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ABSTRACT 

 

The primary purpose of this work was to provide robust tools for the 

design of perforated packaging based on rigorous mathematical methods. 

A dimensionless correlation was established based on the identification of 

the variables affecting mass transfer through perforations. It was proved that 

the diameter of the perforation is the most important parameter. Air velocity 

and temperature (via its effect on viscosity and density of air) and diffusivity 

of gases through air are also relevant to this analysis. The 

BuckinghamTheorem was applied to identify the dimensionless 

numbers that provide a dimensionless correlation availing of the principle of 

dynamic similarity to predict the mass transfer coefficients of both oxygen 

and water vapour through perforations. As films tend to be much more 

permeable to water than to oxygen, a study on the effect of water (humidity) 

on films was also performed. It was found that diffusion and hence 

permeability can be significantly affected by the water content of the films 

and therefore the humidity of the atmospheres that the films are exposed to 

on both sides. A methodology was applied combining the William, Landel 

and Ferry and the Gordon-Taylor equations with the isotherm of water 

sorption to obtain the correct effective permeability of films during storage 

depending on the relative humidity. A methodology was also developed to 

analyse leakage flow in sealed packages in order to identify the relevant 
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parameters that influence their variability and provide the most robust 

sealing conditions.   

The results on this thesis provide substantial data and rigorous 

mathematical approaches for a more efficient and accurate packaging 

design to achieve maximum shelf life. 
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FOREWORD 

 

Recent reports from the Food and Agriculture Organization of the 

United Nations suggest that one third of all food produced in the world is 

lost or wasted, in different stages of the Food Value Chain. Fresh and 

minimally processed fruits and vegetables are highly perishable and likely 

to reach great losses on mass and nutritional value during storage to the 

point of being improper for consumption. However, the normally short shelf-

life of these produce can be extended by managing the contents of oxygen, 

carbon dioxide and relative humidity during storage.  

An atmosphere rich in carbon dioxide and poor in oxygen, with 

suitable relative humidity to minimise water loss by drying (transpiration), is 

known to be effective for the extension of shelf life of a large number of 

commodities and there is extensive data in literature on the adequate 

atmosphere conditions for different products. Every product has a range of 

concentrations for each gas where the oxygen must be below a certain 

amount in order to avoid fermentation and carbon dioxide cannot be above 

a level where it causes damage to the produce or changes in flavour. At the 

same time, relative humidity should be planned in order to avoid quality loss 

due to excessive drying. It should be noted that a respiring product will 

always emit water vapour as a result of respiration; if, however, it also loses 

its liquid water by evaporation (drying), it will shrivel, lose excessive weight 

and the appearance of a fresh product.  
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As soon as the commodity is packed, it is possible to establish the 

best conditions within the range of gas concentrations that can extend the 

shelf life to the maximum possible. Engineering packaging design consists 

in establishing the product and package parameters that combine to 

equilibrate the packaging permeability and the respiration of the product at 

protective atmosphere conditions. The internal atmosphere controls the 

respiration rate (as quantified by various Michaelis-Menten type of models, 

uninhibited, competitively inhibited, uncompetitively inhibited, etc.) and also 

the influx of oxygen via the concentration gradient established with the 

outside circa 21%. The lower the oxygen concentration the lower the 

respiration rate and the higher the gradient and thus the influx of oxygen. 

As a result, the rate of oxygen consumption stabilizes with the gas entering 

the package at the desired concentration provided that the package has 

been designed properly. Similarly, water and carbon dioxide released by 

respiration also equilibrate with the loss through the package to the outside 

atmosphere. 

Almost all plastic films used to pack these commodities have lower 

permeability to oxygen, carbon dioxide and even water vapour than the 

rates of oxygen consumption, carbon dioxide and water release. Hence, the 

result in terms of humidity is water condensation inside the package which 

stimulates mould growth and even fermentation, leading to a rapid loss of 

quality and worse occurs with oxygen, as when it falls below a level that 
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depends on the product anoxia sets in, which could lead to the growth of 

dangerous pathogens in case the product was contaminated with them.  

In order to avoid this problem, macroperforated films have been used 

to pack fresh commodities. Although they work as a way to eliminate excess 

water vapour and carbon dioxide and introduce oxygen into the package, it 

is an underused technology. The perforation profile could be planned to 

control the composition of the gases inside the package to a protective 

atmosphere that extends shelf life.  

However, this technology lacks reliable data on mass transfer 

through both films and perforations. The literature on mass transport 

through perforations is confusing and conflicting. Each work calculates the 

phenomenon using a different equation and adopting a different principle, 

from adjusting the diffusivity with a concept named effective length, to giving 

results that relate the permeability to the area of the each perforation (and 

as a result, the data is valid only to each specific area). As the films are thin 

enough for the effect of diffusion to be insignificant, the air flow can be 

assumed to be mainly due to convective mass transfer. Besides, the 

mathematical models proposed in literature have another inconvenient that 

is the lack of dynamic similarity, which makes them useless under 

conditions other than those applied to the data used on the model 

development. 

In addition, permeability of plastic films are normally obtained under 

conditions determined by standard methodologies (ASTM). It means that 
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oxygen permeability of many films in literature are determined at 23°C and 

0% of relative humidity, and between 23 and 37°C, normally 25°C, and a 

relative humidity gradient of 90% (or more) for water vapour permeability. 

Both the inner and outer atmospheres of actual produce packages are far 

from these conditions, which means that there is little information on barrier 

properties of plastic films under the real conditions of use of the materials to 

pack fruits and vegetables, and if they influence the mass transfer 

properties, a proper design cannot be achieved with these parameters, 

effective values must be determined.  

A final aspect also relevant to the design of modified atmosphere 

packaging is that seals usually have some leakage. If all the planning is 

based on the mass transfer through the film and the perforation but there is 

great variability in the sealing, the design can be compromised by excessive 

gas transfer through the seal. On the other hand, if the permeance through 

the seal is a constant parameter, it can be incorporated in the design and 

the combination film - perforations (if needed) - seal provide the required 

overall permeance. In this case, it might be more efficient to identify the 

sealing settings that minimise the variability of the effective permeability of 

the packages.  

Microperforations are a powerful tool to design packages that can 

prolong shelf life of fresh and minimally processed fruits and vegetables but 

it is necessary to avail of a better understanding of the mass transfer 
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processes in plastic films and microperforations. This thesis was structured 

as follows: 

 

1. Analysis of mass transfer through perforations: 

 

Mass transfer through perforations has been quantified in various 

ways, but most have limited applicability because they do not obey the 

principle of dynamic similarity. They are reviewed in chapter 2. The first 

objective of this work was to establish dimensionless correlations involving 

the relevant parameters using the proper and rigorous method of  

Buckingham Theorem in order to obtain a model able to predict the 

permeability due to perforations with wide applicability. 

In order to apply this model, it is necessary to define which 

parameters have a significant influence on permeability and this is the 

specific objective of the fist experimental work described in chapter 3: 

Determination of the mass transfer coefficient through package perforations 

and analysis of the most influential parameters. 

The next chapter then provides a substantial analysis of experimental 

data with variation of the parameters previously established to be more 

relevant, applying  Buckingham Theorem and determining the best 

dimensional correlation fitting all data for oxygen transfer. One assumption 

used in chapter 4 was that the mass transfer coefficient would not depend 

on the oxygen gradient itself. Chapter 5 then assesses this assumption, 
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determining the value of a variable mass transfer coefficient depending on 

the concentration gradient. Finally, Chapter 6 presents the experimental 

data and establishes the dimensionless correlations for water vapour 

transport.  

 

2. Effect of water on mass transport through plastic films: 

 

The permeability of microperforated films may be modulated by the 

film itself and therefore determining the effective permeability of polymeric 

film packages (including its sealing) is equally important. However, there is 

an over-reliance on accurate ASTM methods, which are presented as 

material testing tools, but do not necessarily provide the true (or effective) 

permeability of a package in its actual conditions of use. This is mostly for 

two reasons: the effect of the humidity (water) in the molecular mobility 

through the polymer and the fact that seals usually have a significant 

influence too. 

The effect of water content, which will change from the original film 

to whatever will result from its exposition to the inner and outer package 

atmospheres (where the inner is bound to be quite humid), can be very 

significant especially for biobased films. In general, it will be for films with 

high water vapour permeability. Chapter 7 provides a fundamental approach 

to the quantification of the impact of relative humidity on the modified 

atmospheres for two biobased films, Polylactic acid (PLA), the most 
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common of them, and NVS, a new market proposition of the Innovia 

Packaging Group by using polymer science concepts,.Namely, the WLF 

and Gordon-Taylor equations are combined with sorption isotherms, 

resulting in a more fundamentally-based model able to describe permeance 

through films under any set of humidity conditions.  

 

3. Mass transfer through packaging seals: 

 

A final study is provided on the relevance of seals in the effective 

permeability of a package. From a practical point of view, the fact that seals 

may influence the effective permeability due to a non-negligible gas transfer 

through them is not a problem; provided that it can be quantified, it can be 

handled just like the permeability through the film itself and through the 

perforations. The problem that needs to be considered is its variability. 

Whereas films are fairly homogeneous and perforations can be made 

accurately with precision (with laser perforation systems), the hermeticity (in 

permeance) of seal will depend on the operation of the packaging machine 

and thus can potentially vary from package to package. Chapter 8 applies 

the Taguchi robust design engineering method to illustrate how a packaging 

machine can be tuned to operate under the conditions that give minimum 

variability of the effective package permeability, as influenced by the seals.   
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1. LITERATURE REVIEW 

 

ABSTRACT 

 

Food packaging design requires comprehensive knowledge of the 

product to be packed, the packaging material and their interactions. For 

fresh and minimally processed fruits and vegetables, there are various 

aspects that need to be quantified properly. On the product side the key 

issue is that the vegetable tissues keep respiring after harvesting and 

therefore they consume the ambient oxygen and release carbon dioxide and 

water vapour. Furthermore, water loss may also occur by evaporation 

depending on the relative humidity of the environment and the phase 

equilibrium between product and air. Hence, the key issue in the case of the 

package is permeability to gases in order to avoid anoxia and water 

condensation inside the package. For some products sensitive to carbon 

dioxide, elevated concentrations of this gas may also be detrimental to 

quality. On the other hand, appropriate  barrier properties of the packaging 

material will establish an equilibrium between gas consumption/production 

and transfer through the package, establishing a protective atmosphere that 

can extend the shelf life of the produce significantly. Hence, engineering 

packaging design consists in defining the package factors that will work with 

the specific product to generate the optimum atmosphere for that product to 

reach maximum shelf life under its appropriate storage conditions. As 
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packaging films tend to present low permeability to carbon dioxide and 

oxygen and the ratio between the permeabilities is normally greater than the 

respiration quotient of the produce, an alternative to manipulate the 

permeability ratio of the film is to perforate the packages. However, such 

perforations will necessarily need to be very small, and possibly in a small 

number too, as gas transfer through a perforation will inevitably have a high 

rate. Availing of accurate kinetic models of the phenomena will therefore 

enable the packaging design engineer to establish the correct perforation 

profile that will meet the necessities of the specific product and additional 

package details, such as sizes and actual packaging material(s) to be used. 

Perforations will also an important bearing on water vapour transport 

through the package and the resulting relative humidity of the internal 

package atmosphere, which is desired to be sufficiently high to limit 

evaporative water loss from the product, but without reaching saturation 

which would lead to condensation, accumulation of liquid water, and 

consequent quality loss due to mould growth, loss of texture and stimulating 

detrimental microbial activity. This introductory chapter reviews the state of 

the art knowledge of the main aspects on the oxygen, carbon dioxide and 

water vapour permeability of films and of the relevant mathematical models 

of gas permeability through perforated films. 
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1.1. PREAMBLE 

 

Plants absorb nutrients and water from the soil and their main 

metabolic activities are photosynthesis and respiration. Chemical changes 

in the vegetable tissues after harvesting are due to respiration and 

fermentation, aerobic and anaerobic oxidation respectively. Both processes 

involve energy consumption, and as a result, quality loss. The organic 

substrates accumulated during growth are oxidized to carbon dioxide (CO2) 

and water. The energy necessary for all the metabolic activities in detached 

plant parts came from aerobic respiration whereby cells completely oxidize 

molecules such as carbohydrates, organic acids, proteins and fats to 

produce energy, in addition to water and CO2; the energy produced during 

respiration is mainly conserved in the form of ATP (Adenosine triphosphate) 

or lost as heat (Damodaran, Parkin, and Fennema 2007).  

Oxygen (O2) serves as the final electron acceptor in respiration, while 

on fermentation, complete oxidation does not occur and electrons are 

instead passed on to other molecules within the cell. When carbohydrates 

are used for respiration, about 1 mole of CO2 is produced for each mole of 

O2 consumed. (Nelson and Cox 2013). In this case, the overall equation for 

respiration, normally expressed as the glucose oxidation, is presented as 

follows (Chitarra and Chitarra 2005): 

 

C6H12O6 + 6O2 + ADP + Pi → 6CO2 + 6H2O + 673 kcal + 38 ATP       (1.1) 
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Respiration is directly related to transpiration, which is the main factor 

responsible for decreasing product weight. Unfortunately, there is much 

confusion on what transpiration is and how it relates to product weight loss. 

Respiration produces water vapour, which is released by the plant to the 

surrounding atmosphere. On the other hand, the product contains 

significant amounts of liquid water as well, and thus it would normally dry 

and lose water by evaporation inevitably, unless the atmosphere is humid. 

This is to say that if there was no respiration at all, the product would still 

release water to the atmosphere from the drying process. Therefore, the 

release of water vapour from a plant occurs both because of respiration 

(which produces water vapour out of the oxidation of a substrate) and drying 

(which produces water vapour by the simple evaporation of liquid water). If 

transpiration is the name given to the production of water vapour by a plant, 

then it is the sum of these two effects.  

On the other hand, water loss due to drying is not the sole factor 

causing weight loss, because the substrate (a soluble solid) is converted to 

gases (carbon dioxide and water vapour) by the respiration. Although under 

normal conditions the water lost by evaporation causes much of the weight 

loss, the substrate loss is not necessarily negligible. Thus, if transpiration is 

equated to weight loss, it is not just the effect of drying either, but a 

combination of both respiration and drying effects.  
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The liquid water loss due to drying results from the gradient of water 

vapour pressure between the tissue and the surrounding air (Romero, 1987, 

Becker and Fricke, 1996). Chitarra and Alves (2001) named transpiration 

as the effect of all physiological activities that culminate in production of 

water vapour by the plant. However, other authors also determine 

transpiration rates from measuring weight loss (Bovi et al. 2016, Caleb et 

al. 2016), and in this case the measurement is not the same because the 

relation between the substrate weight loss and the water vapour produced 

by respiration can vary significantly depending on what the substrate 

effectively is (for instance, in the case of fructose or glucose, 1 mole of sugar 

produces 6 moles of water vapour). When the loss of weight due to 

substrate conversion is neglected and all the water vapour production is 

equated to the loss of water by drying, then transpiration is being used to 

term only the drying process, and not the totality of water production. 

These differences matter particularly with packaging, because a 

package that hinders water vapour transmission to the environment will be 

creating a saturated environment inside the package and thus, there should 

occur no drying and hence no more loss of liquid water and no more weight 

loss due to it. Yet, the plant will continue to produce water vapour due to 

respiration, which results in condensation and the accumulation of liquid 

water in the package (and also, some weight loss due to the substrate loss). 

Thus, a proper and accurate quantification of the phenomena should 

distinguish between the different effects: water vapour produced by 
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respiration, water vapour produced by evaporation of liquid water, weight 

loss due to conversion of substrate, weight loss due to loss of liquid water 

by evaporation, and, when applicable, condensation of water vapour in a 

saturated environment. 

Water lost due to drying impacts quality significantly; losses of just 3 

to 6% are sufficient to reduce turgidity and cause permanent damage on the 

integrity of the vegetable tissues, and appearance begins to be significantly 

affected (Chitarra and Alves 2001, Ben-Yehoshua and Rodov 2002). 

However, in packaged products, water produced by respiration may 

be a significant quality problem, because if the package is too impermeable 

to water vapour the saturated environment causes a continuous 

condensation of this water vapour, and the liquid water thus created will lead 

to mould or yeast growth and rapid deterioration. Thus, the ideal package 

should hinder water vapour transfer sufficiently to create a high humidity 

environment inside the package such that there is little water loss due to 

drying, but be sufficiently permeable to allow the excess water vapour 

produced by respiration to transfer out, that is, water vapour permeability 

has to strike a perfect balance between production and mass transfer. 

Despite the fact that stomata are the most important path for gases 

through plant tissues,  studies with various types of fruits and vegetables 

also showed that CO2, ethylene and water vapour could be released not 

only through the stomata, but also by cuticle, lenticels, hydathodes, the stem 
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scar or other injured areas  (Ben-Yehoshua and Cameron 1989, Pantastico 

1975, Chitarra and Alves 2001).  

Water loss in fruits and vegetables is strongly dependent on the 

conditions of their stomata, on the opening and closing of the pores. These 

organelles are determinant to the gas exchange through the membrane of 

the commodity, even considering that the percentage of opened stomata 

decreases significantly after harvesting. Also, stomata opening may depend 

on the ambient conditions, such as relative humidity, temperature and 

light/darkness (Ben-Yehoshua and Cameron 1989).  

Regulation of transpiration is strongly dependent on the response of 

stomata to vapour pressure difference and temperature. Because the 

former may vary in the atmospheric air with the latter, it can be difficult to 

distinguish the effect of each of them on transpiration; however, when both 

effects are separated, it is possible to observe that the mass transport 

through the stomata increases with temperature, and the rise occurs for 

temperatures above the optimum for photosynthesis in plants on the field 

(Schulze and Hall 1982). Gas exchange through the stomata is particularly 

problematic on leaves, as the large number of stomata in their tissue are 

the main cause of water loss for these products, together with the large 

area-volume ratio. For these vegetables, the ideal conditions of storage 

must be followed with rigor in order to keep their quality and avoid food loss 

(Cantwell and Reid 1993, Ben-Yehoshua and Rodov 2002).  
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Water loss during storage is a constant on postharvest technology. 

A good refrigeration system is very important to reduce the internal heat of 

fruits and vegetables, present as field and vital heat. The former consists of 

the ambient heat absorbed by the plant tissues and the heat produced by 

the rapid respiration due to the physiological stress of the harvesting, and 

because of that rapid cooling is very important immediately after harvest.  

Vital heat is produced during respiration and is responsible for the water 

loss due to evapotranspiration during storage (Chitarra and Chitarra 2005). 

The less efficient the refrigeration, the more water condensation on 

the product surface due to the internal heat. Any malfunction such as 

insufficient ventilation or temperature fluctuations can increase the loss of 

water (Rodov et al. 2010). The effect of temperature is related to the relative 

humidity. In the field, crops exposed to high temperatures and high relative 

humidity tend to suffer less than plants under limiting water conditions 

(Wahid et al. 2007). Refrigeration reduces the temperature and 

consequently the respiration rate, which leads to an extend shelf life as it 

slows loss of nutrients and proliferation of microorganisms. However, 

refrigeration should be just enough to remove vital heat and not affect the 

ambient humidity necessary to avoid transpiration (Silva, Finger, and Corrêa 

2000). 

Transpiration as a normal drying process is simply the evaporation 

of  the product’s liquid water to water vapour to the surrounding air. It may 

involve 3 stages: (i) water transport from inside the commodity to its surface, 



 
 

9 
 

(ii) evaporation from the surface and (iii) convective mass transfer to the 

surrounding atmosphere (Rennie and Tavoularis 2009).  

The evaporation of liquid water occurs due to the water vapour 

pressure gradient between the surface and the air. If there was only water 

and air, then drying would occur until the partial pressure of water vapour in 

the air equals its vapour pressure, that is, the relative humidity reaches 

100%. However, when there is also a food product, the water is in fact the 

solvent of various solutes, and therefore the equilibrium water-air is not the 

same as the pure water. The equilibrium partition of water between food and 

atmosphere will be reached for relative humidities less than 100%, as the 

relative humidity is calculated for liquid water / air equilibrium. As drying 

progresses and the liquid water concentration decreases, the vapour 

pressure decreases and thus the equilibrium will progressively evolve to 

even lower relative humidities. The entire range of equilibrium points is well 

described by the respective desorption isotherm, which theoretically could 

go up to 100% relative humidity (the same as a water activity of 1), but in 

practice due to the presence of the solutes the humidity of the atmosphere 

in a package is below 100% (usually 95 to 98%, depending on the product, 

and typically lower for vegetables than fruits). 

As respiration releases heat, the temperature of a commodity will 

inevitably be somewhat higher than that of the surrounding air. Even if this 

difference is often neglected in many calculations, it implies that the vapour 

pressure at equilibrium just below the surface of the product will always be 
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above that of the surrounding air, so the product would continuously lose 

liquid water, even if it then condenses in the atmosphere (Becker and Fricke 

1996). 

Besides, not all the weight loss during storage is due to water loss, 

which is a common mistake in literature. As respiration implies nutrient 

depletion, part of the weight loss is related to the loss of substrates. Hence, 

in order to determine the correct amount of water loss it is necessary to 

observe how much water is released. A complete discussion of transpiration 

routes and water loss was put forward by Ben-Yehoshua and Rodov (2002). 

Determination of water loss in fruits has been reported in literature by 

discounting the loss of CO2 from the respiratory activity (Ben-Yehoshua, 

Burg, and Young 1985). 

Water constitutes 80-95% of the weight of fresh commodities such 

as fresh fruits and vegetables. Water is also responsible to provide the 

turgor desired in horticultural products, due to its low compressibility. In this 

case, small losses (<1% of weight) can deplete the quality, affecting the 

physical aspect, texture and nutritional characteristic (Damodaran, Parkin, 

and Fennema 2007). Water loss in minimally processed fruits and 

vegetables is highly affected by peeling and cutting due to their effect on 

respiration rate. Hence, the quality control of fruits and vegetables demands 

an efficient storage system. 
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1.2. WATER IN FOOD PACKAGING 

 

As water is so critical to storage, it is crucial to understand its impact 

on food packaging. From the point of view of water effect, there are two 

main groups of materials involved in packing fresh and minimally processed 

fruits and vegetables: hydrophilic and hydrophobic materials, i.e. those 

highly affected by water molecules and those where water molecules have 

no to very little effect on their structure.  

Equilibrium in hydrophobic films obeys Henry’s Law, meaning that 

the concentration of gas in the polymer is directly proportional to the gas 

partial pressure, and the Henry constant of proportionality is named 

Solubility. In this case, there are no strong polymer–penetrant interactions 

and no specific interactions between the penetrant molecules. Only small 

portions of water are absorbed (Van Krevelen and Te Nijenhuis 2009). 

Henry’s law applies to other gases such as Oxygen, but the interactions with 

water vapour and organic gases have more complex behaviour, which is 

highly observed in hydrophilic materials, whose polymer-water interactions 

are strong and determinant to the water transport. As a result, films such as 

ethyl cellulose can be more than a thousand times more permeable to water 

than Polyethylene or Polyvinylalcohol, three hundred times more than 

polypropylene or twenty times more than polystyrene (Metz et al. 2005). 

Water concentration in hydrophilic polymers depends on the water 

adsorption-desorption behaviour and may be quantified by isotherms. 
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These curves allow to understand the polymer-water interactions and its 

influence on water vapour concentration in the polymer.  

 

1.3.  WATER ADSORPTION-DESORPTION IN FILMS 

 

Isotherms give information not only on the relationship between 

water vapour pressure and water content in the material but also on the 

character of the water-water and water-surface relations, providing 

acquaintance with the porosity of the material (Gregg and Sing 1983, 

Teixeira, Coutinho, and Gomes 2001, Van Krevelen and Te Nijenhuis 

2009). Likewise, different isotherm equations can be found in literature with 

applications in many areas, and of course can be applied to other 

adsorbates than water (Zeller, Saleeb, and Ludescher 1998, Lucas et al. 

2004). Their ability to describe water adsorption-desorption is related to the 

shape of the isotherm, which in turn describes how water is absorbed by the 

material (van den Berg and Bruin 1981, Al-Muhtaseb, McMinn, and Magee 

2002). Isotherms can be classified in different types, where the main 5 types 

can be found at Brunauer et al. (1940), extended to 6 on a IUPAC 

classification (Sing et al. 1985) and subsequently supplemented by 2 

(Thommes et al. 2015) or 3 (Rouquerol et al. 2013) more subgroups. A 

classification into shapes (C, L, S and H) is sometimes used and can be 

found in the work of Giles, Smith, and Huitson (1974). 



 
 

13 
 

When the adsorption-desorption process follows Henry’s law, the 

graphical representation of the isotherm presents a linear relationship with 

pressure and is observed in the sorption of permanent gases at moderate 

pressures. To some extent, a linear isotherm will always be verified at 

sufficiently law water contents, which was subsequently explored by Park 

(1986)  Other main isotherm profiles are characterized as Langmuir 

adsorption, Flory–Huggins type and Brunauer, Emmett and Teller (BET) 

isotherm. Langmuir adsorption characterises a unimolecular adsorption, i.e. 

the surface can take up only one layer of adsorbed gas. Thus, after an 

eventual earlier linear region, as water activity increases the water content 

levels off to a maximum limit. The Flory–Huggins type describes a situation 

when the solubility coefficient increases continuously with water content. It 

presents a preference for formation of penetrant pairs and clusters and is 

observed when the penetrant acts as a swelling agent for the polymer 

without being a real solvent. An example is water in relatively hydrophobic 

polymers containing also some polar groups. BET type is classic of 

hydrophilic materials, and is a combination of Langmuir and Flory–Huggins 

types (Van Krevelen and Te Nijenhuis 2009).  

There are many equations developed to describe isotherms and they 

have been extensively described in literature (van den Berg and Bruin 1981, 

Basu, Shivhare, and Mujumdar 2006, Foo and Hameed 2010). A list of 

common sorption models is shown in Table 1.1.  

. 
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Table 1.1 - Common Isotherm Models  

𝑋𝐵𝐸𝑇 =
𝑋𝑚 ∙ 𝐶 ∙ 𝑎𝑤

(1 − 𝑎𝑤) ∙ (1 + 𝐶 ∙ 𝑎𝑤 − 𝑎𝑤)
 Xm: monolayer water content, C: energy difference between the 

upper layers and the monolayer 

Brunauer, Emmett, and 

Teller (1938) 

𝑋𝐺𝐴𝐵 =
𝑄𝑚 ∙ 𝐶 ∙ 𝐾 ∙ 𝑎𝑤

(1 − 𝐾 ∙ 𝑎𝑤) ∙ (1 − 𝐾 ∙ 𝑎𝑤 + 𝐶 ∙ 𝐾 ∙ 𝑎𝑤)
 

Xm: water content sorbed in the first layer, K: associated to water 
sorbed molecules on multi-layer and C: Guggenheim constant 
which corresponds to the total sorption heat 
of the first sorbed lay 

van den Berg (1985) 

𝑋𝐿

𝑋𝑚

= 
𝐶𝐿 ∙ 𝑎𝑤

1 + 𝐶𝐿 ∙ 𝑎𝑤

 

CL: kinetic constant related to the sorption in the first layer, QL: 
moisture content d.b. based on non-soluble dry matter, Qm:  
moisture content d.b. at monolayer coverage based on non-
soluble dry matter 

Langmuir (1918) 

𝑋𝐿𝑒 = 
𝐹

(1 − 𝑎𝑤)𝐺
+

𝐹

(1 − 𝑎𝑤)𝐻
 F, G, G, H are parameters obtained by fitting into the data Lewicki (1998) 

𝑋𝑂 = 𝑐1 (
𝑎𝑤

1 − 𝑎𝑤

)
𝑐2

 c1 and c2 are model constants Oswin (1946) 

𝑋𝑃𝑎 = 
𝐴𝐿 ∙ 𝑏𝐿 ∙ 𝑎𝑤

1 + 𝑏𝐿 ∙ 𝑎𝑤

+ 𝐾𝐻 ∙ 𝑎𝑤 + 𝐾𝑎 ∙ 𝐾𝐻 ∙ 𝑎𝑤
𝑛 

AL: the Langmuir capacity constant, gives the extension of the 
internal pore surfaces per unit volume, bL:  Langmuir affinity 
parameter, kH : Henry’s solubility coefficient, ka : equilibrium 
constant for the clustering reaction, n: the mean 
number of water molecules per cluster 

Park (1986) 

𝑋𝑃𝑎2 = 
𝐴𝐿 ∙ 𝑏𝐿 ∙ 𝑎𝑤

1 + 𝑏𝐿 ∙ 𝑎𝑤

+ 𝐾𝐻 ∙ 𝑎𝑤 + 𝑛 ∙ 𝐾𝑎 ∙ 𝐾𝐻
𝑛

∙ 𝑎𝑤
𝑛 

Park model is presented in literature in slightly different forms 
(QPa2 and QPa3), both with good fitting to data from different 
authors and materials, without however indicate where these 
modifications come from. 

In: Charlon et al. (2017) 

𝑋𝑃𝑎3 = 
𝐴𝐿 ∙ 𝑏𝐿 ∙ 𝑎𝑤

1 + 𝑏𝐿 ∙ 𝑎𝑤

+ 𝐾𝐻 ∙ 𝑎𝑤 + 𝐾𝑎 ∙ 𝑎𝑤
𝑛 

In: Gouanvé et al. (2006), 

Wolf et al. (2016) 

𝑄𝑃𝑒 = 𝐾1𝑎𝑤
𝑛1 ∙ 𝐾2𝑎𝑤

𝑛2 K1, K2, n1 and n2 are constants obtained from mathematical fitting. Peleg (1993) 

𝑋𝑉𝑅 =
𝑋𝑚 ∙ 𝐶 ∙ 𝐾 ∙ 𝑎𝑤

(1 − 𝐾 ∙ 𝑎𝑤) ∙ (1 − 𝐾 ∙ 𝑎𝑤 + 𝐶 ∙ 𝐾 ∙ 𝑎𝑤)

+
𝐶 ∙ 𝐾 ∙ 𝐾2 ∙ 𝑎𝑤

2

(1 − 𝐾 ∙ 𝑎𝑤) ∙ (1 − 𝑎𝑤)
 

Qm: monolayer moisture content, C the Guggenheim constant 
and k a constant whose value generally lies between 0.7 and 1. 

