food and 

land availability.  

 

The results of the household survey showed that those households with employees of 

biofuel operations were likely to be significantly more food-secure than other 

households in the same locality, as reflected in a lower household nutrient deficit 

score. A regression analysis that controlled for geographical location and other 

influences on food security, such as household size and crop area, confirmed “biofuel 

involvement” as a significant factor behind higher food security status. Most 

“involved” households attributed their improved food security status to better and 

more stable income from salaried employment.   

 

The macro global biofuel sector analysis found that the harvested area of feedstock 

attributable to biofuel production was much lower than suggested within the 

literature, and had barely increased since 2011. Before the introduction of the US and 

EU biofuel production-enhancing policies around 2005, the global biofuel feedstock 

area stood at only 6 million hectares: the acreage has increased by 19 million 

hectares since then, which represents little more than 1 per cent of the global arable 

and permanent crop acreage.  

 

The macro analysis found little evidence that biofuels had reduced global food 

availability by diverting land away from food production. The price analysis also 

found little evidence that US biofuel production had accounted for a large proportion 

of maize price changes over the past decade. Furthermore, there appeared to be 

limited transmission between US maize prices, used as a global benchmark, and local 

maize prices in Mozambique and Tanzania.  

 

One of the main implications of the micro-analysis is that biofuels can, under the 

right conditions, help improve food security in rural areas of food insecure countries 

where poverty and hunger is most rife. Hence, policies should be implemented to 

facilitate the right conditions, and these could include mandatory sustainability 

certification. In terms of the macro analysis, there appears to be insufficient evidence 

to justify the claims that biofuel policies in developed countries have led to increased 
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hunger. Indeed, there is an overriding need to better understand the dynamics and 

impacts of increased food prices on rural households in least developed countries. 
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1. Introduction 

 

1.1 Background 

 

Climate change is arguably the greatest challenge currently facing humanity. In 

December 2015, 195 countries finally adopted a legally binding and universal 

climate agreement at the 21
st
 Conference of Parties (COP21) under the auspices of 

the UN Framework Convention on Climate Change (UNFCCC). The agreement was 

made some 24 years after the international community took the first steps to address 

climate change at the Rio Earth Summit of 1992
1
. 

 

Although our global society is only now coming to terms with the need for concerted 

and substantial action to mitigate global warming, many initiatives have been 

undertaken since the Rio Summit. One such response has been the rapid expansion of 

liquid biofuel production over the past decade, encouraged by government policies to 

partially replace fossil fuels, a major contributor to rising levels of atmospheric 

greenhouse gases (GHGs). 

 

However, biofuels have courted much controversy. In the early years of the new 

millennium they were heralded not only as a partial solution to climate change, but 

also to peak oil
2
 and energy insecurity concerns, and rural socio-economic decline. In 

more recent times biofuels have attracted growing criticism, particularly with regard 

to their alleged association with; 

 

i) displacement of feedstock, land and other resources from food to biofuel 

use, raising concerns over food availability 

 

ii) “land-grabbing”, and the consequent impacts on the livelihoods of poor 

rural communities  

 

                                                 
1
 The Rio Summit took place some 4 years after the international community acknowledged global 

warming by establishing the Intergovernmental Panel on Climate Change (IPCC) in 1988.   
2
 The peak oil issue is now less relevant following research by McGlade and Ekins (2015) that large 

reserves of fossil fuels need to be left unused in order to keep the global temperature rise below 2 

degrees centigrade. 
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iii) deforestation and other types of land conversion which damage 

ecosystems and accentuate climate change. 

 

iv) higher, and more volatile, food prices over recent years, particularly 

affecting the food security of the poorest members of society  

 

v) poor technical efficiency and limited ability to reduce fossil fuel use, and, 

hence, greenhouse gas emissions. 

 

vi) costly government support to make them commercially viable with 

competing fuels, and notably fossil fuels 

 

These issues have been particularly voiced within the so-called “food versus fuel” 

debate, and especially regarding food availability and price impacts.  

 

Proponents, meanwhile, argue that biofuels take many forms, some of which can 

significantly reduce greenhouse gas emissions, do not involve land-grabbing or 

environmental damage, do not unduly influence food prices, do not require 

government support and can help to improve food security by providing employment 

and income in rural areas. 

 

Despite a plethora of research studies and reports on these and other related issues 

over recent years, the debate surrounding whether to promote or discourage biofuel 

production shows no sign of abating and opinion remains divided. The many 

different types of biofuels and the various conditions under which their feedstocks 

are sourced create significant dilemmas for policymaking. Yet decisive actions are 

required by governments to address urgent climate-related problems. 

 

Some of the main concerns regarding biofuels relate to socio-economic impacts. A 

few months prior to the climate change accord in December 2015, governments 

agreed the Sustainable Development Goals (United Nations, 2015b). The 17 

sustainable development goals (SDGs) set out in the Resolution adopted by the 

General Assembly of the United Nations (UN), include ending poverty (SDG1), 

ending hunger (SDG2), ensuring access to affordable, reliable, sustainable and 



 6 

modern energy for all (SDG7), full and productive employment and decent work for 

all (SDG8) and ensuring sustainable consumption and production patterns (SDG12).  

A key issue for policymakers will be to ensure that climate change targets agreed in 

Paris are coherent with the sustainable development goals agreed in New York. 

Biofuels represent just one example of potential conflicts between environmental and 

social outcomes.  

 

The food versus fuel debate has remained a contentious issue for more than a decade 

during which time biofuels have been promoted and then restrained by government 

policy. The ongoing debate is an indication of the many challenges that are likely to 

be faced in the implementation of the climate change agreement and sustainable 

development goals. A particular challenge in this regard will be the measurement of 

social and environmental outcomes at the micro level with more relevant, accurate 

and timely indicators than are currently available.  

 

1.2 Justification 

 

1.2.1 Identifying the key policy issues related to biofuels  

 

The key challenges to humanity in the 21
st
 century are perhaps best conceptualised 

by Kate Raworth’s depiction of a “safe and just space for humanity”(Raworth, 

2012)
3
. Raworth draws on the work of Rockstrom et al

4
, who identified nine 

environmental planetary boundaries, within which they deemed a “safe operating 

space” for humanity to survive (Rockstrom et al., 2009). Raworth then added eleven 

key social foundations, which represent the “just” conditions to meet human rights 

and needs. The combination of the planetary boundaries and social foundations 

creates a doughnut-shaped space within which humanity can not only survive but 

thrive. 

 

                                                 
3
 Although developed some years ago this provides a useful framework for identifying the main 

environmental (including climate change) and human rights problems facing global society, as 

opposed to alternatives such as the World Economic Forum’s annual Global Risks Report, where 

priority risks identified by world political leaders change from year to year. 
4
 The nine planetary boundaries were identified and agreed by 29 leading earth-systems scientists 

who convened at the Stockholm Resilience Center in 2009.  
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Figure 1.1 below adapts Raworth and Rockstrom’s concepts to show the key 

environmental and socio-economic issues associated with biofuel production and the 

current status of each. Thus, for the planetary boundaries, the five environmental 

issues most directly linked to biofuel production are labelled: climate change, land 

use change, freshwater use, biodiversity loss and the nitrogen cycle
5
. The red shaded 

area illustrates the estimated current status of each of these issues compared to their 

respective planetary boundaries.    

 

Fig 1.1 – Key Environmental and Social Issues Related to Biofuels
6
 

 

Source: Author’s adaptation from Raworth (2012) and Rockstrom (2009) 

Three of these planetary boundaries have already been exceeded, reflected by the 

red-shaded area exceeding the circular planetary boundary line. The climate change 

                                                 
5
 Note that Rockstrom et al defined the nitrogen cycle issue in combination with the global 

phosphorous cycle, but deemed that nitrogen-induced eutrophication of lakes and marine ecosystems 

posed a much greater risk. 
6
 Note that the red-shaded shapes between the green social foundation line and the red planetary 

boundary line illustrate the key environmental issues related to biofuels. Where the current status of 

an environmental issue exceeds its planetary boundary, this is illustrated by the red shaded area 

encroaching outside the red boundary line. The green shaded shapes within the social foundation 

circle represent the key social issues related to biofuels. The green shaded area depicts the extent to 

which society meets the social foundation of each of these issues. Note there is no target measure 

agreed as yet for jobs. 
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target of 350 parts per million (ppm) of CO2 atmospheric concentration has already 

been surpassed, with current levels well over 400ppm (Dlugokenchy and Tans, 

2016). Most of the rise in CO2 concentration is due to the burning of more fossil fuels 

due to population and economic growth. Alternative energy sources are therefore 

required in order to help phase out fossil fuel use whilst the population continues to 

grow, and to maintain economic growth, particularly in developing countries.  

 

It should also be noted that agriculture, forestry and land use (AFOLU) change 

account for about a quarter of GHG emissions, according to the Intergovernmental 

Panel on Climate Change (IPCC, 2014), whilst recognising that there is a high 

degree of uncertainty over these estimates. Over the period 1990 to 2010, the Food 

and Agriculture Organisation of the United Nations (FAO) estimates that AFOLU 

net emissions increased by 8 per cent (Tubiello et al., 2014). More recent estimates 

suggest a decline in AFOLU emissions due to reduced deforestation and increased 

afforestation.  

 

Nevertheless, the contribution of biofuels to land use change and deforestation, 

particularly of high carbon-sink tropical peatland, remains an important climate 

change issue. The IPCC (2014) stated that bioenergy can play a role in mitigation 

and noted that low emission technologies are already available, including sugar cane 

bioenergy. But it also raised concerns surrounding the efficiency of some types of 

bioenergy, as well as impacts on food security and livelihoods. 

 

Biodiversity loss is currently estimated at over 100 species per million (or 0.01%) 

becoming extinct each year, compared with a target level of 10 per million 

(Rockstrom et al., 2009).  Loss of biodiversity is associated with increased 

vulnerability in ecosystems to change, including global warming. The growing of 

monoculture feedstocks for biofuels could have a negative impact in this regard.  

 

In terms of land use, the proposed planetary boundary is 15 per cent crop coverage of 

global (ice-free) land, compared with a current level of 11.7 per cent, the undershoot 

difference amounting to just over 400 million hectares. Similarly, freshwater use for 

human consumption, at 2,600km
3
 per annum, is also within the estimated planetary 

boundary of 4,000km
3 

(Rockstrom).  The extent to which any expansion in biofuel 
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feedstock production would absorb remaining land and water resources, versus those 

needed for increased food production, is therefore another important issue.  

 

The main socio-economic issues relevant to biofuels are depicted in figure 1.1 by the 

green shaded shapes within the social foundation circle. The level of shading 

corresponds to the approximate degree to which the target for each issue has been 

met. Thus, for energy, global deprivation in access to electricity, at 20 per cent of the 

population in 2009, and clean cooking facilities, at 40 per cent of the population, are 

the two indicators used. This suggests an average deprivation of 30 per cent: hence, 

only 70 per cent of that target is shaded in figure 1.1.  

 

The example for energy deprivation illustrates the potential dilemma facing 

policymakers in meeting environmental goals whilst reducing social deprivations. 

Although climate change goals require a transition away from fossil fuel to other 

new energy sources, it may take some time before the new sources are sufficiently 

deployed in order to make electricity or other clean energy accessible to everyone. 

 

This example also highlights the weakness of portraying the major environmental 

and social problems at the global or planetary level, as this tends to hide significant 

geographical variances and differences between socio-economic classes.  Thus, the 

overshoot of the climate change planetary boundary reflects excessive fossil fuel 

consumption levels in the developed world, and particularly the wealthiest actors 

within those societies, whilst many people in the developing world do not even have 

access to clean cooking facilities or electricity. Biofuels are already starting to play a 

role in rebalancing energy access, through the use of ethanol gel and vegetable oil in 

improved cooking stoves and for electricity generation in remote areas. But the 

efficiency of such biofuels in comparison to other renewable sources of energy such 

as solar and wind, also needs to be taken into account. 

 

Recent figures show that just under 11 per cent of the global population remained 

below the extreme poverty line by 2013 (World Bank, 2016). Hence, the social 

foundation target for income appears to be closer to being met than many of the other 

social targets. However, it could be argued that a higher poverty line should be used 

to measure income rather than the extreme poverty indicator of $1.90 per day. 
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Linked to income is the other social foundation of “jobs”, reflecting the fact that the 

unemployed are deprived of the right to decent work. At the time of writing, no 

targets had been set for this indicator within Raworth’s social foundation. It is, 

notable, however, that the Sustainable Development Goal 8.5 aims by 2030 to 

achieve full and productive employment and decent work for all. Biofuels and other 

bioenergy could play an important role in poverty reduction by providing rural 

employment and waged incomes, as well as an energy source for other productive 

activities. 

 

Of the eleven social foundation issues, food security is the one most associated with 

biofuel production due to “food versus fuel” concerns. The perceived dilemma is that 

although biofuels may assist in bringing us back within the planetary boundary for 

climate change, they may also exacerbate food insecurity, damaging one of the key 

social foundations, the right to food. The two most cited concerns regarding food 

security are that biofuels;  

 

i) use feedstock, land and other resources (such as water) that would 

otherwise be used for food production, reducing food availability 

 

ii) encourage higher and more volatile food prices through i) above, 

reducing food access and stability 

 

These have been the main criticisms of the rapid rise in biofuel production, and 

associated government policies, over recent years in relation to food security. Much 

research has been generated to both substantiate and negate these concerns, but the 

evidence tends to be focussed on specific macro issues using scenarios and 

econometric models rather than the linkages at the micro or local level.  

 

1.2.2 Justifying the research focus 

 

This brief review of the main environmental and social challenges currently facing 

our global society, illustrates the potential conflict between environmental 

boundaries, mainly linked to climate change, and social foundations, mostly linked to 

human rights. It is therefore important to research those areas where conflict and 
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debate has surfaced: the food versus fuel debate is perhaps one of the most 

contentious issues in this regard. 

 

Given that biofuels have the potential to help address a number of key environmental 

and social issues facing humanity in the coming decades, research generating more 

detailed information on their positive and negative impacts could help guide 

policymakers.  

 

Food security remains a key concern at the global policy level, with an estimated 800 

million people suffering from hunger at the time of writing (FAO, 2015), whilst 

population projections point to the need for at least a 60 per cent increase in food 

production by 2050 (Alexandratos and Bruinsma, 2012).  

 

As biofuels often use the same feedstock as food, animal feed and other industrial 

users, including cereals, vegetable oil and sugar cane, concerns have been raised that 

biofuels could displace feedstock that would otherwise have been used for food. 

Those feedstocks also use the same resources, such as land, fertilizer and water, 

leading to fears that biofuels will absorb scarce resources away from food. In the 

case of land use it is argued that the growing of biofuel feedstock in one country can 

lead to indirect land use change (ILUC) in another to offset the reduced food and 

feed supply.  Where land use change occurs on high-carbon sink land or where it 

leads to deforestation, this can have a marked impact on climate change through 

increased GHG emissions.  

 

It is also argued that increased competition between food, feed and fuel for the same 

feedstocks and resources inevitably leads to a rise in food and input prices and land 

rents. But there are differing views over the extent to which biofuels have displaced 

feedstock and contributed to rising food prices. Much of the research so far in this 

field has focused on the adaptation of econometric models at the global and national 

level. These models have generated widely differing results on the extent to which 

biofuels influence food price changes, as well as climate change impacts (von 

Witzke and Noleppa, 2014, Oladosu and Msangi, 2013, Condon et al., 2013). 
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In response to such research, and adopting the precautionary principle, government 

support to the biofuel sector has been scaled back in recent years, as in the EU, or 

restricted, as in the US, with ceilings imposed on “food-based biofuels” (HLPE, 

2013). This is despite the fact that the most recent research has cast doubts on the 

findings of earlier econometric impact studies, particularly as commodity prices have 

fallen in recent years whilst biofuel production has continued to grow (Tyner, 2013, 

Oladosu and Msangi, 2013, Baffes and Allen, 2013, von Witzke and Noleppa, 2014).  

 

A notable gap is the lack of research conducted at the micro level on the impact of 

biofuel operations on household and individual food security, particularly where 

waged-employment and increased feedstock demand may help to improve rural 

incomes and thereby food access. Since food insecurity is most prevalent in rural 

areas of food insecure countries, it is important to elicit the experiences and views of 

people in such areas who have had direct experience with biofuel operations. 

 

One of the difficulties in assessing impacts on food security at the micro level is the 

variety of different indicators used to measure food security. Some of the indicators 

are influenced by non-food factors, such as health, whilst some require time-

consuming methodologies employing expensive medical teams.  So it is also 

important to ensure that the indicators used provide relevant and reliable information 

for assessing food and nutrition security, and that the methodologies employed are 

sufficiently rigorous whilst also being cost effective. 

 

This study therefore aims to assess the impact of biofuel production on food security 

by improving knowledge on biofuel and food security linkages, both at the local 

level using detailed household survey data from field research conducted in 

Mozambique and Tanzania, and the macro level, using an analysis of global biofuel 

production and feedstocks used and their relationship with commodity and food 

prices. It also aims to inform the methodologies and indicators used in assessing food 

security impact outcomes at both macro and micro level. 
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1.3 Objectives and Research Questions 

 

The overall aim of this study is to assess the impact of biofuels on food security in 

developing countries. The main objectives of the study are to assess the ways in, and 

extent to, which the biofuel industry has influenced food security in food insecure 

countries, both from a macro and micro perspective and to develop ways of 

measuring its impact, particularly at the local level. 

 

The research questions are: 

 

1) Does household involvement in biofuel operations in developing countries 

have a significant impact on their food security status? 

 

2) Does biofuel production have a significant impact on food security in 

developing countries through reduced food availability, due to the diversion 

of feedstock and land toward biofuels? 

 

3) Does biofuel production have a significant impact on food security in 

developing countries through reduced food access, due to higher commodity 

and food prices caused by biofuels? 

 

4) How do different models of biofuel production influence food security 

outcomes? 

 

5) What are the best ways to measure the impact of biofuel production on food 

security in food insecure countries? 

 

1.4 Layout 

 

Following this introduction, chapter 2 contains a literature review on the concept and 

measurement of food security, developments in the biofuel sector and linkages 

between biofuels and food security. Chapter 3 describes the conceptual framework 

developed from the literature review, and on which the methodology is based, as 

described in chapter 4. Chapter 5 presents the findings of the household surveys in 
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Mozambique and Tanzania on food security outcomes. Chapter 6 presents the 

findings of the global biofuel production and feedstock usage analysis, as well as an 

analysis of the relationship between biofuel production and key commodity and food 

prices. Chapter 7 contains conclusions and chapter 8 recommendations from the 

study.   

 

1.5 Contribution 

 

Whilst there have been many studies on how biofuels have affected the global food 

situation, there has been much less evidence on food security impacts at a local level 

in developing countries. Where evidence does exist, the impact is difficult to assess, 

often due to inadequacies in the methodologies and indicators of food security used.  

 

It was envisaged that this study would help address the evidence gap at the local 

level. It was also hoped that the study would inform the measurement of food 

security impacts, providing guidance to policymakers, private sector operators and 

households. The study has contributed to the development of guidelines to help 

biofuel operators in food insecure countries assess the impact of their operations on 

food security and to ensure they enhance food security through mitigatory measures 

where necessary (Thornhill et al., 2012).  

 

At the global level, the many studies assessing the impact of biofuels on food 

availability and prices have produced a wide range of findings making it difficult to 

draw any firm conclusions. The use of different types of statistical and econometric 

models, each with their own set of parameters and assumptions, has been a particular 

problem in reaching any consensus.  

 

Various studies and reviews have called for better information to improve our 

understanding of the biofuel sector and its impact on food availability and prices. It 

was hoped that this study, through a detailed analysis of biofuel feedstock production 

and a mapping and analysis of biofuel developments over the past decade, will 

contribute toward this.  
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Through taking a broad view of both the macro and micro issues, it was envisaged 

that a more holistic assessment could be made of the linkages between biofuels and 

food security and the way that those linkages can be best measured.    
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2. Literature Review 

 

The food versus fuel debate has now been running for over a decade. It is therefore 

important to examine the literature surrounding this debate in order to assess where 

the main conflicts lie and why it remains so contentious. 

 

But it is also important to understand the two key components of food security and 

biofuels within that debate. In order to determine how best to assess food security 

impacts within the study, a review of the literature on the concept of food security 

and how it is currently measured was conducted at the beginning of the study. This 

helped in building a framework for the analysis and in evaluating the ability of 

existing indicators to measure the impact of biofuels on the key dimensions of food 

security. 

 

Similarly, a review of the literature on biofuel developments was required early on in 

the project in order to assess what types of biofuels and feedstocks were most 

implicated in the debate and where and how such biofuels and feedstocks were 

produced. This was also important in planning the methodology for assessing the 

local impact of biofuels on food security, as well as the macro methodology. 

 

By dividing the food versus fuel debate into its two separate components, it was 

envisaged that this would better inform the review of linkages between them. The 

following literature review is therefore divided into three main sections:  

 

i) Food security, from its concept and definition, to its measurement and 

indicators. 

 

ii) Biofuels, from the main types and feedstocks used to national biofuel policies 

and recent market developments. 

 

iii) Linkages between biofuels and food security, from the beginnings of the food 

versus fuel debate to the impact of biofuels on food availability, food prices 

and household incomes.  
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2.1 A Review of Food Security 

 

2.1.1 The food security concept  

 

Food security is a complex concept, encompassing many factors and outcomes. The 

factors extend from food production to water availability, access to energy, land 

rights, incomes, sanitation, health, caring practices, education, conflict, government 

policy, the economy and the environment, all of which have their own myriad of 

determinants. The outcomes range from household and individual calorie and other 

macronutrient intake to the many types of micronutrient deficiency, and the impacts 

these have on health, education, productivity, incomes and overall well-being.  

 

This highlights the difficulty in determining the reasons behind food insecurity and 

the actions required for long-lasting solutions. For researchers seeking to assess the 

impact of a given issue on food security, it is difficult to account for all of the other 

factors that may have contributed to it.  

 

The concept of “food security” gained increasing public attention during the 1960s 

and 1970s, following a series of famines that led to millions of people dying from 

starvation (Devereux, 2000). Outside the famine areas, many more were continuing 

to die of starvation and hunger-related causes every year, despite the adequate 

availability of food at a global level. Although the prevalence and severity of famines 

has reduced in recent decades, chronic hunger persists for hundreds of millions of 

people, despite the many actions and programmes introduced at international, 

national and local level over the past fifty years. 

 

At the international level, the World Food Conference in 1974 was the first to focus 

on the concept of food security as a major political issue, but it was not until 1996 

that global policy targets were established.  The World Food Summit (WFS) of 1996 

set a target of halving the number of undernourished people by 2015, from the 

estimated 845 million people suffering from hunger at that time to some 423 million 

(FAO, 1996). 
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Food security again came to the fore in 2000 with the agreement of the Millennium 

Development Goals (MDGs) at the UN Millennium Summit that year. However, the 

MDGs scaled back the WFS 2015 hunger target from 423 million hungry people to a 

halving of the proportion of people undernourished from a 1990 base level. Given 

the mid-range population projection by 2015, this effectively meant that even if 600 

million people were still starving by 2015, the MDG target would have been met. In 

fact there were significant revisions to the estimates in 2012 that increased the base 

year estimate for 1990 and effectively scaled back the target even more to around 

700 million people. In the event, the world did not even achieve that target according 

to the FAO estimates at the time of writing, which put the number of hungry people 

in developing countries at 795 million in 2015 (FAO, 2015). 

 

One of the conclusions that could be reached for the watering down of the global 

hunger target is that the international community was unwilling to commit the 

necessary resources to halve the number of hungry people by 2015. Another might 

be that world leaders and experts did not believe it was possible to reduce the 

number of hungry people to 423 million or less, and that the MDGs were therefore a 

more realistic goal. Whatever the reason, the weaker target has reduced the pressure 

on our global society to realize the human right to food. The failure to significantly 

reduce the number of food insecure people has not been felt at international levels, 

but at local level, within households and by individuals.  

 

So why does the global community continue to fail so many people? The following 

sections review the literature on three key aspects of this question; 

 

i) addressing the obligations of the international community on food 

security and why those obligations have not been met 

 

ii) defining the concept of food security and its key dimensions 

 

iii) identifying how food security can be best measured with indicators 

that can be acted upon to make a real impact in reducing the number 

of people suffering from hunger 
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2.1.2 The right to food 
 

The concept of food security has played a significant role in development literature 

since the 1960s and 1970s, as political pressure was placed on nations to meet their 

commitment to human rights. This followed the signing of the Universal Declaration 

of Human Rights (UDHR) agreed in 1948, article 25, which contains the following 

statement;  

 

Everyone has the right to a standard of living adequate for the health and 

well-being of himself and of his family, including food, clothing, housing and 

medical care and necessary social services. (UN, 1948) 

 

The right to food was more clearly defined in the subsequent International Covenant 

on Economic, Social and Cultural rights in 1966, article 11, which came into force in 

1976 and had been ratified or acceded to by 160 countries at the time of writing; 

 

1. The States Parties to the present Covenant recognize the right of everyone 

to an adequate standard of living for himself and his family, including 

adequate food, clothing and housing, and to the continuous improvement of 

living conditions. The States Parties will take appropriate steps to ensure the 

realization of this right, recognizing to this effect the essential importance of 

international co-operation based on free consent. 

 

2. The States Parties to the present Covenant, recognizing the fundamental 

right of everyone to be free from hunger, shall take, individually and through 

international co-operation, the measures, including specific programmes, 

which are needed:  

 

 (a) To improve methods of production, conservation and distribution 

of food by making full use of technical and scientific knowledge, by 

disseminating knowledge of the principles of nutrition and by 

developing or reforming agrarian systems in such a way as to achieve 

the most efficient development and utilization of natural resources;  
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(b) Taking into account the problems of both food-importing and 

food-exporting countries, to ensure an equitable distribution of world 

food supplies in relation to need. (UN, 1966) 

 

In addition to the two core international treaties related to food, there is the Universal 

Declaration on the Eradication of Hunger and Malnutrition, which was adopted at the 

World Food Conference of 1974 and endorsed by the UN General Assembly in the 

same year. Articles 1 and 2 of the Declaration state that; 

 

1. Every man, woman and child has the inalienable right to be free from 

hunger and malnutrition in order to develop fully and maintain their physical 

and mental faculties. Society today already possesses sufficient resources, 

organizational ability and technology and hence the competence to achieve 

this objective. Accordingly, the eradication of hunger is a common objective 

of all the countries of the international community, especially of the 

developed countries and others in a position to help.  

 

2. It is a fundamental responsibility of Governments to work together for 

higher food production and a more equitable and efficient distribution of food 

between countries and within countries. Governments should initiate 

immediately a greater concerted attack on chronic malnutrition and 

deficiency diseases among the vulnerable and lower income groups. In order 

to ensure adequate nutrition for all, Governments should formulate 

appropriate food and nutrition policies integrated in overall socio-economic 

and agricultural development plans based on adequate knowledge of 

available as well as potential food resources (UN, 1974). 

 

The UDHR, of which there are now 185 members, and International Covenant (160 

countries) placed responsibility on the international community to ensure the 

realisation of the right to food for everyone, and an equitable distribution of world 

food supplies, whilst the Declaration on Eradicating Hunger and Malnutrition should 

have provided a moral compass for all international and government policy, 

including the integration of food and nutrition policies in agricultural development 

planning.  
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Yet progress in reducing and, ultimately, ending hunger has been slow, with only an 

estimated 100 million less undernourished people than forty years ago
7
 (FAO, 2002, 

FAO, 2015). The UN has argued that the proportion of hungry people to the total 

world population has almost halved since 1990, from 19 to 11 per cent
8
 (United 

Nations, 2015a), almost meeting the MDG target: but this target is inconsistent with 

the UDHR, International Covenant and Declaration aims.  

   

So despite the various international treaties and declarations in the 1960s and 1970s 

that most countries have committed to, there has arguably been little progress in the 

past 40 years on imposing a duty or obligation on the international community to 

provide the right to food to everyone. However, the Sustainable Development Goals 

agreed toward the end of 2015 finally encompassed a coherent policy with the earlier 

treaties and declarations by including a target to end hunger, albeit by the year 2030 

(United Nations, 2015b). The key question is how seriously the international 

community will commit to this agreement, including the effectiveness of 

implementation measures adopted?  

 

2.1.3 Defining food security 

 

A key problem in ensuring the right to food through effective implementation, has 

been how to define food security in a way that captures the myriad of influences 

determining whether people are food secure or not. 

 

Definitions of food security at the time of the Declaration to End Hunger and 

Malnutrition in 1974 were largely based on the availability of food: thus, food 

availability decline was seen as the key cause of famines and long-term food 

insecurity. The World Food Conference held in 1974 issued the following definition 

of food security; 

 

                                                 
7
 Note that the FAO has revised its estimates over recent years, but has tended to revise back only as 

far as 1990. Thus the estimated number of undernourished for 1975 of 900 million is taken from its 

2002 State of Food Insecurity (SOFI) report. 
8
 For developing countries, the proportion of undernourished people has fallen from 23 to 13 per cent.  
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“Availability at all times of adequate world food supplies of basic foodstuffs 

to sustain a steady expansion of food consumption and to offset fluctuations 

in production and prices” 

 

But it became evident that famines occurred and hunger often persisted at times 

when food supply was shown to be increasing. Sen’s seminal work on 

“entitlements”, was an important factor in bringing the issue of “access” into the 

definition of food security in the 1980s (Sen, 1981). This explained that people face 

starvation if their set of entitlements is not sufficient to provide them with enough 

food to meet their basic needs and that this can happen whether food availability is 

increasing or not. As Shaw noted in his book on the post-war history of food 

security;  

 

“From a situation of food shortages in the developing countries ….the focus 

switched to the importance of ensuring access by poor people to the food they 

needed through increasing employment and purchasing power” (Shaw, 2007)  

 

By the 1990s it became evident from the literature on nutrition and other issues that 

availability and access alone were insufficient to fully encapsulate the concept of 

food security. Thus, a new dimension of nutrition was increasingly used within the 

broad umbrella of “utilisation”. The UN Children’s Fund (UNICEF) introduced a 

framework for malnutrition at this time, which recognized the importance of non-

food factors such as health, care practices, social institutions and politics in achieving 

food security, particularly for children (UNICEF, 1990). 

 

So the definition of food security has changed over time as new factors have been 

identified, from an “availability” or “supply” problem, to mainly a problem of 

“access”, and then also a problem of the effective “utilization” of food.  

 

The changing concept of food security has been guided by a wealth of academic 

literature on the subject, particularly after the Ethiopian famine in the mid-1980s. 

Maxwell and Smith (1992) reviewed some 180 articles on the concept and definition 

of food security up to 1991, from which they distilled thirty “influential” definitions. 
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Hoddinot in a later review (1999) found even more definitions, amounting to some 

two hundred.  

 

Of the various definitions of food security that have been constructed and adapted 

over time, perhaps the one most commonly used over recent decades is that adopted 

by the 183 participating nations of the 1996 UN World Food Summit (WFS), known 

as the Rome Declaration on World Food Security: 

  

“Food security exists when all people at all times have physical and 

economic access to sufficient, safe and nutritious food that meets their dietary 

needs and food preferences for an active and healthy life”(FAO, 1996). 

 

This was an adapted version of the 1983 definition by FAO that first introduced the 

concept of economic access to food; 

 

“Ensuring that all people at all times have both physical and economic 

access to the basic food they need” 

 

The important additions in 1996 were the replacement of the word “basic” with 

“sufficient, safe and nutritious” in order to reflect the importance of all nutrients, 

whilst “needs” was expanded to “dietary needs and food preferences for an active 

and healthy life”, again reflecting the importance of an adequate diet for a more 

rewarding quality of life, but also meeting the cultural preferences of people. 

However, in order to define what constitutes being food secure in a particular 

locality, it is not possible to account for every individual’s preference. Indeed, food 

preferences, based on cultural, taste and other factors, may sometimes conflict with 

optimum diets to meet nutritional dietary needs.  

 

The UN Special Rapporteur in 2001 later defined the right to adequate food as;  

 

“to have regular, permanent and unrestricted access, either directly or by 

means of financial purchases, to quantitatively and qualitatively adequate 

and sufficient food corresponding to the cultural traditions of people to which 

the consumer belongs, and which ensures a physical and mental, individual 
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and collective fulfilling, and dignified life free of fear”(Ziegler, 2001, as cited 

by de Schutter, 2012).  

 

Thus, the “preference” factor could be viewed in terms of the cultural tradition of 

groups of people in a particular locality; the focus would then be on meeting 

nutritional needs from the foods traditionally consumed and available in the locality.  

 

The 1996 World Food Summit definition of food security also requires an 

interpretation of what constitutes “dietary needs” for different age groups and 

gender.  There are FAO, World Health Organisation (WHO) and national guidelines 

on calorie and nutrient requirements, and these are often based on activity levels and 

bodyweight criteria rather than having an estimated average requirement. For 

example, FAO and WHO have issued guideline documents on human energy 

requirements (FAO et al., 2004), protein needs (WHO et al., 2007) and vitamin and 

mineral requirements (WHO and FAO, 2004) for different sexes, ages, height, 

weight and activity levels.  

 

Since 1996 there have been a number of different adaptations of the World Food 

Summit definition, including that of the UN Special Rapporteur in 2001, yet it 

remains the definition most commonly used internationally. In 2009 the Declaration 

of the World Summit on Food Security formalised the addition of the word “social” 

into the section describing “physical and economic access”, in order to reflect the 

importance of social dimensions in accessing sufficient food.   

 

There are other aspects of food security that are not specifically stated within the 

WFS definition and have become important discussion points in the literature. For 

example, “sustainability” is at the heart of the Sustainable Development Goals. 

Climate change, loss of biodiversity, soil erosion and water scarcity are examples of 

issues that are expected to increasingly impact on food security in the future. One 

option, therefore, might be to add the phrase “on a sustainable basis” to the end of 

the WFS definition, in order to incorporate future generations.  

 

Also “nutrition security” is often defined differently from food security, in that the 

former is more focused on nutritional outcomes whereas the latter is generally 
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defined as having broader dimensions. Whilst the 1996 WFS definition includes the 

need for “sufficient safe and nutritious food to meet dietary needs… for an active 

and healthy life”, it does not specifically incorporate the factors that are essential in 

supporting adequate nutrition.  

 

The UNICEF framework highlighted the importance of health and care services and 

adequate sanitation facilities in achieving nutrition security. Various definitions were 

subsequently developed, with the World Bank defining nutrition security as existing 

“when food security is combined with a sanitary environment, adequate health 

services and proper care and feeding practices to ensure a healthy life for all 

household members”
9
. 

 

Nutritional factors are generally included in the “utilisation” pillar of food security, 

but in recent years the term “food and nutrition security” has been increasingly used 

to highlight the many factors affecting adequate nutrition in addition to calorific food 

security.  

 

This culminated in the Committee on World Food Security (CFS) proposing a new 

combined definition of food and nutrition security in 2012; “food and nutrition 

security exists when all people at all times have physical, social and economic access 

to food which is safe and consumed in sufficient quantity and quality to meet their 

dietary needs and food preferences, and is supported by an environment of adequate 

sanitation, health services and care, allowing for a healthy and active 

life”(Committee on Food Security, 2012).  The new CFS definition is helpful in 

specifying nutrition, sanitation and health care as vital components of the utilisation 

pillar of food security.  

 

Whilst the definition of food and nutrition security has been refined over the years in 

order to improve the implementation of the right to food, it is now more complex in 

scope posing difficulties for the researcher and analyst in trying to capture all of the 

                                                 
9
 FAO drafted a new definition to highlight that nutrition security is only achieved when individuals 

consume the food they need even though they may have access to sufficient food; “nutrition security 

exists when all people at all times consume food of sufficient quantity and quality in terms of variety, 

diversity, nutrient content and safety, to meet their dietary needs and food preferences for an active 

and healthy life, coupled with a sanitary environment, adequate health, education and care” (FAO 

November 2011) 
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dimensions that contribute to a status of food and nutrition security. This study 

therefore focuses on the four key dimensions first elucidated in the 1996 definition 

from the World Food Summit, but with the recognition that the dimension of 

utilisation is particularly complex and therefore might only be partially addressed.  

 

2.1.4 The dimensions of food security  

 

The World Food Summit definition of food security focuses on food consumption 

outcomes, but also incorporates the different dimensions of food security. Thus, food 

security is commonly conceptualised as having four different dimensions, as defined 

by the Food and Agriculture Organisation (FAO) of the United Nations (UN)
10

, each 

of which is derived from sections of the WFS definition, as described in brackets: 

 

1. Food Availability (“physical access”) 

 

2. Food Access (“economic access”) 

 

3. Food Utilisation (“sufficient, safe and nutritious food that meets their dietary 

needs and food preferences for an active and healthy life”) 

 

4. Food Stability (“at all times”) 

 

2.1.4.1 Food availability  

 

Food availability mainly reflects the supply side of the food security equation. It is 

usually interpreted as meaning that food is physically present because it has been 

grown, marketed, processed, manufactured, stored or imported into the area. For 

example, food may be available because it can be found in local markets and shops, 

or in the wild, or it has been produced on local farms and home gardens, or has 

arrived as part of a food aid shipment.  

 

Food availability can be affected by many factors, including weather-related yields, 

failed crops, pasture availability for livestock, a switch from food crops to cash 

                                                 
10

 For a description of the basic concepts of food security see (FAO, 2008a). 
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crops, transport problems, changes in import prices, tariffs and exchange rates and 

the availability and quality of storage. 

 

2.1.4.2 Food access 

 

Food access reflects the way in which different people obtain or access the available 

food. This may include purchasing food, bartering, borrowing, sharing, gifts from 

relatives, and provisions by welfare systems or food aid. Food access therefore 

largely depends on a household’s available income, as well as on the price of food 

and access to formal and informal safety net systems.  

 

Food access can be influenced by shocks such as the loss of livelihood assets and 

income-earning options, unemployment, food price spikes and the collapse of safety-

net institutions that may have once protected people on low incomes. It is also 

affected by unequal distribution of food within households and socio-cultural factors 

within communities. 

 

2.1.4.3 Food utilization  

 

Food utilisation is usually interpreted as the way in which people use food to achieve 

their dietary, nutritional and cultural needs. It is dependent upon a number of inter-

related factors, including the diversity and quality of the food and its method of 

storage, processing, preparation and cooking, as well as the health and educational 

status of the individual consuming the food and the sanitation facilities of the 

household. 

 

Food utilization is often reduced (ie in terms of its nutritive value) by factors such as 

illness, disease, poor sanitation and lack of nutritional knowledge. Food utilization 

may also be adversely affected if people have limited income for buying the more 

expensive non-staple foods with higher micronutrients, or limited resources for 

preparing food, due, for example, to a lack of fuel or adequate cooking utensils or 

safe water. 
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2.1.4.4. Food stability  

 

In order to be food secure, a population, household or individual must have access to 

adequate food at all times. They should not be vulnerable to losing access to food as 

a consequence of sudden shocks or cyclical events, such as seasonal food production 

or price fluctuations. 

 

Food security is also measured in terms of the duration of food insecurity, with 

“chronic” food insecurity tending to be more persistent or occurring over a sustained 

period of time, “transitory” food security occurring on a short-term or temporary 

basis due to shocks, whilst “seasonal” food security is often regarded as being both 

chronic and transitory, occurring persistently on a temporary basis each year.   

 

The first three of the FAO pillars are hierarchical since availability of food is 

“necessary but not sufficient to ensure access, which is, in turn, necessary but not 

sufficient for effective utilization”(Barret, 2010). Stability cuts across the other three 

pillars as various shocks affect the availability and access to, and utilization of, food. 

Households may have a large choice of available food in their locality, but can only 

access what they can produce, collect, barter and afford. Within the households 

individuals will then utilise a share of the household’s accessed food according to 

cultural and health factors. Shocks can occur at any of the stages to affect the 

stability of available, accessible and utilisable food. 

 

The four dimensions provide a useful framework for analysing food security to 

ensure that key factors and issues are covered. They also provide a useful way of 

linking back to the literature and to the historical development of definitions, from 

availability through to access and utilisation. 

 

2.1.5 Measuring food security 

 

Having defined the key dimensions as a framework, a review of how food security is 

measured is required in order to decide on the methodology to be employed for the 

study. 
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Maxwell and Smith (1992) noted that, despite the legal commitments emanating 

from the human rights agreements on food security, little effort had been made in 

elaborating “the content and the duties corresponding to these provisions”. The 

same point could be made today some twenty years later, and nearly 40 years since 

the Declaration on Eradicating Hunger and Malnutrition.  

 

Much of the reason for the slow progress in developing effective policies to end 

hunger (with clear content and duties) can be attributed to the lack of consistent 

measures and indicators of food security through which international and national 

progress can be evaluated. Indeed, to quote Barret in his paper on measuring food 

security, “measurement drives diagnosis and response”, so it is vital that 

standardized indicators and methodologies are developed (Barret, 2010). 

 

As part of his review on Household Food Security, Frankenberger (1992) reviewed 

the development of food security measures, from the early focus on food supply and 

nutritional surveillance (with relatively little connection between the two), to the 

increasing focus on food access and entitlements following the African famine of the 

mid-1980s and the introduction of new socio-economic variables, such as 

vulnerability and coping strategies.  

 

Despite the advances in understanding the complexity of the food security concept, 

the development of multi-dimensional measures and indicators that incorporate 

supply, access and nutritional indicators, has been relatively limited. Instead work 

has tended to be undertaken within the separate dimensions of food security, as noted 

by Frankenberger’s observation that nutritional surveillance tended to be entrapped 

in the health sector.  

 

FAO held a symposium on the Measurement and Assessment of Food Deprivation 

and Undernutrition in 2002, some ten years after Maxwell and Frankenberger’s 

study. This symposium focused on five main methodologies for measuring food 

security at the time; 

 



 30 

i) FAO undernourishment numbers, based on national food availability 

estimates 

  

ii) Household income and expenditure surveys  

 

iii) Dietary intake surveys 

 

iv) Anthropometric measures to assess outcomes 

 

v) Qualitative, perception-based measures  

 

The symposium highlighted the disparate nature of food security measurement, with 

experts providing papers according to their sector of work, with health professionals 

tending to focus on nutrition and anthropometric measures, socio-economists on 

income and expenditure surveys and perception-based measures, whilst agricultural 

and development economists tended to focus on food availability. 

 

The 2002 symposium also noted the early work undertaken to assess the 

relationships between different indicators of food security. For example, Nube 

revealed very low correlations between estimated food energy deficiency and 

anthropometric measures, such as underweight children and adults, for 39 developing 

countries (Nube, 2002). Other studies since have also highlighted discrepancies, 

including a study for the UK Foresight project, which found that individual dietary 

intake in the UK and Mexico, as measured by detailed nutrition surveys, was 

substantially lower than that estimated to be available at a national level from supply 

and demand balances (Waage et al., 2011). More recently, a comparison of the more 

popular food security indicators, as used in household surveys in Tigray, Ethiopia, 

found that different indicators measured different aspects of food security, and that 

some suggested a high prevalence of food insecurity whilst others did not (Maxwell 

et al., 2013).   

 

FAO convened another conference on measuring food security at the start of 2012, 

some 10 years later. In concluding the 2002 symposium, Hartwig de Haen, the then 

Assistant Director General of the Economic and Social Department, noted that there 
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was “no perfect single measure that captures all the aspects of food security” and 

that a “suite of indicators” should be identified that are reliable, timely and cost 

effective (de Haen, 2002). He also noted the importance of incorporating information 

on food access and nutrition, and the potential to use qualitative measures. Ten years 

later, the 2012 FAO symposium was addressing the same issues in trying to identify 

a core set of indicators. 

 

Researchers are therefore left with the problem of reviewing the various measures 

being used for food security and choosing the most suitable indicators and 

methodologies for their particular research area, or indeed, developing new ones. An 

early task for this study was therefore to identify which indicators were required to 

best measure the key issues identified within the dimensions of food security most 

likely to be influenced by biofuels, and indeed, which were achievable within the 

resources available. 

 

2.1.6 Food security indicators and methods 

 

The OECD Directorate of Development defines an indicator as; 

 

“A quantitative or qualitative factor or variable that provides a simple and 

reliable means to measure achievement, to reflect changes connected to an 

intervention, or to help assess the performance of a development 

actor”(OECD, 2002).  

 

One could add other roles to this definition of indicators, including the measurement 

of shocks and other phenomena, but the OECD definition provides a useful starting 

point in deciding how best to measure the dimensions of food security in a “simple 

and reliable” way. 

 

Given that food security is such a broad and complex concept, however, it is difficult 

to identify a set of core indicators that accurately measure its various dimensions. 

Proxy, or indirect, indicators are often used to measure food security in the absence 

of more reliable but less accessible and less affordable indicators. However, proxy 
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measures often have the disadvantage of not being able to directly attribute changes 

in food security to specific phenomena.     

 

Hoddinot reviewed the use of food security indicators in 1999, ranging from the 25 

broadly defined process and outcome indicators listed by Frankenberger (each of 

which potentially contained many other indicators) to the 450 individual indicators 

identified by Chung et al in 1997 (cited in Hoddinott, 1999).  

 

It could be argued that because food security is such a broad concept, the use of 

many different indicators is unavoidable, and that different situations require 

different indicators to be used. However, this then complicates any comparisons, 

making it difficult to gain an accurate assessment of the number of food insecure 

people, as well as monitoring the impact of different policies. 

 

The following sections reviewing the main food security indicators are categorised 

by the five main methods used to capture the information, as defined by the 2002 

FAO symposium.  

 

2.1.6.1 Global and national indicators 

 

Food availability remains the most common means of measuring food security at the 

global and national levels. FAO calculates the number of people undernourished in 

each country from food balance sheets, comprising broad estimates of supply and 

demand of the major food items. The food availability estimates for a country are 

converted to calorie-equivalents and then compared with a calorie requirement 

profile for the national population in question, from a model based on household 

survey profiles. FAO applies an estimated distribution of calorie availability within 

the population in order to calculate the number of people below a cut-off point 

representing the minimum calorie level required (FAO, 2003). 

 

In other words the FAO’s estimated numbers of food-insecure people that are so 

widely used and quoted, are based on food availability rather than actual 

consumption, ignoring the hierarchical nature of food security. The main criticism of 

the FAO methodology is the assumption that because food is available it will be 
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accessed. Also, the food balances are very broad estimates, often derived from 

under-resourced national statistical agencies, and, hence, many components of the 

supply and demand balance may not be recorded accurately (or even at all). Even 

where there is a relatively accurate picture of the supply and demand of different 

foodstuffs, this has then to be converted into different nutrient values using standard 

composition tables that may not account for varietal or food preparation differences. 

Nor does the FAO methodology account for seasonal variations in food security, 

which is the main characteristic of hunger for many in the developing world.  

 

Svedberg (2002) criticises the FAO methodology given the questionable reliability of 

the food availability data, but also for using a single threshold level for the dietary 

energy requirement in each country. Headey (2011) notes that the FAO number is 

very sensitive to the cut-off line chosen and also the minimum calorie requirement, 

which can vary significantly with physical labour. 

 

De Haen et al (2011) also highlighted problems with the three main components of 

the FAO indicator, the average national calorie availability per capita, the 

distribution of access to those calories and the minimum calorie requirement by the 

population, and found very high elasticities for the global number of undernourished 

associated with relatively minor changes in these estimated components.  

 

Headey notes that the US Department of Agriculture (USDA) hunger indicator uses a 

more sophisticated partial equilibrium model of world food production and trade, 

based on calorie-income elasticities. But the USDA measure only focuses on low-

income countries, whereas an increasing proportion of the world’s poor are located 

in middle-income nations (Sumner, 2011). USDA also uses a global calorie cut-off 

line of 2,100kcal per day per adult equivalent as opposed to the calculations made by 

FAO for each country depending on the population structure. The use of average 

elasticities in the USDA model (as in most modelling exercises) is also an area of 

contention, as different households and income groups will respond differently to 

income and price changes, depending on their livelihood circumstances. 

 

FAO applied the percentage annual changes recorded in USDA analyses to its own 

model in order to determine the impact of the food price hikes during 2008 to 2012. 
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Otherwise FAO would not have been able to provide a timely assessment of the price 

shocks as its model relies on food balance data that is about three to four years 

behind the prevailing year. Given that the USDA analysis only includes low-income 

countries and has a different definition of the cut-off point for undernourishment to 

that of FAO, the validity of the initial FAO estimates of the number of people 

suffering from hunger after the 2008 price shock were questioned by many, 

including William Easterly in his “Aidwatchers” blog on “made-up world hunger 

numbers” (2010). 

 

More recently the Global Hunger Index (GHI) has been developed to provide 

national level measures of food poverty. Conceived by Wiessman (2002) this index 

uses the FAO undernourishment figures as part of the calculation, together with child 

mortality and child underweight prevalence. The resulting score is used to rank 

countries, which are then grouped into categories describing the level of food 

insecurity, from “moderate” to “serious”, “alarming” and “extremely alarming” (von 

Grebmer et al., 2011).   

 

The GHI could be regarded as a slightly more useful food security indicator than the 

FAO measure, since it is a multi-dimensional indicator, incorporating food 

availability and nutritional outcomes. However child mortality is affected by more 

than just nutritional intake, as is the prevalence of underweight children. Also, 

Masset observes that the use of an average score from the three variables reduces the 

impact of the under-five mortality rate, which is usually a smaller figure than the 

underweight and undernourishment percentages, whilst the cut-off points for the 

classification of countries into group headings describing the food security situation 

as “serious”, “alarming” or “extremely alarming” tends to be somewhat arbitrary 

(Masset, 2011).  

 

The GHI has been refined slightly in recent years, whilst the Economist Intelligence 

Unit has been producing its annual multi-dimensional Global Food Security Index 

(GFSI) since 2012, which ranks countries according to their vulnerability to food 

insecurity (Economist Intelligence Unit, 2016).  These are useful indicators for 

tracking progress each year at national and global level, but their lack of detail in 

relation to the dimensions of food security raises concerns regarding the accuracy of 
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the numbers generated. There is a clear need for more detailed food consumption 

information at local level in order to improve the national and global estimates. In 

other words, the national and global estimates should be calculated from the bottom 

up rather than top-down. 

 

2.1.6.2 Household surveys of income, expenditure and consumption 

 

It is commonly acknowledged that lack of access rather than availability accounts for 

most food insecurity (Sen, 1999). This has led to increased focus in recent years on 

household surveys, such as national income and expenditure and specialist surveys. 

However, such surveys can be extremely time-consuming and costly, and are often 

conducted only every few years or, in the case of specialist surveys, on a one-off 

basis. 

 

The World Bank initiated Living Standard Measurement Surveys (LSMS) in 1979 

and during the 1980s when it became apparent that few developing countries had 

reliable income distribution data for poverty analyses. LSMS use detailed 

questionnaires, usually involving 2,000 to 5,000 representative households at 3 to 5 

year intervals. Many of these national household surveys tend to only include 

household expenditure data on broad categories, which makes it difficult to use them 

for any in-depth food security analyses.  

 

However, more and more countries are now expanding their household surveys to 

incorporate agricultural and food consumption issues (Scott, 2011). For example the 

Tanzanian Bureau of Statistics conducted its first National Panel Survey from 

October 2008 to October 2009, incorporating agricultural production, rural 

development and a wide range of other socio-economic information. This was 

conducted as part of the LSMS Integrated Surveys on Agriculture initiative (LSMS-

ISA) by the World Bank (NBS, 2009). Also, new shorter LSMS-linked surveys have 

been developed to monitor progress on specific issues in between the more detailed 

surveys
11

. 
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 For example, the Core Welfare Indicators Questionnaire (CWIQ) involving a core set of living 

standards indicators, which only takes half an hour to complete.  
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As well as national government surveys, many household surveys are conducted for 

smaller research projects, often by NGOs and universities, and often at a more local 

level. Specialist surveys can be specifically designed for food security research, 

providing measurements of detailed food consumption from purchases, barter, aid 

and gifts and from own production or collection, as well as livelihood and other 

information related to food security, such as access to improved sanitation, health 

facilities and schools. For example, ICRISAT, IFPRI and Save the Children have all 

established household panel surveys, visiting the same households over regular 

periods (Devereux et al., 2004). Such surveys reflect the move since the 1990s 

toward sustainable livelihood approaches to food security, using methodologies like 

the Household Economy Approach (HEA) developed by Save the Children UK 

(2005).     

 

Household surveys have advantages over the macro-level availability-based 

estimates, as they can more accurately measure actual consumption. The different 

foods consumed can provide an approximate estimate of nutritional intake, broken 

down into calories, protein, fat and key micronutrients. These can then be compared 

with reference food requirements for the individuals and households to assess 

whether there are any significant deficiencies in particular socio-economic groups or 

regions. 

 

However, this requires detailed survey instruments in order to capture the required 

food consumption data and a detailed analysis of all the foods consumed, which can 

pose a particular problem for analysing the food consumption of communities with 

varied diets including processed foodstuffs with complex ingredients. Such surveys 

are also relatively costly and time-consuming.  

 

Recall bias can also be a problem for such surveys, with householders asked to 

recount their food consumption over the past week, month or even year. However, 

many households in food-insecure regions have regular food purchasing and 

consumption patterns, with relatively few meal ingredients, making it easier to recall 

food usage. In a recent World Bank study of the reliability of recall in agricultural 

data, it was concluded that the majority of agriculture based data, including 
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production, sale and consumption patterns, did not suffer from “large recall delay” 

(Beegle et al., 2011).  

 

Household surveys also suffer from failing to identify different intakes within 

households due to social and cultural factors. However, individual food intake 

surveys, such as the gold standard 24-hour dietary recall approach, would be even 

more costly to undertake at the scale required for a nationally representative picture. 

 

One of the biggest problems for both the household surveys and national food 

availability estimates is in the conversion of the recorded food use to nutritional 

equivalents, such as calories, protein, fat and micronutrients. Food composition 

tables are available for many countries, but the level of nutrients derived from 

different food items largely depends on the type or variety of the food item in 

question and how that food is prepared, cooked and eaten. Thus composition tables 

may provide average nutrient tables for wheat, but may not always give details of 

different varieties of wheat or different types of bread consumed.  

 

Nevertheless, food composition analysis has improved over the years and a number 

of detailed tables have been released for African countries in recent years, including 

the West African Food Composition tables by FAO/INFOODS, Biodiversity 

International and the West African Health Organisation in 2012, as well as for The 

Gambia in 2011, Mozambique in 2011 (Korkalo et al., 2011), Uganda in 2012 and 

Tanzania in 2008 (Lukmanji et al., 2008).  

 

Also there is a clearer picture emerging of dietary needs for active and healthy 

lifestyles, with many national governments providing dietary guidelines, whilst 

WHO and FAO have released recommended guidelines for energy (FAO et al., 

2004), protein (WHO et al., 2007) and various micronutrient (WHO and FAO, 2004) 

requirements for different age groups and human activity levels.  It should also be 

noted that there are a number of useful guides to inform household survey research in 

developing countries, including the comprehensive guide by the United Nations 

(United Nations, 2005). 
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2.1.6.3 Anthropometric measures  

 

Anthropometry is probably the most common technique used to measure 

malnutrition in individuals. It involves the measurement of body parameters to 

indicate nutritional status. This has the advantage of providing outcomes at the 

individual rather than household or national/global level. 

 

The most common anthropometric indicators used are for child stunting, wasting and 

underweight. Weight for height of children under 5 years of age is a common 

indicator of acute malnutrition or wasting in a particular community, whilst height 

for age is used to assess stunting of young children, with the results being compared 

to standard values for a reference population. Weight for age is an indicator of 

underweight through both acute and chronic malnutrition. For adults the Body Mass 

Index (BMI) is a more common measure, which is also used at times for children. 

Mid-upper arm circumference (MUAC) is also used in adults and children to 

measure nutritional status.  

 

However, anthropometric indicators for nutrition also require significant resources in 

order to capture the data at field level, unless data is already available from a recent 

survey in the locality. Moreover, they do not provide information on the reasons for 

poor food access, only the outcome. Some of the anthropometric measures also miss 

certain types of malnutrition such as oedema and certain micronutrient deficiencies, 

which are identified by different observation and blood tests. Thus, the 

anthropometric data may be useful to identify whether food insecurity exists in a 

certain locality, but if it does, further information is usually required to assess how 

and why it exists. 

 

More importantly, anthropometric outcomes may not always be associated with food 

intake, but more with illness and disease, making such measures a less reliable 

indicator of food security. Also they usually focus on children, but it is known that 

parents often reduce their own consumption in times of shortage, so the measures 

may fail to identify hunger amongst adults and adolescents (Hauenstein-Swan et al., 

2009). The measures used in anthropometry have also been increasingly questioned 

in recent years, particularly with regard to the underweight indicator, as more 

children may be classified as having sufficient weight due to high sugar and fat diets 
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and yet be suffering from malnutrition, whilst the use of a single global growth 

reference has also come under increasing scrutiny due to genetic differences across 

geographic regions (de Haen et al., 2011). 

 

2.1.6.4 Perception-based measures 

 

More recently the Household Food Insecurity Access Scale (HFIAS) was developed 

by the Food and Nutrition Technical Assistance Project (FANTA) in the US to 

measure food insecurity. The HFIAS is based on the “perception-based” method of 

asking a series of questions to householders as to whether they perceive their food 

consumption and dietary variety to be adequate or not
12

.  From this the Household 

Hunger Scale (HHS) has been developed to measure the most severe food insecurity 

experiences in developing countries
13

 (Ballard et al., 2011).  

 

The Gallup World Poll has also a provided subjective information on household food 

security over recent years due to the inclusion of questions asking respondents 

whether, at any time in the past year, they did not have enough money to buy the 

food that they or their family needed or had experienced episodes of hunger (Headey, 

2013).  In 2014 the Gallup Poll extended its range of questions to incorporate the 

Food Insecurity Experience Scale (FIES) developed by FAO, which has eight 

questions regarding food insecurity during the past year (FAO, 2016b). 

 

Perception-based measures have the advantage of gauging well-being within 

individuals. However, people may not always be able to judge whether they are 

eating sufficient amounts of each nutrient and recall may be a problem when 

reporting food security over the past month or more.  
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 This approach was developed in the 1990s by the US Department of Agriculture for the routine 

measurement of household food insecurity in the US using the Household Food Security 

Supplemental Module (HFSSM). 
13

 Note that the HHS uses those questions in the HFIAS that have been analysed as being cross-

culturally comparable, as the other questions in the HFIAS produced varying responses by different 

cultures.  
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2.1.6.5 Food intake and dietary diversity indicators 

 

Food intake surveys can take a variety of forms and are often included within 

household surveys, but may also be one-off exercises. The Household Dietary 

Diversity Score (HDDS) has become a common measure to assess the ability of a 

household to access a sufficient nutritional intake, reflected by the variety of their 

diet. This is generally measured by a 24-hour recall, which has limitations in terms of 

assessing diets over an extended period unless it is repeated in each of the main 

seasons. The HDDS also requires each survey be adapted to the local foods and 

conditions making it more difficult to compare between regions (Kennedy et al., 

2011). Perhaps the main concern regarding dietary diversity scores is the lack of 

quantitative data captured, which could seriously underestimate food security status. 

 

The Food Consumption Score (FCS) used by the World Food Programme is another 

common method for capturing dietary diversity (WFP, 2008). This measures the 

frequency of consumption of nine different food groups by a household during the 

seven days before the survey. Each food group is assigned a weighted value and the 

overall score is calculated by multiplying the frequency of consumption of each food 

group by its weighted value, then summing the values for all food groups. Scores 

over 35 are generally regarded to be acceptable, but below this level households are 

generally considered to be food insecure. 

 

2.1.6.6 Comparisons of indicators 

 

This brief review of indicators highlights the variety of methods for measuring food 

security. One of the main problems is that there is often little correlation between the 

measures. For example, Smith et al (2006) found that household expenditure survey 

data from 12 Sub-Saharan countries suggested that nearly 60 per cent of the 

population were undernourished in calorific terms, compared to the FAO estimate for 

the same countries of less than 40 per cent. Meanwhile Klasen (2007) found a 

significant difference in the relationship between child undernutrition and overall 

undernourishment rates in different regions, with the share of underweight children 

in South Asia, for example, at a much higher level than the share of undernourished 

people in the total population. The analysis also highlighted a lack of correlation 
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between child underweight and under-5 mortality rates, particularly in South Asia 

where mortality rates are low but underweight prevalence is high.  

 

In more recent reviews of food security indicators, Masset (2011) found that stunting 

accounted for twice as many people undernourished in developing countries than the 

FAO calculation in 2008/9. Also a Gallup World Poll used by Headey in an analysis 

of the 2008 global food crisis, showed that self-reported hunger actually fell during 

2007-2008, whereas FAO initially estimated that the number of undernourished 

people rose to over 1 billion in 2009 (Headey, 2011). Another fundamental weakness 

of the FAO numbers is that they do not account for the large number of people 

suffering from “hidden hunger”, due to micronutrient deficiencies.  

 

The FAO indicator of undernourished people was used as the main indicator of the 

MDG goal to eradicate hunger, as well as forming an important part of the Global 

Hunger Index and Action Aid Hunger Scorecard. It is therefore not surprising that 

Masset finds a good correlation between the FAO, GHI and Action Aid measures 

(Masset, 2011). The weaknesses of the FAO measure, however, and its often poor 

relationship with anthropometric measures (which themselves may not always 

provide a true picture of food security), raise concerns over the GHI and other 

similar multi-dimensional global food security indicators, as well as the way in 

which progress toward meeting the MDG food security goals was measured and the 

way in which progress on the SDGs might be measured.  

 

Perception-based measures of food security are a more recent development. The 

difficulty in creating a globally acceptable questionnaire format for such surveys is 

illustrated by the development of the Household Hunger Score, which adapted the 9-

question Household Food Insecurity Access Score used in the US, down to 3 basic 

questions, as these were considered to be the only three that would be answered in 

the same way across all cultures (Deitchler et al., 2010). Also, the Gallup Poll 

questions on food security could be subject to different meanings of hunger between 

cultures.
.
 Nevertheless, such measures could provide a quick and useful way of 

capturing subjective food security information, particularly using new technologies 

such as mobile phone applications.  The recent addition of the FIES questions to the 

Gallup Poll should also provide more informative subjective data. 
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The dietary diversity and food consumption score indicators provide a useful way of 

capturing information on micronutrient intakes for a healthy diet, but they do not 

necessarily capture quantities consumed so well. A recent systematic review of the 

dietary diversity score found little association with body mass index and 

recommended that normal or usual levels of food intake be recorded, as well as a 

longer time period than the 24 hour recalls often used, and more food categories 

(Salehi-Abargouei et al., 2015). 

