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Abstract 15 

Under the EU Habitats Directive, cetacean species must be maintained at favourable 16 

conservation status in European waters. Whether this is achieved via protected area 17 

designation, curtailment of activities such as fishing or construction, or time restrictions on 18 

noise, it is dependent on understanding the temporal patterns in occurrence. Our ability to 19 

study this is often limited by the relatively short time-series of data available to researchers. 20 

This study uses nine years of passive acoustic monitoring data paired with environmental 21 

covariates to better understand the spatio-temporal dynamics of harbour porpoise and dolphin 22 

species using generalised estimating equations-generalised linear models (GEE-GLMs). This 23 

long-term time-series included periods of increased disturbance due to construction of an 24 

underwater gas pipeline in the area, enabling us to investigate the effect of construction on 25 
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species occurrence. Harbour porpoise and dolphins occurred in every season, with detections 26 

peaking in winter. We found a negative association between dolphins and porpoises 27 

throughout the year. Inter-annual variation in occurrence was evident, with a cyclical bi-28 

annual pattern highlighted for both species suggesting a complex pattern of movement. 29 

Construction activity had a significant negative effect on the presence of porpoise but not 30 

dolphins. However, no long-term decrease in detection rates of porpoise was recorded. This 31 

study highlights the importance of understanding what factors influence cetacean occurrence 32 

as well as the temporal scale of disturbance effects for planning and management of 33 

construction activities in coastal areas.  34 

 35 

Key words 36 
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 38 

Highlights 39 

• This study represents the longest passive acoustic monitoring dataset in Ireland, 40 

providing an understanding of the potential drivers of occurrence and distribution in a 41 

northeast Atlantic exposed site.   42 

• We find a bi-annual pattern of occurrence for porpoise and dolphin species, 43 

suggesting a more complex movement pattern than previously suggested. 44 

• We demonstrate a negative effect of construction activity on harbour porpoise 45 

occurrence.  46 

• Spatio-temporal differences in harbour porpoise and dolphins may suggest possible 47 

avoidance consistent with previous studies showing aggressive interactions between 48 

these species. 49 
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• A winter peak in cetacean occurrence is markedly different to other European regions 50 

and highlights the importance of region-specific studies when applying seasonally 51 

dependent conservation or mitigation strategies. 52 

 53 

Introduction 54 

Identifying patterns of occurrence of wide-ranging cetaceans may be the most pragmatic way 55 

of protecting suitable sites for conservation in order to minimise disturbance during important 56 

activities such as feeding, breeding, and resting. The distribution patterns of cetaceans are 57 

largely determined by their behaviour as predators foraging for a patchy prey resource 58 

(Redfern et al., 2006), and has been shown to differ seasonally and inter-annually (e.g. 59 

Mendes et al., 2002; Lusseau, 2005; Rako et al., 2012). A range of environmental variables 60 

have been used as proxies for prey distribution and abundance to investigate broad-scale 61 

distribution patterns for cetaceans (e.g. Bailey & Thompson, 2009; Edrén et al., 2010; 62 

Embling et al., 2010). However, our understanding of the drivers of space-use in highly 63 

mobile marine species is often hampered by a lack of adequate long-term data that 64 

encompasses a range of environmental variability.  65 

 66 

Harbour porpoise (Phocoena phocoena) are among the most frequently observed, and most 67 

widely distributed cetacean species in European waters (Hammond et al., 2002), and are 68 

considered an important top predator and indicator species (Gilles et al., 2011). Due to their 69 

small body size and high energetic demands, an important driver of harbour porpoise 70 

distribution is the availability of their prey (Johnston et al., 2005). Harbour porpoise are 71 

wide-ranging, inhabiting shallow continental shelf waters throughout the northern hemisphere 72 

(Hammond et al, 2002; Hammond et al, 2017). Similarly, bottlenose dolphins (Tursiops 73 

truncatus) typically maintain an inshore distribution (Berrow, 2010), occupying a wide 74 
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variety of habitats, although offshore waters are exploited by some populations (Ingram & 75 