Viollaz and Rovedo (1999) 

(sometimes named 

Modified GAB) 

aw is the water activity and Qx are the water content in dry basis calculated by the x different models 
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Evidently, not all equations will fit well any specific case, and 

sometimes equations may be valid only in given regions of water activity.  

BET equation, for example, is sometimes applied in a range of water activity 

up to 0.65 (Biliaderis, Lazaridou, and Arvanitoyannis 1999, Akanbi, 

Adeyemi, and Ojo 2006, Villalobos, Hernández-Muñoz, and Chiralt 2006, 

Saberi et al. 2016). Equations like those proposed by Oswin (1946) and 

Viollaz and Rovedo (1999) cannot be used at 100% mathematically and 

GAB equation might underestimate water content of materials subjected to 

a water activity greater than 0.93 (Basu, Shivhare, and Mujumdar 2006). 

GAB equation is one of the most used equations for describing water 

adsorption. A simple research on Web of Science Core Collection 

(Thomson-Reuters 2017) showed 799 papers published on the matter since 

1989, appearing 50 times in 2016. Of these, 73 refer also to “film”, occurring 

since 1993 (Thomson-Reuters 2017). 

GAB model, Guggenheim-Anderson-De Boer according to van den 

Berg (1981), is a modification of BET model for isotherms. BET was 

proposed by Brunauer, Emmett, and Teller (1938) and it provides a 

sigmoidal curve that assumes a multilayer profile where the first molecule 

(monolayer) on a site has a much stronger interaction with the sorbent than 

the second and following layers (van den Berg 1985). It is probably the most 

used equation on the study of isotherms, with over 1000 occurrences on 

Web of Science (Thomson-Reuters 2017); however, BET is frequently 

bettered by other models in terms of goodness of fit and range of 



 
 

16 
 

applicability. In fact, it has been observed that GAB parameters are more 

meaningful to the phenomenon and provide a better value for the monolayer 

than BET model (Timmermann, Chirife, and Iglesias 2001), as BET tends 

to provide smaller values at low water activities and greater values at high 

water activities than those obtained experimentally (Mc and Teller 1951). As 

a result, the monolayer value provided by GAB is often greater than the one 

obtained via BET equation (Suriyatem et al. 2015). Other GAB-like 

equations have also been developed but appear less frequently in literature, 

such as those proposed by Timmermann and Chirife (1991) and Viollaz and 

Rovedo (1999). 

Extra information on the materials can be obtained using the data 

from the isotherms. Knowing the monolayer moisture content, it is possible 

to determine the water binding properties of particulate materials applying a 

model proposed by Labuza (1968) and used by other authors (Cassini, 

Marczak, and Noreña 2006, Rosa, Moraes, and Pinto 2010). According to 

Brunauer, Emmett, and Teller (1938), knowing the volume of gas adsorbed 

on the first layer, the surface area of the adsorbent is obtained by multiplying 

the number of molecules required to form a unimolecular layer by the 

average area occupied by each molecule on the surface. Also, Larotonda 

et al. (2005) deduced a mathematical model that gives solubility from the 

GAB equation.  

Other models that often appear together with the GAB equation, 

offering good fit to different sets of data, are the Oswin, Peleg and Park 
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equations (Basu, Shivhare, and Mujumdar 2006, Aguirre-Loredo, 

Rodriguez-Hernandez, and Velazquez 2017, Wolf et al. 2016, Suppakul et 

al. 2013). Figure 1.1 shows the occurrence of BET, GAB, Oswin and Peleg 

models in literature in publications referenced by the Web of Science 

website in 2017 (Thomson-Reuters 2017) and it can be seen that the BET 

equation appeared more often on literature, but GAB was more frequent in 

papers related to films.  

 

 

Figure 1.1 – Occurrence of isotherm models on literature referred by the 
Web of Science (Thomson-Reuters 2017), where bars indicate the total 
number of citations, diamonds mark the number of citations since 2016 and 
triangles refer to total number of citations in works related to films only.  

 

Oswin (1946) developed a mathematical relation that could be 

applied to packaging studies, as according to the author equations 

previously published could not be used on the study of packaging life. Peleg 

(1993) proposed a semi-empirical four parameter model to describe sigmoid 
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moisture sorption isotherms that tends to fit as well as or better than the 

GAB model, but whose parameters have no physical meaning. Peleg 

equation tends to present a good fit to different sets of data from different 

materials (Galus and Lenart 2013). 

According to Lewicki (1998), GAB and Peleg models fail when water 

activity is 1, as they predict a finite solution. Hence they developed a model 

from the BET equation that led to an equation consisting of two functions 

subtracted from each other that assumes two processes occurring in 

parallel, where the first one occurs at higher water activities and the second 

part prevails at low vapour pressure. Their equation predicts infinite 

adsorption at a water activity of 1 and surpassed GAB’s ability to predict 

data correctly in their studies, but did not present a better performance than 

Peleg equation. This model consists on a three-parameter equation, and 

subsequently the same author published another work where a two-

parameter model was put forward (Lewicki 2000), but this time it was not 

compared to Peleg’s, only to the GAB equation.  

Park (1986) proposed a model that incorporates the effect of Henry's 

law or Flory-Huggins-type sorption complicated by a Langmuir-type sorption 

on internal pore surfaces at low activities and at higher vapour pressures by 

clustering. It resulted in an equation that can be applied to both hydrophilic 

and hydrophobic polymers and whose parameters have physical meaning, 

indicating the equilibrium constant for the clustering reaction, the Henry's 

law solubility coefficient of monomeric water, the measure of the extent of 
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the internal pore surfaces per unit volume of membrane, and the Langmuir 

sorption parameter. Park equation assumes that a different phenomenon 

takes place depending on the water content, and therefore each term of the 

equation has greater effect on a specific range of water activity (Detallante 

et al. 2001, Alix et al. 2009).  

Table 1.2 shows a list of published papers that included the water 

sorption properties of different films, the models used by the authors 

(equation chosen as better is written in bold). It can be seen that GAB 

equation appears constantly and it is sometimes bettered by other models 

cited above.  Nevertheless, GAB generally offers good fit to the data and 

the difference to the best model in each case tends to be very small.   
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Table 1.2 – Use of isotherms to describe isotherms of adsorption in films 

Material Temperature (°C) Model Reference 

Methylcellulose 
9, 15, 20, 25, 35 GAB, BET 

de la Cruz, Torres, and 
Martı́n-Polo (2001)  

Ethylcellulose 

Sodium Caseinate 25 Park Colak et al. (2015)  

Pullulan-Starch* 25 GAB, BET 
Biliaderis, Lazaridou, 
and Arvanitoyannis 

(1999)  

Cassava Starch - PBAT 
25 GAB 

Brandelero, 
Grossmann, and 
Yamashita (2013)  

Cassava Starch 

Peanut Protein 25 BET, GAB, Smith, Henderson 
Jangchud and Chinnan 

(1999)  

Alginate - Pectin 25 Peleg 
Galus and Lenart 

(2013)  

Wheat Gluten 25 GAB, Kuhn,  Smith, Oswin, Halsey, Flory-Huggins Roy et al. (2000)  

Bitter Cassava 10, 20, 30 
Ferro-Fontan, GAB, Halsey, Henderson, Modified BET, 

Peleg, Smith 

Tumwesigye, Oliveira, 
and Sousa-Gallagher 

(2017)  

Polylactic acid 10.5, 20, 40 Flory-Huggins Oliveira et al. (2006)  

Polylactic acid 40 Flory-Huggins Cairncross et al. (2006)  
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Material Temperature (°C) Model Reference 

Chitosan 15-30 
BET, GAB, Henderson, Halsey, Oswin and their 

modifications 

Aguirre-Loredo, 
Rodriguez-Hernandez, 
and Velazquez (2017)  

Pea Starch 5,15, 25, 40 
BET, GAB, Peleg, Oswin, Ferro-Fontan, Henderson, 

Lewicki*, Iglesias-Chirife, Flory-Higgins 
Saberi et al. (2016)  

Rice Starch 

25 Lewicki, BET, GAB, Oswin, Peleg Suriyatem et al. (2015)  

Carboxymethyl Chitosan 

PHBV- Wheat Straw Fibers 20 Park, GAB Wolf et al. (2016)  

Cassava 30 Lewicki, GAB, Oswin, Peleg Suppakul et al. (2013)  

Amaranth Flour 30, 40 GAB 
Tapia-Blácido, Sobral, 
and Menegalli (2013)  

Chicken Feather Keratin 20,35 BET, GAB, Smith, Iglesias-Chifrite Martelli et al. (2006) 

Lignocellulose-based 20 GAB, Park Muraille et al. (2015) 

WPI- Sodium Caseinate 2, 25, 40 Peleg Lei et al. (2014) 

PSB-based 
25 Park, Feng Charlon et al. (2017) 

PSBA-based 
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Material Temperature (°C) Model Reference 

Polyamide 25 Park Follain et al. (2016) 

*3-parameter equation (Lewicki 1998).   
PHBV is Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PBAT is Poly(butylene adipate-co-terephthalate), WPI is Whey Protein Isolate, PSB is 
Poly(butylene succinate) and PSBA is Poly[(butylene succinate)-co-(butylene adipate)] 
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1.3.1. Water Vapour Permeability and Diffusivity in Films 

 

Different expressions are traditionally used for permeability of water 

vapour. At constant temperature and in steady state, a most common 

empirical expression is: 

 

𝑚̇𝑤 = 𝑃𝑎,𝑤 ∙ 𝐴 ∙ 𝑝𝑠 ∙ (ℎ𝑟,2 − ℎ𝑟,1)                               (1.2) 

 

where 𝑚̇ is expressed usually in mass per unit of time (e.g. g/s), 𝑃𝑎,𝑤is 

the permeance of the film to water vapour, ps the saturation pressure of 

water vapour in air, A is the area of the film exposed and hr is the relative 

humidity of the atmosphere, with subscript 1 for one side and 2 for the other 

side. These are equal to the water activities of the atmosphere. 

Water vapour transmission rate is usually expressed in mass per unit 

of time, and the most common units used in literature make no conversions 

to the values measured, so usual units of permeance of water vapour are 

g/(m2.bar.day) and other combinations of units of mass over area, pressure 

and time. For a film composed by a single polymer, it is better to define 

permeability (P), the permeance per unit of thickness of the film, giving: 

 

𝑚𝑊 =̇
𝑃𝑊

𝐿
. 𝐴. 𝑝𝑠. (ℎ𝑟,2 − ℎ𝑟,1)                         (1.3) 

 

where L is the thickness of the film and Pw the permeability. 
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This shows that the result is actually just the same as Fick’s 1st law, 

so if one can assume that the entire process occurred in steady state, the 

relation between permeability and molecular diffusion can be established. 

Diffusion occurs in the film between one surface and the other due to the 

gradient of concentrations that results from equilibrium with the two different 

atmospheres. Fick's 1st law for a constant diffusion coefficient and dilute 

concentrations is: 

 

𝑚𝑊 =̇
𝐷𝑊

𝛿
. 𝐴. (𝐶𝑓,2 − 𝐶𝑓,1)                                (1.4) 

 

where DW is the diffusivity of liquid water through the polymeric matrix 

and Cf denotes the concentration of liquid water in the polymer (not in the 

air), where using the concentration in units of mass per volume (e.g. g/mL) 

gives the mass flow rate 𝑚̇𝑤 in mass per unit of time, with the units of 

diffusivity being area per time (e.g. cm2/s). The use of concentration in the 

film is however not desirable. If the film/air equilibrium obeyed Henry's law, 

then one could state that 

 

𝑝𝑊 = 𝑆 ∙ 𝐶𝑓                                               (1.5) 

 

where pW is the partial pressure of water vapour in the air (= ps.hr) 

and S the solubility. Replacing this result in Fick's law and then comparing 

with eq. 1.2 gives the often cited result that permeability equals molecular 
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diffusivity times solubility (P = D ∙ S), which Doty, Aiken, and Mark (1944) 

derived. However, this is only valid if solubility is the same on both sides, 

that is, if Henry's law is valid up to the maximum concentration in the 

problem. This issue is very important because with water vapour this is 

rarely the case, the sorption isotherms are not linear in the range of relative 

humidities of interest and therefore one needs to be careful when relating 

permeability with diffusion. 

This would be more complex for multilayer materials, with more than 

one polymer, which in fact is the case of most films as often there is at least 

one layer of some adhesive to improve sealing. In this case one would need 

to consider not only the two different diffusivities/permeabilities to compose 

the permeance, but also the equlibrium at the interfaces between the two 

different polymers.  

If the film is made of a single polymer, then the permeance is equal 

to the permeability divided by the thickness of the film. However, most 

commercial films have at least a layer of some adhesive, and are rarely 

single polymer, so permeance may be a better variable to work with in 

practice. 

Traditionally, standard methodology such as ASTM 96 (1995) has 

been applied to the analysis of water permeability of films, sometimes with 

modifications. The original methodology suggests a humidity gradient of 

50% either with chamber kept at 50% and the relative humidity inside either 

at 0 or 100%, on a temperature between 21 and 32°C, suggesting the 
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highest one as a better choice. The main modification of the methodology 

in practice is related to the relative humidity, as often in literature and in 

industry authors prefer to use a high gradient, such as 90 or even 100%, 

normally at 25°C (37 °C is also common in the US, being 100 oF) (Gontard 

et al. 1994). It may be noted that in practice the polymer/gas and 

produce/gas equilibrium may imply that saturation is less than 100%, if 

taken as pW / ptotal. 

However, there is a main issue that should be considered in the 

studies of water vapour permeability of films and their application on design 

of food packaging and that has not received due attention. Neither the 

conditions proposed by ASTM 96 (1995) nor a gradient of 100% are the 

normal storage conditions of fruits and vegetables. In fact, temperature 

recommended for storage also tend to be significantly lower than 21°C, 

which means that data obtained at the standard ASTM conditions may not 

reflect the performance of the material during use. Same argument is valid 

for the analysis of sorption isotherms, since frequently data is generated at 

25°C, as seen in Table 1.2. As a result, Permeability of different films in 

literature are obtained in different conditions, as can be seen in Table 1.3. 
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Table 1.3– Water Vapour Permeability reported for different materials 

Material Hr,1 hr,2 
T 

(°C) 
Pw x 105 
(cm2/s) 

Pw x 1010 
(g∙cm-1∙s-1∙ 

KPa-1) 
Reference 

OPP 
0 100 25 0.002 0.001 Rubino et al. 

(2001) 0 100 35 0.003 0.002 

PP 10 100 
23 

0.011 0.008 
Mastromatteo et 

al. (2012) 

PLA 

10 100 0.138 0.101 
Żenkiewicz and 
Richert (2008) 

40 90 

10 0.029 0.022 

Auras et al. 
(2003) 

20 0.026 0.019 

30 0.023 0.017 

37.8 0.022 0.015 

Polyethylene 

0 33 

25* 

0.018 0.013 Bilck, 
Grossmann, and 

Yamashita 
(2010) 

33 64 0.035 0.025 

64 97 0.126 0.091 

Wheat 
flour/PLA 

0 60 

25 

9.255 6.720 
Abdillahi et al, 

2013 

Sodium 
Caseinate 

0 30 1.928 1.400 

Colak et al, 2015 0 45 6.197 4.500 

0 70 58.531 42.500 

Peanut Protein 0 50 37.8 2.127 1.481 
Jangchud & 

Chinnan, 1999 

Chitosan 

0 50 25 14.158 10.280 Caner et al, 1998 

100 0 20 11.279 8.330 
Cerqueira et al, 

2012 

76.9 22.5 30 104.098 74.340 
Ferreira et al, 

2016 

Cassava 
Starch 

0 33 

25* 

4.001 2.905 Bilck, Grossman 
and Yamashita, 

2010 
33 64 7.093 5.150 

64 97 13.294 9.653 

2 32.8 

25 

0.453 0.329 
Brandelero et al, 

2013 
32.8 64.5 1.199 0.870 

64.4 90 3.269 2.374 

100 0 2.301 1.670 Vicentini, 2003 

Cassava Flour 100 0 12.423 9.020 Ramos, 
Carvalho, and 
Calado (2014) 

Taro Flour 100 0 10.122 7.350 

Potato Starch 53 100 30.827 22.384 
Moreno et al, 

2015 

FucoPol 76.9 22.5 30 18.904 13.500 
Ferreira et al, 

2016 
*Refered as ASTM 96 (1995) but not fully specified, so it was assumed 25°C as it 

is the most common 
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Brandelero, Grossmann, and Yamashita (2013) and Bilck, 

Grossmann, and Yamashita (2010) observed that films under the same 

relative humidity gradient but different relative humidity inside (h1) and 

outside (h2) (e.g. hr,1: 30%, hr,2: 60% and hr,1: 60%, hr,2: 90%) presented 

different permeability to water, and permeability was greater at higher 

relative humidity conditions. It suggests that water vapour permeability is 

dependent on the water content of the films.  

It is very important to notice that both adsorption and desorption 

isotherms should be obtained in order to calculate the diffusivity through the 

film from Eq.1.2. However, it is not easy to find data in literature on 

desorption isotherms of plastic films. All the papers cited in Table 1.2, e.g., 

give information on adsorption isotherms of but none of them mentioned 

desorption and therefore it is not known if hysteresis can lead to significant 

differences in a film depending on whether it has reached a given 

equilibrium from dryer or from wetter.  

The fact that P = S ∙ D does not apply to all cases, and sometimes 

apply just for a range of water activity has been known for a while. Hauser 

and McLaren (1948) observed that Henry’s law held for vinyl polymers, 

rubber hydrochloride, and cellulose acetate materials when the relative 

humidity was below 50%, but under other conditions diffusion could not be 

calculated from this simple relation.  
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Larotonda et al. (2005) proposed an equation that describes solubility 

by differentiating GAB equation in terms of water activity and dividing the 

result by the water vapour saturation pressure. This equation has been 

applied in literature by other authors, such as Brandelero, Grossmann, and 

Yamashita (2013), Abdillahi et al. (2013) and Bilck, Grossmann, and 

Yamashita (2010). However, this approach generated a very cumbersome 

equation that might not be practical. Besides, this equation is only valid 

when GAB equation applies, which works fine in most cases, but there are 

situations where the GAB model does not provide a good fit. Also, the 

equation proposed calculates a single value of solubility valid for a specific 

equilibrium point only at the film surface in contact with the gas, but not the 

remaining of the film. 

This problem could be easily solved mathematically by using the the 

isotherm in equation 1.2 with the mass flux obtained on the same method 

applied to determine permeability. It was precisely what Roy et al. (2000) 

did when determining the solubility of their films by multiplying the ratio 

between moisture content and partial pressure of water vapour by the 

density of the dried film (transforming the water content from gram of water 

per gram of dried film in grams of water per cubic meters). 

Depending on the properties of the material, water passes from one 

side to the other due to the relative humidity gradient. This gas exchange is 

commonly measured in terms of permeability, which represents the 

resistance to the water movement between outer and inner atmospheres. 
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Water diffusion through a film occurs due to the existence of a concentration 

gradient. Diffusivity is the measure of how well the permeant moves through 

the polymer. Hence, permeability measures how fast the permeant 

concentration increases on the side of lower humidity, diffusivity describes 

what happens in the polymer (Cussler 2009, Han and Scanlon 2014).  

Some authors, such as Colak et al. (2015) , determines the diffusivity 

from the isotherm. However, as stated by Van Krevelen and Te Nijenhuis 

(2009) diffusivity can only be determined from the isotherms if the gas 

diffusion is only dependent on temperature (and thus not on concentration 

or time). As previously shown, water vapour diffusivity of films is dependent 

on the gas concentration and therefore should be calculated from Eq. 1.4. 

Interactions package-food, and package-ambient typically result in 

mass transfer that occurs as absorption, permeation and diffusion.  Not only 

water, but also monomers, additives and solvents can migrate from package 

to food and to the environment through diffusion. Food fats and colorants 

can be absorbed by package and flavours can permeate, going into or out 

of the package. 

 

1.4. MATHEMATICAL APPROACH OF WATER PLASTICIZATION IN 

FILMS 

 

Water can have either act a plasticizing or an antiplasticizing effect 

on the polymeric matrix. Water molecules can form hydrogen bonds 
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between themselves or with polar groups of hydrophilic polymers. As a 

result, the isotherm can present different forms depending on the strength 

and nature of these interactions, which in turn depend on the characteristics 

of the polymer and on the vapour pressure (Giles, Smith, and Huitson 1974, 

Sing et al. 1985). 

Antiplasticizing effects frequently appear on mechanical tests. Some 

films present an increase of tensile strength with an increase of water 

concentration when exposed to small quantities of the plasticizer, or 

decreasing elongation at break under the same conditions (Chang, Cheah, 

and Seow 2000, Chang, Abd Karim, and Seow 2006). Water fills the 

molecular spaces within the polymeric matrix and in case some affinity 

(covalent, polar, hydrogen bonds) with the polymer molecule entraps the 

water molecules, it could lead to an increased rigidity, reduces molecular 

mobility that decreases the free volume and therefore increases structural 

order by promoting the reorganization of the molecular chains. Hence, the 

unusual changes on the mechanical properties, and also on glass transition 

temperature and crystallinity of the polymer (Chaudhary, Adhikari, and 

Kasapis 2011).  

Accumulation of water within the polymer pores is known as 

clustering, and Park (1986) considered in his isotherm equation the 

clustering at high water activities by incorporating the work of  Zimm and 

Lundberg (1956) and Lundberg (1972) on clustering functions. It happens 

when water-water interactions are stronger than water-polymer interactions, 
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typical of polymers that are not very hydrophilic and do not have many polar 

groups (Almenar and Auras 2010, Van Krevelen and Te Nijenhuis 2009, 

Siparsky et al. 1997).  

Du et al. (2012), observed that in films such as polylactic acid (PLA) 

the water molecules tend to be adsorbed in the vicinity of other water 

molecules in the polymer and form clusters instead of simply be adsorbed 

by the polymer in a water-polymer bond. It is also known that PLA adsorbs 

low quantities of water, despite the fact that it is a polymer with polar groups 

on its chains (Auras, Harte, and Selke 2004, Auras et al. 2003, Holm, Ndoni, 

and Risbo 2006). Antiplasticizing effect of plasticizer in small concentrations 

on the crystallinity of polymers has been argued by Lourdin, Bizot, and 

Colonna (1997) for Polyvinyl chloride (PVC), with effect also on mechanical 

and dynamic mechanical analysis (Mascia 1978, Guerrero 1989). 

Increasing water content decreases the tensile strength of the 

amorphous phase to a point when the overall modulus starts decreasing in 

value (Guerrero 1989). Then, the water acts as a normal plasticizer, 

increasing the chain mobility and the free volume. As a result, the glass 

transition temperature and tensile strength are lowered by the increase on 

plasticizer content, while elongation at break increases. The plasticising 

effect of water in polymers is widely explored in literature. Also, 

mathematical models have been proposed to correlate plasticizer content 

and the properties of the materials.  
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An equation was put forward by Gordon and Taylor (1952) correlating 

the glass transition temperature (Tg) with the fractions of both components 

and Wood (1958) came to the same conclusions.  

 

𝑇𝑔 =
(𝑤1∙𝑇𝑔1

+𝑘∙𝑤2∙𝑇𝑔2
)

(𝑤1+ 𝑘∙𝑤2)
                                         (1.6) 

 

where w1 and w2 are the mass fractions of components with glass 

transition temperatures Tg1 and Tg2, respectively, and k is a material 

constant. 

This equation has been used not only to calculate a single Tg for a 

copolymer but also to study the effect of plasticizer content on Tg of a 

polymer. A modification of this equation also allows to study the effect of a 

third compound on Tg (Chaudhary, Adhikari, and Kasapis 2011, Goldstein 

1985, Gontard and Ring 1996). Gordon-Taylor equation is widespread in 

literature, but there are slightly different equations that have been used in 

literature  (Kwei 1984, Jenckel and Heusch 1953). 

William, Landel and Ferry (WLF) equation was proposed to study the 

effect of temperature on viscosity, mechanical and electrical relaxations of 

amorphous polymers and other supercooled, glass-forming liquids 

polymers (Williams, Landel, and Ferry 1955).Applied to molar diffusion:  

 

𝑙𝑜𝑔
𝐷𝑤

𝐷𝑤,𝑔
= ±

𝐶1(𝑇−𝑇𝑔)

𝐶2+𝑇−𝑇𝑔
                                       (1.7) 
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This type of equation has been used for a variety of properties that 

depend on molecular mobility and relaxation times, including diffusivity as 

in eq. 1.7, and appears in literature to analyse the viscoelastic behaviour of 

hydrophilic films (Schnell and Wolf 2001). Biliaderis, Lazaridou, and 

Arvanitoyannis (1999), Lazaridou and Biliaderis (2002) and Kristo and 

Biliaderis (2006) used this model to fit data from DMTA analysis and hence 

study the E’.  

Despite the fact that this equation is normally used on the study of 

viscoelastic properties, it has been successfully applied on the study of gas 

transport through films, such as on the study of Kinetics of Seed Viability 

Loss (Sun 1997), water diffusivity on drying kinetics (Räderer, Besson, and 

Sommer 2002) and permeability to ethylene of wheat gluten films (Paz et 

al. 2005).   

Gordon-Taylor equation (G-T) describes the dependence of Tg on 

plasticizer content and WLF equation relates the kinetics of a phenomenon 

that correlates relaxation time with the Tg of the material, and therefore both 

equations are often used in literature (Sun 1997, Lazaridou and Biliaderis 

2002, Merenga and Katana 2010). A more robust analysis could be carried 

out by combining both theories, as shown by Räderer, Besson, and Sommer 

(2002) on the study of water diffusivity.   

 

1.5. OXYGEN AND CARBON DIOXIDE 
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Unlike water and organic gases, O2 and CO2 follow Henry’s law and 

their adsorption is linearly dependent on pressure. As a result, permeability 

can be assumed as the product of Solubility and Diffusivity for single layer 

materials. However, it should be noticed that solubility of CO2 in polymers 

tends to be much greater than O2. Their ration, 𝑃𝐶𝑂2
𝑃𝑂2

⁄ , is known as the 

permeability ratio , which is a critical parameter in packaging design, as it 

can be shown that the equilibrium atmosphere depends on this ratio, 

regardless of the individual values for each gas. While this value may vary 

between 2 and 8, it is around 3-4 for most films (Van Krevelen and Te 

Nijenhuis 2009). Hence, films tend to present higher permeability to carbon 

dioxide than to oxygen, as can be seen in Table 1.4.  

From Table 1.4 it is possible to observe that there is more information 

in literature on permeability to Oxygen than to Carbon Dioxide. Considering 

that films in Table 1.4 differ on conditions of processing, presence of 

plasticiser and analysis, it is possible to say that biobased and non-

biodegradable materials presented similar resistance to oxygen.  
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Table 1.4– Permeability to Oxygen (PO2) and to Carbon Dioxide (PCO2) of 
different materials 
 

Material 
Test 

Conditions 
PO2 x 109 
(cm2/s) 

PCO2 x 
109 

(cm2/s) 
 Reference 

HDPE 
50-75% RH, 

25°C 
5.45 80.62 14.78 

Ullsten and 
Hedenqvist (2003)  

LDPE 
50-75% RH, 

25°C 
20.82 60.41 2.90 

Ullsten and 
Hedenqvist (2003)  

PP 

-  1.38 3.58 2.59 
Mastromatteo et al. 

(2012)  

50% RH, 

15°C 
2.35 -   

Hong and Krochta 
(2003)  

PET 0% RH, 23°C 0.18 -   Laufer et al. (2013)  

APET 
50% RH, 

23°C 
0.71 -   

Abdillahi et al. 
(2013)  

PLA 

50% RH, 

23°C 
1.00 -   

Abdillahi et al. 
(2013)  

- 2.95 30.61 10.37 
Zenkiewicz and 
Richert, 2008 

PS/EVOH/PE 
50% RH, 

23°C 
2.31∙10-7 -   

Abdillahi et al. 
(2013)  

Wheat 
flour/PLA 

50% RH, 

23°C 
0.55 -   

Abdillahi et al. 
(2013)  

Sodium 
Caseinate 

35% RH, 

23°C 
0.05 -   

Colak et al. (2015)  

50% RH, 

23°C 
0.13 -   

75% RH, 

23°C 
1.46 -   

Peanut Protein 0% RH, 30°C 6.92 -   
Jangchud and 

Chinnan (1999)  

Chitosan 

0% RH, 25°C 0.83 -   
Caner, Vergano, 
and Wiles (1998)  

- 3333.33 -   Swain et al. (2014)  

- 5.86 19.95 3.41 
Cerqueira et al. 

(2012)  

55% RH, 

30°C 
5.92 34.13 5.76 

Ferreira et al. 
(2016)  

- 5.48 -   
Fajardo et al. 

(2010)  

Cassava 
Starch 

75% RH, 

23°C 
0.50 -   Souza et al. (2012)  

Potato Starch 53% RH, - 0.16 -   
Moreno, Atarés, 

and Chiralt (2015)  

FucoPol 
55% RH, 

30°C 
4.86 14.83 3.05 

Ferreira et al. 
(2016)  

Alginate/ Apple 
Puree 

50% RH, 
25°C 

0.12    
Rojas-Graü et al. 

(2007) 

Banana 
Flour 

50% RH, 25°C 0.47 -   
Sothornvit and 
Pitak (2007)  
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It should be noticed that all the results in Table 1.4 were originally 

reported in quite diverse units. For oxygen and carbon dioxide as the 

variables that are normally measured experimentally are the volumetric 

fractions, it is usual to write the permeance/permeability equation with 

volumetric flow rates. This gives for permeability: 

 

𝑣̇𝑊 =
𝑃𝑊

𝛿
. 𝐴. 𝑝. (𝑦2 − 𝑦1)                          (1.8) 

 

where 𝑣̇𝑊 comes in units of volume per time and y is the volumetric 

fraction (which is equal to the molar fraction for a gas). Units of permeability 

in literature usually continue to cite the individual units of each of the 

measured variables, for instance, mL.mm/(m2.atm.day), and various similar 

combinations. As oxygen and carbon dioxide obey Henry's law, in this case 

one can safely state that this is the same as  

 

𝑛̇𝑊 =
𝐷𝑊.𝑆

𝛿
. 𝐴. 𝑝. (𝑦2 − 𝑦1)                                (1.9) 

 

Where  𝑛̇𝑊 is the molar flow rate. It would be better to use molar flow 

rates because they do not depend on pressure or temperature, whereas 

volumetric flow rates do. However, the latter are the norm in packaging 

literature  
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As the volume of a gas depends on pressure, volumetric units of 

permeability need to specify whether they refer to a reference temperature 

and pressure (STP being the most common, 273.15 K and 1 atmosphere), 

or they refer to the temperature at which the permeability was determined. 