 

As with the anthropometric indicators, the HFIAS, HDDS and FCS tend to only 

provide measures of whether the household or individual is likely to be food insecure 

or not, as well as the level and frequency of their food insecurity. Given the 

importance of capturing information on actual food consumption and livelihoods in 

order to understand the factors behind food security outcomes and in order to 

measure micronutrient as well as calorie intake, household food consumption and 

livelihood surveys appear to offer the best single approach for measuring food 

security. This reflects one of the key recommendations of the 2012 FAO symposium 

to include more food and nutrition information in large-scale surveys (FAO, 2012). 

 

There also appears to be a general consensus by experts that a suite of indicators 

should be used in such surveys, assuming sufficient resources are available (de Haen, 

2002, de Haen et al., 2011, Devereux et al., 2004, Fan, 2012, FAO, 2012, Wiesmann 

et al., 2006).  Through combining different indicators in the survey, assessments can 

be made on the accuracy of cheaper and quicker methods, such as perception-based 

measures for future use. More importantly, the various indicators could be used to 

measure different dimensions of food security. 

 

Multi-dimensional measures have been developed at the national and global level to 

incorporate a range of indicators into a single food security score, including the GHI 

and GFSI at national level. But there has been relatively little progress in developing 

multidimensional measures at the local level for food security. Sabina Alkire and 

James Foster developed the Multidimensional Poverty Index (MPI) in 2007 under 

the Oxford Poverty and Human Development Initiative (OPHI, 2015). This is based 

around indicators of deprivation at the individual, household or community level that 
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are then weighted to provide an overall score to determine poverty status. The 

prevalence and intensity of poverty as a percentage of the total population is then 

calculated in order to scale up to national level. A similar, bottom-up multi-

dimensional index for food security could provide a more reliable measure of food 

security than current top-down approaches. 

 

On the other hand it could be argued that the use of a suite of indicators has been the 

prevailing situation for many years and that this may have stifled the development of 

a simpler and more reliable and more consistent means to measure food insecurity. In 

order to measure progress in a consistent way, it might be better to develop a single 

approach that can be used by all. The problem with using a suite of indicators is that 

one is still left with the problem of deciding whether there has been any overall 

progress in reducing food insecurity if one indicator shows an improvement whilst 

another suggests a worsening of the situation. This problem could be resolved by 

allocating weightings to the various indicators in order to reflect the importance of 

different dimensions of food insecurity, but such weightings could be difficult to 

agree. Furthermore, the suite of indicators approach could be resource-intensive, 

requiring different types of information to be captured using different methodologies.   

 

A recent review of food security indicators by Lele and Kinabo (2015) as part of the 

Technical Working Group on Measuring Food and Nutrition Security for the Food 

Security Information Network (FSIN), proposed three principles for improving 

measurement: 

 

i) measure more than calories to capture the various dimensions of food 

insecurity 

ii) cover the whole life cycle and specific needs of each age group 

iii) produce new data and present it in ways that mobilize action and catalyze 

policy. 

 

A subsequent report by the same Technical Working Group added a fourth principle 

(Lele et al., 2016): 
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iv) monitor the whole food system, recognizing the interdependence of 

agriculture, the environment, food and social inclusion, nutrition and 

health. 

 

These principles build on the call by the International Food Policy Research Institute 

for “more and better data” in its Global Nutrition Report (IFPRI, 2014). 

 

The literature on food security therefore highlights the need for improved ways of 

measuring food security as the concept and definition of food security has evolved.  

The main indicators in current use each have their own strengths and weaknesses, to 

the extent that experts recommend multiple measures be used to ensure a 

comprehensive food security assessment. But these may be difficult to combine 

within an overall assessment and the process can be resource-intensive. So it may be 

better to develop more specific low-cost indicators that are better suited to the issue 

at hand, together with guidelines on which to use when, and how to compare results 

from each.   

 

2.2 A Background Review of Biofuels  

 

Biofuels have attracted much public attention over the past decade, particularly 

following the sharp rise in US and EU production during the first decade of the new 

millennium.  Before reviewing the extensive literature linking biofuels and food 

security, this section briefly defines and reviews the different types of biofuels and 

their relative efficiency in terms of energy balances, the development of biofuel 

production around the world and government policies pertaining to biofuels.   

 

2.2.1 Types of biofuels, feedstocks and co-products 
 

The term “biofuels” encompasses a wide array of biofuel types, feedstocks, co-

products, technologies and models of production. This makes it difficult to 

generalize about biofuels and their varying relationships with key issues such as 

climate change and food security. Despite this, the term is often used in a general 

sense, and often without qualifying the diverse properties and impacts of different 

types of biofuels.  
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In this study, biofuels are defined as liquid and gel-based fuels, mainly produced 

from renewable biomass and waste products, and mainly used in transport fuels and 

for power generation. This definition therefore distinguishes liquid-based biofuels, 

which are the focus of this study, from solid biomass energy such as wood and 

charcoal, which remain the most important energy sources for many households in 

developing countries and account for some 75-80 per cent of total biomass use for 

energy (Chum et al., 2011).  

 

The literature also refers to first and second (and sometimes third or next) generation 

biofuels, or  “conventional” and “advanced”. This terminology is mainly based 

around the type of feedstock and processing technology employed.  First generation 

or conventional biofuels are those that are already commercially available using 

starch and oil-based crops, such as cereals, sugar cane, root crops and oil-bearing 

crops and products, and/or those using conventional technologies such as 

fermentation and distillation, in the case of ethanol, and trans-esterification in the 

case of biodiesel, which involves the chosen vegetable oil undergoing a chemical 

reaction with methanol or ethanol to create either fatty acid methyl esters (FAME) or 

ethyl esters.  

 

Advanced or second-generation biofuels are those that use relatively new 

technologies and/or non-conventional feedstocks such as cellulosic raw materials, 

algae and waste products (Hamje et al., 2014, IEA, 2011a). Hydro-treated vegetable 

oil (HVO) produces a more energy-dense advanced biodiesel, with lower emissions 

and a very low freezing point enabling it to be used in cold climates and as aviation 

fuel. 

 

The two main categories of liquid biofuels covered in this study are: 

 

i) Bioethanol and other similar alcohol-based fuels, which are mainly 

produced from starch and sugar-based feedstocks such as cereal, root 

crops and sugar cane, but also from co-products, such as molasses derived 

from sugar processing and biodegradable waste. Second-generation (2G) 
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technologies use ligno-cellulosic materials, such as energy grasses and 

short-rotation coppice, as well as straw residues.  

 

ii) Biodiesel (FAME) or straight vegetable oil (SVO), produced mainly from 

oil-based feedstocks such as oilseed crops, but also waste oil and animal 

fats such as tallow. 2G technology can produce advanced biodiesel from a 

wider range of materials, including algae and waste products, such as 

hydro-treated vegetable oil (HVO).   

  

Ethanol is mainly used as a petrol replacement and can be blended up to 10 per cent 

(or E10) without affecting conventional engines and 15 per cent (E15) for modern 

petrol engines. Engine modification can allow higher blends, such as E85 and E100 

in Brazil where most cars are now manufactured to be able to use both petrol blends 

and/or ethanol. Ethanol only has about two-thirds the energy content of petrol but is 

said to improve vehicle performance through a higher octane rating. This can help to 

replace dangerous anti-knocking agents used in normal petrol fuels, such as lead and 

MTBE (methyl tertiary-butyl ether). Ethanol can also be used in gel form for 

improved cooking stoves and is also produced for a variety of food, drink and 

industrial uses. 

 

Biodiesel is mainly used as a diesel fuel replacement and can be blended to any 

proportion with relatively little engine modification, although common blends are 5 

to 20 per cent (B5 to B20). Its energy content is about 90 per cent that of diesel and it 

is said to improve engine performance due to its increased lubricity. The use of 

straight vegetable oil usually requires engine modification due to its high viscosity, 

especially at cooler temperatures, although some tropical oils, such as coconut oil, 

can be more readily blended with diesel for use in conventional engines.  

 

Liquid biofuels have a long history with the first combustion engines using ethanol 

and turpentine in the early 1800s. The first spark-ignition engine used ethanol in the 

late 1800s, as did the Ford Model T car in the early 1900s, whilst Rudolf Diesel used 

peanut oil in his compression-ignition engines in the 1890s (Mastny, 2007). 

Although oil started to become plentiful in supply and cheap in the early 1900s, 
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ethanol powered engines were still preferred by some because they had less wear and 

tear, were quieter and produced less exhaust fumes (Reijnders and Huijbregts, 2009).  

 

Liquid biofuels are currently the main alternative energy source to fossil-fuel based 

transportation fuels, and are now commonly blended in many standard petrol and 

diesel vehicle blends around the world, helping to reduce the demand for crude oil. 

Whilst electric-powered vehicles have the potential to consume an increasing share 

of the road transport fleet, there is currently no real alternative to liquid biofuels for 

air and sea transport, and airline companies in particular have invested heavily in 

research to identify the best biofuel-based replacements for existing fossil fuel based 

fuels.  

 

One of the defining features of biofuels is the wide variety of raw materials from 

which they can be made and the co-products produced in the biofuel manufacturing 

process. Bioethanol can be produced by fermenting the sugars extracted from sugar 

cane and other similar sugar-based crops, or starchy plants, such as cereals and root 

crops, which involve an extra saccharification step to convert the starches into 

sugars. But new technology is allowing second-generation feedstocks to be 

increasingly used and to become commercially viable, including cellulosic 

feedstocks, such as cereal straw and high-yielding grasses and trees. For example, 

maize stover (the straw stalks left after the maize has been harvested) is now being 

used to produce ethanol in the US and China. Municipal solid waste (MSW) is one of 

the latest ethanol feedstocks to be used in plants in Canada and the EU, with more 

planned around the world and potential for future expansion (European Biofuels 

Technology Platform, 2016). 

 

More and more waste and residue feedstocks are being used to produce biofuels, 

particularly used cooking oil (UCO) and animal fats (eg tallow) in the production of 

biodiesel and waste products from palm oil processing in hydro-treated vegetable oil. 

But conventional oilseed crops such as soyabean, rapeseed, sunflowerseed and palm 

are currently the main raw materials used for biodiesel production. Other 

technologies have been slower to develop, including algae-based biodiesel, once 

heralded as the solution to the land and food security constraints of first generation 

feedstocks. 
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One of the main issues that is often overlooked in the debate surrounding biofuels is 

the output of co-products from the different feedstocks used. Most US maize-based 

ethanol production uses a dry milling process that converts the starch component of 

the grain into sugars which are then fermented to produce an alcohol beer which is 

then distilled. Other nutrients, such as protein, and fibre are left behind in the form of 

a stillage from which an animal feed known as distillers dried grains with solubles 

(DDGS) is produced. Similar protein feeds are produced using other types of cereal 

such as wheat. In the case of sugar cane ethanol, most of the co-product is in the 

form of bagasse, which is usually used as an energy source. But ethanol is also 

produced from the molasses co-product of sugar production, both from cane and 

beets. 

 

Substantial quantities of animal protein feeds are also produced in the crushing of 

oilseeds for biodiesel production. In the case of soyabeans, only 15-20 per cent of the 

bean produces the oil from which biodiesel is produced, the rest produces a high 

protein animal feed known as soyameal, which is used as animal feed all over the 

world. Indeed the main revenue driver for soyabeans is from the meal rather than the 

oil. Similarly rapeseed yields about 40 per cent vegetable oil to 60 per cent meal, 

whilst oil palm seeds can yield 50 per cent oil or more. Palm oil fruits are from large 

fruit bunches and contain a kernel which is also crushed to produce a high quality oil 

and animal feed, whilst the empty fruit bunches are used as an energy source. The 

biodiesel production process also produces glycerine, which is often used in the food 

and drink, personal care and pharmaceutical sectors
14

.  

 

The co-products from the various feedstocks are an important component of the 

revenue generated from each crop. The development of techniques to convert the 

cellulosic parts of crops, such as cereal and oilseed straw, sugar bagasse, palm fronds 

and old trees, will add another revenue stream once commercially viable.  

 

 

 

                                                 
14

 Every 10 units of biodiesel produce about 1 unit of glycerol. The biodiesel industry supplies about 

two-thirds of the global supply of glycerine. The abundant supply of glycerine in past years led to a 

fall in prices, but in recent years prices have been supported by the development of new uses.  
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2.2.2 Biofuel energy balances and greenhouse gas reduction  

 

Although the greenhouse gas emission implications of biofuel production are 

somewhat outside the scope of this study, part of the research related to the climate 

change impact of biofuels has focussed on land use changes that are inextricably 

linked to food security.  

 

One of the main reasons why biofuels were initially supported by governments, 

particularly in the EU and US, was the assumption that feedstocks reduced 

greenhouse gas emissions by sequestering carbon during growth, offsetting vehicle 

emissions from the burning of biofuels.  Once this assumption is made, then 

emissions can be calculated through a life-cycle analysis (LCA) of the biofuel 

production process, capturing all emissions in the production of both the feedstock 

and biofuel, including transportation to consumers. As long as the biofuel production 

process emissions are significantly less than those from using fossil fuels, such as 

petrol and diesel fuels, then the biofuel can be regarded as reducing GHGs and thus 

helping to curb global warming.   

 

The literature shows a wide range of GHG reduction estimates for each feedstock, 

partly due to different means of production, but also due to methodological 

differences. Early estimates of maize ethanol GHG reductions were close to zero or 

even negative, but recent calculations show the current maize ethanol energy balance 

at over double the fossil fuel energy input (Gallagher et al., 2016). Energy balances 

for most feedstocks now suggest significant GHG reductions for most of the major 

feedstocks, and particularly sugar cane for ethanol and UCO for biodiesel. 

 

But the seminal work by Searchinger et al (2008) calculated that greenhouse gas 

emissions from biofuel production were much greater once the emissions created 

from bringing new cropland into production to replace that used for biofuel 

feedstocks, were factored into the equation. Using a global econometric model, 

Searchinger et al estimated that maize ethanol production in the US would lead to a 

doubling of greenhouse gas emissions when GHGs were released from carbon sinks 

in other countries, as farmers around the world responded to higher prices by 

converting pasture and forests to cropland. 



 50 

 

This concept of indirect land use change
15

 (ILUC) has created much controversy, 

with various studies showing a wide range of impacts, and most later studies 

suggesting that the Searchinger estimates were exaggerated (eg Khanna et al., 2011, 

Zilberman, 2016). Despite the surrounding controversy and uncertainty, the concern 

that policies to encourage biofuel production might lead to increased GHG emissions 

led to both the US and EU introducing ILUC standards within their respective 

policies. 

 

Policymakers have tended to base rules and regulations for biofuel production on the 

findings of complex econometric models. Partial equilibrium (PE) and computable 

general equilibrium (CGE) models provide a simplified framework of the economic 

sector (as in the case of the former) or economy (as in the latter), in order to assess 

how policies could affect market interactions, and how these, in turn, would affect 

land use changes and GHG emissions.  

 

Existing models that have been established over many years by specialist teams, 

often in academic institutions, are usually adapted to the specific issue in question in 

order to assess different policy outcomes. These include the PE models developed by 

the Food, Agriculture and Policy Research Institute (FAPRI) at the University of 

Missouri and the Aglink/Cosimo model managed by the OECD and FAO, as well as 

CGE models such as the Global Trade Analysis Project (GTAP) model at Purdue 

University, the MIRAGE model used by IFPRI and CEPII
16

 and the Common 

Agricultural Policy Regionalised Impact (CAPRI) model coordinated at Bonn 

university.  

 

The models are based on theoretical economic concepts that are often contested, not 

least of which is the idealised view of competitive markets with perfect information 

flows (eg Taylor and von Arnim, 2006). Many assumptions also have to be made to 

fit the models to the real world. Hence, different models and different ways of 

applying such models to the issue at hand often produce very different results. 

                                                 
15

 The literature distinguishes direct land use change (DLUC), where land use may change from 

pasture or from another crop, to biofuel feedstock on the same farm or locality or country, as opposed 

to indirect land use change (ILUC), where increased areas of biofuel feedstock lead to land use 

changes elsewhere due to higher prices for the crops that the biofuel feedstocks have replaced. 
16

 Centre d’Etudes Prospectives et d’Informations Internationales 
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Nevertheless they remain an important means of evaluating market developments 

and policy choices in the absence of other information.  

 

The ILUC models are linked to food security in that they incorporate assumptions 

about how the increased demand for feedstocks for biofuel production affects the 

overall demand for that feedstock, including any food use, as well as any supply 

response, which may incorporate land use changes as well as productivity 

improvements.   

 

Malins et al (2014) identified five key factors that determine the amount of ILUC 

resulting from the net effect of changes in food demand, productivity improvement 

and land use changes; 

 

i) price elasticity of food demand 

 

ii) price elasticity of crop yield 

 

iii) price elasticity of area 

 

iv) overall crop mix 

 

v) co-product utilisation  

 

Many of the differences between ILUC models are attributed to different 

assumptions made with regard to these factors, and the fact that some models do not 

take all or some into account. Thus, for example, some models incorporate higher 

price elasticities of supply (yield and area) than others, whilst some do not account 

for, or have much lower values of, the price elasticity of food demand (Malins et al., 

2014) 

 

There are many issues involved in estimating each of these factors. For example, past 

evidence within the literature suggests little responsiveness of crop yields to prices, 

particularly in developed regions where optimum inputs of fertiliser and other inputs 
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may already have been reached leaving little scope for further increases. High input 

prices and environmental policies may also restrict the elasticity of yield to prices.  

 

For co-product adjustments there are a number of ways this could be approached, 

such as the relative mass volume, the revenue generated or the assumed crop areas 

displaced on a feed-value basis, whilst some of the earlier models did not account for 

co-products at all.    

 

Changes in the proportion of crops grown can also have a significant impact on 

overall productivity. For example, maize plantings in the US have tended to increase 

over recent decades at the expense of lower-yielding cereals such as wheat, barley 

and oats. The higher proportion of maize in the overall crop mix has thereby raised 

the total productivity of the overall cereal area.   

 

Another issue regarding land use that is not accounted for by some of the models is 

that of double-cropping and other non-yield productivity improvements. Over the 

past decade it has become apparent that much of the global supply response to 

increased biofuel demand has been through the more efficient use of land rather than 

expansion of area (Babcock and Iqbal, 2014). This suggests a low price elasticity of 

area, which is commensurate with limited additional land availability in countries 

such as India and China, but also many developed countries, as well as the high cost 

of accessing and developing new land for crop production. Yet many of the models 

employ a relatively large elasticity of area response to price. 

 

It is hardly surprising then that the models result in a wide variance of outcomes for 

greenhouse gas emissions from indirect land use change. For example, one study of 

eight such models found a significant variation in net CO2 emissions from biofuels as 

a percentage of CO2 emissions of fuel replaced, with ranges of between -5 and -90 

per cent for sugar cane (negative values indicate lower emissions than the replaced 

fuel), +20 to -40 for maize and +35 to -35 for rapeseed (Croezen et al., 2010). Added 

to this are the assumptions then made on GHG emissions from the different types of 

land use change, particularly with regard to the extent to which the models 

incorporate areas with high carbon sinks relative to low carbon sink land. (Ahlgren 

and Di Lucia, 2014). 
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Another area of contention in the ILUC debate is that comparisons with fossil fuels 

are often made without reference to the changing nature and rising external costs 

related to fossil fuels. Calculations for energy efficiency and climate change impact 

are standardised in oil-equivalent. But crude oil quality has been decreasing in 

quality over time and particularly in recent years as oil is extracted from increasingly 

expensive resources such as tar sands. A recent IEA Bioenergy report estimated that 

in the US the average energy consumption per unit of crude oil processed increased 

by more than 50 per cent between 2001 and 2011 (Karatzos et al., 2014). From a 

climate change perspective, greenhouse gas emissions from oil tar sands extraction 

and refining are reported to be more than double that of standard crude oil which is 

used as the benchmark in most analyses (Gerdes and Skone, 2009). Given that it is 

now evident that a significant proportion of our fossil fuel reserves need to remain in 

the ground in order to maintain global warming below the agreed maximum 2 degree 

centigrade increase, this should also be factored into the ILUC equation for biofuels.  

 

2.2.3 Biofuel production around the world  
 

Most of the recent expansion in global biofuel output has occurred in food secure 

countries such as the US and EU, where the main feedstocks are food-based crops 

such as maize and vegetable oils. Brazil continues to expand its sugar cane-based 

ethanol output, whilst other relatively food-secure countries in South America and 

South Asia have embarked on policies to encourage the production, use and export of 

biofuels and feedstocks.  

 

There are many sources of biofuel production estimates, the most up-to-date publicly 

available source being the annual data for the top biofuel producing countries 

reported in the Renewables Global Status Report compiled by the REN21 Secretariat 

of the UN Environmental Programme (UNEP). Its 2016 report estimates that global 

bioethanol production rose to 98.3 billion litres in 2015, compared to its first 

estimate for 2005 of 33 billion, with production in the US rising from 15 billion in 

2005 to 56 billion in 2015 and that for Brazil doubling from 15 to 30 billion. Global 

biodiesel and HVO production is estimated at 35 billion litres in 2015 versus 3.9 

billion in 2005, with EU production rising from 3.6 to 14 billion litres (REN21, 

2016). 
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Apart from Brazil’s sugar-cane ethanol sector, biofuel production in Latin America 

was virtually non-existent in 2005. But in recent years biodiesel production has risen 

sharply in Brazil, Argentina and Colombia, with an ethanol industry also now being 

established in the latter two countries. In Asia, China’s ethanol production has risen 

from 1 billion to 2.8 billion litres over the past decade and Thailand produced nearly 

1.3 billion litres in 2015. A thriving biodiesel sector has also been established in 

South East Asia with Indonesia producing 1.7 billion litres, Thailand 1.2 billion litres 

and Malaysia 0.7 billion, whilst a new HVO plant in Singapore was reported to be 

producing near to its capacity of 1.2 billion litres
17

.    

 

There has been much less biofuel activity in Africa, despite it having the greatest 

potential of all continents for high-yielding feedstock production, the highest 

prevalence of food insecurity and the most pressing need for rural development 

(Maltsoglou et al., 2013, Mitchell, 2011, Wiggins et al., 2013). Indeed, there have 

been a very limited number of new biofuel operations that have successfully 

established themselves in Africa over the past decade, after the flurry of start-ups 

from about 2005 onwards, and fewer still that have actually planted feedstock (Locke 

and Henley, 2013).  

 

Many reasons can be put forward for the high rate of failure of biofuel projects in 

Africa, as they are little different from other cash crop operations. Indeed, many 

biofuel feedstock projects replaced cash crops on former estates, such as cotton and 

tobacco. One major difference has been the planting of jatropha in many new biofuel 

projects, which, although traditionally used as a hedge fence in some parts of Africa, 

remains unproven on a commercial scale and has generally underperformed in terms 

of oil yield expectations and disease resistance (Pohl, 2010, Kant and Wu, 2011). 

This accentuated the many risks involved in establishing biofuel feedstock operations 

in areas with weak agricultural sectors, poorly functioning markets and inadequate 

infrastructure, in addition to the mounting financial risks as the global recession 

started to take hold in 2008.  

 

                                                 
17

 The REN21 report for 2016 includes an additional 1 billion litres of conventional biodiesel 

produced in Singapore in 2015, but this could not be verified at the time of writing. 
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Nor has the changing policy environment been conducive to establishing biofuel 

operations in Africa. The EU Biofuel Policy Directive of 2009 initially raised hopes 

of a substantial export market for feedstocks and biofuels for least-developed 

countries under preferential trade arrangements with the EU. It was believed that 

biofuel feedstock sector expansion in countries with good potential for biomass 

production, such as Mozambique and Tanzania, could provide additional economic 

growth and “crowd in” much-needed investments that would also bring benefits to 

the agriculture and downstream sectors (Arndt et al., 2010).  

 

But as the EU Biofuel Policy Directive came under pressure to cap the amount of 

biofuels made from “food-based feedstocks”, investors became increasingly 

concerned about future demand, particularly since African governments have 

generally been slow to introduce policies to support their own smaller domestic 

markets. This has made it difficult for companies to secure sufficient investment for 

establishing and maintaining biofuel operations in Africa. Some experts also believe 

that a viable biofuel sector largely depends on the existence of a relatively strong and 

thriving agribusiness environment, which is missing in most least-developed 

countries, particularly in Africa (Msangi and Evans, 2013, Maltsoglou et al., 2013).  

 

Hence, many of the biofuel start-ups in countries such as Mozambique and Tanzania, 

have ceased operating, largely due to the uncertain policy environment, the drying-

up of capital funding, the poor viability of jatropha and other feedstocks and the lack 

of a prevailing agribusiness sector with well-functioning markets and infrastructure 

(Atanassov, 2013, Locher and Sulle, 2014).  

 

Thus, most global biofuel production is mainly in food-secure countries, and mostly 

using domestically-grown feedstock.  But there is relatively little comprehensive, 

reliable, consistent and timely data on feedstock use in biofuel production from 

which to assess its impact on food security. 

 

2.2.4 Biofuel policies  

 

The sharp rise in global biofuel production over recent years has been mainly driven 

by US and EU policies, aimed at blending specific amounts of biofuels into petrol 
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and diesel transport fuels. This followed the path taken by Brazil some 30 years 

earlier in the 1970s to support the development of their long-established sugar-cane 

based biofuel industry. 

 

The main reasons for the adoption of polices to support the establishment of a biofuel 

industry can be categorised under four main headings; 

 

1. Energy security, as the price of oil and other fossil fuels rose sharply due to 

rising consumption in major countries and restrictions in supply, including 

disruptions from the major oil and gas producing areas such as the Middle 

East and Former Soviet Union.  

 

2. Rural development, as the establishment of a new demand for feedstock 

provides new markets for farmers and the prospect of higher prices for 

feedstocks that have previously suffered from a long-term decline in real 

prices, as well as new rural jobs, both directly in the biofuel sector and 

indirectly.  

 

3. Climate change, as the consensus view from the scientific community warns 

that fossil fuel use needs to be drastically reduced and eventually phased out 

in order to prevent irreversible and catastrophic global warming. The Paris 

Agreement at the end of 2015 places even more emphasis on replacing fossil 

fuels with renewable alternatives. 

 

4. Environmental reasons, such as reducing fuel emissions through more 

oxygenated fuels, and replacing harmful additives to fuel, such as lead-based 

engine anti-knocking agents. 

 

Different countries have different policy priorities, with Brazil focussing on energy 

security and rural development, the US also initially prioritising the same issues, but 

in the 1990s focussing more on environmental factors and more recently on climate 

change, whilst the EU has mainly focussed on climate change and rural development 

in developing its biofuel policies.  
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Government policies to support biofuel production have also differed between the 

main producing regions. Brazil adopted highly interventionist and supportive policies 

during the latter part of the twentieth century, not only in terms of establishing a 

strong biofuel sector but also in terms of fuel standards and the flexibility of its 

vehicle fleet and, hence, has achieved the highest biofuel blending rates in the world. 

US biofuel policies only included blending mandates from 2005, with limited 

policies to improve the flexibility of its vehicle fleet. The EU Commission first 

introduced indicative targets for the overall use of renewable fuels in 2003 followed 

by mandatory targets in 2005, but it left member states to decide to what extent they 

would or could contribute to the overall target, and, hence, progress toward meeting 

policy targets has been slow.  

 

Mandated blending has also been the preferred option of the more recent policies 

adopted by new biofuel producers such as Argentina, Thailand, Indonesia and 

Malaysia, all of which have also tended to be more export-focussed. Worldwide 

there were some 64 countries with biofuel mandates (including all 27 EU members 

states) at the beginning of 2016, 13 in the Americas, 12 in Asia-Pacific and 11 in 

Africa and the Indian ocean area (Lane, 2016). Blending mandates range from 

Brazil’s 27 per cent ethanol rate to Canada’s 2 per cent renewable biodiesel rate for a 

number of Provinces. 

 

There has been widespread criticism of the subsidies provided to biofuel operators by 

governments, including the biofuel mandates (eg Action Aid, 2015, Jung et al., 

2010). The International Energy Agency estimated global biofuel subsidies at some 

$22 billion in 2010 based on tax reductions and differences between the prices of 

biofuels and fossil fuels on an energy basis, including the estimated support provided 

by blending mandates and borne mainly by consumers. Within this total the US 

accounted for just over $8 billion, the EU just under $8 billion and Brazil $2.7 

billion. In comparison fossil fuel subsidies were estimated at $45-75 billion in OECD 

countries and $409 billion in non-OECD countries in 2010 (IEA, 2011b).  

 

But the argument that large reserves of fossil fuels need to be left in the ground to 

avoid runaway global warming, suggest that the real cost of fossil fuels in terms of 

climate change impact is vastly understated (McGlade and Ekins, 2015). Indeed the 
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relative cost of fossil fuels would be many more multiples of the estimated biofuel 

subsidies if the additional “external” costs of fossil fuels were incorporated into the 

subsidy calculations.  

 

For example, a recent study found that the risks to global biodiversity from fossil 

fuel production are greater than those from equivalent biofuel production, due to 

petroleum exploration activities covering a larger area and located in fragile 

ecosystems that would otherwise remain undisturbed, whereas most biomass 

production is in areas already impacted by human activity (Dale et al., 2014).  

 

It is also difficult to evaluate the potential benefits of biofuel subsidies. A favourable 

outcome of biofuel policies for those countries importing large amounts of oil would 

be reduced import bills. This argument was put forward by a number of proponents 

of biofuels before the first food price spike in 2008, including the Worldwatch 

Institute which noted that 38 of the 47 poorest countries in the world were net 

importers of oil (Worldwatch Institute, 2006). Oil prices rose sharply in subsequent 

years, which, together with rising demand, had an increasingly negative impact on 

the trade balance of such countries, putting pressure on budgets for public health, 

education and infrastructure services. 

 

With a biofuel sector creating additional demand for certain commodities and 

theoretically supporting prices of exported commodities, this could help to offset the 

impact of rising oil prices on the trade balance of net food exporters, as well as 

reducing the volume of fossil fuel imports
18

. This would have a particularly 

significant impact on government budgets in food-insecure countries, helping to 

maximise the revenue available for health, education and infrastructure, which are 

key factors in improving food security through better access to, and utilisation of, 

food.  

 

Supporting biofuels can also lead to an effective increase in farm support for 

agricultural feedstocks such as cereals, sugar crops and oilseeds. Since most of the 

biofuels are currently being produced in the US, Brazil and EU from domestic 

                                                 
18

 It should be noted here, however, that only one-third (19 out of 53) of African countries earned 

enough export revenue from agriculture to pay for their food imports in 2007 (Rakotoarisoa et al., 

2011). 
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feedstocks, it is the farmers in these countries that have benefitted most from any 

crop price increases caused by biofuel policies. In the case of the US, higher maize 

prices would tend to reduce any direct payments made to farmers under the counter-

cyclical payment support system. But in the EU where farm payments are decoupled 

from price, increased crop prices caused by biofuel mandates would lead to 

additional income (Bourgeon and Treguer, 2010). Developing countries cannot 

afford to subsidise their farmers to anywhere near the same extent as those in the US 

and EU. So a world in which all farmers received more remunerative prices, would 

help to level the playing field for developing country producers to some extent. 

 

A growing policy concern over recent times has been the sustainability of 

agricultural and energy production. These concerns have been given greater attention 

in the formulation of biofuel policies than in agricultural and other energy policies. 

For example, in the EU biofuel producers are the only end users of crops and other 

feedstocks that have to comply with approved sustainability certification criteria, 

including GHG reduction requirements, set by government policy. This is aimed to 

ensure that all feedstocks used for biofuels qualifying for the renewable energy 

directive targets are sustainably produced, including imported feedstocks such as 

palm oil. However, the voluntary certification schemes approved by the EU 

Commission have come under criticism from NGOs for not being comprehensive 

enough and for failing to prevent unsustainable practices by feedstock suppliers, such 

as land-grabbing from local communities and deforestation (German and 

Schoneveld, 2012, Schlamann et al., 2013). 

 

The following sections review the biofuel policies of the three largest biofuel 

producers: the US, Brazil and EU. 

 

2.2.4.1 Brazil’s biofuel policy 

 

The first large-scale development of biofuels began in Brazil in 1975 under the 

ProAlcool programme designed to replace imported oil with domestically produced 

ethanol from sugar cane, whilst boosting rural employment. It was started at a time 

of high oil prices, following the embargo of oil exports by the Organisation of Arab 

Oil Exporting Countries (OAPEC) in 1973, and low sugar prices. The Brazilian 
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government set mandatory blending rates in fuel, starting at 11 per cent in 1976, and 

also encouraged the development of pure ethanol engine cars in the late 1970s. It 

also set production quotas and price caps for sugar and ethanol, encouraged 

investment in processing facilities and controlled distribution through the 

government energy agency Petrobras. The ethanol industry stagnated from the mid-

1980s as oil prices fell and sugar prices rose. But since the turn of the century there 

has been a resurgence of the sector, supported by new credit programmes aimed at 

expanding capacity. Nowadays, nearly half Brazil’s vehicle fleet is flex-fuel and able 

to use any combination of petrol and ethanol. The current mandated blend rate for 

petrol has risen to 27 per cent, with production of ethanol reaching some 30 billion 

litres, of which 27 billion is used for fuel (Valdes, 2011, Lane, 2016).  

 

A key advantage for the Brazilian fuel ethanol industry is its use of sugar cane, 

which generally produces 8-10 times more energy than energy inputs. Furthermore, 

ethanol productivity from sugar cane has been growing at 3.5 per cent per annum 

over the past 30 years (Horta Nogueira et al., 2013). The cane to ethanol process also 

provides an energy source for the processing plant and national grid in the form of 

the bagasse co-product. And many of Brazil’s ethanol plants can switch between 

sugar and ethanol, depending on the relative profitability of each, with the molasses 

co-product of the sugar production process also used as an ethanol feedstock.  

 

Brazil also started a National Biodiesel Production Programme in 2004 to promote 

domestic production and generate employment in the poorer northern areas, 

including soyabean-growing family farms. The government set its first blending 

mandate at 2 per cent in 2008 and this had risen to 7 per cent at the time of writing, 

using some 4 billion litres, with soybean oil as the main feedstock but with a 

significant proportion of animal fat waste also being used (Valdes, 2011). 

 

The Brazilian biofuel sector is estimated to employ some 820,000 people, almost half 

the 1.7 million estimated global employment in biofuels and over 10 per cent of the 

total jobs in renewable energy around the world (IRENA, 2016).  
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2.2.4.2 US biofuel policy 

 

US biofuels policies also started in the 1970s at the time of the oil embargoes, but 

failed to have as significant an impact as in Brazil due to the lack of blending 

mandates. Tax credits were first introduced for ethanol in 1978, but ethanol remained 

uncompetitive against petrol until the early 1990s when the Clean Air Act was 

amended to improve the oxygenate content of fuels and reduce carbon monoxide and 

ozone pollution. At the time methyl tertiary butyl ether (MTBL) was the main 

oxygenate used, acting as an anti-knocking agent in engines. But ethanol was 

provided with tax credits under the Energy Policy Act of 1992 to help it compete 

against MTBL, the credits applying to blends requiring 5.7 and 7.7 per cent ethanol. 

By the late 1990s MTBL had been classified as a carcinogen and a major 

contaminant of groundwater, and some states banned its use in favour of ethanol, 

whereafter US ethanol output started to grow more steeply (USDA, 2015). 

 

But the real boost for the US ethanol sector came in 2004 and 2005, starting with the 

Jobs Creation Act of 2004, which introduced the Volumetric Ethanol Excise Tax 

Credit (VEETC), which allowed oil companies to blend up to 10 per cent ethanol. In 

2005, the Energy Policy Act banned MTBL and introduced a Renewable Fuel 

Standard (RFS) requiring a minimum amount of renewable fuel to be blended by 

petrol producers each year, starting at 4 billion gallons (some 15 billion litres) in 

2006 rising to 7.5 billion gallons (28 billion litres) in 2012. As MTBE was quickly 

phased out, a 10 per cent ethanol blend (E10) became the main type of petrol sold in 

the US. The RFS also provided for some petrol suppliers to use less renewable fuel 

than required under the RFS, by purchasing credits, known as Renewable 

Identification Numbers (RINs), from those using more ethanol than needed (USDA, 

2015). 

 

By 2007 oil prices had risen sharply and there were growing concerns over the US 

reliance on imported oil. By the end of that year the Energy Independence and 

Security Act had introduced RFS2, with much more aggressive mandatory blending 

targets, rising to 36 billion gallons (136 billion litres) by 2022. That total was divided 

into four nested categories of biofuels according to the estimated greenhouse gas 

reduction impact compared with fossil fuel equivalents (fig 2.1).  
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Table 2.1 – US Biofuel Volume Requirements under Renewable Fuel Standards 

Biofuel Category & Revisions 

Required 

Volume Year 

Min GHG 

Reduction Feedstocks 

Total Renewable Billion litres Applied vs Fossil Fuel Main types 

RFS1 2005 Start 15.1 2006  All 

RFS1 2005 End 28.4 2012   

RFS2 2007 Start 34.1 2008   

RFS2 2007 End 136.3 2022   

Final 2010 49.0 2010   

Final 2011 52.8 2011   

Final 2012 57.5 2012   

Final 2013 62.6 2013   

Final 2014 61.6 2014   

Final 2015 64.1 2015   

Conventional Renewable (D6) Billion litres Applied vs Fossil Fuel Main types 

RFS2 2007 Start 39.7 2009 20% Maize ethanol 

RFS2 2007 End 56.8 2015   

Revised 2010 41.0 2010   

Final 2010 44.6 2010   

Final 2011 46.2 2011   

Final 2012 47.4 2012   

Final 2013 52.2 2013   

Final 2014 51.5 2014   

Final 2015 53.2 2015   

Biomass-based diesel (D4) Billion litres Applied vs Fossil Fuel Main types 

RFS2 2007 Start 1.9 2009 50% Soybean oil 

RFS2 2007 End 3.8 2012  Rapeseed/canola oil 

Final 2010 4.4 2010  HVO diesel 

Final 2011 3.0 2011  Used cooking oil 

Final 2012 3.8 2012  Animal fats 

Final 2013 4.8 2013   

Final 2014 6.2 2014   

Final 2015 6.5 2015   

Advanced (D5) Billion litres Applied vs Fossil Fuel Main types 

RFS2 2007 Start 2.3 2009 50% Sugar cane ethanol 

RFS2 2007 End 79.5 2022  Biobutanol 

Final 2010 3.6 2010   

Final 2011 5.1 2011   

Final 2012 7.6 2012   

Final 2013 10.4 2013   

Final 2014 10.1 2014   

Final 2015 10.9 2015   

Cellulosic (D3) Billion litres Applied vs Fossil Fuel Main types 

RFS2 2007 Start 0.38 2010 60% Corn stover 

RFS2 2007 End 60.6 2022  Bagasse 

Final 2010 0.025 2010  Wood chips 

Final 2011 0.023 2011   

Final 2012 0.00 2012   

Final 2013 0.003 2013   

Final 2014 0.12 2014   

Final 2015 0.47 2015   

Source: (US EPA, 2016) 
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Fig 2.1 – US Renewable Fuel Standard Categories 

 

Source – US EPA (2016) 

The overall renewable fuel category requires a GHG reduction of at least 20 per cent, 

whilst the advanced biofuel category requires at least a 50 per cent reduction, as does 

the biodiesel category, with the cellulosic category required to reduce GHGs by at 

least 60 per cent. Although there is no specific category for conventional biofuels 

such as maize-based ethanol, the volume targets for such biofuels are derived from 

the total targets minus the advanced targets (US EPA, 2016). 

 

Biofuel blending has been encouraged through an excise tax credit of 45 cents per 

gallon of ethanol blended into petrol and $1 per gallon for biodiesel blending, which 

was temporarily removed in 2009 leading to a drop in production but was then 

reinstated. The RFS is based on targets for the usage of biofuels rather than 

production. But tariffs on ethanol (54 cents/litre) and, to a lesser extent, biodiesel, 

have also provided protection to the domestic industry.  

 

Within the total required renewable fuel use, conventional maize-based ethanol 

production was targeted to reach 15 billion gallons (56.8 billion litres) by 2015 and 

biodiesel to reach at least 1 billion gallons (3.8 billion litres) by 2012. US 

conventional maize-based ethanol production surpassed the 50 billion litre mark in 

2010, but by that stage it had reached a peak for domestic use as almost all petrol had 

reached a 10 per cent blend (E10), so expansion since then has been stifled by the so-

called “blend wall”. Another problem has been the slower than anticipated 

development of cellulosic biofuels for which annual targets have been revised 
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sharply lower in recent years as anticipated commercial volumes have failed to 

materialise. 

 

The US ethanol sector is estimated to provide some 86,000 direct jobs and 270,000 

indirect employment by its industry association (RFA, 2016), whilst the International 

Renewable Energy Agency (2016) estimates total US biofuel employment at 

277,000, including some 50,000 in the biodiesel sector. 

2.2.4.3 EU biofuel policy 

 

Whilst the EU has a longstanding ethyl alcohol support system under the Common 

Agricultural Policy
19

, and introduced a scheme to allow crop production for non-food 

and feed use on set aside land in the early 1990s, its biofuel programme really began 

in 2001 when the European Commission (EC) launched its policy to promote 

biofuels for transport in order to cut greenhouse gas emissions, improve energy 

security and promote rural diversification (Zarilli, 2006). In 2003, a Biofuels 

Directive
20

 introduced indicative targets of 2 and 5.75 per cent, for biofuel use as a 

proportion of total fuel use in 2005 and 2010, respectively. Under another Directive 

in 2003
21

 member states were allowed to introduce tax cuts for renewable energy 

sources, whilst the same year also saw revisions to the Fuel Quality Directive (FQD), 

authorising the use of certain biofuel blends. The EU then introduced specific 

payments for energy crops in 2004/5 (Vannini et al., 2006). 

 

The 2005 indicative blending target of 2 per cent was not achieved, and following 

slow progress toward the 2010 target, the EU decided to introduce mandatory targets 

in 2009 under the Renewable Energy Directive
22

 (RED) which was part of the EU 

Energy and Climate Change Package (CCP), repealing the 2003 Biofuel Directive. 

The so-called 20:20:20 provisions of the CCP require by 2020, and for the EU as a 

whole, a; 

 20 per cent cut in GHG emissions compared to 1990 

 

                                                 
19

 This was mainly to support the distillation of surplus wine into ethyl alcohol (ethanol), but in 2008 

the CAP wine regime was changed and this option is no longer eligible under the revised support 

arrangements. 
20

 2003/30/EC 
21

 2003/96/EC 
22

 2009/28/EC 
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 20 per cent improvement in energy efficiency 

 

 20 per cent share of renewable energy in total energy, including at least a 

10 per cent target for renewable energy in transport. 

 

Not only biofuels, but also electric cars or greater renewable electricity use in overall 

transport, such as rail, can be used to achieve the 10 per cent target for renewable 

transport energy by 2020. Whilst the 20 per cent overall energy target under the CCP 

applies at the EU level, the 10 per cent target for renewable energy in transport is 

obligatory for all member states. Each member state has submitted a National 

Renewable Energy Action Plan (NREAP) under the RED. 

 

The Fuel Quality Directive was also amended in 2009
23

, requiring that all fuel 

suppliers reduce greenhouse gas emissions by at least 6 per cent on average by 2020. 

The FQD also restricts the palm oil and soyabean oil content of biodiesel and the 

blending of ethanol in transport fuels to no more than 10 per cent when it is used as 

an oxygenate. 

   

The RED also introduced sustainability criteria, excluding biofuels not meeting these 

criteria from national mandatory targets and eligibility for support.  The two main 

enforcement measures in place are: 

 

i) a minimum 35 per cent GHG emission savings, rising to 50 per cent in 

2017 and 60 per cent for new plants from 2018. 

 

ii) sustainable certification from an approved scheme 

 

Default values are used for the GHG emission savings, as defined by the European 

Commission. The values comprise all life cycle GHG emissions and are generally 

based on worst-case scenarios
24

. Additional emissions from land use change and any 

                                                 
23

 2009/30/EC 
24

 For example the soyabean biodiesel default value is based on a theoretical pathway using 

soyabeans shipped from Brazil, resulting in a 31 per cent GHG saving, below the 35 per cent 

threshold. The same calculation for US biodiesel shipped to the EU results in a 40 per cent saving, but 

US biodiesel would still be subject to the 31 per cent default value and cannot therefore be used to 

meet the renewable fuel targets 
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savings from improved agricultural practices or co-generation of electricity or carbon 

capture and storage are also taken into account where relevant. 

 

The RED also contains environmental sustainability criteria, excluding all biofuels 

produced from feedstocks on land with high biodiversity value or high carbon stock, 

such as rainforests and peatlands. There are also other environmental provisions 

related to air, soil and water quality and some broad social provisions pertaining to 

food prices and labour standards. 

 

The approved sustainability certification schemes incorporate these broad minimum 

provisions in different ways. At the time of writing 19 voluntary schemes had been 

approved by the EU. In 2013 the World Wildlife Fund analysed the RED and the 13 

schemes that had been approved at that time. It found that social issues, such as food 

security and compliance with International Labour Organisation standards, were not 

mandatory under RED and not covered within many of the voluntary schemes. Of 

particular note was that only one of the schemes, that of the Roundtable on 

Sustainable Biofuels, incorporated adequate provisions for food security (Schlamann 

et al., 2013). 

 

At the end of 2015 a directive
25

 was introduced covering ILUC and amending RED 

and the FQD. The key revision was to cap the contribution of food crop based 

biofuels at 7 per cent (on an energy basis) of the 10 per cent target for renewable 

energy in transport by 2020. Current blending rates for food-based biofuels are 

estimated to average 5 per cent for the EU as a whole. The Directive also introduced 

measures to encourage the production of advanced biofuels in the form of double 

counting of their energy contribution toward the 10 per cent target and a 0.5 per cent 

non-binding blending target for advanced fuels in each member state by 2020
26

.     

 

2.2.4.4 Biofuel policies in other countries 

 

As the US and EU embarked on policies to encourage biofuel production, other 

countries started to investigate their commercial viability, particularly in terms of 

                                                 
25

 EU Directive 2015/1513 
26

 This appears to be a somewhat unambitious target given that current advanced HVO use is 

estimated to account for over 0.5 per cent of EU transport energy 
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reducing the cost of increasingly expensive fossil fuel energy imports and for 

potential exports. Many other countries have now established blending targets and 

mandates for renewable sources in transport fuels.  

 

In South America, for example, Argentina recently increased its ethanol blending 

mandate to 12 per cent (E12), whilst its biodiesel rate was 10 per cent (B10) at the 

time of writing. Colombia had E8 and B8-10 rates depending on the region, whilst 

Chile had E5 and B5 rates in place. Ecuador was looking to increase its B5 mandate 

to B10 and was also targeting an E10 rate by 2018. Paraguay was planning to match 

Brazil, from its slightly lower mandate at E25, whilst Peru had E7.8 and B5 

mandates. 

 

Of the other major countries, Canada has E5 and B2 rates, nine Chinese provinces 

require E10 blends and a national E10 rate is targeted for the whole country by 2020, 

New South Wales in Australia has E7 and B2 blends, India recently announced an 

E10 blend
27

, Indonesia has an E3 and B15 mandate, with the intention of moving to 

B20, whilst Malaysia will increase its rate from B7 to B10, with a planned B15 by 

2020 and Thailand is planning to increase its B7 rate and has a target of 3.3 billion 

litres of ethanol use by 2020 but is only using 1.3 billion currently (equivalent to an 

E12.5 rate). 

 

Governments have set ambitious targets for biofuel production in South East Asia for 

both domestic use and export. Some of these may be difficult to achieve in the face 

of rising food demand, particularly given land and environmental constraints in the 

region (Zhou and Thomson, 2009). There seems to be more scope for expansion in 

South America, Canada, and Eurasian countries, such as Russia and Kazakhstan, 

where land resources are more abundant. 

 

There also seems to be considerable scope for some least-developed countries to 

develop biofuels sectors, particularly in parts of Africa. The Energy Sector 

Management Assistance Programme (ESMAP) of the World Bank produced a report 

as early as 2006 outlining the potential for transport biofuels in developing countries 

                                                 
27

 India has an E10 and B5 target for 2022 but has found it difficult in recent years to secure sufficient 

volumes of ethanol and vegetable oil to support an expansion of fuel blending toward these targets.  
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and illustrating the potential for replicating the Brazilian biofuel success (Kojima and 

Johnson). But a decade later this has yet to materialise, partly due to concerns over 

food security impacts. 

 

2.2.4.5 Summary of biofuel policies 

 

Biofuel policies have been instrumental in the recent expansion of global biofuel 

production. Policies such as blending targets and mandates, and subsidies and tax 

credits to processors, have been used by the major producing countries to encourage 

increased production. 

 

One of the key features of the national volume and blending targets is the relatively 

small share of overall petrol and diesel fuels envisaged by governments. Biofuels are 

not seen as full replacements for fossil fuels but more as partial replacements, with 

the blended fuels benefitting from technical characteristics in biofuels such as 

ethanol’s octane-boosting properties. The relatively low blending rates are partly due 

to technical limitations regarding potential engine damage from high biofuel blends 

in older vehicles, but also concerns over feedstock availability and resource use. 

 

It is clear that biofuels have been accepted as a way of reducing fossil fuel use by 

many countries throughout the world, in order to cut expensive imports, reduce GHG 

emissions and as a means of supporting rural development. They have been the most 

practical means of curbing fossil fuel use in transport over the past decade and 

remain the only viable alternative to liquid fuels at the time of writing. The more 

developed countries have the advantages of a well-established agribusiness industry 

and sufficient financing from which to establish their biofuel sectors, whilst those in 

least-developed nations have struggled to facilitate biofuel operations and establish 

biofuel sectors. 

 

2.2.5 Biofuels in Africa 
 

Despite the opportunity for many African countries to reduce their dependence on 

fossil fuel energy supplies, particularly where these are imported, there has been 

relatively limited development of biofuels in this region. Ethiopia, Malawi, 

Swaziland and Zimbabwe all have longstanding ethanol production facilities linked 
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to their sugar industries, but relatively little of this was used for fuel purposes until 

recently.  

 

The African biofuel experience over the past decade can be summarised as an initial 

flurry of activity from 2005 to 2010 as companies started to acquire land and 

governments tried to quickly develop national policies and regulation, followed by a 

period from 2010 to 2015 when many of the projects folded and governments started 

to introduce clearer policies including blending mandates in some countries, but with 

relatively little development of biofuel production. 

 

Malawi is the only country that has implemented a long-running and consistent 

biofuel policy, facilitating ethanol-blending rates of between 10 and 24 per cent since 

1982 (currently at E10). The ethanol is produced from two molasses-using plants 

capable of producing 36 million litres; Ethco at Dwangwa in the central lake-district 

of Nkhotakota established in 1982, and Press Cane at Nchalo in the southern district 

of Chikwawa, which started production in 2004. Both are owned by the Press 

Corporation, a Malawi-based company. Due to a shortage of molasses from the local 

sugar sector, combined production is running at about half capacity, about half of 

which is blended with petrol on the local market, supplied to BP, Mobil, Total and 

Caltex, and the rest mainly exported to DR Congo, Botswana and East African 

countries as industrial alcohol. The ethanol plants are located next to the two Illovo-

owned sugar factories in the country and supplied with the molasses by-product. An 

expanded sugar sector would help to boost ethanol output and could also bring socio-

economic benefits to small farmers and estate workers based on assessments by the 

existing industry (eg Johnson and Jumbe, 2012).   

 

Malawi has also supported biodiesel production in recent years in order to reduce 

diesel imports. BioEnergy Resources Ltd (BERL) was established in 2006 and has 

worked with some 25,000 smallholders to plant jatropha as a feedstock source for its 

biodiesel manufacturing plant in Lilongwe. Original plans were for 15 million trees 

to be planted to produce 20 million litres for blending and straight vegetable oil. 

According to BERL, some 6.6 million trees were planted by 2012 and in 2015 a 

licence was approved for blending jatropha oil with diesel, with initial plans for 2 

million litres to be blended. BERL has diversified into sunflower in recent years, 
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after some disappointing results with jatropha. However, some assessments show 

significant socio-economic benefits for jatropha growers  (eg Dyer et al., 2012).  

 

Zimbabwe also has a long history of ethanol production with the Triangle plant in the 

Lowveld starting ethanol production from molasses in 1980, with a capacity of 

120,000 litres per day. This allowed for an 8-13 per cent national ethanol blending 

rate to be established during the 1980s with government support in the form of 

reduced taxes. However, in 1992 the Triangle refinery closed the ethanol plant due to 

a severe drought which cut supplies of cane sugar and therefore molasses. The 

company then decided in 1994 to stop ethanol production for fuel blending and to 

focus on higher value rectified spirits for industrial use, most of which is exported to 

the EU.  

 

The government supported the original development of the Triangle plant and the 

blending mandates with tax breaks, but the lack of government support in the mid-

1990s followed by another severe drought in the country in 2002, led to the closure 

of the ethanol facility. In 2005 the Zimbabwean government approached Anglo-

American with a proposal to revive the plant in the wake of severe fuel shortages, in 

return for the reallocation of some land within the land redistribution programme. 

This was taken up by the company with a new $3 million dehydration facility 

established and ethanol production resuming in 2008.  

 

Triangle is owned by the Tongaat-Hulett sugar group (owned by the Anglo-

American Group), which manages the two sugar mills in the country in the south 

east; Triangle and Hippo Valley. The plant was producing some 25-35 million litres 

of ethanol per annum in recent years, including a small amount of dehydrated ethanol 

for E10 and E15 blends, but with most exported as industrial alcohol.  

A new ethanol plant, built by the company Green Fuel at Chisumbanje, started 

producing fuel grade ethanol from both cane juice and molasses for the domestic 

market in late 2011. The plant was then closed for a year whilst the company waited 

for officials to establish a mandatory blending rate that finally came into place in 

early 2013 at 5 per cent. The blending rate has since been increased to E10 and more 

recently to E15, requiring some 6 million litres of ethanol per month. The plant was 
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reported to be running at 8 million litres per month in 2015, with stocks being rebuilt 

whilst the company pressed for a further increase in the national blending rate. 

The Zimbabwean government also supported a jatropha biodiesel project, with a 

view to achieving a B10 blend by 2017, requiring over 100 million litres of biodiesel. 

It helped a private company to establish a 35 million litre capacity biodiesel plant, 

which started producing small volumes at the start of 2008, mainly from cottonseed 

until jatropha seed could be sourced. The company Finealt Engineering recently 

reported they had 30,000 litres of biodiesel awaiting blending authorisation from the 

government, as well as limited stocks of some 130 tonnes of jatropha seed. 

The National Oil Company of Zimbabwe (NOCZIM) initiated the jatropha 

programme, with a target of supplying some 50 million jatropha plant seedlings to 

farmers covering some 120,000 hectares, as a future source of supply for the 

biodiesel plant. Only farms with more than 5 hectares could participate in the new 

scheme, organised by the Jatropha Growers and Biofuels Association, and only 

degraded land could be used so as not to impair food output. However the NOCZIM 

project was halted in 2010 due to a lack of funding and poor uptake by farmers.  

 

In Angola the government has supported the production of ethanol from sugar cane 

under its biofuel law of 2010. The government stipulated that the best land would be 

retained for food production and that they would only allocate more marginal land to 

biofuel projects. Under the law companies must sell part of their output to the state 

owned oil company Sonangol to meet domestic blending needs, and must also 

provide social supports in their locality, including access to water and health 

facilities. The main project owned by Biocom (60% Angolan owned and 40% 

Brazilian) has been delayed and only started to produce sugar, ethanol and electricity 

last year from its 37,000 hectares of cane. It is expected to produce about 6 million 

litres of ethanol in its first year of production with a capacity of 30 million litres per 

annum helping to meet its E10 mandate. Other Angolan biofuel projects announced 

over the past decade, like so many others throughout Africa, have failed to  

materialise.  

 

Ethiopia embarked on a policy to transform itself into a sugar exporter rather than 

importer as part of its Growth and Transformation Plan of 2010. The three existing 
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sugar plants of Wonji-Shoa, Methara and Fincha produce some 300,000 tonnes of 

sugar. Fincha was the only ethanol producer up to 2010, producing some 8 million 

litres per annum from molasses, until recently when capacity was increased to 20 

million. The Wonji-Shoa factory added a 10 million litre ethanol facility in 2013, 

whilst the Metehara factory added its 12.5 million litre capacity ethanol plant in 

2011. 

 

The new Tendaho factory started sugar and ethanol production in 2013 and is 

gradually increasing its output with a target of 600,000 tonnes of sugar per annum 

and 63 million litres of ethanol. The Kessem factory also started production last year, 

including 12.5 million litres of ethanol, rising to 30 million at full capacity and 

260,000 tonnes of sugar. Other sugar factories are in development with a potential 

total production as high as 1.6 million tonnes of sugar and 130 million litres of 

ethanol. However, the expansion has not happened quickly enough for Ethiopia to 

reach its E20 target and the national blend remains at E10. In the longer-term, the 

target is for 2 million tonnes of sugar production and 180 million litres of ethanol.  

 

The Ethiopian government is also reported to be pressing ahead with a joint project 

with the Norwegian government to produce 450 million litres of biodiesel per annum 

from jatropha oil, involving an estimated 14 million farmers, but there is uncertainty 

as to how much progress has been made toward this target. 

 

Sudan was one of the first African countries to diversify into ethanol production 

following the biofuel expansion in the US and EU, with the Kenana Sugar Company 

(KSC) establishing a 66 million litre capacity plant  in 2009 during the expansion of 

the sugar industry. Some 40 million litres of ethanol were exported to the EU in 

2015, the rest used domestically, including some for fuel blending. The government 

recently increased the blending rate for ethanol from E5 to E10 and KSC plan to 

increase ethanol capacity to 200 million litres in the near future.  

 

In west Africa, Addax Bioenergy recently established an 85 million litre capacity 

ethanol plant in Sierra Leone, supplied by a 10,000 hectare sugar cane estate. 

Electricity generation to the national grid is another output of the plant, which 

employs some 2,000 people. 
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Other African countries have developed policies for biofuel production and fuel 

blending, but have failed to attract investment in biofuel plants. For example, South 

Africa launched its National Biofuel Strategy in 2007, with an overall blend target of 

2 per cent or some 400 million litres of biofuels. But it failed to provide sufficiently 

supportive policies to attract investors over the following years. The government 

then authorised the blending of biofuels in 2013, requiring mandatory blending of up 

to 5 per cent for biodiesel and 10 per cent for bioethanol starting at the end of 2015. 

A number of planned ethanol plants are now in the pipeline but it remains to be seen 

whether these will come to fruition. 

 

The Mozambique government has been more proactive toward biofuel investors, but 

despite a large number of planned projects, at the time of writing there was only a 

limited production of ethanol and biodiesel for blending into fuel. Land is the 

property of the state in Mozambique, where formal requests must be made to lease 

land for feedstock production, including evidence that an adequate community 

consultation process has taken place. By the end of 2008 the Mozambique 

government had officially received proposals from 17 biofuel projects, five of which 

were for bioethanol feedstock production and 12 for biodiesel crops. The total area of 

land requested was some 245,000 hectares, a small fraction of the 7 million hectares 

the government had identified as available for investors in 2008 as part of an agro-

ecological zoning exercise (Schut et al., 2010).  

 

By 2009 the Mozambique government had established a national biofuel strategy, 

including approved feedstocks and national blending targets, with the aim of 

establishing E10 and B3 blending rates by 2015, rising to E15 and B7.5 per cent by 

2020. By the end of 2010 it was reported that 48 projects had registered with the 

government, of which 23 had planted crops. But by early 2013 a report by the 

Overseas Development Institute (ODI) noted that only 18 projects were still 

operating, with a total area amounting to 209,000 hectares, of which only 6,000 

hectares had actually been planted (Atanassov, 2013). This reflects the closure of a 

number of projects during the 2010-2013 period whilst other companies lost their 

land use rights due to insufficient progress (Locke and Henley, 2013). 
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In Tanzania, Sulle and Nelson reported official government figures showing that 

some 20 companies had requested land for commercial biofuel production by early 

2009, but also cited earlier reports by Songela and Kamanga that 37 companies had 

requested land rights amounting to over 4 million hectares, of which 640,000 

hectares had been allocated and 100,000 hectares had been granted formal rights of 

occupancy (Kamanga, 2008, Songela and MacLean, 2008, Sulle and Nelson, 2009). 

By the end of 2009, the Ministry of Agriculture, Food Security and Cooperatives in 

Tanzania reported to Action Aid that there were 44 active biofuel companies in the 

country, of which the Tanzania Investment Centre (TIC) had formally approved only 

eight projects (ActionAid Tanzania, 2010). By this time the government had 

suspended all further land transfers to biofuel operations due to concerns over land 

conflicts and food security.  

 

By 2013 the number of projects approved by the TIC had reached 11, covering some 

66,000 hectares, but only another 14 companies were still seeking land for biofuel 

feedstock production at that stage. Moreover, only four of the approved projects had 

planted feedstock on a total area of just 1,600 hectares (Locke and Henley, 2013).  

As in Mozambique, this reflected the closure of a number of projects following the 

government’s suspension of land transfers, but also due to financing difficulties as 

investors became more concerned about land grab issues and food versus fuel 

concerns (Markensten and Mouk, 2012). 

 

This brief review of biofuel developments in selected African countries highlights 

the difficulties faced by both governments and operators in establishing a viable 

biofuel industry. At the time of writing the production of biofuel on the Continent 

remained limited to small volumes in a few countries. Production of ethanol is set to 

increase significantly over the coming years in some of these countries.                                                              

 

2.3 A Review of the Literature Linking Biofuels and Food Security 

 

Africa has the highest prevalence of food insecurity of the world’s continents, at 20 

per cent of the population, with Eastern and Middle Africa recording rates of over 30 

and 40 per cent, respectively (FAO, 2015). Sub-Saharan Africa also has more than 

half the global population without access to electricity, with less than a third of 



 75 

inhabitants having access in 2012 (IEA, 2014). Given that some 80 per cent of those 

lacking access are in rural areas, this suggests that the Sub-Saharan region also has 

the most need and potential for developing a modern bioenergy sector. Yet after a 

decade that has seen global biofuel output rise sharply, largely as a result of 

enhancing policies in mainly food-secure countries, Africa and other developing 

countries have been left behind. This section reviews the literature linking biofuels 

and food security, to help explain why this may have happened, with particular 

reference to the concerns surrounding the impact of biofuel production on food 

availability and prices. 