Rogan, 2002). For example, in the Moray Firth, northern Scotland, bottlenose dolphins show 76 

a preference for deeper channels of water, associated steep topography of the sea floor and 77 

strong tidal currents (Wilson et al., 1997), while resident dolphins in Florida prefer shallow 78 

coastal areas with a depth of ca.3m (Irvine et al., 1981). Unlike bottlenose dolphins, the 79 

common dolphin (Delphinus delphis) occurs across inshore and offshore waters < 200m in 80 

depth (Gordon et al. 1999; Berrow, 2010), and it has been suggested that they move further 81 

offshore in the summer months to reduce potential competition with other inshore habitat 82 

users (MacLeod et al, 2008).  83 

 84 

Cetaceans are highly vulnerable to disturbance, injury or death resulting from interaction with 85 

anthropogenic activities (Dähne et al., 2013). While bycatch is the main direct threat to small 86 

cetacean species in European waters (Read et al., 2006), additional threats include depletion 87 

of prey abundance, noise pollution, vessel traffic, or habitat degradation as a result of 88 

chemical pollution (e.g. DeMaster et al., 2001; Herr et al., 2009; Dähne et al., 2013). 89 

Effective monitoring of these species can be challenging due to the difficulty and expense 90 

involved in locating them over their extensive ranges (Stevick et al., 2002). Cetacean surveys 91 

often encompass visual methodologies which provide valuable information on patterns of 92 

abundance and distribution (Hammond et al., 2013). However, despite their benefits, visual 93 

surveys can be expensive (particularly vessel-based surveys), time-consuming to undertake, 94 

and limited to periods of suitable weather and daylight hours (Teilmann 2003). In addition, 95 

cryptic species may be missed by observers, and visual detection rates of harbour porpoise in 96 

particular decline dramatically in sea states greater than Beaufort sea state 2 (Teilmann, 2003; 97 

Akamatsu et al., 2008).  Passive acoustic monitoring (PAM) is an increasingly used, cost-98 

effective tool to provide year-round data on the occurrence of cetacean species. Odontocete 99 
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species use echolocation signals for navigation and foraging (Verfuß et al., 2007; 100 

Villadsgaard et al., 2007) making them particularly suitable for PAM approaches. An 101 

important advantage of PAM is that it allows for continuous monitoring in all weather or sea 102 

state conditions (Todd et al., 2009) and across hours of darkness where visual observations 103 

are not possible.  104 

 105 

Irish waters, and the habitats therein, are recognised as one of the most important areas for 106 

cetaceans in Europe (Wall et al., 2006; McGovern et al., 2016). Within Irish coastal waters, 107 

Broadhaven bay, northwest Ireland, has been identified as having a high cetacean species 108 

richness, with nine species sighted. The bay has become the site of the longest marine 109 

mammal monitoring programme of its kind in Ireland (Anderwald et al., 2012a) providing 110 

visual sightings of cetaceans since 2001, and acoustic monitoring since 2002. We use a long-111 

term passive acoustic dataset beginning in 2009 and collected year-round until 2017 to 112 

investigate the seasonal and temporal patterns in occurrence of harbour porpoise and dolphin 113 

species and investigate the effect of environmental variables on the occurrence of both 114 

species. 115 

 116 

Methods 117 

 118 

Study area 119 

Broadhaven Bay is situated on the northwest coast of Co. Mayo, Ireland (54.2845 N, -120 

009.8868 W (Fig. 1). In 2000, Broadhaven Bay was designated as a candidate 121 

Special Area of Conservation (cSAC) due to the presence of key marine and coastal habitat 122 

types listed under Annex I, EU Habitats Directive (EEC, 1992) including large shallow inlets 123 

and bays, mudflats and sandflats, reefs, salt meadows and sea caves. The northward facing 124 
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bay is relatively small (approximately 64 km2) and shallow with a maximum water depth of 125 

50m. Strong tidal fronts are known to occur around the western headland (Erris Head) and 126 

there are multiple tidal inlets and estuaries in the inner bay (Culloch et al., 2016).  127 