The influence of temperature on the units of permeability is a cumbersome 

and unfortunate consequence of selecting volumetric flow rates as a 

reference.  

In order to avoid this problem, this thesis uses permeability of oxygen 

and carbon dioxide in units of square length per unit of time, permeance and 

mass transfer coefficient in units of length per time. Results in mole were 

converted by multiplying the results per temperature (T, in Kelvin) and R 

(universal gas constant, in m³ · atm · K−1 · mol−1 or m³ · Pa · K−1 · mol−1, 

depending on the pressure used by the authors). Permeability to O2 and 

CO2 in g · Pa-1 · s-1 · m-1 were converted to cm2 · s-1 by passing grams to 

moles of gas (from the molar mass) and then multiplying per R · T. 

The permeance (or permeability) of a film can be determined 

experimentally very easily by creating a modified atmosphere in one side of 

the film and then allow it to equilibrate as a result of the transfer through the 

film. Most typically, a tight container with the film on top is in contact with 

the normal atmosphere (which will have approximately 21% of oxygen and 

0.1% of carbon dioxide), and the atmosphere inside is flushed (for instance, 

0% oxygen and 20% carbon dioxide). The gas composition inside the 

container will evolve to atmospheric over time. A simple mass balance with 
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n referring to the number of moles of gas inside the container at a given time 

t gives: 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

and 

dn

dt
= molar flow rate through film 

 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑃𝑎𝐴(𝐶𝑒 − 𝐶)                                 (1.10) 

where V is the container volume, C the molar concentration of gas 

inside the container and Ce that outside (assumed constant). Using molar 

fractions: 

𝑉
𝑑𝑦

𝑑𝑡
= 𝑃𝑎𝐴(𝑦𝑒 − 𝑦)                                     (1.11) 

 

If permeance is constant, then integration gives: 

 

𝑦𝑡 = 𝑦𝑒 − (𝑦𝑒 − 𝑦0) ∙ 𝑒−
𝑃𝑎∙𝐴∙𝑡

𝑉∙𝑙                               (1.12) 

 

Note that the permeability obtained from equation 1.8 appears in 

units of square length per unit of time. Equation 1.12, or similar approaches 

that consider permeance (Pa = P/l) or that makes area implicit (P” = P ∙ A), 

are usually applied when using multilayer films or in the study of 

permeability of perforated films (Fonseca et al. 2000, Montanez et al. 

2010a). 
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It is interesting to consider what would happen if the container was a 

food package with a given quantity of a commodity respiring. There would 

be a rate of consumption or production of the gas in addition to the transfer 

through the film, so the mass balance would be: 

 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑃𝑎𝐴(𝐶𝑒 − 𝐶) + 𝑅𝑚. 𝑤                         (1.13) 

 

where Rm is the molar rate of production of gas (using the standard 

nomenclature in chemical reaction engineering, rates of reaction are 

positive for products and negative for reagents) per unit of product weight 

(moles per unit of time and weight), and w its weight. Thus, one will reach 

steady state when the two terms balance: 

 

𝑃𝑎𝐴(𝐶∗ − 𝐶𝑒) = 𝑅∗
𝑚. 𝑤                            (1.14) 

 

where the * is used to denote concentration at equilibrium (respiration 

rate may vary with concentration of gases, hence a * is also used to clearly 

note that the equality refers only to equilibrium conditions). It is usual in 

literature to consider volumetric rates of respiration (if so, and as already 

noted, it is critical to clarify the temperature and pressure that the volume 

refers to). With R denoting a volumetric rate of production, e.g. 

mL/(hour.kg): 
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𝑃𝑎𝐴(𝑦∗ − 𝑦𝑒) = 𝑅∗. 𝑤                          (1.15) 

 

Let us now consider the case of both oxygen and carbon dioxide. 

There will be a system of two equations giving the atmosphere composition 

at equilibrium (note that oxygen is a reagent, so the rate is negative): 

 

𝑃𝑎,𝑂𝐴(𝑦∗
𝑂

− 𝑦𝑂,𝑒) = −𝑅∗
𝑂 . 𝑤                      (1.16) 

 

𝑃𝑎,𝐶𝐴(𝑦∗
𝐶

− 𝑦𝐶,𝑒) = 𝑅∗
𝐶 . 𝑤                         (1.17) 

Dividing the two equations, and with the ratio of permeance of carbon 

dioxide to that of oxygen being the permeability coefficient, and the ratio 

of respiration rate of carbon dioxide to that of oxygen being the respiratory 

quotient Q: 

 

𝛽
(𝑦∗

𝐶−𝑦𝐶,𝑒)

(𝑦𝑂,𝑒−𝑦∗
𝑂)

= 𝑄∗                                (1.18) 

 

Therefore, if the respiratory quotient does not vary with the gas 

composition (a common occurrence, even when individual rates depend on 

gas composition), the relation between carbon dioxide and oxygen 

compositions at equilibrium is given by a simple straight line with a slope 

that depends only on the ratio between permeabilities and rates of 

respiration and not on their individual values: 
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𝑦∗
𝐶

= 𝑦𝐶,𝑒 +
𝑄∗

𝛽
(𝑦𝑂,𝑒 − 𝑦∗

𝑂
)                      (1.19) 

 

As the concentration of carbon dioxide in the outside air is bound to 

be very small, 

 

𝑦∗
𝐶

≈
𝑄∗

𝛽
(𝑦𝑂,𝑒 − 𝑦∗

𝑂
)                        (1.20) 

 

 

1.6. MASS TRANSFER THROUGH PERFORATIONS 

 

An efficient packaging design balances both respiration profile of 

produce and package permeability, as the respiration rate equals the mass 

transfer through the package at equilibrium. Permeability to O2 of most 

plastic materials are around 2 to 8 times lower than to CO2. It means that 

these materials would be preferable for products less tolerant to CO2 such 

as apples and mangoes (Hussein, Caleb, and Opara 2015, Finnegan 2014). 

However, products such as lettuce and tomatoes require an atmosphere of 

similar levels of O2 and CO2, or richer in carbon dioxide (Ballantyne, Stark, 

and Selman 1988, Tumwesigye et al. 2017). Besides, many products 

benefit from high levels of CO2 as it reduces respiration rates of many fresh 

and minimally processed fruits, inhibits ethylene action and may also be 

beneficial to inhibit the growth of moulds, fungi and many pathogens 

(Chitarra and Chitarra 2005, Beaudry 1999). Ethylene is a volatile 
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compound produced by fruits and vegetables that is responsible for 

activating the ripening process and stimulating respiratory activity of fruits 

and vegetables. Therefore, high levels of CO2 may help prolonging shelf 

life of products by reducing the respiratory activity(Eskin and Hoehn 2013).    

The ratio of production of carbon dioxide to consumption of oxygen 

is known as the respiratory quotient, and varies between 0.8 and 1 for most 

products under aerobic conditions (values above 1 typically indicate 

anaerobic fermentation). It depends essentially on the composition of the 

substrate begin oxidised by the respiration process - for instance, sugars 

such as glucose and fructose would have a ratio of 1 (Guillaume, Guillard, 

and Gontard 2010). A compilation of optimum atmospheres for different 

products can be found in Mahajan et al. (2005). Therefore, the mass transfer 

fluxes out of the package should be around the same (would be equal if 

respiratory quotient was 1). However, carbon dioxide is escaping from the 

package much faster than oxygen is entering for most films simply because 

it has a much higher solubility in them than oxygen does. Much lower 

permeability ratios would be required to achieve an environment much 

richer in carbon dioxide than in oxygen.  Hence, an alternative to the 

problem would be the utilization of perforated films. Another reason to use 

perforated films is that some products have too high respiration rates 

compared to the mass transfer process through films and in those cases the 

package would reach anoxia quickly. 
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The permeability ratio of a perforated package will go from 2-8 to 0.8 

when the package is excessively perforated. In order to achieve the 

optimum compositions for the different products, that is, the atmosphere 

composition necessary to maintain the initial product quality and extend the 

shelf-life of the products, it is necessary to find the correct area of 

perforation. Mir and Beaudry (2016) show the expansion of the feasible 

concentrations that packages can achieve with perforations in a useful 

visual form in CO2 versus O2 plots. A similar plot is shown in figure 1.2, 

comparing different films and the ideal package conditions for cherry 

tomatoes based on respiration data provided by Sousa, Oliveira, and 

Sousa-Gallagher (2017), assuming a package area of 150 cm2 with a 

diameter of perforation of 110 m and 250 g of produce stored at 5°C. Mass 

transfer coefficient was calculated from the permeance of perforated films 

obtained by Mastromatteo et al. (2012) and the permeability of the films can 

be found in Table 1.4. Results show that cherry tomatoes would reach the 

ideal conditions if packed in PLA films without perforations, which confirms 

the results obtained by Tumwesigye et al. (2017), who observed that the 

cherry tomatoes could be packed with unperforated films.  
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Figure 1.2 - Modified atmospheres that can be generated by cherry 
tomatoes following the respiration rate model of Sousa, Oliveira, and Sousa-
Gallagher (2017) packed in Polypropylene, High Density Polypropylene, 
Chitosan or PLA films with permeabilities according to Mastromatteo et al. 
(2012), Ullsten and Hedenqvist (2003), Cerqueira et al. (2012) and 
Żenkiewicz and Richert (2008) both influenced by temperature, for storage 
at 5°C. The straight lines give all possible atmospheres for each film if 
unperforated. The symbols indicate atmosphere compositions of a package 

with 150 cm2 of exposed area of 30 m thick film and 250 g of cherry 
tomatoes, from unperforated (points on top of the respective line) to 

increasing number of perforations of 100 m diameter (each additional 
perforation is one further point).   
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For perforated films, total mass transfer is the sum of two processes 

that occur in parallel: (i) the mass transfer through the polymeric film; (ii) the 

mass transfer through the perforation. The total flux through a film can be 

described by the product of Permeance, Area of film and the difference 

between gas concentration on the ambient outside and inside. This total flux 

can is equal to the sum of the flux within the film and through the 

perforations. Hence: 

 

 P𝑎 A (𝑐𝑒 −  𝑐) = 𝑃𝑎𝑓  ∙  (A − 𝐴𝑝) ∙  (𝑐𝑒 −  𝑐) + 𝐾 ∙  𝐴𝑝  ∙  (𝑐𝑒 −  𝑐)   (1.21) 

 

Pa is the effective permeance of the whole film with its perforations. 

Pa,f is the permeance of the unperforated film, K is the mass transfer 

coefficient through the perforation, Ap is the total area of perforations. The 

mass transfer coefficient through a perforation is equal to the permeance 

due to it. Permeance of the whole system and permeance of the film without 

perforations can be determined experimentally. Thus, the mass transfer 

coefficient through the perforations may be calculated as follows: 

 

 𝐾  =  P𝑎 ∙
 A 

𝐴𝑝
− 𝑃𝑓𝑖𝑙𝑚 ∙ (

A

𝐴𝑝
− 1)                           (1.22) 

 

 

Water vapour permeability through perforations has not received 

much attention perhaps mainly for two reasons: (i) most research in fruits 
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and vegetables provide data on weight loss but very few divide this in water 

loss and substrate loss, and thus are not truly measuring water transport 

and (ii) the permeability to water vapour of films is usually much greater than 

to oxygen and carbon dioxide, difference even more significant for biobased 

materials (check Table 1.3 and Table 1.4 for data on permeability of different 

films). Tumwesigye et al. (2017), for example, studied two different films 

with different number of perforations stored at two different relative 

humidities, but did not explore the effect of water permeability of film and 

perforation on their results, and only speculated a possible relation between 

relative humidity and weight loss. Mistriotis et al. (2016) designed perforated 

packages for cherry tomatoes and peaches knowing their water 

transpiration rate, but totally disregarded the amount of water that passes 

through the perforations assuming water flows mainly through the polymer, 

without however providing proof of this assumption. 

In order to evaluate the relative importance of mass transfer through 

the perforations on the total water vapour flux through the film, data on water 

vapour permeability through perforated Polypropylene (PP) provided by 

Mastromatteo et al. (2012) was used to calculate the mass flux through a 

package by applying Eq. 1.21 (it should be noted that the total flux on the 

ratio nperf / ntotal is a sum of the mass flux through the perforations and 

through the film). Calculations were made supposing a packaging area of 

150 cm2, made of Polypropylene (PP), Poly(lactic acid) (PLA) or Chitosan. 

These films represent low, medium and high water permeabilities, 
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respectively. Results are shown in Table 1.5, indicating that the water flux 

through the perforation is only small enough to be negligible when the film 

is very permeable to water (Chitosan). On films with medium and low 

permeability to water, however, the flux through the perforations can be 

responsible for great part of the transport through the package. Larger 

perforations or a higher number of perforations will provide an even greater 

impact on the total flux, which tend to affect also films more permeable to 

water. These results indicate that a proper design of perforated films should 

consider the water transfer through both film and perforations. 
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Table 1.5– Impact of Mass Flux Trough the Perforations (𝑛̇𝑝𝑒𝑟𝑓) on Total 

Mass Flux through Perforated Films (𝑛̇𝑡𝑜𝑡𝑎𝑙) 
 

Diameter of 

perforations  

(m) 

Number 

of Holes 

𝐾 ∙ 𝐴𝑝𝑒𝑟𝑓 

(cm3/s) 

𝑛̇𝑝𝑒𝑟𝑓
𝑛̇𝑡𝑜𝑡𝑎𝑙

⁄  (%) 

PP* PLA** Chitosan*** 

50 1 7.22E-04 11.25 2.54 0.001 

50 2 1.22E-03 17.65 4.23 0.002 

50 4 7.44E-03 56.64 21.19 0.014 

50 10 1.29E-02 69.40 31.83 0.025 

70 1 8.43E-04 12.90 2.96 0.002 

70 2 1.66E-03 22.59 5.67 0.003 

70 4 7.97E-03 58.31 22.36 0.015 

70 10 1.37E-02 70.63 33.11 0.026 

90 2 1.79E-03 23.96 6.09 0.003 

90 4 8.16E-03 58.90 22.78 0.016 

90 10 1.80E-02 75.98 39.44 0.035 

110 1 2.97E-04 7.22 1.58 0.001 

110 2 3.16E-03 35.71 10.26 0.006 

110 4 8.71E-03 60.48 23.95 0.017 

110 10 2.08E-02 78.53 42.96 0.040 

*Polypropylene, data from Mastromatteo et al. (2012), **Poly(lactic acid), 
permeability from Żenkiewicz and Richert (2008), ***Chitosan, data from 
Ferreira et al. (2016). 

 

Mass transfer through perforations was studied by Emond, Chau and 

co-workers (Emond et al. 1991, Emond 1992, Emond et al. 1998) and 

further applied by other authors such as Silva et al. (1999), Fonseca et al. 

(2000), and Montanez et al. (2010a) in the context of perforated-mediated 

modified atmosphere packaging where they used a perfectly impermeable 

container, with just a few plugs of a given diameter and length that would 



 
 

50 
 

control the mass transfer rate. These were cylinders that could have a few 

mm of length, and generally had a high length to diameter ratio.  

However, research in literature may contain imprecisions on the 

study of perforated films or plugs. Emond et al. (1991) studied the mass 

transfer coefficient of macroperforated films through relatively thick films 

(approx.. 0.1, 0.7 and 1.2 cm thick). In spite of starting their analysis from 

an approach similar to Eq. 1.4, the authors decided to consider not the mass 

transfer coefficient but a term they called effective permeability, which was 

the permeability from Eq. 1.4 multiplied by area and divided by thickness. It 

means that the authors did not discount the area from their coefficient K, 

and there is an obvious influence of the diameter of the perforation that is 

simply due to the area available for mass transfer. As a result, all the data 

obtained by this approach are only valid for those specific areas. Therefore, 

mathematical models proposed by authors that adopted this methodology 

such as González et al. (2008), Montanez et al. (2010a), Fonseca et al. 

(2000) and Techavises and Hikida (2008) are only valid for the same areas 

used in the original works. 

 

1.7. DIMENSIONLESS CORRELATIONS IN MASS TRANSFER 

ANALYSIS 

 

Some studies on perforated films have tried to establish 

mathematical models that describe the phenomenon. Fonseca et al. (2000) 
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proposed a model relating what they called mass transfer coefficient 

(including the area) to diameter and length of their tubes. González et al. 

(2008) proposed an equation that relates an oxygen transmission rate 

(actually a permeance that also includes the area) with area of perforation. 

Mahajan, Rodrigues, and Leflaive (2008), from the model proposed by 

Fonseca et al. (2000) and the Arrhenius equation, obtained a model relating 

water vapour transmission rates of tubes not only to the diameter and length 

of their tubes but also to the time, temperature, tortuosity and porosity of 

their materials. Techavises and Hikida (2008) put forward a quadratic 

equation relating the diameter of perforation with their effective permeability 

(also incorporating the area within the result). Mastromatteo et al. (2012) 

proposed an empirical model with 2 fitted parameters in an attempt to 

develop a model that considers the perforation and the film similar to eq. 

1.22.  

Regardless of how accurate the calculations were, the main issue 

regarding these models is that they do not avail of the principle of dynamic 

similarity, and therefore tend to be only valid to their own set of data. Thus, 

it comes as no surprise that these models have not been actually applied 

by other authors. One correlation for each set of data is a problem of 

empirical functions that are not written in terms of dimensionless 

correlations, as they do not avail of the principle of dynamic similarity. 

Dimensionless numbers are used by engineers as a tool to 

reproduce projects in a different scale (scale up or down). Data obtained in 
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lab scale can be applied to larger processes by establishing the similarities 

between the parameters. The principle of similarity states that the 

dimensionless number has the same effect regardless of the individual 

values of the properties that compose it. This topic has great interest to 

Chemical and Food Engineers, and has been explored in literature such as 

in the works of Astarita (1997), de Souza Mendes (2007), Ignacio (2013) 

and Delaplace et al. (2015b). Extensive lists of dimensionless numbers and 

details of their physical meaning can be found in the work of  Ruzicka (2008) 

and Delaplace et al. (2015a). 

The Sherwood number (Sh) is a dimensionless quantity that includes 

the mass transfer coefficient and gives the relationship between the 

convective mass transport over the boundary layer with transport purely due 

to diffusion (Delaplace et al. 2015a, Ruzicka 2008). It can be calculated as 

a function of other dimensionless numbers, and in the case of forced 

convection normally appears as: 

 

𝑆ℎ = 𝛽1 + 𝛽2  ∙ 𝑅𝑒𝛽3 ∙ 𝑆𝑐𝛽4                            1.23 

 

Sh is given by the relationship K·L·D-1, Reynolds number as 

·v·L·, and Schmidt number ·D-1·, where L is the characteristic 

length, v the fluid velocity, and   and D are the viscosity, density and  

diffusivity of the fluid, respectively. Parameters 𝛽𝑖 are found in literature for 

many situations and can also be obtained by data regression. Oliveira and 
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Oliveira (2010) provide an extensive list of values that 𝛽𝑖 have been 

assigned in literature.  

The Reynolds (Re) number is one of the most important 

dimensionless numbers in Engineering. It was proposed by British physicist 

Osborne Reynolds to characterize the flow of liquids in cylindrical ducts and 

has been used in Fluid Mechanics to study the fluid flow and identify its 

regime (laminar, transitory or turbulent) (Delaplace et al. 2015b). For natural 

convection, the Reynolds number on eq. 1.23 is replaced by the Grashof 

number (Gr), which includes the buoyancy effect. The Schmidt number (Sc) 

relates viscosity, density and diffusivity, and appears when the transport 

rate is sufficient to affect the flow (Ruzicka 2008).  

Examples of successful application of correlations for the Sherwood 

number in literature can be found in the study of mass transfer in 

membranes (Gekas and Hallström 1987, Lee, Amy, and Cho 2004). Metz 

(2003) applied this type of correlation to describe water vapour transport 

through membranes. In their work, the authors included a ratio between 

length of flow and hydraulic diameter, raised to another parameter 𝛽𝑖. This 

term can be particularly useful to us as L/d affects the mass flux and 

determines if only the convective mass transfer is relevant or diffusion has 

great effect on the flow. 

Rennie and Tavoularis (2009) used the study of Becker, Misra, and 

Fricke (1996) on transpiration of fruits and vegetables and applied a 

Sherwood relation to calculate the air film mass transfer coefficient, which 
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is related to the air flow surrounding the respiring commodity. The authors 

also studied the produce temperature by using the interfacial convective 

Nusselt number (Nu) and the gas mixture temperature in the package with 

another correlation , analogue of 1.23 for heat transfer, that relates Nu with 

the Reynolds and Prandtl (Pr) number. Despite the fact that their work is on 

perforated packages, the authors did not present a model that can be 

applied directly on the calculation of mass transfer through perforations. 

However, it gives an indication that the use of dimensionless numbers on 

packaging technology can be a useful tool for food packaging design. 

The suitability of a correlation depends, as mentioned before, on the 

physics of the phenomenon, and hence an established model such as the 

Sherwood correlation may not be the most adequate to all situations. The 

underlying principles should be verified. The proper methodology is known 

as the Buckingham- Theorem that can be used to determine which 

dimensionless numbers are suitable for a specific phenomenon. Vaschy 

(1892) wrote a paper on similarities in physics and Buckingham (1914) 

developed the theory and provided proof of its applicability, and thus it is 

also called Vaschy–Buckingham theorem. Besides the original work of 

Buckingham (1914), it is possible to find information on this theory in other 

works in literature, such as Curtis, Logan, and Parker (1982), Geankoplis 

(1993),  Ignacio (2013) , Delaplace et al. (2015c) and Debongnie (2016). It 

has been applied to describe a wide variety of phenomena such as 

microrobots propulsion inspired by the motility mechanism of bacteria 
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(Behkam and Sitti 2004), extrudate expansion in a twin-screw food extruder 

(Cheng and Friis 2010) or even in Operations Management (Miragliotta 

2011). 

The Buckingham- method begins by listing the important variables 

in the particular physical problem. It states that n independent 

dimensionless groups, named 's, can be determined by the relationship 

between q quantities (parameters or variables) whose units are defined in 

terms of u fundamental units or dimensions, where n is obtained from q – u. 

Exemplifying, consider a hypothetical situation where the mass 

transfer coefficient through perforations (K) depends on temperature, 

diameter of perforation (d) and thickness of film (L). Temperature affects the 

mass transfer by its effect on diffusivity (D), density () and viscosity () of 

the fluid. This totals 6 variables. The units for the fluid properties are 2 ∙ t-1, 

M ∙  -3 and M ∙  -1 ∙ t-1, respectively (where  is the unit of Length, t time and 

M mass). Diameter of perforation and film thickness have units of length () 

and the mass transfer coefficient (K) is expressed as  ∙ t-1. With q = 6, there 

are just 3 fundamental units (u = 3), therefore 3 dimensionless numbers are 

necessary (n = q – u = 3). 

The procedure to establish the 3 dimensionless groups (or ’s) 

consists in choosing as many primary variables as there are dimensions (3 

in this case), and then find the dimensionless groups formed by these 3 

variables and each one of the others. Different groups will result from the 
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choice of 3 primary variables; they must include all 3 dimensions, and the 

desired property should be left aside. 

In this case, a particularly interesting combination is obtained by 

choosing as primary variables , d and D. Thus, the 3 groups will be 

composed by: 

 

 a db Dc K 

Dimensions: Ma  -3a  b  2c  -c  t-1 

For this group to be dimensionless:  

 a=0,   

 -3a+b+2c+1=0, b=1 

 -c-1=0 ,            c=-1 

Hence,  

 0 d1 D-1 K   ∴  Π1 =
𝐾∙𝑑

𝐷
 

 

 a db Dc  

Dimensions: Ma  -3a  b  2c t-c M  -1 t-1 

Then: 

a = -1 

-3a+b+2c-1=0,         b = 0 

-c = 1,                       c=-1 

Hence,  
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-1 d0 D-1    ∴  Π2 =
𝜇

𝜌∙𝐷
 

 

 a db Dc L 

Dimensions: Ma  -3a  b  2c t-c  

For this group to be dimensionless:  

 a=0,   

 -3a+b+2c+1=0, b=-1 

 -c=0 ,            c=0 

Hence,  

 0 d-1 D0 L  ∴  Π3 =
𝐿

𝑑
 

 

Thus, one can propose 1 = f (2, 3) 

 

Note that is the Sherwood number when the characteristic 

dimension is the diameter, is the Schmidt number, and is a ratio 

between thickness and diameter, and therefore when temperature (and 

hence viscosity, density and diffusivity), diameter of perforation and 

thickness of film are the only variables important to the matter, a correlation 

similar to the Sherwood correlation presented in eq. 1.23 with the ratio L/d 

instead  the Reynolds number would be suitable for the analysis. However, 

it has been said that air velocity is a constant on food packaging and 

probably with great effect on the mass transfer coefficient, and likewise 
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other parameters such as gas concentration might also be relevant to the 

matter. Hence, this model might not apply to those circumstances, and is 

shown here just to illustrate the principle.   
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2. A META-STUDY PROVIDING A UNIFIED ANALYSIS OF THE DESIGN 

ENGINEERING METHODS FOR MODIFIED ATMOSPHERE PACKAGING WITH 

PERFORATED FILMS FOR OPTIMUM OXYGEN AND CARBON DIOXIDE 

BALANCE 

 

ABSTRACT 

 

The use of perforation systems has expanded the applicability of 

modified atmosphere packaging, as perforated films allow for higher carbon 

dioxide concentrations and may also permit to use a same film and 

modulate its permeability by perforating the correct number of holes of the 

appropriate dimension. Research publications on this topic apply different 

approaches needlessly and some of the models suggested and conclusions 

proposed are not correct. The quantification of the gas exchange through 

perforated packages for oxygen and carbon dioxide is reviewed in this 

communication with a view to provide a unified analysis of methods used 

and a meta-analysis of data reported to date. The effective permeability of 

a perforated package is approximately what would be expected from 

dimensionless correlations for mass transfer from flat planes for perforation 

diameters of around 1mm and bigger. For smaller perforations the effective 

permeability increases significantly with decreasing diameters. The 

concentration gradient across the package is also relevant. Even small 



 
 

60 
 

differences in values of mass transfer coefficients have a dramatic effect on 

the result. 
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2.1. INTRODUCTION 

 

Modified atmosphere packaging is a shelf life extension technique 

that could be described as an example of chemical reactions being slowed 

down by excess concentrations of their products and lower concentrations 

of their reagents. Many food products are not stable throughout their shelf 

life and the metabolisms taking place are often related to oxidative 

processes, where oxygen is being consumed and carbon dioxide and water 

vapour are being produced. While the most studied of these is the 

respiration of fresh fruits and vegetables, many other products consume and 

produce gases in the same way and can be considered in the same manner 

(Rodriguez-Aguilera and Oliveira 2009) The senescence of the vegetable 

tissues is strongly inhibited by lowering temperature, which is the most 

influential controlling factor of the rate of chemical reactions. Secondly, as 

respiration consumes oxygen and releases carbon dioxide and water 

vapour, if the environment surrounding the product is poor in oxygen and 

rich in the other two gases, the degradation rate may be further reduced and 

shelf life is extended. The phenomenological reasons for this effect are 

varied, depending on the product and on the specific metabolisms involved, 

including inhibitory effect of CO2, possible acidification of the intercellular 

space by CO2, but is not universal (some products do not benefit 

significantly from modified atmospheres). Water vapour would involve not 

only respiration but also transpiration, which essentially is the loss of water 
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due to drying. While water vapour (humidity) is of crucial importance to the 

quality and value of a product and the establishment of optimum 

atmospheres for a wide variety of commodities (Rodriguez-Aguilera and 

Oliveira 2009), the modified atmosphere packaging design for fresh fruits 

and vegetables has been done very often by considering oxygen and 

carbon dioxide alone (Mannapperuma et al. 1989, Paul and Clarke 2002, 

Sousa-Gallagher and Mahajan 2013). Although this work is focused on 

oxygen and carbon dioxide alone, it is stressed that water vapour is a crucial 

element to be considered adequately as well in modified atmosphere 

packaging.  

Respiration is not the only phenomenon of interest for shelf life; 

microbial growth may be of paramount importance particularly when 

considering safety issues. In fact, extending the shelf life with modified 

atmospheres has raised concerns that pathogens might thus have time to 

grow and vegetable products might not be spoiled, but be effectively 

dangerous (Sivertsik, Rosnes, and Bergslien 2002). This implies that the 

oxygen content desired is not zero, or even too close to zero, as anaerobic 

phenomena and fermentations could set, hence, there is usually a minimum 

and maximum oxygen content desired for maximum preservation that 

depends on the product  (Beaudry 1999). High carbon dioxide 

concentrations also inhibit the growth of many pathogens, such as 

salmonella, but not others like Clostridium botulinum that can grow in 

depleted oxygen environments (Sivertsik, Rosnes, and Bergslien 2002). 



 
 

63 
 

Therefore, high carbon dioxide may be beneficial for shelf life also from the 

safety point of view. Conversely, excess carbon dioxide may induce chilling 

injuries or lead to off-flavours and off-aromas, which means that there is 

also a window of desirability for the concentration of this gas, with a 

minimum and a maximum recommended for each product. Plots of carbon 

dioxide versus oxygen recommended concentration windows are a useful 

way of summarising this information (Mannapperuma et al. 1989, Mahajan 

et al. 2005). 