 

2.3.1 The beginnings of the “food versus fuel” debate 

 

The modern food versus fuel debate began in relation to the Brazilian biofuel 

policies of the 1970s and 1980s, with Rosillo-Calle and Hall using the phrase “food 

versus fuel” in a Biomass journal article (1987).  

 

One of the first people to elucidate the concept that the emerging support for biofuels 

in the early years of the new millennium could bring food and fuel into conflict was 

George Monbiot in his Guardian article “Feeding Cars Not People” (2004). Monbiot 

calculated that for the UK to meet the EU Commission’s proposal of 20 per cent of 

fuel transportation demand from renewable fuels by 2020, it would have to use all of 

the UK’s cropland.  Meanwhile in the US, Lester Brown of the Earth Policy Institute 

used the analogy that biofuels would bring the 800 million people who own cars and 

want to maintain their mobility in direct competition (for grain) with the 2 billion 

poorest people in the world who are simply trying to survive (Brown, 2006). 

 

In 2007 Jean Ziegler, the UN Special Rapporteur on the Right to Food, called for a 

five year moratorium on biofuel production in his 2007 report to the UN General 

Assembly (Ziegler, 2007a). Ziegler later said “It is a crime against humanity to 

convert agricultural productive soil into soil which produces food stuff that will be 

burned into biofuel”(Ziegler, 2007b). Within his report Ziegler cited information 

from an article in the magazine “Foreign Affairs” which estimated that “to fill one 

car tank with biofuel (about 50 litres) would require about 200kg of maize – enough 

to feed one person for one year” (Runge and Senauer, 2007).  
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Thus, at the same time as biofuel production was starting to rapidly expand, 

particularly in the US and EU, much of the reporting of biofuels was markedly 

critical from a food security perspective. The sharp rise in global commodity prices 

that began in 2007 and peaked in 2008 fuelled such criticism, as it was believed that 

biofuel use of feedstocks such as maize and vegetable oil was the main culprit in 

reducing food availability in relation to rising demand, thereby leading to higher 

food prices. 

 

The concern surrounding sharply higher food prices and the growing debate around 

biofuels led to the UN Food and Agriculture Organisation focussing on this issue in 

its annual State of Food and Agriculture report in 2008. The findings of the report set 

the tone for policy developments in the EU and US over the coming years. The FAO 

argued that biofuels would “offset only a modest share of fossil energy use over the 

next decade”, but would have “much bigger impacts on agriculture and food 

security”, concluding that there was “an urgent need to review current policies 

supporting, subsidising and mandating biofuel production and use”. At the same 

time it was argued that “hasty decisions to restrict biofuels (could) limit 

opportunities for sustainable agricultural growth that could benefit the poor”. FAO 

therefore called for in-depth studies in the context of food security and sustainable 

development needs (FAO, 2008b). 

 

Whilst the initial focus was on the global consequences of biofuel production taking 

place in the developed world, there were also reports on the potential for biofuel 

production in developing countries (Kojima and Johnson, 2006, Worldwatch 

Institute, 2006, Leturque and Wiggins, 2009, Raswant et al., 2008, von Braun and 

Pachauri, 2006). These reports highlighted the potential for economic growth in rural 

areas of developing countries, particularly through the production of feedstock to 

meet growing biofuel demand. The most energy efficient conventional biofuel 

feedstocks are tropical crops such as sugar cane for bioethanol and oil palm for 

biodiesel, and most of the land suitable and available for producing such feedstock is 

in developing countries. It was argued that many developing countries could build 

their own biofuel industry in order to replace fossil fuels, both from a climate change 

and financial perspective, as oil imports create a huge burden for many nations.  
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Increased employment and incomes in rural areas of developing countries would also 

help to improve food access and security. Greater investment in health and education 

from savings made through reduced fossil fuel imports, would particularly improve 

the utilisation dimension of food security.  

 

Also at this time Pingali et al explained that the focus on adverse impacts of higher 

food prices on consumers missed the point that there could be a positive supply 

response, helping to revitalize rural sectors in developing countries, with positive 

implications for poverty reduction and food security. Arguing that agriculture has 

been the major engine of economic growth and poverty reduction for many of the 

countries that have transitioned from least to middle-income status, they argued that 

many of the remaining least-developed countries are well placed to capitalise on 

biofuel opportunities, particularly where land is abundant. However, they also noted 

that such countries face many other constraints that may continue to stifle 

development (Pingali et al., 2008). 

 

Hence, by the time of the global food price crisis of 2008, the general biofuel debate 

had fallen into two main camps: 

  

i) Critics - those opposing the expansion of most types of large-scale 

commercial biofuel production and government support to such, on the 

basis of reduced food and resource availability and higher food prices, 

environmental pollution, soil erosion, land rights and climate change 

concerns 

 

ii) Proponents - those encouraging most types of biofuel production on the 

basis of better food access through improved rural employment and 

growth, replacement of fossil fuels and reduced greenhouse gas emissions 

and as a vital energy resource for developing countries, and particularly 

rural areas. 

 

There were some proponents who focussed on ways of avoiding food conflicts, such 

as through using non-food feedstocks (eg Tilman et al., 2009), and some critics that 
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highlighted both challenges and promises  (eg von Braun and Pachauri, 2006), but in 

general the debate fell into the two distinct camps. 

 

This was reflected in the book “Food versus Fuel”
28

 published in 2010, which 

contained two chapters entitled “Why we should not be using biofuels” and “Why 

biofuels are important”, each written by a number of experts (Cortez et al., 2010, 

Pimental et al., 2010, Rosillo-Calle and Johnson, 2010).   

 

The proponents concluded “biofuels can play an important role in reducing GHGs 

and in contributing to social, economic and technical development”. They noted that 

a continued dependence on fossil fuels would be much less environmentally friendly, 

would threaten energy security and exacerbate the impact of energy poverty in 

hindering rural development (Cortez et al., 2010).  

 

The critics focussed on the need to conserve resources for food, rather than fuel, 

production, as “there is simply not enough land, water and energy to produce 

biofuels”, noting that using food grains to produce biofuels had already caused 

shortages for the world’s poor. They also claimed that most conversions of biomass 

into ethanol and biodiesel result in a negative energy return (Pimental et al., 2010). 

The critics also cited Brown’s assessment that using food and feed crops to produce 

ethanol had resulted in a 10-20 per cent increase in key food prices by 2008, 

including bread, meat and milk (Brown, 2008).  

 

These divergent views over biofuels were reflected in widespread media coverage, 

with a particularly large number of NGO reports criticising biofuels, and most of the 

supportive reports emanating from industry associations.  In 2011 an article in the 

Royal Society’s Interface Focus journal noted, “the societal debate on biofuels has 

become increasingly chaotic”. The article contained a meta-assessment of secondary 

literature in the early years of the biofuel debate, between 2006 and 2010, using a 

People-Planet-Profit framework. Within the “People” category, the impact of 

biofuels on food prices was the most frequently considered, and most central, issue, 

                                                 
28

 The BBC4 radio Programme “Costing the Earth” was perhaps the first to use the term “food versus 

fuel”, with regard to the current debate, in its broadcast in late 2007 (Eyre, 2007). In the US, Food 

versus Fuel was the title of a 2008 article in Environmental Health Perspectives (Tenenbaum) and 

then Rosillo-Calle and Johnson (2010) used the term for the title of their book. 
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and the majority of stakeholders regarded the impact of biofuels on food security as 

clearly negative, although some referred to it as neutral/unclear. However, the 

“Profit” category was consistently regarded to be favourable, particularly for rural 

employment opportunities, whilst the “Planet” category was consistently negative for 

first generation biofuels. There was also a clear difference between stakeholders, 

with NGOs focussing on “Planet” aspects and industry on “Profits”. The study also 

noted that few of the publications reviewed cited scientific or primary data 

(Michalopoulos et al., 2011). 

 

2.3.2 The ethics of biofuels 
 

Given the mainly negative press over biofuels at the time, more and more attention 

turned to the ethics of the biofuel policies that had been adopted by the EU and US. 

It was argued that if biofuel policies were causing more hunger throughout the world 

they would be unethical. In 2011 the BBC news reported that a Nuffield Study had 

indeed found that biofuel targets were unethical. The Nuffield Council on Bioethics 

report concluded that UK and European biofuel policies encouraged unethical 

practices and recommended changes, including comprehensive ethical standards 

enforced through certification schemes (Nuffield Council on Bioethics, 2011).  

 

The Nuffield report used three case studies to illustrate some of the problems, noting 

that;  

i) US maize-based ethanol had been blamed for increasing the price of 

maize and other grains in developing countries 

ii) Brazilian ethanol from sugar-cane had contributed to deforestation in rich 

habitat areas 

iii) Malaysian palm-based biodiesel had resulted in land grabs forcing out 

local indigenous communities, as well as having detrimental impacts on 

biodiversity through the conversion of forests to palm plantations 

It also recommended five principles for ensuring the ethical production of biofuels, 

stating that biofuels should: 
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i) not be at the expense of basic human rights, including food, water, health 

and work 

ii) be environmentally sustainable 

iii) contribute to reduced GHG emissions 

iv) develop in accordance with fair trade principles that provide people with 

just rewards 

v) distribute costs and benefits in a fair and equitable way 

But the report also stated that if ethical principles can be adhered to, then there is a 

sixth principle, which is a duty to develop such biofuels, depending on some key 

considerations, such as costs and alternative feedstock uses and energy sources.  

Few would argue against the six recommendations made by the Nuffield report. But 

like so many of the reports on biofuels during this period, the recommendations 

could be applied to any economic activity, not only biofuels. Moreover, the evidence 

provided to support the view that biofuels were unethical relied on somewhat 

simplistic assertions and studies. 

Gamborg et al provided a more nuanced view of the ethics of biofuels in relation to 

food security, making the point that the biofuel debate is complex and actually 

involves many debates that are difficult to unpack, involve empirical uncertainties 

and involve the “clarification and relative weighting of potentially conflicting 

values” (Gamborg et al., 2011). In relation to food security, they noted that biofuels 

have been framed as both contributing directly to world hunger and as a means of 

alleviating rural poverty, thereby reducing hunger. They also made the important 

point that higher food prices could encourage more investment in agriculture in 

developing countries over the medium-term. 

Thompson (2012) also criticised the “unsophisticated portrayal” of the ethical issues 

involved in the food versus fuel debate, arguing that the idea of a zero-sum food 

versus fuel trade-off is “extremely misleading” taking a more holistic approach in his 

analysis of the issues. Using a similar argument to the earlier work of Pingali et al, 

Thompson stated that the idea that higher food prices are disastrous to the world’s 

poor is based on a faulty understanding of the ethics of hunger, as the majority of the 
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poor live in rural areas, many of whom rely on agricultural sales for income. 

However, again like Pingali et al, he also qualified that theoretical benefits may not 

be realised by poor households where there is an imbalance of power in the food 

system. 

This recognition of the complexity of food systems contrasts markedly with much of 

the literature surrounding the biofuel debate, which has been largely couched within 

a standard neoclassical economic view of the world. Thompson and Scoones (2009) 

note that the development narrative continues to focus on agricultural productivity as 

the engine of economic growth, yet this has failed over successive decades to provide 

sustainable livelihoods for much of the developing world. They are particularly 

concerned that economic models, such as partial and computable general equilibrium 

models, are unrealistic and narrow in scope, placing too much emphasis on 

increasing productivity and value-added and encouraging investment in larger-scale 

commercial agri-food systems. They emphasise that agri-food systems are embedded 

in complex, ecological, economic and social processes, and that a more sustainable-

focussed approach is required. 

A special issue of the Journal of Peasant Studies on biofuels in 2010 contained a 

series of articles from a political economy perspective. A key theme of many of the 

papers was the consolidation of corporate power in the agri-food sector, with 

biofuels providing for profitable investment alliances between agribusiness, energy, 

motor vehicle and biotechnology companies (McMichael, 2010). This again 

highlights the difficulty facing many of the rural poor in terms of accessing agri-food 

markets in order to improve income and the difficulty that many face in negotiating 

remunerative prices.   

White and Dasgupta (2010) in the same journal cite Pingali et al (2008) in reminding 

us that the use of agricultural feedstocks for non-food purposes is not a new 

development, but note that the speed of the “biofuels boom
29

” has been more rapid 

than in the past. Hence, they stress the importance of “not blaming a crop (or the 

uses to which a crop is put)” but analysing the actors involved, their positions of 

power and the capture of added value within the supply chain.  

                                                 
29

 The term “biofuel boom” is often used to describe the sharp expansion of global biofuel production 
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2.3.3 Linking biofuels to the dimensions of food security 
 

The various analyses in the literature seem to take as read that biofuels, or at least 

maize-based ethanol, is associated with rising prices of global food commodities, 

whether or not this is seen as good or bad from an ethical perspective. There is 

relatively little discussion of the production of co-products that enter the food chain 

or the degree to which any supply response may offset increased demand, thereby 

dampening down any initial price rise.  

 

Indeed there tends to be limited analysis of the many linkages and pathways between 

biofuels and food security in general. It is important that such pathways are mapped 

out, not only to identify the various ways in which biofuels may affect food security, 

but also to assess which are the most influential factors and what might be the best 

ways to mitigate any negative impacts and enhance any positive influences. 

 

The Food Security Guidelines of the Roundtable on Sustainable Biofuels 

certification system provides a summary of the hypothesised pathways linking 

biofuels to the different dimensions of food security (Thornhill et al., 2012). The 

RSB Guidelines identify the key factors as being the impact of biofuel demand on 

food availability, through competition for both feedstock and resources, as well as 

food access, stability and utilisation through the impact on food prices and household 

incomes.  

 

A subsequent report by the High Level Panel of Experts (HLPE) on Food Security 

and Nutrition, convened by the UN Committee on Food Security, also identified the 

key issues linking biofuels and food security as competition for key resources such 

as land and water in food and feed availability (negative), higher food and feed 

prices on food access (both negative and positive) and improved incomes on food 

access (positive) (HLPE, 2013).  

 

These important issues are interlinked. As the HLPE notes in the summary of its 

review of the impacts of biofuels on food security 

 
“When crops are used for biofuels, the first direct impact is to reduce food 

and feed availability. This induces an increase in prices and a reduction of 
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food demand by the poor. It also encourages farmers to produce more. There 

is also a substitution effect, at consumption level and at production level, 

which is one of the reasons price increases spread to other crops”(HLPE, 

2013).  

 

This encapsulates the links between the food availability and price impacts of 

biofuels, highlighting how difficult it is to apportion an overall impact because 

increased biofuel demand encourages increased prices, but also encourages a supply 

response dampening prices down. 

 

2.3.4 Biofuels and land use  

 

One of the main criticisms aimed at biofuels is that they use feedstock, or grow 

feedstock on land, that might otherwise be used for food production. Not only that 

but they also compete for other valuable resources such as water and fertiliser for 

food and feed production.  

 

A key focus of the food versus fuel debate regarding “availability” has been the 

“land-grab” issue and its impact on world food supply. Most global biofuel 

production is from domestically grown feedstock in mainly food-secure countries.  

However, returning to the ILUC debate outlined in section 2.2.2, it is argued that 

increased maize production in the US for biofuel use leads to reduced availability for 

other uses and reduced plantings of other crops, such as soyabeans, leading to land 

use change elsewhere, including increased plantings of oilseeds in South America to 

offset any reduction in US soyabean sowings. Since the cultivation of new land for 

food production from the conversion of forests, pasture and other land use is a major 

contributor to greenhouse gas emissions, such ILUC effects are particularly 

important not only in terms of land grabbing, but also regarding climate change.  

 

In the EU, biodiesel use has become more reliant on imports of biodiesel and 

feedstocks from developing and middle income countries over recent years, as there 

is limited scope for increased domestic feedstock production. Thus, the expansion of 

palm oil output in South East Asia and soy oil output in South America has been 

partly attributed to both EU demand for biodiesel and, more indirectly, US 
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production of bioethanol. The expansion of palm, soyabean and other biofuel 

feedstocks in less food secure countries has been linked to deforestation, loss of 

biodiversity, increased greenhouse gas emissions
30

 and the loss of land for poor 

communities, making them more vulnerable to food insecurity (Gerasimchuk and 

Koh, 2013).   

 

The lack of biofuel activity in Africa over the past decade suggests that the 

displacement of crops from food to biofuel use has been relatively small, as has the 

transfer of land, either through outgrowers using more of their land to grow biofuel 

feedstock at the expense of other cash and food crops, or from negotiated transfers of 

land from local communities to larger-scale biofuel operators. The experience of 

biofuels in Africa appears to be at odds with much of the land grab literature that, 

whilst important in highlighting a potentially serious situation regarding the lack of 

legal frameworks to protect land rights, appears to have been somewhat exaggerated 

in terms of numbers and sizes of land grabs.  

 

An appraisal by Cotula (2012) of three systematic reviews of media and research 

reports on the scale of land grabs, put the range at between 51 and 67 million 

hectares, with the majority in Africa and one report estimating that biofuels 

accounted for some 37 per cent of the total area within such deals. Whilst some land 

may have been originally intended for biofuels, the lack of biofuel production 

suggests that these figures are significantly overestimated.  

 

Many of the media and research reports appear to have been either exaggerated or 

speculative and over time the actual areas involved have been scaled back, 

particularly regarding biofuel investments in Africa. One example was the claim in 

2007 that a Chinese company had purchased the rights to 3 million hectares of land 

in the Congo DR for a palm oil plantation. By 2010 it had become evident that 

Congo had offered 250 hectares to the company, and since then little has been heard 

of the project (Brautigam, 2010).  

 

                                                 
30

 Greenhouse gas emissions can increase with the expansion of cultivated land through the release of 

carbon stores in the ground, which may be particularly high for certain soil types such as peat lands, 

as well as reducing the potential for carbon dioxide capture by forests and increasing emissions 

through the use of fertilisers.   
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The HLPE report on Biofuels and Food Security, noted that the Land Matrix 

established by the International Land Coalition
31

 and partners estimated total land 

grabs from 2000 to 2011 at some 83 million hectares, of which 56 million were in 

Africa and between one-third and two-thirds were related to biofuels (HLPE, 2013). 

In contrast, an analysis of the Land Matrix database by Ecofys found that the 

maximum global areas that could be designated to biofuels were between 1.4 and 7.6 

million hectares, with the most likely amount closer to the lower end of the range 

(Hamelinck, 2013). 

 

Nevertheless there have been many documented cases of land deals in Africa 

involving biofuel projects where communities or individual households have lost 

access to land (for example, see Matondi et al., 2011).  Advocacy organisations in 

particular have highlighted many examples of land transfers failing to follow fair 

procedures leaving households more vulnerable to food insecurity, particularly when 

a biofuel operation closes and the land is not returned to previous owners, or 

equivalent compensation is not made, or the markets for the feedstock disappear 

(Action Aid, 2012, Friends of the Earth Europe, 2010, GRAIN, 2013). In such cases, 

any benefits through waged employment or sales of feedstock are lost when the 

biofuel operation closes. Even if compensation is received the household may 

become less food secure due to the reduced land area available for food production.  

 

But the land grab argument needs to be placed in the perspective of global food 

availability, future food needs and actual land use by biofuels. Despite the many 

reports linking biofuels to land grabbing in food insecure countries, it was not 

possible to find any showing how much land was actually being used for biofuel 

production in such countries and the extent to which this could affect food 

availability in the face of increasing food and fuel demand.  

 

The generally perceived wisdom is that biofuels compete with food for land. This is 

a logical conclusion if one assumes that land is a limiting factor for food production, 

so that any biofuel feedstocks using land will inevitably reduce food production. But 

this assumption is also somewhat at odds with the surplus production and high 

                                                 
31

 Comprises 116 organisations from over 50 countries, including FAO 



 86 

wastage problems that have beset the major food producing nations over recent 

decades.  

 

Part of the problem with the food versus biofuel land issue is the lack of clarity and 

consensus regarding what land is deemed to be available and what might be needed 

in the future, for food, biofuel and other needs. The following sections therefore 

review the literature regarding available land for crop production, land used for 

biofuels and land requirements for future food needs. 

 

2.3.4.1 Availability of land 

 

A review of the literature on global land requirements shows a wide range of opinion 

on the availability of land for crop production to meet food, feed and other needs 

such as energy. Much of the variation is due to definitions of the type of land suitable 

for crop production in different parts of the world, and some of the variance is due to 

different methodological approaches. Hence, estimates of land availability to meet 

future needs need to be carefully interpreted. 

 

In order to illustrate some of the main projections and methodologies, the following 

table (2.2) provides a breakdown from three major analyses of global land 

availability. The first two columns are taken from the FAO Perspectives to 2050 

report published in 2011(FAO, 2011b), whilst the third column is taken from the 

World Bank 2010 report on Rising Global Interest in Farmland (Deininger et al., 

2010).  

 

Bruinsma’s chapter of the FAO report uses an estimate of the total area suitable for 

rainfed agriculture of 4.2 billion (4,200 million) hectares from an earlier Global 

Agriculture and Ecological Zoning (GAEZ) model.  Of this, 1.6 billion hectares is 

already under cultivation, leaving an additional 2.6 billion. But this includes some 

forest cover, other protected areas and urban areas, leaving a net balance for 

agriculture of 1.5 billion hectares, or almost as much again as is currently used 

(Bruinsma, 2011).  Much of this land would require significant investment to make it 

accessible and sustainably productive, so this broad number can be considered as an 

extreme maximum. 
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In the same World Food Perspectives study, Fischer (2011) calculates there are some 

1.75 billion hectares of land classified as unprotected grassland and woodland 

potentially usable for rainfed bioenergy feedstocks, excluding all land currently used 

for food and feed production as well as forests and other protected areas, human 

settlements and infrastructure and unproductive land.  

Table 2.2 – Estimates of Global Land Availability for Rainfed Crop Production   

Figures are in million hectares Study by: 

Land Area Description Bruinsma Fischer 

World 

Bank 

1.Global Land Area  13,400 13,200  

2.Suitable Area for Rainfed Agriculture 4,190   

Latin America 1,066   

Sub-Sahara Africa 1,031   

S&E Asia 586   

Near East & N Africa 99   

Other 1,418   

3.Current Crop Area 1,600 1,600  

4.Forests, Urban & Infrastructure, Water, Non-vegetated  7,000  

5.Unproductive Marginal and Steep   2,850  

6.Suitable Additional Area for Rainfed Agriculture 2,580   

Latin America 860   

Sub-Sahara Africa 790   

S&E Asia 150   

Near East & N Africa 10   

Other 770   

7.Suitable Additional Area under Urban 60   

8.Suitable Additional Area Protected 200   

9.Suitable Additional Area under Forest 800   

10.Net Available Additional Area, excluding urban, forest, etc 1,520 1,750  

Latin America  500  

Sub-Sahara Africa  554  

S&E Asia  130  

Near East & N Africa  12  

Other  554  

11.Pasture Requirements  970  

12.Net Available Additional Area excluding Pasture   780  

13.Additional Area with Low-Population Density   445 

Latin America   123 

Sub-Sahara Africa   202 

S&E Asia   14 

Near East & N Africa   3 

Other   103 

14.Additional Low-Population Area with Infrastructure Access  263 

Latin America   94 

Sub-Sahara Africa   95 

S&E Asia   3 

Near East & N Africa   3 

Other   68 

Sources: (FAO, 2011b, Fischer and Shah, 2010, Deininger et al., 2010) 
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Much of this 1.75 billion hectares however would be used for livestock grazing, so 

accounting for pasture needs in each region leaves a net global balance of 780 

million hectares.  

 

Fischer’s 780 million hectare estimate would also be constrained by urbanisation 

land requirements and access to adequate infrastructure. These issues were addressed 

in the World Bank report, in which the potential global supply of additional land 

suitable for rainfed cultivation, which is non-forested, with a low population density 

(less than 25 per km
2
) and ecologically suitable for one of the five main crops 

(wheat, sugar cane, palm oil, maize and soyabeans), was estimated at 445 million 

hectares. Africa accounted for the largest share of this at 202 million, followed by 

Latin America with 123 million hectares and then the rest of the world, headed by 

Eastern Europe and Central Asia with 52 million. The World Bank study used data 

from Fischer and Shah (2010). This also estimated the amount of additional land 

available within 6 hours of the nearest market city of at least 50,000 people, which 

reduced the available area to 263 million hectares.  

 

The World Bank study also calculated the output-maximising allocation of crops (of 

the five selected) for the high and low areas. For the higher 445 million hectare 

estimate, 157 million would be devoted to maize, 138 to soybean, 88 to wheat, 41 to 

sugar cane and 22 million to palm. For the lower global area of 263 million hectares, 

83 million would produce the best output from maize, 83 million also from 

soyabean, 71 from wheat, 22 from sugar cane and 4 million from palm. Note that 

these output-maximising figures do not mean that larger areas would not be suited to 

specific crops. For example, the potential land suitable for sugar cane from 

unprotected grass/scrub and woodland (ie unforested) has been estimated by Fischer 

et al in an earlier study at between 38 (very suitable) and 189 (moderately suitable) 

million hectares (Fischer et al., 2008).  

 

In an earlier State of Food and Agriculture report in 2008, FAO estimated that there 

were some 250 to 800 million hectares of additional land available for cropping 

globally (FAO, 2008b), compared to the current cultivated area of 1.5 to 1.6 billion 

hectares. The lower figure of 250 million hectares corresponds closely with the 

World Bank 2010 report lower estimate of 263 million hectares.  
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In a more recent study, Lambin et al (2013) make the point that there is less 

additional cropland available than is generally assumed in such large-scale studies, 

and that the conversion of such land will involve both social and ecological trade-

offs. However, in re-calculating the World Bank study area with low population 

density, at 445 million hectares, using the same constraints but with an updated 

database (Global Agro-Ecological Zones version 3.0), they estimate a higher 

additional global area with a low population density of just under 600 million 

hectares, mostly concentrated in a few regions.  

 

Using a bottom-up approach, they then focus on the potentially available cropland of 

key regions, such as the Brazilian Cerrado, as well as countries such as Congo DR, 

Indonesia and Russia, by identifying social and physical constraints. They find that 

such constraints mean that on average about one-third of the land is suitable, or about 

200 million hectares. So even with a much stricter definition of land availability, the 

more recent study is not far below that of the World Bank’s lowest estimate of some 

263 million hectares and the earlier FAO lowest estimate of 250 million.   

 

It is of course difficult to know the true extent of global land availability without a 

detailed land mapping exercise in each country. Some food-insecure countries, such 

as Mozambique, have conducted such an exercise to ascertain the extent of land for 

potential food and bioenergy production and have allocated land for investors to 

lease using this method. But there is insufficient evidence to use such estimates to 

build a global picture. 

 

A combination of the lowest FAO and World Bank estimates and more recent figure 

of some 200 million hectares by Lambin et al might provide a useful basis for 

starting to assess where land is most available and most suitable to meet additional 

food and other needs, at the minimum cost to greenhouse gas emissions. Better 

information is required in this regard, so that countries and specific regions could 

then be targeted for assistance in expanding food and feedstock production, 

particularly those that are least-developed. Particular attention could be given to 

restoring degraded and abandoned lands. A recent review of studies put the global 

degraded land area at between 1 and 6 billion hectares, but some of this would be 
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better suited to forest restoration and some are currently used by communities (Gibbs 

and Salmon, 2015). An earlier analysis of abandoned agriculture lands found a range 

of between 385 and 472 million hectares globally (Campbell et al., 2008). 

 

Identifying potential suitable land must also be combined with a detailed analysis of 

projected food and bioenergy and other land needs into the future, as it may be 

possible to meet such needs without any significant increased land use, thereby 

avoiding additional greenhouse gas emissions. For example, if all additional biofuel 

production were to be restricted to waste products, such as cereal straw, cane 

bagasse, used cooking oil, animal fats and municipal waste, this would not involve 

any significant additional land. Similarly if it was deemed that all additional food 

demand could be met by increased yields, double-cropping and other productivity-

enhancing measures, then again little additional land would be required.   

 

One of the main problems is that the models that have been used to assess such needs 

build in different land availability estimates and, hence, produce very different 

outcomes (Lotze-Campen et al., 2014). So a detailed land mapping exercise to 

identify where land is available, and the social and environmental issues associated 

with each, is the first step required to build a better global picture of land availability.   

 

2.3.4.2 Land usage for biofuel production 

 

Estimating the amount of land required for biofuel needs is beset with uncertainty. 

There is a lack of clarity within the literature on how much land has been, and is 

currently, used for biofuel production, particularly in terms of feedstock type and co-

product allocation.  

 

For example, a UN Environment Programme (UNEP) report in 2009 estimated that 

some 36 million hectares were used for biofuel feedstock in 2008 at the start of the 

biofuel boom, and suggested this was probably a conservative figure given that many 

biofuel feedstock yields had been overestimated. However, this estimate did not take 

into account the co-products from biofuel production that fed back into the animal 

feed market (Bringezu et al., 2009).  Langeveld et al (2013), meanwhile, estimated 

the land devoted to biofuel production in the major producing countries, representing 
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some 95 per cent of global output, at 32 million hectares in 2010, but at only 21 

million once animal feed co-products had been accounted for
32

. In a review of the 

literature on biofuels and food security, von Witzke and Noleppa (2014) reported a 

range of 45 to 55 million hectares used in the production of bioenergy crops from 

papers published from 2012 to 2013. A more recent estimate in the open access 

journal “Scientific Reports” put the total biofuel feedstock area in 2013 at 41.3 

million hectares from an assessment of FAOSTAT data (Rulli et al., 2016). 

 

It is also difficult to predict how energy and commodity markets will develop in 

terms of the competitiveness of biofuels, how policies may change to either 

encourage or discourage biofuel production, and how technology will develop in 

terms of improving the competitiveness of more land-neutral second generation 

feedstocks, as well as alternative forms of energy and transport. 

 

Early estimates of land requirements for different future biofuel scenarios included 

those from FAO and IEA sources in 2006-2008, suggesting that between 35 and 60 

million hectares of land would be required by 2030 (Rosillo-Calle and Johnson, 

2010). These estimates were made at the beginning of the biofuel production boom 

and have been largely overtaken by most projections since. 

 

For example, the Gallagher Review of the indirect impacts of biofuel production for 

the Renewable Fuels Agency of the UK suggested a range of 56 to 166 million 

hectares of biofuel feedstock area by 2020 if all countries were to meet their stated 

policy targets, with the lower figure accounting for the avoided land use benefits of 

co-products such as animal feed, the introduction of second generation (2G) biofuels 

and significant improvements in feedstock yields, whereas the higher figure accounts 

for low yield improvement, no significant contribution from 2G feedstocks and no 

avoided land use benefits (Gallagher, 2008).  

 

Also the land use projections in a study by Murphy, Woods et al (2011) showed that 

between 100 and 650 million hectares of land could be required for biofuel 

                                                 
32

 In other words that part of the feedstock used for making biofuels accounted for 21 million 

hectares, with the remaining 11 million hectares used mainly to produce animal feed products. 
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feedstocks by 2050, based on various assumptions under two different scenarios by 

the IEA;  

 

i) a baseline scenario of energy trends with biofuels rising in importance 

from 5 per cent of total transport fuel demand in 2010 to 10 per  cent by 

2020, 20 per cent by 2030 and 30 per cent by 2050. 

 

ii) a “blue map” scenario where significant improvements are made in 

transport fuel efficiency, including a significant increase in electric and 

hydrogen vehicles from 2030 and with biofuels representing 15 per cent 

of the total transport fuel demand in 2030 and 25 per cent by 2050. 

 

Different feedstock and biofuel yield assumptions were then made, ranging from 

pessimistic yields with no growth from 2010 levels to “best-technology” yields at the 

other end of the spectrum, with two “most likely” minimum and maximum yield 

assumptions in between the extreme scenarios. Using the blue map scenario, the 

most likely yield assumptions suggested a biofuel feedstock area of 60 to 100 million 

hectares by 2020, 120 to 180 million by 2030 and 130 to 200 million by 2050. 

 

Leal et al (2013) also used the IEA scenarios in projecting the land required for a 

global ethanol output of 200 billion litres in 2020 and 300 billion in 2030, compared 

to some 85 billion litres at that time. They projected that by 2020 the area for maize 

and sugar cane based ethanol alone would reach some 55 to 68 million hectares, 

although this again excluded co-product allocations. 

 

More recently, as part of the Agricultural Model Inter-comparison and Improvement 

Project (AgMIP), a 2050 target for global bioenergy production, consistent with the 

two-degree climate change threshold, was used to compare five different economic 

models incorporating the agri-food sector. This suggested an additional land area 

requirement ranging from as low as 30 to as high as 340 million hectares, with the 

other models resulting in 130, 200 and 250 million hectares. It should be noted that 

the scenario baseline used existing first generation biofuel trends based on prevailing 

policy targets. The target scenarios then focussed on ligno-cellulosic feedstock 
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expansion to meet the high bioenergy “climate change” target (Lotze-Campen et al., 

2014). 

 

This exercise highlighted some of the difficulties in comparing findings, including 

how much land availability to build into the analysis. The model with the smallest 

land use change of an additional 30 million hectares simply assumed that less land 

was available for expanded production, so most of the bioenergy crop expansion was 

met by a reduction in the pasture and food crop areas, with improved yields expected 

to offset much of this. The other models incorporated a more elastic land supply 

resulting in relatively little change to food crop areas and pasture.  

 

Another difficulty in the AgMIP model comparisons was the different assumptions 

used for the mix of ligno-cellulosic crops by 2050. For example, some of the models 

excluded crop residues, one only included short-rotation tree plantations and wood-

based residues, another excluded short-rotation trees and some excluded energy 

grasses.  Although the range of biofuel land needs in the above examples are 

somewhat broad, most would absorb a significant proportion of the lower range of 

global land availability estimates of some 200-250 million hectares, by 2050.  

 

However, it should also be noted that the potential range of area estimates for biofuel 

feedstocks in the above analyses do not always take into account any substitution 

effect from the equivalent co-products produced, such as soyameal and distillers 

dried grains for animal feed (except the low range estimate in the Gallagher Review).  

 

For example, one study estimated that around 20 million hectares of land was needed 

to meet the then EU 2020 biofuel target of an average 10 per cent blend in transport 

fuels. However, it was calculated that the substitution effect of utilizing oilseed meal 

co-products for animal feed from biodiesel production would save an area equivalent 

to over 7 million hectares of soyabean cultivation in Brazil (Özdemir et al., 2009). 

Additional substitution effects would also be seen from distillers dried grains and 

other ethanol co-products. Indeed, the biofuel industry is already playing a key role 

in supplying protein feeds to meet the expanding global demand for meat and dairy, 

particularly in high-growth economies.  
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The study by Ozdemir et al (2009) concluded that, depending on the feedstocks used 

and the degree to which the EU would need to import biofuels and feedstocks to 

meet its needs, the co-products would result in land savings of between 23 and 37 per 

cent from that required to produce the equivalent animal feed. The calculation was 

made on the basis of the equivalent digestible protein content from biodiesel co-

products related to soyameal production and equivalent metabolizable energy content 

in the case of maize for ethanol. 

 

These percentages are significantly lower than those calculated in the Gallagher 

Review which suggests a percentage land saving by co-products of 60 to 66 per cent 

for EU biofuel blending targets ranging from 5.75 per cent in 2010 to 10 per cent by 

2020. This calculation was based on a mass volume change since most EU biofuels 

are in the form of biodiesel from oilseeds, which generally yield between 60 and 80 

per cent protein meal product (Gallagher, 2008).  

 

More recent studies have questioned the assumptions made in earlier models by 

focusing on land use changes in the early years of the biofuels boom.  Babcock and 

Iqbal (2014) highlighted the fact that models used by policymakers to attribute 

greenhouse gas emissions to biofuel-induced land expansion, attribute all of the non-

yield supply response to land use changes at the extensive margin, sometimes 

involving forest clearance. However, they argue that land use change also happens at 

the intensive margin through double cropping (the double-cropped area in Brazil 

nearly doubled between 2004 and 2014), a reduced amount of un-harvested land (ie a 

smaller difference between planted and harvested areas), a smaller fallow area and 

less temporary pasture. They found that outside of Africa, the main response by 

farmers between 2004 and 2012 was to use land more efficiently at the intensive 

margin, rather than expanding into new additional land. Given that yield change 

would also account for a large proportion of any supply response, this suggests that 

greenhouse gas emissions from indirect land use change attributed to biofuel demand 

may be much less significant than is currently assumed.  

 

Similarly, Langeveld et al (2013) analysed the biofuel expansion in most of the key 

producing countries between 2000 and 2010, finding that the net harvested area for 
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food, feed and fibre markets in those countries had increased by 19 million hectares 

over the period, mainly due to increased multiple cropping.  

 

In particular, whilst the US maize and soyabean harvested area for biofuels expanded 

by 11 million hectares, they attributed just under 6 million hectares to co-products 

(on a mass energy basis) so that only just over 5 million hectares was attributed to 

biofuel use. At the same time the Multiple Cropping Index (MCI)
33

 changed from 

0.77 to 0.85 releasing an effective 10.9 million hectares. Given that the agricultural 

area had declined by 3.5 million hectares over the period, this left a 2.3 million 

hectare increase in the net harvested area in the US
34

 (Langeveld et al., 2014).  

 

It is therefore difficult to gauge the extent of biofuel feedstock land needs from the 

literature given the wide range of baseline estimates and projections based on 

different scenarios, as well as varying co-product allocations and other assumptions 

regarding land use. Future land needs will largely depend on food and energy market 

developments, as well as future policies regarding energy and agriculture. These are 

impossible to predict with any certainty, but a useful addition to the analysis would 

be a detailed picture of global land use by biofuel feedstock in each country over the 

past decade. This would help to ascertain any trends emerging from recent market 

and policy developments. The extent to which co-products influence land use 

decisions might also be better represented by their share of revenue streams rather 

than on a mass or energy or feed-displacement basis. 

 

2.3.4.3 Land required for future food needs 

 

As some of the projections cited above suggest that biofuels could indeed absorb a 

significant share of the world’s additional available land for crop production, this 

could have a significant impact on future food security, depending on how much land 

is also required for future food needs. This, in turn, depends on how the supply and 

demand for food will develop over the coming decades. In the past, Malthusian 

concerns that food productivity will not keep pace with population growth have 

                                                 
33

 The multiple cropping index (MCI) is defined as the harvested crop area per unit of arable land. 

Thus, in many tropical areas where double-cropping is practiced the MCI can reach 2, but usually 

averages about 1.5, whereas in temperate zones the MCI is less than 1, as not all of the arable area is 

actually harvested 
34

 This calculates as 10.9 million - 5.1 million - 3.5 million = 2.3 million hectares.  
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proved unfounded. Yet the distribution of that food remains unequal, with some 800 

million people remaining undernourished in today’s world, whilst an estimated 600 

million people suffer from obesity (FAO, 2015). 

 

A recent US Department of Agriculture report outlines the key drivers for global 

food supply and demand up to 2050 (Sands et al., 2014): 

 

i) Change in population 

 

ii) Change in per capita income 

 

iii) Change in agricultural productivity 

 

The extent to which the supply driver of agricultural productivity responds to the two 

demand drivers of population and income will largely determine how commodity 

prices will evolve, which, in turn, will influence food prices, and therefore, food 

security. 

 

Agricultural productivity response depends on two main adjustment factors: yield 

and area of land, the percentage changes of which should sum to an overall 

percentage change in production. This assumes that increased double or inter-

cropping (where more than one crop is harvested within a growing year or where 

more than one crop is inter-cropped on the same land), results in increased harvested 

areas, but not necessarily planted areas. Similarly any increase in cropping intensity 

where more plants are grown per unit area, would be reflected in increased yields
35

, 

as would a higher share of higher-yielding crops and varieties on a given unit area.   

 

The amount of land required for food needs in the future will therefore largely 

depend on the increase in demand and changes in yield productivity. If yield 

productivity is unable to keep pace with rising demand from the growing population 

and higher incomes per capita, then more land may be required. Many factors can 

affect both demand and productivity, ranging from reducing food waste, changing 

diets and climate change related impacts on weather and crop yields. 

                                                 
35

 Assuming that the overall yield from the more intense cropping increases, as too high a cropping 

intensity could result in lower overall yields as the crops compete for limited soil nutrients. 
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A number of studies have been conducted over recent years on land requirements for 

future food needs. They can be categorized into two main approaches: those using 

statistical extrapolation and those using more complex modelling techniques 

(Godfray and Robinson, 2015).  

 

Statistical techniques for projecting food demand date back to early Malthusian 

forecasts, when it was predicted that food production would not keep pace with 

population growth. Malthusian views persist today, despite the fact that food 

production has tended to outpace population growth over the two centuries since. 

Nowadays we have better information at a global level on which to base such 

analyses following the work of the FAO to build balance sheets of supply and 

demand for each country, largely based on data from national statistical agencies. 

  

In recent times a number of economic simulation models of the global food sector 

have been developed, as mentioned in the earlier section on climate change impacts 

(section 2.2.2). They are generally categorized into two types:  

 

i) Partial equilibrium models, which tend to focus on one economic sector, 

such as the agri-food sector, allowing for more detail to be incorporated 

about that sector 

 

ii) Computable equilibrium models, which incorporate a whole economy 

impact but generally have less detail on the sector in question 

 

These models are market-based in that they solve an economic market equilibrium 

based on projected supply and demand changes and price impacts. They therefore 

incorporate various assumptions on the extent to which demand for food responds to 

changes in prices and income (elasticities of demand) and the extent to which supply 

responds to changes in prices (elasticities of supply). Differences in such 

assumptions can result in a wide range of results regarding food projections, as 

illustrated by recent reviews of models assessing the impact of biofuels on food 

prices (see section 2.3.5). 
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As price and income elasticity are fundamental features of economics, there is a 

considerable literature in this area. Despite this, there are no definitive data for the 

models to refer to when setting elasticity functions, as many of the elasticity 

estimates are outdated or refer to a specific country with a given income distribution 

or a small group of commodities and basic food products rather than the complex 

food products of today’s world. This is a significant problem for econometric 

models, as supply and demand elasticities in each country and region are constantly 

evolving in response to the rapidly changing and more globalised agri-food market, 

as well as per capita income growth and changes in income distribution and tastes. 

With so many factors affecting supply and demand it is difficult to isolate the extent 

to which policy, income and prices affect supply and demand responses.  

 

The assumption of perfectly competitive markets in computing market equilibria is 

also somewhat at odds with the market power that is exerted within global food 

chains. The same assumption is required in order to derive a supply curve under the 

ideal of profit maximization by producers. The premise of the rational consumer in 

standard neo-classical economic theory is also widely critiqued and yet utility 

maximization remains a key concept in many econometric models. Despite these 

flaws, and the difficulty in assessing what parameters and assumptions have been 

used within their complex calculations, such models are increasingly used by 

governments to project future impacts and guide policy. 

 

The FAO has been using statistical extrapolation models for many years in order to 

predict likely patterns of food supply and demand into the future. Bruinsma’s 2009 

paper to the FAO expert meeting on “How to Feed the World in 2050”, calculated 

that an additional 70 million hectares of cropland would be required on a global scale 

from the base figure of 1.6 billion hectares in 2005 (rising to 1.65 billion in 2030 and 

1.67 billion in 2050) (Bruinsma, 2009). Within this net increase, an additional 120 

million hectares was calculated for developing countries, including 64 million 

hectares for Sub-Saharan Africa.  

 

Since then the FAO figures have been updated by Alexandratos and Bruinsma, 

incorporating a greater increase in the crop area in developing countries, but also a 

larger decline in the area sown in the developed world, producing the same net 70 
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million hectare increase globally. These projections present “a view of how the key 

food and agricultural variables may evolve over time, not how they should 

evolve…to solve problems of nutrition and poverty” (Alexandratos and Bruinsma, 

2012). They also incorporate significant average global yield increases for the major 

food crops on the basis that there is still considerable slack in potential yields (yield 

gaps) to be exploited in many countries. Thus, 70 per cent of the projected increase 

in food production in developing countries by 2050 is forecast to be due to yield 

growth, 20 per cent to expanded land use and 10 per cent due to increased cropping 

intensity
36

. 

 

In contrast, the Gallagher review of indirect land use impacts of biofuels, estimated 

an approximate range of 100 million to 450 million hectares of land required to meet 

food and feed needs by 2020 in addition to the 56 to 166 million hectare range for 

biofuels (Gallagher, 2008). 

 

Other studies suggest that crop yield growth has been declining in recent years, as 

the average levels in some parts of the world draw closer to the maximum genetically 

attainable yields (Foresight, 2011). Wirsenius et al (2010) refer to research by 

Cassman, Pingali and Heisey in 1999 showing that even maintaining current yields 

may prove to be a challenge due to “signs of intensification-induced declines of yield 

potential over time, related to subtle and complex forms of soil degradation”. 

 

Wirsenius et al suggested land savings could be made due to reduced wastage in the 

food chain, improved livestock productivity and changes in dietary patterns. They 

also included calculations for pasture areas, which were not included by Bruinsma 

and calculated that the overall crop and pasture area could increase by as much as 

280 million hectares by 2030, from just under 5.1 billion hectares of all agricultural 

land currently to 5.35 billion hectares
37

. However, they also pointed to a possible 

dietary shift from ruminant meat to poultry and pork that could lead to less land 

being required, as well as improved meat productivity, which would reduce the 

projected land use for 2030 (of 5.35 billion hectares) by as much as 1 billion 

hectares, mainly through decreased pasture. Moreover, if food wastage were to be 
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 Cropping intensity is defined as the number of times a crop is harvested per year on a given parcel 

of land 
37

 Comprises 3.62 billion hectares for pasture and 1.73 billion for food and non-food crops 
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reduced by 15-20 per cent and dietary patterns were to move toward a more 

vegetarian diet, it is estimated total land use could be as much as 1 billion hectares 

below the current estimated global crop and pasture area (Wirsenius et al., 2010).   

 

Whilst the various projections are useful in terms of how markets may develop over 

time and what changes can be made to minimize resource use, they may 

underestimate how much land is required to end hunger. In terms of assessing 

whether food security can be reached for the world’s population, the French 

organisations INRA
38

 and CIRAD
39

 completed their Agrimonde study on scenarios 

and challenges for feeding the world in 2050. Their approach looked at two 

scenarios;  

 

Agrimonde GO - corresponding to a trend-based scenario where the average 

world Kcal per capita per day level rises to 3,500, with a wide regional 

variation from over 4,000 in the OECD region to about 3,000 in Sub-Saharan 

Africa, and crop yields continue to rise according to long-term trends  

 

Agrimonde 1 - establishing a sustainable food system where the average 

calorie intake is 3,000 Kcals per capita per day for all regions (including 500 

from meat) and crop yields are based on the conclusions of experts taking into 

account both regional trends by type of food crop and the potential impact of 

climate change and intensification.  

 

In the GO scenario the area of cropland, including for non-food uses such as 

biofuels, increases by some 340 million hectares between 2000 and 2050 and pasture 

land also gains 244 million hectares in response to continued high meat demand. 

Meanwhile the Agrimonde 1 scenario increases the cropland area (including biofuel) 

by 600 million hectares due to the lower projected crop yields and a greater 

proportion of dietary calories derived from plants rather than pasture-based meat. But 

this is largely offset by a reduction in pasture land, resulting in the total crop and 

pasture land rising by only about 100 million hectares from 2000 to 2050 (CIRAD 

and INRA, 2009).  
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 INRA is the Institut Nacional de la Recherche Agronomique 
39

 CIRAD translates as Agricultural Research for Development 
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Whether the changes to dietary patterns in the Agrimonde 1 scenario could be 

achieved by 2050 is open to debate. It would mean significant changes to developed 

world diets in order to bring the average down to 3,000 kcal per capita per day, 

although there is growing evidence of benefits for lifespan and potentially large 

health sector savings through reduced obesity and other health-related problems. 

Public awareness campaigns and media attention on such health benefits could help 

to achieve this.  

 

A missing scenario is where dietary patterns continue on trend as in Agrimonde GO, 

but where yield growth is restricted by climate change and related water restrictions, 

as well as intensification-related issues and energy-linked increases in input prices 

and restricted water availability. This could result in a substantial increase in global 

land use requirements as both pasture and cropland areas rise to counter the slow (or 

non) growth in yields. Indeed, this would probably absorb most, if not all, of the 

estimated additional cropland available before 2050. 

 

The Agrimonde scenarios also highlight the major differences between regions 

within the global figures. Most of the increased land use takes place in Sub-Saharan 

Africa and Latin America, as this is where most of the additional land is available. 

Indeed there is limited scope for additional land to come into production in the EU, 

China and the US, all of whom have biofuel consumption targets above current 

levels of production. 

 

In a more recent data-driven model, Bajzelj et al (2014) predict that even if yield 

gaps between developing and developed nations are closed, this will not be sufficient 

to match increased food demand by 2050, as they use a less optimistic scenario for 

overall productivity improvements over the coming decades. But they also support 

the view by the earlier Wirsenius and Agrimonde team studies that changing diets 

and reducing waste could have a significant impact on land use needs. The difference 

being that Bajzelj et al find that it is only possible to prevent substantial increases in 

land use, and associated climate change impacts, through significant changes to diets 

and particularly meat consumption, whereas the earlier studies suggested less land 

would be needed if diets changed and waste was reduced.    
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Econometric equilibrium models have become an increasingly popular means of 

projecting food supply and demand. In 2010 the agricultural modelling community 

started a model comparison project known as AgMIP (as noted earlier in this 

section). This was mainly focussed on assessing the impact of climate change on 

food availability, particularly crop yields, and prices.  

 

One of the analyses conducted under the project was to compare future food demand 

using nine different economic models under the same scenario. The scenario used a 

50 per cent higher income per capita assumption in 2050 than that used in the FAO 

2012 Agriculture Towards 2050 report, and, consequently, all the models predicted a 

higher global food demand change than the FAO’s figure of 54 per cent, ranging 

from 59 to 98 per cent (Valin et al., 2014). Based on these assumptions the land 

required for future food production would clearly be higher than the 70 million 

hectares predicted by FAO, but the extent of the difference depended on how each 

model attributed supply responses to increased yields and areas.  

 

It should be noted here that the model resulting in the highest food demand under 

this AgMIP scenario was that developed by the US Department of Agriculture - the 

Future Agricultural Resources Model (FARM). When a scenario using moderate 

income growth was used by the FARM team, the model predicted that almost all the 

change in world crop supply to meet the increased demand by 2050 would come 

from yield increase with land use for cereals actually lower by 2050 and overall land 

use unchanged from current levels (Sands et al., 2014). So even if one model predicts 

a higher food demand than another by 2050, it does not necessarily mean that model 

would also predict a larger land area, as the yield and area supply elasticities may be 

very different. This is a key area of contention within the literature. For example, 

Roberts and Schlenker (2010) calculated supply and demand elasticities for key 

commodities in terms of calories and concluded that there is little empirical evidence 

linking yields with prices and therefore assumed all supply responses would be from 

land use change. 

 

One of the major uncertainties in assessing future land needs for food demand is 

assessing the impact of climate change on food crop yields and land availability. Not 
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only is there considerable uncertainty regarding the likely evolution of global 

weather patterns, but the likely impacts on food production are also difficult to 

predict. There are, however, major concerns regarding the impact of climate change 

on weather patterns and resulting crop yields, particularly the anticipated impact of 

reduced water availability on productivity (Ray et al., 2013). The phasing out of 

fossil fuels may also influence the amount and quality of fertilizers, pesticides and 

herbicides used, as alternative non fossil-fuel based sources and new cropping 

practices are phased in. There are some indications that climate change may already 

have slowed growth in crop yields in recent years (Lobell et al., 2011). 

 

Some models have projected significant increases in land use over the coming 

decades due to climate change. Another AgMIP study compared nine models using 

the same economic and climate change scenarios, producing a wide range of results, 

with land use by 2050 forecast 20 per cent lower to over 40 per cent higher (Nelson 

et al., 2013). This was attributed mainly again to different supply elasticity 

parameters used in the models. Some of the models absorbed the induced climate 

change shocks mostly through greater intensification of crop production, whilst 

others responded mainly through area expansion. A useful follow-up to the AgMIP 

study would be to understand why such different elasticities were used, although, as 

noted previously, it is evident that there are no commonly agreed and empirically 

proven elasticities to draw upon. 

 

Another study within AgMIP assessed the impact on cropland of four scenarios 

developed for the IPCC 5
th

 Assessment Report on Climate Change using 10 different 

economic models (Schmitz et al., 2014). This again highlighted the wide range of 

results between models for projected land use changes between 2005 and 2050. The 

findings for scenarios assuming no climate change impact, but with medium 

pathways for population and economic growth, ranged from nearly 100 million 

hectares below the current cropland of just over 1.5 billion hectares, to over 400 

million above, but with five of the models falling into the range of 150 to 300 million 

hectares higher and a mean of about 200 million additional hectares.  

 

Under the climate change scenarios, the majority of models fell into the range of just 

below 200 million hectares higher to just over 400 million hectares more (although 
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the actual range was from 50 to 850 million hectares higher), with a mean of just 

over 300 million hectares above. The main reasons for the large variation in results 

in the models were attributed to the different assumptions made on potential 

available cropland, the cost of converting land into food production and, again, 

different supply elasticities used within the models. 

 

There also seems to be a lack of attention addressed to urban agriculture in the 

literature on food projections, with the recognition that more and more food will 

need to be grown in and around cities. Armar-Klemesu (2000) estimated that urban 

agriculture accounted for some 15 to 20 per cent of global food production and 

quoted Mougeot’s 1994 estimates that up to 40 per cent of the population in African 

cities and 50 per cent in Latin America were involved in urban agriculture at that 

time. It is estimated that urban agriculture is practised by 800 million people 

worldwide and that garden plots can be up to 15 times more productive than rural 

holdings (FAO, 2016c).  Another recent review puts the number of people involved 

in urban agriculture in developing countries at 266 million (Hamilton et al., 2013).  

But reliable market information on urban food production is limited and there has 

been relatively little research conducted at the global level. 

 

A number of studies have listed the potential of urban agriculture in major cities. For 

example, Ackermann et al (2014) calculated that the food needs of 100,000 to 

160,000 people could be met by using vacant lots in New York. Adding rooftops and 

hydroponic production in underground and vertical farms could raise these numbers 

substantially. For example, Despommier of Columbia University calculates that one 

30-storey vertical farm alone could feed 50,000 people and that enough of these 

skyscraper farms, occupying about one-fifth of Central Park, would feed the whole 

city (Kretschmer and Kollenberg, 2011). The potential for urban food production 

appears to be sufficiently significant to have a marked impact on future land use 

needs. Yet few prospective studies or models appear to specifically incorporate this 

aspect of future food production. 
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2.3.4.4 Conclusions on biofuel production and land use 

 

A key finding of this brief review of the literature on land availability and future 

needs, is the lack of consensus surrounding the additional land likely to be needed to 

meet food and bioenergy demand over the coming decades. Studies on the amount of 

suitable additional land for rainfed crop production are also wide-ranging, but some 

of the more conservative estimates converge around an approximate global level of 

200 to 250 million hectares, but concentrated within specific regions, mostly in sub-

Saharan Africa and South America.  

 

Bringing any new land into crop production will result in greenhouse gas emissions 

from carbon stored in the soil, though the extent of the emissions varies significantly 

depending on soil type, vegetation cover and level of degradation. Converting land 

into food and feedstock production may also have social and ecosystem impacts that 

are difficult to build into economic analyses. Because of this, it could be argued that 

all additional land use should be constrained wherever possible and that increased 

food and feedstock demand should be met wherever possible through increased 

productivity or food and feedstocks that require little land in their production. 

 

But this could also stifle prospects for alleviating rural poverty and food insecurity in 

many regions with ample land availability. Restricting the cultivation of new land in 

food insecure areas due to concerns over greenhouse gas emissions, the majority of 

which continue to emanate from food secure nations, would be somewhat unethical. 

 

The greatest discrepancies appear to be around the amount of land required to meet 

food needs, mainly due to the uncertainty surrounding future yield growth and 

demand changes. On the one hand the availability of food is already more than 

sufficient to meet everyone’s needs, so a more equal distribution of food combined 

with the potential to close yield gaps, reduce food waste and change diets in favour 

of reduced meat consumption in developed nations, as well as more urban food 

production, might prevent the need for any additional land use. On the other hand, if 

productivity improvements are not realized due to climate change and other 

resource-related factors, such as availability of water and fertilizer, then significantly 

more land could be required. 
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So it is difficult to assess how much land might be available for biofuel production 

given such uncertainties. Within the 200 to 250 million hectare potential additional 

global cropland figure, more than a third would be located in parts of sub-Saharan 

Africa providing opportunities for rural development and poverty reduction through 

both food and bioenergy production. A similar potential appears to exist for some 

parts of South America. Using more land-efficient feedstocks such as sugar cane, 

palm and second-generation crops, could therefore be a useful way of raising per 

capita incomes and reducing food insecurity in both regions, particularly where 

valuable co-products are also produced. But some countries and regions within 

Africa and South America would be less suitable for bioenergy production where 

land availability is limited and population density is high. In such areas, and, indeed 

in other parts of the world, additional biofuel production could be restricted to 

feedstocks involving minimal land use, such as crop residues, used cooking oil, 

animal fats and municipal waste.  

 

2.3.5 Biofuels and food prices  

 

It is commonly argued that the expansion in global biofuel production, spurred by 

government policies and high oil prices, has been a major cause of increased food 

prices and price volatility around the world, making it more difficult for the poor to 

access sufficient nutritious food on a regular basis, particularly in developing 

countries where households spend a greater proportion of their incomes on food.  

 

In particular, the sharp rise in US and EU biofuel production over the past decade is 

often cited as one of the most important causes of the commodity price spikes in 

2008/9 and 2010/11 to 2012/2013 (Mitchell, 2008, FAO, 2009, Tenenbaum, 2008, 

Wise and Brill, 2012, de Gorter et al., 2013). The increase in commodity prices is 

estimated to have resulted in an additional 100 to 115 million undernourished people 

following the 2007/8 price crisis and some 44 million following the 2011 surge 

(Ivanic and Martin, 2008, FAO, 2009, Ivanic et al., 2011). These numbers have since 

been questioned, with the FAO revising its long-term estimates in 2012 to show a 

declining trend in the number of undernourished people over the period 2005 to 2015 

(FAO, 2015). Nevertheless, the prevailing public perception, reinforced by media 
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reports, appears to be that biofuels compete with food production and therefore 

increase food prices and thereby accentuate food insecurity (Kline et al., 2016). 

 

Yet evidence remains inconclusive on the extent to which biofuels influenced the 

price spikes on the main global commodity exchanges, as there are a wide range of 

assumptions and results within the various analyses and studies. This makes it 

difficult to compare analyses and assess biofuel impacts against the many other 

forces involved in the price formation of different crops used for biofuel production 

(Tyner, 2013). Indeed, many of the recent analyses suggest that biofuel demand 

played a relatively minor role in the commodity price increases (Condon et al., 2013, 

Kretschmer et al., 2012, Oladosu and Msangi, 2013, Zilberman et al., 2012, Baffes 

and Haniotis, 2010). It is also arguable whether higher global commodity prices 

necessarily lead to increased food insecurity, due to the potential gains for many 

rural producers and sellers of foodstuffs.  

 

There are many reasons for the different views adopted on how biofuels affect food 

security through their impact on food prices. The HLPE report on Biofuels and Food 

Security commissioned by the UN Committee on Food Security (HLPE, 2013) noted 

five reasons why it is particularly difficult to analyse the linkages: 

 

i) Because the main biofuel producers are in developed countries, the main 

channel of food insecurity is the hypothesized transmission of high 

international prices to local market prices in food insecure countries, 

hurting net food buying households, but which may also benefit net food 

seller households. 

 

ii) There are many different types of biofuels and feedstocks making it 

difficult to extrapolate findings from one type to another. 

 

iii) Impacts may be different in the short and long-term, as a short-term price 

rise hurting consumers, could lead to a longer-term increase in supply 

through increased investment and higher rural employment and incomes. 

 

iv) There are many other factors besides biofuels that influence food prices. 
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v) Food security does not depend on the strength of price increases, as a 

modest price increase could hide a significant reduction in demand (and 

hence food consumption) that is mostly offset by increased supply. 

 

An additional point is that commodity price movements on international markets 

may not translate to increased food prices, as the raw material component of a food 

product, such as bread, may represent a small proportion of its price.  

 

Another factor more directly related to biofuels is the influence of co-products on 

commodity prices. For example, the production of DDGS when processing maize 

into ethanol has created a new animal feed source in the US, reducing the demand for 

maize in animal feed, and, thereby, creating a dampening effect on maize prices to 

help offset the bullish effect of increased demand for ethanol production.  

 

Given the numerous difficulties in identifying the extent to which biofuels impact on 

food prices, a number of studies focus on one of the main biofuel types or one of the 

main producing countries. Since the US is the largest producer of biofuels, and maize 

is the main feedstock used, and maize is generally regarded as the foundation price 

for the global food market, the following section focusses on this aspect of the global 

biofuel market. 

 

2.3.5.1 The US maize ethanol and food price link 

 

The main biofuel feedstock linked to food prices is US maize, which is mainly used 

for animal feed, either domestically or via exports. In past decades the US accounted 

for between 50 and 75 per cent of world maize exports, and US prices tended, 

therefore, to act as the world market benchmark. In recent years, the US share of 

world trade has fallen to between 30 and 40 per cent, but the US remains the world’s 

leading maize exporter. Hence, the US maize price often forms the ceiling price for 

maize markets in importing countries around the world, calculated as the import 

parity price for US maize shipped to each destination.   
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Fundamental supply and demand information plays an important role in US maize 

price formation. The US maize market is relatively transparent in regard to market 

information, with regular reports from official and industry sources on the supply 

and demand side of the balance, with the added advantage of a long-established and 

high volume futures market based in Chicago. Buyers and sellers assess estimated 

supply against forecast domestic use and exports in order to assess the relative 

supply “tightness” of the market. If supplies are deemed to fall short of demand then 

the market will be in tight supply and prices should rise to accommodate this, 

providing an incentive for increased production.  

 

Hence, a useful indicator of the fundamental market situation is the end-season stock 

level, as this is the result of the supply and demand balance each year. The 

importance of the end-season stock level is also influenced by developments in 

consumption each year. A more useful indicator therefore is the end-season stock-to-

use ratio, reflecting stocks as a ratio of domestic and export use
40

. The lower the ratio 

the tighter the supply and demand balance and prices will tend to rise when the 

balance is tight and fall when the stock-to-use ratio increases.  