 128 

Data collection 129 

Acoustic data were collected from Broadhaven Bay between April 2009 and November 2017 130 

using CPODs (Cetacean-Porpoise Detectors, Chelonia Ltd, U.K.). The maximum detection 131 

range of the CPODs is approximately 400m for harbour porpoise and 1km for delphinid 132 

species. However, these ranges are dependent on conditions, including ambient levels and 133 

orientation of the cetacean species (Roberts & Read 2014).  Echolocation clicks are detectable 134 

within the frequency range of 20kHz – 160k and can therefore detect clicks of all odontocete 135 

species with the exception of sperm whales (Chelonia Ltd, http://www.chelonia.co.uk CPODs 136 

were deployed at two locations within the bay year-round (inner and outer bay); three CPODs 137 

were deployed in the inner part of the bay ca. 500m apart (Listening Stations (LS)1-3), at an 138 

average depth of 17m at high tide, and one CPOD was deployed in the tidally active waters in 139 

the outer part of the Bay near Erris Head at a depth of 37m (LS4).  All CPODs were secured to 140 

a fixed mooring line at ca. 5-7m, which was anchored to the sea bed and attached to a surface 141 

buoy. CPODs were retrieved and re-deployed every 3-4 months, and were calibrated regularly 142 

to ensure no systematic bias in detections at any site (Dähne et al., 2013).  143 

 144 

Data processing  145 

CPOD data were downloaded using the CPOD.exe software (Version 2.044, Chelonia Ltd, 146 

http://www.chelonia.co.uk) and the KERNO classifier was used to automatically filter the 147 

data and identify cetacean click trains. Data were summarised as DPM (detection positive 148 

minutes) per hour. To reduce the rate of false positive harbour porpoise detections, only click 149 

http://www.chelonia.co.uk/
http://www.chelonia.co.uk/
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trains with a high or moderate classification were exported.  Dolphin detections (Other cet) 150 

used high, moderate and low-quality classifications. Low-quality trains were included to 151 

maximise possible dolphin detections (Robbins et al., 2016). To eliminate false-positive 152 

detections, data was visually validated across all years, for both harbour porpoise and dolphin 153 

detections, as false-positive porpoise detections have previously been shown to be an issue 154 

within Broadhaven Bay (Culloch et al., 2014). Visual validation followed a standardized 155 

methodology, using parameters based on the acoustic characteristics of both dolphin species 156 

occurring within the bay. Detections were validated on an hourly temporal scale, i.e. hours 157 

with a dolphin or porpoise detection were classified as a Detection Positive Hour (DPH). For 158 

each classified detection in the CP3 file produced by the CPOD software, the CP1 file was 159 

screened within the surrounding minute for a verified detection. Once visually verified 160 

detections were present within an hour, the whole hour was regarded as a true-positive 161 

detection. Prior to further analysis, DPM/hour data were converted to binomial 162 

presence/absence data (1/0), with ‘1’ representing one or more DPM within a given hour, and 163 

‘0’ indicating no detections within the hour.  164 

 165 

Environmental Data 166 

Tidal data was obtained from a tide gauge within Broadhaven Bay at Ballyglass (Ireland’s 167 

Digital Ocean, https://www.digitalocean.ie/) with occasional gaps in tidal data filled from 168 

nearby stations at Killybegs (approx. 120km northeast of Broadhaven Bay), accounting for 169 

the relatively small tidal offset between these locations. Tide data was used to create a single 170 

tidal variable between 0-3 as a proxy for tidal currents (tidal speed proxy), according to the 171 

rule of twelfths (based on a smooth rate of tidal flow reaching a max. height halfway between 172 

low and high tide). Sunset data were obtained for Belmullet, Co. Mayo (54.2239N, -173 

9.9876W), (http://sunrise.maplogs.com/) and time to sunset was calculated from the GMT 174 

https://www.digitalocean.ie/
https://www.digitalocean.ie/
http://sunrise.maplogs.com/
http://sunrise.maplogs.com/
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hourly data. Records of construction-related activities (e.g. dredging, trenching, multibeam 175 

surveys) within the bay were available between 2009 and 2015 from marine mammal 176 

observer reports, sourced through the Department of Communications, Climate Action and 177 

the Environment. Records were not detailed enough to obtain hourly construction data or to 178 

separate between various construction activities, so were used to indicate the daily presence 179 

or absence of construction activities throughout the study period.  An effort term was 180 

generated to account for the unequal number of CPODs deployed within the inner and outer 181 

bay, with a value of 1-3 corresponding to the number of CPODs in the water during a given 182 

recording period (i.e. always a value of 1 at the outer bay site, and a value of 1 to 3 for the 183 

inner bay). This was to prevent overestimation of porpoise and dolphin detections in the inner 184 

bay.  185 

 186 

Statistical analysis 187 

All statistical analyses and plots were undertaken using the statistical software R (version 188 