Perforated films expand the potential of modified atmosphere 

packaging, as will be quantified later. The permeability of a perforated film 

obviously depends strongly on the perforated area, and therefore finding the 

optimum film for a particular product becomes complex. Several studies in 

literature use a simple trial and error approach: try a number of films with 

different perforations, and see which one seems to work better for a product 

(Cliffe-Byrnes, Mc Laughlin, and O'Beirne 2003, Amorós et al. 2008, Ramin 

and Khoshbakhat 2008, Kartal, Aday, and Caner 2012). With a wide variety 

of choices of packaging films and number and size of perforations, the 

almost endless combinations possible make this approach very inefficient. 

Furthermore, respiration rates may change significantly between different 

product batches, so even if one solution proves good enough by trial and 

error for a particular batch, there is no assurance that it will be suitable for 

another. 
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Therefore, designing a package that will provide an optimum 

performance because it will maintain a gas composition inside it within the 

optimum window for both gases is an excellent example of applying 

engineering concepts for the design of optimised food systems. It involves 

quantifying the respiration rate of the product (kinetics of the consumption 

of oxygen and production of carbon dioxide and water vapour) and the rate 

of exchange of these gases through the package to the outside atmosphere 

(mass transfer phenomena) to predict the composition inside the package 

at equilibrium and thus ensure that it sits inside the optimum window of 

oxygen and carbon dioxide concentrations for the specific products. At this 

stage, it is assumed that the storage conditions (temperature and relative 

humidity) are constant throughout. This paper focuses on oxygen and 

carbon dioxide, while noting that water vapour, and possibly ethylene, 

should then also be considered. 

A simple mass balance can be applied to engineer the design of a 

package. In steady state, the concentration of any gas inside the package 

is constant, and so it must be such that the respiration rate equals the rate 

of mass transfer across the film for every gas, as depicted in fig. 2.1. 
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Figure 2.1. Sketch of the main phenomena involved in package design. The 
headspace volume is exaggerated in the picture for clarity purposes. Ce is 
the external concentration and Ch that in the headspace, with i denoting 
oxygen or carbon dioxide. 

 

When a film is perforated, the latter will be composed by two mass 

fluxes in parallel: through the film and through the perforations. The mass 

flux through perforations has not always been dealt with properly, though. 

Different approaches and models have been proposed, some are perfectly 

correct but may be too complex to be used efficiently in practice, and others 

are actually grossly wrong, with some inaccuracies in between that have 

brought needless complexity and confusion to the area.  

The purpose of this chapter is to provide what pharmacology 

designates a meta-study, that is, a global analysis of a variety of specific 

studies published to date with the purpose of establishing a clearer and 

unbiased view, and thus reach conclusions of wide applicability with greater 

confidence. 

A second objective of the work is to provide evidence for the 

importance of a proper determination of mass transfer coefficients for the 

case of perforated films, and suggest a suitable approach that uses the 
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principal of dynamic similarity to maximise the comparability of data and the 

accuracy of estimates. 

 

2.1.1. Permeability of an unperforated film 

 

Any model results from statements regarding the phenomena that it 

describes and it is therefore crucial to understand the phenomena involved. 

In a package composed by a plastic film, the rate of the mass transfer 

process involves a series of steps. For a gas flowing outwards (e.g. carbon 

dioxide): (i) movement of gas molecules inside the package towards its 

inside surface; (ii) absorption of the gas molecules by the packaging film; 

(iii) diffusion of the absorbed molecules in the solid state film towards the 

outside surface; (iv) desorption of the gas molecules back to the gas phase 

on the outside interface; (v) movement of the molecules away from the 

surface towards the bulk air. Obviously, the reverse steps occur for gas 

flowing into the package (e.g. oxygen). The movement of the absorbed gas 

within the polymeric film is such a slow process that it effectively controls 

the rate of exchange. Although steps i and v (the resistance to the 

movement of molecules in the boundary layers adjacent to both sides of the 

film) may interfere somewhat, they are usually not relevant except in rather 

extreme conditions. Metz (2003) determined the resistances to mass 

transfer on both boundary layers for water vapour, inside a test cell, but with 

exceptions such as this, quantifying mass transfer across a polymeric film 

has been largely reduced to determining what is called the permeability of 
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the films. In spite of it being a simple example of mass transfer theory, it 

originated in empirical approaches that created its own jargon. Thus, one 

refers to a permeability, a permeance, or a gas transfer rate (e.g. OTR, 

CTR) of a packaging film rather than a diffusion coefficient of a gas in a 

polymer (and possible convection resistance terms, such as in Metz, 2003). 

Nomenclature in this area can be somewhat confusing and units common 

in practice are not even consistent, so care must be exerted when using a 

literature value (Finnigan 2009)).  

A simple mass transfer approach for the molecular movement of a 

dissolved gas through a polymeric film in steady state is based on Fick’s 1st 

law, considering that the film is a flat surface and that only the net  molecular 

movement perpendicular to it needs to be quantified: 

 

 𝑛𝑖 = −𝐷𝑓,𝑖𝐴𝑓
𝑑𝐶𝑠𝑖

𝑑𝑙
= −𝐷𝑓,𝑖𝐴𝑓

𝑝

𝑅𝑔𝑇

𝑑𝑦𝑠𝑖

𝑑𝑙
                       (2.1) 

 

where i denotes oxygen or carbon dioxide, ni is the molar flow rate, 

Df,i is the diffusivity of the gas dissolved in the film moving through it, Af is 

the film area perpendicular to the gas movement, Cs is the concentration of 

the gas dissolved in the film and ys its molar fraction, with p and T being the 

total pressure and absolute temperature, respectively, and Rg the ideal gas 

constant. The hydrodynamic term of the mass transfer equation can be 

neglected because the gas in the film will be very dilute (that is, the net flux 

is equal to the flux by pure diffusion).  
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An empirical determination of the gas flux through the package leads 

to a simple definition of permeability, which can be related to diffusivity. In 

practice, permeability is not expressed in consistent units (such as SI). The 

permeability of a film to oxygen and to carbon dioxide quoted in literature 

and in manufacturer's material data sheets usually refer to measurements 

made with volumetric flow rates, as in equation 2.2: 

 

 𝑉̇𝑖 = −𝑃𝑖𝐴𝑓
(𝑦𝑖,𝑒−𝑦𝑖,𝑖)𝑝𝑡

𝐿
                             (2.2) 

 

where 𝑉̇𝑖 is the volumetric flow rate of gas through the film, Pi is the 

permeability to gas i, pt the total pressure (most usually 1 bar), L the total 

thickness of the film and y the volumetric fraction of gas i in the gas phase 

at the outside of the package (subscript e) and in the inside (subscript i). 

Pi/L is also known as the permeance, and Pi∙pt/L as the gas transmission 

rate. The minus sign defines the orientation of the axis from inside out. It 

follows that if the diffusivity in the film is constant, if the boundary mass 

transfer resistances on both sides of the package are negligible compared 

to diffusion in the film, if the absorption/desorption is instantaneous 

compared to diffusion and if ys and y are related by a same partition 

coefficient on both sides (which means that the equilibrium of the gas in the 

two phases is linear), equation 2.1 and 2.2 are the same, and then 

permeability P is simple equal to diffusivity Df times the partition coefficient 

that relates ys with y (minus conversions from molar to volumetric flow rates, 
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of course). The partition coefficient (relation between the concentration of a 

molecule in the two different phases, gas and film) is the solubility of the gas 

in the film, and hence the simple result that the permeability is equal to the 

diffusivity times the solubility (Sullof 2002) is obtained. Note also that a 

linear relationship between y and ys is assumed in the integration of 

equation 2.1 (that is, solubility is considered independent of concentration).  

It is evident that if one or both convection mass transfer resistances 

on either side of the film are relevant, then P will be an empirical parameter 

that integrates all resistances and thus will not be equal to the diffusivity in 

the film multiplied by the solubility (minus unit conversions). In such case, 

the exact value of permeability in an experimental determination could be 

affected by the hydrodynamic conditions prevailing in the experiment (i.e., 

stagnant air, normal circulating air, forced air circulation). It is also obvious 

that if solubility would not be independent of concentration this relationship 

would not be so simple. Henry's law is widely used to describe the partition 

coefficient (solubility) in films (Sullof 2002, Guillaume, Guillard, and Gontard 

2010),  which would indeed meet this criterion, but it is known that gas 

adsorption on solids follows sigmoidal-type isotherms (BET, GAB) that are 

not linear. As the concentrations are very dilute, Henry's law is likely to be 

a good approximation - James (2007) cites that this will be the case for 

solubilities up to 0.2% at pressures not exceeding atmospheric. However, 

this neglects the plasticising effect of water which will bring additional 
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problems in the case of films with high water permeability (thus high water 

solubility), as the data collected by James (2007) shows.  

An important word of caution is given on the units of permeability. 

Common units of permeability simply list each of the components of 

equation 2.2, for instance, cm3.mil/(atm.day.m2) is a common unit, even 

though the mil (a thousandth of an inch) is not even a unit of the same 

system as the other length dimensions. As pointed out by Finnigan (2009), 

the use of inconsistent and empirical approaches to units has led to chaos 

and confusion in this area, so it is important to be sure that data is used in 

the proper units. The volume of a gas depends on pressure, and therefore, 

volumetric units of permeability such as 10-10 cm3.cm/(cm2.cm Hg.s) (a unit 

known as the Barrer) or similar ones need to specify whether they refer to a 

reference temperature and pressure (STP being the most common, 273.15 

K and 1 atmosphere), or they refer to the temperature at which the 

permeability was determined. The influence of temperature on the units of 

permeability is a cumbersome and unfortunate consequence of selecting 

volumetric flow rates as a reference, as in eq. 2.2 - with molar or mass 

permeabilities in eq. 2.1, this problem would not occur (the latter is actually 

the norm for water vapour permeability). In order to avoid this problem, this 

paper will use an apparent diffusivity, which is equal to the real diffusivity 

multiplied by the solubility, in units of square length per unit of time, which 

refers to the integration of equation 2.1 and conversion of concentration to 

molar fraction: 
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 𝑛𝑖 = −
𝐷𝑎𝑖𝐴𝑓

𝐿

(𝑦𝑖,𝑒−𝑦𝑖,𝑖)𝑃𝑡

𝑅𝑔𝑇
                               (2.3) 

 

where Rg is the ideal gas constant and Da the apparent diffusivity 

(equal to Df times solubility if surface resistances are negligible and solubility 

is independent of concentration). The difference between Da and 

permeability P defined in units such as the Barrer is just the conversion from 

volumetric to molar flow rate (with the ideal gas law, multiplying by the molar 

volume equal to RgT/pt suffices, but note that T must be interpreted 

correctly, depending on the reference of the permeability units used), and 

unit conversions.  

A final and extremely important point needs to be made if using 

literature data of permeability. Material data sheets and ASTM standard 

methods widely used typically provide permeability values for a given 

temperature (23oC is the most common) and for films exposed to 0% of 

relative humidity. That is due to the most widely used method consisting in 

measuring the rate of gas transfer through the film with both sides in contact 

with pure gas (oxygen or carbon dioxide in one side and nitrogen in the 

other). It can be expected that many films will have very different 

permeabilities to these standard values at real conditions of use, because 

typically the environment inside a package is saturated in water vapour. The 

completely dried films of the standard method may have vastly different 

permeabilities. Water plasticises polymeric structures, that is, it decreases 
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their glass transition temperature and increases the molecular mobility. 

Therefore, as films that are highly permeable to water also imply that they 

have high solubilities of water, they will be significantly changed by humidity. 

Massey (2003) provides values for permeabilities of some films at various 

relative humidities measured with ASTM methods, and it can be seen that 

some have permeabilities that are hundreds to thousands of times higher 

with saturated humidity compared to totally dried environments.  

Water is a very important factor in packaging design, which is not 

addressed further in this paper. In relation to oxygen and carbon dioxide 

permeabilities, the most important point at this stage is to note that values 

for film permeabilities used in packaging design must refer to the 

temperature and relative humidity conditions that the package will be 

designed for, and standard values of permeability may give totally wrong 

estimates if real conditions differ significantly from the references. 

Therefore, due to the uncertainty on the actual effective 

permeabilities of films used in published studies with perforations, the data 

that can be used with confidence in this meta-study are those obtained with 

perforations in otherwise impermeable materials, where all flux occurs 

through the perforations. 

 

2.1.2. Advantages of perforating a package 
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The equilibrium composition of the gas inside a package depends on 

the ratio of permeabilities to carbon dioxide and oxygen, as will be 

demonstrated later. This statement is however intuitive, as it was stated that 

the respiration rate equals the mass transfer through the package at 

equilibrium. The ratio of production of carbon dioxide to consumption of 

oxygen is known as the respiratory quotient (RQ), and varies between 0.8 

and 1 for most products. It depends essentially on the composition of the 

substrate begin oxidised in the respiration process - for instance, sugars 

such as glucose and fructose would have a ratio of 1 (Guillaume, Guillard, 

and Gontard 2010). Values over 1 usually indicate that there is some 

fermentation activity occurring. Therefore, the mass transfer fluxes out of 

the package should be around the same (would be equal if RQ=1). However, 

carbon dioxide dissolves much more than oxygen does in almost any type 

of medium (even in water, due to the formation of carbonic acid) and as 

permeability is the product of diffusivity by solubility, it is not surprising that 

the ratio of permeability to carbon dioxide to permeability of oxygen is high 

- for most films it varies from around 2 to 8 (Exama et al. 1993, Massey 

2003). The concentration gradients can vary somewhat, depending on the 

ideal gas composition, but are not too different either (for instance, 10% 

oxygen and 10% carbon dioxide or 5% oxygen and 15% carbon dioxide 

imply gradients that are about the same).   Therefore, carbon dioxide is 

escaping from the package much faster than oxygen is entering for most 

films simply because it has a much higher solubility in them than oxygen 
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does. Much lower permeability ratios would be required to achieve an 

environment much richer in carbon dioxide than in oxygen.   

With the significant increase of fresh cut products brought about by 

consumer demands for convenience, there has been a significant market 

growth for products that are not properly packed in any of the usual films 

because they would benefit from elevated carbon dioxide content, which is 

not generated with polymeric films (Exama et al. 1993). Cut products have 

high respiration rates for two reasons: they have much higher surface area 

/ volume ratios, and the cut cells respond to injury with increased respiratory 

activity. Inhibition of the respiration rate by carbon dioxide can counteract 

this effect, so many cut products wold benefit from atmospheres that are not 

provided by any polymeric film (a compilation of optimum atmospheres for 

a variety of such products can be found in Mahajan et al. (2005)). Whole 

berries also benefit from elevated carbon dioxide concentrations (Beaudry 

1999), and high carbon dioxide is also beneficial to inhibit the growth of 

many pathogens (Sivertsik, Rosnes, and Bergslien 2002). The ratio of mass 

transfer of carbon dioxide to oxygen in air itself is actually lower than 1 

(around 0.8, depending on temperature) and therefore a package where 

mass transfer would be totally mediated by movement in air would have a 

much lower permeability ratio than polymeric films. If both mass transfer 

through the film and through air are important, an intermediate effect will be 

found. Therefore, the permeability ratio of a perforated package will go from 

2 to 8, depending on the film, to 0.8 when the package is excessively 
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perforated. Finding the correct area of perforation would ensure the build-

up of sufficient carbon dioxide to achieve optimum compositions for many 

products. Mir and Beaudry (2016) show this expansion of the feasible 

concentrations that packages can achieve with perforations in a useful 

visual form in CO2 versus O2 plots that will also be used later in the 

quantitative part of this work. 

Therefore, it is even possible to use a same film (preferably very 

cheap), and modulate its permeability with perforations depending on the 

product. Laser perforations are excellent for this purpose, able to drill very 

small holes (less than 100 micron is possible), or bigger ones, as required 

(Renault, Souty, and Chambroy 1994). The engineering challenge in this 

case is obvious: not enough perforations and the package is too 

impermeable, will lead to excessive oxygen depletion, anoxia and not only 

quality, but potentially even serious safety problems; too many perforations 

and the inside atmosphere is little different from normal, with rapid 

degradation and loss of the product.  

It is also obvious even before any quantification is done that the 

choice of polymer to be perforated is important. A very impermeable film 

with even a single small perforation will already have a permeability ratio 

close to that through air (0.8) because most of the gas exchange will occur 

through the perforation. Therefore, it is necessary to avail of a balance 

between the two fluxes in order to have some control of the effective 

permeability of a perforated film by simply changing the area of perforations. 
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A final important point about perforations which is obvious from a 

safety point of view is that a perforated package will no longer avail of a 

barrier against post-packaging microbial contamination. However, if this is 

considered to be an unnecessary additional hazard, it can be eliminated by 

using a multilayer film with a very permeable unperforated layer, plus the 

perforated one, where the former is just ensuring a full microbial barrier and 

the latter totally controls the gas exchange rate. The minimum requirement 

would be a simple highly permeable label covering the perforated area. It is 

not more complicated to design a multilayer system, as the overall 

resistance is simply the combination of resistances in series. There are also 

suggestions of adding antimicrobial agents to eliminate this problem in 

perforated packages (for instance, US Patent 6110479 (Blaney, Cartwright, 

and Strack 2000)). 

 

2.1.3. Mass transfer through perforated films 

 

For perforated films, total mass transfer is the sum of two processes 

that occur in parallel, as depicted in figure 2.2: (i) the mass transfer through 

the polymeric film; (ii) the mass transfer through the perforation(s). The 

former is composed by the 5 steps mentioned in the previous section, and 

largely controlled by the diffusion in the film (step 2a in figure 2.2). It is 

quantified by the permeability of the polymer (eq. 2.3).  

 



 
 

77 
 

 

Figure 2.2 - Sketch of the mass transfer movements through a perforated 
film. 1 and 3 are convection movements (inner and outer, respectively), 2a 
is diffusion of a dissolved gas in a plastic film and 2b is 
diffusion/hydrodynamic/convective flow through a gas mix of varying 
composition from the headspace modified atmosphere to normal air.  

 

Mass transfer through perforations was studied by Emond, Chau and 

co-workers (Emond et al. 1991, Emond et al. 1998) and further applied by 

other authors (e.g. Montanez et al. (2010a), Fonseca et al. (2000), (Silva et 

al. 1999)) in the context of perforated-mediated modified atmosphere 

packaging where the concept being developed was to use a perfectly 

impermeable container, with just a few plugs of a given diameter and length 

that would control the mass transfer rate. These were cylinders that could 

have a few mm of length, and generally had a high length to diameter ratio. 

In this case, there are just 3 steps: (i) movement of the molecules in the 

inner space towards the edge of the tube on the inside; (ii) diffusion through 

the tube to the other edge; (iii) movement of the molecules from the edge of 

the tube to the bulk of the air outside. Step ii is much faster than diffusion 

through a solid phase polymer and so in this case it is not necessarily true 

that diffusion will control. Therefore, variability in the external convection 

currents can affect the overall gas exchange rate significantly. This was 



 
 

78 
 

noted by Kirkland, Clarke, and Paul (2008), that proposed to consider the 

external hydrodynamic conditions as a parameter that defines the effective 

permeability of a perforated package, and Ghosh and Anantheswaran 

(2001) also provide experimental evidence of the relevance of air velocities 

by comparing static and flow-through measurements. Montanez et al. 

(2010b) also provided correlations considering air velocity, although they do 

not discount the effect of temperature and gas composition due simply to 

differences in diffusivities in other physical properties. 

There have been different approaches proposed to quantify this 

movement: (i) a lumped capacity model, as in the original work by Emond 

et al. (1991), (ii) diffusional-based models (Fick and Stephan-Maxwell), (iii) 

a hydrodynamic flow approach, (iv) the full solution of the 3-dimensional 

mass and momentum transfer equations, solved numerically. The 

phenomena is the same and therefore they must all be related. Instead of 

proposing new models as some authors try to do, it is more helpful to do the 

opposite and reduce all approaches to a same view of what has to be the 

same phenomena. In order to understand the links and the errors that have 

occurred in some applications it is a good starting point to begin exactly 

where chemical engineering does when describing this phenomena, and 

then relate everything to this basis. 

The simplest chemical engineering approach is to consider diffusion 

and external convection as resistances in series and therefore the reciprocal 

of the overall resistance (effective permeability of a perforation) is the sum 
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of the reciprocals of the three resistances (Paul and Clarke 2002, Metz 

2003). The diffusion equation might not be the same because the diffusional 

movement is not in a dilute media (oxygen concentration goes up to 21%, 

and so can carbon dioxide). The proper equation of mass transfer (Marrero 

and Mason 1972) includes both pure diffusional and hydrodynamic 

movement (which in a sense relates velocities to a stationary frame of 

reference with relative velocities): 

 

𝑛𝑖 = −𝐷𝑖𝐴ℎ
𝑝

𝑅𝑔𝑇

𝑑𝑦𝑖

𝑑𝑙
+ 𝑦𝑖 ∑ 𝑛𝑗

4
𝑗=1               (2.4) 

 

where Ah is the cross sectional area of the perforation(s), given their 

diameter dh and number nh, Di is the effective diffusivity of gas i through the 

gas mix in the perforation and  nj are the molar flow rates of all moving gases 

(oxygen, carbon dioxide, water vapour, and nitrogen). However, equation 

2.4 can be reduced to pure diffusion because the situation must be 

equimolar counter diffusion, that is, the net sum of all flow rates must be 

zero. The pressure on both sides of the film is the same, or the package 

would shrink or inflate. It is of course possible that pressure differentials 

would occur, but such packages would then show sufficient deformations to 

be saleable, so for situations of practical interest, the total number of moles 

remains the same and the hydrodynamic term must therefore cancel. Paul 

and Clarke (2002) initially considered that the sum of fluxes is not zero, 

obtaining a more general expression, and stated that this sum will be equal 
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to what they term a convective flux 𝑄̂ per unit area. However, in the final 

steps of their mathematical development (from their equation 10 to 11) they 

make this term equal to zero as well. 

Equation 2.4 applies between the two surfaces of the film, and is then 

combined with Newton’s equation quantifying the resistance to mass 

transfer on the boundary layers of the two surrounding atmospheres on both 

sides: 

 𝑛𝑖 = 𝑘𝑖𝐴ℎ
𝑝

𝑅𝑔𝑇
(𝑦𝑖,0 − 𝑦𝑖,ℎ)                       (2.5) 

  

𝑛𝑖 = 𝑘𝑒𝐴ℎ
𝑝

𝑅𝑔𝑇
(𝑦𝑖,𝑒 − 𝑦𝑖,𝐿)                 (2.6) 

 

where ki and ke are the mass transfer coefficients on the inner and 

outer boundary layers, respectively, yi,h is the molar fraction of gas i in the 

headspace volume inside the package (assumed perfectly mixed), yi,0 is the 

molar fraction of gas i at the inner edge of the hole (position l=0), yi.L the 

fraction at the other edge (position l=L, the thickness of the film or length of 

perforation tube), and yi,e the fraction in the outside bulk atmosphere, 

assumed perfectly mixed. With the hydrodynamic term in equation 2.4 

cancelled due to equimolar counter diffusion, the equality of the molar flow 

rate in equations 2.4 to 2.6 results in the overall sum of resistances in series:
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 𝑛𝑖 = −𝐴ℎ
𝑝

𝑅𝑔𝑇

(𝑦𝑖,𝑒−𝑦𝑖,𝑖)
𝐿

𝐷𝑖
+

1

𝑘𝑐

                                  (2.7) 

 

where kc is the effective overall mass transfer coefficient that 

combines the two film resistances (1/kc = 1/ki + 1/ke). 

 

 

2.2. REVIEW OF METHODS PROPOSED AND DATA REPORTED 

 

2.2.1. Lumped capacity model and overall transmission rates 

 

Several authors pooled various factors into one single parameter, as 

in Emond et al's original approach (Emond et al. 1991, Silva et al. 1999, 

Fonseca et al. 2000, Emond et al. 1998, Ghosh and Anantheswaran 2001, 

Mahajan, Rodrigues, and Leflaive 2008, Techavises and Hikida 2008, 

Montanez et al. 2010a, b). More recently, authors working with perforated 

films instead of long tube insertions have used comparable approaches 

(González et al. 2008). The correlations proposed in these works are often 

cited as possibilities for perforated films (e.g. Guillaume, Guillard, and 

Gontard (2010)). However, although there is nothing wrong originally, the 

applications and usefulness for perforated films have incorrections or 

pointless expressions, as can be seen by comparing results with equation 

2.7 and analysing the data of the authors themselves. The permeation 

model is determined by flushing one side of the film in a hermetic container 
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of volume V with a given composition and allowing it to exchange to a 

normal atmosphere over a period of time. A first order model is then applied 

to describe the unsteady state evolution of concentration: 

 

 −𝑉
𝑑𝑦𝑖

𝑑𝑡
= 𝐾(𝑦𝑖,𝑒 − 𝑦𝑖,𝑖)                       (2.8) 

 

The authors cited have termed the K constant as the mass transfer 

coefficient. However, comparing to eq. 2.7, that is not what it is, and this 

imprecision of nomenclature has consequences in applying this concept to 

perforated films. Ghosh and Anantheswaran (2001), working only with 

oxygen, preferred to call this K parameter the oxygen transmission rate 

OTR, which is not exactly what it is either, for the same reason that K is not 

the standard mass transfer coefficient, which is the fact that the area of flow 

is not being individualised. Applying the pseudo-steady state assumption, 

the mass balance simply states that in unsteady state the molar flow rate of 

the equivalent steady state condition of the respective instant is equal to the 

variation of concentration on the flushed side. Pseudo steady-state 

assumptions are very common in mass transfer problems because diffusion 

is so much slower than other processes  (Bird, Stewart, and Lightfoot 2007). 

Thus, the second hand side of eq. 2.8 is simply equal to the molar flow rate 

ni with the pseudo steady state assumption. It is for this reason that Fonseca 

et al. (2000) also termed the first order model as the lumped capacity model 

(which is the same as Newton’s law applied to mass transfer). However, it 
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should properly be written by individualising the area of flow as in Newton’s 

equation, that is: 

 

−𝑉
𝑑𝑦𝑖

𝑑𝑡
= 𝐾𝑚𝐴ℎ(𝑦𝑖,𝑒 − 𝑦𝑖,𝑖)                         (2.9) 

 

Comparing to eq. 2.7 it is evident that the first-order model parameter 

is the same as an overall mass transfer rate that is equal to the sum of the 

resistances to diffusion inside the tube (or perforation) and the film 

resistances, so: 

 

 𝐾 = 𝐾𝑚𝐴ℎ =
𝐴ℎ

𝐿

𝐷𝑖
+

1

𝑘𝑐

                                (2.10) 

 

The publications referred to in this area usually go on to develop 

empirical correlations for K as a function of the length and diameter of the 

plugs (Emond et al. (1991) and  Emond et al. (1998) used additive 

correlations and Fonseca et al. (2000) and Montanez et al. (2010a and b) 

multiplicative correlations, while none have used dimensionless 

correlations). Authors working with perforated films then suggest these as 

possibilities for perforated films (e.g., Ghosh and Anantheswaran (2001); 

Guillaume, Guillard, and Gontard (2010)). That is clearly not so. The first 

issue is that as Emond and Chau and later authors did not discount the area 

from their coefficient K, there is an obvious influence of the diameter of the 

perforation that is simply due to the area available for mass transfer. 
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Secondly, with plugs the length to diameter ratio is high. As this ratio 

increases and the two resistances sum, resistance by diffusion becomes 

overwhelming and convection mass transfer may become irrelevant. 

Therefore, a feature of these correlations that must be hidden somewhere 

is that K will just become equal to DiA/L when L/d is sufficiently large. 

However, the geometry of perforations in films is completely different, L/d is 

usually much lower than 1, and therefore the convective mass transfer 

resistance should be much more important in perforated films than they are 

in the plug implements. The L/d ratio has been known to be an important 

parameter actually since the 1960's, as a result of work done on the diffusion 

of gases from leafy structures with micropores in the development of plant 

physiology biophysics (Meidner and Mansfield 1968). L/d is the reciprocal 

of the dimensionless parameter  defined by Chung, Papadakis, and Yam 

(2003). Metz (2003) also proposed a correlation that added the L/d ratio to 

dimensionless correlations, defining the Sherwood number with d, but 

proposed that d would be an hydraulic diameter that is not clearly defined. 

Fonseca et al. (2000), Ghosh and Anantheswaran (2001), González 

et al. (2008) and Techavises and Hikida (2008) have conveniently provided 

tables of data in their publications, the former for plug implements of L/dh 

ratios between 0.6 and 2.1 and the latter two for perforations in a film, with 

L/dh ratios between 0.16 and 0.85 in the first case and between 0.0024 and 

0.006 in the second. Techavises and Hikida (2008) used a slight variation 

of eq. 2.8, with partial pressure, and termed the coefficient the effective 
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permeability; their effective permeability is therefore K divided by the total 

pressure. Montanez et al. (2010a and b) have also provided graphs for plug 

implements, from where the values of K can be read, and although this will 

be less precise than using the actual values, they can also be used, with 

L/dh ratios between 0.6 and 4. According to eq. 2.10, the values of K should 

tend to DiA/L as L/d increases (minus volumetric to molar unit conversions). 

The values published in all these papers were obtained for different 

temperatures, different velocities of circulation of the surrounding air, in 

different chambers and containers and perforations of very different 

dimensions (d from 0.012 to 41.1 mm and L from 0.049 to 17.1 mm), yet, as 

figs. 2.3 and 2.4 show, all data can be pooled together quite coherently. 