 

The extent of the relationship between stocks and prices is considered to have 

changed over recent years, with commodity prices appearing to be increasingly 

responsive to changes in the ratio.  This may be partly attributed to the perceived 

greater risk in commodity markets that supply will fall short of the sharply rising 

demand seen for maize and other cereals and other foodstuffs in recent years, which, 

it is argued, have changed the long-term dynamic and trend for grain markets (Piesse 

and Thirtle, 2009). But this also follows the established literature on commodity 

price behaviour in relation to stocks, with “normal” markets becoming more fragile 

as stocks decline in relation to use (Deaton and Laroque, 1992). 

 

The steep rise in US biofuel production over the past decade has played a major part 

in the increasing demand for US maize. Indeed, ethanol demand overtook animal 

feed use from 2010 to 2013 before falling back, with the latest USDA projections at 

                                                 
40

 Some stock-to-use ratios are calculated using domestic use only, some are calculated at global or 

regional level, or for the major exporting countries or nationally, and some use specific types, 

varieties and grades of a particular commodity, such as hard high protein wheat as opposed to soft low 

protein wheat.  
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the time of writing suggesting feed use and exports will continue to rise whilst 

ethanol use will stabilize (USDA, 2016c).  

 

Increased maize output managed to keep pace with rising use over the past decade, 

allowing feed use and exports to remain relatively stable, although a decline is 

apparent in both from about 2007 to 2011, followed by a steep cut in exports in 2012 

due to the drought-affected crop that year. Since then both animal feed use and 

exports of maize have recovered to levels closer to the pre-biofuel boom trends (fig 

2.2).  

 

Fig 2.2 – US Maize Use 1990-2015 and Projections 2016-2025 

 

Source: (USDA, 2016c) 

 

Figure 2.3 illustrates how US maize prices tend to mirror the stock-to-use ratio, with 

average season prices rising when stocks fall and vice versa. Over time the price 

response to stock-to-use ratio changes appears to have become more volatile and in 

some years prices do not move as predicted, such as in 2007/8 when US maize prices 

rose at the same time as the stock-to-use ratio increased. So there are clearly other 

factors at play in the determination of maize prices. Nevertheless, the relationship is 

significant enough to allow commentators to use it as a way of predicting prices as 

new market information comes to light (eg Good and Irwin, 2015) .   
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Since the US is the largest maize exporter, it might be expected that US maize prices 

would also correspond to the supply and demand situation on the world market for 

maize. Figure 2.4 shows that when world maize supplies are relatively tight in 

relation to demand, the stock-to-use ratio falls and this usually helps to lift US maize 

prices higher. So as the world stock-to-use ratio has recovered in recent years, US 

maize prices have fallen. Similarly when world stocks of maize were much larger in 

relation to usage in the 1990s, US maize prices were much lower. But the 

relationship does not appear to be as close as that for the US stock-to-ratio against 

the US maize price. 

 

Fig 2.3 – US Maize Price versus US Maize Stock-to-Use Ratio 

 

Source: Compiled from data from USDA and NASS 
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Fig 2.4 – US Maize Price versus World Maize Stock-to-Use Ratio 

 

Source: Data from USDA and NASS 

 

Bobenreith, Wright and Zeng (2013) conducted a study of maize, wheat and rice 

prices against world stock-to-use ratios from 1961 to 2007, finding correlations of -

0.5, -0.4 and -0.17
41

, respectively, although when the stock-to-use ratios for each 

grain were aggregated into a calorie ratio there was a slight improvement in the 

correlations for maize prices (-0.57) and wheat prices (-0.5) and a significant 

improvement for rice values (-0.47). Wright (2014) also makes the point that grain 

prices reflect their substitutability, as in the case of calories and other nutritional 

values, and storability, enabling stocks from one harvest to be carried over for use in 

subsequent years. Wright also noted that the sharp increase in biofuel demand from 

2005 to 2011 prevented stocks from being able to buffer prices as they had done in 

previous times, due to the sharp drawdown in stock levels. 

 

So biofuel demand appears to have had an influential impact on US and, hence, 

world maize values through its influence on the US stock-to-use ratio. But there are 

clearly other factors that influence the price response to the fundamental situation for 

maize. Thus, when the US maize stocks-to-use ratio rose in 2007/8, prices did not 

fall as expected but continued to rise. One explanation is that maize prices that year 

                                                 
41

 Note that the correlations were calculated for de-trended prices rather than actual market values 
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were pulled higher by the sharp rise in other commodity market values, notably oil 

and wheat, reflecting the substitutability factor. Similarly, the high maize prices in 

2010 and 2011were reported to be one of the key factors supporting world wheat 

prices at higher levels than the wheat stock-to-use ratio suggested at that time 

(USDA, 2011).  

 

It should also be noted that the prices shown in figures 4 and 5 are nominal values 

and that if adjusted for inflation, the recent movements would be less pronounced in 

relation to those of previous years. Indeed, a UK government report in 2010 

illustrated how the 2008 food price spikes were much smaller than those witnessed in 

the 1970s in real terms, even though the real crude oil price spike was much larger 

(DEFRA, 2009). In a joint review of global food price volatility, the major UN-based 

organisations, plus OECD and WTO also highlighted the fact that in real terms the 

food price spike of 2008 was in fact quite small in comparison with previous spikes 

in the mid-1970s (FAO et al., 2011). But Dorward (2011) argues that a comparison 

of real prices adjusted by consumer price indices in developed nations is misleading 

for those most affected by food insecurity, for whom price increase as a proportion 

of income is a more appropriate measure. 

 

2.3.5.2 Factors contributing to the recent food price spikes 

 

A number of studies have investigated the factors believed to be responsible for the 

rise in maize and other commodity prices in recent times. The Committee on Climate 

Change in the UK encapsulated the main factors in its Bioenergy Review of 2011. 

Figure 2.5 shows how a number of key issues are hypothesized to have combined to 

influence supply and demand, with the added impact of currency markets and futures 

market speculation.  

 

Assuming the chart represents cereals as a whole, there would be other forces within 

the supply and demand balance between different cereals and also between different 

types of the same cereal. Thus, wheat prices would affect maize and rice prices, 

according to their cross price elasticities. 
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Fig 2.5 - Factors Contributing to Food Price Formation 

 

Source: (Collier et al., 2011) 

 

High oil prices have been put forward as the most important influence on food 

commodity prices by a number of studies, including a recent analysis for the World 

Bank (Baffes and Allen, 2013).  Changes in non-food commodity markets, such as 

oil, can impact on grain markets through higher input costs on supply, but that 

linkage is relatively weak historically. It is also argued that the oil and biofuel price 

link is now an important factor in food commodity price developments. As oil prices 

rise this should encourage cereal, sugar and oilseed demand as biofuels become more 

competitive for blending in transport fuels, although increased biofuel use should 

also help to dampen oil price increases to a certain extent (Harvey and Pilgrim, 

2011).  

Whilst there has been a relatively close correlation in recent years between oil and 

maize prices, it is difficult to prove causation, as a close relationship between the two 

is not always intuitive. Biofuel policies in the major producing countries are based 

around usage targets and blending mandates, creating an inelastic demand. In the US 

the annual ethanol blending targets are based on a maximum blend of about 10 per 

cent ethanol in petrol, known as the blend wall. Thus, as oil prices increase the blend 

wall would prevent more ethanol being used, and, hence, maize prices from moving 
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higher
42

. Similarly the mandated use targets create an inelastic demand that should 

prevent maize prices falling in line with any drop in oil prices. However, export 

demand for ethanol could allow maize prices to follow higher oil prices upwards, as 

long as there is spare production capacity.    

Speculative activity has also been put forward as another major factor in the price 

spikes of recent years, based on the concept that speculative bubbles were created 

during the financial and commodity market panics, spurred by the increased 

participation of hedge and index fund investors (Piesse and Thirtle, 2009, Timmer, 

2010). However, a detailed study of index traders in the US found little evidence that 

such funds have any influence on commodity futures price movements, and the same 

authors note that this corresponds with most other empirical studies over recent years 

(Aulerich et al., 2014), whilst Irwin and Good (2009) also find little evidence of a 

speculative bubble, arguing that fundamental market forces offer a better 

explanation.  

 

Other influences commonly attributed to the commodity price spikes of recent years 

include the weakness of the dollar. It is argued that a weaker dollar encourages 

commodity prices to rise to offset the currency movement. Thus, if the dollar 

weakened, US export prices of maize would fall when denominated in the currency 

of the importing country, thereby creating additional demand and lifting dollar-

denominated prices higher. One study attributes one-fifth of the 2007/8 cereal price 

spike to the weakening dollar (Headey and Fan, 2010).    

 

Trade policies were also cited as having particularly influenced wheat and rice prices 

during the first of the recent price spikes in 2007/8. Export bans on wheat and rice 

exports at the time were estimated to have accounted for 45 per cent of the rice price 

rise and 30 per cent of the wheat price spike (Martin and Anderson, 2011). Export 

bans would affect both the supply and demand side of the market balance, depending 

on the extent to which the domestic market in question was insulated from the 

international market. An export ban should increase domestic availability and 

dampen down prices in a surplus domestic market helping to maintain domestic 

demand, particularly if the domestic market is protected from international prices via 

                                                 
42

 In fact higher oil prices could reduce ethanol demand as petrol consumption falls, thus reducing the 

demand for maize also.  
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import levies or tariffs. However, this would then remove potential supplies from the 

world market, helping to lift international prices. 

 

The other key factor driving commodity prices is the continued global population 

growth and rising per capita incomes. This factor is often overlooked as being long-

term and gradual, and hence, not as relevant to the recent spikes in commodity 

prices. Population growth is certainly gradual, but the fact that most of this growth 

has been in developing countries where a high proportion of income is spent on food, 

has accentuated that impact over recent decades.  

 

Furthermore the rising per capita incomes recorded for many developing and middle 

income countries in recent years, have resulted in significant impacts on world food 

demand, particularly where diets change from mainly staple cereal and root crops to 

meat and dairy goods that require substantial tonnages of animal feed. In other 

words, because the high population and income growth since the turn of the 

millennium has been in countries with a high income elasticity of demand, and 

because much of that demand has been for resource-intensive foods, this led to a 

sharp rise in food demand over the past decade. Chakrovarty et al (2015) used a 

partial equilibrium model to show that food demand effects, including projected 

changes in diets towards meat and dairy, could account for half of the anticipated 

food price impacts over the longer-term.  

 

At first, large global stocks of grain and other commodities helped to absorb this 

rising demand for food. But as stocks dwindled and biofuel demand started to rise 

steeply, the supply risk increased, leading to a sharp rise in prices. When combined 

with supply shocks such as the US drought in 2012, the 2010 Russian drought and 

the successive droughts in Australia during the first decade of the new Millennium, 

the burgeoning food demand, which has been exacerbated by biofuel demand and 

other factors, has played a key role in reducing the stock-to-use ratio of staple cereals 

such as maize, hence, lifting world prices. 
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2.3.5.3 Analyses of price responses to biofuel production  

 

As with climate change impacts and land use changes, various analyses and models 

have been developed to investigate the degree to which biofuels caused recent food 

price spikes and how they may affect food prices in the future. A paper by Mitchell 

in 2008 brought the food price versus biofuel debate to the forefront of public 

attention, suggesting that up to 70 per cent of the 2007/8 global cereal price spike 

could be attributed to biofuels (Mitchell, 2008). His analysis was based around the 

argument that biofuels accounted for most of the increased consumption of maize 

between 2004 and 2007 leading to lower stocks and higher prices. This view was 

supported by a number of other studies, but other analyses suggested a much lower 

impact, leading to a long-running debate and numerous analyses since. 

 

At its heart the debate is a relatively straightforward comparison of two opposing 

views. Westhoff (2010), perhaps best describes the two camps in his book “The 

Economics of Food”. 

  

Supporters of biofuels point to the fact that the amount of maize used for US ethanol 

production represented just over 5 per cent of total global cereal consumption
43

. 

Accounting for the fact that about half the valuable outputs from maize used in 

ethanol plants are distillers dried-grains for animal feed, thereby replacing maize and 

other feedstuffs that would otherwise have been used, then the amount of maize used 

specifically for biofuels would be just 2.5 per cent of world grain use.  

 

Opponents, meanwhile, argue that much of the increase in world cereal consumption 

was due to the newly-emerging biofuel demand. For example, global cereal use 

increased by 270 million tonnes between 2005/6 and 2011/12, of which US maize 

use for ethanol increased by 86 million, or nearly one-third of the global total. 

Because US ethanol use was such a large proportion of the steep global rise in cereal 

demand in such a short space of time, world grain stocks fell in relation to rising 

needs, forcing prices higher. Thus, opponents argue that the long-term trend in cereal 

supply and demand was disrupted by the sudden surge in biofuel use, exacerbating 

                                                 
43

 The 2011/12 USDA estimates put US maize use for ethanol production at 5 billion bushels, or 127 

million tonnes, compared with global wheat, coarse grain and rice use of 2,300 million tonnes. 
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the more gradual rising demand for grain and other feedstuffs for meat and dairy 

sectors in countries experiencing strong population and economic growth.  

 

However, this relatively simple division of the two opposing camps in the early years 

of the debate, has now been surpassed by a plethora of complex studies that have 

tried to explain the link between biofuels and prices of maize and other commodities. 

One systematic review found 121 such studies using original research and 

quantitative estimates for the period 2000 to 2012 (Persson, 2015), Another found 

170 studies related to the impact of maize ethanol on maize prices alone (Thompson 

et al., 2016). Other reviews have also been conducted in order to try to find some 

consensus on how biofuel demand influences food prices (eg Kretschmer et al., 

2012, von Witzke and Noleppa, 2014). But a common theme that emerges from these 

reviews is the wide variation in findings, with many suggesting relatively little 

impact and others agreeing with Mitchell’s early analysis. A particular difficulty is 

comparing “incomparable” studies due to the many different approaches and 

assumptions adopted.  

 

Given the considerable amount of literature published in this field over the past 

decade it is more useful, and practical, to consider the reviews. Each has used 

different ways of categorizing the many studies. For example, the HLPE study 

(HLPE, 2013), De Gorter, Drabik and Just (2013) and Zilberman et al (2012) all used 

different groupings in reviewing the literature, but these groupings by and large fell 

into either the more qualitative review of supply and demand, including the “perfect 

storm” or “ad -hoc multi-factor” analyses, or the more quantitative, based on either 

statistical or econometric models. The other main difference was that some of the 

studies were backward-looking in trying to explain recent food price developments, 

whereas others were forward-looking in terms of trying to project future prices under 

different scenarios. 

 

The “perfect storm” analyses were largely backward-looking and followed the 

argument put forward by Mitchell and many UN and other official organisations at 

the time of many complex and inter-linked factors that were impossible to 

disentangle (FAO et al., 2011). Thus, many of these studies reported that it was too 

difficult to attribute a percentage of food price change to biofuels, let alone any other 
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influence. This was also the view of a number of academic studies at the time, with 

the various forces comprehensively covered by Westhoff (2010) regarding the 2008 

food price crisis and later by Tyner (2013). Meanwhile, from a more quantitative and 

forward-looking perspective, Baldos and Hertel (2014) ran a model using a 

reasonable range of different scenarios and parameters, resulting in cereal crop prices 

of between 70 per cent higher and 40 per cent lower by 2050, highlighting the 

importance of the assumptions and parameters used. 

 

Recent reviews of the numerous quantitative analyses have attempted to identify the 

reasons for the wide range of results and to apply a meta-analysis to the findings in 

order to determine the likely range of biofuel impacts using normalized approaches 

and assumptions. 

 

One such review found that the significant variation in the estimated impact of 

biofuels was due to the differences in the modelling approaches, geographical scope 

and assumptions built into the models (Oladosu and Msangi, 2013). The authors 

found that many of the studies up to 2008, which suggested that biofuels accounted 

for most of the rise in commodity prices, have since been revised downwards, but 

that the role of many of the non-biofuel factors remained unclear. 

 

Zhang et al (2013) also set out to explain the reasons for the wide range of estimates 

of biofuel impacts on food prices, but from a forward-looking perspective. They 

attempted to reconcile the differences between projection studies using four partial 

equilibrium models and five CGE models. Key differences were found between the 

CGE models in terms of the potential supply of land, the contribution of animal feed 

co-products and the substitutability between biofuels and petrol and diesel. For the 

partial equilibrium models the main differences were the way in which agricultural 

and energy markets were modelled, the design of scenarios and the treatment of 

trade.   

 

A systematic review of studies that attempted to quantify the average impact of 

biofuel production and demand on commodity and food prices, also revealed 

considerable uncertainty surrounding the influence of biofuels (Persson, 2015). 

Persson normalized the results of 121 studies by dividing the price change in each by 



 120 

the size of the biofuel demand change. This resulted in a narrower range of findings, 

with the rise in ethanol production between 2000 and 2008 responsible for an 

estimated 11 to 43 per cent of the world maize price change during that period.  

 

The systematic review also revealed that, on average, US wheat and soyabean prices 

increased by about half as much as maize due to the rise in US ethanol production 

from 2000 to 2008, whilst meat price gains averaged about one-fifth of the maize 

price increase. At the world level, the global rise in fuel ethanol production was 

calculated as being responsible for an average 23 per cent of world coarse grain price 

increases between 2000 and 2008, whilst the rise in biodiesel production was found 

to be responsible for an average 8 and 38 per cent of oilseed and vegetable oil prices, 

respectively.  

 

But again the most striking feature of this systematic review was the wide variation 

in price responses to increased biofuel demand. This meant that the averages were 

calculated from a very wide range of results, questioning their value. Persson 

attributes most of this variation to differences in supply and demand elasticities used 

between the studies. Those recording large price effects tended to assume a zero 

supply elasticity, whilst those with small price changes tended to incorporate a strong 

supply response through area or yields or both. Most partial equilibrium models 

assumed a zero yield elasticity, but many models assumed quite large yield 

elasticities. Most models assumed relatively large area elasticities, but again with a 

wide variance. It should also be noted here that whilst supply elasticities are more 

likely to increase over the long run, most of the studies focussed on short-term 

outcomes. 

 

Persson argues that the price impacts of increased biofuel demand crucially depend 

on the supply and demand elasticities selected, but that “there is considerable 

uncertainty around the value of these parameters” and that a particular concern is the 

lack of empirical evidence for supply elasticities, especially for developing countries 

and in the longer-term. He also notes the need for better information on land 

transformation within such analyses. 
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Whilst Persson’s analysis helped to produce a narrower range of values from the 

wide range of findings, a meta-analysis of some 150 projections from 29 studies of 

the impact of US maize ethanol production on maize prices (or a close proxy for 

maize values such as average grain prices) produced an even wider range of results 

(Condon et al., 2015). In order to make the studies more comparable Condon et al 

converted the various study findings into maize price changes per unit of ethanol 

production (in both volume and percentage terms). These normalized prices, or 

elasticity measures, followed the same principle used by Persson, but they showed a 

wider range of results. Elasticity values (the percentage US maize price change per 

percentage increase in US ethanol production) ranged from as low as 0.003 to as 

high as 1.3. These values resulted in percentage changes in maize prices from 2000 

to 2008 accounted for by US biofuel production of between 0.01 and 85 per cent. 

 

Thompson, Hoang and Whistance’s (2016) review of 170 studies for the Food and 

Agricultural Policy Research Institute (FAPRI) on the impact of US ethanol demand 

on US maize prices, also finds a wide range of results, with the price impact being 

higher for those studies that do not incorporate a supply response. For those that do, 

well under half the increase in maize demand was estimated to have been met by 

increased supply. Although some studies suggested that increased production offset 

all the increase in demand, most did not. The land use estimates also varied markedly 

from no change to millions more hectares of additional land allocated to maize and 

other crops in the US and the rest of the world. The FAPRI study was unable to draw 

any conclusions on trade and co-product impacts.  

 

Given that the supply elasticity assumptions are one of the main sources of 

discrepancy within the various econometric modelling studies, it is worth noting that 

there has been a recent revival in studies on estimating agricultural supply elasticity 

within the extensive agricultural economics literature. This revival has been largely 

in response to the indirect land use change debate, as policymakers sought better 

evidence on acreage responses to higher prices, and, consequently, on yield response 

to prices also. 

 

The traditional view within the economics literature held that all, or nearly all, of any 

crop supply response to price, came from farmers changing their planted areas. The 
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long-held assumption has been that yields are largely influenced by weather in the 

short-term and technological change in the long-run, rather than price. But in recent 

decades, some studies have found that yields also respond to prices through input use 

and other production measures.  

 

Over more recent years, a number of new studies have found contrasting evidence on 

yield response. Berry and Schlenker (2011) concluded that most empirical evidence 

points to yield elasticities for US maize of around zero, arguing that fertiliser use has 

reached optimum levels and that any yield increase on existing land would be offset 

by more marginal lower-yielding land coming into production. But Goodwin et al 

(2012) point to a number of studies over the decades showing a significant yield 

response and in their own analysis find a long-run elasticity of 0.25 for US maize 

yield response to prices.   

 

The opposing findings largely reflect the different underlying approaches taken in 

estimating the supply elasticities. This arises because of the difficulty in isolating 

price responses of plantings and yield from the many factors that influence both. 

Furthermore prices themselves are determined by a wide array of supply and demand 

factors operating in equilibrium and influencing each other. Thus, it is argued that 

regressions of yield and price, or area and price, may indicate correlation but cannot 

prove causation.  

 

Thus different econometric approaches have been adopted to estimating supply 

elasticities. Berry and Schlenker (2011) argue that much of the literature fails to 

account for the endogenous relationships between variables when measuring price 

impacts. They argue that an instrumental variables (IV) approach, using only 

exogenous instruments, should be used in order to prevent an endogeneity problem. 

Weather has traditionally been used as the exogenous instrument to shift supply and 

thereby trace out the demand curve. Roberts and Schlenker (2010) also use past 

weather shocks to shift demand and trace out supply. 

 

But Goodwin et al (2012) find a significant though small intra-seasonal yield 

response to price changes that could themselves be influenced by weather shocks. 

The short-term responses are corroborated with focus group evidence confirming that 
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farmers often take actions during the season in response to price changes that would 

affect yields, including changing their overall crop area allocations (eg to more 

higher yielding crops in the overall mix) and the timing and level of inputs and other 

measures (eg falling output prices and increasing input prices may discourage input 

use at certain times of the year). 

 

Others use different approaches, such as the “difference GMM” or “system GMM 

methods”, the latter used by Haile et al (2016) in their recent analysis of worldwide 

acreage and yield response to international price changes
44

. In their comprehensive 

global analysis of the area and yield elasticity of wheat, maize, rice and soybeans, 

Haile et al found that yield and area own elasticities were mostly similar in order of 

magnitude, but that the overall supply elasticities to price were generally small. A 

weakness of this analysis was the use of a world price for each commodity, which 

assumed complete price transmission to national markets, an assumption that is 

widely contested in the literature (see below). 

 

Clearly, the widely different views regarding the impact of biofuels on food prices 

have been difficult to explain and resolve. However, there does appear to be a 

growing consensus that the early estimates attributing more than half of the 

commodity price spikes to sharply rising biofuel demand have been revised 

downward in recent years. Persson’s normalized range of 11 to 43 per cent of US 

maize price increases being attributed to increased US maize ethanol output between 

2000 and 2008, perhaps provides the most rigorously analysed range of values, 

although only covering a few of the early years of the biofuel boom before an 

apparent supply response had managed to catch up with the sharp rise in demand. 

Recent reviews have also highlighted the inherent weakness of many of the studies 

that lack a supply response when calculating price impacts, as such studies tend to 

attribute a larger percentage of price changes to biofuel demand.  

 

There also appears to be some empirical evidence that speculative activity only had a 

small influence, if any, on the price spikes of recent years. The large percentages of 
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price spikes attributed to the impact of trade policies and exchange rates by some 

studies, also seems difficult to verify in the more recent literature. 

 

Meanwhile the influence of oil prices seems to have become more widely accepted 

as a key driver of maize and other commodity prices over the past decade. However, 

both the input and output linkages appear to have underlying theoretical weaknesses 

in that oil only accounts for a certain proportion of input and distribution costs, 

whilst biofuel output is often constrained by mandates and blend walls associated 

with engine performance and policy restrictions, as well as plant capacity.  

 

Overall, the literature suggests that the perfect storm theory seems to fit best, as the 

evidence appears to point toward a combination of biofuel and other demand 

changes, high oil prices, exchange rate changes and trade policies, accentuating the 

strong demand emerging from population and per capita income growth in many 

developing countries, combined with a series of weather-induced supply shocks over 

the past decade. 

 

In a recent modelling exercise Baldos and Hertel (2014) argue that in the long-run, 

crop commodity prices are likely to return to their long-term decline in real terms, 

and that the recent spikes in food prices were transitory. One of their key arguments 

is the slowing of population growth compared to previous decades when productivity 

had to keep pace with both rising population and strong per capita income growth.  

 

2.3.5.4 Transmission of international prices 

 

Increased world grain and oilseed prices can have a marked impact on food 

insecurity in developing countries, where people commonly spend more than half 

their income on food. The perceived wisdom is that if biofuel policies are indeed 

contributing to high world grain prices, then they are also contributing to an 

increased number of people suffering from hunger. This is based on the assumption 

that most food-insecure households are net buyers of food, that food expenditure 

accounts for a large proportion of household income in poor households and that 

there is a higher elasticity of demand for food in developing countries.  
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Bryngelsson et al (2012) provide a review of evidence supporting the case that 

higher food prices lead to increased food insecurity, as well as concluding the same 

from their own study of four sub-Saharan countries. An earlier study by Ivanic and 

Martin (2008) of nine countries draws the same conclusions. However, both studies 

qualify that most of the evidence is based on short-term impacts and that high prices 

could invoke higher wages and greater productivity over the longer-term.   

 

Other studies show more varied evidence on the degree to which commodity price 

spikes on the main global exchanges have translated into higher food prices for food 

insecure households in developing countries. Abbot (2009) argues that many 

developing countries adopted policies to protect domestic markets from much of the 

increase in international prices, and that, although global market prices seldom 

transmitted fully and immediately to domestic markets, there was a wide difference 

in transmission between countries. A later study of commodity prices in 14 countries 

also found a variation in transmission rates, with relatively no transmission in China 

and India, compared to domestic price overshooting in Ethiopia and Nigeria
45

 

(Baltzer, 2013).  

 

Taking the example of the major biofuel feedstock, maize, the extent to which 

increased values on the US market translate into higher prices of maize in the local 

markets of southern Africa, depends on many factors, including whether the country 

is a net importer of cereals, whether it has good infrastructure and functioning 

markets, including adequate market information, as well as the policy and supply and 

demand conditions for all foods in the locality (including any supply shocks) and 

market power within the local agri-food supply chain
46

.  

Cereal prices in mainland Africa tend to be particularly volatile, partly due to poor 

infrastructure and very high transport costs. A report by the Overseas Development 

Institute (ODI) just after the first global cereal price spike in 2007/8, noted that the 

very high increases in maize prices recorded in Africa, were, in most cases, not 

correlated with international prices, but caused more by local market and other 
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 The term “overshooting” here means that domestic price changes were much greater than 

international commodity price movements 
46

 There is also the question of the substitutability of different types of grain, as the Chicago futures 

market price is based on yellow corn, used mainly as animal feed or to produce high-fructose corn 

syrup and ethanol, whereas much of the maize used in Africa is of the white variety used mainly for 

human consumption. 
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factors, including poorly functioning markets (Keats et al., 2010). Minot (2011) also 

found that African food price volatility had not increased in recent years and that 

domestic factors may contribute more influence on local price volatility than 

international price fluctuations.  

Headey (2014) used a relatively simple regression model of domestic food prices in 

selected developing countries against exchange rates and an international food price 

index incorporating staple foods weighted by domestic consumption, finding that the 

international food price index could account for about a third of the domestic price 

movements on average. This is much lower than the 50 per cent transmission 

estimated from a study of seven large Asian countries by Dawe (2008), and the 66 

per cent transmission estimate used by Ivanic and Martin in their 2008 study of nine 

developing countries, but higher than the average long-run transmission elasticity of 

25 per cent calculated for staple cereals by Baquedano and Liefert (2014) for a larger 

number of developing countries.  

It is also notable that in a later and more comprehensive study of price impacts in 

2010, Ivanic and Martin noted large differences in impacts between countries which 

they attributed mainly to the wide variation in the extent of transmission from global 

to local prices (Ivanic et al., 2011). Thus in countries with a high price transmission 

there was a significant increase in poverty rates, which could have implications for 

trade policy as this implies the more open an economy, the more likely that volatile 

world prices would exacerbate poverty levels.  But it should also be noted that no 

supply response or wage impacts were included in their analysis, so the potential 

positive impacts to net sellers and higher wages to workers were excluded. 

Minot’s (2011) econometric study of sub-Saharan countries also supports the 

argument that price transmission varies greatly between countries, and that there is 

generally limited transmission from global to local markets. From some 62 price 

series over a period of four to eight years, only 13 were found to have long-run price 

relationships, and of these only 6 had a long-term transmission elasticity that was 

statistically significant. Thus, whilst Ethiopia, Malawi and Mozambique had the 

highest transmission rates (although for all three the average rate was less than 40 per 

cent), Kenya, Uganda and Zambia had no prices showing any long-term relationship.  
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The findings also varied between staple crops, with almost half the domestic rice 

prices closely related to world values, which is perhaps not surprising given that 

many sub-Saharan countries rely on imports of rice. More importantly for the 

biofuels and food security linkage, only 10 per cent of the domestic maize prices 

included in the analysis were connected to world prices, or effectively US export 

values (Minot, 2011). This is corroborated to some extent in a recent study of 

countries in Latin America, Africa and Asia, which found some statistically 

significant maize price transmission to local markets in only 4 of 27 countries 

(Ceballos et al., 2016). 

 

Given that domestic staple cereal prices in most developing countries seem only to 

have followed international trends to a limited extent, Dawe et al (2015) calculated 

price indices for rice, wheat and maize in Africa, Asia and Latin America, finding 

that all three staples recorded weighted average prices in 2013 above the levels 

prevailing in early 2007 before the first of the recent global commodity price spikes. 

The rise in domestic prices of just under 20 per cent for wheat and rice and just under 

30 per cent for maize, were much less than the international price increases over that 

period. But again there was a wide variation in results between regions and countries. 

 

Gibson (2013) questions the overall reliability of food price data in developing 

countries, with few collecting spatially detailed food price information, particularly 

from rural areas. Indeed, most national consumer price indices use urban centre data. 

Gibson is particularly critical of statistical agencies failing to collect market price 

data to match household income and expenditure survey information, and the lack of 

quality-specific price data, which makes it difficult to assess the impact of higher 

prices on nutrient intakes. This is particularly important for poorer households who 

may substitute a food source whose price is rising for another cheaper source with 

lower calories or other nutrients.  

 

2.3.5.5 Are high food prices good for the poor? 

 

Wright (2014) makes the point that there is very little in the literature on how 

consumers were affected in practice by the recent commodity price spikes “beyond 

simulated changes in the number of people below certain international poverty 
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measures” and that we “know embarrassingly little about how food consumption 

and prices have evolved at the individual or household level on a worldwide basis”.   

 

As noted above, the generally accepted view is that higher food prices increase 

poverty and hunger, as in the review of studies up to 2010 by Compton et al (2010) 

and Ivanic and Martin’s estimates of the additional millions of people falling into 

poverty following the 2007/8 and 2010/11 food price increases (Ivanic and Martin, 

2008, Ivanic et al., 2011).  

 

However, a recent study of self-reported food insecurity by over 50,000 people in 18 

Sub-Saharan African countries over the period 2005-2008, found that there was only 

a small increase in the overall incidence of food insecurity, despite a sharp rise in 

food prices, and that perceived food security actually improved in rural households 

(Verpoorten et al., 2013).  

 

There is also ongoing debate on the extent to which higher commodity prices make 

rural households less food secure, as many of them derive much of their income from 

sales of farm produce. Given that three-quarters of all poor
47

 people live in rural 

areas, it is generally believed that the majority of the world’s undernourished people 

live in rural areas and about half are from smallholder farms (UN Millennium 

Project, 2005, World Bank, 2008).  

 

There is some evidence that farmers in Africa have responded to higher commodity 

prices in recent years through increased and more diversified production, which 

could have a positive impact on economic growth and food security (Conceicao et 

al., 2011, Tyner, 2013). In a review of recent food price developments, Wiggins and 

Keats note that global cereal prices have fallen back in recent years due to a strong 

supply response by farmers to higher prices, particularly in the developing world 

(Wiggins and Keats, 2014). However, this argument is somewhat at odds with the 

evidence of poor price transmission between international and domestic grain prices 

for many developing countries. 
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Concern has also been expressed over the mixed messages issued by UN, NGO and 

other organizations on food prices over the past decade, as many previously 

advocated that low commodity prices were damaging to developing countries, yet are 

now campaigning against the impact of higher food prices (Swinnen and 

Squicciarini, 2013) . In an earlier review, Swinnen notes that up until the 2007/8 

global food price spike, the general consensus was that low food prices had a 

detrimental impact on developing countries, as the sale of foodstuffs was the main 

source of income for many of the world’s rural poor. Following the recent food price 

spikes, the widely-held view now appears to be that high food prices have a 

detrimental impact on most people on the developing world, as net consumers of 

food. This raises the question “what is the right price of food?” (Swinnen, 2011). 

 

More recent econometric research points to longer-term benefits of high food prices 

for poverty-reduction in India (Jacoby, 2013) and Uganda (van Campenhout et al., 

2013), which is attributed mainly to the strong linkage between food prices and rural 

wages. Headey (2014) uses a similar analysis at international level, finding that 

higher food prices reduce global poverty in the medium (within a year) to long-term, 

whilst acknowledging that there may be  adverse consequences in the short-term, 

particularly for net food purchasing consumers in urban areas. Indeed, Headey 

reaches the conclusion that higher food prices from 2005 onwards could have 

reduced the number of poverty-stricken people by between 87 and 127 million, in 

stark contrast to Ivanic and Martin’s numbers. 

 

Nevertheless, concerns remain over the impact of high food prices on many poor 

households. Dorward (2012) argues that despite evidence there may be some longer-

term benefits, this should not detract from the need for policies and actions to 

address the very serious impacts that high food prices have for many poor 

households.  

 

These findings suggest there should be more focus on differentiating between the 

rural and urban poor in policies aimed at improving food security, as well as between 

short and long-term impacts. They also suggest that more emphasis could be placed 

on identifying a satisfactory range of food prices in order to encourage increased 

food production and investment in the agriculture sector, whilst maintaining the 
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affordability of food for consumers. Prices falling outside this range may then 

require targeted policy interventions, including safety nets for the most vulnerable 

households when prices are high and support to vulnerable farmers when prices are 

low. 

 

2.3.6 Food security impacts of biofuels at the local level 

 

The Overseas Development Institute (ODI) notes that research on the food security 

impacts of biofuels at local and household level has been limited and the results 

inconclusive (Locke and Henley, 2014).  An earlier review also concluded that 

“more evidence on the impacts of biofuels at the local level is desperately needed” 

(Hodbod and Tomei, 2013), whilst Tanner’s (2013) review of the impact of large-

scale land acquisitions on food security finds “very little direct analysis of food 

security and malnutrition using scientific means”.  

 

The Locke and Henley review found just five studies with sufficient information on 

the food security impacts of biofuel “plantations” in Africa, focusing mainly on the 

land displacement issue. They concluded that the evidence points to negative impacts 

associated with the displacement of land or communities, with the exception of one 

project in Ghana where alternative land was provided by the biofuel operation 

(Boamah, 2011). In the other four studies some losses of land were reported from 

food production or foraging locations resulting from a failure by biofuel feedstock 

companies to follow fair negotiation processes or to provide equivalent 

compensation. 

 

In terms of income and expenditure, the results were more mixed for the same five 

plantation-style projects. In an oil palm plantation in Liberia, some households 

increased their income but for others rising costs and reductions in other revenue 

streams offset the benefits of employment (Balachandran et al., 2012). A study of a 

jatropha plantation in northern Ghana found that over two-thirds of employees 

experienced a positive income benefit and no household with employees felt a 

negative impact (Schoneveld et al., 2011). Another study of a jatropha estate in 

Ghana also reported improved incomes and food production (Boamah, 2011).  
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Nevertheless, the ODI report concluded that the impact of large-scale biofuel 

plantations had largely been negative in the establishment phase, due to communities 

losing land, and in some cases this had displaced food production and was not 

compensated. But none of the studies employed detailed food security methodologies 

and indicators, so it is not clear what the actual nutritional outcomes were, for 

example, in cases where improved incomes occurred in tandem with land losses. 

There is also a danger that some of the studies may have selected case studies where 

communities had lost land to biofuel operations, ignoring other beneficiaries in the 

locality.  

 

Other studies of plantation-style biofuel models find some positive income and food 

security benefits. In a study of over 300 households in the vicinity of a jatropha 

plantation in Madagascar in 2008, it was found that employment opportunities were 

limited in that area and the biofuel operation offered income-earning opportunities 

for the poorest households, resulting in improved food security in the locality 

(Bunner, 2009, Grass and Zeller, 2011). In a later study of the same plantation in 

2010 it was found that the overall poverty situation in the locality had worsened, 

largely due to adverse weather conditions and poor yields. However, plantation 

incomes had remained constant and thus contributed to a stabilisation of incomes and 

food security for those households with employees (Bosch and Zeller, 2013). 

 

There have been more research studies on biofuel feedstock outgrower models, 

although few of these used randomized samples or investigated the impact on food 

security indicators. However, one study of a castor seed outgrower project in 

Ethiopia found that participation in the programme had significant positive impacts 

on household food security, as measured by calorie intake and the number of food 

shortage months (Negash and Swinnen, 2013). In terms of land use and income, the 

ODI review of outgrower projects found that most households could produce biofuel 

feedstock without negatively affecting food production and consumption, but income 

generation was limited.  

 

Other studies have highlighted significant benefits for outgrowers of different 

feedstocks. Recent literature reviews of outgrower schemes and other contract 

farming arrangements in Africa show higher incomes for participants compared with 
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non-participants (Prowse, 2012, Sahin et al., 2014, Stockbridge, 2007). However, in 

another review within a recent study of cocoa and oil palm cash crop farming in 

Ghana, the results surrounding food security were inconclusive. Indeed, in its own 

detailed survey using multiple indicators the study found an adverse relationship 

between cash crop production and household food security (Anderman et al., 2014).  

An earlier review of horticultural supply chains in Africa concluded that the poorest 

households are more likely to benefit, in terms of improved food security, from 

employment on large-scale farms and estates than as outgrowers (Maertens and 

Swinnen, 2009).   

 

It is therefore difficult to draw any conclusions from the literature regarding the local 

impact of biofuel operations on food security, except that far more research and 

evidence is needed, particularly concerning food security outcomes. 

 

2.3.7 Other issues linking biofuels and food security 

 

The linkages between biofuels and food security reviewed in this section so far have 

focussed on the impacts on food prices, land availability and income from sales of 

feedstock and employment on biofuel operations. A number of books and studies 

have focussed on the wider range of social, economic and environmental issues 

concerning biofuels (Clancy, 2013, Gasparatos and Stromberg, 2012, Rosillo-Calle 

and Johnson, 2010, Rutz and Janssen, 2014). These include other issues linked to 

food security, such as the provision of local energy in food production, distribution 

and storage, the use of biofuels for cleaner cooking and the increased investment in 

rural areas associated with biofuel feedstock production. 

 

2.3.7.1 The energy, food and climate change trilemma  

 

Food and biofuel supply chains rely on significant energy inputs. Indeed, energy has 

been the major factor driving economic growth and achieving food security in the 

developed world over the past century, as pre-industrial societies moved from 

renewable energy sources, such as wind and water power, to fossil fuels during the 

industrial revolution (Giampietro and Mayumi, 2009). 
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The world now faces the dilemma of transitioning away from fossil fuel energy 

resources, and indeed leaving many reserves in the ground, whilst developing 

countries continue to strive to end poverty through economic growth. Some experts 

believe that continued global economic growth cannot be guaranteed given the 

constraints of phasing out fossil fuel use and the limitations of other scarce resources 

such as land, water and soil (Heinberg, 2011). 

 

Moreover, the adverse climate change impacts of GHG emissions from burning 

fossil fuels, deforestation, farming and other land-use practices, is now a more 

pressing concern for the world, threatening to reduce food production and 

endangering the stability of our climate and, hence, the survival of the human species 

in the longer-term. The trilemma of food security, energy security and climate 

change should therefore be the main concern for policymakers around the world 

(Tilman et al., 2009). The Paris Climate Change Agreement and UN Sustainable 

Development Goals suggest there is an urgent need to; 

 

1) significantly reduce and phase out fossil fuel use 

 

2) promote renewable and sustainable energy sources which significantly reduce 

GHG emissions 

 

3) adjust food production systems to improve productivity and production, and 

adapt to changing climate patterns, whilst at the same time reducing GHG 

emissions (Pye-Smith, 2011) 

 

The food security of a rapidly growing population in the developing world will 

largely depend on how well these objectives are achieved. It is clear that improving 

food production in the least-developed countries may lead to increased GHG 

emissions. But the impact of these countries on global climate change is relatively 

small, so the onus on reducing and phasing out fossil fuel use and using more 

renewable energy sources and developing more sustainable food systems, must be on 

the developed world, which accounts for the largest GHG emissions per capita. 
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If biofuels can help to significantly reduce GHG emissions and reduce fossil fuel use, 

this could help to alleviate the adverse impact of climate change on food production 

in vulnerable areas. On the other hand biofuels may have to compete with food over 

limited resource inputs, such as land, and thereby restrict food production. 

 

Most least-developed countries need to increase energy inputs into the food chain in 

order to improve food security as populations continue to grow. Biofuels may play 

an important role in introducing energy sources into many food insecure areas that 

have traditionally relied on human and livestock labour, particularly as fossil fuel 

supplies dwindle and prices rise.  

 

Energy is not only required in food production for cultivation, crop drying and 

irrigation pumping, but also in post-harvest storage, marketing, processing and 

cooking, and indirectly, in the form of fertiliser, pesticides and herbicides. Storage is 

a particular problem for developing countries where a high proportion of production 

is lost after harvest due to a lack of energy resources for chilled storage of perishable 

goods (FAO, 2011a). Lynd et al (2015) argue that there is considerable evidence that 

bioenergy can help food security and economic development in Africa, citing Brazil 

as an example of such synergy. 

 

The FAO has noted in the past that the agri-food sector in the developing world has 

insufficient modern energy and that this hinders food security, with clear evidence 

that energy inputs affect productivity (FAO, 2000). Indeed, the FAO has a long 

history of work on integrated food energy systems (IFES), which has seen a 

resurgence in recent years (Bogdanski et al., 2010). At the turn of the millennium 

FAO called for an energy transition in rural areas, but energy access was not 

included as a specific target in the Millennium Development Goals, and, hence, has 

not been treated as a priority area of action. However, the Sustainable Development 

Goals have a specific target of affordable, reliable and clean energy for all (SDG 7). 

Biofuels can play a role alongside other renewable energy sources to help improve 

food security, particularly in remote rural areas. 
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2.3.7.2 Investment in rural areas 

 

Productivity of staple food crops has significantly improved in most regions of the 

world over recent decades, but yields in Sub-Saharan Africa (SSA) have remained 

relatively flat. According to FAOSTAT data average SSA cereal yields increased by 

less than 30 per cent between the periods 1961-63 and 2003-05, compared to 144 per 

cent in Latin America and 177 per cent in the developing countries of Asia. Thus, it 

is estimated that increased planted areas accounted for 80 per cent of the total rise in 

SSA cereal production from 1980 to 2009, whilst yield increases accounted for 80 to 

nearly 100 per cent of production increases in East and South Asia and Latin 

America over the same period (Staatz, 2011). 

 

The poor performance of the agri-food sector
48

 in sub-Saharan Africa and other food 

insecure areas, has led to a growing consensus in the international aid community 

that insufficient resources have been directed to SSA agriculture over recent decades, 

both as aid and by national governments. More and more evidence points toward the 

importance of increased agricultural productivity in providing income and 

employment opportunities to pull up other sectors of the economy (eg Anriquez and 

Stamoulis, 2007, Cervantes-Godoy and Dewbre, 2010, Dethier and Effenberger, 

2012, World Bank, 2008).  

 

The new global focus on investing in agriculture as a platform for growth started in 

2002 and 2003, with the African Union and aid partners establishing the 

Comprehensive Africa Agriculture Development Programme (CAADP) and 

pledging to raise spending on agriculture to 10 per cent of public budgets within five 

years
49

. The G8 summit in 2005 then agreed to increase aid to $50 billion per annum 

by 2010, incorporating pledges for a comprehensive set of actions on agriculture and 

the rural poor. The G8 summit in 2009 then pledged 20 billion euro a year in aid 

specifically for agriculture to support the CAAPD. 

 

                                                 
48

 The term agri-food sector” is used in this study to incorporate all activities within the supply chain 

from farm inputs to processed foods and other goods. 
49

 Note that as at the deadline in 2008 only 7 countries had achieved the set target according to 

NEPAD, although this had risen to 8 in the 2011 NEPAD report. 
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It is difficult at this stage to assess how successful this investment has been in 

reducing food insecurity. The recent global food price crises appear not to have 

increased the number of food insecure people as much as initially estimated: so 

would the situation have been worse without the increased aid?  

 

One of the criticisms of aid for agriculture in the past has been the apparent lack of 

return from such investments, particularly in Sub-Saharan Africa. The more 

successful farm policies of South East Asia comprised trade protection and 

substantial support for their growing agri-food sectors, including subsidized inputs, 

as well as the development of a strong institutional framework and investment in 

infrastructure. A study which tracked economic development between similar pairs 

of countries in South East Asia and Sub-Saharan Africa, found that a focus on food 

productivity and supply, together with economic freedom for small farmers and 

macroeconomic stability, were the main factors behind the faster development 

trajectory of the Asian countries (Kees van Donge et al., 2012). An earlier study by 

the OECD also found that those developing countries that had been most successful 

in achieving poverty reduction over the period from 1985 to 2005 also had the 

highest rates of agricultural growth during that period (Cervantes-Godoy and 

Dewbre, 2010). 

 

Biofuel operations in rural areas of developing countries can help to improve local 

agricultural productivity through spillover impacts. They could also help to improve 

rural development through the multiplier effect of improved incomes, encouraging 

the establishment of local retail and other service industries. Some companies also 

contribute to improved infrastructure through the building of roads and bridges. 

Many also establish better water access through the establishment of boreholes and 

pumps, as well as providing or contributing to better education and health facilities.  

 

2.3.7.3 Food utilisation issues 

 

Achieving food security ensures that people have sufficient food for an active and 

healthy life. Active, healthy and educated people enhance labour productivity and 

manage resources within the food supply chain more effectively. Indeed, it can be 

argued that overall economic development and prosperity are largely determined by 
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the quality of human resources, which, in turn, is largely determined by their 

nutritional status as this affects both health and education. The goal of food security 

for all people should therefore be the priority of all countries, and particularly those 

with large proportions of their population currently food insecure, both from a social 

(health and human rights) prerogative, and from an economic growth perspective.  

 

Empirical evidence linking nutritional health to productivity has been shown by 

various studies at both macro and micro level, as reviewed by Sahn (2010). In 

particular, a number of studies have shown a causal effect of iron deficiency on work 

productivity and earnings (Haas and Brownlie, 2001). Iron deficiency, or anaemia, 

has also been shown to have a significant impact on educational ability (Hurtado et 

al., 1999). 

 

Other health-related issues that have received less attention in the food versus fuel 

debate are the problems of smoke inhalation, deforestation and labour burden from 

the use of wood, charcoal and other biomass as a cooking fuel. In many least-

developed countries, the residential sector is the largest user of energy and wood, 

charcoal, dung and crop residues are the main fuels for cooking and heating. It is 

estimated that some 3 billion people currently rely on traditional biomass as their 

primary fuel source (World Health Organisation, 2016). 

Such biomass use often leads to deforestation and environmental damage and is 

widely regarded as being unsustainable as forest supplies dwindle and populations 

continue to rise. Women and children are usually the main collectors of wood for 

fuel, often involving long treks during the day reducing their available time for other 

work and school.  

Women and children are also the main victims of smoke-inhalation exposure during 

cooking and heating, damaging their health, reducing labour productivity and leading 

to millions of related deaths. The World Health Organisation (WHO) recently 

estimated that some 4.3 million premature deaths were linked to exposure to indoor 

air pollution from cooking with solid fuels in 2012 (World Health Organisation, 

2014). More recently the International Energy Agency has estimated that 3.5 million 

premature deaths occur each year due to indoor smoke created during cooking (IEA, 

2016). 
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Biofuels offer an alternative clean, renewable fuel for cooking and local energy 

needs, as well as for transport. For example, low cost stoves have been developed to 

utilise ethanol gel and vegetable oils, whilst generators can run on vegetable oils for 

rural electrification and power needs, such as irrigation pumps, hand-held ploughs 

and refrigeration for perishable food storage and medicines (Practical Action 

Consulting, 2009).  

 

So there are also potential benefits for developing countries from biofuels in 

providing energy and employment to rural communities, as well as reducing their 

reliance on biomass for cooking and oil imports for transport needs. 
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3. Conceptual Framework  

 

Miles and Huberman (1994) define a conceptual framework as one that “explains, 

either graphically or in narrative form, the main things to be studied – the key 

factors, concepts or variables – and the presumed relationships among them”. In 

order to identify the main factors, relationships and pathways linking biofuels to food 

security, and the areas of potential conflict between them, a mapping exercise was 

conducted drawing from the literature review. 

 

Figure 3.1 is the resulting map of the key factors identified linking biofuels with food 

security. The factors are mapped from those pertaining to the macro environment on 

the left to those regarding the household and individual food security, or the micro 

perspective, on the right. The factors are also mapped according to the agri-food 

supply chain, with inputs at the top flowing down through production to markets at 

the bottom. 

 

Each factor box is coloured and numbered with sub-headings to explain its contents. 

Directional arrows are then used to show the main relationships between the factors, 

with green arrows showing the linkages between food and biofuel supply chains and 

household food security and the red dashed arrows linking key policy issues to each 

other and to points within the supply chain. 

 

The three green boxes on the left of the map designate the key global macro policy 

issues relating to biofuels and food security, selected from the Raworth and 

Rockstrom frameworks. These reflect the “trilemma” of food, energy and the 

environment as conceptualised by Tilman et al (2009).  

 

Climate change is clearly the primary issue facing humanity, as listed in box 1. 

Urgent solutions are needed to reduce and phase out fossil fuel use, including 

biofuels where relevant. Without climate change mitigation more extreme weather 

events are expected to negatively affect food production, through lower yields and 

reduced land availability. 
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Fig 3.1 – Mapping the Linkages between Biofuels and Food Security from Macro to Micro 

 

Resource 

Conflicts 

= key flashpoint 
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The energy crisis is closely related to climate change. In box 2 alternative energy 

sources are listed to highlight the energy dilemma. Renewable energy sources need to 

be scaled up rapidly in order to offset the reduction in fossil fuel use required to remain 

within the Paris COP21 target of a 1.5
o
C global temperature increase above pre-

industrial levels (United Nations Framework Convention on Climate Change, 2015).  

 

But most renewable energy sources are linked to the generation of electricity, so 

alternative liquid fuels are also required for long-distance transport, including air travel, 

and for those remote areas not connected to the electricity grid. Indeed in most least-

developed countries alternatives are also required to biomass as a source of cooking 

fuel, which leads to deforestation and respiratory-related deaths. 

 

Food security is listed in box 3 as a key global social issue, with some 800 million 

people deprived of, and despite their right to, sufficient food. Within this box is the 

dilemma regarding climate change impacts on food production, yet at the same time the 

global agri-food system is responsible for as much as half of global GHG emissions 

(GRAIN, 2016)
50

. Food security requires ample supplies of affordable food for all, so 

conflicts with biofuels may arise where biofuel operators compete with food producers 

for feedstock and resources and, in turn, encourage higher food prices. 

 

The blue boxes in the middle of the map represent the macro and meso economy related 

to biofuel and food production to highlight the fact that feedstocks for food (including 

animal feed) and fuel compete for the same energy-based inputs (box 4) and other 

resources, such as labour (box 5), land and water (box 6).  

 

The energy-based inputs are divided into farm-based inputs such as fertilizer, irrigation 

and farm machinery in 4b, supply chain inputs such as processing and transport in 4a 

and household energy inputs such as cooking, light, heat and power in 4c. Labour is 

treated as a separate energy input in box 5. Box 4 therefore links to the box 2 energy 

alternatives in that most of the energy inputs are currently fossil-fuel based, but these 

need to change to renewables in order to arrest climate change. 

                                                 
50

 The calculation by the NGO GRAIN takes into account supply chain costs, such as transport, storage, 

refrigeration and retail costs of food, as well as the agriculture, forestry and land use (AFOLU) estimates 

used in the IPCC’s estimate accounting for about 25 per cent of total emissions. 
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The farm-based inputs in box 4b combine with land and water resources in box 6 to 

determine yields of crops and livestock and production of food and non-food biomass 

and livestock, including co-products. 

 

The first main clash or conflict between food and biofuels is therefore where food and 

non-food production (boxes 8 and 9) overlap as they compete for resources, and in 

particular land. Both involve the use of fossil fuel inputs and land cultivation (and 

sometimes also land conversion, including deforestation), potentially exacerbating 

climate change. Note also that box 8 only uses biofuels as one example of the many 

non-food uses and is divided into 8a representing medium to large-scale biofuel 

feedstock production on large farms and estates, and 8b representing generally smaller 

scale farms acting as outgrowers of feedstock for biofuel operations, in order to 

highlight the different production system choices. 

 

Food and non-food production is then either consumed directly on-farm (box 14a) or 

marketed through food and non-food supply chains (boxes 10 and 11). On-farm food 

use is an important aspect of food security in food insecure countries, particularly in 

rural areas where many farms are semi-subsistence. 

 

The second main conflict point occurs within the marketing chain for food and non-food 

production, both for the feedstocks and for final products such as biofuels within boxes 

10 and 11. Within such markets prices are formed by supply and demand conditions, 

government policy and markets for competing products such as oil in the case of 

biofuels. High oil prices can therefore raise demand for biofuels, in turn increasing 

demand for feedstocks such as maize, which then, in theory, increases the price of 

maize for food consumers. Rising food prices would particularly affect access to food 

for net food purchasing households in food insecure areas.   

 

Box 12 highlights how external trade in feedstocks and products also influence market 

prices, as do government policies in box 13. Thus a government mandate to blend a 

minimum percentage of biofuel in transport fuels could lead to increased import 

demand for a feedstock from another part of the world, raising prices for that feedstock, 

and potentially food prices too. But import tariffs and export revenue may also enable 
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increased government expenditure on health and education, which, in turn, can help to 

improve utilisation of food. 

 

The pink shaded boxes on the right side of the map represent the “micro”, or household 

and individual level. Household income is a key factor in food security, as poverty and 

food insecurity are closely related. Box 14 divides household income into four main 

types: 

 

a) value of own food production 

 

b) income from farms and other own-businesses, such as sales of crops 

 

c) income from employment 

 

d) income from other sources such as remittances and government transfers 

 

Research shows that food insecurity is often highest in rural areas of developing 

countries, and often in farm-based households, where income can fluctuate from year to 

year in response to changing weather conditions, environmental events such as flooding 

and pest and disease outbreaks. So increased income sources, such as through demand 

for biofuel feedstocks and the creation of rural jobs in biofuel operations, can help to 

improve food availability and access and stability in such areas.  

 

But the evidence from the literature is that the establishment of biofuel operations in 

food insecure countries has created conflicts regarding land grabbing and environmental 

impacts. So, the income impact of biofuels is another point of controversy regarding 

food security. 

 

This study therefore focuses on three key areas or flashpoints linking biofuels and food 

security derived from the literature review and mapping process: 

 

i) Food access and stability related to the impact of biofuel production on 

employment and income in rural areas of food-insecure countries 
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ii) Food availability related to competition between biofuels and food (and other 

non-food uses) for feedstocks and resources such as land. 

 

iii) Food access and stability related to the impact of biofuel production on prices of 

feedstocks and food 

 

Whilst these are the three key issues analysed within the study, other linkages are also 

acknowledged, such as the potential benefits of biofuels for rural energy needs in food 

insecure areas.   

 

The three key issues are conceptualized in figure 3.2, which provides a simplified 

framework drawn from the mapping exercise. The central theme of the framework is the 

flow of resources (inputs) used in food and biofuel production through to household 

food security, depicted this time as a horizontal flow. Most food and biofuel produced 

from the resource inputs, flows to markets, where prices respond to economic supply 

and demand fundamentals and to policy. This creates income from sales of food and 

biofuel feedstocks, as well as from the wages of those employed in food and biofuel 

production. Income is then the main link to food security availability, access and 

stability, although access also depends on the prices of foodstuffs. 

 

The food availability linkage is mainly captured within the input and production boxes, 

where the same limited resources are used for competing food, feed and biofuel 

demand. This is situated within both the environment and economy/policy spheres, as 

not only resource and product prices, but also food subsidies, biofuel mandates and 

trade barriers, will all influence the supply of feedstock for food and fuel. The food 

access issue relating to food market prices is largely influenced by the supply and 

demand of feedstocks that may be used for food or non-food (including biofuel) 

purposes, but also policy factors. At the micro level, household income is influenced by 

revenue from own-business sales and also wages from employment including biofuel 

operations. 

 

These three key issues covering resource availability, food prices and household 

income, all feed into the food security outcomes in terms of affecting the availability, 

access and stability dimensions of food security. The utilisation dimension of food 

security is concerned with the quality and diversity of diets, as well as health and 
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sanitation linkages. These issues are related to food availability and access in terms of 

the variety of food available and the affordability of food, education and health services. 

 

The conceptual framework therefore provides a focus for the study on the three key 

areas identified, the major factors affecting each and the linkages to the different 

dimensions of food security.  
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Fig 3.2 -A Conceptual Framework of the Flow of Selected Biofuel-Related Impacts on Food Security 
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4. Methodology  
 

The methodology chosen in researching a particular issue is inevitably influenced by 

the experiences and views of the individual concerned. This researcher first 

encountered the subject of this study when organising, and delivering a paper for, a 

conference on whether biofuels and food security were compatible (Thornhill, 2008). 

At the time the answer to this question from the conference speakers was a 

resounding “no”. However, this researcher was struck by the lack of evidence 

directly linking biofuels to food insecurity, with many of the negative outcomes 

associated with land grabbing, poor labour conditions, high food prices and other 

issues that did not appear to be specific to biofuels, as well as limited evidence from 

food-insecure households in developing countries. This instigated a research 

proposal to garner information on how biofuels were affecting household food 

security in food-insecure countries.  

 

The mapping exercise conducted in the development of the conceptual framework 

illustrates the complex linkages between biofuels and food security moving from the 

macro to micro level. An individual’s food consumption will be influenced by the 

amount of food produced and income earned by the household, as well as the health 

and education status and energy needs of the individual
51

. These factors are 

influenced by a complex mix of market characteristics and forces, government 

policies, intra-household factors, cultural and socio-environmental conditions, the 

impacts of which are difficult to isolate and evaluate.  

 

The methodology for this study therefore focuses on the three key issues distilled 

from the mapping exercise into the conceptual framework: 

 

i) The effect of biofuel operations within food insecure countries on income 

and food production and prices at the micro level 

 

ii) The effect of global and national level biofuel production on food 

availability at the macro and micro level  

                                                 
51

 Whilst time-consuming to measure, the distribution of food within the household has also been cited 

as an important factor in the level of individual food insecurity 
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iii) The effect of global and national biofuel production on food prices at the 

macro and micro level 

 

The methodological approach therefore incorporated both macro and micro analyses 

in order to capture a more holistic view of impacts. It was also decided to use both 

quantitative and qualitative methodologies at both levels: ie a concurrent mixed 

methods approach (eg Creswell, 2009).  

 

A key finding from the literature was the use of speculative, aggregated and proxy 

data in many of the analyses on biofuels and food security. Whilst it is recognized 

that the use of such data is sometimes required where information is absent and in 

order to build simplified models, this may lead to over-generalised findings, 

particularly where questionable assumptions are incorporated. One such assumption 

would be that of full employment in many CGE modelling impacts of biofuel 

operations in least-developed countries where there is both under and unemployment, 

and where jobs could significantly improve livelihoods and food security. A focus of 

this study was therefore to capture detailed information, at both the macro and micro 

level, on what has actually happened over the past decade in terms of biofuel and 

food security linkages. 

 

It is also evident that the measurement of food security is by no means an exact 

science, as reflected in the weaknesses of different methodologies and proxy 

indicators identified within the literature and the calls for innovative approaches 

(Coates, 2013, de Haen et al., 2011, Headey and Ecker, 2013).  It was therefore 

decided to adopt a novel approach to measuring food security. The main aim was to 

employ a metric and methodology that was relatively easy to capture information for, 

and best reflected reported consumption of, the main nutrients from actual foods 

(rather than food groups or types) and to compare that against calculated nutritional 

requirements, accounting for any periodic shortfalls.   

 

Food security is best measured at household and individual level (de Haen et al., 

2011). A household survey was therefore conducted in food insecure areas where 
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biofuel operations had been established. This, together with focus groups and key 

interviews, provided the detailed information for the micro-analysis. 

 

For the macro analysis, information was compiled on biofuel policies and production 

at the national level in order to build a comprehensive database. This enabled land 

use and potential raw material diversion, and co-product impacts to be assessed for 

each feedstock type in each country. This was then used to determine the main 

linkages between biofuels and food security at the macro level, and in particular, the 

impact of biofuels on land availability. In terms of food prices, it was decided to 

focus on maize, as the main feedstock used in biofuel production, and particularly on 

US maize prices, which tend act as the global benchmark. 

 

4.1 Pre-Survey Desk Research, Interviews and Focus Groups 
 

The first component of the methodology comprised desk research for a feasibility 

study, in order to establish the scope of the fieldwork operations given the available 

resources.  

 

Of the food-insecure African countries, Mozambique and Tanzania attracted most 

initial interest from biofuel investors in the post-millennium years, partly due to their 

suitability for growing favoured feedstocks such as jatropha and sugar cane, but also 

due to the favourable policy environment in both countries. By 2008 a number of 

biofuel feedstock companies were operating in both countries employing workers 

and outgrowers (Schut et al., 2010, Songela and MacLean, 2008). It was therefore 

decided to undertake the field research in Mozambique and Tanzania in 2009 during 

the expansion phase of biofuel projects in the region.  

