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Abstract
We construct an exact solution modelling the geophysical dynamics of an
inviscid and incompressible fluid which possesses a variable density strat-
ification, where the fluid density may vary with both the depth and lati-
tude. Our solution pertains to the large-scale equatorial dynamics of a fluid
body with a free surface propagating steadily in a purely azimuthal direc-
tion, and is expressed in terms of cylindrical coordinates. Allowing for gen-
eral fluid stratification greatly complicates the Bernoulli relation—which
relates the imposed pressure to the reciprocal fluid distortion at the free-
surface—thereby acting as a constraint on the existence of a solution. Employ-
ing the implicit function theorem, we establish the existence of solutions and
determine that the requisite monotonicity properties hold for the flow solutions
we found. Furthermore, since the fluid velocity and pressure are prescribed
by explicit formulae in the framework of cylindrical coordinates, our solution
is amenable to analysis by the short-wavelength stability approach, which we
investigate.

Keywords: azimuthal flows, general density, cylindrical coordinates, Coriolis
force, short-wavelength perturbations

Mathematics Subject Classification numbers: 35Q31, 35Q35, 35Q86, 35R35,
76E20.

1. Introduction

We construct an exact solution for the geophysical dynamics of an inviscid and incompressible
fluid in the equatorial region which exhibits a general stratification, whereby the fluid density
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may vary with both the depth and latitude. Fluid stratification is an inherent feature of physical
oceanography, with variable fluid density being particularly pertinent to the consideration of
large-scale ocean motions [20, 38, 49, 50]. In most of the ocean, and particularly in the equato-
rial region, temperature is the primary factor determining the fluid density [36, 48]. Salinity is
another appreciable factor, however low salinity contributes to density fluctuations in the ocean
primarily in high-latitude regions where precipitation is high; in coastal regions where freshwa-
ter run-off mixes with surface waters; or in polar regions where sea-ice processes predominate
[18, 20, 38].

The exact solution we present in this paper admits a fluid stratification whereby the den-
sity may vary both with fluid depth, and with latitude: this form of density distribution is
sufficiently general to capture and model most geophysical fluid dynamics phenomena [20,
49, 50]. It is known that much of the ocean can be divided into three distinct zones, or lay-
ers, with characteristic density distributions. The surface zone (or mixed layer) consists of
fluid of roughly uniform density, with the fluid temperature and density relatively constant
with depth due to the mixing effects induced by wave-current interactions. This layer typi-
cally extends to a depth of approximately 150 m (however, depending on local conditions, the
depth may vary from 1000 m to a complete absence). Beneath this layer is the pycnocline,
a zone in which there is a rapid increase in the density with increasing depth. The pynocline
isolates surface water from the denser layer below, and serves to limit vertical communica-
tion within an ocean column. As this density variation is usually linked to a similarly marked
variation in water temperature, as is certainly the case in the equatorial region being consid-
ered, in many cases the pycnocline coincides with the thermocline. Beneath the pynocline
lies the deep-zone (at depths below around 1000 m in mid-latitudes) where there is again
relatively little change in water density with increasing depth. Although the most dramatic
density variations occur in the pycnocline, and this layer serves to limit vertical communi-
cation within an ocean column, it is noteworthy that the effects of ocean stratification are
not confined solely to this, or the surface layer. Indeed, ocean stratification generates the
slow thermohaline circulation which is intrinsic to the ocean’s deepest waters [18, 20, 38,
49]. With regard to latitudinal density variation, we note that the exact solution we construct
pertains to flows in the equatorial region where the thermocline is deeper and more pro-
nounced, due to the solar energy available, than at higher latitudes. It is clear that attaining a
detailed theoretical understanding of, and a model for, stratified flows is of the utmost practical
importance.