These figures are also showing already data from authors that used other 

mathematical approaches and that will be reviewed later in this text. 
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(a) 

(b) 

Figure 2.3 - . Influence of the perforation length to diameter ratio on the ratio 
between the global mass transfer parameter K obtained with simple 
diffusion through the perforation across otherwise stagnant air of normal 
composition and the K value reported by the various authors for their own 
experimental data for (a) oxygen and water vapour (Lange et al, 2000) and 
(b) carbon dioxide. Data for very low L/dh ratios is not shown (very high y-
axis values). The straight lines are added just to help visualise tendencies. 
F - Fonseca et al. (2000), M - Montanez et al. (2010), G - Gonzalez et al. 
(2008), A - Ghosh and Anantheswaran (2001), L - Lange et al. (2000), P - 
Paul and Clarke, 2002 
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Figures 2.3 and 2.4 show the ratio of the K value (the overall transfer 

rate) obtained with the diffusivity of the respective gas (oxygen or carbon 

dioxide) in stagnated air at the temperature in question for each specific 

data point (the data from the authors cited varies from 5 to 23oC) and the K 

value given by the authors of the publications reviewed. The values for 

diffusivity of oxygen, carbon dioxide and water vapour in air were obtained 

from literature (Marrero and Mason 1972), for 1 atm and as a function of 

temperature (different temperatures for different authors and data points). 

In spite of the differences between geometries, dimensions, temperatures, 

gas compositions, hydrodynamic conditions, and even mathematical 

models that were being validated, the data agree particularly well between 

Fonseca et al. (2000), Ghosh and Anantheswaran (2001), Gonzalez et al. 

(2008) and Techavises and Hikida (2008), with Paul and Clarke (2002) and 

Montanez et al. (2010b) agreeing between themselves and being slightly 

above the others, and Rodriguez-Aguilera et al. (2010) few points are 

slightly below. Although the data of Lange et al. (2000) are for water vapour, 

they agree particularly with the oxygen data of Fonseca et al. (2000), Ghosh 

and Anantheswaran (2001), Gonzalez et al. (2008) and Techavises and 

Hikida (2008).  

This excellent agreement between different authors is very 

significant, because the actual values of L and of d are very different, yet 

the L/dh ratio brings them together.  It is obvious from fig. 2.3 that the K 

values of this approach using the lumped capacity model become 
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approximately the values inferred from the diffusivity of the gases in air for 

L/d greater than unity. Thus, correlations of K for L/d greater than 1 are 

somewhat pointless. Correlations for L/d lower than 1 may be useful for 

providing values from where the mass transfer coefficients can be obtained, 

once diffusion and flow area are separated.  A simple mathematical 

handling would reveal that the ratio of the K value that would be obtained 

using air diffusivities to that obtained experimentally is equal to 1+1/ShL, this 

being the Sherwood number defined with the thickness of the film as 

characteristic dimension (ShL=kcL/D) - dimensionless numbers and mass 

transfer coefficients will be discussed later when using diffusional models. 

Thus, 1/ShL is tending to zero (as D is becoming much bigger than kc) 

It is noted that there is some uncertainty as to the precise value of 

effective diffusivity that should be used. This will be discussed in more detail 

when analysing the diffusional models. At this stage it is sufficient to note 

that diffusivity in air taken from literature refers to gas molecules of oxygen 

or carbon dioxide moving in otherwise stagnated molecules of the other 

gases in normal air concentrations (21% oxygen, 79% nitrogen, and almost 

no carbon dioxide). The effective diffusivity of gases depends on the 

composition of the gas mix (Marrero and Mason 1972). For instance, the 

oxygen diffusivity in air used in fig. 2.3, at 20°C is 0.203 cm2/s, while at this 

temperature that of oxygen in nitrogen is 0.202, and that of oxygen in carbon 

dioxide is 0.159 cm2/s. The diffusivities that should be used in equation 2.10 

must refer to the gas mix in the perforation, which has much more carbon 
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dioxide than normal air (and thus is lower than in normal air, which is why 

some data points in fig. 2.3 are below 1). Furthermore, all molecules are 

moving, which increases the collisions. Therefore, Di is not the same as 

diffusion through stagnated normal air, but how different is it and how can it 

be calculated? Determining an effective diffusivity of each gas through the 

gas mix in the perforation could, of course, be done precisely by fitting data 

points with equation 2.10, and obtaining both Di and ki. However, this would 

provide an apparent value that is in fact an average that depends on the 

specific composition of the gas inside the package, which in turn depends 

on the effective permeability of the perforated film and on the dimensions of 

the perforation - this will be shown later when discussing Stefan-Maxwell’s 

diffusion model.  

Fig. 2.3 in a normal scale does not show data for very low L/dh ratios; 

for scale reasons these are better seen in fig 2.4 that uses a log scale. This 

is mostly because Techavises and Hikida (2008) and Rodriguez-Aguilera 

and Oliveira (2009) reported data for very small film thickness with relatively 

large diameters, so the L/d ratio is small and the Kair/K ratio approaches 

infinity due to the very small L.  
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(a) 

(b) 

Figure 2.4. Logarithmic plot of the ratio of lumped capacity model global 
mass transfer K parameter between that due to diffusion through stagnated 
normal air and that reported by the various authors as a function of the 
length to diameter ratio of the perforation(s) for (a) oxygen and water vapour 
(Lange et al. 2000), (b) carbon dioxide. The dotted lines are added just to 
help visualise tendencies. 
F - Fonseca et al. (2000), M - Montanez et al. (2010b), G - Gonzalez et al. (1998), 
A - Ghosh and Anantheswaran (2001), T - Techavises and Hikida, 2008, R - 
Rodriguez-Aguilera et al. (2009), L - Lange et al. (2000), P - Paul and Clarke, 2002 
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Therefore, they require a logarithmic scale to be pooled with the other 

data and the approximate linearity of fig 2.4 up to L/d = 1 suggests a power-

law relationship between the effective permeability ratio and the L/d ratio, 

and it is noted that power laws are typical functions in dimensionless 

correlations. It is also noted that this implies that 1/ShL is tending to zero 

according to a power exponent of L/d. The deviation from the straight line 

as L/d goes beyond 1 is mostly due to the uncertainty of the values of D, as 

discussed previously, which is magnified in log scales when approaching 

zero. 

The proper mass transfer coefficients, kc, obtained by applying 

equation 2.10 to the data of the authors cited are shown in fig. 2.5. There 

are many factors that may influence kc and the diffusivity values used were 

those in normal air, which is imprecise as discussed earlier, but fig. 2.5 

already shows the most important feature: the order of magnitude for a 

variety of conditions. Also, the data suggests that an important parameter is 

the diameter of the perforations, as there is a clear tendency for kc to 

increase with decreasing diameters. The data were separated in two figures 

covering different scales of d because the mass transfer coefficients for the 

very small perforations are much bigger. These are from  González et al. 

(2008) and Ghosh and Anantheswaran (2001), which also agree with those 

from Lange et al. (2000) for the same dimensions around 0.2 mm. 
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(a) 

(b) 

Figure 2.5. Mass transfer coefficients extracted from the data reported by 
several authors for perforations of various diameters, with smaller diameters 
in fig. a and bigger ones in fig. b. The first letter indicates the literature 
reference as in the legend of fig. 4 and the second letter the gas, with O for 
oxygen, C for carbon dioxide and W for water vapour. 
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It is noted that the plug implements studied in Fonseca et al. (2000) 

and Montanez et al. (2010a and b) come out of the surface of the lid by 

about half its length. Therefore, the hydrodynamic conditions surrounding 

the outlet of the implements are different from those than one would find in 

perforated films, where there are no protrusions sticking out of the film 

surface. Notwithstanding, the mass transfer coefficients are in line with all 

others and a tendency for kc to decrease with increasing diameter. The kc 

values that can be calculated from Techavises and Hikida (2008) are for 

perforated films, but with perforations of dimensions close to those of the 

plugs used by Fonseca et al. (2000) and Montanez et al. (2010), and yet 

are very much in line with the overall pattern, in spite of the L values being 

far smaller.  

 

2.2.2. Hydrodynamic flow models 

 

Gonzalez-Buesa et al. (2009, 2013) have taken a different approach, 

considering that the flow of both gases can be described by Poiseuille’s 

equation for hydrodynamic laminar flow (Foust 1980). Other authors (Del-

Valle et al. 2003) found this approach useful, but considered that this term 

can be added to the pure diffusion equation, so that a hydrodynamic flow 

caused by a total pressure imbalance adds to the diffusional flow. 

Poiseuille's law is: 
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 𝑉̇𝑖 = −
𝑑ℎ

2

32𝜇

𝑑𝑝𝑡

𝑑𝑙
                                           (2.11) 

 

Alas, using Poiseuille’s equation cannot provide a suitable 

phenomenological model for 2 reasons. The most obvious one is that 

Poiseuille’s equation describes a completely different phenomenon. The 

hydrodynamic flow it refers to is caused by a gradient of the total pressure 

and all molecules move in the same direction, from the higher to the lower 

pressure. All of them would have the same parabolic velocity profile, as 

laminar flow is assumed, and in the same direction. Counter flow 

movements of the different gases would disturb a laminar movement and 

therefore the basic assumption of Poiseuille's equation is not met. 

Furthermore, if there was a pressure differential, the package would deform, 

and hence this is not the type of flow that is occurring in packages, as 

Chung, Papadakis, and Yam (2003) have noted, and only mass transfer 

with its opposite flows should be considered. A partial pressure gradient 

causes a molecular movement with a pure diffusion and a hydrodynamic 

term as eq. 2.4 describes, where molecules are moving in opposite 

directions and colliding with each other - this is not the hydrodynamic flow 

rate provided by total pressure differentials. The net hydrodynamic terms 

are however balancing themselves out at equilibrium (or the package would 

not be saleable, as explained before). A detailed scientific discussion on the 

reason to neglect pressure differentials in general and adopt equation 2.4 

as an exact result can be found in Marrero and Mason (1972). Even if this 
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was not the case, however, and there was indeed a significant pressure 

differential in an inflated package, there is a second reason why Poiseuille’s 

equation cannot be used, especially in perforated films, which is that it 

assumes fully developed flow, that is, it neglects end effects at both ends. It 

is known from fluid mechanics that this assumption is reasonable for L/d 

values of more than 20, or maybe more than 10 if one would be generous 

with precision (Foust et al. 1980). That is far from being the case in 

perforated films (where dh is actually bigger than L), and even in the plugs 

used in perforation mediated modified atmosphere. Poiseuille’s equation 

would not be applicable even if there was an imbalance in total pressure on 

both sides and there was no concentration gradient causing opposite 

movements. The approach of correcting it by adding an apparent length 

(Foust et al., 1980) is not suitable for such low L/dh ratios because a fully 

developed flow will actually never occur at all (one cannot correct a marginal 

effect onto a phenomena if the phenomena never existed in the first place). 

The appropriate way to analyse a situation with an imbalance of pressures 

on both sides would actually be simply to write eq. 2.4 for all moving gases 

in terms of number of moles (oxygen, water vapour, carbon dioxide and 

nitrogen), consider the actual resulting pressures and solve the set of 

equations jointly. Techavises and Hikida (2008) have done this, for instance. 

González-Buesa et al. (2013) have actually determined real 

hydrodynamic flow rates in test cells by causing a total pressure imbalance 

on both sides of a film and measuring the gas flow rates. That part of the 
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work is totally correct; it just is measuring something that is not what 

happens in packages, so when those authors apply the concept to a 

package, the model would not fit. Based on a previous work (Gonzalez-

Buesa et al, 2009), an empirical model is used to describe the actual gas 

transfer rate. The authors note that Poiseuille’s equation neglects end 

effects and determine an apparent diameter of the perforations that makes 

the model fit the data, and then verify that the adjusted Poiseuille’s equation 

and the empirical gas transfer model give the same result. Therefore, in the 

end what is done is to fit data points to a model that has an adjustable 

parameter, but as the model does not describe the phenomena in question, 

using that or a polynomial or some sort would be just as good: the result is 

an empirical model anyway that can only be applied for the conditions that 

it was determined for, it has no predictive potential with certainty. Something 

similar can be said about Del Valle et al. (2003) results: the fact that a model 

adjusts itself to experimental data by allowing some parameter to be 

whatever is needed to fit data does not prove that the model is 

phenomenologically correct - any empirical model will do that equally well.  

Notwithstanding, these results are useful, as they actually show that the 

diameter of the perforations does influence the mass transfer rates beyond 

its obvious effect in terms of mass transfer area, as found also in the 

analysis of the lumped capacity model approach. The empirical model 

proposed by Gonzalez-Buesa et al. (2009) for perforations in the range of 

50 to 200 microns is a volumetric transmission rate in units of mL/day, that 



 
 

97 
 

is, it compares with the K of the lumped capacity model and is not 

discounting the effect of the diameter on the area of flow. Converting units 

leads to the following result relating Gonzalez-Buesa’s model with eq. 2.7: 

 

𝐾𝑚 = (
4

𝜋
)
1−𝑎2

∙
𝑎1∙104

𝑑(2−2𝑎2)∙864
                      (2.12) 

 

where a1 and a2 are parameters of the model fit provided by 

Gonzalez-Buesa et al. (2009). Using the model proposed by these authors 

to generate the gas flow rates, and then comparing to the diffusional model 

in the same way that was done for the lumped capacity model data, provides 

results that fit perfectly the data of Gonzalez et al (2008) shown in figs. 2.3 

and 2.5. As the authors are actually the same, this is not surprising, as the 

data sets may be the same or include same points. Curiously, although L/dh 

of 1 would be a slight extrapolation of their model (from the limit of validity 

of 50 micron to 40 micron, which is the thickness of the film quoted), it would 

correspond to a ratio between transmission measured and that due to the 

diffusivity of air exactly equal to 1. Therefore, these authors have also found 

that the mass transfer coefficient increases with decreasing diameter of 

perforations, which contradicts their own assumption that only the total area 

of flow matters, and that the diameter does not influence the flux. They also 

found that as L/dh increases, the mass transfer through a perforation 

becomes equal to that predicted by simple diffusion through air, and this is 

reached at L/dh approximately equal to unity. This shows very well the 
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importance of discounting the area of flow from the model parameters and 

assessing the data properly - all data in fig. 2.5 are suggesting that smaller 

diameters have lower mass transfer resistances, and hence, a larger 

number of perforations of a smaller diameter have a greater permeability 

than a smaller number of perforations of a bigger diameter even though their 

total areas of perforation may be the same. 

 

2.2.3. Diffusional models using Stefan-Maxwell's equations 

 

The first distinction that needs to be made regarding methods that 

consider molecular diffusion is between an approach based on the simple 

application of Fick's law (equation 2.4) and the irreversible thermodynamics 

approach of Stefan-Maxwell's method. Both have been used to describe 

mass transfer through perforated films. Paul and Clarke (2002), who used 

the former, note that Stefan-Maxwell equations are complex to solve and 

there is no need for complicating what can be solved easily, while Renault, 

Souty, and Chambroy (1994) and Rennie and Tavoularis (2009), who used 

the latter, state that Stefan-Maxwell must be used as the diffusional 

coefficients in Fick's law are not correct for multicomponent diffusion. 

Authors that discuss this subject tend to see the two approaches as being 

different, as they originate in completely different approaches and 

statements of scientific laws. While that is true, the fact remains that the 
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phenomena are the same, and therefore the two models should be 

compared (it should be possible to convert one result into the other).  

It is important to have clear ideas about this. Fick's law can be 

applicable, its problem to describe the diffusion of multiple gases through 

open pores is that the effective diffusion coefficient D varies with the 

composition of the gas and also depends on whether other molecules are 

moving or not, and can be very cumbersome to determine with precision 

(Marrero and Mason 1972, Whitaker 2009). Even if it could be determined 

with accuracy, Fick’s multicomponent diffusivity is therefore not a constant 

parameter but a variable that depends on the specifics of the problem 

(concentration gradients, geometries, fluxes), in which case Fick’s 

equations (in their differential form) of Stefan-Maxwell’s would be equally 

complex (actually, Stefan-Maxwell’s is somewhat easier to solve 

numerically).  Relating Fick and Stefan-Maxwell equations can be very 

complex, but ideal gas mixes have a variety of simplifications that make the 

relationship easier to handle, and that can therefore be used to test whether 

a constant effective Fickian diffusivity may be sufficiently accurate, or 

whether it would bring unacceptable errors. It is noted that for binary 

diffusion Stefan-Maxwell's equations reduce to Fick's 2nd law (Taylor and 

Krishna 1993) and that although the binary diffusion coefficients of Stefan-

Maxwell's and Fick's equations are not exactly the same theoretically, they 

can be taken as such for all practical purposes (Marrero and Mason, 1972). 

For each gas, the Stefan-Maxwell expression for an ideal gas mixture at 
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perfect isothermal conditions can be reduced to (Taylor and Krishna, 1993, 

see chapter 6): 

 

 
𝐴ℎ𝑝

𝑅𝑔𝑇

𝑑𝑦𝑖

𝑑𝑙
=

𝑦𝑖𝑛1−𝑦1𝑛𝑖

𝐷𝑖,1
+

𝑦𝑖𝑛2−𝑦2𝑛𝑖

𝐷𝑖,2
+

𝑦𝑖𝑛3−𝑦3𝑛𝑖

𝐷𝑖,3
               (2.13) 

 

where Di,j are the binary diffusion coefficients of gas i in gas j. The 

subscript i denotes the gas for which the mass balance is being written, and 

1, 2 and 3 denote the other 3 gases (considering only the movements of 

oxygen, carbon dioxide, nitrogen and water vapour). Comparing to eq. 2.4 

for all gases leads to the relationship between Fick's effective diffusivity of 

a gas in a gas mix and the binary diffusion coefficients that is perfectly 

applicable to this mixture of gases (oxygen, carbon dioxide, nitrogen and 

water vapour, Taylor and Krishna, 1993): 

 

 𝐷𝑖 =
𝑛𝑖−𝑦𝑖(𝑛𝑖+𝑛1+𝑛2+𝑛3)

𝑦𝑖𝑛1−𝑦1𝑛𝑖
𝐷𝑖,1

+
𝑦𝑖𝑛2−𝑦2𝑛𝑖

𝐷𝑖,2
+

𝑦𝑖𝑛3−𝑦3𝑛𝑖
𝐷𝑖,3

                           (2.14) 

 

This relation can be further elaborated noting that the sum of the 4 

fluxes is zero (equimolar counter diffusion), leading to: 

 

 𝐷𝑖 =
1

(
𝑦1
𝐷𝑖,1

+
𝑦2
𝐷𝑖,2

+
𝑦3
𝐷𝑖,3

)−
𝑦𝑖
𝑛𝑖

(
𝑛1
𝐷𝑖,1

+
𝑛2
𝐷𝑖,2

+
𝑛3
𝐷𝑖,3

)
                        (2.15) 

 

It is noted that if the gas i is fairly diluted (yi is very small): 
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 𝐷𝑖,𝑑𝑖𝑙𝑢𝑡𝑒𝑑 ≅
1

(
𝑦1
𝐷𝑖,1

+
𝑦2
𝐷𝑖,2

+
𝑦3
𝐷𝑖,3

)
                              (2.16) 

 

Wilke (1950) has also proved that even if the gas is not diluted, 

equation 2.13 also reduces to equation 2.15 for fluxes through otherwise 

stagnated gas mixes (all ni but the one in question being zero), provided 

that  the molar fractions to be used are the i-free fractions (that is, y1' = y1/(1-

yi) instead of y1, etc.  Equation 2.15 might be applicable only to water vapour 

in this case, because 100% relative humidity, which is the maximum amount 

of water in air, corresponds to molar fractions of 1 to 2 %, depending on 

temperature. For oxygen and carbon dioxide eq. 2.15 would need to be 

used and then Fick's 2nd law or Stefan-Maxwell would be equally complex: 

both would require solving the 4 equations simultaneously and actually, the 

result is the same for the simplified assumptions under which equation 2.14 

is valid (no temperature gradient, ideal mix, constant total molar 

concentration, and thus, zero net flux).  

This implies that Renault, Souty, and Chambroy (1994), Lee and 

Renault (1998) and Rennie and Tavoularis (2009) are correct in stating that 

Stefan-Maxwell's equations are the appropriate solution of this problem 

because they do not depend on the use of a parameter (diffusivity) that is 

actually not a constant. However, Paul and Clarke (2002) may also be 

correct in stating that this increased precision is a minor benefit and that a 

constant effective Fickian diffusion can be used. For high L/dh ratios, where 



 
 

102 
 

the resistance to mass transfer is dominated by the diffusion inside the pore, 

it would be important to be precise, and then the increased complexity of 

Stefan-Maxwell, or the proper use of Fick's law with a variable diffusion 

coefficient, might be required. In fact, the experimental data obtained by 

Renault et al. (1994) and its citations to own earlier work would suggest this. 

Those authors found that for L=dh the resistance to convection was about 

the same as that of diffusion. From fig. 2.3 it can be seen that for L=dh all 

other authors found the overall resistance equal to what would be estimated 

from diffusion in stagnated air. However, Renault et al. (1994) did not work 

with the diffusivities in stagnated air, but with the real binary diffusivities with 

the Stefan-Maxwell model. This suggests that Fickian average constant 

diffusivities that would be calculated by fitting mass fluxes to equation 2.4 

would be about half of those through stagnated air for perforations of the 

dimensions used by Renault et al. (1994) in their experimental work, with 

thickness L of the order of a few dozen m. This would be a much bigger 

difference that might be expected from the differences in the binary diffusion 

coefficients, but it is just a very broad assessment of broad comparisons. 

Montanez et al. (2010a), who worked with plug implements of high 

L/dh ratio, provide evidence of the influence of gas composition on effective 

permeabilities, although they used a single parameter that did not 

individualise the effect of temperature on diffusivity and convective 

resistance, and as the correlations proposed are not dimensionless they can 
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only be applied to the specific set of conditions under which they were 

determined. 

Notwithstanding, all this suggests that a more precise quantitative 

analysis might be needed before deciding whether Stefan-Mawell’s 

increased precisions is necessary or not. Taking a typical scenario for 

perforated packages, with a perforation of a given diameter and length and 

an internal composition of 7.5% oxygen and 17.5% carbon dioxide (the 

remaining being nitrogen) evolving to an outside atmosphere  of 21% 

oxygen and 0.38% carbon dioxide (thus neglecting water vapour 

completely, for simplification, as it is less than 2% in both cases), at 10 oC, 

equation 2.4 was solved numerically for oxygen, carbon dioxide and 

nitrogen jointly, with equation 2.15 giving the effective diffusivity values as 

a function of the gas composition at every point of the discretization of the l 

domain from 0 to L (divided in 1000 points), using one-sided finite 

differences. The 3 molar fluxes nO, nC and nN (oxygen, carbon dioxide and 

water vapour) were obtained from the boundary conditions that at l=L the 

normal air concentrations of 21% and 0.38% for carbon dioxide should be 

found and also that the sum of the 3 fluxes would be zero. The simulation 

was run for perforations of L=25 m and dh=0.1 mm; L=3 mm and dh=0.1 

mm and L=3 mm and dh=1 mm. In each case, equation 2.7 was then used 

to obtain the average (apparent) constant Fickian diffusion by fitting the 

integrated results of equation 2.4 with a constant diffusivity for each flux. 

The Fickian constant diffusivities thus obtained for the 2 scenarios were, 
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respectively, 0.1786, 0.1785 and 0.1785 cm2/s for oxygen and 0.1490, 

0.1490 and 0.1490 cm2/s for carbon dioxide. These compare with the 

diffusivities through stagnated air (without water vapour), given by equation 

2.16 (using the respective gas-free molar basis), of 0.1810 cm2/s and 

0.1491 cm2/s for carbon dioxide. Therefore, there is a small difference 

between the apparent, average (constant), Fickian diffusivity for oxygen and 

that through stagnated air - whether this is of sufficient importance will be 

assessed in section 3 of this paper, with a quantitative example. However, 

there is virtually no difference between the various scenarios tested, 

suggesting that the main issue may be to use a representative value for a 

situation of molecular counterfluxes involving higher carbon dioxide 

contents rather than a stagnated gas mix with almost no carbon dioxide. 

Therefore, one can agree with Paul and Clarke (2002) that the 

increased accuracy of Stefan-Maxwell’s method is not worth the increased 

complexity. However, it may be necessary to use a more appropriate 

diffusivity than the value in stagnated air. This will be discussed in more 

detail in the last section of this paper. In fact, with convection resistance 

being more important than diffusion in perforated films with small thickness 

compared to diameter, Fick’s model is much easier to use. Lee and Renault 

(1998) addressed the problem by simply considering an effective length 

greater than the real length; the difficulties with this approach are discussed 

in the next section. Combining convection resistance with diffusion with 
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Stefan-Maxwell approach properly is more cumbersome than with Fick's law 

(details can be found in Whitaker, 2009). 

 

2.2.4. Diffusional methods using Fickian diffusion with constant 

diffusivity 

 

Several authors have used Fick's law combining diffusion through the 

perforation and convection effects on the two surfaces (Lange et al., 2000, 

Paul and Clarke, 2002, Chung et al., 2003, Rodriguez Aguillera et al., 2009, 

Mastromatteo et al., 2012). However, they have not expressed it exactly as 

in equation 2.7, but by defining an apparent length of perforation Le that 

corrects the diffusional expression to account for the convection resistances 

on both sides. This means that equation 2.4 was used, but with L replaced 

by L+Le. The relation between Le and kc is therefore obvious: 

 

 𝑘𝑐 =
𝐷

𝐿𝑒
                                         (2.17) 

 

which also implies that the result is the same as describing 

convection mass transfer using the boundary layer concept, with Le being 

the thickness of the boundary layer (that is, the distance from the surface at 

which the concentration of the gas is approximately equal to that in the 

perfectly agitated bulk volume). These authors then go on to relate Le with 

parameters of the system, so it can be estimated, and all propose that Le is 
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simply a function of the diameter of the perforations, and of the same type, 

but with slightly different parameters. Generally, it is suggested that (Chung, 

Papadakis, and Yam 2003):  

 

 𝐿𝑒 = 𝜀𝑑ℎ                                        (2.18) 

 

with  being a constant, and with Fishman, Rodov, and BenYehoshua 

(1996) and Ghosh and Anantheswaran (2001) proposing a value of 0.5 , 

Lange et al. (2000) a value of 5/6 (app. 0.8) for stagnated air and 3/7 (app. 

0.4) under air movement. Renault et al. (1994) propose a value of 1.1 and 

Paul and Clarke (2002) suggest a value of 7/6 (app. 1.2) from a theoretical 

development, which is then validated experimentally. Rodriguez-Aguilera et 

al. (2009) obtained a value of 0.4 by fitting the model to experimental data 

and Mistriotis et al. (2016) obtained a value of 0.3 by numeric simulations, 

and 0.43 experimentally. Considering that the phenomenon is the same, it 

is obvious that the variability between 0.4 and 1.2 is hiding the fact that other 

parameters must also be important (such as the air velocities, as suggested 

by Chung et al., 2003), but there is an inherent problem in this simple 

correlation, which is that it must have a limit of applicability as it provides a 

physically impossible extrapolation result: that the wider the perforation, the 

greater the resistance. Fig. 2.4 already shows that indeed many authors 

have found that smaller perforations may have lower resistances (that is, 

they provide greater permeability), but there has to be a levelling off of the 
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decrease of permeability with increasing diameters, followed by a reversal, 

as when the perforation will be wide enough, the resistance will actually be 

zero. Obviously, that will be outside of the range of interest, but the levelling 

off effect must exist, which is also very clear from fig. 2.5, and equation 2.17 

does not provide for it. 

It is therefore crucial to understand where these suggestions come 

from. There are essentially two theoretical approaches, besides simple data 

regression. Values of 0.5 and 1.1 (7/6 to be exact) were actually both 

obtained by assuming that the velocity profile of the gases emerging out of 

a perforation is a perfect circle. Considering that molecules move axially up 

to that point and from it onwards there is just movement by diffusion through 

the surrounding (otherwise unstirred) air in the radial direction, there will be 

pure diffusion in spherical coordinates from the half-spheres defined by the 

circular velocity profile, as depicted in fig. 2.6. The value of 0.5 comes from 

noting that the Sherwood number has a limit value of 2 for diffusion from a 

spherical surface (Bird, Stewart, and Lightfoot 2007), defining the Sherwood 

number as kc.dh/D, and therefore if movement is radial from the spherical 

surface outwards and it occurs by diffusion alone (no natural convection), 

Le is half of the diameter. The value of 7/6 was obtained by Paul and Clarke 

(2002). They also noted that the Sherwood number is 2 with these 

assumptions, although they termed it the Nusselt number, which is not truly 

appropriate, as Nusselt is the corresponding dimensionless number for heat 

transfer (it is important to be clear about dimensionless numbers and their 
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meaning; for instance, Leonardi, Baille, and Guichard (2000) use a 

dimensionless correlation tending to a Sh value of 2 for stagnated air, but 

then define Sh as if it was the Nusselt number - that is, with the thermal 

conductivity instead of mass diffusivity; therefore their number is neither Sh 

nor Nu, and is not even dimensionless). Paul and Clarke (2002) however 

go further than this and consider both ends of the perforation and that the 

boundary conditions will never be a perfectly stagnated environment, and 

consider diffusion over an equivalent length to quantify this convective 

disturbance. They then define this equivalent length from the ratio between 

the volume and the cross section area of an "apparent" cylinder that would 

have the same volume as the real cylinder (length L) plus the two spherical 

surfaces of diameter equal to dh. Thus, the result they obtain in the end, 

Le=7/6 is a consequence of assuming that the equivalent length 

corresponds to this geometrical analogy, but there is no physical nor 

phenomenological reason to consider why it should be so. The value of 0.8 

(10/12 to be more exact) is obtained from the derivation proposed by Heiss 

(1949) and used by Lange et al. (2000), which is similar to that of Paul and 

Clarke (2002) in considering "apparent" cylinders, but a different 

assumption about its volume leads to a different end result of 10/12.  
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Figure 2.6 - Sketch of the molecular movements conceived to obtain a limit 
Sherwood number of 2 for diffusion through stagnated air defining Sh with 
the perforation diameter. Full arrows indicate radial movements and dotted 
arrows axial movements parallel to the perforation length. 