 

The process of identifying biofuel operations in each country began through 

correspondence with government departments in 2008. In Tanzania the Ministry of 

Energy and Minerals provided a list of projects underway, whilst in Mozambique, 

the Centre for Promoting Agriculture (CEPAGRI) provided a list of ongoing and 

approved operations. Further research was conducted to find out more information 

about the small number of officially reported companies and to identify other 

potential biofuel feedstock operations in each country, working with local 
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universities and NGOs. A number of biofuel companies were then contacted to 

assess their current operations and whether they would be willing to provide 

information by interview. 

 

Eight projects were eventually selected – four in each country – involving different 

feedstock supply models (plantation/estate, outgrower and mixed) at different scales 

(large to community-based) and different feedstocks (jatropha and sugar cane). The 

sites selected are shown in figure 4.1.   

 

A project plan was then developed for the household surveys in each location and 

research teams were established, comprising postgraduate researchers from local 

universities (University of Dar Es Salaam in Tanzania and Eduardo Mondliane 

University in Mozambique) and two researchers from University College Cork, plus 

translators and drivers. In Mozambique representatives from FAO and the University 

of Johannesburg joined the research team.  Logistical plans were finalised and the 

Tanzania research was then conducted over the course of two months from May to 

June, 2009 and the Mozambique research over a similar period from August to 

September. 

 

Pre-survey meetings were held with government departments in order to gain 

permission for the household surveys and to provide information on current policies 

regarding biofuels and food security. Other experts in the field of food security and 

biofuels were also interviewed, including embassy staff, NGOs, UN agencies and 

consultants. Semi-structured interviews were also conducted with biofuel company 

representatives, village chiefs and local officials in each location prior to the survey. 

 

Two focus groups were held in each location before the household surveys 

commenced in order to capture essential information for the questionnaire. One 

group comprised farming households in the area in order to identify the main crops 

grown and livestock raised, production practices and costs, main crop production 

problems, storage and losses, marketing channels, units of sale and prices, food 

consumption issues, other income sources and changes in the locality since the 

biofuel operation was established. The second group comprised only women from 

households in the locality in order to assess gender issues and food purchasing and 
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consumption details, such as units and methods of purchase, prices paid, hunting and 

wild food collection, meal patterns and amounts consumed within the household, 

shortage months, income issues and changes since the biofuel operation had been 

established.  

 

The focus groups also helped clarify queries arising from the testing phase of the 

household survey questionnaire, as well as other qualitative information such as the 

importance attached to different nutrients when producing and purchasing food.  

 

4.2 Household Survey Methodology 
 

The methods employed for the household survey followed standard guidelines 

produced by the UN and other organisations. Particular use was made of a number of 

chapters within the UN guide Household Sample Surveys in Developing and 

Transition Countries (2005). Sample and questionnaire design and measurement 

error were key factors in the pre-survey preparatory work, particularly in the 

identification of information required for the indicators.  

 

As the survey was constrained by a tight budget and timeframe, it was decided that 

the number of study sites would be limited to one randomly selected village or 

hamlet in the vicinity of a biofuel operation in order to ensure a representative 

sample, and so that sufficient detail could be obtained from each household within 

the time available. 

 

4.2.1 Study sites 
 

In Mozambique, four biofuel feedstock sites were identified for research at the end of 

2008; two jatropha estates, one sugar cane estate and one mixed jatropha estate and 

outgrower operation. Both jatropha estates in the southern half of the country, owned 

at the time by Energem Biofuels in Bilene, Gaza Province and ESV Bio Africa in 

Inhassune, Inhambane Province, were well established at that stage as significant 

employers and were in the process of increasing their planted areas. Similarly a sugar 

cane estate owned by Principle Energy in Dombe, Manica Province, had grown crops 

on demonstration plots, cleared a sizeable land area, installed pivot irrigations 
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systems and was employing workers for the main planting phase. The Galp Energia 

outgrower project near Beira had established a small nucleus estate of jatropha at the 

time of the survey, but an initial scoping study revealed that it was at too early a 

stage of development to assess food security impacts on outgrower households in the 

locality. 

 

Fig 4.1 - Biofuel feedstock sites in Tanzania and Mozambique selected for 

surveys 

 

 

In Tanzania, the selected biofuel feedstock operations included two well-established 

jatropha outgrower models in the north of the country, one project operated by 

Diligent Tanzania in Arusha covering a wide area of outgrowers extending down to 

Singida Province and another in Arusha run by Kakute Ltd, focusing on community 

energy projects, including links with the nearby village electrification projects run by 

TaTEDO (Tanzania Traditional Energy Development Organisation). The other two 

projects identified were large estates in the process of starting up in the east of the 

country closer to Dar Es Salaam; a sugar cane project owned by the Swedish 

company SEKAB and a jatropha estate operated by the UK-registered Sun Biofuels. 

At that time the two estates were starting to employ local people and both were 

confident that by early 2009 they would be sufficiently well established to measure 

the food security impact on local households. However, by the time of the survey in 
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mid-2009, both projects had been delayed to the extent that it was deemed too early 

to assess their impact, although a household survey was conducted at the Sun 

Biofuels site, the results from which are not included in this study.  

 

The three sites in Mozambique and two in Tanzania used in this study were all in 

rural locations at significant distances from the nearest major towns and cities, with 

low population densities and poor infrastructure. Most households around the sites 

practised semi-subsistence farming prior to the establishment of the biofuel 

operations, with little alternative employment available. Average household incomes 

in per capita adult-equivalent were reported to be just under $1 a day in the two 

selected sites in Tanzania and just over $1 a day in the three sites in Mozambique. 

All the sites were in food insecure areas: those surveyed in Mozambique were 

located in Gaza, Inhambane and Manica provinces where stunting prevalence of 

under-5s averaged 34, 34 and 48 per cent, respectively, in 2009 (WFP, 2010). The 

two sites in Tanzania were located in Arusha and Singida regions where the average 

stunting prevalence in 2010 was recorded as 44 and 39 per cent, respectively (NBS, 

2011). 

 

4.2.2 Tanzania research 
 

The three biofuel sites visited during the field research are shown on the map of 

Tanzania in figure 4.1. The withdrawal of SEKAB from Tanzania just before the 

field survey meant that the planned visit to the sugar cane site at Bagamoyo had to be 

abandoned. The majority shares owned by SEKAB have now been bought by the 

former managers of the project under the Agro Ecoenergy Tanzanian registered 

company, which is part of the Swedish company EcoEnergy Africa. The original 

400,000 hectare project has now been scaled back to a much smaller area of about 

20,000 hectares in the near-term in the Bagamoyo district, where it is planned to 

produce 130,000 tonnes of sugar, enough electricity to power 100,000 rural homes 

and 10 million litres of ethanol from the molasses co-product of sugar production 

(Agro EcoEnergy, 2016).   
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4.2.2.1 Jatropha outgrowers in Singida 

 

Diligent is a Dutch-based company that has been involved in jatropha cultivation and 

oil production in Tanzania since 2005. It sources its seeds from local outgrower 

farmers who pick, shell and dry the seeds for sale to Diligent’s buying team. At the 

time of the field survey there were reported to be some 5,000 farmers registered, but 

actual production was from fewer farms, amounting to some 2,000 tonnes of seed 

and yielding some 500,000 litres of oil per annum. 

 

Diligent had a small crushing plant in Arusha with a capacity of 70,000 litres per 

month at the time of the survey, although this subsequently increased to 100,000 

litres. Production was expected to increase further under Diligent’s plans to expand 

the area covered by its jatropha outgrowers from 5,000 to 50,000ha, providing at 

least 10 million litres per annum, with a longer-term target of 40 million. The 

jatropha oil was used in straight form for local use in modified engine cars, including 

those owned by a local safari company, in generators for local power needs, 

including for mobile phone masts, as well as in improved cooking stoves and as a 

replacement for kerosene in lamps.  

 

Diligent’s jatropha oil production was restricted by the limited supply of seed from 

farmers and outgrowers, partly due to the low prices paid to farmers, at TS100 per kg 

of seed or about 0.06 euro, and low yields from the outgrower system. The TS100 

per kg price was a minimum price, but rising collection and transport costs restricted 

Diligent’s ability to pay a higher price than the minimum. Seed was collected from 

Arusha, Babati, Handeni, Singida and Monduli regions, often involving long 

distances and high transport costs.  

 

The Singida collection region was selected for the field research, given its traditional 

status as one of the least food secure regions of Tanzania. The broad midland area of 

Tanzania is described by FAO as a semi-arid mixed crop and livestock zone, with a 

low population density and an estimated 50 per cent of households below the poverty 

line (Perfect and Majule, 2010). USAID classifies the Singida region within the 

Tabora-Singida midland maize, sunflower and livestock livelihood zone.  
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The village randomly selected for the survey was Ikiwu in Singida Rural district. 

Most households in this area cannot grow enough crops on the land owned and 

therefore keep livestock and also produce sunflower seed for cash income where 

possible. As the area was also close to the Ruaha Game Reserve, there is always a 

danger of wildlife damage to crops. 

 

Fig 4.2 - Jatropha Hedges, Providing Protection for Crops from Livestock 

Damage in Ikiwu, Singida 

 

 

Jatropha has been grown as a hedge for many decades in the area, largely to 

designate field boundaries and protect crops from livestock and wildlife damage.  

Farmers only realised there was a market for jatropha seeds following the visit of the 

Diligent seed collectors to the village. However, they reported that yields and prices 

for the seed, at TS100-150 per kg, were too low to justify large-scale plantings, 

particularly compared to the better returns from sunflower seed sales to the local 

processing company. The areas devoted to jatropha hedges ranged between 0.2 and 

0.5 acres for most farms and yields were reported to be low at some 400 to 500 kg 

per acre of hedge, although some of the hedges were newly-established and were 

expected to yield higher in future years. 
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4.2.2.2 Jatropha outgrowers in Arusha 

 

Kakute (Kampuni ya Kusamaza Teknoljia) is an Arusha-based company promoting 

local renewable energy production and providing consultancy in jatropha cultivation. 

It was selected as an example of a small-scale outgrower operation, organising the 

collection of seeds for local crushing and the use of the resulting oil in soap-making, 

improved cooking stoves, lamps and power generation.  

 

Two of the villages in which Kakute operated were randomly selected for the survey; 

Kingori and Ngurdoto. Key features of the location were reasonably good yields for 

foodcrops, but on very small areas for each household, with limited employment 

opportunities, making households vulnerable to food shortages at certain times of the 

year and in years of unfavourable weather. USAID classifies the area as the 

Kilimanjaro-Meru maize, coffee and plantains livelihood zone, with a high 

population density but relatively productive and with good market opportunities from 

nearly large towns and tourism. 

 

Fig 4.3 - Extracting Oil from Jatropha Seeds in Mseseweni, Ngurudoto, Arusha 

for Power Generation (Maize Flour Mill) 
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The villages practised mixed farming, with a greater variety of crops grown than in 

Singida, but with most households producing from much smaller areas. Jatropha is 

often intercropped with food and cash crops such as maize and coffee in the villages 

and also grown as a live hedge, as a wind-break for households and to prevent soil 

erosion. The extracted jatropha oil was used in a generator to power a maize mill in 

the village, and some sold to the Tatedo project generating electricity in nearby 

Leguruki village, whilst some of the seeds were sold to Diligent and used for a local 

soap-making business. But, as with the Singida survey, producers reported that the 

seed prices at some TS100-150 per kg were too low to encourage significant 

expansion. As well as selling the seed, the leaves and seedcake were used as compost 

fertiliser.  

 

4.2.2.3 Jatropha plantation at Kisaware  

 

Sun Biofuels was a UK-based company with biofuel investments in Tanzania, 

Mozambique and Ethiopia. The Tanzanian venture was based on an estate production 

model for jatropha, with some 18,000 hectares targeted, employing up to 5,000 

workers and potential for more production from outgrowers.  

 

At the time of selecting the Sun Biofuel site in the Kisaware District of Tanzania, it 

was about to start employing local villagers. Some months later when the field 

research was underway, the company was still waiting for official clearance to start 

production. This meant that most of the households in the surrounding villages had 

not had sufficient involvement with the biofuel operation in order to assess impact. It 

was decided to conduct a survey anyway as a baseline for future reference, but not to 

use the results within the analysis. 

 

4.2.3 Mozambique research 
 

The four biofuel sites visited in the course of 2009 in Mozambique are shown on the 

map in figure 4.1.  
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4.2.3.1 Jatropha estate at Bilene 

 

Bilene is located in Gaza Province, just north of Maputo in the south of the country. 

Bilene district is situated on the lowland plains within the Southern coastal maize, 

cassava and fishing livelihood zone, where the dry season runs from April to 

September and the main crops grown are maize, cassava, beans, sweet potatoes and 

groundnuts. Bilene town has become a popular tourism centre, but the rural areas 

around it remain relatively poor with many households producing insufficient food to 

meet their needs. The establishment of a jatropha feedstock operation offering 

employment and regular wages was therefore welcomed by many in the local 

community, and Energem Resources took over the operation in 2007. 

 

Energem Resources was originally a Canadian company listed on the Toronto 

exchange, with a base in South Africa and involved in a number of renewable energy 

and mining projects throughout Africa. It was listed on the Alternative Investment 

Market (AIM) of the London Stock Exchange in order to attract funding but had to 

delist due to financial difficulties. Various news releases in 2009 and 2010 stated that 

it was owed some $60 million and had not been able to produce its financial 

statements as a result. In 2011 it was put into administration as it still had not been 

able to recover the debts (Mason, 2011). 

 

The financial difficulties hampered progress at Energem’s jatropha estate in Bilene. 

The company had hoped to eventually plant up to 60,000 hectares of jatropha from a 

secured land base of 20,000. Some 1,000 hectares of jatropha had been planted at the 

time of the research, but the planned expansion was being restricted by the funding 

difficulties and some of the local employees had already been temporarily laid off at 

the time of the survey. 

 

About 500 local people were reported to have been employed by Energem at the 

Bilene project, with wages ranging from a basic 1,650 metical (MZN) per month 

(just over $60) to as high as 3,200 MZN for supervisors. At the time of the survey 

this number had been reduced to 300 due to cashflow problems. In mid-2010 the 

company paid arrears for two months wages owing to workers and later made 

redundancy payments to the 300 remaining workers.  
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Fig 4.4 - Young Jatropha Trees on the Energem Estate in Bilene 

 

 

 

Some key features of the project included the fact that communal village land had 

been transferred to the Energem project in return for employment and land provided 

in other areas, with promises to develop the community, including water pumps and 

a school. The company also provided the use of tractors for employees to cultivate 

their land and provided for flexible working hours allowing employees to continue 

producing their own food.  

 

Whilst the village welcomed the employment and wages, some staff had been 

temporarily laid off and the community was still waiting for a school building two 

years after promises were made, although some water pumps had been installed. 

Also the land provided as compensation for the lost communal land, following its 

transfer to the project and amounting to about 200 hectares, was a longer distance 

from the households. There were also reports that villagers were put under political 

pressure to transfer their land to Energem (Ribeiro and Matavel, 2009). The project 

closed down in 2010 with the loss of all the jobs, although redundancy payments 

were made. 
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4.2.3.2 Jatropha estate at Inhassune 

 

Inhassune is situated in Panda district in the semi-arid interior zone of southern 

Mozambique, known as the Southern semi-arid cereals and cattle livelihood zone. 

Soils are generally poor and sandy with low productivity, so drought tolerant crops 

such as sorghum and millet are often grown, although maize, cassava and beans 

remain important subsistence crops, whilst groundnuts also provide a source of 

income. The rural poor are mainly dependent on their own food production and the 

collection of wild foods and hunting, and the zone is classified as a high food 

security risk. The survey was undertaken around the site of a former cotton 

plantation that some of the households had previously been employed on but had 

closed down some years earlier. So the establishment of the jatropha biofuel 

operation by ESV Bio Africa was welcomed by most of the rural villagers 

 

ESV Bio Africa was a UK holding company and part of the ESV Group, which 

operates mainly in the Ukraine agricultural supply chain, including the supply of 

oilseeds for the EU market. ESV secured some 11,000 hectares to develop a jatropha 

estate on the disused cotton plantation at Inhassune, with a view to producing 

jatropha oil for biodiesel production. Most of the households in the area practised 

semi-subsistence farming and agricultural labouring following the closure of the 

former cotton estate. ESV was employing over 1,000 people at the height of its 

operation (reportedly 1,350 at one point), not just from Inhassune but from other 

villages. ESV paid wages above the norm, with a basic salary of 2,000 MZN per 

month for employees and 1,250 MZN for seasonal workers.  

 

As with Energem, it was clear that funding problems were delaying progress. The 

staff were owed salaries at the time of the field survey and the owner had left the 

estate to find new buyers. Some of the employees had continued to work on the farm 

at the request of the government but for little or no pay. 

 

Feedback from the research highlighted the high respect the villagers had for the 

company, as water pumps had been established, and a new school and health centre 

built. Furthermore the company had loaned out its tractors to employees for 

cultivating food crops, as well as providing expertise to improve yields. But when 
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ESV wages had stopped many had to find alternative employment at lower salaries, 

including as labourers for local road-building projects. Many of the jatropha plants at 

the time of the survey had been damaged by pests and had deteriorated so it was 

difficult to assess the viability of the operation at that stage.  

 

Fig 4.5 - Ploughed and Irrigated Maize Production on Fields Bordering the ESV 

Jatropha Plantation, Inhassune. 

 

 

In late 2009 it was reported that the estate had been sold to an Italian joint venture 

SAB Mozambique, controlled by Api Nova Energia and Seci Energia who were in 

the process of re-employing staff and paying back wages owed (Hanlon et al., 2011). 

In 2012 the Seci Api joint venture reported that it had harvested its first crop of 10 

tonnes of jatropha oil which was sold to a local processing company (Macauhub, 

2012). Of note was the fact that ESV continued to report that money owed to them 

from SAB Mozambique had still to be repaid by 2014 (ESV Group Plc, 2014). 

 

4.2.3.3 Sugar cane estate at Dombe 

 

Dombe is located in the centre of Mozambique in the Central Manica and Sofala 

mixed cropping zone, one of the most productive parts of the country where rainfall 
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is high, but flooding is a common problem. The main crops grown are maize, 

sorghum, cassava, sesame, groundnuts, sweet potatoes, cow-peas and beans, with 

some livestock also kept. Apart from the flooding problem, food losses are also high 

due to inadequate storage. The poorer rural households with limited farm sizes tend 

not to be able to meet all of their food needs and generally work as labourers to meet 

the remainder of their requirements. 

 

Principle Energy is a UK-based renewable energy company controlled by Principle 

Capital and established in 2007. Principle Energy focussed on bioethanol projects in 

Africa, acquiring 23,000 hectares of land in Manica Province near Dombe in 2008 

for sugar cane production as a feedstock for bioethanol. A bioethanol factory was 

planned for the site with much of the ethanol expected to be shipped out of Beira to 

the EU via the Suez Canal under an offtake agreement with a major oil company. 

Roads were also built, and it was planned that a bridge would also be built to replace 

the small ferry over the Lucite river which was prone to flooding. 

  

The project was based on an intensive sugar cane estate model using pivot irrigation 

booms, each covering over 50 hectares, with plans to extend the range to 65 hectares 

for future pivots. The project involved clearing the semi-scrub wasteland and 

degraded woodland before cane plantings were made. At the time of the survey some 

100 hectares of cane had been planted under two pivots and a trial plot had 

previously been developed producing high yields of around 130 tonnes of cane per 

hectare  

 

The company planned to employ 1,600 people from the prevailing level of 100, as 

some had been laid off in 2009 due to the global financial downturn and the lack of 

funds for the next phase of development. Basic wages were at the minimum wage 

level for the region, which at the time of the survey was some 1,500 MZN per 

month. 

 

Most of the households in the surrounding area practised semi-subsistence farming 

before the establishment of the biofuel operation. Feedback from the survey and 

focus groups suggested that villagers were happy to be earning a wage, but that the 

wages were quite low in relation to household costs, including food prices and school 
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and health fees. There was also a feeling that not enough locals were being employed 

in relation to workers migrating from Zimbabwe and other areas.  

 

Fig 4.6 - Pivot Irrigation for Sugar Cane Plantings at Principle Energy’s Site 

near Dombe 

 

 

 

4.2.3.4 Jatropha estate and outgrowers at Buzi  

 

Buzi is located in the coastal sugar cane and fishing zone just south of the city of 

Beira in the centre of the country. The area is quite productive with high rainfall and 

therefore suitable to water-intensive crops such as sugar cane, rice, maize and 

vegetables.  

 

Galpbuzi is a joint venture between Galp Energia, a Portuguese energy company and 

Companhia do Buzi of Mozambique. The project is based on producing jatropha seed 

using an outgrower model around a nucleus estate. It was planned that most of the oil 

produced would be shipped to Portugal to help meet the country’s renewable energy 

requirement under the EU Renewable Energy Directive. Galp Energia was also 

involved in another jatropha venture near Chimoio, known as MozamGalp. 
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Fig 4.7 – Sorting and Drying Jatropha Seeds at Galpbuzi’s Jatropha Estate, 

Buzi 

 

 

The Galpbuzi project aimed at securing 25,000 hectares mainly in the area of the old 

Buzi sugar and cotton estate. At the time of the survey some 150 hectares of jatropha 

had been planted on trial plots, employing 73 workers at 1500 MZN per month. The 

company were in the process of scaling up to 320 hectares on the estate and had also 

started using seed sourced from a small number of outgrowers. However, it was too 

early to assess the impact on outgrower farmers as only a small number had been 

contracted and it was at too early a stage to assess impact on their livelihoods and 

food security status. 

 

4.2.4 Sampling 
 

Each biofuel company provided information on the surrounding villages and hamlets 

in which most employees or outgrowers were located. A village, or group of hamlets, 

was then randomly selected by multi-stage sampling. The list of villages was larger 

for the outgrower-based models, as a wider range of locations supplied feedstock to 

them. For example, the biofuel company Diligent, based in Arusha, Tanzania, 

collected jatropha seed not only from sites within the Arusha region but also as far 

afield as Singida. The more remote and food-insecure Singida region was selected 
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out of the listed supply areas. There were six main villages from which Diligent 

collected jatropha seed in this area, and the village Ikiwu (in the Kijota rural ward, 

Singida District Council) was randomly selected by drawing lots at a meeting with 

the local seed collector.  

 

In each location the local authorities were contacted to obtain permission for the 

research following approval from the national authorities. For example, in Tanzania 

the research was approved by the Ministry of Energy and Minerals in Dar Es Salaam, 

whilst Singida District Council approved the local survey work and provided a 

profile of Ikiwu village, which comprised 10 hamlets predominantly practising 

mixed farming. From the 10 hamlets, three were randomly chosen again by drawing 

lots – Kiwukati, Matundi and Mbura. These hamlets comprised 316 households and 

the village chief provided a list of the households from which 37 were randomly 

selected through a process of drawing lots from 1 to 10 for the first household on the 

list to be selected and then taking each ninth subsequent household. Teams 

comprising researchers from University College Cork, University of Dar Es Salaam 

and local translators then interviewed the selected households using the pre-tested 

questionnaire.  

 

A similar process was conducted when choosing the survey sites for the Kakute 

biofuel operation. Two villages were randomly selected from the various sites from 

which jatropha seed was collected; Kingori and Ngurdoto, in Aremeru District. Both 

villages had five hamlets and one hamlet was randomly selected in each: Madukani 

in Kingori, comprising 200 households and Mseseweni in Ngurdoto, comprising 136 

households. Again approval was gained from the local district council, household 

lists were provided by the village chief and households were randomly selected from 

these by drawing a random number from 1-10, and subsequently selecting every ten 

households: thus, 20 were selected in Madukani and 14 in Mseseweni, representing 

some 10 per cent of the overall population.  

 

For the plantation or estate models, most of the employees were located in the 

villages next to the biofuel operation. Thus, the Energem jatropha estate near Bilene, 

Gaza Province in southern Mozambique mainly employed those from nearby 

Chilengue and Nzeve villages. Nzeve village was selected for the household survey, 
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which is a more rural location where households were mainly involved in 

agricultural production or as farm labourers prior to the establishment of the jatropha 

estate. Most of the 37 households in the village were surveyed (31), from which 19 

had at least one member of the household employed by Energem. Teams comprising 

researchers from University College Cork, Universidade Eduardo Mondlane, FAO 

and local translators interviewed the households in Mozambique.  

 

The ESV jatropha estate was based in Inhassune village in Panda District, Inhambane 

Province, on a former cotton plantation that had closed down in 1990. The village 

had a population of some 2,000 split between two main areas A and B, from which 

the biofuel operation sourced most of its employees. Area A was randomly selected, 

comprising 300 households from which 30 were randomly chosen.  

 

The Principle Energy sugar cane project near to Dombe in Sussundenga District, 

Manica Province, also mainly employed people from the nearest villages, including 

Chibue, which was chosen randomly from the local villages around the main 

settlement area of Pambanissa. A meeting with the local village head established that 

Chibue had 239 households and 32 were randomly selected from these by visiting 

the site and interviewing households in different parts of the village.  

 

Whilst it is recognised that the household surveys only provided a representative 

sample of a particular village or hamlet in each biofuel site, each was randomly 

selected to prevent any bias rather than purposively selecting a location where there 

were reported to be negative issues. This methodology of focusing on one or two 

villages or hamlets in the vicinity of a biofuel operation may, however, have missed 

impacts experienced in other villages nearby. 

 

However, the research project had insufficient resources to carry out a 

comprehensive survey of all the communities surrounding each biofuel site and 

wanted to avoid any pre-selection bias. Also, the number of villages influenced by 

the biofuel operations tended to be relatively limited in most cases. For example, 

most of the local employees hired in the Mozambique operations were from one or 

two adjacent villages. Similarly, it was not possible to survey communities outside 

the influence of the biofuel operation as counterfactual sites given the available 
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resources. It would also have been difficult to account for the many different socio-

economic and environmental influences on food security when comparing sites.    

 

Table 4.1 shows the villages and hamlets randomly selected for the household survey 

in each of the biofuel feedstock sites and the number of household interviews used in 

the analysis after exclusions
52

. The total useable returns used in the survey analysis 

was 166, representing 14 per cent of the total household population for the villages 

surveyed, of which just under half had been involved with a biofuel operation for a 

year or more, either as outgrowers or as employees.  

Table 4.1 - Survey details of households in selected villages close to biofuel 

operations 

Biofuel 

operation & 

location 

Hamlet(s)/ 

Village(s) selected 

Type of 

biofuel 

operation 

No house-

holds (HH) 

No HHs 

surveyed 

No HHs 

involved in 

biofuels  

Energem 

Biofuels, 

Bilene, MZ 

Nzeve village Jatropha 

estate 

37 31 19 

ESV 

BioAfrica, 

Panda, MZ 

Area A of Inhassune 

village 

Jatropha 

estate 

300 30 15 

Principle 

Energy, 

Dombe, MZ 

Chibue village Sugar cane 

estate 

239 32 12 

Diligent 

Tanzania, 

Arusha, TZ 

Kiwukati, Matundi & 

Mbura hamlets of 

Ikiwu village 

Jatropha 

outgrower 

316 37 18 

Kakute Ltd, 

Arusha, TZ 

Madukani hamlet of 

Kingori village, 

Mseseweni hamlet of 

Ngurdoto village 

Jatropha 

outgrower 

336 36 15 

Total    1,228 166 79 

Note – HH = household, MZ = Mozambique and TZ = Tanzania 

                                                 
52

 The table excludes unusable returns as well as the households surveyed in Mzenga village, 

Kisaware, close to the Sun Biofuel operation, as it was deemed too early to assess the impact of the 

biofuel operation at the time of the survey 
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4.2.5 Household questionnaire 

 

In order to capture the necessary information from which to assess the impact of the 

biofuel feedstock operations on local food security, a questionnaire was developed 

for the household interviews. The questionnaire covered household demographics 

and social issues, food consumption and expenditure, cooking and fuel use, food 

production, income sources and biofuel-related issues (see appendix 2).  

 

It was designed in a way that helped triangulate the food consumption, expenditure 

and production responses so as to arrive at a household food balance, ensuring that 

consumption did not exceed, or fall considerably short of, own production and 

purchases. This was then linked with the income data in order to produce a budget 

for each household. This helped to ensure that incomes were verified when a 

household reported food expenditures.  

 

The questionnaire contained both quantitative and qualitative elements, enabling 

quantities of food produced, purchased and consumed to be calculated, as well as 

perceptions of food security status before and after the biofuel operation had been 

established.  The questionnaire was also designed to capture the information required 

for the main food security indicator, as described in the following section.  

 

4.2.6 Developing the household nutrient deficit indicator 
 

In choosing the best indicators to use in the study, consideration was given to early 

findings from the literature review. It was decided that that the definition of food 

security to base the indicators on should be that from the 1996 World Food Summit; 

“when all people, at all times, have access to sufficient, safe nutritious food to 

maintain a healthy and active life”. It incorporates nutrition as an important 

component of food security, rather than just a focus on caloric intake, as well as the 

need for sufficient food for an active and healthy life, as opposed to a minimum basic 

level.  
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The review also identified the four key dimensions of food security - availability, 

access, utilisation and stability – as crucial to measuring outcomes, as these give rise 

to many issues, such as price and income relationships, seasonal insecurity and non-

food influences, such as sanitation and health. Thus, the complexity of the food 

security concept poses particular problems in terms of the level of detail required to 

measure it. However, it is important that each of the four key dimensions are 

represented as far as possible in any food security assessment. 

 

The study also had limited resources for its fieldwork activities, requiring a prudent 

approach to measures used. For example, the 24 hour dietary recall methodology is 

often referred to as the gold standard for measuring food and nutrition security, 

together with anthropometric and biomarker methods. But these methods are 

expensive to implement, requiring highly qualified staff and repeat surveys to be 

undertaken
53

. Also, non-food issues, such as illness and disease, may influence 

anthropometric and biomarker outcomes, making it difficult to assess the extent of 

food and nutrition security in a particular locality. 

 

At the time of the survey proxy measures, such as the household dietary diversity 

score (HDDS) were still in their infancy, with FAO Guidelines on the HDDS not 

being issued until 2011. Perception-based measures whilst used in developed nations, 

were also not widely used in developing countries.  

 

The literature also noted the difficulty in using such indicators to assess whether a 

household or individual was malnourished as different indicators could give different 

results. This had led to calls for innovative methods to improve measurement, 

including making indicators more nutrition-sensitive. 

 

For this study it was decided to develop a novel metric that would capture nutritional 

information from reported food consumption into a single score. A key aim of the 

metric was to ensure that it linked to the availability, access, stability and utility 

dimensions of food security as far as possible.  

                                                 
53

 There is also an ethical issue over the use of anthropometric and biomarker methods for measuring 

food security, which are often viewed as over-intrusive, particularly where blood samples are 

involved.   
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Most household surveys on food security capture food consumption at one particular 

point in time, such as over the previous 24 hours or the previous week, which may 

not reflect dietary patterns over the longer-term. Within the focus groups and 

interviews conducted before each of the surveys, it was found that diets tended to be 

relatively stable for most households in most months of the year, apart from well-

known periods of shortfalls during the pre-harvest and other specific periods. 

Households were therefore asked to report their food consumption over the past 

week where this was typical
54

, in terms of both the number of meals and types and 

quantities of food consumed and purchased, and then to report less frequently 

consumed foods by month or year. They were also asked if there were any shortage 

periods during the past year, how long they lasted and how they affected the number 

of meals or size of portions and types of food eaten
55

.  

 

The responses were then used to calculate the estimated amount of calories, protein, 

iron and vitamin A consumed by each household by month over the year. Food 

composition tables from Tanzania were used to calculate the nutritional content of 

the reported food consumption data (Lukmanji et al., 2008). These were then 

compared with the calculated minimum requirements for each household and 

percentage gaps were then derived for each of the four nutrients considered. FAO 

and World Health Organisation dietary requirements for moderately active and 

average height adults and children for each age group and gender type were used for 

the dietary requirement calculations (FAO et al., 2004, WHO and FAO, 2004, WHO 

et al., 2007). This provided a useful measure of the consumption of the main macro 

and micronutrients by the household each month during the year, identifying any 

major deficits and surpluses, and allowing such gaps to be traced back to the main 

foods produced, purchased and consumed. 

  

                                                 
54

 Where the past week’s consumption was deemed to be “untypical”, respondents were asked to 

report a more normal pattern of weekly food consumption and purchases. 
55

 Note that the consumption data was reconciled with the household production, sales and food 

purchase data to create household food balances for each of the main food items, as a way of cross-

checking household responses. For most households and most foods the consumption data balanced 

the survey data on food purchases and net production (ie own production minus sales), with only 

small positive or negative balances. Where larger balances were evident at the time of the survey, 

explanations were sought from the respondent and the data was re-checked and corrected where 

necessary. Some of the larger balances were explained by losses in storage.   
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Whilst each of the percentage gaps calculated for calories, protein, iron and vitamin 

A provided a useful guide to household food security for each nutrient, it was felt 

that a combined measure would be more useful for making an overall assessment of 

food security for each household. Combining macronutrients and micronutrients into 

an overall average score poses many issues, not least of which is whether certain 

nutrients are more important to households and individuals than others. Also, any 

significant surplus gap in one nutrient could outweigh an important deficit gap in 

another.  

 

One way of ensuring that any large surplus nutrient gaps do not overwhelm any 

nutrient deficits in an overall average score is to only use deficit gaps when 

calculating the nutrient status of a household; hence, any surplus gaps are recorded as 

zero. But the calculated nutrient gaps can only be considered as an approximate 

calculation of nutrient intake. Also, some level of surplus nutrient intake would be 

more ideal than a zero or deficit gap in view of the fact that household requirements 

are calculated on moderate activity and many rural households would require higher 

nutrient consumption to match their activity levels or to realize their potential 

productivity. It was therefore decided to create a household nutrient score with a 

maximum cap on any individual nutrient surplus of 50 per cent, as anything 

exceeding this level would not be beneficial to the household in terms of health, 

expenditure and wastage
56

.  

 

It was also decided to weight the individual nutrient gaps when calculating the 

overall household nutrient deficit score, with a weighting of three for the calorie gap, 

two for the protein gap and one each for the iron and vitamin A gaps, based on the 

focus group assessments of their relative importance in local diets (ie that calorie 

intake was three times more important to households in the survey locations than 

iron or vitamin A and protein was twice as important)
57

. As the indicator was 

                                                 
56

 If the analysis was aimed at identifying obesity issues in the population then a maximum capping 

would not be as relevant, although any excessive surpluses would be apparent from the individual 

nutrient gaps within the total score.  
57

 This reflected focus group responses that energy was the most important nutrient for work and 

health, followed by protein (muscle strength). Only iron and vitamin A were mentioned (in terms of 

anaemia and eye health) as important micronutrients across the sites surveyed. It also follows the 

guidance by Maxwell and Smith (1992) that “food security is a multi-objective phenomenon, where 

the identification and weighting of objectives can only be decided by the food insecure themselves”. 
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developed to reflect the level of food and nutrition insecurity, the overall score was 

calculated as the average deficit gap, so that the higher the score the greater the 

deficit. 

 

Each nutrient deficit gap for a household can therefore be described as: 

 

Household Nutrient Deficit Gap = the percentage difference between reported 

household consumption of each nutrient (calories, protein, iron, vitamin A, etc) and 

the calculated household requirement of each nutrient. 

 

The overall Household Nutrient Deficit Score (HNDS) then uses the individual 

household nutrient deficit gaps to create a weighted average deficit score for the 

macro and micronutrients included in the calculation. 

 

Household Nutrient Deficit Score = (Household calorie deficit gap x 3) + 

(Household protein deficit gap x 2) + (Household iron deficit gap x 1) + (Household 

vitamin A deficit gap x 1) divided by 7. 

 

A positive HNDS denotes a weighted average deficit in the main macro and 

micronutrients, whilst a negative score signals an average surplus of the main 

nutrients
58

. The scores for each household are then combined to provide mean and 

median scores for the population in question in a similar way as calorie deficits are 

commonly used.   

 

In order to assess the impact of biofuel operations on the HNDS the ideal approach 

would be to conduct a baseline survey of food consumption before the operation was 

established, with impact surveys after. Since all of the biofuel operations used in this 

analysis were well established at the time of the survey, measures of change over 

                                                                                                                                          
However, it is of course recognized that many rural households would not be able to define their 

specific nutritional priorities. 
58

 A more detailed Household Nutrient Deficit Score might incorporate more nutrients and different 

weightings according to a more detailed assessment of the relative importance of different nutrients in 

the diet. The simplified methodology used in this analysis captures the important macro and 

micronutrients in rural areas of Mozambique and Tanzania, where iron and vitamin A deficiency are 

common problems and households require significant intakes of calories and protein for manual work. 
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time had to be perception-based. Households were therefore asked whether their food 

security status had improved, worsened or had not changed since the biofuel 

operation had started. Householders were also asked to describe how their food 

security status had changed. Other qualitative information in the questionnaire 

included how households felt about the establishment of a biofuel operation in their 

locality. 

 

4.2.7 Quantitative methodology 
 

Descriptive statistics from the survey were calculated using means, standard 

deviations and frequencies where appropriate. Correlation tests (one-way ANOVA) 

were also performed to assess the relationship between the HNDS metric and a 

number of key variables, including biofuel involvement of households.  

 

The household survey results were also analysed using a regression model. Using the 

HNDS as the dependent variable, and after testing for normality and excluding 

outliers, regression analyses were undertaken of some key variables likely to affect 

food security status, and, hence, to help assess the importance of biofuel 

involvement. There are many factors influencing household food security, including 

income and food production, but also household characteristics, such as its size and 

the age and gender of the household head. Some of these variables will be influenced 

by the biofuel operation, especially income. Others, such as household size, land area 

farmed and age and gender of household head, are less likely to be affected by the 

establishment of the biofuel operation. Step-wise multiple regression models were 

therefore used to assess the extent of the impact of each these independent variables 

on the dependent HNDS variable.  

 

The first multiple regression analysis compared households involved with biofuel 

operations versus those not involved. The first step or model compared the mean 

HNDS between the groups, the second step controlled for the different geographical 

sites, the third controlled for a group of variables less likely to be influenced by the 

biofuel operation (household size, size of farm and gender of household head), and 

the fourth step controlled for household income, which was more likely to be 

influenced by biofuel involvement.  
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The second linear regression analysis compared the two different groups of biofuel 

involved households, those with employees and those acting as outgrowers, with the 

non-involved households using the same steps as in the first analysis. 

 

A third regression analysis was conducted involving more independent variables but 

using a proxy for income instead of actual household income, due to the potential 

endogeneity problem between biofuel involvement and household income within the 

analysis. Similar to the previous two regression analyses, the third analysis examined 

four separate models in order to assess the impact on food security of each variable 

or group of variables. The first model again assessed the impact on the HNDS of 

household biofuel involvement as outgrowers or employees compared to non-

involved households. The second model incorporated the geographical influence of 

the different village sites and the third model included a slightly larger group of 

predictor variables less likely to be influenced by the establishment of the biofuel 

operation in the locality. A final model then incorporated a variable for different 

income sources, grouped into households deriving most of their income from 

farming activities, representing 65 per cent of the total and those relying mainly on 

non-farming sources, such as waged-employment, accounting for 35 per cent. 

 

Linear regressions that were robust to extreme residuals were performed to estimate 

the difference in food security status, according to the HNDS, between the three 

different household groups before and after controlling for potential confounders. 

The robust regression uses iteratively re-weighted least squares. Initially it performs 

an ordinary least squares regression, calculates Cook’s distance, and eliminates the 

gross outliers for which Cook’s distance exceeds one and then performs a weighted 

regression that gives lower weight to observations with larger residuals (Street et al., 

1988).  

 

4.3 The Macro Analysis Methodology  
 

The development of the conceptual framework from the literature review identified 

that land availability and food price impacts were the two key concerns regarding 

biofuels and food security at the global or macro level. There have been many studies 
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on these issues, some of which have been referenced within the literature review, and 

many of which involve the development of econometric models to determine the 

potential impact of biofuels into the future.  

 

Given the many econometric analyses that have been conducted over recent years, 

and the very wide range of results regarding land use changes, indirect land use and 

price impacts from the various studies, it was decided to adopt a different approach 

to assessing how biofuel production at the global level may have affected land 

availability and food prices both at the global level and in food insecure countries
59

. 

 

As most of the recent increase in global biofuel production has occurred over the past 

decade, and that much of this was encouraged by policies introduced in the US and 

EU in the period leading up to 2005, it was decided that sufficient reliable 

information should be available to analyse how much additional land has been 

utilised by biofuels over the past decade and the extent to which this has affected 

food availability within developing countries and could affect future global food 

security.  

 

Similarly, the main biofuel feedstock price developments over the past decade on the 

main commodity markets influencing global food prices, can be analysed in order to 

assess the fundamental, policy and other factors that may have affected them over 

that period.  The influence of biofuel production on the price-forming factors can 

then be assessed over the same period.  

 

As such the approach adopted is retrospective rather than the more common forward-

looking predictions over the longer-term. But through understanding how the biofuel 

sector has changed in the past decade, this can enable better policies and projections 

for the future. This approach, although data-driven, also incorporates a significant 

amount of descriptive review and, is, thereby, as much qualitative in its nature as 

quantitative. It was felt that through capturing the detail of what had actually 

                                                 
59

 Many of the more detailed econometric model analyses involve large teams of experts in their 

development, as well as access to the relatively few institutionally owned CGE and PE models for 

adapting to biofuels. 
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happened regarding global biofuel production and key feedstock commodity prices 

over the past decade, this could help inform future analyses.  

 

One of the concerns emanating from the literature review was the reliability of the 

estimated land areas used for biofuel feedstocks within such analyses, particularly 

regarding the large range of feedstock types and co-products produced. Many of the 

referenced reports appear to have significantly overestimated both the current and 

future projected land use by biofuels. Some of the projections incorporate unrealistic 

assumptions, such as the complete replacement of all transport fuels with biofuels.  

 

A detailed analysis was therefore undertaken of biofuel feedstock land use by each 

country over the past decade in order to derive more accurate estimates of how much 

land is being used by each feedstock in each country for both biofuel and co-product 

outputs. From this analysis, more realistic assessments of future biofuel land use can 

then be made. The detailed biofuel land use analysis also provides a comparison with 

the reviewed studies of global land availability and projected food needs in order to 

assess potential future conflicts between food and fuel. 

 

The macro methodology on land use therefore focuses on a detailed analysis of 

global biofuel and co-product production and feedstock use, yields and areas 

harvested over the past decade in order to identify the key changes over that period. 

The findings from this analysis were then used to assess the extent to which biofuel 

demand influenced the fundamental supply and demand situation for the main 

feedstock used, and in turn, the influence of those changes on commodity and food 

prices.  

 

4.3.1 Measuring biofuel production and feedstock use 
 

Reliable and consistent statistics on biofuel production are difficult to obtain. Where 

official data are available, they are often quoted in different metrics, such as tonnes 

or litres, or oil-equivalent barrels and different measures of energy output. In the case 

of ethanol, most sources quote total ethanol production rather than that used for fuel 

purposes, whilst biodiesel figures often exclude hydro-treated and straight vegetable 

oil for use in fuels. Even in Brazil, where biofuels have been produced on a large-
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scale since the 1970s, there are no official estimates of ethanol production for fuel 

use, only total ethanol production for all uses, divided between anhydrous and 

hydrous ethanol.  And trade statistics are difficult to verify due to the different 

customs codes under which ethanol and biodiesel can be traded, including as blended 

petrol and diesel.  

 

Global official data also tends to be delayed by a number of years, and there is 

generally very little up-to-date information on feedstocks used and co-products 

produced each year. The difficulty in obtaining reliable data is apparent from the 

literature, with many studies using information from only the major producers, often 

with extrapolated estimates of feedstocks and co-products using standard biofuel 

yield coefficients and average feedstock yields applied to all countries, despite large 

yield differences between countries and from year to year.  

 

Given that biofuels are relatively recent phenomena in most countries, it is not 

surprising that reliable, timely and consistent information is difficult to obtain. 

Nevertheless, the use of various estimated and extrapolated numbers could lead to 

very different outcomes when analysing the impact of biofuels, particularly on the 

land use of feedstocks. 

 

A key aim of this study was therefore to obtain reliable, up-to-date and detailed 

information on biofuel production and feedstock use from each country around the 

world, using official government sources and statistical agencies wherever possible. 

Where official data was not available or was outdated, or believed to be unreliable, 

industry associations and company sources were used to build a more recent global 

picture of the biofuel sector and the feedstocks used in each country.  For example, 

within the EU, the ethanol industry association ePure provides annual statistics of 

EU fuel ethanol production, whilst the European Biodiesel Board (EBB) provides 

similar information for EU biodiesel production
60

. 

 

The figures were triangulated with other sources wherever possible in order to ensure 

reliability and consistency. For example, a number of companies, such as FO Licht, 

                                                 
60

 At the time of writing in mid-2016 biofuel production by member state was only available up to 

2014 from ePure and 2013 from the EBB.   
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Oil World and Platts, provide market specialist market intelligence on biofuels, 

whilst international bodies such as the International Energy Agency, OECD, FAO 

and the UN Environmental Programme also provide some statistical information. 

Some of the major energy companies also produce statistics for biofuels, such as 

BP’s annual statistical review. 

 

A number of key sources were used to build the estimates of ethanol production for 

fuel use. The US Energy Information Administration provides monthly statistics on 

US fuel ethanol production in its Monthly Energy Review (US Energy Information 

Administration, 2016), whilst the US Department of Agriculture releases regular 

information on maize usage in its monthly Feed Outlook (Capehart and Allen, 2016). 

For Brazil, data from the Ministry of Agriculture (Ministerio da Agricultura, 

Pecuaria e Abastecimento or MAPA), the Petroleum, Natural Gas and Biofuels 

National Agency (ANP) and the Brazilian Sugarcane Industry Association (UNICA), 

was used to derive the fuel ethanol production estimates and feedstock use.  In the 

EU, official Eurostat and ePure data were used in conjunction with specialist agency 

estimates such as FO Licht and Strategie Grains. Similar sources were used for the 

biodiesel estimates, as well as data from specialist vegetable oil and biodiesel 

providers, such as the European Biodiesel Board (EBB), FEDOIL (the EU vegetable 

oil and protein meal industry association), the Malaysian Palm Oil Board and Oil 

World.    

 

There are often significant differences in the production and usage estimates issued 

by the various sources, some including more categories than others, such as all 

ethanol
61

 rather than just fuel ethanol, straight and hydro-treated vegetable oil rather 

than just conventional biodiesel, whilst some only include the major-producing 

countries or feedstocks used, and others only provide combined biofuel totals, rather 

than dividing between ethanol and biodiesel. 

 

Another factor that can account for differences in the production and feedstock 

estimates are the different metrics and conversion factors used. For example, there 

are even significant differences in converting biofuel production to oil-equivalent 

                                                 
61

 For example, the OECD and FAO annual outlooks include total ethanol production, including that 

for the beverage sector. 
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figures, with the USDA using a coefficient of one tonne of biodiesel to 0.9 tonnes of 

oil equivalent, whereas Eurostat uses a coefficient of 0.86. Where such discrepancies 

existed, other reliable sources were consulted and a judgement was made on which 

figure to use or whether to use a mean or median value.  

 

This is a particular issue where there are no surveys of feedstocks used in biofuel 

production (which is the case for most countries), so that biofuel production has to be 

converted back to feedstock. As reported ethanol yields per tonne of feedstock can 

vary considerably, this can result in a wide range of feedstock usage, and hence, 

areas harvested. In converting biofuel feedstock production back to areas planted, 

average annual yield data was used for each country using national sources, 

FAOSTAT and US Department of Agriculture data. The average yield data are likely 

to result in an overestimate of land areas used, as much of the feedstock for biofuel 

production is likely to have been produced on larger, specialist farms and estates, 

using specific crop varieties suited to the end-use and achieving higher yields than 

the national averages.   

 

Whilst, it was decided that it would be more prudent to use consistent data from 

official databases rather than a variety of reported yields from industry sources, 

where there were obvious inconsistencies, industry sources were used. For example, 

wheat accounts for a significant proportion of the ethanol produced in Canada, but 

the preferred wheat used is the soft variety, which usually yields at least 50 per cent 

above the main spring varieties. However, some spring varieties that fail the export 

or domestic breadmaking specifications are also sometimes used. Hence, the 

Canadian calculations used the average wheat yields officially recorded for Canada 

raised by 25 per cent, to reflect the proportion of higher yielding varieties usually 

used versus the smaller amount of failed spring wheat crops. 

 

4.3.2 Accounting for co-products  
 

Most of the feedstocks used to produce biofuels also produce valuable co-products. 

For some feedstocks, such as soybeans, the co-product (in this case the protein meal) 

produces more revenue than the oil extracted to produce biodiesel. It would therefore 
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be incorrect to apportion all of the feedstock crop area to biofuels when other co-

products also play an important role in determining planted areas and production.  

 

There are various ways of accounting for co-products in different types of analyses. 

Wang, Huo and Arora (2011) in reviewing life cycle analyses of biofuels, specify 

five potential methods:  

 

i) mass-based 

ii) energy content 

iii) market-value 

iv) process-purpose  

v) displacement  

 

In this analysis the estimated proportion of market-value revenue is used to 

determine the proportion of area relating to biofuels from each feedstock. 

 

Due to the different nature of the various biofuel feedstocks, it is difficult to compare 

the results of a basic mass-based method. For example, relatively little of each tonne 

of sugar cane harvested results in ethanol output compared to each tonne of maize 

harvested, but sugar cane has a much higher yield per hectare than maize. Energy 

content is also related to the mass of the various outputs and may not reflect other 

important attributes such as nutrition in the form of protein content. 

 

The displacement method is often used when dealing with life-cycle analyses of 

biofuel co-products, as many of the co-products are used as animal feed, displacing 

other feedstuffs, and therefore, land used in the production of those other feedstuffs. 

But it is not always obvious what other products have been displaced and what units 

of measurement should be used to calculate the displacement effect.  

 

In terms of land use decisions, the revenue generated from different co-products 

would be a more influential factor.  For example, most of the revenue from 

processing soyabeans for biodiesel (about two-thirds) is from the soyameal produced, 

so soya oil prices (ie the biofuel feedstock) would be less influential in whether to 

plant soyabeans than soya meal prices. In contrast, only a quarter of the revenue from 
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maize processed for ethanol is from the DDGS protein meal even though the mass of 

the DDGS output is similar to that of ethanol. In many parts of the world the 

molasses by-product from the sugar refining process is the main feedstock for 

ethanol production, but molasses only account for about 5 per cent of the value of co-

product outputs in the sugar manufacturing process, and would therefore have a 

relatively small impact on land use.  

 

A problem with the market-value approach is the fact that relative prices of the co-

products fluctuate according to market conditions. However, average values over 

recent years, omitting extreme levels, can provide a useful and acceptable indication 

of the relative value of the different co-products. These prices can then be applied to 

the output of each co-product from the feedstock processed. This methodology 

provides a more consistent and intuitive apportionment of the areas sown to each 

feedstock, as using the mass-based or displacement breakdown of co-products would 

tend to underestimate the importance of biofuel revenue in planting decisions.  

 

An alternative view would be that the nutritional value of the crop components 

would be a better way of apportioning land use to different co-product. It could be 

argued, for example, that starch has relatively little nutritional value compared to 

other macro and micro-nutrients, so the use of the starch component of the maize 

plant for ethanol production would be of little value relative to the protein-rich co-

products, with protein, fat and fibre constituents. Adopting a “nutritional value” 

focus would therefore attribute a much lower proportion of land to ethanol 

production from maize than using the co-product market-value methodology. 

However, it would be difficult to determine definitive values for the numerous 

nutrients of the many feedstocks used to produce biofuels. 

 

In using the co-product market-value method, it is also important to note that the 

feedstock is often broken down into many constituents, including low value co-

products, such as straw, husks and cobs from cereals, bagasse from sugar cane and 

fronds and empty fruit bunches from palm. Biotechnology has reached the stage 

where many of these “low-value” co-products can now be used for a variety of 

purposes, including for biofuel production, and there is now a market value for many 

of them.  
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The co-product market value methodology used in this analysis excludes the low 

value co-products such as straw and maize cobs from the calculation and, therefore, 

tends to exaggerate the amount of land attributed to biofuel production. It would be 

difficult to apportion an average value to such products, as market information may 

not always be available, and the value of such products may vary between regions. 

For example, maize cobs may have little value in most areas (or even a negative 

value), but would be in demand close to the ethanol plant in China that uses maize 

cobs. In any case the market-value of such co-products would generally be so low as 

to make little difference to the overall calculation. 

 

In order to avoid double-counting of land use, ethanol produced from co-products 

such as maize stover and cobs are deemed to have a zero land use, as that land area is 

already accounted for in the use of the grain component for biofuel production. In 

fact, this also makes little difference to the overall land use calculation as second 

generation cellulosic biofuel production is relatively small at present with only a few 

commercially viable plants in operation.  

 

There are, however, more and more waste products being used for biofuel production 

which also have zero land use implications. Biodiesel produced from used cooking 

oil or animal fat is not counted as using land, as the feedstock was originally 

produced for non-biofuel purposes. In the palm oil production process, a number of 

waste residues, such as palm fatty acid distillates and spent bleaching oil, are 

increasingly being used, particularly for hydrogenated vegetable oil production. 

Spent bleaching oil is often sent to landfill in Indonesia and Malaysia, so it could be 

argued that the recovery of oil from this waste product for HVO production would 

result in a net land saving. Moreover, a number of plants have been established in 

recent years to process municipal solid waste into biofuels, with landfill savings. For 

the purpose of this methodology, such waste products are treated as having no land 

use implications rather than having net land savings.   

 

Given that the market-value methodology employed is more likely to overestimate 

the land use attributable to biofuel than underestimate, mass-based co-product 
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calculations have also been included at times in order to provide a minimum and 

maximum range.  

 

4.3.3 Price analysis methodology 

 

The fundamental supply and demand issue connecting biofuels and food prices is 

that when feedstocks and resources, such as land and fertiliser, are used to make 

biofuel, this restricts food supply in relation to the increased demand, helping to lift 

commodity, and ultimately food, prices. The common view is that higher food prices 

lead to increased poverty and hunger in poor and food-insecure households. 

 

A key issue regarding the analysis of commodity prices is the extent to which they 

reflect fundamental supply and demand conditions at any given point in time. 

Economic theory states that in perfectly competitive markets prices will reflect 

market equilibrium conditions under certain assumptions, including perfect market 

information flows. Indeed, the theory underlies the many PE and CGE models 

developed to explain the impact of biofuels on food prices and land use changes over 

recent years. 

 

In reality of course, agri-food markets are never perfectly competitive, and many are 

subject to significant government intervention, including subsidies and trade barriers. 

It is generally assumed that the main commodity markets are competitive enough to 

justify the market equilibria assumptions. But even in competitive commodity 

markets with a high degree of transparency, such as those with long-established 

futures markets, prices are unlikely to accurately reflect fundamental supply and 

demand conditions due to constantly changing conditions and market information 

flows.    

 

In terms of the major influences on food prices, the US maize market is often used as 

the benchmark baseline value. Maize is the most important staple cereal in terms of 

global production and consumption and the US accounts for the largest proportion of 

world exports. Much of the maize produced throughout the world is used for animal 

feed, linking it to the livestock-based meat and dairy sectors. But maize is the main 

staple food for human consumption in most food insecure countries in Africa. Given 
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that maize is also the main feedstock used for biofuel production, this study focusses 

on the impact of biofuels on maize prices rather than other feedstocks. The other 

main non-cereal biofuel feedstocks are sugar cane and vegetable oils, which are not 

generally regarded as staple foods, although both are important components of most 

diets in processed form.   

 

A particular issue for cereal markets is that the crop may only be harvested once or 

twice a year, and it takes some time for the size of the harvest to become apparent as 

various surveys and other assessments are made, including demand surveys showing 

actual periodic (weekly or monthly or quarterly) consumption by domestic users and 

exporters. Hence, when the USDA issues its monthly update on US and global 

commodity supply and demand, futures markets respond to those changes, and 

particularly to changes in key indicators such as the stocks-to-use ratio. As the 

season progresses, the supply and demand situation becomes more certain and by the 

end of the season the average price for the marketing year should bear a reasonable 

relationship with the fundamental market balance. Annual average prices should 

therefore iron out any irregularities in daily, weekly and monthly prices that may not 

always accurately reflect the prevailing supply and demand situation. 

 

Over time prices will tend to increase with inflation, creating another distortion in the 

price relationship with supply and demand fundamentals. It is therefore important to 

use real prices that have been adjusted for inflation. 

 

It is also important to choose price series that will be consistent over time. In the case 

of US grain, average farm prices are often used in many analyses as these are 

calculated from sales revenue data reported by farms and then divided by total 

quantities marketed. The data includes all types of varieties, contracts and delivery 

dates, and are weighted by state marketings to create a weighted national average 

price (Hart, 2014). US average annual farm prices will therefore reflect changing 

patterns of marketing and varietal, grade and geographical shares from year to year, 

which may not always reflect the overall supply and demand situation. An alternative 

is to use a price series of a particular type and grade of commodity at a given 

geographical location that will not be affected in the same way.  
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Export prices of US maize and wheat are often used as world benchmark levels, such 

as the US free on board (fob) maize prices at US Gulf (of Mexico) ports. These are 

calculated using futures market prices and adding the market “fob premium” for each 

month of delivery.  The export market tends to act as the residual in the supply and 

demand balance, along with stock changes. Thus, when supplies are tight, as in the 

2012/13 drought season, reduced exports provided the main adjustment to the 

balance. This means that the fob Gulf premia quotations can sometimes fluctuate 

quite markedly according to market conditions and may also be influenced by futures 

market volatility, which is usually greater than that for cash or physical markets.  

 

Thus, the US maize price selected for use in this analysis is the physical (cash) 

market price for deliveries to US Gulf ports, Louisiana, for yellow corn number 2 

grade. This provides a consistent price series independent of varietal, quality and 

geographical changes in the overall harvest each year. The price was adjusted for 

inflation using the US consumer price index (CPI).  

 

Descriptive charts were used to illustrate relationships between US maize prices and 

stocks-to-use ratios and other variables, such as wheat and oil prices, as well as 

African maize prices.  

 

Quantitative analyses, using correlation tests (Spearman’s rank) and standard 

bivariate and multiple regression, were conducted in order to assess the statistical 

strength of the relationship between US maize prices and key variables. Standard 

straight-line regression analyses were conducted to test relationships between maize 

prices and the end-season stock-to-use ratio, as an indicator of the fundamental 

supply and demand situation. Multiple regression analyses were then performed with 

the maize price as the dependent variable and the stock-to-use ratio, wheat price and 

oil price as key predictor variables. A model was built from the regression analyses 

in order to assess the extent to which the independent variables were a good predictor 

of maize prices.  

 

An analysis was also conducted of the US maize supply and demand balance over 

the past decade in order to measure the demand changes in each sector each year, as 

well as the supply changes. This helped to identify the extent of changes in the stock-
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to-use ratio over the period accounted for by the increased biofuel demand. The 

regression models and supply and stock-to-use breakdown were then used to assess 

the likely extent of the impact of biofuel demand on US maize prices. 
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5. Findings from the Micro Analysis in Mozambique and 

Tanzania  
 

The results section for the field research in Mozambique and Tanzania is divided into 

five sections. The first section (5.1) describes the key findings from the background 

research, including interviews and focus groups. The second section (5.2) then 

summarises the main descriptive results from the household survey, the third (5.3) 

describes the findings from the quantitative analyses, the fourth (5.4) summarises the 

main qualitative results from the survey and the final section (5.5) then links the 

results to the food security dimensions and to other studies of the same biofuel sites. 

 

5.1 Background Research 

 

5.1.1 Food security and production statistics  
 

Before and after conducting the household survey, research was undertaken in order 

to provide background information for each location, including socio-economic 

profiles. The tables below provide some of the key information related to food 

security for each of the regions in which the household surveys were located. Most of 

the statistics relate to government surveys conducted between 2007 and 2011. 

 

Interviews with local government offices and NGOs for the Arusha survey site 

highlighted the serious food security issues in rural Arusha, despite the fact that 

poverty rates were generally lower than elsewhere in Tanzania. Official statistics 

showed that nearly a third of households in Singida and Arusha were estimated to be 

in a poor to borderline food security situation compared to less than a quarter for 

Tanzania as a whole (table 5.1). 

 

In Mozambique, food consumption scores were also significantly higher for the three 

survey provinces than for Mozambique as a whole, particularly for Gaza in the far 

south. Manica province generally recorded better food security outcomes than Gaza 

and Inhambane provinces, but had much higher stunting and underweight results for 

children under-5.  
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Table 5.1 – Selected Food Security Indicators for Tanzania 2009-2012 

 Singida Arusha Tanzania Notes 

Household size (No people) 5.4 4.7 4.7 Mean of rural areas for Arusha/Singida 

Average area cropped 

(ha/farm) 1.9 1.0 2.0 Mean value per household – 2007/8 Census 

Biomass for cooking  96 94 69 % of HHs in rural areas for Arusha/Singida 

Poverty MPI  69 55 64 % of HHs poor calculated by MPI 

Food Consumption - FCS 

Poor/Borderline 
31 32 23 % of HHs with food consumption score poor 

or borderline in 2009/10 

Calorie intake (Kcal/ 

capita/day) 

1,686 2,047 2,093 Mean values for Central zone for Singida and 

Northern zone for Arusha - 2010 

No of meals / day 2.2 2.5 2.6 
Mean per day for Singida Rural district and 

Meru district, Arusha – 2007/8 census 

Mortality – under 5s (per 

1,000) 
84 58 93 Value for Singida is the mean for the Central 

zone and value for Arusha is mean value for 

Northern zone. 

Stunting – under 5s  39 44 42 % of under-5s (Height for age <-2SD) 

Wasting – under 5s  9 10 5 % of under-5s (Weight for height <-2SD) 

Underweight – under 5s  19 28 16 % of under-5s (Weight for age  <-2SD) 

Anaemia – under 2s  44 68 59 % of under-2s anaemic 

Note – Biomass = wood or charcoal. HBS = Household Budget Survey, HH = Household, MPI = Multidimensional 

Poverty Index. FCS = Food Consumption Score 

Sources: 2007/8 Census of Agriculture, 2010 Demographic and Health Survey, 2010 WFP 

Comprehensive Food Security and Vulnerability Assessment - Tanzania, 2010/11 National Panel 

Survey, 2011/12 National Budget Survey and 2012 Population Census. 