A number of recent developments have produced an assortment of exact solutions to the
GFD governing equations in various forms, see [2–6, 8–15, 21, 22, 29, 30, 39–47]; surveys of
these results can be found in [23, 35]. Exact solutions are extremely rare in fluid mechanics, in
general, and they offer an invaluable insight into the mathematical structure of a given problem.
They are also regarded as a framework from which more physically realistic and observable
flows may be constructed. The works referenced above primarily involve homogeneous fluids,
and accommodating variable density in the fluid vastly complicates the mathematical analysis
of an already intractable problem. Nevertheless, some recent developments have been initi-
ated which construct exact equatorial flow solutions incorporating fluid stratification. In [26,
27] exact solutions are constructed which determine equatorial flows whereby the fluid den-
sity varies linearly with depth, and is independent of the latitude. In [28] an exact equatorial
flow solution is presented in the framework of spherical coordinates which permits general
stratification.

The solution we construct below is presented in terms of cylindrical coordinates. The cylin-
drical coordinate approximation offers a more transparent insight into the properties of the fluid
flow compared to the framework of spherical coordinates (see [28]) while still retaining quite
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an amount of the mathematical structure of the full problem. Cylindrical coordinates, unlike
the f− and β−tangent plane approximations, capture in detail the latitudinal variation intrin-
sic to the Earth’s curved geometry [10, 11]. The transformation from spherical to cylindrical
coordinates involves appreciable modifications to the zonal structure of the solution, how-
ever we remark that the azimuthal invariance of the solution we present below may serve
to lessen any deficiencies induced by this approximation. Aside from this, the form of the
exact solution we construct possesses much freedom in its prescription, and it offers a model
which captures the salient features of the EUC [9, 10, 12, 48], as we describe in remark 3.3
below.

The construction of such a physically rich and complex solution generates a number of
technical complications in the mathematical analysis that must be rigorously addressed. Chief
among these is the Bernoulli-type relation (3.18), which provides an implicit prescription of
the relationship between the imposed pressure, and the resulting distortion, at the free-surface.
Relation (3.18) is greatly complicated by fluid stratification, thereby providing a constraint
on the existence of a solution. We apply a functional analytic argument to establish that the
Bernoulli relation ensures a well-defined relationship between the imposed pressure at the free-
surface and the resulting distortion of the surface’s shape for a wide-range of equatorial flows,
and that this relationship exhibits the physically-expected monotonicity properties. The paper
is concluded by subjecting the exact solution to a short-wavelength stability analysis. Although
the mathematical implementation of the involved machinery is significantly complicated by the
presence of fluid stratification, since the fluid velocity and pressure are prescribed by explicit
formulae in the framework of cylindrical coordinates our solution is amenable to this technique.
We find that, depending upon the initial conditions, some flows are linearly stable, but others
are not.

2. Preliminaries

Let us begin by defining the cylindrical geometry and variables that we use to describe fluid
motion in an associated rotating system. In the cylindrical coordinate system we consider,
the equator is ‘straightened’ and replaced by a line parallel to the z-axis, while the body of the
sphere is represented by a circular disc described in the corresponding polar coordinates. Thus,
in a right handed system, our coordinates are (r, θ, z), where r is the distance to the centre of
the disc (representing the Earth’s interior), θ ∈ (−π/2, π/2) is increasing from north to south
and measures the deflection from the equator, and the positive z-axis points from west to east
[10, 11]. The line of the equator is chosen to be associated with θ = 0. The corresponding
unit vectors in the (r, θ, z) system are (er, eθ, ez) and the velocity components with respect to
(er, eθ, ez) are (u, v,w).

The equations governing geophysical fluid dynamics (GFD) are given by the Euler equation,
which in cylindrical coordinates with the origin at the centre of the Earth are expressed as

ut + uur +
v

r
uθ + wuz −

v2

r
= −1

ρ
pr + Fr

vt + uvr +
v

r
vθ + wvz +

uv
r

= −1
ρ

1
r

pθ + Fθ

wt + uwr +
v

r
wθ + wwz = −1

ρ
pz + Fz,

(2.1)

where p(r, θ, z) denotes the pressure in the fluid and (Fr, Fθ, Fz) is the body-force vector, and
the equation of mass conservation

3891



Nonlinearity 33 (2020) 3889 D Henry and C I Martin

1
r
∂

∂r
(rρu) +

1
r
∂

∂θ
(ρv) +

∂

∂z
(ρw) = 0. (2.2)