 

Experimental fitting was used by Renault, Souty, and Chambroy 

(1994), that actually did not obtain an equivalent length, but rather an 

equivalent area of perforations (which made more sense to them as they 

used films with a large number of microperforations difficult to detect 

experimentally). They report values of the area obtained by model fitting to 

the real area averaging 0.43, and refer to Renault's original thesis work 

(1988) as an expected result for L=dh. Thus, Chung, Papadakis, and Yam 

(2003) converted this result to equivalent length giving the value of =1.1, 

which interestingly is quite close to that suggested by Paul and Clarke 

(2002). However, Renault et al. (1994) actually refer to their difficulty of 

being sure that all microperforations were identified in all films tested 

experimentally, and suggest that a value of 0.5 for the area ratio is more 

appropriate (lower were attributed to difficulty in identifying all pores with 

SEM), which would imply =1, although it must be noted that Renault et al. 
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(1994) are only claiming this value for L approximately equal to dh. 

Rodriguez-Aguilera et al. (2009) worked with larger and longer perforations, 

and their data fitting resulted in =0.4, which is closer to the suggestion of 

Fishman, Rodov, and BenYehoshua (1996). 

There are some problems with this approach. One is already obvious 

from comparing the work of different authors: the uncertainty as to what 

would constitute an equivalent length leads to different results. It is highly 

unlikely that molecules will move axially up to the point marked by a 

spherical surface and then radially (for = 0.5) or with an apparent 

cylindrical length accounting for the convection terms ( = 10/12 or 7/6). 

None of the molecules are moving in otherwise stagnated environments. 

There is at least natural convection, and the movement of the other 

molecules themselves, with the turbulence caused by collisions due to the 

counterflows likely to disturb this simplest scenario even further. 

Notwithstanding, it is often found that simplified assumptions can generate 

models that are applicable in practice. The experimental validation provided 

by the authors that proposed these models confirms that this was their case, 

but as different authors propose fairly different values, and all were 

experimentally validated, it follows that either the precision between 0.4 and 

1.2 as the value of  is irrelevant, or then the different results come from 

fitting what is in the end an empirical model with different sets of conditions 

of other influential parameters, and possibly over different ranges of values 

of L, dh and Ah. Paul and Clarke (2002) validated =7/6 for L between 28.4 
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and 1020 m and dh between 762 and 1270 m (actual combinations not 

specified) for oxygen at 25 oC, Lange et al. (2000) validated =10/12 for the 

L/dh combinations (in m) of 42/200, 43/600, 42/1000, 370/212, 408/510, 

584/990 for water vapour at 30 oC, and Rodriguez-Aguillera et al. (2009) 

obtained =0.4 for L of 0.015 mm with dh of 0.8 mm for 1, 2 and 3 

perforations, for oxygen and carbon dioxide, all at 20 oC (other L and dh 

values reported were for plugs with high L/dh ratio). Using equations 2.10, 

2.16 and 2.17, it is possible to calculate the overall K value similar to the 

lumped capacity model parameter that each correlation is predicting, so as 

to compare the values obtained by these authors, and also relate them to 

those reported by authors that used a different mathematical approach.  All 

these data points are shown in figs. 2.3, 2.4 and 2.5. It is noted that they are 

obtained from the  value proposed by each respective author (they are not 

the actual experimental data points because these were not provided in the 

publications), and that in the case of Paul and Clarke (2002), as the exact 

combinations of L and dh tested were not reported, several possible 

combinations are shown (it is thus possible that some were not actually tried 

by the authors). These data also show the feature that a global parameter 

approaches the value of diffusivity through the gas mix as L/dh approaches 

unity (fig. 2.3), and that the perforation diameter influences the convection 

resistance, with resistance increasing with the diameter (fig. 2.5), but 

levelling off for wider diameters. As figures 2.3 to 2.5 show that the results 

of the authors that used different values of  do not match perfectly, the 
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actual value of  between 0.4 and 1.2 does matter, so the differences must 

be due to differences in the other parameters that are likely to have been 

different in the work of the various authors (actual air velocities, 

temperatures, dimensions, etc.). It is noted that these differences are of the 

same order of magnitude of differences of results obtained by the authors 

that were previously reviewed. Figure 2.5 shows a clear relevance of the 

diameter of the perforation on the convective resistance, but other factors 

are also important, which is why there is the spread observed. 

Mastromatteo et al. (2012) provide a variation of this approach, 

suggesting an exponential function of dh
2 instead of eq. 2.17 This would 

solve the problem of resistance increasing with the diameter, as this effect 

will level off as diameter increases with an exponential function, and would 

fit data such as González et al. (2008) well, although as it is not a 

dimensionless correlation the parameters of Mastromatteo et al. (2012) do 

not fit the data of Gonzalez et al. (2008), the model would need to be re-

fitted to the other set of data. One correlation for each set of data is a 

problem of empirical functions that are not written in terms of dimensionless 

correlations, as they do not avail of the principle of dynamic similarity. 

The original work of physiology biophysics is quite relevant to the 

design of packages and deserves to be considered further, because it 

provides a very comprehensive analysis both theoretical and experimental 

of the movement of gases from micropores to surrounding air. Nobel (1974) 

shows the result of applying chemical engineering mass transfer analysis of 
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convection resistance for gases flowing parallel over a flat plane, which 

leads to the result that the thickness of the boundary layer (Le) varies with 

the position from the edge of the plane, and the average is proportional to 

the square root of the ratio between the length of the plane in the direction 

of the flow and the wind velocity. The constant of proportionality obtained 

by the theoretical development assuming that the wind moves in laminar 

flow over the flat plane (Meidner and Mansfield, 1968) is 0.6 in the cgs 

system of units (cm.s-0.5), but experimental data obtained in wind tunnels 

cited by Nobel (1974) provided a better fit with the value of 0.4. Those 

experimental data also show that the exponent of this relationship may 

actually vary quite significantly depending on the size and actual shape of 

the plane. Noting that the stomata physiology work was performed with 

leaves, which are smaller and less flat than packages, it is uncertain that 

the empirical modifications of parameters would be similar, so the best 

result to apply to packages would be the theoretical result:  

 

 𝐿𝑒 = 𝑓 (
𝑥

𝑣
)
𝑎

                                      (2.19) 

 

with the theoretical values being a = 0.5 and f = 0.6 cm.s-0.5. This 

expression would predict an infinite boundary layer for still air, but still air 

does not exist, the limit is natural convection. Nobel (1974) specifies that 

"still air" for equation 2.17 corresponds to velocities of 10 cm/s. The air 

circulation velocities measured by Montanez et al. (2010a) inside storage 
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rooms as a result of the operation of the temperature control fans are of the 

order of 20 cm/s. For a flat plane of 20 cm of length (a typical value for a 

package), this would imply that Le would be around 0.6 to 0.8 cm. This would 

be an extremely substantial value, completely overwhelming the importance 

of diffusion through the pore (as L is of the order of microns). Furthermore, 

it is independent of the diameter of the pore. From eq. 2.16, this would 

suggest kc values of the order of 0.25 cm/s for oxygen, which are of the 

order of magnitude of those shown in fig. 2.5 for flow from packages with 

larger perforations (over 5 mm); smaller perforations generally have much 

higher values of kc. Stomata pores are of the order of 10 to 100 microns, 

which means that this expression would suggest kc values around 100 times 

smaller (Le values 100 times bigger) than those in fig. 2.5 (obtained by 

Ghosh and Anantheswaran, 2001 and Gonzalez et al., 2008). This could be 

explained simply by the difference in surface roughness and shape of 

leaves compared to fairly flat package tops, but is also likely due to the fact 

that the type of diffusional flow from the stomata is much milder (the 

concentration gradients are smaller than in modified atmosphere packages 

at equilibrium) and thus they disturb the surrounding air flow at the boundary 

layer less. Although the expressions are therefore not applicable directly, 

the method is perfectly correct, and what needs to be done for packages is 

to develop experimental studies to determine the correlations that apply to 

their case (longer and flatter planes with greater fluxes through the 

perforations). 
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This work elucidates that eq. 2.18, whatever the value of , is not the 

most suitable approach. Parameters such as the actual size of the package 

(at least its length in the air flow direction) and velocity of the circulating air 

must be considered, as Nobel (1974) shows. Allan-Wojtas et al. (2008) also 

speculated that the viscosity of air must have an influence, when explaining 

an anomaly in their data (that the intercept of the gas transmission rate 

versus area of perforation straight line was significantly higher than the 

value given by the permeability of the unperforated film). Therefore, the 

most appropriate procedure is to go back to basics, and define an approach 

based on mass transfer analysis of the movement of gases over packages, 

taken as flat planes, and applicable to this situation. 

 

2.2.5. Dimensionless correlation for mass transfer coefficients 

 

The standard approach of chemical engineering is to establish 

dimensionless correlations, as these are likely to benefit from the principle 

of dynamic similarity (Bird, Stewart, and Lightfoot 2007). None of the work 

reviewed up to this point on mass transfer through perforated packages 

proposed dimensionless correlations, with the exception of Metz (2003) that 

proposed adding L/dh raised to some power to expressions of the type of 

eq. 2.19. The limitation of expressions such as eq. 2.18, 2.19, or the 

correlations for K that do not discount the mass transfer area of Emond et 

al. (1991) or Fonseca et al. (2000) is that because they do not involve 
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relations between dimensionless numbers each of which quantifies a ratio 

between different phenomena or forces at play, they do not ensure dynamic 

similarity. This has proved to be a most useful concept (Bird, Stewart, and 

Lightfoot 2007), which allows to predict results for completely different 

individual values of the relevant parameters, provided that their 

dimensionless ratios are within their range of applicability. Therefore, 

dimensionless correlations have a much wider applicability. It is particularly 

relevant in this case to overcome the problem of eq. 2.18 being applicable 

only up to a given value of dh, above which the effect of dh on permeability 

must level off. That limit is likely to be a different value of dh depending on 

the other relevant parameters, but it is expectable that a dimensionless 

number may provide an objective limit of applicability. Also, dimensionless 

correlations are likely to bring in power exponents which will provide the 

level off effect and extend regions of applicability. This is the appropriate 

procedure to bring all data together and make joint sense of everything 

instead of having each publication providing a new equation, as has been 

the case. 

There are some dimensionless correlations that have already been 

used in chemical engineering to quantify the mass transfer convection 

resistance of molecules moving perpendicularly out of flat planes for natural 

convection, and also for forced convection with a stream of air moving 

parallel to the surface. These correlations are valid for quantifying 

convection from an unperforated film, but it is not known if they would apply 
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to perforations, because the bigger molecular fluxes involved and the 

turbulence caused by the counterflow movements may interfere 

significantly. Notwithstanding, they also provide suggestions for 

dimensionless numbers that may be relevant. From the experimental 

measurements of rate of evaporation from a liquid surface or from the 

sublimation rate of a volatile solid surface into a controlled air-stream, 

correlations are available that have been found to satisfy the equations 

obtained by theoretical analysis of boundary layers (Baehr and Stephan 

2006): 

 

 isothermal laminar flow over a flat plate at position x from the edge 

of the plate in the direction parallel to the flow 

 

 𝑆ℎ𝑥 = 0.664𝑅𝑒𝑥
0.5𝑆𝑐1/3 (2.20) 

 

valid for Rex < 3x105  and for 0.6 < Sc < 2500 

 

 isothermal turbulent flow over a flat plate at position x from the edge 

of the plate in the direction parallel to the flow 

  

 𝑆ℎ𝑥 = 0.036𝑅𝑒𝑥
0.8𝑆𝑐1/3 (2.21) 

 

valid for 3x105 < Rex < 1x108 and for 0.6 < Sc < 2500 
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For natural convection, the best that can be done is to use the heat 

and mass transfer analogy and postulate the mass transfer equivalent of 

the heat transfer correlations, which give (Baehr and Stephan 2006):  

 

 isothermal natural convection over a flat horizontal plate for flow 

from the plate outwards: 

 

 𝑆ℎ𝛿 = 0.54(𝐺𝑟 × 𝑆𝑐)1/4 (2.22) 

 

valid for 1x104 < Ra  < 1x107  

 

 𝑆ℎ𝛿 = 0.15(𝐺𝑟 × 𝑆𝑐)1/3 (2.23) 

 

valid for 1x107 < Ra  < 1x1011  

 

 isothermal natural convection over a flat horizontal plate for flow 

from the top towards the plate: 

 

 𝑆ℎ𝛿 = 0.27(𝐺𝑟 × 𝑆𝑐)1/4 (2.24) 

 

valid for 1x105 < Ra  < 1x1010  

 

where the dimensionless numbers Sh (Sherwood), Re (Reynolds), 

Sc (Schmidt) and Grm (Grashof for mass transfer) are: 
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𝑆ℎ𝑥 =
𝑘𝑐𝑥

𝐷
    

𝑆ℎ𝛿 =
𝑘𝑐𝛿

𝐷
  

𝑅𝑒𝑥 =
𝜌𝑣𝑥

𝜇
  

𝑆𝑐 =
𝜇

𝜌𝐷
  

𝐺𝑟𝑚 =
𝑔𝜌2𝛿3

𝜇2 |
𝜌

𝜌𝑠
− 1|  

 

with x being the distance from the edge of the plate in the direction 

of the flow, D the diffusivity of the gas in question in the gas mix, kc its mass 

transfer coefficient,  is the ratio of the surface area to the perimeter of the 

plate, v is the average velocity of the circulating air with  and  being its 

density and viscosity, respectively, and s is the density of the gas mix at 

the surface of the plate. Ra, the Rayleigh number, is the product between 

Grashof and Schmidt numbers. There is an obvious difficulty in using the 

Grashof number, which is that the density of the gas mix at the surface of 

the plane is unknown. The density of the gas mix depends on its 

composition, which is not known unless kc would be known. If the resistance 

to diffusion through the perforation would be negligible compared to the 

resistances to convection on both ends, and if both would be regarded the 

same, then s could be calculated as the density of the modified atmosphere 

in the package headspace. This implies that the mass transfer coefficient 

for natural convection would depend on the actual concentration gradients. 

It is noted that while this is the only option to quantify the Grashof number 
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without any further analysis, it may overestimate it. However, it usefully 

brings in a dependence of the mass transfer coefficient on the gradient 

across the package. 

In order to compare what these correlations would suggest with the 

values obtained from the literature review discussed previously, the 

following scenario was considered: oxygen transferring from normal air into 

a package with 20 cm of length and 10 of width, at different positions from 

the edge, for an internal gas composition of 100% relative humidity, 15% 

carbon dioxide, 5% oxygen and remaining made up by nitrogen, at 20 oC, 

and with air circulation velocities from 0 (natural convection) to different 

values up to 2 m/s. Under those conditions the Schmidt number was at the 

edge of validity (0.6), the Reynolds number was always in the laminar range 

(2.47 x104 was the maximum value) and the Rayleigh number was within 

validity except for x lower than 4 cm. The results are summarised in fig. 2.7. 

The mass transfer coefficient kc  for natural convection varied with the 

distance from the edge between around 0.002 and 0.003 m/s, which is 

exactly the order of magnitude of the smaller mass transfer coefficients 

reported for large perforations (see fig. 2.5) and also the value predicted for 

“still air” with eq. 2.19 regarding leaves. As the velocity of air increases to 

0.2 m/s (which is the air velocity reported by Montanez et al. (2010a) for 

their storage room) kc increases to around  0.01 m/s, which is exactly the 

range of values reported by Montanez et al. (2010) for oxygen (see fig. 2.5) 

with their wide perforations. Therefore, the dimensionless correlations 
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suggest that the convective mass transfer resistance found with perforations 

wider than 1 mm is exactly what is expected from all the work done in 

chemical engineering for mass transfer by convection from flat plates. 

However, lower diameters have been giving much lower resistances (higher 

kc) to all authors that have worked with small perforations - even extremely 

high air velocities would not justify the high values of kc of perforations of 

0.2 mm and less (see fig. 2.5a). This concurs with the suggestion that the 

turbulence caused by the movement through the perforations disturbs the 

boundary layer quite significantly, and explains why smaller perforations 

give lower resistances: the greater the net velocities of the moving 

molecules coming into and out of the perforations, the greater the 

turbulence and hence the higher the value of kc.  Thus, the hypothesis that 

the concentration gradient across the package may influence the convective 

resistance that was already raised when analysing the Grashof number 

would justify that the mass transfer coefficients from the biophysics plant 

physiology work on leaves are much smaller than those found by Gonzalez 

et al. (2008) and Ghosh and Anantheswaran (2001) in microperforated 

packages with perforations of similar dimension to the leaf micropores. The 

fact that these correlations also fit the data suggested by the independent 

work carried out in plant physiology, where the thickness of the boundary 

layer was considered to vary with the air velocity and distance from the edge 

of the leaf, but not with the size of the pores (see eq. 2.18), further stresses 

that if the fluxes out of the pores would not disturb the boundary layer 
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significantly, then the mass transfer coefficients from a pore or from a film 

would be similar.  

 

 

Figure 2.7 - Mass transfer coefficients at 20 oC predicted by the 
dimensionless correlations for oxygen moving into a flat surface at different 
positions (x, in cm) from the edge in the direction of the air flow, using the 
physical properties of normal air and a density gradient for the Grashof 
number caused by density difference to a modified atmosphere saturated in 
water vapour, with 15% carbon dioxide and 5% oxygen. 

 

The results shown in figs. 2.5 and 2.7 suggest that this is the case 

for perforations greater than 1 mm and therefore, the existing correlations 

seem to suffice for wider perforations. This leads to the curious conclusion 

that the correlations proposed by Emond et al. (1991), Fonseca et al. (2000) 

and Montanez et al. (2010a) could be replaced by equations 2.4 and 2.17-

19 for dh greater than 1 mm. For smaller perforations, however, more work 

is needed to develop dimensionless correlations for mass transfer 
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coefficients that will certainly be showing the importance of the diameter of 

the perforation and the gradient of concentrations across the package, in an 

effect that levels off and becomes negligible as the perforation size 

increases. 

 

2.2.6. Methods solving the fundamental equations of mass and 

momentum transfer 

 

If convection mass transfer resistance through the boundary layer is 

of critical importance to designing perforated packages, then dimensionless 

correlations would not be the most accurate way of addressing the problem. 

With the availability of strong computing power, it is possible to solve 

complex expressions numerically with a good level of precision and the full 

set of fundamental equations of motion, that is, the hydrodynamic terms in 

3 dimensions and the diffusional terms in 3 dimensions could be used. The 

hydrodynamic equations (Navier-Stokes) are a set of 3 equations with 

partial derivatives for 3 components of velocity in the 3 axis, and thus the 

full problem is defined by a set of 6 partial differential equations. 

Xanthopoulos, Koronaki, and Boudouvis (2012) have solved that problem, 

assuming Fick's law with the diffusivities of gases in stagnated air. They 

compared the total flux from a film that is not fully impermeable, and where 

there is a balance between the flux through the film and through the pores; 

for the case studies analysed, the former varied between 5 to 15% of the 
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total, with the film being polypropylene.  Rennie and Tavoularis (2009a) 

used Stefan-Maxwell’s equations and also added the energy (temperature) 

balance, which Fennir, M. (1997) also used. When solving the problem with 

the full set of fundamental equations, one could consider that it is a minor 

added complexity to consider temperature and this would provide an even 

more precise result. All methods mentioned previously assume perfect 

isothermal conditions. However, it is evident that this cannot be the case in 

reality because respiration releases heat, therefore, even in steady state the 

temperature of the product must be somewhat higher than its surroundings. 

Notwithstanding, the temperature difference may well be irrelevant as a few 

degrees are unlikely to change physical properties noticeably, which is likely 

to be the case considering that all authors reviewed before obtained perfect 

fits considering isothermal conditions. However, even small temperature 

differences may influence the fluxes through the perforations, so this is an 

issue that deserves further attention in the determination of the convective 

mass transfer coefficients. In the case of Fennir, M. (1997) work, the 

temperature balance was important because the author was measuring 

respiration rates with accuracy by analysing variations of compositions in 

containers.  

While this approach can provide accurate results, it is still a very 

complex endeavour and requires significant computing time and advanced 

skills of the designer. It is therefore not very efficient to assist packaging 

design in real time and real conditions of practice, where both generally lack. 
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As will be shown in the next section, packaging design using unidimensional 

Fick’s law with mass transfer coefficients provided by dimensionless 

correlations gives a very easy method to determine the optimum area of 

perforations for any particular batch of products and packaging film, and 

therefore can be implemented in practice with minor difficulty and used by 

designers with basic skills.  The chemical engineering work on mass 

transfer operations (Bird, Stewart, and Lightfoot 2007, Foust 1980) has 

proved that this approach provides results that are quite adequate, in spite 

of the relatively high level of uncertainty in using constant values of kc and 

of D, for a very wide range of problems of chemical engineering. However, 

it is important that the dimensionless correlations provide results that are as 

accurate as possible. The importance of accurate values for kc is analysed 

in the next section.  

Numerical solutions of the fundamental equations have a crucial role 

to play in providing a good assessment of dimensionless correlations and 

their parameters, and link fundamental phenomenological with practice 

results. This is exactly how this area has evolved in chemical engineering, 

for instance, the correlations in equations 2.20 and 2.21 have been found 

to correspond with good accuracy to the results inferred from a fundamental 

analysis of boundary layer movements (Baehr and Stephan, 2006), while 

those of equations 2.22 to 2.23 have not yet been addressed in the same 

way, so their application has a much higher level of uncertainty. If 

researchers solve the problem of permeability of perforated packages by 
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numerical solution of the fundamental equations to study in particular the 

boundary layer surrounding the perforations, and from this work test and 

propose dimensionless correlations, this would give a much greater 

confidence in the application of these tools to packaging design. 

Furthermore, it would be possible to study a variety of scenarios 

individualising different effects (such as distance between packs due to 

distance between trays in palettes, differences in hydrodynamic conditions 

resulting from different storage environments, effect caused by fans on 

temperature controlled rooms, etc). 

It is noted that if a fundamental approach is taken to give an accurate 

description of reality, then either Stefan-Maxwell equation should be used, 

or the diffusion coefficient for each gas (in the mix at any point of the space) 

should be considered variable, according to eq. 2.16. 

 

2.3. PACKAGING DESIGN ENGINEERING 

 

The design of a perforated package, that is, the determination of the 

ideal area of perforation for a given film, package and product, is simple by 

using Fick’s law with constant diffusivity and a convection mass transfer 

parameter. Combining equations 2.3 and 2.7 gives an effective, or apparent, 

permeability for a film as a function of its perforations, defined also by 

Mastromatteo et al. (2012). It is proposed to use the term apparent diffusivity 
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instead of permeability for a question of consistency of units, as discussed 

before: 

 

 𝑛𝑖 = −
𝐷𝑒𝑖𝐴

𝐿

(𝑦𝑖,𝑒−𝑦𝑖,𝑖)𝑝𝑡

𝑅𝑔𝑇
 (2.25) 

 

where A is the whole area of package exposed to air (film plus 

perforations) and De the effective diffusivity of a perforated package, which 

is equal to: 

 

 𝐷𝑒𝑖 = 𝐷𝑎𝑖 + (
1

1

𝐷𝑖
+

1

𝐿×𝑘𝑐𝑖

− 𝐷𝑎𝑖)
𝐴ℎ

𝐴
 (2.26) 

 

It is reminded for clarity that Di is the effective diffusivity of gas i 

through air in the perforation (taken as a constant, and that is likely to be 

lower than that through normal stagnated air), Dai is the apparent diffusivity 

of gas i through the polymeric film, which is equal to its real diffusivity 

multiplied by the solubility (taken to be constant), and Dei is the effective 

diffusivity of the perforated package, which is equal to its effective 

permeability upon conversion of units by comparison between eqs. 2.2 and 

2.25. 

At steady state, the diffusional fluxes of eq. 2.25 for oxygen and 

carbon dioxide equal their consumption and production (respectively) from 

the respiration rate. Designating Ri as the respiration rate in moles of gas 
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consumed or produced per unit of time and of mass of product gives a set 

of 2 equations: 

 

 
𝐷𝑒𝑂𝐴

𝐿

(𝑦𝑂,𝑒−𝑦𝑂,𝑖)𝑃𝑡

𝑅𝑔𝑇
= (−𝑅𝑂)𝑤 (2.27) 

 

 
𝐷𝑒𝐶𝐴

𝐿

(𝑦𝐶,𝑖−𝑦𝐶,𝑒)𝑃𝑡

𝑅𝑔𝑇
= 𝑅𝐶𝑤 (2.28) 

 

where O denotes oxygen and C carbon dioxide and w is the weight 

of the product inside the package. It is noted that as oxygen is consumed 

RO is negative (using the standard chemical reaction engineering notation 

of negative rates for reagents and positive for products), so the quantity -RO 

is positive, and it is also noted that the minus sign for carbon dioxide was 

removed by switching the inner and outer molar fractions in the numerator. 

In this way, all values in equations 2.27 and 2.28 are positive. Dividing eq. 

2.28 by 2.27 gives: 

 

 𝑦𝐶,𝑖 = 𝑦𝐶,𝑒 +

𝑅𝐶
(−𝑅𝑂)⁄

𝐷𝑒𝐶
𝐷𝑒𝑂

⁄
(𝑦𝑂,𝑒 − 𝑦𝑂,𝑖) (2.29) 

 

The ratio of the effective diffusivity of carbon dioxide to that of oxygen 

is the same as the ratio of the effective permeabilities, which is known as . 

The ratio of the respiration rates of carbon dioxide to oxygen is known as 
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the respiratory quotient, RQ, thus, if the respiratory quotient is constant, eq. 

2.29 defines a straight line in a carbon dioxide versus oxygen plot: 

 

 𝑦𝐶,𝑖 = 𝑦𝐶,𝑒 +
𝑅𝑄

𝛽
(𝑦𝑂,𝑒 − 𝑦𝑂,𝑖) (2.30) 

 

For instance, taking typical polymeric films (EVA, LDPE and Saran 

were chosen, providing a spread of different permeabilities and values - 

Exama et al., 1993; Mahajan et al., 2006), with Ah=0 (no perforations), and 

using the respiration rate model of strawberries proposed by Hertog et al. 

(1999) gives the 3 dashed lines in fig. 2.8, for storage temperatures of 10 

oC (fig 2.8a) or 20 oC  (fig 2.8b). The model proposed by Hertog et al (1999) 

does not require RQ to be constant, so the lines are not straight. They only 

deviate significantly from a straight line, however, for low concentrations of 

oxygen because under those conditions the strawberries would be 

fermenting, and this portion of the lines (below 5% oxygen) is of no practical 

interest (the packages would be inflated and unsaleable and the product 

could be a health hazard). To avoid confusing the graph with regions of no 

interest, the lines shown in fig. 2.8 are extrapolations for oxygen 

concentrations below 2% (the original model would start increasing carbon 

dioxide content abnormally, as in those conditions it is essentially describing 

fermentation, not respiration). 
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Figure 2.8 - Modified atmospheres that can be generated by strawberries following 
the respiration rate model of Hertog et al. (1999) packed in EVA, LDPE or Saran 
films with permeabilities according to Exama et al. (1993), both influenced by 
temperature, for storage at 10 oC (a) and 20 oC (b). The dashed lines give all 
possible atmospheres for each film if unperforated, depending on temperature, film 
thickness and area to weight ratio of the package. The symbols indicate 

atmosphere compositions of a package with 20x10 cm2 of exposed area of 25 m 
films and 300 g of strawberries, from unperforated (points on top of the respective 
line) to increasing number of perforations of 0.1 mm diameter (each additional 
perforation is one further point).   
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Any package using these films will lead to a modified atmosphere at 

equilibrium somewhere along the respective line, whatever the thickness of 

the film, the area exposed, the temperature of storage and the weight of 

product packed. The optimum gas composition for storage of strawberries 

is also shown as a dotted rectangle, and therefore, no film would give 

optimum conditions, whatever the characteristics of the package. 

The exact location within the line can be calculated easily by handling 

equations 2.26 and 2.29 together with the respiration rate model. To 

illustrate the effect of package characteristics, fig. 2.8 shows the 

composition of a modified atmosphere for 300 g of strawberries that would 

respire exactly as those of Hertog et al. (1999) stored at 10 oC (a) or 20 oC 

(b) in a pack with a 20x10 cm2 exposed film of 25 m thickness - this implies 

that the effect of humidity on permeability is being neglected (an issue that 

will be discussed in part 2 of this work). The effect of temperature on the 

permeability of the films was considered, using the activation energies from 

Exama et al. (1993), and thus the lines are different for different 

temperatures, as figs. 2.8 a and b show. It can be seen from equations 2.29 

and 2.30 that if temperature increases, as the activation energy of the 

respiration rate model is higher than that of the films, the location of the 

modified atmosphere would slide along the line to the left (as respiration 

increases more than permeation does), although it is noted that the lines 

themselves would change somewhat too, because temperature affects both 

the permeability and the respiration rate ratios due to the activation energies 
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for oxygen and for carbon dioxide being different in both cases. Using a 

thicker film and using a lower ratio A/w would also move the location of the 

points to the left - sliding to the right would result from lower temperature, 

thinner films or bigger A/w ratios. The individual values of A and w do not 

matter, only their ratio, according to eqs. 2.28 and 2.30 - this is because the 

respiration rate models proposed in literature do not consider any effect of 

the surface area and grouping/packing of the different individual pieces of 

strawberries within a package. It can be seen that all 3 films are so 

impermeable for a package of those characteristics, that all of them would 

be totally inappropriate for these strawberries, as the package would tend 

to anoxia and fermentation would set. It would be possible to have oxygen 

concentrations of 5 to 10% only if using excessively thin films and/or too 

high A/w ratios, but even in those cases, the carbon dioxide content would 

still be quite low, as one wold be sliding along the dotted lines. 

Perforating the package will modify the permeability, increasing it 

overall and also lowering the value of  (eq. 2.29), therefore, the 

corresponding atmospheres will be providing points further up and further 

to the right in fig. 2.8.  Fig. 2.8 shows the location of the modified 

atmospheres for different numbers of perforations of 100 m each using for 

gas diffusivity the values for diffusion across stagnated air and a mass 

transfer coefficient equal to the diffusivity divided by 50 m, which is the 

prediction from Fishman et al. (1996) for =0.5 (this corresponds to a kc 

value of 0.38 m/s for oxygen and 0.30 m/s for carbon dioxide at 10 oC, which 
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are just slightly lower than the values of data points in fig. 2.5, of around 0.4 

m/s). The data tend to the full line in fig. 2.8, which is given by the ratio of 

the respiratory quotient to the permeability ratio  of the perforations 

(diffusion and convection through air), which is evident from the equations. 