1.1.442, R Core Team 2016). To account for autocorrelation in the data, generalised 189 

estimating equations-generalised linear models (GEE-GLMs) were employed for both the 190 

harbour porpoise and dolphin models using the geepack package in R (Højsgaard & Halekoh 191 

2006). The presence or absence of harbour porpoise or dolphin species were used as the 192 

response variables, hence GEE-GLMs were run under the binomial family. The following 193 

explanatory variables were included in the analysis; (1) location, i.e inner or outer bay (LS1-194 

LS3 were pooled together as ‘inner bay’ due to their close proximity to each other) (factor); 195 

(2) tidal speed proxy (continuous); (3) time to nearest sunset (continuous); (4) season (factor) 196 

(spring: March- May, summer: June - August, autumn: September- November, winter: 197 

December- February); (5) Julian date (factor); (6) daily presence/absence of construction 198 

activity (factor); (7) hourly presence/absence of dolphin detections (factor) (harbour porpoise 199 
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model only, due to possible aggressive interactions or displacement by dolphins (Ross & 200 

Wilson 1996; Jepson & Baker 1998)); and (8) year (factor). The effort term was also included 201 

in the models as an offset, and Julian date was chosen as the blocking ID. All variables 202 

included in the model haven been shown to affect the behaviour, presence and/or the 203 

distribution patterns of cetaceans in previous studies (e.g. Johnston et al., 2005; Todd et al.¸ 204 

2009; Culloch et al., 2016). The collinearity of response variables was assessed using 205 

variance inflation factors (VIF) in the car package in R (Fox & Weisberg 2011). Variables 206 

with a VIF value of 2 or greater were deemed to be collinear. For collinear variables, the 207 

lower resolution variable was omitted from the analysis, retaining the higher resolution 208 

variable. An autoregressive correlation structure (AR-1) was included in models to account 209 

for temporal autocorrelation in the data, at an hourly scale. This structure assumes regular 210 

distances/time intervals between observations, and is commonly used when there is a time 211 

order in the dataset (Zuur et al., 2009). Model predictions were produced using the stats 212 

package and plotted using the ggplot2 package in R on the scale of the response variable 213 

(Wickham, 2009).   214 

 215 

Model selection and model checking 216 

A stepwise approach was taken for model selection, where non-significant variables were 217 

omitted from the global models one at a time. A Quasi-likelihood Information Criterion 218 

(QIC) was used to compare models (Pan 2001) using the MESS package in R. Models were 219 

ranked according to their QIC values, and the model with the lowest QIC was chosen as the 220 

best model. Model validation and goodness-of-fit was carried out using a confusion matrix in 221 

R, package ROCR (Sing et al., 2005), where binary predictions from the selected model were 222 

compared to observed presence or absence of the species. This gives a value ranging from 0-223 

1, with values closer to 1 indicating a good model fit. The true positive rate versus the false 224 
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positive rate for the binary response variable was then plotted using an Area Under the Curve 225 

plot (AUC) (Presence/Absence (Freeman & Moisen, 2008)). Models were deemed to be of a 226 

good fit when the distance between the curve and the plotted 45° diagonal was maximised 227 

(Pirotta et al., 2011). The AUC value was calculated to further validate model performance, 228 

also generating a value on a 0-1 scale, where the closer to 1 indicates a better model (Boyce 229 

et al., 2002).  230 

 231 

Results 232 

Between April 2009 and November 2017, a total of 168,091 hours of acoustic data, an 233 

average of 18, 677 per year, were gathered using CPODs within Broadhaven Bay. Data were 234 

collected each year from all stations, with the exception of 2016 and 2017 when there was no 235 

CPOD deployed in the outer bay at LS1, and during periods when CPODs were lost or not 236 

recovered. Construction activities took place in the bay on 430 days across the nine-year 237 

monitoring period (years 2009, 2010, 2012-2015), with approximately 30% of this activity 238 

occurring in 2009. 239 

 240 

Harbour porpoise 241 

A total of 21,863 detection positive hours (DPH) were recorded for harbour porpoise 242 

throughout the study period. Julian date and year were found to be collinear with a variance 243 

inflation factor (VIF) value greater than 2, therefore, to reduce the effect of collinearity, year 244 

was omitted from the model and Julian date was retained as it is considered the more detailed 245 

temporal variable. The models for harbour porpoise, ranked according to their QIC values, 246 

are presented in Table 1. Model validation indicated good performance with a confusion 247 

matrix score of 0.77, and AUC equalling 0.79. The best harbour porpoise model retained all 248 

of the explanatory variables (Table 1).  249 
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 250 