Subsequently, the fluid density ρ = ρ(r, θ) is permitted to vary with respect to both the
fluid depth and the latitude. To examine fluid motion at fixed locations on the Earth’s sur-
face we must incorporate the effects of the Earth’s rotation. We associate (er, eθ, ez) to a
point fixed on the sphere which is rotating about its polar axis, and introduce the Coriolis,
2Ω× u, and centripetal, Ω× (Ω× r), accelerations. Here r = rer, u = uer + veθ + wez, and
Ω = −Ω((sinθ)er + (cosθ)eθ), where Ω ≈ 7.29 × 10−5 rad s−1 is the constant rate of rotation
of the Earth. Therefore the total contribution of the Coriolis and centripetal acceleration, which
must appear on the left-hand side of the Euler equation (2.1), is given by

2Ω(−w cosθ,w sinθ, u cosθ − v cosθ) + rΩ2(−cos2 θ, sinθ cosθ, 0).

Additionally, we assume that the body-force is due to gravity alone. Thus, the water motion is
governed by the system

ut + uur +
v

r
uθ + wuz −

v2

r
− 2wΩ cosθ − rΩ2 cos2 θ = −1

ρ
pr − g

vt + uvr +
v

r
vθ + wvz +

uv
r

+ 2wΩ sinθ + rΩ2 sinθ cosθ = −1
ρ

1
r

pθ

wt + uwr +
v

r
wθ + wwz + 2Ω(u cosθ − v sinθ) = −1

ρ
pz,

(2.3)

together with the equation of mass conservation (2.2), and is additionally subjected to the
kinematic boundary conditions

u = whz +
1
r
vhθ (2.4)

on the free surface r = R + h(θ, z), and

u = wdz +
1
r
vdθ (2.5)

on the bed r = d(θ, z), respectively. Moreover, at the free surface r = R + h(θ, z), we require
the dynamic boundary condition

p = P(θ, z). (2.6)

3. Construction of exact stratified solutions

We now construct an exact solution to the GFD governing equations representing a strati-
fied, steady equatorial flow. As the flow is taken to be purely azimuthal, and invariant in this
direction, we seek solutions for which the velocity field (u, v,w) satisfies

u = v = 0 and w = w(r, θ), (3.1)

while the free surface is described by

r = R + h(θ),
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for some unknown function θ → h(θ), and the bed is represented by

r = d(θ),

for some given function θ → d(θ). Furthermore, due to the azimuthal character of the flow, the
z-dependence is suppressed and condition (2.6) reads

p = P(θ), (3.2)

for some given function θ → P(θ).

Remark 3.1. Due to geophysical considerations pertaining to equatorial flows, the range of
the polar angle θ is restricted to some interval [−ε, ε]. The choice ε = 0.016 represents a strip
of width of about 100 km centred about the equator.

With the velocity field prescribed by (3.1), the system (2.3) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2wΩ cosθ − rΩ2 cos2 θ = −1

ρ
pr − g

2wΩ sinθ + rΩ2 sinθ cosθ = −1
ρ

1
r

pθ

0 = pz.

(3.3)

Furthermore, the equation of mass conservation, (2.2), and the kinematic boundary conditions,
(2.4) and (2.5), are immediately satisfied by the choice of velocity field in (3.1). We notice that
the above system can be written as

ρΩ cosθ(2w(r, θ) + rΩ cosθ) = pr + gρ

ρrΩ sinθ(2w(r, θ) + rΩ cosθ) = −pθ.
(3.4)

Set U(r, θ) := 2w(r, θ) + rΩ cosθ. We obtain

(ρΩU cosθ)θ = prθ + gρθ

(ρrΩU sinθ)r = −pθr.

Eliminating the pressure between the two equations of the system above we obtain

r sinθ(ρrΩU cosθ)r + cosθ(ρrΩU cos θ)θ = (r cosθ)gρθ.