 

Table 5.2 – Selected Food Security Indicators for Mozambique 2008-2011 

 Gaza Inhambane Manica Mozambique Notes 

HH size (No people) 7.3 6.5 5.8 6 Mean 

Average area 

cropped (ha/farm) 1.5 1.1 1.5 1.4 Mean value per household 

Poverty Headcount 63 58 55 55 % below national poverty line 

Food Consumption 
FCS Poor/Borderline 53 43 43 27 

% HHs with food consumption score 

poor or borderline 

Calorie intake 

(Kcals/capita/day) 1,757 1,837 1,860 
Mean values for rural areas – see 

note below 

No of meals / day 2.1 2.3 2.3 
Mean per day for rural areas – see 

note below 

Under 5 mortality 165 117 154 138 No per 1000 

Stunting 34 35 48 44 
Height for age % of under-5s (<-

2SD) 

Wasting  1.4 3.8 3.7 4.2 
Weight for height % of under-5s (<-

2SD) 

Underweight 6.8 11.8 19.2 17.5 
Weight for age  % of under-5s (<-

2SD) 

Note : The number of meals  and calorie intake rural averages for Gaza and Inhambane are the combined average of 

both regions for 2008/9, whilst those for Manica are the combined average of Manica and Tete. 

Sources: Census of Agriculture 2009/10: WFP Comprehensive Food Security and Vulnerability 

Analysis - Mozambique 2010  
 

The Tanzanian research was conducted during May and June which is at the end of 

the main hunger season in the unimodal crop production area of Singida, just as the 

Msimu harvest was starting to get underway, and during the Masika rains in the 
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bimodal production area in Arusha where the Masika harvest does not usually start 

until July. At the time of the survey, the food security situation around Arusha had 

deteriorated to such an extent that the USAID Famine Early Warning Systems 

Network (FEWS) described the area as “highly food insecure”, although the villages 

surveyed were just within the “moderately food insecure zone” (FEWS NET, 2009). 

This was due to an extended dry period following the failure of the Masika rains and 

the Vuli rains before that. Similarly, the Singida area was designated as “moderately 

food insecure” due to the lack of rain preceding the survey.  

 

The Mozambique research was conducted from August to September, which is 

usually the period just before the start of the hunger season in October when land is 

being prepared for planting and, in some northern areas, the second harvest is being 

completed. At the time of the survey, most regions in Mozambique were “generally 

food secure” following a relatively good harvest, although some pockets close to the 

sites surveyed were categorised as “moderately food insecure” by USAID at the 

time (FEWS NET Mozambique, 2009). 

 

In terms of food production, maize was the most important food source in all of the 

survey regions, except Inhambane where cassava and maize were the main sources. 

The table below shows maize area, yield and production estimates from 2007/8 to 

2009/10 for the study regions. This highlights the significant variation in yields 

recorded in Arusha over the period and the low plantings recorded in Singida in 2007 

and 2008 when farmers planted more drought-resistant crops such as sorghum and 

millet. In Mozambique, maize yields are much higher in Manica Province in the 

centre of the country compared to Gaza and Inhambane in the drier south. Overall 

maize yields, at just over 1 tonne per hectare, are much lower than those recorded in 

developed nations, such as the US and EU where yields of 10 tonnes per hectare are 

commonly recorded. 

 

In Tanzania, maize accounted for 44 per cent of the cropped area in 2007/8, and 32 

and 62 per cent of the Singida and Arusha total crop areas, respectively (MAFSC et 

al., 2012). In Singida, sorghum and millet comprised 21 and 12 per cent of the crop 

area, so that total cereals, including maize, accounted for two-thirds of all plantings. 

The other main crop grown in Singida is sunflower at 21 per cent of the total area. In 
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Arusha, beans make up most of the non-maize area, at 25 per cent of total plantings 

(MAFSC et al., 2012).  

Table 5.3 – Maize Area, Yield and Production in Tanzania and Mozambique  

 Area (000 ha) Yield (t/ha) Production (000t) 

 07/8 08/9 09/10 07/8 08/9 09/10 07/8 08/9 09/10 

Arusha 138 148 118 0.9 0.2 1.5 124 30 175 

Singida 49 56 125 0.8 0.7 0.8 39 39 101 

Tanzania 2,848 2,961 3,051 1.2 1.1 1.6 3,556 3,326 4,733 

 Area (000 ha) Yield (t/ha) Production (000t) 

 07/8 08/9 09/10 07/8 08/9 09/10 07/8 08/9 09/10 

Gaza 127 160 110 0.4 0.6 0.5 67 101 55 

Inhambane 111 125 85 0.5 0.7 0.6 53 82 54 

Manica 238 255 268 1.2 1.3 1.2 295 317 325 

Mozam- 

bique 1,480 1,612 1,573 1.1 1.2 1.2 1,676 1,932 1,878 

Sources: Tanzania -  Various AgStats for Food Security Reports, Ministry of Agriculture, Food 

Security and Cooperatives. Mozambique – FAO/WFP Crop and Food Security Assessment of 

Mozambique 2010. 

 

Maize accounted for about one-quarter of the cropped area in Mozambique in 

2009/10 (INE, 2011). In Gaza, maize accounted for just over a third of the total area, 

followed by sweet potatoes (22 per cent of the crop area), cassava (15 per cent) and 

cow peas (14 per cent). In Inhambane, the main crop planted is cassava at 30 per cent 

of the area, followed by maize (21), cow peas (17), groundnuts (14) and sweet 

potatoes (10). In Manica, maize accounted for 44 per cent of the area, followed by 

sweet potatoes (21 per cent) and sorghum (12) (INE, 2011). A full breakdown of 

crop areas from the Tanzania and Mozambique agricultural censuses are tabulated in 

Appendix 5. 

 

5.1.2 Key interviews and focus groups 

 

In Dar Es Salaam, Tanzania, the Ministry of Energy and Minerals was coordinating 

the Tanzania Biofuels Taskforce in mid-2009, in order to produce guidelines for the 

private sector and to develop a national biofuel policy. At that time the Ministry was 

considering introducing biofuel blending mandates under the 2008 Petroleum Act, 

due to the growing interest in biofuel production. Applications for leasing land for 

biofuel feedstock production were being facilitated by the Tanzania Investment 

Centre, which reported that few projects had been approved but that they had 
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received a surge in applications that year. But by the end of 2009 the government had 

suspended all further biofuel projects due to food shortage concerns.   

 

In Ikiwu village, Singida, the focus groups reported that most households had 

between 1 and 3 acres. The village chief reported that in order to ensure food 

security, there should be one acre to each person, but that this was not possible to 

achieve within the limited land available.  The farmers reported that their main 

problems were a lack of modern cultivation options and wildlife damage. The 

farmers also felt that the new market for jatropha would not make much difference to 

their livelihoods, due to the very low prices received for the seed. They felt that the 

jatropha hedges were more useful in deterring wildlife and that sunflower was a more 

lucrative cash crop for them. The gender group noted that the jatropha seed was 

collected mainly by women and children who also kept the revenue, albeit small. 

 

In Kingori and Ngurdoto villages in Arusha, farmers reported that the main crops 

grown in the area were maize, beans and bananas, and that coffee was sometimes 

intercropped with beans and that those farmers planting jatropha were mainly 

intercropping with maize. The average farm size was reported to be 3 acres, but 

many farms were smaller and insufficient to meet the needs of the average family 

due to low yields. The main problems were reported to be wildlife damage, a lack of 

inputs and low prices paid by buyers. Both the farming and gender focus groups 

reported that the returns from the jatropha seed sales were small, but that if scaled up 

there could be greater benefits in reducing the cost of local maize milling using a 

generator running on jatropha oil. The gender group also hoped that improved 

cooking stoves using jatropha oil could help replace open wood fires and time spent 

collecting fuel. 

 

In Mozambique the Centre for the Promotion of Agriculture (CEPAGRI) reported 

that the National Biofuel Policy approved in early 2009 had a target national 

blending rate of 10 per cent for ethanol and 5 per cent for biodiesel by 2015. 

However, only four projects had been authorised at that time and although more were 

awaiting approval, some had started to run into funding difficulties following the 

global financial crisis and due to food versus fuel concerns amongst investors. 

CEPAGRI also confirmed that a detailed feasibility study had been conducted for the 
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government in 2008 funded by the World Bank and that the government had also 

conducted a detailed land mapping exercise, identifying many parcels of unused land 

with more than 1,000 hectares, totalling 7 million hectares.  

 

In Nzeve village near Bilene, Gaza Province, the farmer focus group reported that 

most farms were between one and five hectares in size and the main crops grown 

were maize and cassava, both of which had suffered from dry conditions in recent 

years. A few of the focus group also worked on the Energem jatropha estate and 

stated that they would not have sufficient food without their wages, but that they had 

to cut back on their crop production to some extent as the burden for their own food 

production had fallen on other members of the household. Employment hours were 

from 0600 to 1500 hours, with a one-hour break: this enabled some work to be 

conducted on their own farms in late afternoon. One of the focus group had given up 

land to Energem in return for other land as compensation, but noted that it was 

further away from the village. The gender group were concerned that most of the 

employment on the estate was for men, and that some families only received a small 

proportion of the wages earned to spend on food and other needs.  But both groups 

were generally enthusiastic about the biofuel estate and the potential development of 

the village. 

 

In Inhassune village, Panda district in Inhambane province, most farms were between 

one and four hectares in size and the main crops grown were maize, beans, 

groundnuts and sweet potatoes, with maize and beans often intercropped. The farmer 

focus group reported that the biofuel company had helped them expand the area 

cultivated and to grow more vegetables and other crops. The company had also 

helped to establish water pumps and a school and health centre. But at the time of the 

survey, the operation had run into financial problems and was negotiating selling, 

and workers were owed wages. The farmer and gender focus groups were generally 

supportive of the beneficial impact of the biofuel company on the community, but 

were concerned that it might close down. 

 

In Chibue village, Sussundenga district in Manica province, the farmer focus group 

reported that most households had between one and five hectares and that the sugar 

cane estate had loaned them tractors and equipment to cultivate land for food 
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production. However, employees of the sugar cane estate complained that wages 

were low and mostly at the minimum level for the province and the hours long. Most 

of the group felt the biofuel company would benefit the community, as boreholes and 

water pumps had been established. However, whilst the gender group welcomed the 

biofuel project and income, they were critical that more women were not being 

employed.  

 

Semi-structured interviews were also conducted with biofuel company staff and 

village chiefs in each location. One of the key answers sought was how the 

companies had selected staff or farmers to supply them. Due to the rural and 

relatively remote locations of their operations, those employing staff reported that 

during their establishment phase they had employed as many of the local population 

as possible who were willing to work for them, employing both young and older men 

and women.  Once established they noted that more people in the locality had 

requested employment, but all of the operations had been hampered in their 

expansion phase by financing problems in the wake of the financial crisis and as the 

policy environment became more uncertain.  

 

Similarly, the biofuel companies collecting jatropha seed supplies from outgrowers, 

reported that the farmers supplying to them were mostly those already growing 

jatropha as a field boundary hedge (particularly in Singida) and willing to devote 

labour to collecting seeds for sale to the collectors. In Arusha some farms had started 

to grow jatropha as a cash and shade crop, mainly intercropping with maize or coffee 

so as to avoid reduced plantings of food crops. 

 

5.2 Household Survey Descriptives  
 

5.2.1 Basic food security indicators 
 

The household survey collected 202 useable returns out of 223 households surveyed 

in the six biofuel feedstock sites. One set of questionnaires from the jatropha estate at 

Kisaware in Tanzania had to be excluded from the analysis, as there had not been a 

sufficient period of time since the operation had started for households to fully 

evaluate the impact it was having on their food security status: this left 166 returns 

for the analysis.  
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The survey results on household size and crop areas largely corresponded with the 

regional averages collected for the background research. In the two Tanzanian rural 

villages, the average household size was somewhat larger than the respective 

regional averages and crop areas were slightly smaller. In Mozambique, the villages 

in Inhassune and Chibue had larger average crop areas per household than the 

regional averages. 

 

Table 5.4 – Selected Food Security Results from the Household Survey 

 

Ikiwu, 

Singida 

King/Ng'Doto, 

Arusha 

Nzeve, 

Gaza 

Inhassune, 

Inhambane 

Chibue, 

Manica Notes 

Average HH size 6.8 5.7 7.2 5.9 7.6 Mean per HH 

Average Crop 

Area (hectares) 
1.7 0.9 1.5 1.6 3.0 Mean per HH 

Average SLUs 3.3 1.1 0.1 1.1 1.7 Mean per HH 

% of Households 

Poor 
92 83 52 33 69 

% of HHs 

<$1/day per cap 

% of Households 

Nutrient Deficient 
86 92 77 61 77 

% of HHs with 

HNDS >0 

Average kilo 

calorie intake 
1,705 1,516 2,160 2,267 1,892 

Mean 

Kcals/capita/day 

Average Number 

Meals Per Day 
2.5 2.9 2.4 2.3 2.9 Mean per HH 

Average Number 

Months Food 

Shortage  

3.1 2.7 2.5 3.1 3.3 Mean per HH 

Note – HH=Household, SLUs = Standard livestock units 

 

There were significant differences, however, in the poverty and food security results. 

The household survey recorded much higher levels of food insecurity in the villages 

as measured by the household nutrient deficit score (HNDS) indicator than were 

recorded for the region as a whole by the food consumption score (FCS) indicator. 

Whilst the household survey recorded nutrient deficits for between 61 and 92 per 

cent of households in the five villages, the food consumption score recorded poor or 

borderline food insecurity rates for the regions in which the villages were located of 

between 31 and 53 per cent of households. In addition to the different geographical 

coverage and timing of the surveys, the disparity is largely explained by the different 

nature of the indicators, as the FCS measures the reported frequency of food types 

consumed in a particular week, whilst the HNDS measures reported food 

consumption converted into nutrient deficits.   
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In contrast, the average calorie intake levels were higher in the villages than in their 

respective regions or zones, except for Kingori/Ngurdoto which recorded a much 

lower average calorie intake of 1,516 kilo calories per capita per day, versus the 

average for the Northern zone in Tanzania of 2,047. The Northern zone average in 

Tanzania includes relatively wealthy urban areas such as Arusha and Moshi, whilst 

the Kingori and Ngurdoto villages surveyed were in remote rural areas. Ikiwu village 

recorded a slightly higher average calorie intake of 1,705 compared to the Central 

zone average of 1,686. 

 

It was notable that all the villages in Mozambique recorded substantially higher 

average calorie per capita intakes than the regional averages, despite the relatively 

large proportion of households with nutrient deficits. The proportion of poor 

households in Nzeve and Inhassune villages was also much lower than the regional 

average, whilst that for Chibue was higher. The average number of meals eaten each 

day was higher in all of the villages compared to official regional averages. 

 

The focus group interviews found that those households that had become involved 

with the recently established biofuel operations as employees or feedstock suppliers 

had experienced the greatest benefits in terms of improved income and food security 

status. This suggested that the average values of the various food security indicators 

recorded in each village may have comprised a distinct range depending on biofuel 

involvement. In order to test this hypothesis, the survey results were analysed by 

biofuel involvement, using the household nutrient deficit score as the main indicator 

of food security status.   

 

5.2.2 Descriptives of household nutrient deficit score analysis 
 

The main dependent variable used in the analysis is the household nutrient deficit 

score (HNDS), as described in the methodology, and this was found to be relatively 

normally distributed between the 166 households, as depicted in figure 5.1. There is 

a noticeable peak between 15 and 30, meaning an overall nutrient deficit of 15 to 30  
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Fig 5.1 – Distribution of Household Nutrient Deficit Score 

 
 

Fig 5.2 - Normal Q-Q Plot of Household Nutrient Deficit Score  

 

 

per cent, and reflecting the food-insecure nature of the localities surveyed.  The 

histogram is supported by the normal Q-Q plot in figure 5.2 which shows that the 

observed values are close to the expected straight line for a perfectly normal 

distribution. 
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The box plot of the distribution of the HNDS results suggests that there were two 

outliers (outside more than 1.5 box lengths from the edge of the box comprising 50 

per cent of cases), as shown in figure 5.3. Both households had relatively large 

surplus nutrient scores and were omitted from the regression analysis as it was 

believed that they might have been reporting food consumption for a greater number 

of people than had been reported on the questionnaire. 

 

Examining the distribution of results for each of the individual nutrient gaps included 

in the HNDS, most of the household “calorie” deficits in the survey were in the range 

15 to 45 per cent. For “protein” consumption the peak deficit gap recorded was 

between 0 and 25 per cent (Fig 5.4). For the micronutrients, the iron distribution 

showed a peak deficit between 40 and 60 per cent, but with no surplus above 40 per 

cent and no deficit beyond 70 per cent. For vitamin A, the distribution was not 

normal, with a peak deficit in the range of 40 to as high as 80 per cent, whilst a small 

number of households recorded a surplus of 100 per cent or more. 

 

Fig 5.3  – Box Plot of Household Nutrient Deficit Scores 
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Fig 5.4 - Distribution of Household Calorie and Protein Deficit Gaps
62

  

 

 

Figure 5.5 shows the box-plot results for the range, quartiles, median and mean 

HNDS for those households “not involved” with the biofuel project in their locality 

and those “involved” (shaded box), either as outgrowers or employees
63

. The mean 

HNDS value, represented by the circle within each box, is clearly much higher for 

those households not involved in the biofuel operation, suggesting a higher average 

deficiency of nutrients and, thus, a worse food security status than households 

                                                 
62

 Note that the calorie and protein gaps shown in figure 20 relate to the distribution of results before 

the 50 per cent surplus cap was imposed in order to calculate the HNDS. This illustrates the small 

proportion of households outside (less than) the negative 50 per cent surplus nutrient cap, and also 

outside (greater than) the 50 per cent deficit gap for each nutrient.  
63

 Households deemed to be “involved” had at least one member of the household as an employee or 

outgrower for the biofuel company 
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involved. The median values, represented by the horizontal line dividing the inner 

quartiles, are even wider apart
64

.  

Fig 5.5 – Box-plot of HNDS Results for Households “Involved” and “Not 

Involved” in Local Biofuel Operations 

 

  

Although the interviews with the various biofuel companies suggested no bias in the 

selection of households for employment or as outgrower suppliers, there was a 

possibility that they were selecting those with more able-bodied people or those with 

more land in the case of outgrowers. An examination of the survey results showed 

that the biofuel companies employed a wide range of ages, from 16 to 60 years. 

Using the number of able-bodied people within that age range in each household, as 

a proportion of the total people in the household, showed relatively little difference 

in the averages between households “involved” and “not involved”, at 49.8 and 47.3 

per cent, respectively. 

 

There was also relatively little difference in the proportion of able-bodied people 

between the two groups in most locations. In the outgrower location of Ikiwu, the 

average proportion of able-bodied people was the same for outgrower households, as 

                                                 
64

 Note that there are some outliers in the box-plot for those households not involved, mainly 

representing more wealthy households. 
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those not involved, at 45 per cent. In Arusha, the outgrower households recorded a 

slightly higher proportion, at 54 per cent versus 49 per cent for those not involved. In 

the biofuel feedstock estate locations of Inhassune and Chibue, households with 

employees had a marginally larger proportion of able-bodied people, at 47 and 56 per 

cent, respectively, versus 45 and 54, respectively, for those not involved. Only in 

Nzeve village was there a notable difference, where those households with 

employees comprised 50 per cent able-bodied, compared to 40 per cent for those 

without. On examination of the Nzeve averages it was apparent that the higher 

average figure for “involved” households was largely due to three large households 

with over 80 per cent able-bodied people, one of which had nine members.   

 

In terms of land size, the fact that most of the households were already growing 

jatropha as hedges for wildlife protection and demarcation boundaries on relatively 

small areas, averaging 0.1 to 0.2 hectares, suggested that farm size was not a major 

factor in the selection of outgrowers. Also those households in Arusha that had 

started to produce jatropha recently were mostly intercropping with food and cash 

crops. The average area cropped in Singida was 1.9 hectares for the outgrower 

households and 1.6 hectares for those not involved, whilst in Arusha the average for 

outgrowers was 1.1 hectares versus 0.8 for non-involved.  

 

Table 5.5 displays the household nutrient deficit scores by each survey site, 

representing the village selected in the vicinity of each of the biofuel operations. The 

mean and median HNDS results for each site are clearly higher for those households 

not involved with the biofuel operation, suggesting a higher overall deficiency of 

nutrients.  The differences are very apparent for the survey sites close to the large 

estate operations in Mozambique, at Nzeve, Inhassune and Chibue, but less so for the 

outgrower sites in Tanzania, at Ikiwu and Kingori/Ngurdoto.  

 

The table also shows the mean and median values for other selected variables that 

often affect food security status, such as size of household, land area owned by the 

household and gender of household head. There was generally little difference in the 

average values for these variables between the households involved with biofuel 

operations and those not, suggesting that the profiles of the households which 

became involved with the biofuel operation were similar to those not involved before 
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the establishment of the biofuel project. This was also evident from the focus group 

and other interviews in each of the field sites, from which it was noted that 

alternative sources of employment or income were relatively limited in all of the sites 

and that most households had previously been engaged in farming and related 

activities. 

 

Table 5.5 - Descriptive Statistics of Key Variables by Biofuel Involvement 

 Biofuel Involvement 

Yes No 

Mean  Median 

(Q1; Q2) 

Mean  Median 

(Q1; Q2) 

Household Nutrient Deficit Score 10.1 

 

8.0 

(-9.1; 25.2) 

30.3 

 

33.7 

(21.2; 43.9) 

 

 

 

Village 

survey 

site and 

biofuel 

company 

model 

type and 

company 

location 

 

Ikiwu, Diligent-

Outgrowers, Singida, 

Tanzania 

25.5  23.8 

(8; 53.1) 

31.2 

 

30.6 

(19.6; 39.8) 

Kingori/ Ngurdoto, 

Kakute Ltd-

Outgrowers, Arusha, 

Tanzania 

25.8 

 

31.3 

(6.3; 43.7) 

41.4 

  

44.0 

(37.3; 46.9) 

Nzeve, Energem 

Biofuels Estate, Bilene, 

Mozambique 

0.9  7.4 

(-18.0; 18.5) 

30.5  

 

29.3 

(20.3; 40.3) 

Inhassune (Area A), 

ESV BioAfrica Estate, 

Panda, Mozambique 

-6.2 

 

-1.6 

(-18.5; 6.9) 

14. 4  

    

18.7 

(-0.4; 27.9) 

Chibue, Principle 

Energy Estate, Dombe, 

Mozambique 

0.6  1.9 

(-9.4; 12.2) 

29.6     31.8 

(23.5; 39) 

Household Per Capita Income (US$ 

per capita per annum) 

474 

 

374 

(278; 643) 

290 

 

205 

(169; 277) 

Household Size (adult- equivalent) 3.2 

 

2.9 

(2.4; 3.8) 

3.2 

 

3.0 

(2.5; 3.8) 

Land Area Owned (hectares) 2.6 

 

1.4 

(1.0; 2.8) 

2.6 

 

1.6 

(0.8; 3.0) 

Gender of Household Head, Male 

(%) 

 68  

 

 69  

 

 

There was also a marked difference in the average per capita (adult-equivalent) 

annual income (including the value of home-grown foods consumed) between those 

households involved and those not, amounting to over $180 in favour of those 

involved, with a median difference of some $170. This also supports the wider 

evidence from the focus groups and survey of few alternative income opportunities 

available in the survey sites to farming activities. Thus, income-earning 



 202 

opportunities, such as wages from employment and new markets for crops were 

highly sought in all the locations before the establishment of the biofuel operations. 

It is therefore likely that waged-employment offered by the biofuel estates would 

have played an important role in the improved level and stability of incomes of those 

households with employees.  

  

5.3 Quantitative Analyses 
 

In order to assess whether differences in the food security status of households 

“involved” and “not involved” with biofuel operations were statistically significant, 

quantitative analyses were conducted, using the HNDS as the dependent variable. 

Quantitative analyses were also conducted in order to assess the influence of likely 

predictor variables on the HNDS. 

 

5.3.1 Correlation results 
 

A one-way between groups analysis of variance  (one-way ANOVA) was conducted 

to explore the impact of biofuel involvement, whether as outgrowers, employees or 

no involvement, on the HNDS. There was a statistically significant difference at the 

p<0.0005 level (ie Sig = 0.000) between the households with employees, which 

recorded the smallest average nutrient deficits, with each of the outgrower and non-

involved groups, which recorded larger average deficits. There was no significant 

difference between the outgrower and non-involved groups. The effect size of the 

analysis, calculated using eta-squared, was 0.32, indicating a large effect.  

 

5.3.2 Linear regression 
 

Given the statistical significance of differences in the HNDS between the household 

groups, a multiple regression analysis was conducted in order to assess the predictive 

ability of a group of independent variables. The variables were selected as those most 

likely to affect food security status in the survey locations, and were organised into 

four stages. The first stage of the multiple regression analysis incorporated the “non-

involved” and “involved” household groups, to assess the extent of the influence of 

biofuel involvement.  The second stage introduced the different locations of the 
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biofuel operation sites in order to assess the geographical influence on household 

food security status.  

 

The third group of independent variables were chosen as those less likely to be 

influenced by the recently established biofuel operations, but expected to be 

influential on food security status. Thus, household size is commonly associated with 

food security (larger households tend to be less food secure), but is unlikely to have 

been influenced by the recently established biofuel operation in the locality. 

Similarly, the land area owned and cropped by the household is usually positively 

correlated with food security, in that the larger area farmed tends to yield better food 

security outcomes. The gender of the household head was also added as an 

independent variable at this stage, as female-headed households are often associated 

with lower food security status.  

 

The fourth stage then introduced household income as an independent variable to 

assess its influence on the HNDS. This variable was separated from the third stage 

group because income was expected to be influenced, to some extent, by biofuel 

involvement. By isolating income as a fourth step, it was then possible to assess its 

influence on the HNDS score in relation to the biofuel involvement variable.  

  

The 4-step linear regression model identified significant associations between biofuel 

involvement and the nutrient deficit score. In the first step, biofuel involvement of 

households resulted in an average HNDS some 21 percentage points lower than 

“non-involved” households. Controlling for geographical location (village site) 

reduced this impact slightly, to just less than 20 percentage points lower. The impact 

of the group of variables believed to be less influenced by the biofuel operation, 

including household size and land area owned, reduced the impact to just under 19 

per cent in the third step. Thus, after controlling for the influence of location, 

household size, farm area owned and gender of household head, households involved 

in biofuel operations recorded, on average, a nutrient deficit score some 19 

percentage points below those households not involved. 

 

The regression model then incorporated a fourth step by assessing the influence of 

household income. This step reduced the impact of biofuel involvement on the 
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HNDS from -19 to -8.5 percentage points. Since it was known from the descriptive 

results that households involved with biofuel operations had a higher average 

income, this would suggest that much of the impact of the biofuel operation on food 

security is through the income effect. All steps produced results that were statistically 

significant (p-value of less than 0.05), as shown in table 5.6. 

 

Table 5.6 – Linear Regression Model Summary by Biofuel Involvement 

 

Regression Steps Difference in Mean HNDS 

(95% confidence interval) 

 

p-value 

1.Biofuel Involvement -21.0 

(-27.9 to -14.0) 

<0.001 

2.Controlled for Village Sites -19.9 

(-26.3 to -13.5) 

<0.001 

 

3.Controlled 

      for 

 

HH Size 

Gender of HH 

Head 

Area Owned 

 

-18.9 

(-24.7 to -13.1) 

 

<0.001 

4. Controlled for Income -8.5 

(-14.1 to -3.0) 

0.003 

 

The regression analysis was then conducted with the two main types of biofuel 

production model, where “involved” households acted either as “outgrowers” or as 

“employees”. Figure 5.6 shows the box-plots of household nutrient deficit scores 

from the survey, clearly showing the lower mean and median of deficits recorded by 

households with employees of biofuel operations, whereas the mean and median of 

deficit scores for outgrowers were only slightly lower than those for households not 

involved.  

 

Table 5.7 presents the results of the linear regression model using the two different 

biofuel involvement groups compared with the non-involved households. The model 

again shows statistically significant differences in most cases between involved and 

non-involved households. Households with employees on the biofuel feedstock 
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estates had an average HNDS some 33 percentage points below that for non-involved 

households. Controlling for geographical location and then the independent variable 

group of household size, land area owned and gender of household head, reduced this 

impact to just less than 28 percentage points. A 28 percentage point gap is still 

substantial and represents the difference between food and nutrition security and 

insecurity for many of the households surveyed. 

 

Fig 5.6 – Box-plot of Household Nutrient Deficit Score by Involvement as 

Outgrowers, Employees or No Involvement  

 

 

Note - the line dividing the inter-quartile boxes depicts the median, whilst the circle depicts the mean 

 

Once again when income is introduced as a fourth step in the regression, the 

influence of biofuel involvement, without the estimated effect of income on the 

HNDS, is reduced by some 18 percentage points to 10 per cent. This again suggests 

that there is a strong income effect within biofuel involvement. One assumption that 

might be drawn from this is that with higher incomes from the salaries of household 

members on a regular basis over the year, such households recorded much lower 

nutrient gaps and were therefore more food secure.  
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Table 5.7 – Linear Regression Model by Biofuel Involvement Groups   

 

Linear Regression Model  

Steps 

Outgrowers versus Non-

involved Households 

Employees versus Non- 

involved Households 

Difference in Mean 

HNDS  

(95% CI) 

p-value 

Difference in 

Mean HNDS  

(95% CI) 

 

p-value 

1.Unadjusted -5.47  

(-13.7; 3.80)                                          

0.19 -32.6 

 (-40.0; -25.1) 

<0.001 

2.Adjusted for Village Sites -10.5 

 (-19.8; -1.23) 

0.03 -27.7  

(-36.2; -19.3) 

<0.001 

 

3.Adjusted  

For 

HH Size 

Gender Head 

Area Owned 

 

-8.22  

(-16.4; -0.02) 

 

0.05 

 

-27.9  

(-35.4; -20.3) 

 

<0.001 

4.Adjusted for Income -7.27  

(-14.5; -0.05)    

0.05 -10.2  

(-18.6; -1.8) 

0.018 

  

In contrast the results for the outgrower households were not significant and recorded 

only a small improvement in food security status through a smaller reduction in the 

household nutrient deficit score. The outgrower results also suggest only a small 

impact from income, which largely reflects the small volumes of feedstock sold and 

relatively low prices achieved. However, it should be noted that the outgrower results 

combined two different models, with the collection of seed from traditional hedges in 

Singida having little impact on improving food and nutrition security whilst the 

community-based scheme near Arusha recorded better outcomes for those 

households involved than those not. 

 

5.3.3 Robust regression 
 

The results of the initial regression analyses supported evidence from the focus 

groups that biofuel feedstock operations employing local staff had resulted in better 

food security outcomes for those households with employees, mainly through 

improved incomes. In order to strengthen these claims, further regression analyses 

were undertaken with stricter criteria for outliers, more independent variables and 

using a robust linear regression, as described in the methodology.  
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Also, because food consumption is closely related to income, there is an endogeneity 

issue in incorporating income within the regression model. Thus, it was decided that 

source of income should be used as a dummy variable in the model rather than actual 

incomes in order to overcome the endogeneity problem. 

 

The two marginal outliers identified from the distribution of HNDS results in the 

initial review were again omitted. On reviewing the independent variables in the 

analysis another two households stood out. The farmed area of one household, at 12 

hectares, was more than double that of the next largest and the z-score for this outlier 

was also greater than 2.5, so that household was also excluded. The per capita 

income of another household was over treble that of the next largest, so this 

household was also excluded.  The remaining 162 households were again tested for 

normality on the dependent variable and the Kolmorgorov-Smirnov score was 0.055 

again indicating normality.  

 

On reviewing the survey data, more independent variables were identified for which 

full data was available for the 162 households. The age of the household head and 

phone ownership were added in terms of the education and social capital within each 

household. Also the source of income was added in relation to those households 

earning most of their income from farming and those earning most outside of 

farming, such as through employment or non-farm business.  

 

5.3.3.1 Descriptives for robust regression 

 

Table 5.8 displays the HNDS descriptives for each household biofuel grouping (non-

involved, outgrowers and employees) by each survey site for the 162 remaining 

households, together with results for the new independent variables.  The mean 

differences in the HNDS between the involved and non-involved households are 

most apparent for the large estate operations in Nzeve, Inhassune and Chibue, but 

less so for the outgrower sites at Ikiwu and Kingori/Ngurdoto.  

 

The table also shows descriptive values for other selected variables affecting food 

security status by the type of biofuel involvement. The mean age of the household 
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head for those households with biofuel employees, at 40 years, was some 5 years 

below that for the non-involved, whilst the non-involved households also had a 

slightly higher proportion of female household heads.  

 

Table 5.8 - Descriptive Statistics of Key Variables by Biofuel Involvement 

 Biofuel Involvement 

 None (n=85) Outgrower 

(n=33) 

Employee 

(n=44) 

Household Nutrient Deficit Score - 

Mean (SD) 

31.5 (18.4) 25.6 (24.6) 

 

-1.5 (20.1) 

 

 

 

 

Village 

survey 

site and 

biofuel 

company

model 

type and 

company 

location  

- 

Mean 

(SD) 

 

Ikiwu, Diligent-

Outgrowers, Singida, 

Tanzania 

31.2 (18.2) 25.5 (27.0)   

 

Kingori/ Ngurdoto, 

Kakute Ltd-

Outgrowers, Arusha, 

Tanzania 

41.4 (16.9) 25.8 (22.3) 

 

 

Nzeve, Energem 

Biofuels Estate, Bilene, 

Mozambique 

30.5 (15.4)   -0.8 (23.8) 

 

Inhassune, ESV 

BioAfrica Estate, 

Panda, Mozambique 

18.1 (22.2)   

 

-6.2 (18.0) 

 

Chibue, Principle 

Energy Estate, Dombe, 

Mozambique 

31.5 (13.4)   0.6 (16.9) 

Age of HH Head in Years – Mean 

(SD) 

45.4 (11.6) 47.6 (13.4) 40.7 (11.7) 

Gender of Household Head, Male – 

Number (%) 

67 (79%) 29 (88%) 39 (89%) 

Household Size in Adult- 

Equivalent – Mean (SD) 

3.2 (1.0) 2.95 (0.76) 

 

3.41 (1.40) 

 

Household Ownership of Phone – 

Number (%) 

26 (30.6) 17 (51.5) 28 (63.6) 

Land Area Farmed in hectares – 

Mean (SD) 

1.75 (1.1) 1.56 (0.9) 

 

1.74 (1.32) 

 

Main Source of Income from 

Farming – Number (%) 

70 (82.3) 29 (87.9) 7 (15.9) 

Household Per Capita Income in 

US$ per capita per annum – Median 

(Q1, Q3)  

203 (169, 257) 256 (149, 341) 

 

607 (365, 884) 

 

Results presented as mean (SD), median (Q1, Q3) or n (%) as appropriate. 

 

There was a marked difference, in the median per capita income between households 

involved and not, amounting to over $400 per annum in favour of those involved as 
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employees and just over $50 for those involved as outgrowers
65

. The much larger 

incomes in households with biofuel employees may also have accounted for their 

higher proportion of phone ownership. The sources of income were also different 

between the groups, with only 16 per cent of households with employees earning 

most of their income from farming compared to over 80 per cent of the non-involved 

and outgrower households. This also supports the wider evidence from the focus 

groups and survey of few alternative income opportunities in the survey sites to 

farming. It should also be noted that the average land area farmed by households 

with biofuel employees was not far below that of the non-involved households. 

 

Figure 5.7 shows box-plots of the range of HNDS results, including mean and 

median and inter-quartile values, for each survey site, divided into those households 

involved and those not.  This illustrates the lower nutrient deficit scores, and hence, 

better food security status, recorded by the households involved as employees in the 

estate-model biofuel operations at Nzeve, Inhassune and Chibue villages, compared 

to other households in the same village. The p-value results suggest little association 

between biofuel involvement and better food security status for the outgrower 

households in the Ikiwu, Singida area of Tanzania, but strong associations in all the 

other four sites. 

 

5.3.3.2 Quantitative results of robust regression 

 

As in the initial multiple regression analyses, the robust regression analysis examined 

four separate models in order to assess the impact on food security of each variable 

or group of variables. After excluding the outliers, the first model assessed the 

impact on the HNDS of household biofuel involvement as outgrowers or employees 

compared to the non-involved households, the second model incorporated the 

geographical influence of the different village sites, the third model used a group of 

variables less likely to be affected by the establishment of the biofuel operation, 

including household size, area farmed, phone ownership and then age and gender of 

the household head. The final model then incorporated the source of income variable. 

                                                 
65

 Household income data was collected during the survey on all farming income, off-farm income 

and remittances. The household income data also included the value of own production consumed and 

was expressed in per capita adult equivalent in US$, using the prevailing exchange rates in 2009. 
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Fig 5.7 – Box-plot of HNDS Results for Households Involved and Not Involved 

in Local Biofuel Operations by Village Site 

 
 

   

Robust-to-outlier regressions were first performed to estimate the difference in 

average food security between the different biofuel groups before and after 

controlling for potential confounders. No outliers were eliminated based on a Cook’s 

distance greater than one so all analyses used 162 observations. Multi-collinearity 

was again checked between dependent variables using variance inflation factors 

(VIF), where a value of 10 or higher suggests multi-collinearity. All variables had a 

VIF less than four and were thus considered not to be collinear.  

 

Table 5.9 presents the results of the four linear regression models conducted. In the 

first section of the table (biofuel involvement), in model 1, households with 

employees on the biofuel feedstock estates had an average nutrient deficit score more 

than 33 percentage points below that for non-involved households, with a p-value of 

less than 0.001. Controlling for geographical location in model 2 reduced the gap to 

some 28 percentage points and then controlling for the non-income variable group 

(household size, land area farmed, phone ownership and age and gender of 
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household head) in model 3 reduced this to 27 points, whilst maintaining a 

significant association.  

 

Table 5.9 – Robust Linear Regression by Biofuel Involvement Groups   

Model Stages Model 1 

Coefficient 

(Standard Error) 

Model 2 

Coefficient 

(SE) 

Model 3 

Coefficient 

(SE) 

Model 4 

Coefficient (SE) 

1.Biofuel Involvement
1
         

  Outgrower -5.71 

(4.39) 

-10.64* 

(4.87) 

-6.80 

(4.09) 

-6.03 

(4.03) 

  Employee -33.27*** 

(3.97) 

-27.76*** 

(4.45) 

-26.96*** 

(4.00) 

-22.12*** 

(4.54) 

2.Village Sites
2
  . . . 

Kingori/Ngurdoto, 

Arusha; Outgrower 

model 

 7.78 

(4.85) 

10.69* 

(4.39) 

10.63* 

(4.33) 

Nzeve, Bilene; Estate 

model 

 -2.92 

(6.20) 

-2.86 

(5.15) 

-1.49 

(5.09) 

Inhassune, Panda; 

Estate model 

 -13.22** 

(6.11) 

-6.82 

(5.18) 

-4.97 

(5.14) 

Chibue, Dombe; 

Estate model 

 -2.82 

(5.82) 

2.17 

(5.19) 

5.42 

(5.23) 

3. Key Variables     

Age of HH Head 

(years) 

  0.21 

(0.12) 

0.22 

(0.11) 

Gender of HH Head 

(female versus male) 

  3.73 

(3.75) 

4.05 

(3.70) 

HH Size (adult-

equivalent) 

  10.04*** 

(1.37) 

10.02*** 

(1.35) 

HH Phone Ownership   -8.00* 

(3.09) 

-7.87* 

(3.05) 

Area Farmed (hectares)   -5.40*** 

(1.54) 

-6.65*** 

(1.60) 

4. Income Source     

Main Source of Income 

from Farming 

   8.46* 

(3.84) 

Adjusted R-square 0.30 0.33 0.54 0.55 

N 162 162 162 162 
 * p<0.05, ** p<0.01, *** p< 0.001 

Note: Results of a robust regression in four different models. Coefficients represent the difference in 

mean Household Nutrient Deficit Score (HNDS) when all other variables in a given model are held 

constant. 

1. Mean HNDS compared to households not involved in biofuels. 

2. Mean HNDS compared to Ikiwu, Singida; Outgrower model. 
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Model 3 has an R-squared value of 54 per cent, suggesting that it captures over half 

of the variation in the nutrient deficit score. The independent variables with a high 

significance within the model are “biofuel involvement as employees”, “household 

size” and “area farmed”. All three variables show a strong impact on household 

nutrient deficits, with each additional adult-equivalent likely to raise the HNDS by 

10 percentage points on average and each additional hectare of land farmed likely to 

decrease the HNDS by just over 5 percentage points. Then if a household has at least 

one employee of a biofuel operation, it is likely to result in a 27 percentage point 

reduction in the HNDS on average, which would have by far the most significant 

impact on its food security status. 

 

When source of income is introduced in the fourth regression model, the effect of 

biofuel involvement on the HNDS is reduced by some 5 points to 22 per cent, again 

with a p-value of less than 0.001. Compared to the employee households, outgrowers 

recorded a smaller and non-significant reduction in the average nutrient deficit score 

of some 6-percentage points in model 4. The R-squared value for model 4 indicates 

that 55 per cent of the HNDS variation was accounted for by the model.  

 

In assessing why the households with biofuel employees had significantly lower 

nutrient deficits than both the outgrower and non-involved households, a key 

influence is likely to be the large difference in average per capita incomes between 

the groups, as shown in table 5.8. The result for section 4 in table 5.9 on source of 

income suggests that those households relying mainly on farming income, as was the 

case for most non-involved and outgrower households, were likely to have a higher 

nutrient deficit score, averaging some 8.5 percentage points above that for other 

households relying mainly on employment or other non-farm income. 

 

It should also be noted that, although the households were sampled randomly in each 

location, there is a potential problem of self-selection bias, as those households 

where members gained employment in biofuel operations may already have been 

more food and income secure. However, the qualitative evidence from the fieldwork 

suggested a more even distribution of income within the various villages prior to the 

establishment of the biofuel operations. During the pre-survey focus groups it was 

noted that the households where people had gained employment were now much 
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better off than others in the same area, but that before the operations were established 

most households practised similar farming activities and had more similar income 

levels. 

 

Given the qualitative evidence regarding the impact of biofuel involvement on 

incomes (see next section), it was decided to run a fifth regression model 

incorporating the household per capita income variable as a means of comparison 

with the initial regression analyses.  

 

As expected from the initial analyses, the results for biofuel employment became 

insignificant when income was included, with the difference in the mean HNDS 

compared to non-involved households falling from 27 percentage points below in 

model 3 to a non-significant 5 points below in model 5. The per capita income 

variable in model 5 recorded a highly significant result of a mean HNDS some 4 

percentage points lower for each 20 per cent difference in income. Also the R-

squared value for the model, at 67 per cent, suggested the model accounted for over 

two-thirds of the HNDS. Whilst, acknowledging the endogeneity issue, this again 

suggests that improved income was a key reason for the lower nutrient deficits in 

households with biofuel employees. 

 

The qualitative results in the following section provide evidence of other factors 

affecting household food security, as well as changes in food security status since the 

establishment of the biofuel operations and the reasons for such changes. 

 

5.4 Qualitative Findings from the Household Survey 

 

Although the survey results show a clear advantage in food security status for those 

households involved in biofuel operations as employees over other households in the 

same locations, and the regression models suggest that biofuel involvement and 

associated improved incomes are major factors behind the difference in food 

security, the regression analysis in itself cannot prove that the biofuel operation has 

had a positive impact on food security as there is no baseline data to verify the 
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change in status before and after the involvement of the households with the biofuel 

companies.  

 

However, the survey questionnaire also collected retrospective information on the 

household’s perceived change in food security status since the biofuel operation had 

been established. As all the biofuel projects had started within the previous three 

years, it was believed that recall bias would not be a major problem. 

 

Table 5.10 shows that over three-quarters of the households with biofuel employees 

felt their food security status had improved compared with just over half of 

outgrowers and fewer than 10 per cent of households “not involved”. Only two 

households reported a perceived worsening of food security since a biofuel operation 

had been established and no households with biofuel employees reported any 

worsening of food security in any location.  

 

Table 5.10 – Perception of Change in Food Security Status since Biofuel 

Operation Established 

 Biofuel Involvement  

Total Households (HHs) 

not involved  

(% total) 

Outgrower 

HHs  

(% total) 

HHs with 

Employees 

(% total) 

Food security 

change 

resulting from 

biofuel 

operation 

establishment 

Reduced food 

security 

1  

(1.1) 

1  

(3.0) 

0 2 

No change 71  

(81.6) 

15  

(45.5) 

8  

(18.2) 

94 

Improved 

food security 

7  

(8.1) 

17  

(51.5) 

34  

(77.3) 

58 

Don’t Know 8  

(9.2)  

0 2  

(4.5) 

10 

Total 87 33 44 164 

 

The “no change” and “improved” food security change results were then compared 

with the food security status results according to two HNDS groupings: those 

deemed to be extremely food insecure with an HNDS of 20 or more (not secure) and 
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those deemed most likely to be secure or only moderately insecure, with an HNDS of 

less than 20. The cut-off point of 20 was chosen as the mean value of all the HNDS 

results, or the peak of the distribution. The two households reporting a reduced food 

security status and the 10 households answering “don’t know” were excluded. 

 

Table 5.11 shows that, of the 34 households with biofuel employees reporting an 

improved food security status, 30 were deemed to be food secure or only moderately 

food insecure, using the HNDS results, versus four households deemed to be in the 

food insecure group. This suggests a possible relationship between a perceived 

improved food security status since the biofuel operation started and a low HNDS, 

and hence a better food security status, for the biofuel-employee households. Of 

course, the other four households reporting an improved food security status but 

deemed to be food insecure, may still have seen an improvement in the degree or 

severity of their food insecurity (ie their food insecurity may have become less 

severe). An investigation of these four households found that three were just over the 

HNDS cut-off point of 20 and one had an unusually large household size of 17 

people. 

 

Table 5.11 – Perception of Change in Biofuel Status versus Calculated Food 

Security Status Group (from HNDS) 
 

 Biofuel involvement and food security status*  

 

Total 
Not involved Outgrower Employee 

Not 

secure* 

Mostly 

secure* 

Not 

secure 

Mostly 

secure 

Not 

secure 

Mostly 

secure 

Self-

perceived 

food security 

status 

change 

resulting 

from new 

biofuel 

operation 

No change 

 
55 16 9 6 2 6 94 

Improved 

food 

security 

5 2 10 7 4 30 58 

Total 60 18 19 13 6 36 152 
* Note that households were deemed to be “not secure” with an HNDS of 20 or more (a weighted 

average percentage deficit of 20 per cent or more of the four nutrients measured), and “mostly 

secure” with an HNDS of less than 20. 

 

In contrast, of the 78 households not involved in biofuel operations, over three-

quarters (77 per cent) were deemed to be food insecure with an HNDS of 20 or more. 

Given the absence of alternative employment and other income generating 
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opportunities before the biofuel operations started, and the similarity of the 

household profiles in terms of number of people, land area owned and gender of 

household head, it could be assumed from the preponderance of “no change” 

responses that a similar food security profile may have applied to the whole 

population before the biofuel operations were established.  

 

Further analyses were undertaken on the qualitative elements of the survey 

questionnaire, particularly the household responses on how their food security status 

had changed since the establishment of the biofuel operation and how they felt about 

the nearby biofuel operation? 

 

Of the households with employees perceiving an improvement in food security since 

the biofuel operation was established, almost all (30 households) reported improved 

income through employment as the main factor, whilst two reported improved food 

production as the main factor. For the outgrowers who reported improved food 

security there were a wider variety of reasons put forward including improved 

income from feedstock and other crop sales, and higher food production. For the 

fewer households not involved in biofuel production reporting improved food 

security, the main reason was increased sales of food crops due to increased demand 

resulting from the biofuel operation. 

 

The largest grouping in the food security change category in table 5.10 was the 

households not involved in biofuel production reporting an unchanged food security 

situation since the biofuel operation had been established. Even though this group 

reported no change in food security status, 49 of the 71 households were happy with 

the establishment of the biofuel operation in their locality and 18 were unsure of its 

impact. Some 37 of all such households stated they believed the biofuel operation 

improved income prospects for households in the community, either through 

improved sales of crops and other food or through employment, whilst 14 felt that 

the operation had improved the general development of the village through better 

infrastructure and social facilities 

 

The household survey also attempted to capture food production responses in each 

location by asking how food production had changed since the biofuel companies 
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had been established. Many householders found it difficult to answer this question as 

so much of the variability in food production was attributed to weather. Nevertheless 

some 34 households reported improved yields and none reported lower yields as a 

result of the biofuel projects. It was also noted that most households with biofuel 

employees had continued to farm the majority of their land
66

, partly helped by the 

biofuel companies providing flexible working hours to enable key farming tasks to 

be performed, although it was also generally reported that more of the farm-work 

burden had fallen on the non-employee members of the household. 

 

Given the reported importance of improved income, fig 5.8 shows the average 

HNDS values for different income groupings in each location. The recorded nutrient 

deficits are clearly largest in the extremely poor households with an average per 

capita income (adult-equivalent) of less than $0.5 per day. The percentage deficiency 

then falls as average household income improves in every location (table 5.12). This 

provides further evidence of the importance of income on food security. 

 

Fig 5.8 – Average Household Nutrient Deficit Score by Income Group  

 

 

 

 

 

                                                 
66

 The averages for the biofuel employee groups in each location were over 90 per cent of the owned 

land continuing to be farmed. 
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Table 5.12 – Average Household Nutrient Deficit (HNDS) by Income Group 

 Average HNDS by household income group in $ per adult-

equivalent capita per day 

 < $0.5 $0.5 to < $1 $1 to $2 >$2 Average 

Ikiwu 40 13 9 - 28 

Kingori/Ngurdoto 59 36 14 - 35 

Nzeve 32 26 12 -23 13 

Inhassune 40 25 -3 -11 6 

Chibue 44 21 4 -2 20 

Average 43 24 7 -12 20 

Note that household income groups are in 2009/10 values 

 

 

5.5 Overall Food Security Findings from the Household Surveys 

 

5.5.1 Linking the HNDS to the food security dimensions 

  

The HNDS indicator used in this analysis distils the reported consumption data of the 

various foods during the year by each household, into estimated intakes of four main 

macro and micronutrients. By comparing these intakes against the recommended 

requirements for the individuals comprising each household, an approximate 

measure is achieved of significant nutrient deficits in each household, which are then 

weighted to give an average deficit score.  

 

As such, the HNDS covers the four main dimensions of food security: availability 

(quantities consumed), access (home-produced and purchased food consumed), 

stability (seasonal and monthly changes in consumption) and utilisation (nutritional 

elements). However, it is also based on typical diets, adjusted for seasonal shortfalls, 

and may therefore be subject to some recall error. The conversion of the foods 

consumed into macro and micronutrients using composition tables, as well as the use 

of moderate activity dietary requirements, may also lead to some under or over-

reporting of nutrient deficit gaps. The HNDS should, therefore, only be used as an 

approximate estimate of food security status and would need to be combined with 

other relevant indicators where possible.  
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In addition, the analysis does not cover any impacts the biofuel operations may have 

had on households outside that locality.  It might be argued, for example, that the 

improved purchasing power of households involved in the Mozambique biofuel 

operations could have reduced the availability of food supplies and led to higher food 

prices outside that locality.  

 

A review of staple food prices in local markets, together with focus group feedback, 

indicated that prices, particularly for maize, were low at the time of the survey in 

mid-2009 following a bumper harvest in Mozambique. Most of the maize is grown in 

the centre and north of the country (where the Dombe biofuel company is located), 

and much of the surplus from there flows down into the deficit southern regions 

(where the Inhassune and Bilene biofuel operations are situated), with the largest 

volumes flowing down to the major consuming centre of Maputo.  The central and 

northern maize prices are therefore usually the lowest prices, whilst those in the main 

deficit market of Maputo are highest. Prices of maize in markets such as Xai Xai (the 

nearest major market to the Bilene operation) and Massinga (the closest maize 

exchange to the Inhassune biofuel estate) generally fluctuate between the central and 

Maputo prices in more thinly traded markets. There was little evidence from price 

trends between 2008 and 2011 that increased demand triggered by higher incomes 

from households with employees of biofuel operations, reduced availability and 

raised prices
67

 in any of the main wholesale markets closest to the three sites 

surveyed. 

 

Evidence from the focus groups and interviews suggested that the introduction of 

waged employment into the three estate sites in Mozambique led to a multiplier 

effect in each locality. For example, the establishment of the jatropha estate in 

Inhassune encouraged the expansion of the village market from 3 to 20 shops, whilst 

local farmers outside the village benefitted from increased demand for food boosting 

their incomes. Within the village there was evidence that the biofuel operation led to 

increased food production through the provision of food plots, loan of farming 

equipment such as tractors and ploughs to cultivate new land and other technology 

                                                 
67

 In other words prices did not appear to rise above the levels that would have prevailed according to 

national and regional supply and demand conditions 
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transfer impacts. This, together with the survey results showing increased local food 

yields and production, suggests it is unlikely that any of the biofuel operations were 

negatively affecting access to food in surrounding villages. 

 

So, in terms of availability and access, the quantitative results using the HNDS 

methodology, together with the qualitative findings on perceived changes in food 

security status and the review of local market dynamics, indicate that biofuel 

involvement had a positive impact on food security status, particularly for 

households with employees of biofuel feedstock operations. This suggests that 

income is perhaps more important in determining food access than food prices. 

 

In terms of stability the following charts show the calorie deficit component of the 

HNDS for each month during the year. These were calculated from household 

responses on changes in food types, meal numbers and portion sizes in typical 

shortfall months over the year preceding the survey. Where untypical events had 

occurred households were asked what the normal consumption patterns would be in a 

shortfall month. 

 

For the outgrower locations there was little difference in the seasonal pattern of 

calorie deficits over the year, as illustrated in figure 5.9. In Ikiwu, the average calorie 

deficit for outgrowers remained just under that for non-involved households for all 

but one month of the year. The small contribution of jatropha seed sales to incomes 

during the year is one possible reason for this.  

 

The gap between calorie deficits for outgrowers and non-involved households in 

Kingori and Ngurdoto villages also remained fairly consistent, but larger than that for 

Ikiwu, throughout the year. Although the average calorie deficit was much greater 

for non-involved households, the variation, at 7 percentage points, was slightly less 

than the 13 percentage point variation for outgrower households.   
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Fig 5.9 – Household Monthly Calorie Deficits (%) for Outgrower and Non-

Involved Households in Ikiwu and Kingori/Ngurdoto  

 

 

Fig 5.10 - Household Monthly Calorie Deficits (%) for Employee and Non-

Involved Households in Chibue and Inhassune 
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In the villages of Inhassune and Chibue, those households with employees of the 

local jatropha feedstock operations exhibited relatively small calorie deficits in most 

months, or surpluses in the case of Inhassune. The non-involved households in both 

locations recorded much larger seasonal deficits, but the seasonal pattern was again 

similar for involved and non-involved households (fig 5.10). 

 

Only in Nzeve village (fig 5.11) was there a noticeable difference in the extent of the 

monthly calorie deficits. Households with biofuel employees in Nzeve recorded 

relatively little change during the year, from an average deficit of 4 per cent in April 

to an average surplus of 8 per cent from September to January, or a 12 percentage 

point variation in the monthly mean. Non-involved households in the same village 

recorded monthly calorie deficit means ranging from 18 to 48 per cent during the 

year, a 30 percentage point variation. 

 

Fig 5.11 - Household Monthly Calorie Deficits (%) for Employee and Non-

Involved Households in Nzeve, Bilene, Mozambique 
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Nzeve and Inhassune. There was only one month in which the calorie deficit was 

over 30 per cent in any of the biofuel employee groupings; that for the Chibue sugar 

cane operation in December. This finding would have enabled the operation in 

question to take mitigating action to address this large average monthly deficit and 

any other significant monthly gaps, not only for calories but also for any other 

excessive nutrient gaps.  

 

The survey also recorded the number of months in the past year that households had 

a food shortage. For the non-involved households the average number of shortage 

months was 3.28, for the outgrowers 2.88 and for the households with biofuel 

employees the average was 2.28, a full month less than non-involved households.  

 

So the impact of biofuel involvement on stability appears to have been more mixed, 

with fewer shortage months for those households with employees of biofuel 

operations and less monthly variation in calorie deficits compared with non-involved 

households in Nzeve and Kingori-Ngurdoto, but little difference in the other 

locations. Nevertheless, the fact that the employee-based households recorded much 

lower calorie deficits overall (and in many cases surpluses) means that they would 

have been better placed to cope with any seasonal shortfall, whilst outgrowers in 

Kingori-Ngurdoto also recorded consistently lower deficits throughout the season 

and outgrowers in Ikiwu, marginally lower.  

 

In terms of utilisation the household survey also collected data on access to improved 

water sources, time spent collecting fuel and water and cooking facilities. Average 

results for the biofuel involved and non-involved groups of households were fairly 

similar in each location, suggesting biofuel involvement had less impact on these 

aspects of utilisation.  

 

However, there were differences between the biofuel sites, as some biofuel 

companies had installed improved wells and boreholes, or even water pumps and 

taps (eg in Inhassune), providing access to safer water and reducing collection times. 

In these cases most households benefitted from improved access to safe water and 

better sanitation, whether involved with the biofuel operation or not.  
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In order to assess the water access status of each household, a score of 0 was given to 

households collecting from rivers, ponds and dams, 1 for those collecting from wells 

and boreholes and 2 from improved sources such as pumps and taps. The mean 

scores for each location are shown in figure 5.12. This highlights the better score 

recorded for Inhassune where improved wells and taps had been established by the 

biofuel operation.   

 

Fig 5.12 – Mean Water Source Score for Households Involved and Not Involved 

with Local Biofuel Operations  

 
Note: Water Source Score - 0=rivers, ponds and dams; 1= improved wells and boreholes; 

2=taps and pumps from improved sources 
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impact. 
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5.5.2 Breakdown of the HNDS indicator 
 

Another aspect of utilisation measured by the HNDS is the individual nutrient gap. 

As well as highlighting those households or areas most likely to be food insecure 

based on their reported food consumption, the HNDS can also be broken down into 

its constituent components in each locality to assess the key nutrient issues within the 

overall score and potential mitigating actions.  

 

For example, the average diet in the surveyed households of Ikiwu village in the 

Singida region of Tanzania, displayed adequate protein intake, but a very high deficit 

gap for vitamin A, due to the largely cereal-based diet (fig 5.13). In comparison, the 

average diet in the Kingori and Ngoroduto villages of Arusha recorded a better 

vitamin A intake but high calorie and iron deficits. These results can be compared 

with other indicators in each locality to guide mitigating actions, such as the possible 

promotion of vitamin A enriched crops in the Singida area.  

 

Fig 5.13 – Breakdown of Average Household Nutrient Deficit Gaps in Ikiwu and 

Kingori/Ngoroduto Villages  
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was significantly worse in terms of the amount eaten per capita and thus had much 

larger deficits of calories, protein and iron. 

 

For the Mozambique sites the consumption of orange-fleshed sweet potato and some 

meat in the diets helped to ensure there was little vitamin A deficiency, but iron and 

calorie gaps remained high overall
68

. Although only the main macro and micro 

nutrients are included in this analysis, this also illustrates how mitigating actions 

could be guided by the HNDS. 

 

Fig 5.14 – Breakdown of Average Household Nutrient Deficit Gaps in Nzeve, 

Inhassune and Chibue villages 

 

 

 

The HNDS can also be broken down into the main food sources or categories of each 

nutrient. For example, calories can be broken down into cereal, root crop, protein 

crop, bananas, meat and fish sources, as depicted in figure 5.15, which shows that 70 

per cent of calories were derived from cereals in the Mozambique survey sites.  

 

                                                 
68

 Note that further investigation would be needed in terms of the bio-availability of vitamin A and 

the impact of other foods eaten in this regard. 
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Fig 5.15 – Percentage of Calories from Different Food Sources in Nzeve, 

Inhassune and Chibue villages 
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Fig 5.16 – Average Percentage of Maize and Bean Use Purchased in Each Study 

Site  

 
Note: King/Ng = Kingori/Ngurdoto, Inhas = Inhassune, Mze = maize.  

 

 

Fig 5.17 – Average Percentage of Maize Purchased by Households - 

Mozambique Sites 

Note – “Nzeve Employ” = Households with employees of biofuel operations in Nzeve. “Nzeve Other” 

= Non-involved households in Nzeve. “Inhas” = Inhassune. 
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purchase more of their food than other households in all locations, largely due to the 

higher incomes earned from employment (fig 5.17).  

 

This illustrates how the HNDS indicator and methodology can be used to provide 

more detailed nutritional information in order to guide mitigation, and help link 

nutritional outcomes with agricultural interventions and shopping behaviour.  

 

5.5.3 Comparing results with other studies of the same operations 

 

Other research projects have covered the same biofuel operations surveyed in this 

study, the results from which tend to corroborate the survey findings. 

 

A study of three villages in the vicinity of the Bilene, Energem biofuel operation in 

2009, concluded that households working on the plantation were better off in socio-

economic terms than households not involved, when looking at income and 

expenditure measures (Peters, 2009). This corresponds with the survey findings that 

households with biofuel employees in Nzeve village were significantly more food 

secure than other households in the same village, and that such households also 

perceived an improvement in food security after the arrival of the biofuel operation. 

 

Another study describes a visit to the Inhassune ESV jatropha estate in 2008 when 

“the plantation was thriving, the nursery was bustling and the area had an 

atmosphere of activity and growth, with 1,200 villagers employed well above the 

minimum wage rate”. The researchers note that the community was in favour of the 

proposed biofuel development and that they preferred to be employed rather than 

growing biofuel feedstocks themselves, so that “they would be assured of a monthly 

income and thus not have to deal with the two to three months of food insecurity that 

accompanied their subsistence farming” referring to their previous livelihoods (von 

Maltitz et al., 2012). 

 

Portale describes the socio-economic benefits to rural households of the Diligent 

outgrower operation in Tanzania, including a positive relationship between 

involvement as an outgrower with household perception of food security status. Over 
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100 households were interviewed in the study, including outgrowers and non-

participants as a control group. The outgrowers had a higher perception of food 

security and reported lower food shortages over the preceding year, which was 

largely explained by the more regular income pattern from selling jatropha seeds 

over the longer harvesting period (Portale, 2012). 

 

These studies of the same biofuel operations used in this analysis support the results 

from the household survey for the larger-scale estate operations, although the 

outgrower households in Singida had less positive food security outcomes than 

Portale’s wider study. This may be partly attributed to the fact that most of the 

outgrowers in Ikiwu were supplying jatropha from old jatropha hedges used mainly 

to protect crops from wildlife damage. Hence, the planted area and yields of jatropha 

were very low in this area, restricting the amount of income earned from sales of the 

seed, whilst the positive impact of reduced damage to food crops was difficult to 

evaluate. 