The probability of detecting harbour porpoise was significantly greater at the outer bay 251 

station compared to the inner bay after accounting for the additional monitoring effort at the 252 

inner bay site (P<0.001, Table 2, Fig. 2A). Julian date had a significant effect on the presence 253 

of harbour porpoise (P<0.001, Table 2), and there was considerable variation between years 254 

in the probability of detecting a harbour porpoise. A strong biannual pattern of peak harbour 255 

porpoise occurrence was noted, with the greatest detection rates of harbour porpoise 256 

occurring for the winter months in alternate years (Fig. 2 B, C).  The occurrence of harbour 257 

porpoise was shown to be negatively affected by the presence of dolphin species (P<0.001, 258 

Table 2), with 88% of DPM/H for harbour porpoise occurring in the absence of dolphin 259 

detections within the same hour. Construction activity in the bay was also found to have a 260 

significant negative influence on the presence of harbour porpoise (P<0.001, Table 2). During 261 

the days of construction activity there was an overall decrease in harbour porpoise DPM/H, 262 

with greater than 90% of detections on construction free days. Neither time to sunset or tidal 263 

currents had any significant effect on the occurrence of harbour porpoise in Broadhaven bay, 264 

but were retained in models (Table 2). 265 

 266 

 267 

Dolphin species 268 

A total of 32,635 DPH were recorded for dolphin species over the deployment period. The 269 

models are presented in Table 3 ranked according to their ∆QIC value. ∆QIC is explained as 270 

the difference in QIC between any model and the model with the lowest QIC value. Model 271 

validation indicated good performance with a confusion matrix score of 0.68, and an AUC of 272 

0.52. The explanatory variables for tidal currents and construction activity were not retained 273 

in the best dolphin model, with all remaining variables being significant (Table 4).  274 
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 275 

Similar to harbour porpoise, the model results indicated that there was a significant difference 276 

in the occurrence of dolphin species between the inner and outer bay (P<0.001, Table 4), with 277 

an increased probability of detecting dolphin species in the outer bay (Fig. 3A). Julian date 278 

also had a significant effect on the dolphin presence (P<0.001, Table 3), with biannual peaks 279 

in occurrence evident, and a large peak in late 2016 (Fig. 3B). A significant seasonal pattern 280 

of occurrence was also found for dolphin species, with the greatest probability of detection 281 

during the winter months (P<0.001, Table 4, Fig. 3C). There was a significant effect of time 282 

to sunset, where greatest dolphin detections were shown farthest from sunset, i.e. dawn 283 

(P<0.001, Table 4). 284 

 285 

 286 

Discussion 287 

 288 

Understanding the drivers of occurrence and habitat use in a highly mobile marine species is 289 

often hampered by a lack of adequate long-term data that encompasses environmental 290 

variability. This study utilised nine years of data to investigate the temporal patterns of 291 

occurrence of both harbour porpoise and dolphin species. While poor weather conditions 292 

often limit visual sightings effort in winter months, our study utilised PAM which could 293 

operate year-round to provide reliable data on occurrence.  294 

 295 

Similar to studies in other regions (e.g. Marubini et al., 2009; Forney, 1999), we detected 296 

harbour porpoise and dolphin species occur year-round within Broadhaven Bay. However, 297 

large-scale inter-annual variation was noted, which may reflect wider movements of 298 

individuals in and out of the bay. While inter-annual fluctuations in sighting rates of harbour 299 
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porpoise have been attributed to variations in sea-surface temperature (Forney, 1999), the 300 

small size of Broadhaven Bay meant that sufficiently detailed sea-surface temperature data 301 

could not be sourced using satellite-derived products to test this hypothesis. A strong 302 

repeating, bi-annual peak of occurrence was noted for both harbour porpoise and dolphin 303 

species. To our knowledge, such a finding has not previously been reported, and suggest that 304 

populations have a more complex movement pattern than simple onshore-offshore 305 

movements suggested by Mirimin et al (2011). Satellite tracking studies for harbour porpoise 306 

in Danish waters have shown that immature harbour porpoises have twice the home range of 307 

mature individuals, moving greater distances to locate prey (Sveegaard, 2011). Our study 308 

area is assumed to represent only a small fraction of the effective range of harbour porpoise 309 

in Irish waters (Rogan et al., 2018), and large interannual fluctuations in Broadhaven bay 310 

may reflect movements in and out of the region and along the Irish coastline. Certainly, 311 

investigating whether this bi-annual pattern correlates with processes occurring at the wider 312 