Denoting Z(r, θ) := ρrΩU cosθ we arrive at the equation

(r sinθ)Zr(r, θ) + (cosθ)Zθ(r, θ) = (r cosθ)gρθ, (3.5)

that we solve by the method of characteristics. That is, we look for functions

s → r̃(s), s → θ̃(s),

satisfying
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˙̃r(s) = r̃(s) sin θ̃(s), ˙̃
θ(s) = cos θ̃(s). (3.6)

The partial differential equation (3.5) becomes now

d
ds

(
Z(r̃(s), θ̃(s))

)
= (r̃(s) cos θ̃(s)) [gρθ(r̃(s), θ̃(s))] . (3.7)

Solving the system (3.6) we find first that

¨̃r(s) = ˙̃r(s) sin θ̃(s) + r̃(s) ˙̃θ(s) cosθ(s) = r̃(s),

which implies that r̃, θ̃ must satisfy

r̃(s) = c1es + c2e−s, θ̃(s) = arcsin

(
ce2s − 1
ce2s + 1

)
, (3.8)

for some constants c1, c2 and c. Inputting the expressions for r̃ and θ̃ in the first equation of
(3.6), and setting s = 0 we obtain

c1 − c2

c1 + c2
=

c − 1
c + 1

,

from which we infer that c = c1
c2

. One can easily check that the latter relation is also sufficient

for r̃, θ̃ to satisfy the system (3.6).

Remark 3.2. We note that

d
ds

(
r̃(s) cos θ̃(s)

)
= 0, (3.9)

since r̃ and θ̃ satisfy (3.6).

We will determine further the constants c1, c2 and c. To this end we impose without loss of
generality the condition

θ̃(0) = 0,

which implies that c = 1. Therefore, c1 = c2. Moreover, for given r, θ, we seek s0 ∈ R such
that

θ̃(s0) = θ, r̃(s0) = r. (3.10)

The first equation of (3.10) gives

s0 =
1
2

ln
1 + sin θ
1 − sin θ

=: f(θ),

while the second equation of (3.10) implies that
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c1 = c2 =
r cosθ

2
.

In summary, denoting the characteristics (3.6) that satisfy (3.10) by r, θ, we have

r(s) = r(cosθ)cosh(s), θ(s) = arcsin(tanh(s)) for all s. (3.11)

It follows from (3.9) that

r(s) cos θ(s) = r(0) cos θ(0) = r cosθ for all s. (3.12)

Integrating with respect to s from 0 to s0 = f(θ) in (3.7) and using (3.10), (3.12) we obtain

Z(r, θ) − Z(r cosθ, 0) = gr cosθ
∫ f(θ)

0
ρθ

(
r(s), θ(s)

)
ds,

and utilising the definitions of the functions Z and U we find that the azimuthal velocity is
prescribed by the formula

w(r, θ) = −Ωr cosθ
2

+
1

2Ωρ

[
F(r cosθ)

r cosθ
+ g

∫ f(θ)

0
ρθ

(
r(s), θ(s)

)
ds

]
(3.13)

for all (r, θ), where x → F(x) is some arbitrary smooth function.

Remark 3.3. The form of the azimuthal velocity profile derived in (3.13) is quite flexible,
particularly in the context of offering elementary models which describe equatorial flows. For
instance, if the flow assumes the form w = W(r) at the equator, then setting w(r, π/2) = W(r)
in relation (3.13) enables us to determine the functional form for F(r), and the flow w(r, θ)
in the neighbouring equatorial region is prescribed by (3.13). A concrete example of this is
provided by the equatorial undercurrent (EUC). The EUC is a current which runs the extent of
the Pacific equator whereby the surface flow is predominantly westward (due to the prevailing
trade-winds) and a flow reversal occurs beneath the surface leading to an eastward-flowing
jet which is confined to depths of 100–200 m, see [9, 10, 12, 36, 48]. If we suppose that the
westward surface velocity has the constant magnitude Ww, and the maximal eastward velocity
at the core of the EUC jet has magnitude We, then setting

W(r) =

⎧⎪⎨⎪⎩We − (We + Ww)

(
r − R0

R − R0

)2

, R � r � R,

0, r < R,

leads to an elementary model for the EUC. Here r = R represents the free-surface at the equator,
r = R0 is the depth at which the EUC attains its maximum speed (this typically coincides with
the thermocline) and R = R0 − (R − R0)