Saran is the most impermeable film (0.086 and 0.710 mL.mil.m-2.atm-1.hr-1 

for oxygen and carbon dioxide, respectively, at 10°C, from Exama et al. 

1993), and thus even one single perforation is enough to bring the modified 

atmosphere composition to the line drawn for air (this point is outside the 

scale of fig. 2.8, being of no practical interest). In effect, using a Saran film 

or a fully impermeable material would give the same result in this case. It is 

noted that for strawberries, as the line for air actually crosses the optimum 

window, this is a very good option, so a good package for strawberries 

would be the cheapest container that is gas impermeable, with the suitable 

number of perforations (10 would give the point closest to the center of the 

window of fig. 2.8 for Saran) - however, it is reminded that this conclusions 

is based on the oxygen and carbon dioxide balance only, and is neglecting 

water and humidity. LDPE (permeabilities of 110 and 0.710 mL.mil.m-2.atm-

1.hr-1 for oxygen and carbon dioxide, respectively, at 10 oC, from Exama et 

al., 1993) with 8 perforations would be estimated to provide a similar result, 

while EVA, being very permeable to carbon dioxide (158 and 945 mL.mil.m-

2.atm-1.hr-1 for oxygen and carbon dioxide, respectively, at 10 oC) would not 

allow a sufficient build up of carbon dioxide at 10°C to reach the optimum 

window with this type of package (it could however reach it by increasing 
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the thickness to 60 m, for instance). It is noted that these observations 

apply to films with the properties of those tested by Exama et al. (1993): 

specific films can vary significantly depending on a variety of characteristics, 

among various suppliers, even if they would all be called LDPE, for instance. 

In order to assess the importance of the accuracy in diffusivity and in 

mass transfer coefficients, fig. 2.9 shows what happens to a given prediction 

as these values change. Figure 2.9a shows just the importance of diffusivity 

and of mass transfer coefficients for the same perforation size of 100 m, 

comparing 4 different methods of estimating the mass transfer coefficients. 

The full symbols show the results obtained using the diffusivities of oxygen 

and carbon dioxide through normal stagnated air and the open symbols 

using gas diffusivities 80% lower for oxygen and 90% lower for carbon 

dioxide (this is a difference expected from the analysis of Stefan-Maxwell’s 

method discussed earlier). The circles show the result using Fishman et al. 

(1996) suggestion for equivalent length, the squares the result with Paul and 

Clarke’s (2002) derivation with  = 7/6, the triangles the result of kc = 0.4 

m/s, which is the approximate value in fig. 2.5a for both gases, due 

essentially to Gonzalez et al. (1998) and Ghosh and Anantheswaran (2001) 

data, and the diamond shapes show the results with the dimensionless 

correlations that neglect the influence of the hydrodynamic disturbances in 

the boundary layer near the perforations (eqs. 2.20 to 2.24) for air circulation 

velocities of 1 m/s.  
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Figure 2.9. Variation of the composition of modified atmospheres for 300 g 
of strawberries following the respiration rate model of Hertog et al. (1999) 

packed in a package with a 20∙10 cm2 area of a 25 m thick Saran film at 
10°C predicted by assuming different values for the diffusivity of the gases 
through the perforations and the mass transfer coefficients. 
a) with 10 perforations of 100 m each, full symbols indicating the use of the 
diffusivity of gases in stagnated normal air and open symbols diffusivities 80% 
lower than that. Estimates of the mass transfer coefficients according to the method 

indicated on the graph (circles for =0.5, squares for =7/6, triangles for values 
taken from fig. 2.5 and diamonds for values from eqs. 2.20 to 2.25) 
b) using diffusivity of gases in stagnated normal air and the same total area of 
perforations, but different number and sizes of perforations. Full symbols for 40 of 
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50 m each, shaded symbols 10 of 100 m and open symbols 1 of 316 mm. Mass 

transfer coefficients estimated with  =0.5 (circles), =7/6 (squares) and taken from 
fig. 2.5 (triangles). 

 

It can be seen that the diffusivity can affect significantly the 

predictions from the distances between the open and closed symbols. 

However, as previously found, the most important issue may be to use a 

diffusivity that relates to a situation of each gas moving across a mix of 

diffusional flows, and not across a stagnated mix, and for higher carbon 

dioxide concentrations that in normal air. Fig. 2.9 shows that this may be a 

relevant difference. The most important effect, however, is that of the mass 

transfer coefficients. Even a difference between 0.4 and 0.38 to 0.30 

between Fishman, Rodov, and BenYehoshua (1996) suggestion and the 

data of fig. 2.5 provides quite significant differences. Using Paul and Clarke 

(2002) value for this package and product would provide a completely 

different result (the corresponding kc values being 0.16 and 0.13 m/s for 

oxygen and carbon dioxide, respectively, for diffusivities through stagnated 

air), and the most different would be the one considering the mass transfer 

coefficient to be equal to that from a flat plane (dimensionless correlations 

and plant biophysiology correlations, giving kc values of 0.03 m/s). 

Unsurprisingly, the smaller the mass transfer coefficient, the further to the 

left the location is in the graph, as lower kc means greater resistance to 

mass transfer, so the effective permeability of a perforated film increases 

with kc. The consequence regarding the package design is that if one was 

using the broad kc values from fig. 2.5, the result would suggest one or two 
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more perforations than the results with =0.5, while taking the Paul and 

Clarke (2002)  value of =7/6 would suggest using many more perforations.  

Fig. 2.9b shows the relevance of the size of perforations. In this case, 

all data points were obtained with the diffusivities in normal stagnated air, 

and the perforation size and number was varied. The shaded symbols show 

the same points as in fig. 2.9a for 100 m perforations, which with 10 

perforations gives a total area of 0.0785 mm2. This same area can be 

obtained with 1 perforation of 316 m which would lead to the full symbols, 

the 10 perforations of 100 m as in fig. 2.9a (shaded symbols), and with 40 

perforations of 50 m (open symbols). The circles are the predictions using 

=0.5, the squares with =7/6, and the triangles the kc values from fig. 2.5 

(which are around 1.2 and 1.7 m/s for 50 m for oxygen and carbon dioxide, 

respectively, according to the data from González et al. (2008), and both 

around 0.1 m/s for 0.3 mm). Fig. 2.9b shows a rather dramatic effect of the 

size of the perforations, whatever the method of quantifying the convection 

resistance. 

Both fig 2.9a and 2.9b show that estimating the mass transfer 

coefficient is a key issue for a proper design of perforated packages, and 

that the existing data is insufficient. The significant influence of even small 

variations in kc raises a particular problem with the use of perforated films 

in practice. As air circulation velocities are bound to affect the mass transfer 

coefficients significantly, the permeability of a perforated package may 

effectively change with changes in the hydrodynamic conditions 
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surrounding the package. This is a significant hindrance because in real-life 

distribution chains these are likely to vary from store houses, to 

transportation vehicles, to store displays. Therefore, it is noted that the 

possibility of covering the perforations with a highly permeable label raised 

for safety reasons (preventing microbial contamination) would also offer an 

alternative that would result in a more robust performance. This would break 

the velocity profile and minimise the disturbance at the boundary layers, and 

although increasing the total resistance, it would make the system more 

predictable and less prone to variations caused by differences in the 

surrounding hydrodynamic conditions. 
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2.4. CONCLUSION 

 

There have been several authors addressing the packaging design 

with perforated films and proposing a variety of different methods and 

models. However, all data can be pooled together and are quite consistent 

when seen under a same light. A mass transfer analysis considering a 

constant Fickian diffusion and a mass transfer coefficient is a simple and 

effective way to quantify the situation with sufficient precision, although it 

would be more appropriate that the diffusivity values are representative of 

diffusion through perforations, which may be somewhat smaller than the 

diffusivities of the gases through stagnated air.  

The composition of a modified atmosphere at equilibrium estimated 

by any method depends significantly on the actual values of the mass 

transfer coefficient (or equivalent length, if that parameter would be 

preferred to quantify the convective resistances). All data analysed actually 

shows quite clearly that the diameter of the perforations influences these 

resistances very significantly, especially for perforations of less than 1 mm 

diameter, and therefore, broad suggestions that the only parameter that 

matters is the total area of perforations are not correct. The analysis of the 

data indicate that the disturbance of the boundary layer by the molecular 

counterflows through the perforations increases the mass transfer 

coefficient significantly (lower the resistance), and therefore the greater the 

concentration gradient across the package and the smaller the diameter, 
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the higher the effective permeability of a perforated package. No correlation 

proposed to date to quantify the convective resistance is satisfactory, either 

because it does not consider the actual conditions of perforation 

counterflows and their effect on the boundary layer, and thus underestimate 

the mass transfer coefficient significantly (that is, they suggest lower 

permeabilities than reality), or because they do not benefit of any dynamic 

similarity and are only valid for the set of data used to generate them. 

It is therefore urgent to develop appropriate dimensionless 

correlations to estimate the mass transfer coefficients, which will need to 

consider the surrounding air velocities, diameter and length of the 

perforations (thickness of the film), geometry and dimensions of the surface, 

and concentration gradient across the package.  
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3. EFFECT OF HYDRODYNAMIC CONDITIONS AND GEOMETRIC ASPECTS 

ON THE PERMEANCE PERFORATED PACKAGING FILMS 

 

ABSTRACT 

 

Modified atmosphere packaging (MAP) is applied to extend shelf-life 

of fresh and minimally processed produce. It ensures a protective gas 

composition inside the package as a result of the interplay between product 

respiration and package permeability. Commonly used films, such as 

Oriented Polypropylene (OPP), are too impermeable to gases for successful 

MAP for products with moderate to high respiration rates, which has led to 

perforated systems. In order to design the perforation profile to ensure MAP 

targets for extended shelf life it is necessary to evaluate which parameters 

affect the mass transfer through the perforations significantly. Perforations 

(270, 450 and 750 m diameter) were made in an OPP film with the inner 

atmosphere initially flushed to high carbon dioxide and no oxygen and 

allowed to equilibrate to atmospheric conditions under different 

temperatures and circulating air velocities, considering also different 

locations for the perforations. The oxygen concentration was measured with 

a non-intrusive method, providing the data for calculation of the resulting 

permeance. The results obtained showed that the perforation diameter is 

the most important parameter and can even be more significant than the 

total area of perforation (and therefore the number of perforations). Air 
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velocity around the package and storage temperature were also relevant. 

Stacking during storage risks blocking perforations and therefore it is 

recommended to pierce trays on the sides in order to ensure better 

robustness. The package gas composition itself also affected mass transfer 

due to the interplay of oxygen flux with other gas fluxes, with particular 

relevance to the case of water vapour. 
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3.1. INTRODUCTION 

 

Modified atmosphere is a technology used to prolong the shelf life of 

fresh and minimally processed food. It consists in manipulating the levels of 

gases (generally O2, CO2, N2 and water vapour creating an atmosphere 

composition different to that of normal air. Modified atmosphere packaging 

(MAP) ensures a protective gas composition inside the package as a joint 

result of the respiration of the product itself and the permeability of the 

package. It typically contains an inert gas (nitrogen) combined with carbon 

dioxide which has an antimicrobial activity, and low levels of oxygen 

(Spencer 2005).  

 Atmosphere is not constant in all MAP products and will change 

according to the permeability of the packaging material, the microbiological 

activity and respiration of the food itself. Successful MAP requires raw 

materials to have a low microbiological count and strict temperature control 

throughout the process (Fellows 2009). 

Oriented polypropylene (OPP) is a commonly used packaging film 

that has low permeability to water vapour (WV), O2 and CO2. As OPP is too 

impermeable to gases, it results in excessive humidity build-up leading to 

condensation and early mould development and even dangerous anoxia 

conditions and for this reason such films are now commonly micro or 

macroperforated to increase their permeability. 
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In order to design the perforation profile to ensure MAP targets to 

extend shelf life while avoiding anoxia, it is necessary to quantify 

appropriately the permeability of a perforated package. A main problem that 

has not received sufficient attention to date is that the effective permeability 

of perforations is much more dependent on factors such as the 

hydrodynamic movements outside the package than would be the case in a 

non-perforated film and therefore the importance of all relevant parameters 

for this particular case needs to be assessed comprehensively. 

Air movement is actually essential to prolong the shelf life of fresh 

fruits and vegetables as it assists in liberating the respiration heat during 

storage. Temperature differentials due to this heat release would increase 

the water vapour pressure difference near the surface of the product and 

thus increase evaporative water loss (transpiration). The air movement 

should be enough to prevent large temperature gradients forming without 

affecting the water vapour pressure around the produce (DeELL, Prange, 

and Peppelenbos 2003). 

There have been different propositions on how to quantify the 

permeance of a package due to perforations, as shown in Chapter 2. Most 

of these consider only one parameter, such as the perforation diameter, or 

a few, with empirical expressions that do not obey the principle of dynamic 

similarity - this means that their applicability is limited to the range of values 

used in the experimental set of data used to derive the correlations for each 

of these parameters. 
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Gas flows through perforations have been extensively studied in 

various chemical engineering applications and a simple yet powerful 

approach to quantify these fluxes is to determine the convection mass 

transfer coefficients and relate them to the relevant system parameters with 

dimensionless correlations, which due to the principle of dynamic similarity 

would be amenable for scale up and much wider application. In order to 

establish widely applicable correlations it is necessary to obtain a significant 

amount of experimental data and therefore it is advantageous to establish 

first which system parameters are more influential and need to be 

considered with greater care in the development of these correlations. 

Montanez et al. (2010b) observed that there is air movement in storage 

rooms as a result of the cooling equipment. The impact of this on the mass 

transfer coefficient of packaging films was analysed, but their study was 

focused on the specific characteristics of their own storage room. As the 

hydrodynamic conditions affect the gas exchange through the perforations, 

it is necessary to study this effect by obtaining results that could be applied 

to different storage conditions, and hence the relevance of dimensionless 

correlations.  

Also, food containers are commonly stacked in order to save space 

during storage. This will create different hydrodynamic conditions 

depending on where and how individual packages are positioned, which 

could impact on their permeability. A particular concern would be regions of 

such stagnated conditions that the packages would reach anoxia. 
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Therefore, it is important to evaluate the effect of stacking on the mass 

transfer coefficients.  

The purpose of this work was to assess the importance of some 

parameters that are found in chemical engineering correlations of 

comparable scenarios: the dimension of the perforations, the number of 

perforations, the average surface velocity of air on the outside of the 

package, the distance between the hole and the edge of the package in the 

direction of the air flow and the temperature of storage. It was also desired 

to analyse the effect of different storage stacking options on the mass 

transfer coefficient. 

 

3.2. MATERIALS AND METHODS 

 

3.2.1. Experimental Procedure 

 

Hermetic containers with an open top where a 7.85 · 10-3 m2 oriented 

polypropylene (OPP) film could be hermetically crimped were used. The 

containers were flushed with 20-23% v/v of CO2 and the balance with N2 

and kept in a walk-in controlled temperature cold room maintained within 

1°C of the set temperature.   

The O2 concentration inside the containers was measured using a 

Fiber Optic Oxygen Transmitter (Presens, Germany). This device uses an 

optical probe to determine the inner concentrations without disturbing the 



 
 

147 
 

inner atmosphere, from colorimetric changes in spots glued to the inner 

surface of the film, across its transparency.  

 

3.2.2. Effect of air velocity, perforation diameter and position of 

perforation 

 

In order to evaluate the effect of air velocity, diameter of perforation 

and distance from the edge, the films were perforated with a needle making 

one single perforation of the defined diameter at the defined location (3 

options for each: 270, 450 and 750 m diameters, and locations (x) at 2.5, 

5 and 7.5 cm from the edge). A fan located next to the packages was set at 

different speeds and the average air velocity over the package surface 

measured, giving 3 different conditions: 0, 2.7 and 4 m/s. The experiments 

were performed at 10°C. 

      

        

Figure 3.1–Position of the Perforation (Dashed circles represent the 
situation where 5 perforations were used) (a) and disposition of the 
containers (b) 

(a) (b) 
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The experimental runs were performed with all the combinations of 

the 3 levels of the 3 factors, and the combination of centre values was 

replicated 3 times, in a total of 30 experiments (see table 3.1 for details). 

The data was analysed with Statistica software for Windows v. 8.0 (Tulsa, 

USA), with a factorial Analysis of Variance with a significance level of 95%. 

In order to avoid the elimination of some results that could be important to 

explain some observed phenomena, results with 0.05 < p < 0.1 were called 

marginally significant and also considered for the analysis (Montgomery 

2013). 

 

3.2.3. Effect of temperature, number and diameter of perforations 

 

The effects of temperature (5, 10 and 15 ºC), number of perforations 

(1, 3 or 5) and hole diameter (270, 450 or 750 m) on the permeability of 

films were analysed with two replicate experimental runs of all the 

combinations of a 33 full factorial design, in a total of 27 experiments. A fan 

was used to create an average air velocity of 2.7 m/s, in order to create 

external turbulence (the mid-point of air velocity studied earlier). Fig 3.1 

shows the locations of the perforations (Fig 3.1.a) and the arrangement of 

containers relative to the fan (Fig 3.b). 
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3.2.4. Effect of area of perforation on mass transfer coefficient 

 

Perforated films with different diameter and number of perforations, 

but similar areas of perforation were analysed in order to determine if the 

total area of perforation being obtained in different ways affects the mass 

transfer coefficient, these results were compared with mass transfer 

coefficient of films with same diameter of perforation but different total 

perforated area. The experiments were performed in triplicate, at 10°C, and 

analysed according to Tukey’s multiple range test at a confidence interval 

of 95% to determine the significant differences between group samples. 

 

3.2.5. Effect of the distance between perforations on mass transfer 

coefficient 

 

Films with two perforations (diameter: 750 m each) with different 

distances between them (0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.5 and 5 cm) were 

analysed. The experiments were performed in triplicate and the mass 

transfer coefficients were analysed according to Tukey’s multiple range test 

at a confidence interval of 95% to determine the significant differences 

between group samples. 
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3.2.6. Effect of different atmospheres in oxygen transfer through the 

packaging 

 

Small containers (volume: 226.2 cm3) with an opened top (area: 44.2 

cm2) fitted with OPP hermetically crimped were flushed with different gas 

compositions. Films were singly perforated with a 750 m-diameter needle. 

Five different atmosphere conditions inside the containers were evaluated: 

i) 20% CO2 and 80% N2; 0% RH; ii) 20% CO2 and 80% N2; 53% RH, iii) 20% 

CO2, 80% N2; RH ambient, iv) 20% CO2 and 80% N2; 100% RH and v) 100% 

N2; RH ambient.  

The containers were kept in a cold room at 5°C and 80±3% ambient 

RH, with air velocity of 2.7 m/s. The RH inside the containers was controlled 

as follows: calcium anhydride (CaCl2 – 0% RH), saturated solution 

Mg(NO3)2 (52.9% RH) and water (100% RH). Experiments were performed 

in triplicate and the mass transfer coefficients were analysed according to 

Tukey’s multiple range test at a confidence interval of 95% to determine the 

significant differences between group samples. 

 

3.2.7. Effect of packing arrangement during storage on the Modified 

Atmosphere Packaging performance of microperforated packages 

 

OPP films were hermetically crimped on small containers (v 226.2 

cm3) and flushed with a mix of N2:CO2 (80:20). All films were single 



 
 

151 
 

perforated with a surgical needle (diameter: 0.750 mm) and kept at 5ºC. A 

fan was used to keep the air velocity at 0.8 m/s around the boxes, creating 

a constant air movement representative of storage in cold rooms.   

All experiments were performed in triplicate. Significant differences 

were assessed with a one-way Analysis of Variance, with post-hoc analysis 

using Tukey’s Honest Significant Difference multiple range test at a 95% 

confidence level. 

 

3.2.7.1. Effect of the position in stacking on the package 

permeance  

 

Containers were stored in plastic boxes commonly used in 

supermarkets, perforated to permit air flow, but without impacting directly 

on perforations. The containers and boxes were kept in a walk-in room at 

5ºC, placed inside two stacked boxes and stacked in the box, in four 

different positions: i) in a box on the top of another box, ii) in a box under 

another box, iii) on the top of another container in a same box and iv) under 

another container in a same box. 

 

3.2.7.2. Effect of the position of the perforation on the 

package permeance 
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Containers were laid out in different positions to determine the 

influence of the direction of flow relative to the perforation. Some containers 

were placed with the perforation perpendicular to the air movement (facing 

the front of the fan), others also perpendicular but hidden from the fan by 

another container, and others parallel to the air direction (top, right and left).  

 

3.2.8. Determination of film permeance 

 

The convection mass transfer coefficients (k) were obtained by least 

squares regression of the model predictions obtained by solving the mass 

balance with Newton’s convection equation. 

 

 

The mass balance to the container in unsteady state is: 

 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑛                               (3.1) 

 

 where C is the gas concentration, n is the molar flow rate of gas 

through the package and V the volume of the container. The flow is 

proportional to the concentration gradient and area of the film (A), with the 

apparent permeance of the perforated film being the proportionality 

constant: 
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𝑛 = P𝑎 A (𝐶𝑒 − 𝐶𝑖)                                (3.2) 

 

where P𝑎 is the apparent permeance of the film. 

 

Using the ideal gas law, C = yP/RT with y being the molar (or 

volumetric) fraction of gas, P the pressure, R the ideal gas constant and T 

the absolute temperature, and developing the equations: 

 

𝑦𝑡 = 𝑦𝑒 − (𝑦𝑒 − 𝑦0) ∙ 𝑒−
P𝑎 A

𝑉
∙𝑡
                      (3.3) 

 

where yt is the molar fraction inside the container at any given time t, 

ye the outer atmosphere and y0 the value of yt at time t=0.  

 

The apparent permeance is the result of the flow through the 

perforations and through the film itself. Equation 3.2 can be decomposed in 

these 2 flows: 

 

𝑛 = 𝑛𝑝𝑒𝑟𝑓 + 𝑛𝑓𝑖𝑙𝑚                                   (3.4) 

 

The flow through the perforations (nperf) is a convective flow which 

can be quantified by Newton’s convection mass transfer law, whereas the 

flow through the film (nfilm) is quantified by its permeance. Hence: 

 



 
 

154 
 

𝑛 = 𝐾𝐴𝑝(𝐶𝑒 − 𝐶𝑖) + 𝑃𝑓𝑖𝑙𝑚 (𝐴 − 𝐴𝑝) (𝐶𝑒 − 𝐶𝑖)             (3.5) 

 

where K is the overall convection mass transfer coefficient through 

the perforations, P𝑓𝑖𝑙𝑚 the permeance of the film itself and Ap the area of the 

n perforations (n∙ /4 ∙ dp
2). Combining eq. 3.5 with 3.2 gives: 

 

𝐾 = P𝑎
𝐴

𝐴𝑝
+ P𝑓𝑖𝑙𝑚  (

𝐴

𝐴𝑝
− 1)                          (3.6) 

 

The effective permeance of the film was determined experimentally 

with unperforated films, which means that if the crimping or sealing would 

not be perfect, this would be accounted for in this experimental value 

anyway. 

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1. Effect of different parameters on the mass transfer coefficient 

 

Data for the unperforated film at 10°C showed that the effective 

permeance of the OPP film with this type of sealing was 1.11∙10-6 cm/s, 

which was similar to the permeance of 1.6 ∙10-6  cm/s reported by Sandhya 

(2010), much lower than the 3.60∙10-4 cm/s provided by Weng, Osako, and 

Tanaka (2009) for OPP at 20°C and a relative humidity of 50% , but greater 
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than the value of 4.06∙10-7 cm/s obtained by Rubino et al. (2001) at 25°C 

and relative humidity of 80%.  

Films were single-perforated and the effect of the air velocity, 

diameter of perforation and distance of perforation from the edge was 

studied. The results are shown in Table 3.1.  
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Table 3.1– Mass Transfer Coefficients (K, in m·s-1; average of 2 repeats) of 

Perforated Films with different perforation diameters (in m),  air velocities 
(in m·s-1) and distances from edge (in cm), and with Pfilm = 1.11∙10-8 cm/s 

 

  Diameter Air Velocity Distance Pa ∙ 107 K ∙ 102 

1 270 0 2.5 3.90 5.20 

2 270 0 5 4.30 5.75 

3 270 0 7.5 4.10 5.47 

4 270 2.7 2.5 5.50 7.39 

5 270 2.7 5 4.10 5.47 

6 270 2.7 7.5 3.50 4.65 

7 270 4 2.5 4.60 6.16 

8 270 4 5 3.50 4.65 

9 270 4 7.5 5.50 7.39 

10 450 0 2.5 4.40 2.12 

11 450 0 5 5.10 2.46 

12 450 0 7.5 9.10 4.44 

13 450 2.7 2.5 7.80 3.80 

14 450 2.7 5 7.10 3.45 

15 450 2.7 7.5 7.20 3.50 

16 450 4 2.5 7.00 3.40 

17 450 4 5 8.50 4.14 

18 450 4 7.5 14.60 7.12 

19 750 0 2.5 7.48 1.31 

20 750 0 5 9.40 1.65 

21 750 0 7.5 5.67 9.89 

22 750 2.7 2.5 11.90 2.10 

23 750 2.7 5 8.40 1.47 

24 750 2.7 7.5 10.40 1.83 

25 750 4 2.5 16.10 2.85 

26 750 4 5 10.90 1.92 

27 750 4 7.5 9.25 1.62 

28 450 2.7 5 7.80 3.80 

29 450 2.7 5 6.20 3.01 

30 450 2.7 5 5.60 2.71 
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Figure 3.2 shows the Analysis of Variance results for the mass 

transfer coefficient K (R2 = 0.94) in a visual manner, with the raw sums of 

squares represented in a pie chart. Diameter was clearly the most important 

parameter, having a negative effect on K. Air velocity was also statistically 

significant, with a positive effect on K. The interactive effects Diameter2 x 

Distance and Air Velocity2 x Distance also presented significant effect on K, 

as shown in Fig. 3.2. The distance from the edge was not significant but 

some interaction effects were statistical significant, which means that its 

effect depends on the levels of air velocity and diameter of perforation. 

 

 

Figure 3.2– Result of the Analysis of Variance of the mass transfer 
coefficient for diameter, distance and air velocity for a single perforation at 
10°C, showing the portions of the raw sums of squares explained by each 
effect (total number of points = 30, total SS = 0.0103), where light grey 
denotes statistically significant effects (p < 0.05), dark grey marginally 
significant effects (0.1 > p >0.05) and black non-significant effects (p > 0.1)                                        
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Air Velocity 
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It is important to note that while an increase in the diameter resulted 

in a decrease on the mass transfer flow rate through the perforation, it 

represented an increase in the apparent permeance, due to the relation 

between both K and Pa and the total area of the film and the area of 

perforation (see Eq. 3.6). This effect on the overall permeance was also 

observed by Mastromatteo et al. (2012) and was related to the fact that the 

perforation offers much less resistance to the flux than the film. Results 

obtained by Techavises and Hikida (2008) also indicate greater 

permeances on wider openings, and they proposed a mathematical model 

that relates diameter and permeability. At the same time, it is expected that 

smaller openings present greater K, as it is possible to associate  mass 

transfer to velocity as it is described by distance of flow per time (Cussler 

2009).  

The air velocity might create a small difference of pressure across 

the perforation, and a  viscous flow component that increases with the air 

velocity (Ghosh and Anantheswaran 2001). The increase in air velocity 

affects the flow at the film that tends to pass from laminar to turbulent 

leading to an unstable pattern (Bird, Stewart, and Lightfoot 2007). The 

influence of the air velocity on the oxygen transport through perforated 

packaging was observed also by Allan-Wojtas et al. (2008) and Montanez 

et al. (2010b) in different conditions.  

As the diameter of perforation had the greatest effect on the mass 

transfer (within the ranges of values assessed), the effect of number of 
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perforations and temperature on the mass transfer were studied with air 

ventilation fixed at 2.7 m/s and films single-perforated were pierced at 5 cm 

from the edge. The mass transfer coefficients obtained are shown in Table 

3.2.   

 

Table 3.2– Mass Transfer Coefficient (K, m2·s-1, average of 2 repeats) of 
Perforated Films with different number of holes (X1) and diameter of 

perforations (X2, in m), air velocity  of 2.7 m/s at 5, 10 and 15ºC. 
 

 Holes Diameter K₅ K₁₀ K₁₅ 
1 1 270 8.62·10-2 5.06·10-2 7.26·10-2 

2 1 450 4.02·10-2 2.57·10-2 6.02·10-2 

3 1 750 2.07·10-2 1.65·10-2 2.59·10-2 

4 3 270 7.78·10-2 4.83·10-2 7.65·10-2 

5 3 450 2.94·10-2 4.18·10-2 4.12·10-2 

6 3 750 1.96·10-2 2.05·10-2 2.99·10-2 

7 5 270 6.06·10-2 5.31·10-2 5.88·10-2 

8 5 450 3.17·10-2 3.14·10-2 6.56·10-2 

9 5 750 2.13·10-2 1.81·10-2 1.71·10-2 
K₅, K₁₀, and K₁₅ are values of mass transfer coefficient at 5, 10 and 15ºC, respectively.  

 

The Analysis of Variance results showed that the diameter of 

perforation was again the parameter with the most significant effect on the 

mass transfer coefficient. The quadratic term of temperature also presented 

a negative effect on K.  
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Figure 3.3– Result of the Analysis of Variance of the mass transfer 
coefficient for diameter, temperature and number of perforations, with 2.7 
m/s air velocity, showing the portions of the raw sums of squares explained 
by each effect (total number of points = 54, total SS = 2.4483), where light 
grey denotes statistically significant effects (p < 0.05), dark grey marginally 
significant effects (0.1 > p >0.05) and black non-significant effects (p > 0.1)   

 

The interactions between temperature and diameter of perforation 

(Temperature x Diameter and Temperature x Diameter), the linear effect of 

temperature and the interaction between temperature and number of 

perforations (Temperature x Number of perforations2) all had significant, 

and positive, effect on K. The interaction between number and diameter of 

perforations (Number of perforations x Diameter of Perforations) also 

presented a significant, but negative, effect.  
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Storage temperature influences some air properties such as density, 

viscosity and diffusion, which affects the air flow and the transport through 

the perforations.  