Northeast Atlantic scale warrants further research. 313 

 314 

Although present year-round within the bay, both harbour porpoise and dolphin species 315 

displayed marked seasonal patterns in occurrence, peaking in winter months. Studies in wider 316 

European waters have highlighted differences in the seasonal occurrence of harbour 317 

porpoises. For example, in the German blight and Baltic sound, harbour porpoise peaked 318 

during the summer months (Gilles et al., 2011; Sveegaard et al., 2012) while peak harbour 319 

porpoise occurrence has been observed during late summer/early spring within the coastal 320 

waters of Northwest Scotland (Evans et al., 2003; Weir et al., 2007; Marubini et al., 2009). 321 

The results of these studies suggest that changes in harbour porpoise abundance is linked to 322 

the abundance and distribution of their prey (Santos et al. 2004; Sveegaard et al., 2012), and 323 

highlight the importance of undertaking regional studies.  324 
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 325 

Delphinid detections cannot be differentiated by species using CPOD data alone due to 326 

similar click train characteristics (Robbins et al., 2016). However, visual surveys carried out 327 

in Broadhaven Bay highlighted that common dolphins were the only dolphin species to show 328 

seasonal patterns of occurrence within the bay, with their greatest occurrence in autumn and 329 

winter (Anderwald et al., 2012b; Culloch et al., 2016). Bottlenose dolphins are also prevalent 330 

within Broadhaven Bay (Anderwald et al., 2012b; Culloch et al., 2016), but have been 331 

described as transient individuals belonging to a large population which utilises the inshore 332 

coastal waters off Ireland’s west coast (Mirimin et al., 2011). It is possible that common 333 

dolphins are driving the seasonal pattern observed, particularly as similar winter peaks in 334 

common dolphin occurrence have been found on the southern coast of Ireland (Berrow et al., 335 

2010). However, it should be acknowledged that patterns of individual dolphin species may 336 

be masked by the lack of species differentiation in the acoustic data.  337 

 338 

While broad seasonal patterns of occurrence were demonstrated, our data also enabled an 339 

investigation of fine-scale environmental factors on occurrence. Time of day had a significant 340 

effect on the occurrence of dolphin species. Dolphin detections peaked at dawn (farthest time 341 

from sunset), presumably related to the distribution and abundance of prey at this time. No 342 

such effect was found for harbour porpoise. Previous studies have shown that porpoise 343 

foraging behaviour is primarily driven by the prevalence and activity of their prey (Todd et 344 

al., 2009), with increased porpoise echolocation activity often related to the schooling 345 

behaviour of prey species such as herring or sprat (Fréon et al. 1996). 346 

 347 

Strong currents are often associated with increased noise due to sediment movement which 348 

may mask and reduce detection rates (Nuuttila et al., 2017). Despite this, the highest 349 
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detection rates of both harbour porpoise and dolphin species was found at the outer region of 350 

Broadhaven Bay, near an area of tidal upwelling and strong current flow. Visual validation of 351 

the data ensured that these detections were not false positives. Previous studies have found 352 

that harbour porpoise show strong preference for foraging in topographically dynamic areas 353 

(Pierpoint 2008; Gilles et al., 2011) and associated with strong current flow (Johnston et al., 354 

2005; Pierpoint 2008), where larger aggregations of prey are typically observed (Gilles et al., 355 

2011). The current study did not find tidal speed (as a proxy for tidal currents) to be an 356 

important driver of cetacean occurrence at this site. Further study should use more precise 357 

measurements of tidal flow and velocity to help understand the patterns of occurrence shown 358 

in the outer bay area. Harbour porpoises have also been found to show low preference for 359 

waters less than 20m in other areas (Isojunno et al., 2012). Our inner bay site had a maximum 360 

depth of 17m at high tide compared to the outer bay site (37m), which may have contributed 361 

to higher detections at the outer bay.  Spatial segregation of dolphin species has previously 362 

been documented within Broadhaven Bay, with bottlenose dolphins occurring more in the 363 

inner bay while common dolphins occurred more in the outer bay (Robbins et al. 2016).  364 