√
We/(We + Ww) represents a depth beneath which

there is essentially no fluid motion.
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In order to determine the pressure p, we note that (3.4) implies that

pr = −gρ+ΩρU cosθ

= −gρ+
F(r cosθ)

r
+ g cosθ

∫ f(θ)

0
ρθ

(
r(s), θ(s)

)
ds,

(3.14)

and

pθ = −ΩrρU sinθ

= − tan θ

[
F(r cosθ) + gr cosθ

∫ f(θ)

0
ρθ

(
r(s), θ(s)

)
ds

]
.

(3.15)

Integrating (3.14) with respect to r we find that

p(r, θ) = −g
∫ r

a
ρ(r̃, θ)dr̃ +

∫ r cosθ

a cosθ

[
F(y)

y
+ H(y, θ)

]
dy + C̃(θ), (3.16)

where a is a constant, θ → C̃(θ) is a smooth function of θ and

H(y, θ) =
∫ f(θ)

0
gρθ

(
y cosh(s), θ(s)

)
ds.

By differentiating with respect to θ in (3.16) we have

pθ =− F(r cosθ) tan θ + F(a cosθ) tan θ − g
∫ r

a
ρθ(r̃, θ)dr̃ + C̃′(θ)

+

∫ r cosθ

a cosθ
Hθ(y, θ)dy − H(r cosθ, θ)r sinθ + H(a cosθ, θ)a sinθ.

Observing that

Hθ(y, θ) = gρθ
(
y cosh(s), θ(s)

)
| s=f(θ) · f

′(θ) =
g

cosθ
· ρθ

( y
cosθ

, θ
)

we have that ∫ r cosθ

a cosθ
Hθ(y, θ)dy = g

∫ r

a
ρθ(r̃, θ)dr̃.

Therefore,

pθ =− F(r cosθ) tan θ + F(a cosθ) tan θ + C̃′(θ)

− H(r cosθ, θ)r sinθ + H(a cosθ, θ)a sin θ.

Comparing the latter formula with (3.15) we find that
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C̃(θ) = A −
∫ θ

0
(tan θ̃)F(a cos θ̃)dθ̃ −

∫ θ

0
a(sin θ̃)H(a cos θ̃, θ̃)dθ̃,

and thus, the pressure p is given by the formula

p(r, θ) = A − g
∫ r

a
ρ(r̃, θ)dr̃ +

∫ r cosθ

a cosθ

[
F(y)

y
+ H(y, θ)

]
dy

−
∫ θ

0
(tan θ̃)F(a cos θ̃)dθ̃ −

∫ θ

0
a(sin θ̃)H(a cos θ̃, θ̃)dθ̃, (3.17)

where A is some constant. This equation, in combination with the surface dynamic boundary
condition (3.2), implicitly prescribes a Bernoulli-type relation between the imposed pressure
at the surface of the ocean and the resulting deformation of that surface, namely

P(θ) =A − g
∫ R+h(θ)

a
ρ(r̃, θ)dr̃ +

∫ (R+h(θ)) cosθ

a cosθ

[
F(y)

y
+ H(y, θ)

]
dy

−
∫ θ

0
(tan θ̃)F(a cos θ̃)dθ̃ −

∫ θ

0
a(sin θ̃)H(a cos θ̃, θ̃)dθ̃. (3.18)

Allowing for general fluid stratification greatly complicates this Bernoulli relation, thereby
acting as a constraint on the existence of a solution: we establish the existence of solutions by
implementating the implicit function theorem. This is achieved by first passing to the nondi-
mensionalisation of the (3.18) by dividing throughout by the atmospheric pressure Patm to
obtain

−g
Patm

∫ (1+H(θ))R

a
ρ(r̃, θ)dr̃ +

1
Patm

∫ (1+H(θ))R cosθ

a cosθ

[
F(y)

y
+ H(y, θ)

]
dy +

C̃(θ)
Patm

− P(θ) = 0,

(3.19)

where H, P are non-dimensional functions defined through

H(θ) :=
h(θ)

R
, P(θ) :=

P(θ)
Patm

.