 

Another important issue for biofuel impacts on household food security has been the 

closure or suspension of many biofuel feedstock projects in Africa in recent years: 

two of the operations investigated in this study have experienced a similar fate.  

   

The Energem jatropha estate in Bilene, Mozambique closed due to financial reasons 

in 2010 before the promised community projects of electricity, a new school and 

health centre were delivered. Equivalent land had been provided to those households 

who agreed to transfer land when the biofuel operation was established. The 

household survey recorded that in Nzeve village, of the 16 households reporting that 

they had transferred some land to the Energem operation, 13 had been given other 

land as compensation but further away from the village. When the operation closed 

down the company eventually paid back wages and redundancy payments amounting 

to some $136,000 (Hanlon et al., 2011). However, some households were left with 

less land or land further away from their household, making them potentially more 

vulnerable to food insecurity.  

 

The ESV jatropha plantation also ran into funding problems in 2009, leading to the 

suspension of operations and wages until it sold the estate to SAB Mozambique in 
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late 2009. SAB Mozambique reported they had paid back-wages and planned to 

resume work to expand jatropha plantings. In 2010 it was announced that 80 full-

time workers had been taken back and that there would also be 1,000 seasonal jobs 

(Hanlon et al., 2011). Since none of the households lost land to the company, the 

main impact on food security was the loss of wages for an extended period. 

 

Principle Energy also suspended its sugar cane operations near Dombe due to 

financing issues and a reported takeover battle in 2009 (Hanlon et al., 2011). Only 

four of the 32 households surveyed in Chibue village reported losing land to 

Principle Energy due to government purchasing orders, but only one of those 

reported receiving compensation. The company had been surprised to hear about the 

three households not compensated and had promised to investigate them.                                                        

 

In the jatropha outgrower sites surveyed, very little land had been transferred from 

food to jatropha trees. Diligent Tanzania is reported to have recently sold its jatropha 

outgrower operation (Sulle, 2013).  In the villages supplying jatropha seed to Kakute 

Ltd, some additional land had been allocated to jatropha, but this was often 

intercropped with maize to reduce its impact on food production whilst at the same 

time providing some cash income.  
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6. Findings from the Global to Local Analysis of Land Use 

and Food Prices   
 

 

The literature review highlighted the greater academic and media focus on macro 

rather than micro impacts of biofuels on food security. In other words, there has been 

a much greater emphasis on how global biofuel production, which is concentrated 

mainly in food-secure countries, has affected the world availability and prices of 

staple foods, and how this is estimated to have influenced households in food-

insecure countries.  

 

It is also evident from the review that the lack of consensus on the extent to which 

biofuels have influenced food security is partly due to the use of diverse data and 

assumptions on biofuel production, feedstock areas and yields, world food prices, 

supply and demand elasticities and future scenarios, as well as differences in 

modelling approaches and food security measures used.  

 

The various studies have also had limited time series data to work with, as many of 

the analyses were conducted in the early years of the so-called “biofuel boom”. 

However, the experience of a decade since then can provide better evidence of how 

biofuel production has affected the availability of land and how world commodity 

and food prices have responded.  

 

Given the many econometric studies that have been undertaken using diverse 

assumptions and resulting in a wide range of findings, a different approach is 

undertaken in this analysis, focussing on a retrospective data-driven analysis of key 

supply, demand and price information related to the global biofuel sector over the 

past decade. 

 

This chapter focusses on the results of this macro analysis, with the first section 

describing the findings of the global biofuel and feedstock analysis and its 

implications for land availability for food production. The second section then 

focusses on the relationship between biofuel production and global and national food 

prices, with a particular focus on maize.  
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6.1 Global Land Use of Biofuel Feedstocks  

 

The main food security issue related to land is the extent to which biofuel feedstocks 

absorb existing, and divert additional, land resources away from food. The findings 

of this first section of the macro analysis have been divided into the two main types 

of biofuels produced: fuel ethanol and biodiesel.  

 

6.1.1 Usage of land for fuel ethanol production  

 

Ethanol is the main biofuel produced globally representing some three-quarters of 

total biofuel production on an energy-basis in 2015. Not all of the ethanol produced 

globally is used for fuel, so estimates of fuel ethanol production are based on survey 

details of production by ethanol processors and information from fuel blenders on 

how much ethanol they have used.  

 

Global ethanol production for fuel use is estimated by this analysis at just under 100 

billion litres in 2015, equivalent to some 50 million tonnes or 400 million barrels of 

oil.  

 

The US accounts for nearly 60 per cent of the ethanol produced for fuel use globally, 

followed by Brazil with just under a third of the total. Most of the rise in US 

production occurred between 2005 and 2010, with output remaining fairly flat from 

2010 to 2013. Over the past two years, however, there has been a renewed surge in 

US ethanol output, largely due to lower oil prices and the resulting increased demand 

for fuel (and, hence, biofuel blending), but also exports. Brazilian ethanol production 

has also increased in recent years, as margins have proved more profitable than sugar 

conversion, due to low world sugar prices (fig 6.1). 

 

Appendix 3 shows the breakdown of estimated fuel ethanol production by country 

from 2005 to 2015, from various national sources. This highlights the sharp rise in 

production in recent years in new producers, such as Thailand, India, Colombia and 

Peru. 
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Fig 6.1 – World Fuel Ethanol Production – 2005 to 2015 

 

 
Source: Authors’ analysis from various international and national sources – see Appendix 3 

 

The analysis shows that feedstock use follows a similar pattern to geographical 

production, given that nearly all US production is from maize and most Brazilian 

production is from sugar cane (fig 6.2). In the case of Brazil, it is notable that the 

molasses by-product of sugar production accounts for a significant proportion of 

biofuel output, although cane juice remains the major feedstock
69

. In many other 

countries, molasses are the preferred feedstock for ethanol production as a by-

product of the sugar industry, particularly in India and Pakistan but also some Latin 

American and African countries.  

 

The use of molasses as a feedstock has important implications for land use, as 

molasses are often treated as a waste product with limited alternative markets. Some 

countries also use other by-products: for example, maize cobs are used in China, 

waste wine is used in Italy and waste wood and paper are used in Finland and 

Sweden. These low-value by-product feedstocks are excluded from the land use 

estimates in this analysis. 

 

                                                 
69

 In other words, most Brazilian ethanol output uses all the juice extracted from the cane, but some 

uses the molasses by-product left after the cane juice has been processed into sugar. 
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Fig 6.2 – World Fuel Ethanol Production by Feedstock  

 

 
Source: Authors’ analysis from various international and national sources – see Appendix 3 

  

Land use estimates for ethanol production were derived by dividing the amount of 

each relevant feedstock used by its average annual yield in each country concerned 

using data from FAO, USDA, UNICA, Eurostat and other national sources
70

.   

 

The resulting totals show that some 20 million hectares were harvested globally to 

produce fuel ethanol, 15 million hectares of which comprised maize, with sugar cane 

and other cereals accounting for most of the difference. It is worth noting here that 

although fuel ethanol production has increased in recent years, the harvested area has 

remained fairly flat since 2010, with the exception of the 2012 US drought-affected 

crop
71

. Similarly, the continued rise in Brazilian ethanol output has occurred with 

relatively little increase in harvested area over recent years (fig 6.3). 

 

However, these calculated feedstock areas also tend to overestimate the areas 

devoted to feedstocks used in ethanol production due to the fact that valuable co-

                                                 
70

 It is noted again here that the use of average national yields will tend to overestimate the amount of 

land used, as many biofuel operations source their feedstocks from large-scale producers or have their 

own feedstock operations, both of which tend to produce higher feedstock yields than national 

averages. 
71

 Average US maize yields were exceptionally low in 2012 leading to a larger area being required to 

meet the same level of supply 
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products are also produced. In US maize ethanol production, for example, about one-

third of the grain is used for ethanol production, whilst another third results in the 

high-protein feedstuff known as distiller dried grains solubles (DDGS). 

 

Fig 6.3 – Global Areas Devoted to Fuel Ethanol Feedstocks 

 

 
Source: Authors’ analysis from various international and national sources – see Appendix 3 

 

However, the value of co-products is often less than the biofuel revenue, so 

apportioning the area on a mass volume basis would not reflect the influence of the 

biofuel and its co-products on the decision to plant feedstocks. As explained in the 

methodology section, this analysis therefore uses a revenue-based allocation of land 

area to the various co-products. 

 

Co-product revenues from maize ethanol production were calculated from 

information provided by ethanol processors to the US National Agricultural 

Statistical Service (NASS) each week. An average ethanol price for recent years of 

$1.5 per gallon was used, together with an average value of $150 per tonne for 

DDGS and 35 cents per pound for the maize oil recovered. Some analyses also 

include values for the remaining corn cobs and straw/stover, often used as energy 

sources, as well as CO2 gas sales to beverage producers and other users. 
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Table 6.1 shows two examples of the revenue breakdown between co-products in US 

maize ethanol production, using processing information from two different sources 

and rounded average prices over recent years. This suggests that ethanol revenue is 

about three-quarters of the total revenue earned from one tonne of maize given the 

volume breakdown and average prices of different co-products. Similar analyses for 

sugar cane and other cereals resulted in average ethanol revenue proportions of 90 

and 70 per cent, respectively.  

 

Table 6.1 – Example Revenue Calculations from the Processing of 1 Tonne of 

Maize for Ethanol 

 

 Example 1 using data from Example 2 using data from 

 
USDA, 

2016 Unit Notes 

Mumm et 

al, 2015 Unit Notes 

Mass of ethanol 0.330 tonnes 417 litres/t 0.327 Tonnes 414 litres/t 

Price of ethanol  502.00 $/tonne $1.5 per gallon 500.00 $/tonne  

Revenue from 

ethanol 165.66 $  163.42 $  

       

Mass of DDGS 0.314 tonnes 

17.75 lb per 

bushel 0.308 Tonnes 

308kg/t of 

maize 

Price of DDGS 150.00 $/tonne  150.00 $/tonne  

Revenue from 

DDGS 47.17 $  46.20 $  

       

Mass of maize oil 0.005 tonnes 5kg/t of maize 0.004 Tonnes 

4.29kg/t of 

maize 

Price of maize oil 771.61 $/tonne 35 cents/lb 750.00 $/tonne  

Revenue from 

maize oil 3.86 $  3.22 $  

       

Other co-product 

revenue 10 $ 

CO2, corn cobs 

& stover 0 $  

       

Total revenue 226.69 $  212.83 $  

% revenue from 

ethanol 73 %  77 %  

Note –The data in this table are typical values based on standard processing coefficients and average 

approximate prices for co-products over recent seasons.  

USDA figures are derived from the USDA AMS Bioenergy Market News series (USDA, 2016a) which 

incorporate standard coefficients for ethanol, DDGS and oil yields from US ethanol plants. Prices of 

ethanol, DDGS and corn oil are also derived from USDA reports, using rounded average figures 

recorded over the past five years. For other co-product revenue, a nominal figure has been used within 

the USDA analysis due to the lack of data on CO2, corn cob and stover/straw sales and prices.  

The analysis by Mumm et al (2014) did not include values for other co-products and rounded average 

prices have been used for ethanol, DDGS and corn oil within this example. 
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Applying the 75 per cent revenue proportion to the area devoted to maize ethanol, 

plus calculated revenue proportions for other cereals and sugar cane and beets and 

other feedstocks, results in a global area of just over 15 million hectares devoted to 

fuel ethanol production, an increase of 10 million hectares over the past decade (fig 

6.4). The 2015 estimated harvested area represents just under 1 per cent of the global 

arable area according to FAOSTAT data. 

 

Fig 6.4 – Global Harvested Area Devoted to Fuel Ethanol Feedstocks Adjusted 

by Co-product Revenue 

 

 
Source: Authors’ analysis from international and national sources – see Appendix 3 

 

Whilst  the global land area devoted to ethanol production has increased from 5 

million hectares to just over 15 million,  much of the trebling of global fuel ethanol 

output over the past decade can be attributed to yield growth and a larger share of 

less land-intensive feedstocks such as molasses. It is also clear that by far the largest 

area increase has been caused by US maize-based ethanol.  

 

It should also be noted here that the increases in harvested areas devoted to biofuel 

feedstocks may not necessarily result in a similar increase in the overall arable area. 

Harvested area incorporates double-cropping where more than one crop is harvested 
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in the year. There may also be an increased proportion of arable land harvested over 

time as better practices encourage reduced crop losses or less fallow and fodder 

crops. 

 

6.1.2 Usage of land for biodiesel production  

 

Biodiesel production is defined in this analysis as conventional fatty acid methyl 

ester (FAME) biodiesel, plus hydro-treated vegetable oil (HVO). Production has 

risen from some 4 billion litres in 2005 to 33 billion in 2015, when there was a slight 

reduction in output for the first time over the past decade (fig 6.5). The EU is the 

leading producer, but South Asia, South America and North America have all seen a 

steady rise in production from virtually zero output in 2005. The fall in production 

between 2014 and 2015 was mainly due to reduced volumes produced in Indonesia 

and Argentina, as reflected in the table of world biodiesel and HVO production by 

country in appendix 4. 

 

The main feedstock used in biodiesel production is soyabean oil, which accounts for 

most production in the Americas. However, global biodiesel output from used 

cooking oil (UCO) and animal fats (tallow, lard and chicken fats) has been the fastest 

rising feedstock category, and production from these sources was close to that of 

soyabean oil in 2015. Rapeseed was the largest world feedstock source until 2011, 

whilst palm oil-based biodiesel rose sharply to 2013, but fell back to fourth-highest 

in 2015 (fig 6.6). 

 

In terms of land use, the total area devoted to all biodiesel feedstocks was about 22 

million hectares in 2015, with soybeans accounting for 15 million (70 per cent) of 

that (fig 6.7). However, adjusting for co-product market value (mainly protein meals 

used in animal feed), produces a total area devoted to biodiesel production of just 

under 10 million hectares, with soyabeans accounting for just under 5 million (50 per 

cent), rapeseed and sunflowerseed 3.5 million and palm and coconut, 1 million (fig 

6.8).  
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Fig 6.5 – World Biodiesel Production – 2005 to 2015 

 

 

Source: Authors’ analysis from international and national sources – see Appendix 4 

 

Fig 6.6 – World Biodiesel Production by Feedstock – 2005 to 2015 

 

 

Source: Authors’ analysis from international and national sources – see Appendix 4 
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Fig 6.7 – Global Biodiesel Harvested Area Devoted to Total Biodiesel Feedstocks 

and to Soyabeans, and Areas Adjusted by Co-product Revenue 

 

 

Source: Authors’ analysis from international and national sources – see Appendix 4 

 

Fig 6.8 – Global Harvested Areas Devoted to Biodiesel Feedstocks Adjusted for 

Co-product Revenue 

 

Source: Authors’ analysis from international and national sources – see appendices 3 and 4 
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As with ethanol, the global area devoted to biodiesel has remained relatively constant 

over the past five years at 10 million hectares, despite the rise in biodiesel 

production, as UCO, animal fats and HVO from waste products have captured a 

greater share of world output, and as feedstock yields of soyabeans and rapeseed 

have increased. The large difference between the total feedstock areas and that 

adjusted for co-products, largely reflects the substantial volume of protein meal 

output that entered the animal feed sector. 

 

6.1.3 Total biofuel land use 
 

In order to illustrate total biofuel production within a single metric, ethanol and 

biodiesel production estimates must be converted to an equivalent energy basis, as a 

litre of ethanol provides only 70-75 per cent of the energy of a litre of biodiesel. The  

volume totals are therefore converted into comparable energy values, using standard 

conversion factors into tonnes of oil-equivalent. Global biofuel production was 

calculated at some 75 million tonnes of oil-equivalent (toe) in 2015, ethanol 

accounting for some two thirds and biodiesel a third (fig 6.9). This represents some 2 

per cent of global crude oil production and about 12 per cent of US crude oil 

production. 

 

When translated to feedstock areas, this represents over 40 million hectares. 

However, when the value of co-products is accounted for, the area devoted to 

biofuels has been about 25 million hectares per annum over the period 2013 to 2015. 

Accounting for co-products on a mass-equivalent basis, rather than market-value, 

results in a global area devoted to that part of the feedstocks from which biofuels are 

produced, of some 15 million hectares in 2015 (fig 6.10).  

 

It is arguable which method provides the most realistic assessment of the land area 

devoted to biofuels, as opposed to the amount allocated to producing animal protein 

meals and other co-products. Acknowledging that the market-value methodology 

employed is more likely to over than underestimate biofuel land use, but that mass-

based methods tend to underestimate the influence of co-product revenues on 

feedstock plantings, it could be argued that an average value in between the market 

and mass-based results might be the most appropriate, at about 20 million hectares. 
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However, this study uses a market value method as the likely most influential factor 

in planting decisions.   

 

Fig 6.9 – Global Biofuel Production in Oil-Equivalent Tonnes 

 

Source: Authors’ analysis from international and national sources – see appendices 3 and 4 

 

The global area devoted to biofuel feedstocks has been relatively stable since 2011, 

and only rose slightly in 2012 due to the US maize drought and low yield of maize 

that year (hence, requiring more land to meet ethanol demand). Whilst North 

America accounted for 46 per cent of the global area on which biofuel feedstocks 

were produced in 2015, Africa accounted for only 0.1 per cent. 

 

Breaking down the global biofuel area by feedstock, shows that ethanol feedstocks 

accounted for some 16 million hectares in 2015 and biodiesel 9 million, after 

adjusting for co-product values. Maize accounted for the largest land use of the 

biofuel feedstocks in 2015, at 11.6 million hectares, followed by soybean with 4.5 

million, sugar feedstocks (cane, beet and molasses) at 3.5 million and rapeseed at 3.2 

million hectares (fig 6.11). 
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Fig 6.10 – Global Harvested Area of Biofuel Feedstock – 2005 to 2015 

 

Source: Authors’ analysis from international and national sources – see appendices 3 and 4 

Fig 6.11 – Global Harvested Area by Type of Biofuel Feedstock adjusted for Co-

product Values – 2005 to 2015 

 

Source: Authors’ analysis from international and national sources – see appendices 3 and 4 
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The global harvested area figures since 2011 show that the increased biofuel 

production since then has been met without any significant increase in land use, as 

the 2012 jump was due almost entirely to the drought-hit US maize yields. The rise 

in biofuel production during that period, from just over 60 billion litres to some 75 

billion, was therefore largely met through a combination of improved feedstock 

productivity (through higher yielding varieties, better farming practices to boost 

yields of existing varieties, more double cropping, increased intensity of planting, 

etc), a larger share of higher biofuel-yielding feedstocks in the overall mix, a larger 

share of feedstocks with no land use implications, such as UCO and animal fats, and 

improved plant efficiency.  

 

6.1.4 Biofuel land use changes in the context of global land use 
 

The overall increase in land area since 2005, when the US introduced its first biofuel 

blending mandates, and the first year of the EU indicative blending targets, is 

estimated at 33 million hectares in total and at 19 million hectares when adjusted for 

co-product values. The latter figure is about 1.2 per cent of the total world area under 

arable and permanent crops in 2013, and similar to the net 21 million hectare 

increase in the global arable and permanent crop area between 2005 and 2013 (FAO, 

2016a). 

 

In terms of co-products, livestock protein meals in the form of oilseed-based meals 

and DDGS would have accounted for the majority of the difference, at some 14 

million hectares. Since most of the co-products have entered the animal feed sector, 

it could be argued that biofuel and co-product demand has contributed to food supply 

to that extent whilst utilising 19 million hectares for actual biofuel production, in 

terms of the revenue share. 

 

However, it is difficult to gauge the extent to which the 33 million hectare additional 

crop area for biofuels and animal protein meals combined, has replaced the area 

planted to other crops or whether the new demand has added to overall feedstock 

plantings. The increased production of animal protein feeds from biofuel production 

should help to displace feed use of other raw materials by a similar amount 
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depending on the feed value. But in terms of food security, the key question is to 

what extent does the increased area devoted to biofuel production reduce existing 

and potential food production?  

 

As noted above, according to FAO the global arable and permanent crop area rose by 

21 million hectares from 2005 up to 2013 when the latest figures are available. The 

estimated 19 million hectare rise in the global biofuel feedstock area suggests that 

biofuels could have contributed to a significant proportion of this increase. But table 

6.2 shows that most of the 21 million hectare increase in the arable area was due to a 

significant rise in the area under permanent crops, particularly in Asia. The overall 

world arable area increase during this period was estimated at just 2 million 

hectares
72

.  

 

The areas in table 6.2 relate to land use rather than harvested areas. Thus, increased 

double-cropping and inter-cropping, would show a larger increase in the harvested 

area of arable crops compared to arable land use. A smaller gap between areas 

planted and harvested as farming techniques improve and less crops are lost to bad 

weather and disease, would also show a larger increase in harvested area compared 

to arable land cover. Some parts of the world are also recording losses in arable land 

to non-cropping and pasture uses, such as forestry, whilst increased arable land in 

Africa is largely at the expense of forest.   

 

Table 6.2 – Changes in Global Land Use – 2005 to 2013  

Million hectares Africa Americas Asia Europe Australasia World 

Arable & Permanent Crops 20.8 0.2 5.8 -2.9 -3.0 21.0 

Arable Land 15.2 1.8 -9.9 -2.0 -3.1 2.0 

Permanent Crops 2.9 -1.6 15.7 -0.9 0.1 16.3 

Meadows & Pasture 1.1 13.1 2.5 -3.7 -46.1 -33.1 

Agricultural Area 22.0 13.3 8.3 -6.6 -49.1 -12.1 

Forest  -24.9 -20.0 10.9 10.6 -3.5 -27.0 

Other Land  3.5 5.3 -19.4 -4.8 52.7 37.2 

Net Land Change 0.5 -1.4 -0.2 -0.8 0.0 -1.9 

Source: FAOSTAT 

                                                 
72

 Note that the FAOSTAT data for the individual Arable and Permanent Crop global area changes do 

not add up to the combined Arable and Permanent Crop global area change due to an imbalance of 

some 2.7 million hectares in the figures for Africa. Thus the arable area and/or permanent crop area 

increase in Africa may be up to 2.7 million hectares more than was estimated in the FAOSTAT 

database at the time of writing. 
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It is difficult to identify the reasons behind the global land use changes given the 

available data. There has clearly been a significant increase in the global harvested 

areas of maize and oilseed crops, but it is less straightforward to gauge the extent of 

land-saving practices such as double-cropping as these are not always measured in 

surveys or reported in official statistics.   

 

As noted in the literature review, one way of estimating such land-saving practices is 

the multiple cropping index, which reflects the proportion of the arable area that is 

harvested each year. This has been used by Langeveld et al (2014) to show that, over 

the period 1980 to 2010 a rising proportion of the world’s available arable land was 

harvested, with the MCI rising from 0.85 in 1980 to 0.99 in 2010.  Similarly 

Babcock and Iqbal (2014) found that the main response of the world’s farmers 

between 2004 and 2012 was to use land more efficiently rather than bringing new 

land into production. 

 

Using FAO data from table 6.2 and slightly lower world harvested areas of the main 

crops than used by Langeveld et al, suggests that the global MCI rose from just under 

0.87 in 2005 to nearly 0.94 in 2013, allowing for a sharp increase in harvested areas 

during that period despite the small increase in the net arable area. 

 

The 19 million hectare biofuel-related addition to the global harvested area between 

2005 and 2015 is also a relatively small amount of the estimated potential global 

availability of additional land thought to be suitable for additional crop production, 

which is conservatively estimated at 200 million hectares from the literature 

review
73

.  

 

The scope for further increases in biofuel feedstock acreage largely depends on food 

needs over the coming decades. FAO estimates that a further 70 million hectares are 

required to meet food needs by 2050. However, this may not fully incorporate the 

substantial potential savings in land use from reduced food waste, reduced 

                                                 
73

 This is deemed a “conservative” estimate, as it is the lowest of the range of estimates found within 

the literature review for this study. 
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consumption per capita of livestock products in the developed world and the 

potential of urban agriculture to feed a growing proportion of city inhabitants.  

  

Although the estimated additional land for global rainfed crop production, at 200 

million hectares, seems large in relation to the additional 70 million hectares 

projected by the FAO as being needed by 2050 to meet food needs, climate change 

impacts could also affect productivity and result in more land being needed for food 

production 

 

African and other developing countries have the greatest potential for increased crop 

acreages to meet future food and bioenergy needs and should be facilitated to exploit 

this where deforestation is avoided, valuable ecosystems are protected and local 

communities are not disadvantaged, particularly as current biofuel feedstock areas in 

Africa account for only 0.1 per cent of the global total.  

 

6.2 The Impact of Biofuel Feedstock Demand on Food Prices 
 

 

It is commonly claimed that increased demand for biofuels has been a major factor 

behind the rise in food prices around the world. The following section describes the 

findings from the analysis of biofuel impacts on US maize prices. 

 

6.2.1 Analysis of US maize prices and biofuel production 

 

Much of the increase in global food prices over the past decade has been attributed to 

the sharp rise in US ethanol production using maize as a feedstock. US maize prices 

are often regarded as a benchmark for the cereal complex as the US accounts for over 

a third of world trade (Berg et al., 2014). Maize is also the most important cereal in 

terms of volume, with some 1 billion tonnes produced and consumed globally 

(USDA, 2016b). Most of the maize consumed is for animal feed: hence, maize 

values also influence prices in the livestock complex. Maize prices also tend to be the 

lowest of the major cereals, forming a base from which other prices are compared. 

For example, if wheat prices fall toward maize values, they become more 

competitive in feed value and animal feed processors will, at some point, start to 

replace maize with wheat in livestock rations.  
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Given the importance of US maize prices on world commodity markets, any increase 

in maize prices would tend to support values of other commodities. Thus, biofuel 

policies that encourage increased consumption of maize were thought to be a primary 

factor in the sharp rise in US maize prices and other related commodities such as 

wheat and soyabeans, particularly between 2005 and 2013. Indeed, the ethanol sector 

went from using under 5 per cent of all US maize use during the 1990s to just under 

40 per cent in 2015.  

 

Given the importance of ethanol use within US maize demand, it might be expected 

that there would be a strong correlation between US ethanol production and maize 

prices, particularly over the past decade when US ethanol production rose sharply to 

meet the growing demand. However, figure 6.12 shows that whilst US ethanol 

production increased over that period (with a slight fall in 2012), US maize prices 

dipped sharply in two periods during the past decade, and particularly over the three 

years since 2012. Clearly, there are other factors that influence maize prices as well 

as the rise in ethanol demand and production.  

 

Fig 6.12 – US Fuel Ethanol Production and US Maize Prices – 2005 to 2015 

 

Source: Adapted from USDA data 
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6.2.1.1 Understanding the main drivers of US maize prices 

 

In order to understand the main influences on US maize prices over the past decade, 

it is necessary to look back at how prices have developed and which fundamental 

supply and demand forces and other factors influenced them. Some of the literature 

notes the importance of marketing year end-stocks in explaining US maize price 

developments (eg Good and Irwin, 2014). 

 

A related indicator that is often used in the commodity trading complex is the end-

season “stock-to-use ratio”, reflecting the estimated level of stocks remaining at the 

end of the year or season, as a proportion of domestic use and exports. It therefore 

encapsulates the fundamental supply and demand situation in the market for that 

commodity, as any fall in the stock-to-use ratio should reflect demand exceeding 

supply and vice versa. 

 

The relationship between the expected end-season stock-to-use ratio and the average 

price of a particular commodity and location will partly depend on the accuracy of 

the supply and demand estimates for that commodity and location at a given point in 

time, and partly on the degree to which prices are influenced by other factors, such as 

government policies and prices of other goods. 

 

An analysis of US maize prices against the US stock-to-use ratio for maize was 

conducted, using annual average values for Number 2 grade yellow corn delivered to 

US Gulf ports, as this represents the major market for US maize exports, whilst 

annual average prices help to ameliorate the impact of short-term changes in prices. 

The prices were also adjusted by the US Consumer Price Index (CPI) in order to 

show real trends over the period covered from 1993 to 2015 (the prices are 

denominated in 2010 values).  

 

The stock-to-use ratio is calculated as the end-season stock, resulting from the 

balance of supply (opening stocks, plus production, plus imports), minus demand 

(domestic use and exports), as a proportion of demand (domestic use and exports). 
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This reflects the relative scarcity or abundance of supplies in relation to demand in 

each season, which should then be reflected in market prices.   

 

The resulting chart (fig 6.13) shows a relatively good inverse correlation, or mirror 

image, between the fundamental supply and demand situation, as reflected in the 

end-season stock-to-use ratio, and the real average seasonal price of US maize. In the 

years in which demand exceeds supply, such as in the event of a poor harvest, the 

stocks-to-use ratio falls and the price usually rises, in line with standard economic 

theory.  

 

Fig 6.13 - US Maize Stock-to-Use Ratio and Real Price of US Maize 

Source: Author’s analysis from USDA data 

 

A scatter plot of the two variables over the period covered, together with a best-fit 

straight line regression (figure 6.14), suggests a reasonable relationship between real 

US maize prices and US maize stocks-to-use ratios, but with an R-squared value of 

only just over 0.6. Many of the annual average prices below the best-fit straight-line 

regression are from the period before the biofuel boom and vice versa. This suggests 
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a better fit could be achieved by dividing the time series into two periods: pre and 

post the introduction of the US Energy Policy Act in 2005.  

 

Fig 6.14 – Relationship Between US Season-Average Maize Prices and US Maize 

End-Season Stock-to-Use Ratios – 1993 to 2015 

 

Source: Author’s analysis from USDA data 

 

This follows the argument of Irwin and Good (2009) that the biofuel boom created a 

new “era” of US maize price relationships to fundamental supply and demand forces. 

They argue that the sharp rise in ethanol demand for maize began in the 2007/8 

season when prices also jumped sharply, and that since then supply has struggled to 

keep pace with the strong rise in demand.  

 

An alternative view is that the main policy influences behind the US biofuel boom 

started in 2004 when a 10 per cent blending rate was authorised. US biofuel 

production up till then had mainly responded to the ban on MTBL as an oxygenate in 

some US States and was therefore restricted to a relatively low inclusion rate.  Using 

the same analysis from 2004/5 at the start of the biofuel boom, figure 6.15 produces a 
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steeper and better-fit straight line regression with an R-squared value of 0.76
74

. 

Similarly, a scatter plot of US maize prices adjusted for inflation against stock-to-use 

ratios from the pre biofuel expansion period of 1993 to 2003 also produces a better 

fit trendline, as in figure 6.16
75

. 

 

Fig 6.15 – Relationship of Real US Season-Average Maize Price and Stocks-to-

Use Ratio – 2005 to 2015 

 

Source: Author’s analysis from USDA data 

 

The steeper best-fit line in the most recent period suggests that the same stock-to-use 

ratios now result in more volatile US maize prices in real terms than they would have 

done in the previous decade. It suggests that as the stock-to-use ratio declines, US 

maize prices would tend to be higher in the more recent period than in the previous 

                                                 
74

 Note that other regressions were performed for the period concerned, and a logarithmic curvilinear 

regression produced a slightly better R-squared value of 0.808, but the constant within the equation 

suggested a current maize price of some $700 per tonne at a stock-to-use ratio of 1 per cent, which 

seemed difficult to justify. Whilst the regression calculation is only calculating the best-fit line from 

the period concerned, the logistic nature of the curvilinear equation suggested price predictions would 

be too high at more extreme low and high stock levels. It is, however, acknowledged that the straight 

line regression equation may underestimate prices at extreme high and low levels, but these 

differences appear to be less significant than those for the logarithmic equation.    
75

 The season 2003/4 is omitted from the previous decade analysis as it represents a transition year 

between the two periods when it became apparent that a relaxation of blending restrictions could lead 

to sharply increased maize use over the following years.  
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decade, but prices could also be lower as stocks rise. This suggests a significant 

change in the relationship between US maize prices and fundamental supply and 

demand factors over the past decade than in the previous decade to that. 

 

Fig 6.16 - Relationship Between Real US Maize Price and US Maize End-Season 

Stocks-to-Use Ratio – 1993 to 2003 

Source: Author’s analysis from USDA data 

 

This relationship change could be attributed to the perceived greater risk for upside 

price potential associated with declining stocks-to-use ratios. This follows a period in 

which US maize supply struggled to keep pace with rising biofuel demand in the 

early years of the biofuel boom, leading to falling stocks. The tightening supply 

situation was then exacerbated by the drought-affected harvest of 2012, when lower 

exports helped to cushion the stock decline. Since 2012 stocks have started to rise 

again and prices have fallen, but the stocks-to-use ratio is still well below the 20 per 

cent levels recorded just before and after the millennium and also just before the 

biofuel expansion in 2004/5.  

 

A prolonged period of high stocks might lead to a return to the lower price 

responsiveness recorded in the decade before the biofuel boom, in which case prices 

would not fall as steeply as the recent relationship (ie most recent decade) suggests. 
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In that case the relationship between maize prices and the stock-to-use ratio would 

need to be revisited and a new regression equation calculated for the new “era”.  

 

Although it is evident from the standard bivariate regression analysis that the stocks-

to-use ratio has been a relatively good predictor of prices over the 2005 to 2015 

period, there are clearly some years where prices do not respond as expected to the 

fundamental forces.  

 

For example, figure 6.13 shows that in the 2007/8 season the maize stock-to-use ratio 

rose slightly yet the average price also increased sharply. In 2013/14, the stock-to-

use ratio recovered slightly after the drought-affected season of 2012/13, and the 

annual average price did, as expected, fall. But the extent of the price decline was 

much greater than the supply and demand fundamentals suggested. Figure 6.15 also 

confirms that the two outliers in the relationship between maize prices and stocks-to-

use over the past decade were 2007/8 and 2013/14. 

 

There are many reasons why prices might diverge from the apparent market supply 

and demand situation. One reason could be that prices are responding to short-term 

market conditions that may change over the course of the season. For example, if 

sellers are holding onto stocks, this could create higher prices in the short-term. If the 

estimated supply and demand balance suggests that stocks will rise by the end of the 

marketing year, then one would expect a sharp fall in prices at some stage during the 

season. But this could still leave an average annual price that may not be entirely 

consistent with the fundamental situation reflected in the stocks-to-use ratio. 

 

Also, the strength of the correlation depends on the accuracy of the supply and 

demand estimates, which may change over time as market conditions reveal 

prevailing inaccuracies. For example, harvest estimates may be revised during the 

course of the season if greater or less than anticipated supplies enter the market. The 

stock-to-use ratio should reflect such changes by the end of the season, but price 

developments could be affected in the short-term. Again, the use of annual average 

prices helps to offset short-term fluctuations for the most part, but the overall average 

may not fully correspond with the final supply and demand balance.  
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The US maize market is also affected by other factors besides its own fundamental 

supply and demand situation. For example, the maize price is also influenced by 

prices of other cereals that may act as a substitute for maize if the price differential 

moves in their favour. Thus, if maize prices rise too high in relation to wheat then 

some users, such as animal feed processors, will switch to wheat use, which, in turn, 

will then dampen down maize prices. Similarly if maize prices fall too far below 

wheat values then some users may be attracted to using more maize than wheat (eg 

distillers), supporting maize prices and acting as a price floor. 

 

In terms of policy, minimum support prices and import parity prices (after any 

import tariffs or levies) can also create floor and ceiling prices, respectively, to the 

market. In the US, the loan rate support floor has had much less influence in recent 

years, but would, in previous decades, have prevented prices falling too far in 

response to any significant rise in the stock-to-use ratio. The effective ceiling for US 

maize prices is usually related more to the price of domestic cereals and other 

feedstuffs, including wheat, than the import parity calculation, since the US is the 

largest maize exporter in the world and imports are therefore always very small. 

 

Another factor that may influence the maize price is the oil price, as this can 

influence the demand for maize through ethanol demand, as well as the supply of 

maize as a major input cost in production. World oil and maize prices appear to show 

a relatively close relationship, as illustrated in figure 6.17. It might be expected then 

that if oil prices were to rise this would increase the demand for ethanol as a 

substitute, and, hence, the demand for maize. But there appears to be little correlation 

between US fuel ethanol production and world oil prices. Thus, when oil prices have 

fallen, US ethanol demand has continued to rise.  

 

This can be partly explained by the fact that ethanol production may remain 

profitable even when oil prices fall, and even if ethanol prices fall in line with oil 

prices, due to reduced feedstock costs in the form of lower maize prices. Given the 

importance of ethanol demand in the US maize balance, it is argued that maize prices 

are now linked to oil prices through the need to maintain profitable ethanol 

production.  
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It can also be partly explained by the requirement for US petrol manufacturers to 

blend a certain volume of ethanol prescribed each year. On blending ethanol, petrol 

processors are issued a certificate known as a Renewable Identification Number or 

RIN, which can be traded. Up till about 2013 petrol manufacturers blended more 

ethanol than was needed and a RIN surplus developed. At this point the amount of 

ethanol blended had reached 10 per cent of petrol, but manufacturers have been 

reluctant to raise their petrol products above the E10 blend by introducing E15 and 

higher blends, due to concerns regarding the impact on older engines.  

 

Fig 6.17 – Relationship between US Maize Prices, US Fuel Ethanol Production 

and World Oil Prices 

 

 

Sources: USDA and EIA reports 

 

Another interlinked factor that has been particularly evident in recent years is the 

impact of oil prices on the demand for petrol. As oil prices have fallen in recent years 

this has increased the demand for fuel in the US, thereby increasing the demand for 

ethanol as blending rates were maintained at prevailing levels. Thus, falling oil prices 

can boost ethanol demand, which could, in theory, increase maize prices if ethanol 

prices did not need to compete with oil prices due to the blending mandates.  

 

Since 2007/8 US ethanol prices have tended to trade below petrol prices in the US, at 

an average ratio of about 0.9. This does not reflect the much lower energy value of 
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ethanol compared to petrol
76

, but appears to be a level where ethanol is deemed 

competitive as an oxygenate and octane booster and has encouraged the blending of 

ethanol up to the maximum 10 per cent rate.  However, at times US ethanol prices 

have traded at a premium to petrol prices, such as during December 2015 to February 

2016. This can be largely explained by the requirement for fuel blenders to meet 

renewable volume obligations under the Renewable Fuel Standard. 

 

Figure 6.18 shows average yearly US ethanol and petrol prices, together with 

average US ex-farm maize prices. This highlights the fact that ethanol, petrol and 

maize prices (on a different scale) do not always follow the same direction. However, 

there appears to be a closer relationship between the prices since US biofuel 

production began to surge from about 2007 onwards. 

 

Fig 6.18 – US Ethanol, Petrol (Gasoline) and Maize Prices  

Source : USDA and EIA 

 

Maize usually accounts for some 70-80 per cent of the cost of ethanol production, so 

by charting ethanol prices against costs an average annual margin can be estimated. 

This suggests that average margins were negative for many producers during 

                                                 
76
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2011/12 and the drought-affected 2012/13 season when maize feedstock prices were 

high. However, with the exception of those two years, since 2007/8 ethanol and 

maize price trends appear to have resulted in narrow margins each year for ethanol 

producers (fig 6.19).  

 

This suggests that the energy complex, comprising oil, petrol (gasoline) and ethanol 

prices, also exerts some influence over US maize prices, in addition to the influence 

of other competing cereal prices, such as wheat, and the end-season stock-to-use 

ratio. But the relationship between maize prices and those in the energy complex is 

less clear. This is particularly so between maize and ethanol average prices, even 

though maize comprises most of the cost of ethanol production. In fact maize prices 

appear to track petrol and oil prices more closely on the evidence of the past decade. 

Indeed, the correlation coefficients (Pearson’s) for US maize prices and US petrol 

and world oil prices in real terms over the past decade were 0.8, both with p-values 

less than 0.01, whilst the coefficient for US maize prices and US ethanol prices was 

less than 0.4, and not significant. 

 

Fig 6.19 – US Ethanol Prices versus Estimated Maize and Total Ethanol Costs 

per Gallon  

Source : USDA and EIA reports 
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De Gorter, Drabik and Just (2013) argue that biofuel policies played a key role in the 

development of maize and other cereal prices, whilst allowing for the possibility of 

other factors having an important influence.  They argue that of the different types of 

biofuel policies, some had long-run affects, some short-term impacts that may have 

been fleeting and some only influencing prices under certain circumstances and in 

certain time periods. They calculate that the impact of a change in the ethanol price 

on the maize price is very large from 2007 onwards, but that this is not always fully 

reflected in the maize price due to the economic concept of “water”, representing the 

difference between the ethanol supply curve intercept and free market ethanol price.  

 

Indeed, the average annual price relationships between US ethanol and maize prices 

illustrated in figure 6.18, show quite a lot of divergence. Hence, the argument that 

US biofuel policies were the major influence on US maize prices over the past 

decade, even though ethanol demand accounted for only one part of the overall 

supply and demand balance, does not seem as intuitive as an argument based on the 

full supply and demand balance. The US biofuel policy targets provided a reasonably 

predictable level of demand for US maize from season to season that would have 

been factored into the market. US maize prices would have been influenced by 

ethanol and oil prices, but other parts of the balance would also have affected prices, 

including supply changes and exports, which would need to have remained 

competitive against supplies from other maize exporting countries. Thus, in 2012/13 

US maize prices increased when ethanol prices fell, as shown in figure 6.19, leading 

to some ethanol producers recording losses that season.  

  

In order to illustrate whether, and the extent to which, wheat and oil prices may have 

influenced the outlier maize prices in 2007/8 and 2013/14, figure 6.20 adds real US 

hard red winter (HRW) wheat and real world oil prices (average of Brent and 

Western Intermediate Texas) to figure 6.13. The world oil price is used as a more 

exogenous variable than the US petrol price, given that US petrol generally 

comprises 10 per cent maize-based ethanol
77

. The HRW wheat price is used as this 

                                                 
77

 In fact US petrol and world oil prices are highly correlated with a coefficient of 0.98 over the past 

decade.  
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represents the most common type of wheat produced in the US, and is generally 

regarded as the benchmark price for the world wheat market
78

.  

 

Fig 6.20 – US Maize Stock-to-Use Ratio and Price versus US Wheat and World 

Oil Price 

 
 

Sources: USDA Feedgrain and Wheat Monthly Outlooks for US maize and wheat prices, 

adjusted by the US CPI and US maize end-season stock-to-use ratios, and EIA for world oil 

prices, which are the average annual season prices for Brent Crude oil and West Texas 

Intermediate oil at Cushing, Oklahoma.  

 

Over most of the period covered US wheat maintains a significant premium over 

maize prices. In 2007/8, the US wheat price jumped higher as world wheat stocks fell 

sharply, pulling maize prices up as both domestic and export demand switched to 

maize instead of wheat. Even though the US maize stock-to-use ratio still increased 

that year, the influence of the wheat price spike was strong as it created increased 

demand for maize and did not allow the maize price to fall too far below that for 

wheat on a feed-value basis. Thus, maize prices were far enough below wheat to 

attract additional demand, helping to support prices at that level rather than any 

                                                 
78
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localized influences that may not always reflect the general market conditions for the wheat complex. 
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lower. This effect may have been exacerbated by stock holding of maize in 

anticipation of higher prices given that wheat stocks were at an all-time high. The 

world oil price spike at the time would also have lent support to maize prices, 

allowing prices to increase whilst still maintaining the competitiveness of ethanol 

supplies for blending. 

 

It is more difficult to explain from the chart why the 2013/14 average US maize price 

fell so sharply compared to the relatively small rise in the stock-to-use ratio. The 

bivariate regression analysis in figure 6.15 suggests the average US maize price 

should have been higher and there appears to have been no major influence from 

wheat prices, which remained high that season. The chart also shows that the average 

world oil price in 2013/14 rose slightly compared to the previous year and did not, 

therefore, appear to be exerting any downward pressure.  

 

However, trade reports suggested that for much of the marketing year, the industry 

believed that the USDA had overstated its maize export forecast and, hence, 

understated its forecast end-season stocks (eg Good and Irwin, 2014). Thus, traders 

were working from a much higher end-season stock-to-use ratio and this perception 

within the market may have kept maize prices below the level they should have been 

given the actual end-season stock. It was argued that only toward the end of the 

marketing year did it become apparent that end-season stocks were lower than 

anticipated, by which time market corrections were unable to influence the average 

annual price to any great extent. 

 

This raises an important factor that is rarely mentioned within the literature on 

biofuel linkages with food prices: that of market information. Where market 

information is lacking or inaccurate, prices may diverge from fundamental supply 

and demand conditions until the error becomes apparent or the absence is rectified. 

Thus analyses using daily, weekly and even monthly prices may significantly diverge 

from the prevailing supply and demand situation, which will ultimately be reflected 

in the end of season stock-to-use ratio. Annual average prices are more likely to 

correct for such discrepancies, as they usually become apparent as market conditions 

change, but sometimes the inconsistency may prevail for an extended period.  
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This data-driven, descriptive analysis provides the key factors behind the movement 

of US maize prices over the period covered, with prices largely responding to 

fundamental supply and demand conditions, as reflected in the stock-to-use ratio. But 

prices also appear to have been influenced at times by the replacement feed value of 

wheat, and the energy complex given that ethanol accounts for some 40 per cent of 

total domestic use, as well as imperfect market information flows.  

 

An analysis was therefore conducted to assess the relationship between the average 

annual real US maize price, the US maize end-season stock-to-use ratio, US real 

wheat price and world oil price. The market information factor was omitted from the 

analysis given the difficulty in creating values for such a variable.  

 

In order to assess the predictive ability of the three variables on the US maize price, a 

standard (simultaneous) multiple regression was conducted with the US maize price 

as the dependent variable and the US maize stock-to-use ratio, US wheat price and 

world oil price as the independent predictor variables. Because the sample size was 

small, a number of tests were performed to assess the suitability of the data for such 

an approach.  

 

The sample size was restricted due to the problem that biofuel demand in the US 

only started to take-off from about 2005, before when there appeared to be a different 

relationship between maize prices and stock-to-use ratios as noted earlier. Also 

annual prices are used in this analysis due to the nature of the crop growing year and 

problems of seasonality, imperfect market information flows and different marketing 

patterns during and between years, which can distort the relationship between prices 

and the stock-to-use ratio.   

 

The period covered only provides 12 years of data per variable. This is slightly below 

the minimum 15 subjects per predictor suggested by Stevens (1996) for multiple 

regression analyses, although a later study suggests that a minimum 9 subjects per 

variable can suffice where there are only 3 predictor variables (Knofczynski and 

Mundfrom, 2007).  
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The standard multiple regression output provides a means of assessing whether 

assumptions on multi-collinearity, normality and outliers are acceptable. The Pearson 

correlation coefficients in the multiple regression model were high for US maize 

prices and the US stock-to-use ratio at -0.872 and highly statistically significant 

(p<0.0005), with slightly lower correlation values and significance for US maize and 

wheat prices (0.813 and 0.001) and then slightly lower values again for US maize 

and world oil prices (0.765 and 0.002). But all values suggested strong associations 

between each of the independent variables and the US maize price. 

 

Table 6.3 – Pearson Correlations Between US Maize, US Wheat and World Oil 

Prices and the US Maize Stock-to-Use Ratio 

 

US real 

maize price 

($/t) 

US maize  

stock-use ratio 

(%) 

US real 

wheat price 

($/t) 

World real 

oil price 

($/barrel) 

Pearson Correlation     

US real maize price ($/t) 1.000 -.872 .813 .765 

US maize stock-use ratio (%) -.872 1.000 -.694 -.622 

US real wheat price ($/t) .813 -.694 1.000 .832 

World real oil price  ($/barrel) .765 -.622 .832 1.000 

Sig. (1-tailed)     

US real maize price ($/t) . .000 .001 .002 

US maize stock:use ratio (%) .000 . .006 .015 

US real wheat price ($/t) .001 .006 . .000 

World real oil price ($/ barrel) .002 .015 .000 . 

 

A bivariate correlation between the independent variables of more than 0.7 is usually 

regarded as too high for inclusion, requiring adjustments to be made. The bivariate 

correlations of the US maize stock-use ratio and wheat and oil prices were below 0.7, 

but the correlation coefficient for US wheat and world oil prices, was higher, at 0.832 

(higher than that for maize and oil prices).  

 

Collinearity diagnostics were also performed as part of the multiple regression 

procedure. The tolerance values for both US wheat and world oil prices, at 0.258 and 

0.305, respectively, were sufficiently far above the 0.1 threshold as to suggest that 

multicollinearity was not a major issue between the independent variables, whilst the 

tolerance level for the stock-to-use ratio, at 0.512, was also at an acceptably high 
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level. The inverse of the tolerance level, known as the variance inflation factor (VIF), 

is also sometimes used to indicate multicollinearity at values of 10 and above. VIF 

scores for the variables in the model were between 1.95 and 3.88. 

 

In terms of normality, the normal P-P plot for maize prices in the model is shown 

below, indicating a reasonable distribution and no major deviations from normality. 

There also appear to be no major outliers, with the Cook’s distance maximum value 

of 0.245, well below the problem threshold of one (Tabachnick and Fidell, 2007).  

 

Fig 6.21 – Normal P-P Plot of Regression Standardised Residual Dependent 

Variable: US Maize Price 

 

 

Following the validation of the assumptions from the initial tests, a standard multiple 

regression analysis was undertaken to identify the influence of the independent 

variables on US maize prices. Table 6.4 shows the main results for the standard 

multiple regression of model 1. The model had an R-square value of 0.857, 

suggesting that the three independent variables explained some 86 per cent of the US 

maize price variance over the period covered. However, with such a small sample the 
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adjusted R-square value of 0.803 (or just over 80 per cent of the variance) is 

considered to be a safer estimate of the model’s ability to explain US maize prices 

over the period concerned (Tabachnick and Fidell, 2007). The p-value, at 0.001, 

shows that the model reached statistical significance.  

 

Table 6.4 – Model 1 - Standard Multiple Regression Summary and Coefficients 

Model R R-Square Adjusted R-

Square 

Std. Error of 

Estimate 

Sig 

Model 1
a
 .926

b
 .857 .803 26.857 0.001

b
 

a = Dependent variable is US real maize price (in 2010 values) in US$ per tonne. 

b = Predictors – (Constant), US maize stock-to-use ratio (%), US wheat price ($/t), World oil price 

($/barrel)  

Predictors 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 199.111 78.924  .036   

US maize stock-to-

use ratio (%) 
-9.279 3.006 -.577 .015 .512 1.952 

US real wheat 

price ($/t) 
.251 .273 .242 .385 .258 3.880 

World real oil 

price ($/barrel) 
.573 .677 .205 .422 .305 3.283 

 

The model formula using the unstandardised coefficients was: 

 

y  = 199.111 + -9.279x1 + 0.251x2  + 0.573x3  

 

where y = the US real maize price (2010 value), x1 = the end-season maize stock-to-

use ratio, x2 = the US wheat price and x3 = the world oil price. 

 

The contribution of the three variables to the prediction of the US maize price is 

given by the beta-standardised coefficients of -0.577 for the maize stocks-to-use 

ratio, 0.242 for the US wheat price and 0.205 for the world oil price. This suggests 

that the stocks-to-use ratio made the largest contribution to explaining US maize 

price movements in the model. In fact, the stock-to-use ratio was the only variable to 

make a statistically significant contribution to the prediction, with a p-value of 0.015.  
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The bivariate linear regression analysis of the US maize price and the single 

independent variable “stock-to-use ratio” in figure 6.15 gave an R-squared value of 

0.76, and adjusted R-squared of 0.74, suggesting that just under three-quarters of the 

US maize price movement since 2004 was accounted for by the US maize stock-to-

use ratio. The multiple regression model of the three independent variables then 

produced an adjusted R-squared value of 0.803. This suggests that the model has a 

better predictive ability for maize prices than the stock-to-use ratio alone, due to the 

addition of US wheat and world oil prices within the equation. However, only the 

maize stock-to-use ratio variable had a statistically significant influence on the 

prediction of the US maize price over the period within the model.  

 

A second regression analysis was therefore conducted removing the world oil price. 

Although the collinearity tests for model 1 suggested no multicollinearity between 

the independent variables, there was a high correlation coefficient for US wheat and 

world oil prices. Since there was a higher correlation coefficient and more significant 

p-value between US maize and wheat prices than between US maize and world oil 

prices, it was decided to omit the world oil price. 

 

Model 2 had a slightly better adjusted R-squared value than model 1, accounting for 

nearly 81 per cent of the US maize price variance at p<0.001. Although the p-value 

for wheat at 0.056 was more significant than in model 1, it was still above the 0.05 

threshold and therefore only moderately significant
79

.  

 

Whilst acknowledging the small sample size, these standard linear multiple 

regression models provide further evidence that the end-season maize stock-to-use 

ratio provides a significant contribution as a predictor of US maize prices over the 

past decade. The model results also fit the hypothesis that the end-season maize 

stock-to use ratio is the main determinant of US maize prices. The model results for 

wheat also support the assumption that the wheat price is unlikely to be as consistent 

an influence as the stock-to-use ratio, but may, from time to time, pull the maize 

                                                 
79

 A third model was also conducted replacing the US wheat price with the world oil price, but this 

generated a slightly lower adjusted R-squared value and the world oil price variable was less 

statistically significant than the value for wheat in model 2. 
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price away from its expected trajectory based on the supply and demand 

fundamentals. 

 

Table 6.5 – Model 2 - Standard Multiple Regression Summary and Coefficients 

Model R R-Square Adjusted R-

Square 

Std. Error of 

Estimate 

Sig 

Model 2
a
 .919

b
 .844 .809 26.431 0.000

b
 

a = Dependent variable is US real maize price (in 2010 values) in US$ per tonne. 

b = Predictors – (Constant), US maize stock-to-use ratio (%), US wheat price ($/t). 

Predictors 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

(Constant) 206.839 77.151  .025   

US maize stock-to-

use ratio (%) 
-9.566 2.939 -.595 .010 .519 1.928 

US real wheat 

price ($/t) 
.415 .190 .400 .056 .519 1.928 

 

 

6.2.1.2 US maize supply and demand drivers 

  

Having established that the stock-to-use ratio has been the main explanatory 

predictor of US maize prices over recent years, the key changes within the supply 

and demand balance can then be identified: these are the components that result in 

the stock-to-use ratio, which, in turn, largely determines the direction and size of US 

maize price movements. By analysing these data, the contribution of key supply and 

demand factors to changes in the stocks-to-use ratio can be assessed.  

 

The use of maize by US ethanol processors has jumped sharply over the past decade. 

Figure 6.22 shows how maize use for fuel ethanol production rose from about 20 

million tonnes at the turn of the millennium to some 130 million tonnes by 2010/11, 

since when it has stabilised. One of the key concerns regarding biofuels is that they 

transfer feedstock away from food and other uses. But the sharp rise in US domestic 

use of maize by ethanol processors has not caused an offsetting decline in use by 

either domestic processors or exporters, and instead, the total use of maize has risen 

by almost the same amount as that for ethanol production, with only a partial 

reduction in other uses. 
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Figure 6.22 shows that rising ethanol use appears to have mainly eaten into animal 

feed use of maize, which had reached over 150 million tonnes per annum just before 

the ethanol boom, compared to the 2015/16 level of some 130 million. The chart also 

shows that in 2012 when the US maize harvest was hit by drought, most of the 

compensatory fall in usage was experienced by the export sector, although ethanol 

plants also used less maize that year.  

 

Fig 6.22 – US Maize Usage by Domestic Sectors and for Export  

Source: USDA data 

 

However, these statistics do not tell the full story of the impact of the ethanol sector 

on maize use. As previously noted, much of the maize processed into ethanol results 

in the production of distillers dried grains with solubles (DDGS), which are then fed 

as animal feed. Whilst DDGS is the main product from dry mills, there are also some 

wet-mill producers who produce corn gluten feed (CGF) and high-protein corn 

gluten meal (CGM). The wet-mill process is similar to that used by starch and high 

fructose corn syrup (HFCS) processors who also produce corn gluten feed and meal. 
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The US ethanol and other human and industrial (H&I) use survey data can be used to 

estimate yields of these maize protein feed products. Some data are also available 

from USDA reports on co-product production, use and trade. Using these figures, the 

maize use estimates have been adjusted for the maize protein feed co-products 

moving from the ethanol and other human and industrial (H&I) users into the animal 

feed and export sectors. It is assumed that there is a one-to-one replacement of these 

protein feeds to maize, although this may slightly understate the higher nutritional 

value of the protein feed products. 

 

Figure 6.23 shows that the adjusted maize use for ethanol production (ie total use 

minus that used in the production of protein feeds), is currently less than a third of 

total US maize demand. Also, although US feed use of maize has fallen by about 20 

million tonnes since 2005, total use of maize and maize protein feeds (DDGS, CGF 

and CGM) is almost the same today (2015) as that before the ethanol boom in 

tonnage terms. Similarly, whilst maize exports have fallen, total maize and maize 

protein-feed exports are currently similar to the levels pre-2005. 

 

Nevertheless, there has still been a significant increase in net (adjusted) maize use for 

ethanol production over the past decade, which is now approaching 100 million 

tonnes per annum net of protein feed co-products
80

. This has been driven by the US 

Energy Acts of 2005 and 2007, and particularly the Renewable Fuel Standards 

(RFS), setting blending mandates for ethanol use in fuel
81

. The rise in ethanol use is 

also responsible for all of the increase in total domestic use of maize over the period 

covered. 

 

The overall rise in US maize usage over this period has been largely met by 

increased production given that net feed use and exports have not fallen, bar the 

drought-affected 2012/13 season, and that stocks-to-use ratios had, by 2015/16, 

recovered back to 2005/6 levels. But this has led to concerns that greater US maize 

                                                 
80

 It should also be noted that there are other minor co-products such as corn oil that are now 

separated in the production process by most ethanol processors, but these have not been accounted for 

in this part of the analysis.  
81

 RFS-1 in 2005 set a target of 7.5 billion gallons of corn ethanol whilst the 2007 act raised this to 15 

billion 
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production to meet the additional ethanol demand, has been at the expense of other 

crop production, such as soyabean and wheat through direct land use change.  

 

Fig 6.23 – US maize use adjusted for maize protein feed use and exports 

Source: Author’s calculations from USDA data 

 

Furthermore, it is argued that when the US produces less of these other crops, such 

as soyabeans and wheat, the resulting reduced supplies and exports of those crops 

have to be compensated by other countries raising production, particularly through 

increased plantings. This concept of indirect land use change (ILUC) has been 

widely debated and has been the subject of many studies associated with both the 

land use and greenhouse gas implications of biofuels, as reviewed in chapter 2. 

 

In order to assess the extent to which increased US maize production has affected the 

availability of other US food crops, it is necessary to break the supply down into 

planting and yield responses. But area and yield changes each year do not only 

correspond to expected responses by producers in terms of market influences. 
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Weather and crop management impacts often have the greatest influence on planting 

decisions, where, for example, winter plantings may be prevented by bad weather or 

crop rotation practices require nitrogen-fixing crops to be planted. Similarly, yields 

are mainly influenced by weather patterns, although technological improvements in 

crop varieties and better management practices also influence yields, in both the 

short and long-term.  

 

This makes it difficult to attribute supply responses to market and policy conditions 

in terms of the price elasticity of supply, as outlined in the literature review. It seems 

plausible, however, to conclude that the US biofuel policy targets led to increased 

demand for maize, which, in turn, has encouraged increased supply, partly through 

higher prices. And it also seems plausible to conclude that this has been achieved 

through producers planting more area to maize and also increasing their yields 

through better-performing varieties and management practices.   

 

In terms of plantings figure 6.24 shows the trend in total US cropland and harvested 

areas of maize, soyabeans and wheat, the three major crops grown. The total 

cropland comprises all planted and harvested crops, including cultivated summer 

fallow and areas on which planted crops failed. 

 

The overall US crop area has fallen slightly since the early part of the millennium, as 

is the case for the wheat harvested area, whilst the maize and soyabean harvested 

areas increased slightly. The maize area was slightly less than 30 million hectares in 

2000, and about the same prior to the introduction of RFS-1 in 2005 and the 

subsequent boom in ethanol production. It then rose to just over 35 million hectares 

in 2012 and 2013 (due to the exceptional drought) and then fell back to around 33 

million in 2014 and 2015.  

 

As noted from the demand side analysis, US maize use for fuel ethanol has increased 

by some 93 million tonnes since 2005. At an average yield of just under 10 tonnes 

per hectare over the period (excluding the exceptionally low yield recorded for the 

drought-affected 2012 crop), this equates to a 9.5 million hectare additional 

harvested land requirement since 2005.  
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Fig 6.24 – Total US Cropland and Maize, Wheat and Soyabean Harvested Areas  

 

Source: USDA 

 

However, the total US maize area harvested has shown a much smaller rise of some 

2.3 million hectares between 2005 and 2015. Part of the 7.2 million hectare 

difference can be attributed to the 22 million tonne lower maize requirement in the 

animal feed sector (before adjusting for protein feed flows from the ethanol to animal 

feed sectors) and 10 million tonne drop in maize exports (again before adjusting for 

protein feed exports), amounting to a combined 3.3 million hectares
82

. In other 

words, 3.3 million hectares of the calculated 7.2 million hectare net requirement were 

offset by lower animal feed use and exports of maize, which, in turn, was mostly 

offset by a similar increase in protein meal use mainly produced by the ethanol 

sector. 

 

This still leaves a sizeable difference of almost 4 million hectares between the 

increased harvested area suggested by the demand side of the balance (6.2 million 

hectares) and the actual increase in area harvested on the supply side (2.3 million). 

Production of maize has increased by just over 60 million tonnes over that period. 

                                                 
82

 Note that this has been largely offset by the increased use of ethanol co-products for animal feed 

and export over that period  
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This means that the 2.3 million hectare rise in the harvested area accounted for just 

over a third (35 per cent) of that increase, with the remaining two-thirds (65 per cent) 

from productivity increases as the average yield increased by some 1.3 tonnes per 

hectare. 

 

So the majority of the increased fuel ethanol demand for maize between 2005 and 

2015 has been met by increased productivity within the supply response, which may 

be attributed to better farming practices, including more optimum inputs, better 

varieties and increased cropping intensity. But yields may also have improved due to 

climatic and weather conditions, as well as changes in the prevalence of pests and 

disease. At the same time the harvested area increase of 2.3 million hectares could in 

theory include more double cropping and other changes affecting the difference 

between planted and harvested areas, although planted area estimates suggest there 

was relatively little change in the cropping intensity (harvested area as a proportion 

of planted area) between the years, at 91.8 per cent in 2015 versus 91.9 per cent in 

2005.   