 365 

The temporal negative correlation in acoustic detection rates between harbour porpoise and 366 

dolphin species found in this study may suggest possible segregation between the two groups. 367 

This finding has also been observed from a population on the North-western coast of Spain 368 

(Pierce et al., 2010). In British waters, bottlenose dolphins have been reported to attack 369 

harbour porpoises, leading to mortality of porpoises in some areas where the species coexist 370 

(Ross & Wilson 1996; Jepson & Baker 1998). It has been suggested that violent attacks on 371 

harbour porpoise by bottlenose dolphin are a result of competitive interactions for food due to 372 

partial dietary overlap (Spitz et al., 2006). Despite no direct evidence for such aggressive 373 

behaviour within Broadhaven Bay, harbour porpoise may avoid encounters with dolphins, 374 
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leading to the observed segregation. Acoustic studies in Cardigan Bay SAC have shown that 375 

although harbour porpoise and bottlenose dolphin are sympatric, simultaneous detections of 376 

the two species are rare (Simon et al., 2010), suggesting avoidance or temporal habitat 377 

partitioning similar to the findings of this study. 378 

 379 

The construction of an underwater gas pipeline in the bay during monitoring efforts enabled 380 

investigation into the effects of construction on the occurrence of porpoise and dolphin 381 

species. Construction activities recorded between 2009 and 2013, refers to noise-generating 382 

activities including acoustic surveys (seismic surveys, multi-beam, single-beam and sub-383 

bottom profiling), dredging, rock trenching, pipe laying and rock placement operations. From 384 

2013, maintenance activities were conducted using multi-beam and remotely operated vehicle 385 

(ROV) surveys for the inspection of the underwater pipeline. No effect of construction 386 

activity on the occurrence of dolphin species was found. However, we noted a significant 387 

negative effect of construction activity on harbour porpoise detections. While this is 388 

consistent with previous findings in Broadhaven Bay based on visual sightings effort 389 

(Culloch et al. 2016), our study was able to investigate this effect over a longer time, during 390 

periods where visual surveys could not be undertaken (i.e. unfavourable sea states), and 391 

accounting for fine-scale environmental effects, such as time of day and tide. Compared to 392 

other odontocetes, harbour porpoise are particularly sensitive to anthropogenic noise (Ketten 393 

2000; Lucke et al., 2009), with previous studies reporting changes in foraging behaviour and 394 

displacement due to noise disturbance (Dähne et al., 2013; Thompson et al.¸ 2013; Pirotta et 395 

al., 2014). Unfortunately, the construction data provided by on-board observers prevented a 396 

differentiation between percussive and continuous noise sources in the models, so we are 397 

unable to speculate on the type of noise that had the greatest contribution to the observed 398 

decrease in harbour porpoise detections. However, as there was a considerable increase in 399 
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harbour porpoise detections after the cessation of construction-activities, we speculate that 400 

such impacts are temporary, with no evidence long-term changes in acoustic detection rate. 401 

 402 

Conclusion 403 

There is a growing need to ensure that cetacean populations are maintained at favourable 404 

conservation status. This increases the importance of long-term datasets that can be used to 405 

understand the drivers of distribution and quantify the effect of anthropogenic disturbance.  406 

Notably, this study demonstrated that winter is the most important season for cetaceans in 407 

Broadhaven Bay. This differs from other research in European waters, highlighting the 408 

importance of regional studies to understand temporal patterns of occurrence and to inform 409 

mitigation strategies such as the timing of activities to reduce disturbance.   410 
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 653 

 654 
Fig. 1: Map of Broadhaven Bay indicating the four CPOD Listening Stations (LS 1, 2, 3 and 655 
4), the SAC boundary and the position of the installed corrib gas pipeline. Insert: The 656 
position of Broadhaven Bay within western Ireland (adapted from Culloch et al., 2015) 657 
  658 
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Table 1: Quasilikelihood information criterion (QIC) for the global model (M1) and derivative 659 

models (M2, M3) from stepwise selection for the harbour porpoise. Stepwise selection was 660 

carried out until all variables retained in the model were significant. Variables retained in the 661 

models are indicated by ‘Y’. The best model (M1) with the lowest ΔQIC is highlighted in bold. 662 