The non-dimensional equation (3.19), relating the free surface and the pressure, can be written
as the functional equation

f(H, P) = 0, (3.20)

where

f(H, P) :=
−g
Patm

∫ (1+H(θ))R

a
ρ(r̃, θ)dr̃ +

1
Patm

∫ (1+H(θ))R cosθ

a cosθ

[
F(y)

y
+ H(y, θ)

]
dy

+
C̃(θ)
Patm

− P(θ). (3.21)

Clearly, f is a continuous and differentiable map B × C ([0, ε]) → C ([0, ε]). (Here C ([0, ε])
denotes the space of continuous functions f : [0, ε] → R. We can easily identify trivial
solutions of (3.20) by setting H ≡ 0 in it. We immediately see that
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f(0, P0) = 0,

where

P0 =
−g
Patm

∫ R

a
ρ(r̃, θ)dr̃ +

1
Patm

∫ R cosθ

a cosθ

[
F(y)

y
+ H(y, θ)

]
dy +

C̃(θ)
Patm

, (3.22)

stands for the (non-dimensional) surface pressure distribution required to maintain an undis-
turbed free surface. To prove the existence of non-trivial flow solutions we rely on the implicit
function theorem.

Theorem 3.4. For any sufficiently small deviation P from P0, there exists a unique
H ∈ C ([0, ε]) such that

f(H, P) = 0.

Proof. To carry out the proof we will rely on the implicit function theorem whose employ-
ment requires the computation of the derivative of f with respect to its first variable around the
special solution (0, P0). The latter derivative is defined as

DHf(0, P0)(H) := lim
s→0

f(sH, P0) − f(0, P0)
s

.

A calculation shows that

DHf(0, P0)(H) =
ρ(R, θ)

Patm
[−gR +ΩR(cosθ)(2w(R, θ) +ΩR cosθ)] H, (3.23)

Due to the size of the involved physical quantities, clearly there is a constant c̃ < 0 such that

−gR +ΩR(cosθ)(2w +ΩR cosθ) � c̃ < 0.

We infer from the latter inequality that

DHf(0, P0) : C ([0, ε]) → C ([0, ε])

is an onto linear homeomorphism, a fact which enables the implementation of the implicit
function theorem. �

In order that the solution determined by (3.13) and (3.17) generates physically meaning-
ful equatorial flows, it is necessary to ensure that the Bernoulli relation (3.18) predicates
the expected monotonicity properties involving the surface pressure and the resulting surface
geometry. The next result achieves this by establishing monotonicity properties shared by the
functions P and H.

Theorem 3.6. The pressure function P and the height function H satisfy

P
′(θ) < 0 i f H

′(θ) � 0 for some θ ∈ (0, ε), (3.24)

and

H
′(θ) < 0 i f P

′(θ) � 0 for some θ ∈ (0, ε). (3.25)
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Proof. We differentiate now by θ and get

P
′(θ) =

Rρ(R + h, θ)
Patm

[−g +Ω cosθ (2w(R + h, θ) +Ω(R + h) cosθ)] H
′(θ)

− Ω(R + h)ρ(R + h, θ) sinθ
Patm

(2w(R + h, θ) +Ω(R + h) cosθ) .

The conclusions formulated in (3.24) and (3.25) follow immediately when taking into account
that

−g +Ω cosθ (2w(R + h, θ) +Ω(R + h) cosθ) < 0

for geophysically plausible values of w. �

4. Local stability of certain azimuthal flows

Since the azimuthal flow solutions (3.13) and (3.17) are represented by explicit, if compli-
cated, formulae, they are amenable to a stability analysis. More precisely, we investigate the
time growth of the amplitude of perturbations to basic flows having a velocity field which satis-
fies the Euler equation (2.1) and the equation of mass conservation (2.2). To reach our goal we
will use the short-wavelength perturbation method for general three-dimensional flows devel-
oped by Bayly [1], Friedlander and Vishik [17] and Lifschitz and Hameiri [37], which aims
to establish the uniform boundedness in time of the amplitude of the perturbation. The short-
wavelength perturbation method is a particularly elegant analytical approach which has proven
to be highly applicable to a variety of recently derived exact solutions of the GFD governing
equations, as can be seen in [7, 16, 19, 24, 25, 31–34].