 

This analysis is based on actual changes in plantings, yields and production between 

2005 and 2015. Changes in area and yields each year can be affected by particular 

weather events or other shocks that may not be representative of normal patterns. 

Analyses were therefore also performed over different periods, including an extended 

15-year period from 2000 to 2015, which resulted in a similar outcome, in that one-

third of the production increase was accounted for by increased area and two-thirds 

by yield.  

 

However, it is clear that the choice of base and end-years would affect the 

apportionment of area and yield responses. For example, any periods that included 

the 2012/13 season, would be distorted by the exceptional drought-affected yields 

that year and larger areas harvested as farmers tried to adjust to the anticipated low 

yields and failed crops by planting more maize. This also had a knock-on effect in 

2013/14 following high prices in 2012/13, as farmers maintained high plantings in 

order to replenish stocks. Similarly if 2007/8 were chosen as a base year, the area 

harvested in 2015/16 would show a reduction, with all of the production increase 

coming from productivity improvements.   
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Nevertheless, the area planted to US maize between 2005 and 2015 still increased by 

2.3 million hectares, so it is important to determine how this may have affected other 

crops? There was indeed a reduction in the area harvested of wheat and other crops 

such as barley, oats and rye over the same period. But the decline in these crop areas 

has been part of a long downward trend, so it is probable that these area reductions 

would have occurred anyway, even without the surge in biofuel demand for maize. A 

conclusion one might draw, therefore, is that the increased maize and soyabean area 

in recent years has halted the long-term decline in the total US cropped area. 

 

It is therefore difficult to make a case for substantial direct land use change given the 

relatively small changes in US maize harvested areas over the period, let alone 

significant indirect change elsewhere. Indeed, it could be argued that the demand 

created by the ethanol sector has maintained land use that might otherwise have been 

abandoned or converted to other non-productive or non-agricultural use. Farmers 

therefore appear to have responded to the additional biofuel demand primarily by 

increasing productivity on existing land, whether that be through normal 

technological trends, weather-induced impacts or management practices. 

 

Furthermore, the additional demand from the ethanol sector has also led to increased 

supplies of protein meals as co-products. These meals have added to both domestic 

animal feed processing use and exports for feed processors elsewhere in the world. 

Thus, from a relatively small increase in harvested area, not only has there been an 

increased supply of biofuel to help replace fossil fuel use, but there has also been an 

increased supply of protein feeds to offset the reduction in maize use in the animal 

feed sector and for export. It should, however, be acknowledged that the increased 

maize production may also have led to increased use of fertilisers, water and other 

inputs given the increased area planted. 

 

It is difficult to predict what might have happened to US maize output if US policies 

had not encouraged ethanol production, both within the domestic market and 

externally. It could be argued that without such policies more US maize would have 

been available for export helping to prevent US, and thus international, maize prices 

from rising during the period. This might then have restricted other countries, such as 
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Argentina and Brazil, from expanding their own maize production and cultivating 

new land, with any associated land-grabbing and greenhouse gas emission 

implications. 

 

But the evidence from the FAO data, albeit up to 2013 at the time of writing, is that 

the global arable acreage (as opposed to the harvested area) has only marginally 

increased over the past decade. There appears to be more evidence that much of the 

increased global food production has been achieved through increased productivity 

improvements. 

 

The evidence of the past decade also suggests that some of the increase in US maize 

production over the period may have been in response to the increased ethanol 

demand. In other words, the price elasticity of supply of US maize, and particularly 

that related to productivity rather than area, appears to have been more significant 

than much of the literature, and notably that analysing indirect land use change, had 

assumed. But it is difficult to assess how much of that productivity increase, if any, 

was directly related to biofuel demand and how much was part of the general 

technological trend toward improved varieties, better management practices and 

other productivity improvements, and how much was due to weather, climate and 

reduced pest and disease outbreaks. 

 

Nevertheless, the sharp rise in US maize ethanol demand over the past decade 

appears to have been achieved with relatively little increase in the harvested area of 

maize. This did not significantly alter the general trend of declining harvested areas 

of wheat and other cereals. Nor did it lead to the expected decline in the soybean  

area, which instead has also risen over the past ten years. Neither did other domestic 

use and exports of maize and maize products suffer any significant decline. 
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Fig 6.25 – Long-term Trend in US Cereal Harvested Areas 

Source: USDA NASS  

 

Fig 6.26 – Long-term Trend in US Oilseed Harvested Areas 

 

Source: USDA NASS  
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Instead, the sharp rise in US biofuel demand for has been largely met by improved 

productivity, as supply rapidly caught up and prices fell back to pre-food crisis 

levels. During the sharp rise in US biofuel production from 2005 to 2011, rising 

maize demand would have contributed to the various forces pulling US cereal prices 

higher, as the stocks-to-use ratio fell. The 2012 US drought then exacerbated the 

supply tightness for maize supporting prices at very high levels as biofuel production 

flattened out. In recent years the maize stock-to-use ratio has recovered with more 

normal harvests and maize prices have fallen. 

 

So biofuel policies have clearly had some impact on maize prices through both 

increased demand, particularly in the earlier years of the biofuel boom, and through 

the extent to which biofuels may have influenced any supply response. Many studies 

have therefore sought to identify the relative impact of biofuels demand on maize 

prices compared to other factors. 

 

This study has established the strong relationship between maize prices and the 

stock-to-use ratio. From this an approximate impact of biofuel demand on maize 

prices can be estimated by combining the regression model results with the share of 

biofuel demand changes as a proportion of total supply and demand changes. By 

recording the past decade changes in the components of the US maize supply and 

demand balance that make up the change in the stock-to-use ratio, weightings can be 

attributed to each in order to identify which parts of the balance had the most impact.  

 

The US maize balance from 2004/5 to 2015/16 is detailed in appendix 6. This shows 

that between those years, a 100 million tonne increase in maize use for ethanol was 

largely offset by a 22.5 million tonne decrease in feed use and a 66 million tonne 

increase in supply. On that basis, ethanol demand accounted for at least half the 

overall changes to the US maize balance comparing the 2015/16 season with that for 

2004/5.   

 

However, a comparison of changes between the start and end years of the period fails 

to take into account the changes that occur from year to year in response to changing 

conditions. In econometric models, supply and demand elasticities are employed to 

predict quantitative changes influenced by prices and income. Despite the fact that 
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these are calculated from historical data and trends, there is little consistency in the 

elasticities used between models due to the different approaches adopted in their 

calculation, as noted in the literature. 

 

Analysing the annual changes that occurred in the US maize balance over the past 

decade can provide an indication of how US biofuel volume targets, first introduced 

in 2005, may have influenced total demand changes. The adjustments in the 

individual elements of the supply and demand balance each year combine to 

determine the stock-to-use ratio, which has been established as the key influence on 

the US maize price. Changes occur on both the supply and demand side of the 

equation, with increased supply helping to increase stocks and increased demand 

reducing stock levels
83

. Since all of these changes combine to influence the stock-to-

use ratio, they can be combined into an overall sum of changes for the period under 

review in order to weight the changes recorded each year.  

 

Appendix 7 shows the annual adjustments in the US maize supply and demand 

balance each year from 2005 to 2015. The change in each main component of the 

balance, such as production and imports on the supply side and ethanol, feed, other 

H&I use and exports on the demand side, can then be calculated as a percentage of 

total changes for the period. These were then summed to provide a total percentage 

for each component of the balance for the 2005-15 period, as tabulated in appendix 

8. 

 

The analysis in appendix 8a shows that ethanol accounted for 16 per cent of the 

combined annual adjustments, with animal feed at 12 per cent, exports at 14 per cent 

and supply responses accounting for 57 per cent of all the changes. So, for example, 

whilst exports only changed slightly between 2005 and 2015, the annual changes in 

response to changing market conditions were more important, amounting to 14 per 

cent of the total supply and demand changes that made up the stock-to-use ratio. 

 

Analysing the changes for the adjusted maize balance (appendix 8b) which accounts 

for the protein feed co-product flows from ethanol and other H&I use to animal feed 

                                                 
83

 Increased demand also raises the stock level requirement to maintain the stock-to-use ratio level. 



 280 

and exports, resulted in attributed changes of 12 per cent for ethanol use, 12 per cent 

animal feed and 16 per cent exports, with supply changes accounting for 60 per cent 

of the adjustments. These findings suggest that ethanol demand, net of co-products, 

accounted for 12 per cent of all changes within the US maize supply and demand 

balance that comprised the changes in the stock levels each year. 

 

In terms of price effects, the standard regression analysis of the US maize price and 

US stock-to-use ratio over the same period gave an R-squared value of 0.761, with 

an adjusted R-square of 0.737. Given the small sample size, the adjusted R-squared 

value is a safer estimate of the regression model’s predictive ability of the US maize 

price, at just under 74 per cent.  

 

Given that ethanol demand accounted for 12 per cent of all changes in the stock-to-

use ratio over the period, and that the stock-to-use ratio’s predictive ability of the US 

maize price was 74 per cent, a plausible conclusion would be that ethanol demand 

probably accounted for a relatively small proportion of US maize price changes, and 

probably no more than about 10 per cent. 

  

Supply adjustments accounted for a larger proportion of changes in the stock-to-use 

ratio, but it is more difficult to identify the components of the supply response. Most 

supply changes in the crop sector are usually attributed to weather, disease and 

technological trends, such as the increased uptake of higher-yielding and more 

disease and pest resistant varieties, including genetically modified crops. From the 

literature review, the price response of supply for US maize and other crops is 

generally regarded as zero to small, but some studies suggest it could be as high as 

25 per cent
84

. Even at the higher figure, the attribution of biofuels to that price 

response still might only be a fraction of that.  

 

For example, if a price elasticity of supply of 10 per cent (0.1) was calculated, and it 

was estimated that biofuel demand was responsible for 25 per cent of the price 

                                                 
84

 Much depends on the assumptions included within the supply elasticity calculations. For example, 

some studies argue that technological developments, such as improved varieties, may be influenced by 

policies, such as those aimed at encouraging biofuel demand. Hence, some US maize varieties have 

been developed to produce a higher starch, and, therefore, ethanol, yield. Improvements in technology 

are then viewed as a response to markets and policies, in addition to the long-term trend toward 

greater productivity. 
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elasticity of supply, then the overall impact of biofuels on maize prices through 

supply responses would be 1.5 per cent (0.6 x 0.1 x 0.25) using the supply and 

demand balance changes over the past decade.  

 

Following the majority of the literature in assuming that biofuels had a limited 

impact on US maize prices through supply responses, and given the relatively limited 

role played by US ethanol demand in the total stock-to-use changes, it seems 

unlikely that US biofuel demand would have influenced US maize prices by any 

more than about 10 per cent over the 2005-2015 decade.  

 

If, however, it is assumed that increased biofuel demand encouraged a significant 

supply response in addition to other supply and demand factors and technological 

trends, then the overall impact of biofuels on maize prices might be greater than 10 

per cent. However, because a significant positive supply response would generally be 

negative toward prices, whilst the rising biofuel demand has been price enhancing, 

the net effect would then be a smaller price increase, or even a price decrease. 

 

The extent of any biofuel influence would also have been greater at different times 

during the past decade. For example, in the 2005 to 2010 period when biofuel usage 

of maize was growing strongly, ethanol demand accounted for nearly 17 per cent of 

the stock-to-use ratio changes, suggesting it would have had slightly more influence 

on US maize prices during that period. 

 

The bivariate regression analysis of maize prices and stock-to-use ratios for 2005 to 

2015 also indicates that other factors accounted for a significant proportion of US 

maize price movements. There is evidence from industry reports, and indeed the 

multiple regression models in this study, that US wheat, and perhaps also world oil 

prices, diverted the average US maize price in 2007/8 away from its expected value 

based on supply and demand fundamentals. In 2013/14 it seems more likely that 

imperfect market information flows were responsible for the sharper fall in the 

average US maize price than that suggested by the stock-to-use ratio. If biofuels were 

implicated with these or any other predictive factors outside the regression analysis, 

then its influence on the US maize price would be larger than that suggested by the 
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combination of the bivariate regression model and the contribution of biofuel 

demand to changes in the stock-to-use ratio.  

 

Using this data-driven descriptive analysis of changes in US maize supply and 

demand from 2005 to 2015, it can therefore be argued that the increase in US ethanol 

use of maize, driven by the introduction of US biofuel policies in 2005, probably 

accounted for a relatively small proportion of US maize price formation during that 

period.  

 

Even during the 2005-2010 period when biofuel demand was increasing sharply, it 

seems unlikely from the combination of the regression analysis and stock-to-use ratio 

changes, that biofuel demand would have accounted for more than 10 to 15 per cent 

of the maize price increase during that period, as biofuel demand only accounted for 

17 per cent of the stock-to-use changes. Indeed, any supply-enhancing response 

directly encouraged by biofuel policies during this period would have dampened 

prices down and ameliorated the upward impact on prices from biofuel demand. This 

contrasts with many of the findings from the literature suggesting that biofuels 

accounted for much larger shares of US maize price increases. 

 

As well as determining the influences on the overall formation of maize prices, the 

combination of the regression model and breakdown of the stock-to-use ratio also 

provides an indication of the role that biofuel demand played in the increased 

volatility of maize prices over the past decade to that previous.  

 

A comparison of the bivariate regressions of maize prices and stock-to-use ratios for 

the periods 1993 to 2003 and 2004 to 2015, indicates that price responses to changes 

in the stock-to-use ratio were more volatile in the more recent period. The range of 

US maize stock-to-use ratios over the past 20 years is from a minimum of 5 to a 

maximum 20 per cent. Over such a range, the regression model for the 2004 to 2015 

period would have predicted prices on average 20 per cent higher or lower than that 

for the earlier period. The percentage variance would be higher for the more extreme 

values. For example, at a 5 per cent US maize stock-to-use ratio, the predicted price 

for the regression model covering the 2004 to 2015 period would be $295 per tonne, 
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whereas the model for the 1993 to 2003 period predicted a price of $216, a difference 

of $79 per tonne or a 37 per cent increase from the base period of 1993 to 2003.  

 

However, it is difficult to assess the reasons behind the more volatile US maize price 

movements over the past decade to that previous. The literature points to the surge in 

biofuel demand since 2007/8 as the main factor for the steeper increase in prices at 

that time than would have been the case at the same stock-to-use ratios in the decade 

previous to that. But there were many other forces influencing prices at that time. 

 

The increased volatility of maize and other commodity prices in recent years can be 

attributed to a greater perception of, and valuation of, risk within the industry of 

supply shortages
85

. The extent to which this can be attributed to biofuels, as opposed 

to other factors, is difficult to assess. For example, if the greater valuation of risk is 

associated primarily with falling stocks in relation to demand needs, it is clear that 

biofuel demand accounted for a relatively small share of changes in the stocks-to-use 

ratio over the past decade. If, however, the perception in recent years has been that 

biofuel demand would continue to rise steeply and even outpace the supply response, 

then much of the increased volatility might then be attributed to biofuel demand. But 

even in the case of the latter, the real cause would be the market perception of how 

biofuel demand and maize supply changes would evolve rather than biofuel demand 

per se. Either way, it also seems difficult to apportion a large share of the increased 

price volatility on biofuel demand. 

 

Nonetheless, since maize is the main feedstock used in global biofuel production and 

is also the main biofuel feedstock linked to food prices, even a 10 per cent increase in 

US prices or price volatility, if transmitted around the world, could mean that US 

biofuel production-enhancing policies had a significant impact on food insecurity in 

developing countries. It is therefore important to review how US maize price changes 

may have affected prices in food insecure countries. 

 

                                                 
85

 The risk of supply shortage is associated not so much with supply falling short of demand, which is 

a regular occurrence, but more with the level of end-season stocks in relation to requirements that can 

cushion any significant supply shortfall.  
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6.2.2 Transmission of world maize prices 

 

Within the literature covering biofuel impacts on food prices, it is often assumed that 

developments in world benchmark values, such as US maize prices, are easily 

transmitted to domestic markets in food insecure countries. However, there is also an 

extensive literature disputing this assumption, as summarised in the literature review. 

 

In order to link the two parts of this study, moving from the macro to the micro, 

world maize values, as denoted by US maize prices, were compared to prices on the 

main markets in Mozambique and Tanzania, in order to assess the extent to which 

US maize prices may have influenced food security in both countries. Prices at farm, 

wholesale and retail level were collected from government departments and national 

statistical agencies during the fieldwork and follow-up trips in both countries from 

2009 to 2012. 

 

In Mozambique, which is usually self-sufficient in maize, prices are usually highest 

in the main market of Maputo and lowest in the main producing areas in the centre 

and north of the country, as noted in the micro findings in chapter 5. The range of 

prices throughout the country is illustrated by figure 6.27, which depicts wholesale 

maize prices from 2008 to 2011 in the major consuming centre of Maputo and one of 

the major producing areas in the Gorongosa region in the centre of the country.  

 

The chart highlights the large costs involved in transporting grain from surplus to 

deficit areas in Mozambique, with distances of well over 1,000 kilometres from the 

central growing areas to Maputo. The large costs also reflect a number of 

inefficiencies in the marketing chain, including the lack of reliable and timely market 

information, high transport costs due to poor infrastructure, a lack of good quality 

storage and a large number of middlemen and unofficial tolls and taxes.  

 

A rapid appraisal of the marketing chain for maize was conducted during the field 

survey in Mozambique. The appraisal found that local traders in the centre and north 

buy from farmers and sell to transporter traders who deliver to wholesalers in 

Maputo who then sell on to retailers, each earning a sufficient profit margin. 

Additional costs were also reported in the form of unofficial taxes and penalties 
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applied in the course of transporting goods between regions. The appraisal suggested 

that the cost of transport alone from the surplus centre of the country to the deficit 

south should be in the range $50 to $75 per tonne, which is confirmed by other 

studies (eg Dias, 2013).  

 

Fig 6.27 – Wholesale Prices of Maize in Maputo and Gorongosa Area of 

Mozambique 

 

Sources: Ministerio da Agricultura, Sistema de Informacao de Mercados Agricolas and 

Instituto Nacional de Estatistica (INE). Note – grey shaded area denotes period related to 

household survey questionnaire 

 

However, the recorded price gap was much higher between Gorongosa and Maputo 

in the 2008 to 2011 period, at an average $140 per tonne, suggesting high middlemen 

margins and unofficial taxes. It should also be noted that the gap between 

centre/north markets and Maputo widens even further from time to time when 

surpluses are low in the centre/north and Maputo has to import maize from South 

Africa instead, which incurs a high VAT rate
86

. During the year May 2009 to May 

2010 a food security assessment mission calculated that South African maize was 
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 Some larger processors are able to avoid VAT in order to secure high quality supplies of certain 

goods, such as milling wheat 
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between $20 and $150 per tonne cheaper than supplies from Manica in the centre of 

the country (FAO and WFP, 2010). 

 

The chart also shows the period covered by the household survey records of prices in 

2009, shaded in grey. The sharp drop in prices of maize during that year following 

the previous steep rise, confirms household reports of “more normal” food prices at 

the time of the survey following the steep rise in 2008. Yet prices paid by households 

varied significantly from 7.5 to 10 Metical (MZN) per kg in Bilene ($280 to $375 per 

tonne), 8 to 10 MZN in Inhassune and 7.5 to 10 MZN in Dombe. The lowest retail 

prices tended to be recorded for larger amounts purchased, disadvantaging poor 

households, but quality differentials also accounted for some of the variation in 

household purchase prices. 

 

As noted above, US maize use has been the main biofuel-related influence on agri-

food markets, and has been linked with the world commodity price spikes in recent 

years. However, for both Mozambique and Tanzania, the main international 

influence on domestic prices is traditionally viewed as South African white maize, 

due to the geographical proximity and type of maize, since most maize production in 

Southern Africa is of the white variety used for human consumption rather than the 

yellow maize grown in the US and used as animal feed.  

 

Despite the different types of maize, South African white maize often competes with 

US on world export markets, so there is a relatively good relationship between them 

as illustrated in figure 6.28. But this also appears to show a relatively limited 

influence of both US and South African maize prices on Mozambique markets over 

that period.  

 

The rising price of maize in Mozambique during 2008 was partly due to a delayed 

effect from the sharp rise in US and South African maize prices in 2007/8. But it was 

more to do with a tight domestic balance and as prices of maize rose that year, South 

African prices became more and more competitive, and imports started to flow into 

Maputo from South Africa, even though Mozambique was generally regarded to be 

self-sufficient that season. 

 



 287 

Fig 6.28 – US Yellow, South African White and Mozambique White Maize 

Prices – 2008 to 2011  

 

Sources: Ministerio da Agricultura, Sistema de Informacao de Mercados Agricolas (SIMA) 

and Instituto Nacional de Estatistica (INE). US Department of Agriculture (USDA) and 

Department of Agriculture, Forestry and Fisheries (DAFF), South Africa. 

 

Domestic maize prices fell back in 2009 with the better crop that year. Then from the 

start of 2010 figure 6.28 shows a sharp rise in Mozambique maize prices even though 

US and South African prices remained low and only started gradually rising from the 

middle of that year. A comparison of figures 6.27 and 6.28 shows that prices on the 

domestic market in metical (MZN) rose gradually from the start of 2010 whereas US 

dollar denominated values (figure 6.28) rose steeply throughout the year. This 

difference can be attributed to the sharp devaluation of the Mozambique metical that 

year
87

.  This illustrates the importance of exchange rate influences, particularly for 

importing countries. Thus domestic maize prices in Mozambique, which is mainly 

self-sufficient, were relatively stable in 2010, but when denoted in US$, it appeared 

that prices had risen sharply. 

 

                                                 
87

 The metical devaluation was enforced by IMF policy, leading to a 33 per cent devaluation of the 

metical from MZN28 to the US$ in late 2009 to MZN37 in mid-2010. 

0

50

100

150

200

250

300

350

400

450

500

Ja
n

-0
8

M
ar

-0
8

M
ay

-0
8

Ju
l-

0
8

S
ep

-0
8

N
o

v
-0

8

Ja
n

-0
9

M
ar

-0
9

M
ay

-0
9

Ju
l-

0
9

S
ep

-0
9

N
o

v
-0

9

Ja
n

-1
0

M
ar

-1
0

M
ay

-1
0

Ju
l-

1
0

S
ep

-1
0

N
o

v
-1

0

Ja
n

-1
1

M
ar

-1
1

M
ay

-1
1

Ju
l-

1
1

S
ep

-1
1

N
o

v
-1

1

S
 p

er
 t

o
n

n
e
 

Gorongosa Maputo

US Gulf RandFontein SA



 288 

So in the case of Mozambique US maize prices appear to have had relatively little 

impact on domestic maize prices for the period covered. The linkage between US 

and South African maize prices is not always strong, particularly when the export 

availability from the South African maize crop is low. Even when there is a relatively 

close relationship, this would only affect the Maputo market in the odd years when 

significant imports are required from South Africa. Otherwise, prices of the staple 

cereal in Mozambique tend to fluctuate with local supply and demand conditions in 

between the wide band denoted by import and export parities. This corresponds with 

many recent findings in the literature. For example, Minot (2011) found that none of 

the six regional maize markets in Mozambique showed evidence of a long-run 

relationship between local and international prices. 

 

Tanzania is also generally self-sufficient in maize, with local prices generally having 

a limited relationship with world benchmark values. Prices tend to be lowest in the 

southern maize-surplus locations of Mbeya and Songea and highest in the main 

markets of Dar Es Salaam and Arusha and Mwanza in the north. Figure 6.29 shows 

wholesale maize prices in the Dar Es Salaam market against US and South African 

prices from 2008 to 2011 inclusive. The steep rise in Tanzanian maize prices in 2009 

was due to the poor harvest that year and record low end of season stocks. Imports 

were negligible over the period, and have been since then, with domestic production 

and stocks generally sufficient to meet domestic demand. This has been helped by 

the imposition of export bans at times of rising prices. Nonetheless food insecurity 

remains a problem for many regions, particularly in the north where there is a deficit 

of maize and it is difficult to prevent exports, particularly to the Nairobi market.   

 

This brief review of maize price developments in Tanzania corresponds with the 

recent literature. Minot (2011) found that of the eight main maize markets in 

Tanzania, only Arusha appeared to have any significant long-run relationship with 

world prices, whilst a World Bank study of 18 Tanzanian maize markets between 

2002 and 2012, concluded that in the long-run domestic prices were weakly 

influenced by US and South African markets, but that markets in the north of the 

country were more closely associated with the Nairobi market (Baffes et al., 2015). 

In the short-run, the World Bank study states that Tanzanian maize prices are 

“governed by a constellation of domestic factors”. Furthermore, Maro and 
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Mwaijande (2014) found limited transmission and slow adjustment of prices between 

markets within Tanzania, which they attribute to market power within the supply 

chain, particularly by traders and middlemen, with many layers of markets, poor 

infrastructure and a lack of reliable and timely market information systems. 

 

Fig 6.29 – Tanzanian, US and South African Maize Prices – 2008 to 2011 

 

Sources: Ministry of Agriculture - Tanzania, US Department of Agriculture (USDA) and 

Department of Agriculture, Forestry and Fisheries (DAFF), South Africa 

 

A lack of price transparency at the local level was also evident during the household 

survey where households reported a wide range of purchase prices for staple foods. 

In Ikiwu, Singida, households reported purchases of maize at between 250 and 400 

Tanzanian Schillings (TS) per kilogramme during April and May 2009 (from just 

under $200 to just over $300 per tonne), whilst maize retail prices in the villages of 

Kingori and Ngurdoto in Arusha ranged between 400 and 500TS/kg (just over $300 

to about $385). A number of reasons were given for the price variance, with some 

householders purchasing directly from producers rather than retailers, some minor 

quality differentials and some social factors.  
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In conclusion, US maize prices, which are deemed to have been the main influence 

of the recent biofuel boom, and which are viewed as a key driver of global food 

prices, appear to have had little, if any, influence on staple maize prices in the two 

food-insecure countries covered in this study. So even if biofuels were deemed to 

have accounted for a significant proportion of US maize price changes, a lack of 

price transmission to many food insecure countries, where markets remain 

imperfectly competitive, with high transaction costs, poor infrastructure and a lack of 

reliable and timely market information, means that little of the US price increases 

would be felt by households in such countries, based on the above evidence. 

 

The fact that US biofuel policies appear not to have led to significant maize, and, 

hence, staple food price increases in Mozambique and Tanzania, might be considered 

as positive for food security within both countries. However, the surveys of 

households in both countries highlight the large nutrient deficits of many rural 

farmers who depend on revenue from crop and livestock sales to meet their food 

needs. Since many of the most food insecure households in sub-Saharan Africa are 

located in rural areas, this suggests that higher staple prices might, in fact, help to 

alleviate poverty and improve food security, as noted in the literature review.  

 

Whether households would benefit from increased commodity and food prices or not 

would largely depend on their status as either net purchasers or net sellers of food, as 

the latter group would be more likely to benefit than the former. However, some 

households that were net purchasers before any price increase might also benefit if 

their increased revenue from farm sales outweighed any increase in expenditure on 

food. This could happen if households were able to maintain their nutrient intake 

with a relatively cheaper basket of foods, or if the higher prices incentivised 

increased production and revenue from sales. Much therefore depends on how each 

household responds to price changes through their price and income elasticity of 

demand and their price elasticity of supply, as each household will have a different 

response and that response will change over time.  

 

Furthermore, the extent to which each household can improve its bargaining power 

in terms of both buying and selling food within the supply chain, would also have a 

significant impact on incomes, given the wide variation of purchase and sale prices 
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reported within the household survey. Linked to this is the degree of price 

transmission from producer to retail level, as retail food prices can often be multiples 

of the producer price due to large costs within the supply chain.  
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7. Conclusions  

 

This study set out to answer, or at least provide insights on, four key questions 

arising from the ongoing food versus fuel debate.  

 

i) Whether biofuel operations in developing countries affect the food 

security status of local households? 

 

ii) How different models of biofuel feedstock production influence food 

security outcomes? 

 

iii) Whether global biofuel production reduces the availability of food by 

diverting crops and land away from food production? 

 

iv) Whether global biofuel production leads to higher food prices, and 

whether this reduces access to food in developing countries?  

 

The study also sought to find a way of best measuring food security in relation to the 

first two questions posed above. This led to the development of a novel indicator 

called the Household Nutrient Deficit Score (HNDS). This was designed to 

incorporate all four dimensions of the food security concept within a single score, 

which could also be disaggregated to provide more in-depth information.  

 

Furthermore, the methodology employed for capturing the information required for 

the HNDS, allows the analyst to trace back any macro or micro nutrient problems to 

food production and purchasing decisions and how any type of intervention might 

affect these. In this way the HNDS can guide mitigating actions that may be taken by 

households to address particular nutrient deficiencies through better food production 

and purchasing decisions or other actions. 

 

The HNDS was also developed as a response to some of the problems with existing 

measures such as the lack of quantity measurement in dietary diversity scores, the 

lack of micronutrient information in calorie intakes, the difficulty in identifying 
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causal factors from perception-based measures, as well as confounding issues with 

anthropometric and other indicators. 

 

The following sections summarise the conclusions of the other research questions 

posed, with the first section covering the impact of biofuel operations and different 

models of feedstock production on food security, the second reviewing the impact of 

biofuels on land and food availability and the third summarising the impacts on food 

prices.  

 

7.1 Conclusions on the Impact of Biofuel Operations on Household 

Incomes  

 

The study found that biofuel feedstock operations can help alleviate food insecurity 

at the local level. The survey results from the selected biofuel sites in Mozambique 

and Tanzania support the findings of a number of other recent studies that biofuel 

feedstock operations in developing countries can have a positive relationship with 

both income and food security.  

 

The analysis of the five different biofuel feedstock operations, show that those 

households that were involved with the biofuel operations, either through selling 

feedstock as outgrowers, or acting as employees, recorded lower nutrient deficit 

scores than other households in the same locality. The nutrient deficits were 

substantially lower for those households that had employees earning wages on 

jatropha and sugar cane estates. Indeed, the average score for such households was 

negative, indicating that the mean nutrient intake met the calculated requirement for 

those households with employees, whereas the average deficit for non-involved 

households was 31.5 per cent. 

 

Using a regression analysis that controlled for geographical location and other 

independent variables such as household size and area farmed, it was found that the 

average nutrient deficit score for households with employees was 27 percentage 

points lower than that for non-involved households (p<0.001). When controlling for 

the source of income, the average score was 22 percentage points lower (p<0.001).  
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Whilst the number of sites and households included in the survey is too small to be 

able to generalise in any way, the analysis suggests that greater food security benefits 

may sometimes be achieved in operations offering waged employment compared to 

some outgrower models where the impact on income from feedstock sales can be too 

small to make a noticeable difference.  

 

The qualitative results, meanwhile, indicated that a large proportion of households 

involved with biofuel operations perceived an improvement in their food security 

status after the biofuel operations were established, whilst most households, whether 

involved or not, expressed contentment with the establishment of the biofuel 

company in their locality, mainly due to envisaged benefits for the community as a 

whole.  

 

The key factor in the better food security status of households with biofuel 

employees was the improvement in household income. This, together with the ability 

to maintain some own food production in many cases, led to much lower macro and 

micronutrient deficits than other households in the same locality. The importance of 

income in improving access to food corresponds to Sen’s work on entitlements in the 

1980s.  

 

These findings suggest that biofuel operations could help to improve food security in 

developing countries where there is less pressure on land and other resources, and 

where higher-yielding feedstocks can be grown without taking land from 

communities, damaging the environment or displacing food production. Biofuel 

initiatives could also help to replace fossil fuel energy imports, whilst providing 

employment and market opportunities in disadvantaged rural areas. 

 

However, this study also noted the poor economic sustainability of biofuel projects 

in Africa. Two of the five projects studied closed down, partly due to poor choice of 

feedstock in the case of jatropha, but also the inadequate infrastructural and 

agribusiness environment and the inability of companies to secure sufficient funding 

as the financial recession took hold and food versus fuel concerns were increasingly 

voiced. In such cases, where many households had previously enjoyed the benefits of 
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salaried employment, most would have returned to semi-subsistence farming, and 

probably greater food insecurity.  

 

In conclusion, this study, together with other recent research in this field, suggests 

that involvement with biofuel operations under the right conditions can lead to better 

household food security in areas that are currently food insecure. Notwithstanding 

the economic viability issues for biofuel operations in Africa, the right to food should 

be given priority by policymakers and policies should be developed to support 

sustainable biofuel investments that can help improve food security in rural areas 

where hunger remains most prevalent.  

 

7.2 Conclusions on the Impact of Biofuels on Land Use 

 

The macro analysis found that global biofuel production has so far used much less 

land than is generally reported in the literature, with little increase in land use over 

recent years due to the increasing proportion of waste feedstocks used, such as used 

cooking oil and animal fats, and land-neutral co-products, such as molasses, as well 

as higher feedstock yields.  

 

The increase in land use that has occurred over the past decade has been mainly for 

maize-based ethanol in the US, soyabean and rapeseed based biodiesel in Europe and 

South America, and sugar-cane based ethanol in Brazil, with very little land currently 

being used for biofuel feedstock production in the most food-insecure countries, and 

particularly in Africa.  

 

Co-products have accounted for a significant proportion of the increase in land use. 

Of the 33 million hectare rise in global land use for biofuel feedstocks between 2005 

and 2015, it is calculated that 14 million hectares should be allocated to co-products 

on the basis of revenue earned. Most of the co-products have entered the food supply 

as animal feed. This suggests that global biofuel policies have accounted for an 

additional 19 million hectares of feedstock in the decade since 2005.  
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Estimates of suitable additional land for rain-fed crop production are wide-ranging, 

but some of the more conservative figures from the literature converge around 200-

250 million hectares globally, but concentrated within specific regions, mostly in 

sub-Saharan Africa and South America. The lower end of this range is also half the 

estimated 400 million hectares of additional land that Rockstrom et al calculated 

could be cultivated yet still remain within their estimated planetary boundary for 

global land use. 

 

Projections of additional land requirements for food production over the coming 

decades are also wide-ranging, with different views on potential yield improvements 

and particularly regarding climate change impacts. The FAO has estimated that an 

additional 70 million hectares could be needed to meet food needs by 2050. But the 

generally accepted view that we already produce more than enough food to meet the 

needs of the global population, even given the fact that one-third of all food 

production is lost as waste, suggests there is considerable scope for improving the 

efficiency of the food supply chain and improving the means of access to sufficient 

food for everyone. Rising levels of obesity and the associated health and 

environmental impacts of excessive meat and processed food consumption, also 

suggest that improvements are possible in the way food is produced and land is used. 

 

Given the concerns regarding climate change impacts on crop yields and pasture over 

the coming decades, and the greenhouse gas emissions associated with bringing new 

land into cultivation, some commentators have called for a moratorium on the use of 

land for biofuel feedstocks. But this would prevent the development of initiatives 

that could improve employment, income and food security within low-income rural 

areas, as well as bringing much needed investment in infrastructure and renewable 

energy supplies to improve water pumping, irrigation, storage, and cultivation. Also, 

estimates of potential land use are largest in sub-Saharan Africa where rural 

employment and energy supplies are most needed and where the most land-efficient 

feedstocks can be grown. 

 

At the micro level, a number of studies have found that land has been unfairly 

transferred from local communities to biofuel projects. Within the fieldwork for this 

study, there was little evidence of land grabbing, but a number of households had 
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agreed to transfer land to biofuel companies on the basis of compensation that 

appeared to be less than adequate, whilst four households were identified in one 

locality that had not received any compensation for land transfers at the time of the 

survey. It was also notable that relatively few of the randomly selected households 

lost land to biofuel operations and that of those that did, most received what they 

deemed to be fair compensation. 

 

There was also little evidence that the biofuel feedstock operations had affected food 

availability in the locality. For the outgrower-based operations, most farmers grew 

jatropha as a dual-purpose crop, for harvesting the seed and as a hedge to protect 

fields from wildlife damage. Since this was a traditional practice in many parts of 

Tanzania, there was little impact on land use, and, indeed, it could be argued that the 

jatropha hedge had an overall positive benefit on food availability through protecting 

fields of food crops. For those households that grew jatropha on a larger-scale, most 

fields were inter-cropped with maize or used as a shade boundary for other crops 

such as coffee.  

 

The surveyed biofuel estate operations all provided flexible working hours to allow 

employees time for their own home food production. Two of the estates also 

provided some land for community production of food, whilst some of the operations 

were actively involved with local farmers in improving food production in the 

locality, including the lending of machinery and expertise in developing irrigation 

systems. However, it was clear that such households had less time for their own food 

production and that some additional work burden had transferred from the employee 

to other members of the household. Nevertheless, the net outcome of better income 

and reduced home food availability was a significant improvement in food security 

status. 

 

On the basis of the macro analysis, it can be concluded that the global availability of 

food is unlikely to have been negatively affected by the relatively small increase in 

the global biofuel feedstock area, particularly as a large proportion (42.4 per cent) of 

the increased area was for co-products used as animal feed. The estimated area of 

biofuel feedstock planted in food-insecure countries, totalled just over 200,000 

hectares in 2015 after adjusting for co-products, with Africa accounting for a small 
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proportion of that. This also suggested a very limited impact on land use and food 

availability in food insecure countries.  

 

Perhaps a more important conclusion that should be drawn, based on the evidence of 

the household survey, is why there is not more biofuel and feedstock production in 

food insecure countries where sufficient land is available to meet both food and 

energy needs? If household food security can be improved through local biofuel 

operations, as the micro-analysis suggests, then more support should be provided for 

the establishment of biofuel initiatives in such countries. 

 

7.3 Conclusions on the Impact of Biofuels on Food Prices 
 

The key issue linking biofuels and food prices is the increased demand for biofuel 

feedstocks, which, it is argued, raises food prices around the world and creates 

greater food insecurity for households that spend a large proportion of their incomes 

on food. 

  

A definitive assessment of biofuel impacts on food prices seems impossible to make 

as it is difficult to accurately apportion influence to the many factors affecting the 

prices of the many types of foods. 

 

It is clear, however, that maize is the main food-based biofuel feedstock used and is 

also the main cereal produced globally and an important determinant of staple food 

prices. The US is the largest producer and exporter of maize so US maize prices have 

the most influence globally. 

 

It is also clear from the study findings that fundamental supply and demand forces 

play a significant role in determining the price of US maize. Because there is a close 

relationship between the US maize price and the stock-to-use ratio of US maize, 

changes in the components of this ratio can be calculated in order to assess the 

influence of ethanol demand compared to other supply and demand factors.  

 

The regression model used in this analysis suggests that the maize stocks-to-use ratio 

explained about three-quarters of US maize price developments over the past decade. 
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Over the same period, ethanol demand is calculated to have accounted for some 12 

per cent of changes to the US stock-to-use ratio. It is therefore plausible to assume 

that biofuel demand was unlikely to have accounted for little more than 10 per cent 

of US maize price changes.  

 

Even a 10 per cent share of any price increase, however, may have exacerbated food 

insecurity in some countries, to the extent that this was transmitted to local food 

markets in that country. On the other hand, any price increase may also have 

benefitted net sellers of maize and other food, particularly in rural areas. 

 

However, it seems unlikely that any biofuel-induced increases in US maize prices 

would significantly affect many food insecure countries due to the poor transmission 

of US prices to domestic markets. In Mozambique and Tanzania, during the steep 

rise in global biofuel production from 2008 to 2011, there appeared to be little 

connection between US maize prices and those on local markets.  

 

At the micro level, there was also little evidence that biofuel feedstock operations 

had influenced local food prices to any great extent. Local food prices in the biofuel 

sites in Mozambique were reported to have fallen at the time of the survey in 2009, 

despite the fact that local incomes had improved. In all of the biofuel operation sites 

there was a notably high variance in purchasing prices of the same foods by different 

households. The variance in retail food prices is likely to have had a more significant 

impact on household food security than any biofuel-induced influence from global 

markets. 

 

Given the long chain from US yellow maize markets in the Corn Belt to local sub-

Saharan white maize retail markets, with so many factors affecting the transmission 

of prices along that chain, it is somewhat surprising that so many studies have 

concluded that US biofuel policies have led to greater food insecurity by increasing 

food prices in developing countries.  On the basis of this study there appears to be 

insufficient evidence on which to make such a claim. Indeed, notwithstanding the 

relatively small contribution of biofuel demand to US maize price increases and the 

lack of transmission from US to local maize prices in food-insecure countries, there 
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is some evidence that higher prices may improve food security for many of the 

world’s poorest households in rural areas. 
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8. Policy Implications 
 

The Sustainable Development Goals agreed in 2015 require the ending of poverty 

and food insecurity, as well as regular access to clean energy for all. The attainment 

of these goals will be particularly challenging in rural areas of least-developed 

countries where poverty and hunger is most rife and access to clean energy is lowest. 

 

Given the limited literature on the impact of biofuel operations on local food security 

in food insecure countries, it is recommended that more research needs to be 

conducted in this area.  

 

Nonetheless, this study finds that biofuels can offer a potential source of employment 

and improved income in rural areas of developing countries, helping to alleviate 

poverty and food insecurity, as well as providing a source of renewable energy to the 

more remote areas of the world. It is therefore important that support is provided to 

those biofuels that can best achieve these goals and that least-developed countries are 

assisted in establishing biofuel sectors and realising these benefits. However, such 

benefits will only be garnered under the right conditions. 

 

In order to ensure that biofuels help to end poverty and food insecurity, any larger-

scale biofuel initiatives should comply with sustainability criteria that incorporate 

food security, fair labour, fair-trading and land rights provisions. These issues can be 

addressed through sustainability certification schemes that require companies to meet 

criteria relating to these and other sustainability-related issues, and to take mitigating 

actions if and when negative outcomes arise. All such schemes should include a 

rigorous food security screening system for food insecure areas. It is notable that 

most of the existing voluntary sustainability certification schemes relating to biofuels 

and approved by the EU, do not require a detailed food security assessment.  

 

Also, biofuel operations should only be facilitated by governments where there is 

clear evidence of available land that is not in existing use or required for local food 

needs, following detailed land mapping exercises, and where companies can provide 

evidence of economic and environmental sustainability. Applications to lease land to 

grow biofuel feedstock should only be authorised for limited periods and where any 
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affected communities are willing to lease land under free, prior and informed 

consent, with procedures that provide equivalent livelihood compensation and allow 

for land to be returned to previous owners should the operation fail to meet its 

commitments to the communities or close down.  

 

Governments should also encourage local ownership of biofuel initiatives wherever 

possible, including smaller-scale local energy initiatives involving outgrowers. The 

results of the household survey suggest that larger-scale operations can also provide 

much needed employment and income stability in rural areas, as well as having 

positive spillover impacts for local communities. 

 

The socio-economic criteria within voluntary certification schemes are currently 

insufficient to ensure that biofuels will make a positive contribution to the SDGs. It 

is therefore recommended that international mandatory standards and methodologies 

that target these issues are agreed and adopted. These standards should be developed 

by the relevant UN agencies as part of the commitment to the SDGs. 

 

One of the difficulties faced by organisations providing sustainability certification to 

operators is identifying indicators and methodologies that can accurately measure 

whether companies are complying with sustainability criteria. Food security is a 

particularly complex concept to measure. This study provides a novel alternative to 

the wide range of food security indicators in the form of a composite score for 

household nutrient deficiency
88

, which encapsulates the four dimensions of food 

security in its methodology. This can help to provide a more straightforward yet 

rigorous measure of whether a project or any other intervention has a negative or 

positive impact on food security in a particular locality, and can also help identify 

mitigatory actions to redress any negative impact.  

 

It is recommended that the Household Nutrient Deficit Score methodology and 

indicator be further developed to improve its scope to other nutrients, such as zinc, 

and the relationships between nutrients, such as the inhibition of zinc absorption by 

phytate, which is common in staple cereal foods. The weightings used in the overall 

                                                 
88

 It can also be used to measure individual nutrient deficiency where such data can be garnered 
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nutrient deficit score could also be refined and validated as more detail is included 

within the score. Given the need for more detailed information to be captured from 

households for the HNDS indicator, it is also recommended that a tool be developed 

to speed up the data collection process and enable real-time feedback to households.  

 

This study has identified one way of improving the measurement of food security in 

order to monitor impact and progress and guide mitigation. It is recommended that 

an international standard of food security indicators and methodologies be developed 

and adopted under the auspices of the UN in order to guide researchers and 

monitoring bodies. 

 

The above recommendations relate mainly to the research questions addressing the 

impact of biofuel operations on food security at the local level. So far most biofuel 

operations have been established in the developed world or in relatively food-secure 

middle-income countries. The slow progress of biofuels in Africa and other low-

income countries is due to many complex factors, but one issue that appears to have 

partly stifled expansion is the food versus fuel debate. Most media attention has 

focussed on the negative impacts of biofuel operations in developing countries. The 

work of the media and NGOs in highlighting examples of negative outcomes remains 

vital to ensure that future biofuel developments remain sustainable and ethical. 

However, the media and NGOs can also play an important role in highlighting the 

positive outcomes of biofuel operations on food security. 

 

Regarding the research questions posed at the macro level, this study finds little 

evidence to suggest that biofuel production-enhancing policies in the developed 

world have led to greater food insecurity through the reduced availability of food or 

higher food prices. Given the importance of phasing out fossil fuel use over the 

coming years, this again begs the question of why there has been so much criticism 

of biofuels in this regard.  

 

In contrast to the micro level, there has been a lot of research already conducted on 

estimated macro impacts of biofuel production in developed and middle-income 

countries on commodity prices. One recommendation, however, would be that more 

research is conducted on how commodity prices have actually responded to biofuel 



 304 

feedstock production over recent years. This study provides one way of analysing 

this question for US maize prices, but other more in-depth studies should be 

conducted, particularly on the question of market-influenced supply responses. 

 

More research also needs to be conducted on whether higher food prices lead to 

greater food insecurity for rural households in developing countries and the 

transmission of global commodity prices to national and local prices, particularly in 

those countries with a high proportion of the population estimated as food-insecure. 

Related to this is the need for the global community, through UN agencies, to assess 

what might be considered as an acceptable range of commodity and food prices, 

above which safety net supports might be triggered for vulnerable households and 

below which interventions might be triggered to help producers.  

 

One of the problems facing researchers in this area is the reliability of market 

information, not only on prices, but also on supply and demand volumes. It is 

therefore recommended that, as part of the wider goal in measuring SDG progress, 

more resources and guidance be provided to improve agri-food market information 

services in developing countries. More importantly, better market information 

services would help to improve market efficiency in local agri-food supply chains, 

enable farmers to negotiate better selling prices and allow householders to negotiate 

better food prices given the wide variety of purchase prices reported in the household 

survey. 

 

In terms of food availability, there are clearly some food-insecure countries, such as 

Mozambique, that have significant resources of land that could be used for greater 

crop production, whether for food or energy purposes. Given the uncertainty 

surrounding land availability and suitability for future food production, a global land 

plan for food and bioenergy should be developed to assess how existing land 

resources can be better utilised, including the potential for urban agriculture, and 

where additional land could be cultivated with the lowest climate change impact to 

meet future food and energy needs. This should be developed from detailed land 

mapping exercises conducted at national level. Existing calculations suggest a 

conservative total of 200 million hectares could be suitable for additional cultivation, 



 305 

mostly based in Sub-Saharan Africa and South America, but more detail is required 

to identify specific areas.  

 

Where land availability is more abundant and unlikely to encroach on food needs, it 

would be unethical not to encourage and facilitate biofuel feedstock production that 

could help to improve rural incomes and food security and increase renewable 

energy supplies. In such cases, high-yielding feedstocks could be supported whether 

or not food-based. Indeed, an argument could be made for using food-based 

feedstocks where these do not displace existing supplies, as they might then provide 

a buffer stock and be used for food in the event of a production shock. 

 

Africa and other low-income regions have yet to benefit from biofuels, despite the 

fact that many countries in these areas have the greatest potential to produce the 

highest-yielding, and lowest carbon-emitting, feedstocks and biofuels. Developed 

countries should therefore, not only support the development of such biofuels in low-

income nations, but also adopt policies that facilitate the import of feedstocks and 

biofuels that have been produced in a sustainable manner from these countries. 
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Appendices 
 

Appendix 1 – Examples of how biofuels affect the dimensions of food 

security 
 

Biofuel operations may affect food security in a number of ways. The following 

notes provide examples of how each of the four pillars of food security might be 

affected by a biofuel operation (ie they are illustrative rather than exhaustive lists).  

 

1. Impacts on Food Availability 

 

The physical availability of food could be negatively affected by a biofuel operation 

in many different ways, including; 

 If the biofuel feedstock land was previously used for food production or 

inputs (eg foodcrops or pasture or hedge/tree shading and protection). 

 If the land was previously used for other livelihood activities that would 

indirectly affect food production (eg local sources of fuelwood or water, the 

removal of access to which could result in longer distances and hours 

collecting fuelwood and reduced labour hours for agricultural production) 

 If demand for food or inputs by the biofuel project reduced market supplies 

for other customers (ie market availability was insufficient to meet the new 

demand from the biofuel project and prevailing local demand; although this 

should also trigger increased supply from surrounding farms – see below) 

 If food yields were negatively affected by the biofuel project (eg through soil 

erosion, a lowering of the water table or an increased prevalence of pests and 

disease from the biofuel feedstock, etc) 

 If local labour resources were drawn away from food to biofuel production 

with insufficient inward migration or increased food imports to offset the loss  

 If working conditions for employees were such that they had little or no time 

or energy to spend on home production of food, reducing the amount and 

variety of home food production 

 

On the other hand food availability could be positively affected by a biofuel 

operation; 
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 If the biofuel project provided additional land for food production to the 

community, which might be cleared or ready-cultivated  

 If technical expertise and inputs were made more accessible by the biofuel 

project, helping to improve food productivity and storage
89

 

 If other livelihood supports were made more accessible by the biofuel project 

(eg affordable clean fuel and safe water supplies, freeing labour resources for 

agricultural production
90

) 

 If new demand from the biofuel project stimulated farmers in the locality to 

produce more foodstuffs for sale relative to subsistence production (ie 

through effective market demand and higher prices) 

 If the biofuel project itself produced more food for sale into local markets 

(although this might have a negative impact on prices for local farmers) 

 

Measurements could include land area devoted to food production in the baseline 

against that after the biofuel project has been established, main foodcrop yields and 

variances pre and post-project, yield levels associated with weather and climate 

change impacts, market assessments of supply impacts and records of farm sales pre 

and post project.  Such details could be captured in household questionnaires, focus 

groups and market surveys. 

 

2. Impacts on Food Access  

 

It is generally agreed that access is the most important factor determining food 

security, as there is often adequate availability of food but many households lack the 

income to afford access to sufficient nutritious food.  Access is not just about 

purchasing food, but all means of accessing food, including home production, 

bartering, aid and hunting and gathering of wild foods.  Access is also affected by the 

accessibility and quality of food markets in the vicinity. Hence, there is some overlap 

between availability and access. 

 

Access to food can be negatively affected by biofuel projects; 

                                                 
89

 Note that technology transfer can also lead to negative impacts if inappropriate for the region and 

conditions. 
90

 Note that improved access to affordable clean fuels would not only save time in fuelwood 

collection but would also reduce illness associated with smoke inhalation. 
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 If the land on which biofuel feedstocks are now grown (and providing water 

access) was previously used for crops, livestock, inputs or other income-

generating and income-saving sources (eg hunting and gathering and fishing), 

the removal of which would reduce incomes or incur increased expenditure 

for local households 

 If the biofuel operation paid low wages to workers, or low prices to 

outgrowers, which were insufficient to cover household food needs. 

 If the new biofuel project generated demand for food, inputs and other 

essential goods (eg fuel) at local markets which increased the price of such 

goods, reducing the amount of food and other essentials that could be 

purchased by other customers 

 

Access to food can be positively influenced by biofuel projects; 

 If fair wages are paid to workers which allow them to purchase a sufficient 

amount and variety of food to meet their nutritional needs 

 If local food prices increased following the establishment of a biofuel project, 

increasing the incomes of those households selling farm products, thereby 

enabling them to purchase more goods 

 If biofuel projects improve the local infrastructure, including roads, making 

food markets, and more diverse food diets, more accessible 

 If storage facilities were improved in the locality encouraging less waste, 

particularly of foodstuffs containing valuable micronutrients, such as fresh 

produce. 

 

Access measures generally focus on price and income levels. A key measure would 

therefore be the minimum cost of a healthy diet for the locality for various age and 

gender groups which could then be applied at household level and compared with 

wages paid by biofuel operations and prices of feedstocks paid to outgrowers. 

Diversity of diet could also be measured, and, again, household surveys could 

provide much of the data needed for these calculations. 
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3. Impacts on Food Utilisation 

 

Utilisation of food refers to how food is actually used by people in order to meet 

their nutritional needs. Thus foodstuffs have to be stored, prepared and cooked to 

make them utilisable, and the way in which food is prepared can affect the nutritional 

status of the food. Food utilisation is also affected by the health status of different 

people as this can affect their ability to absorb nutrients. Adequate diets also rely on 

a balance of different foodstuffs as some nutrients can influence the absorption of 

others.  

 

Utilisation of food can be negatively influenced; 

 If poor health and illness reduces the absorption of essential nutrients (indeed 

poor access to food and low utilisation can lead to poor health and illness) 

 If households lack access to cooking essentials , such as fuelwood and clean 

water 

 If poor education prevents households from purchasing a well-balanced diet 

to meet nutritional needs 

 If the diversity of food production is reduced in the locality of the project (eg 

if outgrowers use land previously devoted to crops and livestock that provide 

valuable micronutrients such as fruit and vegetables) 

 If poor storage reduces the quality of food and hence, utilisation. 

 

Utilisation can be positively affected by a biofuel project; 

 If traditional wood stoves are replaced by improved cooking stoves using 

biofuels or processed biofuel feedstocks (eg ethanol gel or straight vegetable 

oil), reducing smoke-related respiratory illness and improving cooking 

efficiency 

 If biofuel projects provide improved access to clean water for drinking and 

cooking and improved storage. 

 If biofuel projects help to improve local education and health and sanitation 

facilities 

 If biofuel projects improve the diversity of food availability in the locality  
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Measurements could include anthropometric indicators to assess malnutrition rates, 

time and distances for collecting water and fuelwood and travelling to schools and 

health centres, cost and quality of fuel and water where purchased, and the 

prevalence of acute-respiratory and other diseases and the amount of time sick or 

spent caring. Most of this data could be captured by household surveys and focus 

groups.  

 

4. Impacts on Food Stability 

 

Stability of food security entails households and individuals having access to a 

sufficient quantity and quality of food at all times. In many food insecure regions 

people face seasonal shortfalls in food access during the year, particularly as stocks 

run low in the period leading up to the next harvest.  Many food insecure regions are 

also in predominantly rural areas, where farmers suffer weather-related shocks from 

year to year. So it is important to measure such gaps at the household level in order 

to identify nutritional gaps both during and between years. 

 

Stability can be negatively affected; 

 If the biofuel project accentuates any seasonal shortfall in availability and 

access of particular foods (eg if seasonal work is the main form of 

employment by a biofuel project, which can leave households short of 

income at certain times of the year or disrupt local food production). 

 If the biofuel project accentuates the variability in food production between 

years (eg by reducing the water table in the locality and making crops and 

livestock more vulnerable to drought) 

 

Stability can be positively affected; 

 If the biofuel project provides access to additional food supplies or inputs, or 

temporary income measures (eg food vouchers) in times of shortage 

 If there are technical transfers of knowledge in reducing the size and duration 

of food shortfalls through the introduction of new crops and livestock or 

better varieties and breeds, or a better application of inputs, such as irrigation 

 If storage and transport facilities are improved to reduce wastage and improve 

the length of food conservation 
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Measurements could include seasonal patterns of household food consumption, 

including shortage periods and depth of hunger. Again this could be largely captured 

by household surveys and focus group methods. 

 

Drawn from the Roundtable on Sustainable Biofuels Food Security Guidelines 

(Thornhill et al., 2012) 
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Appendix 2 – Household Survey Questionnaire 
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Appendix 3 – Estimated World Fuel Ethanol Production  
 
Fuel Ethanol Production 

(Billion litres) 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

EU-28 800 1,608 1,803 2,816 3,553 4,268 4,392 4,658 5,000 5,250 5,190 

Other Europe and FSU 0 38 38 51 51 54 71 139 160 200 250 

Africa  10 11 16 16 26 29 36 53 100 120 200 

Canada 250 250 615 960 1,340 1,445 1,700 1,695 1,730 1,708 1,650 

U.S.A. 14,780 18,489 24,685 35,237 41,404 50,338 52,727 50,036 50,318 54,180 56,046 

Central America 0 0 23 35 70 73 75 171 204 233 275 

Argentina 0 0 0 0 23 122 170 253 475 670 815 

Brazil 13,813 15,773 19,587 23,582 22,201 24,516 20,212 20,739 24,377 25,585 26,850 

Colombia 100 269 275 256 325 291 337 370 388 406 425 

Paraguay 0 0 65 90 120 130 130 165 180 195 205 

Peru 0 0 0 0 59 70 123 235 240 245 245 

Other S.America 0 10 10 10 16 20 20 40 50 60 70 

China 1,200 1,664 1,731 2,257 2,466 2,479 2,566 2,858 2,934 2,951 3,078 

India 100 200 200 280 100 50 365 305 382 350 685 

Philippines 0 0 0 2 23 10 4 35 72 115 175 

Thailand 70 135 192 336 419 451 486 471 950 1,058 1,265 

Other S.Asia 0 0 1 11 107 110 134 158 187 131 83 

Australia 27 42 84 149 203 275 319 306 290 265 265 

WORLD TOTAL 31,150 38,489 49,325 66,088 72,506 84,731 83,867 82,687 88,037 93,722 97,772 

Sources: National statistical agencies and government departments, including USDA, EIA (Energy Information Administration), MAPA – Ministry of Agriculture, Fisheries and Food in 

Brazil, Eurostat, as well as trade associations such as ePure, Brazilian Sugar Industry Association - UNICA (Uniao da Industria de Cana de Acucar), Petroleum, Natural Gas and 

Biofuels Agency of Brazil (ANP), Global Renewable Fuel Alliance and specialist agencies and companies such as FO Lichts, Strategie Grains, Platts and BP plus international 

organisations such as International Energy Agency (IEA), OECD, FAO and UNEP. 
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Appendix 4 – Estimated World Biodiesel and HVO Production  
 
Biodiesel & HVO 

Production (Billion litres) 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

EU-28 3,272 5,360 6,750 6,860 9,857 10,707 11,041 11,082 11,983 13,341 13,535 

Other Europe and FSU 10 30 35 70 67 100 146 176 132 185 158 

Canada 15 40 70 95 110 115 120 100 140 340 305 

U.S.A. 344 948 1,854 2,567 1,953 1,300 3,662 3,750 5,146 4,841 4,780 

Argentina 20 100 215 830 1,360 2,070 2,760 2,800 2,260 2,930 2,070 

Brazil 0 65 375 1,100 1,608 2,386 2,673 2,717 2,960 3,460 4,000 

Colombia 0 0 9 80 201 416 548 605 621 634 636 

Other S America 2 3 17 23 23 60 65 70 114 73 92 

China 40 273 352 534 591 568 738 909 1,079 1,133 1,141 

India 10 20 10 15 75 90 102 115 120 130 135 

Indonesia 10 65 270 630 330 740 1,800 2,200 2,800 3,300 1,600 

Korea,South 10 40 100 100 260 340 350 400 475 485 500 

Malaysia 15 100 109 212 241 103 54 152 358 359 537 

Philippines 0 5 49 66 137 124 133 138 155 172 152 

Singapore 1 15 40 100 40 0 250 500 1,830 1,000 2,000 

Thailand 50 70 68 449 610 660 630 900 1,060 1,170 1,210 

Other Asia 0 0 7 13 41 30 77 62 76 76 76 

Australia 20 21 54 50 85 85 80 51 62 65 100 

WORLD TOTAL 3,818 7,155 10,386 13,796 17,592 19,900 25,240 26,734 31,382 33,705 33,045 

Sources: National statistical agencies and government departments, including USDA, EIA (Energy Information Administration), Eurostat, plus trade associations such as European 

Biodiesel Board, FEDIOL (European Vegetable Oil and Protein Meal Federation), Malaysian Palm Oil Board, plus specialist agencies such as FO Lichts, Platts, Oil World and 

Strategie Grains and international organisations such as UNEP, OECD, FAO. 
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Appendix 5 – Mozambique and Tanzanian Crop Areas 
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Appendix 6 – US Maize Supply and Demand - 2004/5 to 2015/16 
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Appendix 7 – US Maize Supply and Demand Balance Changes - 2005 to 2015 
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Appendix 8 – Proportions of Total Supply and Demand Changes in the US Maize Balance from 2005 to 2015 
 

 

8a. Proportions of total changes in the US maize supply and demand balance from 2005 to 2015 (Percentage points) 

 
 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Total  

Supply 6.3 2.5 10.9 4.5 3.7 2.4 2.4 6.3 11.5 2.7 3.9 57 

Demand 2.2 3.8 5.4 7.0 3.8 3.2 2.0 4.8 8.3 1.5 0.9 43 

Demand breakdown             

Ethanol 1.0 1.8 3.2 2.3 3.0 1.5 0.1 1.2 1.7 0.3 0.2 16 

Other H&I  0.1 0.0 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 1 

Animal Feed 0.1 2.0 1.1 2.5 0.1 1.1 0.9 0.7 2.5 1.0 0.3 12 

Export 1.1 0.0 1.1 2.0 0.4 0.5 1.0 2.8 4.1 0.2 0.5 14 

  

 

8b. Proportions of total changes in the US maize supply and demand balance adjusted for co-products from 2005 to 2015 
(Percentage points) 

 
 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Total 

Supply 6.6 2.6 11.4 4.7 3.9 2.5 2.5 6.5 12.0 2.9 4.1 60 

Demand 2.2 2.9 5.6 5.5 3.7 2.3 2.0 5.0 8.6 1.6 1.0 40 

Demand breakdown             

Ethanol 0.7 1.3 2.3 1.5 2.2 1.1 0.0 0.8 1.3 0.2 0.2 12 

Other H&I  0.1 0.0 0.1 0.2 0.2 0.1 0.0 0.0 0.1 0.0 0.0 1 

Animal Feed 0.2 1.5 1.8 1.8 0.4 0.6 0.8 1.3 2.5 1.2 0.3 12 

Export 1.2 0.1 1.4 2.1 0.9 0.5 1.1 2.8 4.8 0.3 0.5 16 

Source : Using USDA supply and demand estimates as at May 2016 and historical data from USDA statistical yearbooks. Note that Years refer to harvest season 

(ie 2005 = 2005/6 marketing season). 
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