Julian day (Julian), Dolphin presence (Dolphin), Construction presence (Construction), Tidal 663 

speed proxy in relation to high or low tide (Tide), Time to sunset (Sunset).  664 

 665 

 666 
  667 

Model Station Tide Sunset Season Julian  Construction Dolphin  ΔQIC 

M1  Y - - Y Y Y Y 0 

M2 Y - Y Y Y Y Y 0.1 

M3 Y Y Y Y Y Y Y 1.62 
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Table 2: Model output from the best harbour porpoise model. Output demonstrates model 668 

estimates, standard errors, Wald test statistic and P-values. Significant P-values are highlighted 669 

in bold. Positive estimates indicate a positive relationship between the predictor and the 670 

response variable, whereas negative estimates indicate a negative relationship.  671 

 672 

Model variables Estimate SE Wald P 
Intercept -3.81 0.0642 3528.62 < 0.001 

     
Station (relative to Inner)     
       Outer 2.75 0.0508 2924.74 < 0.001 

     
Tidal speed -0.00932 0.0091 0.01 0.9180 

     
Time to Sunset 0.0210 0.00161 1.86 0.1727 

     
Season (relative to winter)     
      Autumn -1.74 0.0592 859.49 < 0.001 
      Spring -1.08 0.0543 394.83 < 0.001 
      Summer -2.36 0.0620 1449.50 < 0.001 

     
Dolphin presence -0.142 0.0275 26.69 <0.001 

     
Julian date 0.0002 0.0001 60.11 <0.001 

     
Construction (relative to absence)     

      Presence -0.272 0.0731 13.39 <0.001 
 673 

  674 
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 675 
 676 

Fig. 2 A-C: Prediction plots based on model output. A) Probability of detecting harbour 677 
porpoise at either the inner or the outer stations. B) Probability of detecting harbour porpoise 678 
according to Julian date. Grey area shows the 95% Confidence Intervals (CI). Vertical dashed 679 
vertical lines represent November of each year of the deployment period (2009-2017). C) 680 
Probability of harbour porpoise detections across all seasons in any given year. 681 
 682 

  683 
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Table 3: Quasilikelihood information criterion (QIC) for the best model (M1) and futher 684 

models (M2, M3) from stepwise selection for dolphin species. Variables included in the model 685 

is indicated by ‘Y’. Model with the lowest ΔQIC model is chosen as the best model and is 686 

highlighted in bold. Julian day (Julian), Construction presence (Construction), Tidal speed 687 

proxy in relation to high or low tide (Tide), Time to sunset (Sunset). 688 

 689 

  690 

Model Station Tide Sunset Season Julian  Construction ΔQIC 

M1  Y - Y Y Y - 0 

M2 Y Y Y Y Y - 31.1 

M3 Y Y  Y Y Y Y 33.1 
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Table 4: GEE_GLM model output from the selected model for dolphin species. Output 691 
demonstrates model estimates, standard errors, Wald test statistic and P values. Significant P 692 
values are highlighted in bold. Positive estimates indicate a positive relationship between the 693 
predictor and the response variable, whereas negative estimates indicate a negative 694 
relationship. 695 
 696 
Model variables Estimate SE Wald P 
Intercept -2.79   0.0669 1741.85   < 0.001 

     
Station (relative to inner)     
   Outer 0.874  0.0565   233.53   < 0.001 

     
Time to Sunset 0.0542   0.00153     12.65     <0.001 

     
Season (relative to winter)     
     Autumn -0.648   0.0564 132.00   < 0.001 
     Spring -1.06   0.0637   275.88   < 0.001 
     Summer -1.31   0.0593   490.55   < 0.001 

     
Julian date 0.0001  0.0001    15.32   <0.001 

 697 
  698 
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 700 
Fig. 3A-D: Prediction plots based on model output. A) Probability of detecting dolphin species 701 
at either the inner or the outer stations. B) Probability of detecting dolphin species according 702 
to Julian date. Grey area shows the 95% Confidence Intervals (CI). Vertical dashed lines 703 
represent November of each year of the deployment period (2009-2017). C) Probability of 704 
dolphin detections across all seasons in any given year.  705 
 706 