Let U = Uer + Veθ + Wez be a perturbation of the azimuthal flow whose velocity field is
u = wez with w given by (3.13). We seek U, V, W and a pressure function P such that U + u,
P + p satisfy (2.1), (2.2). Ignoring quadratic terms, we see that U and P satisfy

∂U
∂t

+ (U · ∇)u + (u · ∇)U + 2(Ω× U) = −∇P
ρ

, (4.1)

∇ · (ρU) = 0, (4.2)

subjected to an initial disturbance U| t=0 = U0. We employ the (WKB) ansatz, that is, we seek
U and P solutions of (4.1) and (4.2) having the specific form

U(t, r, θ, z) = A(t, r, θ, z)e
i
ε f (t,r,θ,z) +O(ε) (4.3)

P(t, r, θ, z) = εB(t, r, θ, z)e
i
ε f (t,r,θ,z) +O(ε2), (4.4)

where

A(t, r, θ, z) = A1(t, r, θ, z)er + A2(t, r, θ, z)eθ + A3(t, r, θ, z)ez,

and f = f(t, r, θ, z) is a scalar function and ε plays the role of a small parameter.
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Since u = v = 0 and wz = 0 we have that

(u · ∇)U =

(
uUr +

v

r
Uθ + wUz −

vV
r

)
er +

(
uVr +

v

r
Vθ + wVz +

vU
r

)
eθ

+
(

uWr +
v

r
Wθ + wWz

)
ez

= w (Uzer + Vzeθ + Wzez) (4.5)

and

(U · ∇)u =

(
Uur +

V
r

uθ + Wuz −
Vv
r

)
er +

(
Uvr +

V
r
vθ + Wvz +

Vu
r

)
eθ

+

(
Uwr +

V
r
wθ + Wwz

)
ez

=

(
Uwr +

V
r
wθ

)
ez. (4.6)

Inserting the WKB ansatz (4.3) and (4.4) in (4.1), and taking into account (4.5) and (4.6), we
obtain, after suitable identifications of the coefficients,

−i
B
ρ

fr = A1,t + wA1,z − 2ΩA3 cosθ

−i
B
ρ

fθ
r

= A2,t + wA2,z + 2ΩA3 sinθ

−i
B
ρ

fz = A3,t + wA3,z + A1wr +
A2

r
wθ + 2Ω(A1 cosθ − A2 sin θ)

(4.7)

and

A1( ft + w fz) = A2( ft + w fz) = A3( ft + w fz) = 0. (4.8)

Since the vector A is not zero, we have from (4.8) that

ft + w fz = 0. (4.9)

To solve for f in (4.9) we notice that the position vector of a particle is given by

r(t)er + z(t)ez.

Therefore,

u = uer + veθ + wez =
d
dt

(r(t)er + z(t)ez) = ṙer + rėr + żez = ṙer + rθ̇eθ + żez.

Thus, the equations of a streamline for the azimuthal flow with u = v = 0, w = w(r, θ) and
passing through (r0, θ0, z0) are
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dr
dt

= 0,
dθ
dt

= 0,
dz
dt

= w,

r(0) = r0, θ(0) = θ0, z(0) = z0,

whose general solution is

r(t) ≡ r0, θ(t) ≡ θ0, z(t) =
∫ t

0
w(r(s), θ(s))ds + z0. (4.10)

Moreover, the equation (4.9) satisfied by the phase f has the general solution

f = F

(
z −

∫ t

0
w(r(s), θ(s))ds

)
. (4.11)

We see now immediately from (4.10) and (4.11) that f is constant along the streamlines of the
azimuthal flow. Therefore, the system (4.7) satisfied by the amplitude A of the perturbation U
simplifies to

A1,t + wA1,z − 2ΩA3 cosθ = 0,

A2,t + wA2,z + 2ΩA3 sin θ = 0,

A3,t + wA3,z + A1wr +
A2

r
wθ + 2Ω(A1 cosθ − A2 sinθ) = 0.

The previous system can be rewritten as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dt

A1(t, r(t), θ(t), z(t)) = 2ΩA3 cos θ0,

d
dt

A2(t, r(t), θ(t), z(t)) = −2ΩA3 sin θ0,

d
dt

A3(t, r(t), θ(t), z(t)) = −A1wr(r0, θ0) − A2

r0
wθ(r0, θ0) − 2Ω(A1 cos θ0 − A2 sin θ0).

(4.12)

We remark now that

d
dt

A1(t, r(t), θ(t), z(t)) = −(cot θ0)
d
dt

A2(t, r(t), θ(t), z(t)).

Consequently, the system (4.12) becomes⎛⎜⎝
d
dt

A2(t, r(t), θ(t), z(t))

d
dt

A3(t, r(t), θ(t), z(t))

⎞⎟⎠ = M

(
A2(t, r(t), θ(t), z(t))

A3(t, r(t), θ(t), z(t))

)
+

(
0
d

)
,

where d is a constant depending on the initial data, and

(4.13)
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Remark 4.1. The study of the stability of the azimuthal flow with w given by formula (3.13)
hinges upon the possibility to find the eigenvalues of the matrix (4.13). More precisely, the
previously named flow is stable if the eigenvalues of M are purely imaginary. The computation
of those eigenvalues is, for a general flow, not possible. However, for certain choices of the
density function ρ and of the function F involved in the formula for w the computation of
the eigenvalues becomes feasible. We make the choice ρ(r, θ) = (b− ar) cosθ and F(x) = cx,
where a, b, c are some constants with a, b > 0 and b− ar > 0 for all r that describe points in
the flow.

Theorem 4.2. If r0, θ0 are such that ar0 − b sin2 θ0 � 0, then the azimuthal flow with
u = v = 0 and

w(r, θ) = −Ωr cosθ
2

+
1

2Ω(b− ar) cosθ

[
c+ g

∫ f(θ)

0
(ar(s) − b) sin θ(s)ds

]
(4.14)

with r, θ given by (3.11) is linearly stable under short-wavelength perturbations.

Proof. The equation satisfied by an eigenvalue λ of the matrix M is

λ2 + E(r, θ) = 0 (4.15)

where

E(r, θ) := − 2Ωwθ(r0, θ0) sin θ0

r0
+ 2Ωwr(r0, θ0) cos θ0 + 4Ω2. (4.16)

Towards computing w(r, θ) we have first that

r(s) sin θ(s) = r cosθ sinh(s),

and so,

I(r, θ) :=
∫ f(θ)

0
(ar(s) − b) sin θ(s)ds = ar(1 − cosθ) + b ln(cosθ). (4.17)

It turns out that

E(r0, θ0) = 3Ω2 +
c+ gI(r, θ)

ρ2

(
−ρr(r0, θ0) cos θ0 +

ρθ(r0, θ0) sin θ0

r0

)
+

ga
ρ(r0, θ0)

(1 − cos θ0) cos θ0 +
g sin2 θ0

r0ρ(r0, θ0)
· b− ar0 cos θ0

cos θ0︸ ︷︷ ︸
>0

. (4.18)

We compute now

−ρr(r0, θ0) cos θ0 +
ρθ(r0, θ0) sin θ0

r0
=

ar0 − b sin2 θ0

r0
.

We recall that we have chosen r0, θ0 such that ar0 − b sin2 θ0 � 0. A closer look at the for-
mula (3.13) shows that c+ gI(r, θ) > 0 for all r, θ. From (4.18) we infer that E(r0, θ0) > 0.
Therefore, the flow (4.14) is stable under short wave-length perturbations. �
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Remark 4.4. On the other hand, if r0, θ0 are such that ar0 − b sin2 θ0 < 0, then, as it is
evident from (4.18), there are values of c for which E(r0, θ0) < 0. Thus, for such a, b, c, the
flow (4.14) is not stable under short wave-length perturbations.
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