Diameter of perforation was the most influential variable on the mass 

transfer coefficient, which decreased with an increase in the diameter, same 

tendency observed by Montanez et al. (2010b) and generally found in the 

meta-study shown in Chapter 2. As the perforation diameter narrows 

turbulence increases due to the higher resistance to the flow and higher 

velocities, thus an increase in the mass transfer coefficient (Javaherdeh, 

Mirzaei Nejad, and Moslemi 2015). 

González et al. (2008), however, associated oxygen transmission 

rate with area of perforation, but considered that diameter of perforation did 

not affect the oxygen permeability. They affirmed that with diameters in a 

range between 96 and 118 m the oxygen transmission rate increased only 

by 30% according to the mathematical model that they proposed relating 

area of perforation and oxygen transmission rate, while Ghosh and 

Anantheswaran (2001) observed an increase of almost 300% on the oxygen 

flux.  

In order to study the role of area, Table 3.3 shows the comparison 

between total area and diameter of perforations. These results help to 

determine whether the total area of perforation or diameter of perforation 

affects k. Perforated films with different number and diameter of 

perforations, but similar areas of perforation (0.0016, 0.003 and 0.008 cm2), 
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and with different areas but similar diameter of perforation (260, 270, 450, 

600 and 700 m) were analysed.  

The results indicated that the diameter is the most important 

parameter; films with same or similar diameter of perforation presented the 

same K, despite the fact they had different numbers of perforations (and 

therefore different total area of perforation). 

 

Table 3.3- Mass Transfer Coefficient (K, in ·m-2·s-1, average of 3 replicates) 

of Perforated Films with different number of perforations, diameter (in m) 
and area of perforation (in cm2), with air velocity  of 2.7 m/s 

 

Row Perforations Diameter Area K 

1 1 270 0.00057 5.70·10-2 a 

2 3 260 0.00159 5.11·10-2 a,b 

3 1 450 0.00159 4.08·10-2 a,b,c 

4 3 270 0.00172 5.79·10-2 a 

5 1 600 0.00283 2.99·10-2 c 

6 5 270 0.00286 5.19·10-2 a,b 

7 1 750 0.00442 1.99·10-2 c 

8 3 450 0.00477 4.04·10-2 a,b,c 

9 2 700 0.0077 2.15·10-2 c 

10 5 450 0.00795 3.12·10-2 b,c 

K values followed by different letters are significantly different (p < 0.05). 

 

 Experiments 2 and 3, 7 and 8, and 9 and 10 had same or similar 

total area of perforation and their results were statistically equal (p > 0.05), 

but experiments 5 and 6 had the same area and yet different results. At the 

same time, experiments with similar diameter of perforation had K 

statistically equal, independent of the number of perforations, i.e. despite of 
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the fact that they had different areas. Experiments 2 and 3 had the same 

area of perforation and were statistically equal, but they were also equal to 

experiments 6 and 1, which have areas of perforation 75% bigger and 65% 

smaller, respectively. They were also statistically equal to experiments 3 

and 8, with 450 m of diameter, same observed on experiments 10, 9, 7 

and 5, suggesting that the total perforated area did not influence the mass 

transfer coefficient of the perforated films. 

Techavises and Hikida (2008) observed that the total permeability of 

their films did not vary linearly with the total area of perforations, but did not 

investigate the causes, and just associated it to the fact that the effective 

thickness might be greater than the real value, as other authors have also 

suggested.  

Films with 260, 270, and 450 m of hole diameter had the same mass 

transfer coefficient, as well as films perforated with 450, 600, 700 and 750 

m. It is possible that the perforations did not present a diameter exactly 

equal to the diameter of the needle. As pinpointed by Allan-Wojtas et al. 

(2008), perforations made by cold needles can be partially covered by the 

remained material, affecting the effective perforation size.  

Measurements using image software showed that perforations 

presented a real diameter of 746 ± 87 m, which means that diameter 

variated from 659 to 833 m. Perforations with a needle of 450 m diameter 

resulted in holes of 418 ± 78 m (340 to 496 m). Greatest variations were 
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observed on perforations made by needles of 270 m diameter, whose 

average effective diameter was 350 ± 124.   

González et al. (2008) calculated the exact area of each perforation 

obtained and suggested the use of small perforations assuming that the 

effect of imprecise perforations of small holes on the mass transfer would 

be lower. However, the results of this present work lead to the opposite 

conclusion, because the smallest perforation presented greatest variation 

on diameter. 

These results can justify the similar results observed for 270 and 450 

m and then amongst 600, 700 and 750 m.  

Meidner and Mansfield (1968) proposed that the explanation for the 

mass transfer coefficient depending only on diameter and not on area lies 

in Stefan’s Law, as illustrated in Fig. 3.4. When the pore diameter increases 

by a factor f, its area increases by f square, but the length of a diffusion path 

increases by f; rephrasing: “the rate of diffusion is proportional to the 

diameter of the surface, and not its area”. 

 

Figure 3.4 - Representation of flow path through a pore. Adapted from 
Meidner and Mansfield (1968).  
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3.3.2. Influence of the distance between perforations 

 

The distance between perforations could affect the mass transfer 

coefficient due to synergistic effects when perforations are close, The 

greater the distance between pores, the smaller the effect of the flux path 

through one pore into the other (Meidner and Mansfield 1968). In order to 

assess the relevance of this issue, films with two perforations with different 

distances between them were analysed.  

 

Table 3.4– Mass Transfer Coefficient () of Perforated Films with different 
distances between two perforations (average of 3 replicates) 

 

Distance K ∙ 102 (m/s) 

0.1 1.56 ± 0.38 a 

0.2 1.43 ± 0.21 a  

0.3 1.49 ± 0.17 a 

0.5 1.86 ± 0.42 a 

1.0 1.59 ± 0.15 a 

1.5 1.95 ± 0.17 a 

2.5 2.05 ± 0.37 a 

5.0 2.07 ± 0.13 a 

 

While there seems to be some increase of the mass transfer 

coefficient with the distance, there were no statistically significant 

differences between all values (10ºC, air velocity: 2.7 m/s, diameter of 

perforation: 750 m), and thus this effect may exist but it does not have a 

significant impact to merit being considered further in the design of MAP, 

even with small distances between perforations.  
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3.3.3. Effect of storage conditions during storage on mass transfer 

coefficient  

 

3.3.3.1. Effect of the position in stacking on the package 

permeance  

 

Results showed statistically significant differences between the 

permeance of packages at the top (iii) and at the bottom (iv) of a two layer 

stacking in a same box (Table 3.5, positions iii and iv). 

 

Table 3.5- Permeance (Pa) and Mass Transfer Coefficient (K) through 
microperforated films at different positions of the stacking 

 

Position K ∙ 102 (m/s) 

i (box above) 1.554 ± 0.2a 

ii (box below)    1.364  ± 0.1a,b 

iii (container on top) 1.806 ± 0.3a 

iv (container below) 1.038 ± 0.1b 
   K values followed by different letters are statistically different (p < 0.05) according to a 

Tukey-HSD test. 

 

Perforated packages stacked under other packages were found to 

have lower mass transfer coefficients due to the more stagnated conditions 

caused by the proximity between perforation on top of one package and the 

bottom of the one above.  It is noted that the perforation of the container at 

the bottom was not covered by the one at the top due to the geometry of the 

containers; however, trays normally used for food packaging could fit better 

one above the other and the perforations of packages placed underneath 
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others could be even more covered, moreover there is an even greater 

danger of loss of permeance if handling movements cause the perforations 

to be covered.  

K values of perforated packages stacked in boxes did not show 

statistically significant differences, indicating that the openings of the boxes 

were enough to keep the air circulating around the perforations in a 

relatively homogenous manner. 

 

3.3.3.2. Effect of the position of the perforation on the 

package permeance 

 

It was found that perforated containers underneath others have a 

significantly lower K (Table 3.5, positions iv and iii, respectively). 

Unfortunately, trays are stacked in storage rooms in order to optimize 

space, and given the low margins of commodity businesses, not stacking or 

leaving too much space in between is not a financially feasible option.   

A simple solution could be to perforate the films on the sides of the 

container, instead of the top. Table 3.6 shows the mass transfer coefficients 

of films perforated in different sides of the container. There were no 

statistically significant differences between the K values of the perforated 

films in any of the positions, meaning that the packaging could be pierced 

in any side without altering the mass transfer and in such case, the position 
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of the perforation relative to the direction of the air flow did not influence the 

result.  

Hence, package trays placed into boxes could be perforated on the 

sides rather than on the top, thus avoiding the stacking effect found earlier, 

where packages under other packages have a significantly hindered K. It is 

noted that the trays had slanted sides, which is common in trays, that is, 

even when a package is placed just next to another, there is a sufficient free 

space in between the sides. 

 

Table 3.6- Mass Transfer Coefficient through films perforated in 
different positions 

 K x 102 (m/s) 

Front 2.055 ± 0.09a  

Back 2.068 ± 0.12a  

Right 1.997 ± 0.28a  

Left 1.859 ± 0.03a  

Top 1.894 ± 0.08a   
K values followed by different letters are statistically different (p < 0.05) according to a 
Tukey-HSD test. 

 

3.3.4. Effect of atmosphere composition on mass transfer coefficient  

 

The results for different atmosphere compositions shown in table 3.7 

indicate that the movement of the water vapour through the perforation 

affected the oxygen mass transfer coefficient. This result is important 

because it shows that it is an effect that should be considered in the design 

of modified atmosphere packaging.  
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Fresh produce release water during storage due to respiration, and 

their RH of storage is always recommended to be high, normally higher than 

75% (Tumwesigye et al. 2017). It leads to the conclusion that is it very likely 

that during storage there will be a relative humidity gradient, and the 

experimental conditions to determine K through the perforation should be 

chosen accordingly. The conditions expected in a normal package are water 

vapour and carbon dioxide moving out and oxygen coming in, so the 

comparable situation of table 1.7 is row 5, where the lowest mass transfer 

coefficient was obtained. The two conditions with reversed water vapour 

direction of flow (1 and 2), with water vapour moving in the same direction 

as oxygen, gave significantly different (higher) mass transfer coefficients. 

The 3 cases where there was no movement of water vapour (3, 5 and 6), 

but nitrogen moved differently also provided different results. When nitrogen 

(nor water) moved (row 3) the mass transfer coefficient was significantly 

higher, so the counter movement of water vapour (relative to oxygen) 

hinders oxygen permeance significantly. When nitrogen also moved in the 

same direction as oxygen (row 6) the mass transfer coefficient duly 

increased significantly, although when it moved against oxygen (row 5), the 

effect was not statistically significant. 
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Table 3.7- Mass Transfer Coefficient of oxygen through microperforated 
films flushed with different atmosphere compositions 

 

Row N2 (%) CO2 (%) O2 (%) RHinside (%) K x 102 (m/s) 

1 80 20 0 0 1.84 ± 0.09a 

2 80 20 0 52.9 2.50 ± 0.1b 

3 80 20 0 Ambient* 1.49 ± 0.07c 

4 80 20 0 100 1.10 ± 0.1d 

5 100 0 0 Ambient* 1.27 ± 0.1c,d 

6 60 40 0 Ambient* 2.27± 0.06b 
 
*Ambient Relative Humidity (RH of the cold room during the storage) was 80±3. 
K values followed by different letters are statistically different (p < 0.05). 
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3.4. CONCLUSION 

 

This work studied different potentially relevant factors that may affect 

the permeance of perforated films: diameter, location, position and number 

of perforations, area of perforation, temperature, and air velocity. It was 

shown that although the diameter of perforation has the greatest impact on 

K, air velocity and temperature also have a significant influence on mass 

transfer and show significant interactive effects, which implies that a model 

able to predict the permeance due to perforations should not be additive. 

Analysis comparing films with same total area but different diameter with 

films with same diameter but different total perforated area confirmed that 

the diameter is the relevant effect on the mass transfer coefficient (or 

permeance), not the total area (the total area obviously affects the total flow 

rate, but not the permeance or mass transfer coefficient). It is also shown 

that it is important to recommend that packages should be perforated on 

their sides, not only on the top, to maximise the robustness of the package 

performance to maintain the optimum atmosphere with a well-designed 

permeance. It was also observed that the distance between two perforations 

did not affect the mass transfer, but the gas composition does, and therefore 

the relative movements of other gases, and namely water vapour, need to 

be considered. 
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4. DIMENSIONLESS CORRELATIONS FOR ESTIMATING THE 

PERMEABILITY OF PERFORATED PACKAGING FILMS TO OXYGEN 

 

ABSTRACT 

 

The permeance of a perforated package is controlled largely by the 

dimensions of the perforations, although also influenced by the surrounding 

air velocity and temperature. It is argued that the most robust, yet simple, 

approach to determine the permeance due to perforations is to avail of 

dimensionless correlations that relate the mass transfer coefficient with all 

relevant factors. The -Buckingham Method was applied to this situation 

yielding a generic correlation that obeys the principles of dynamic similarity. 

Experimental results were obtained in the ranges of temperatures 5 to 15°C, 

perforation diameters 270 to 750 m and air velocity 0.76 to 4 m/s. The 

resulting correlation with least squares regression of the model fit provided 

a good adjustment of the experimental data (R2= 92%) and was further 

validated with an additional set of experiments, with a 0.96 correlation 

coefficient between the model predictions and the independent 

experimental data set. This correlation proposes a power relation between 

the ratio of the mass transfer coefficient and air velocity (ratio of convection 

to drag forces) as a function of the Schmidt and Peclet numbers. It is shown 

that correlations with the Sherwood number are not appropriate because 

this number actually varied very little in this range of conditions, typical of 
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real packaging conditions. It is further shown that the influence of the 

perforation diameter is so dominant that within the experimental variability 

the model can be simplified to an inverse proportionality between the mass 

transfer coefficient and the perforation diameter. This agrees with two 

models proposed in literature, although many others provided very poor 

predictions for this set of experimental data.  
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4.1. INTRODUCTION 

 

Modified atmosphere packaging (MAP) prolongs shelf-life of fresh 

and minimally processed produce. It ensures a protective gas composition 

inside the package as a result of the interplay between product respiration 

and package permeability. Virtually all packaging films, of which Oriented 

PolyPropylene (OPP) is a very common choice, are too impermeable to 

gases for successful MAP of products with medium to high respiration rates. 

In order to design the perforation profile to ensure MAP targets for extended 

shelf life (avoiding anoxia conditions), it is necessary to describe 

appropriately the contribution of perforations to the package permeance. 

There are different approaches in literature to describe the 

phenomena, such as Fick’s law (González-Buesa et al. 2009), an 

adaptation of it considering an “end effect of perforation” (Ghosh and 

Anantheswaran 2001),  and a model that correlates area of perforation with 

mass transfer coefficient (González et al. 2008). These were reviewed in 

Chapter 2, where it was shown that the lack of consideration for the 

application of dynamic similarity principles may justify a variety of models 

proposed in literature, and that a better generic model able to describe a 

wide variety of situations and not just one single set of data might be 

achieved by developing dimensionless correlations that obey these 

principles, which are commonly used in chemical engineering to describe 

mass transfer. The -Buckingham theorem is widely applied in mechanics, 
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heat and mass transfer problems (Yarin 2012) and has been successfully 

used in other areas such as management (Miragliotta 2011) and 

microrobotics (Behkam and Sitti 2004). 

Dimensionless correlations are commonly used in engineering to 

predict the behaviour of complex systems. They are built with dimensionless 

numbers, which are groups of variables that are combined in such a way 

that the dimension results in a unity. Sherwood and Stanton numbers 

involves mass transfer coefficient, Schmidt, Lewis and Prandtl numbers are 

different comparisons of diffusion, and Reynolds, Grashof and Peclet 

numbers describe flow (Ruzicka 2008, Cussler 2009). Correlations for the 

Sherwood number as a function of others can be applied when there is flow 

over a flat surface (Oliveira and Oliveira 2010, Metz et al. 2005). The 

Buckingham π- Method can be applied to determine which dimensionless 

numbers are describe better a specific phenomenon (Curtis, Logan, and 

Parker 1982, Reddy and Reddy 2014) (See also Chapter 1). 

The most common correlations proposed in literature relate the 

Sherwood number with Schmidt and Reynolds numbers, applicable to 

convection for flow over a flat surface (Oliveira and Oliveira 2010, Metz et 

al. 2005), and has the form: 

 

 𝑆ℎ = 𝛽1 + 𝛽2 ∙  𝑅𝑒𝛽3 ∙ 𝑆𝑐𝛽4                            (4.1) 
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where are the model parameters determined by fitting experimental 

data and vary with the range of dimensionless numbers and geometric and 

hydrodynamic specifics of the situation and the dimensionless numbers are 

given by: 

𝑆ℎ =
𝐾𝛼

𝐷
 

𝑅𝑒 =
𝜌𝑣𝛼

𝜇
 

𝑆𝑐 =
𝜇

𝜌𝐷
                                              (4.2) 

where K is the convection mass transfer coefficient, D the gas 

diffusivity,  the density,  the viscosity and  the characteristic dimension 

of the geometry of the problem. In the case of perforations, this could be the 

diameter, while there are situations where it could be a length or a distance, 

depending on the problem geometry. It has been successfully used in 

literature to predict the mass transfer coefficient through membranes (Lee, 

Amy, and Cho 2004, Metz 2003, Park et al. 2009) and also appears in 

studies involving  transpiration and air-film mass transport coefficient 

(Becker and Fricke 2015, Xanthopoulos, Koronaki, and Boudouvis 2012). 

However, there are no studies using dimensionless correlations to describe 

mass transfer through packaging films. 

The purpose of this work was to establish a dimensionless correlation 

to predict the permeance to oxygen provided by perforations in plastic films 

that obeys the dynamic similarity principles defined by the -Bukingham 
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theorem, supported by experimental data. The results would be compared 

to other literature data and proposed models.  

 

4.2. MATERIALS AND METHODS 

 

4.2.1. Experimental procedure 

 

Hermetic containers with an open top where a 7.85 · 10-3 m2 oriented 

polypropylene (OPP) film could be hermetically crimped were used. The 

containers were flushed with 20-23% v/v of CO2 and the balance with N2 

and kept in a walk-in controlled temperature cold room maintained within 

1°C of the set temperature.   

The O2 concentration inside the containers was measured using a 

Fiber Optic Oxygen Transmitter (Presens, Germany). This device uses an 

optical probe to determine the inner concentrations without disturbing the 

inner atmosphere, from colorimetric changes in spots glued to the inner 

surface of the film, across its transparency.  

The films were perforated with a needle making one single 

perforation of the defined diameter (270, 450 or 750 m diameter), at 2.5, 5 

or 7.5 cm from the edge of the container. A fan located next to the packages 

was set at different speeds and the average air velocity over the package 

surface measured, giving 3 different conditions: 0.76, 2.7 and 4 m/s Two 

experimental designs were completed: a full factorial design at 3 levels for 
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diameter, distance from edge and air velocity, all at 10°C, and with repeats 

of the centre point (30 combinations), and a full factorial design at 3 levels 

for diameter and temperature (5, 10 and 15°C), all with 2.7 m/s air velocity 

and 5 cm from the edge plus some repeats (16 combinations), totalling 46 

experiments. It is noted that the distance from the edge was previously 

found to have a negligible effect within this range (see chapter 3) and is not 

a parameter considered for the correlations, it is introduced in the 

experimental tests as a noise factor (providing for repeats with experimental 

variability).  

The 46 data points were used to determine the parameters of the 

correlations predicting the mass transfer coefficient and an extra set of 

experiments were then performed for model validation. A total of 10 

experiments were run with 10 random combinations of 1, 2, 3 or 5 

perforations of 270, 450, 560, 600, 700 or 750 m of diameter, with 0.76 or 

2.7 m/s of air velocity and at 5 or 10°C.  

 

4.2.2. Determination of Mass Transfer Coefficient 

 

The apparent permeance of the film (Pa) and the convection mass 

transfer coefficients (K) were obtained by least squares regression of the 

model predictions obtained by solving the mass balance with Newton’s 

convection equation, as described in chapter 3: 
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 𝑦𝑡 = 𝑦𝑒 − (𝑦𝑒 − 𝑦0) ∙ 𝑒−
P𝑎 A

𝑉
∙𝑡
                     (4.3) 

 

where y are the molar (same as volumetric) fractions of oxygen with 

the subscripts t for the value at time t, e for the external atmosphere and 0 

for the initial container atmosphere at time 0, A (7.85 · 10-3 m2) is the area 

of the film and V the container volume (1559.7 mL). 

The apparent permeance is the result of the flow through the 

perforations and through the film itself and thus the relation between the 

mass transfer coefficient through the perforation and the apparent 

permeance of the film is given by (see chapter 3): 

 

 𝐾 = P𝑎
𝐴

𝐴𝑝
+ P𝑓𝑖𝑙𝑚  (

𝐴

𝐴𝑝
− 1)                          (4.4) 

 

The permeance of the unperforated film itself (Pfilm) was determined 

experimentally, thus incorporating the effective permeance under real 

conditions of use (relevant due to the influence of temperature and 

potentially of humidity in the permeance of a polymeric film, as well as 

eventual imperfections of the seal and consequent leakage flow. This 

ensures that the values of K calculated were entirely due just to the gas flow 

across the perforations. 
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4.2.3. Dimensionless Correlations 

 

Based on the previous work from chapter 3, the parameters that were 

considered more influential in the mass transfer process through the 

perforations were mass transfer coefficient (K), density of air (), air velocity 

(v), Diffusivity through stagnated air (D), diameter of perforation (dperf) and 

viscosity of air (). These are 6 parameters that involve only 3 fundamental 

dimensions (length, mass and time) and therefore the -Buckingham 

theorem states that 3 dimensionless groups (6-3 = 3) are needed to 

describe the situation. The three parameters chosen as primary factors to 

obtain these 3 groups (to appear in all groups, each raised to a specific 

exponent) were , v and D. Each of the other 3 is then added at a time to 

generate each of the 3 dimensionless groups, with the exponents of the 

primary factors being determined as needed to make each group 

dimensionless (an exponent of 0 eliminates that factor from the group). The 

three dimensionless numbers (or ’s) thus obtained are:  

 

Π1 =
𝐾

𝑣
 

Π2 =
𝑣𝑑𝑝𝑒𝑟𝑓

𝐷
 

 Π3 =
𝜇

𝜌𝐷
 (4.5) 
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These numbers represent ratios between different forces, in the case 

of 1 it is the ratio between convective and drag forces (k·v-1), for which 

there is no specially named number. 2 is the Schmidt number (Sc), which 

quantifies the ratio between viscous and diffusional forces. Finally, 3 is the 

Peclet number (Pe) defined for the perforation diameter as characteristic 

dimension, quantifying the ratio between drag and molecular forces, that is, 

advective transport and diffusive transport. Thus, a dimensionless 

correlation obeying the dynamic similarity principles will be of the form: 

 

 
𝐾

𝑣
= 𝛽1 + 𝛽2 ∙  𝑆𝑐𝛽3 ∙ 𝑃𝑒𝛽4                            (4.6) 

 

There is no selection of 3 primary factors according to -Buckingham 

principles that would result in a correlation like eq. 4.1. Therefore, such 

correlation even though it is applicable to many comparable scenarios 

involving mass transfer, does not actually comply with the principles of 

dynamic similarity for this specific case. Notwithstanding, due to its 

familiarity, it was decide to test this model as well. It is noted that the ratio 

K/v is equal to the product between the Sherwood and Peclet numbers. A 

correlation of Sherwood number as a function of Peclet and Schmidt 

numbers is therefore also possible, and is indeed obtained if choosing , 

dperf and D as the 3 primary factors. Eq. 4.6 was however preferred for 

reasons that will become clear in the results and discussion.  
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.The physical properties of air were considered for  and  varying 

with temperature (Geankoplis 1993). The diffusivity of oxygen through 

stagnated air, D was calculated as (in SI units for T in Kelvin): 

 

𝐷 = 1.13 × 10−9𝑇1.724                             (4.7) 

 

4.3. RESULTS AND DISCUSSION 

 

The dimensionless correlations of equations 4.1 and 4.6 were fitted 

to the 46 experimental data, giving the results shown in table 4.1. 

 

Table 4.1– Parameters of the dimensionless correlations 
 

 1 2 3 4 R2 

Eq. 4.1 79.57 -12.54 -0.00033 -5.98 0.731 

Eq. 4.6 -0.00208 0.0252 -11.01 -0.921 0.924 

 

It is important to assess the statistical significance of the model 

parameters. In the case of eq. 4.6, 1 has no statistical significance and in 

fact neither does 3 because while temperature influences the physical 

properties, their combination in the Schmidt number gives almost no change 

between the temperatures of 5 and 15°C (Sc varied between 0.725238 and 

0.725661). Therefore, the true meaningful parameter for this fit is 𝛽2 ∙  𝑆𝑐𝛽3 

multiplying the term with the Pe number and its exponent. This results in the 

following model, with a R2 value of 0.923: 



 
 

183 
 

 

 
𝐾

𝑣
= 0.856 ∙ 𝑃𝑒−0.986                                   (4.8) 

 

 

It is further noted that the exponent of the Peclet number is not 

statistically different from 1 (which is within the margin defined by the 95% 

confidence interval), and therefore a simpler model provides an 

indistinguishable model fit, with R2 = 0.923: 

 

 
𝐾

𝑣
≈ 0.893 ∙ 𝑃𝑒−1                                    (4.9) 

 

This simplification while being statistically acceptable within the 

margin of error, eliminates in fact the influence of the air velocity, as 

replacing Pe by its definition leads to   

 

 𝐾 ≈
0.893∙𝐷

𝑑𝑝𝑒𝑟𝑓
                                      (4.10) 

 

This correlation suggests that the influence of air velocity in this 

range of values is indistinguishable compared to experimental variability 

and model lack of fit, whereas temperature has a small influence due to its 

effect on the diffusivity, and the mass transfer coefficient varies 

proportionally with the reciprocal of the diameter of the perforation. It is also 
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noted that this simple model of equation 4.10 suggests that the Sherwood 

number is approximately constant and equal to 0.893 for this set of data. It 

was found in chapter 3 that velocity has a statistically significant effect, 

although it can be seen that the value obtained in the Analysis of Variance 

is just slightly above the 95% limit of significance, so the influence is small. 

When developing a correlation there are two sources of error, the 

experimental variability and the lack of fit of the model. It is therefore not 

surprising that the influence of velocity is now within the error. 

Figure 4.1 shows the model fit diagnosis plots, where it can be seen 

that the model predictions of eq. 4.10 are well within the margin of error 

compared to the predictions with the full eq. 4.6 and parameters of table 4.1. 

It can also be noted that the correlation for eq. 4.1 is not only poor, but even 

predicts that the Sherwood number for 15°C would be significantly higher 

than those at 5 and 10°C, as the former are the data points in fig. 4.1b well 

above Sh=1 in the y-axis, an effect that the experimental data (x-axis) do 

not show at all. This common correlation is therefore totally inappropriate in 

this situation, which can be due to the fact that it does not obey the -

Buckingham principles, or simply that the Sherwood number in this case 

varies less than the experimental error. In fact. Equation 4.10 predicts 

Sh=0.893. A correlation between the Sherwood number and the Peclet and 

Schmidt numbers was also tried, with equally poor results, and therefore 

this a sufficient justification. 
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Figure 4.1- Observed versus predicted values of the mass transfer 
coefficient determined by Buckingham π- Method (a) and Sherwood 
Correlation (b). 

 

The correlations were validated with the additional set of 10 

experimental data points. Fig. 4.2 shows the experimental results obtained 

for the mass transfer coefficient experimentally, and from the predictions of 

eq. 4.7 (which includes effects for both temperature and air velocity, in 

addition to perforation diameter) and 4.9 (which gives no influence to 

velocity). It is noted that the set of validation experiments includes more 

diameters than those used, as well as more than one perforation - it is 

reminded from chapter 3 that it was concluded that the total area of 

perforations does not affect the mass transfer coefficient. The validation 

conditions were therefore more challenging than the range of conditions 

used to produce the model. It can be seen that the model provided by the 

simple equation 4.9 overestimates slightly the mass transfer coefficient 

compared to the experimental values, although it does so within the 

experimental variability of the first set of data (see fig. 4.1a) and with a 
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correlation coefficient predictions vs. observed values of 0.96 for the model 

of eq. 4.9. 

 

 

Figure 4.2- Comparison of the predictions of eq. 4.7 (open symbols) and eq. 
4.9 (closed symbols) with the experimental values obtained in the validation 
trial 
 

 

These results were compared with the predictions that would be 

made by other models proposed in literature (see chapter 2) for this same 

set of experiments.  

Fick’s law of diffusion has been used to describe the transmission 

rate of perforated packaging (González et al. 2008, González-Buesa et al. 

2009, Larsen and Liland 2013). However, the results predicted are generally 
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higher than the effective gas transfer through perforations (Ghosh and 

Anantheswaran 2001, Lange et al. 2000). The mass transfer coefficient thus 

estimated (KF) would just be equal to: 

 

𝐾𝐹 =
𝐷

𝐿
 (4.11) 

 

with L being the film thickness (length of the diffusional path). 

 

The mass transfer coefficients predicted from eq. 4.11 would be 10 

to 40 times bigger than those obtained experimentally. Hence, it is clear that 

the process cannot be described by diffusion. In fact, Cussler (2009) 

emphasises that it might be difficult to establish whether a phenomenon 

should be treated as diffusion or convection but suggests that fluxes across 

a surface are likely to be the latter. Fonseca et al. (2000) observed that their 

results were on the same order of magnitude of gas diffusion through air, 

but the perforations used were actually small tubes, of a much bigger length 

than diameter. When the L/d ratios are high the resistance to mass transfer 

is dominated by the diffusion along the tube, hence the mass flux is mainly 

due to the diffusion. 

In order to adapt Fick’s diffusional model, the mass flux through 

perforated films has been related to a rate between the gas diffusion in air 

across an apparent length, higher than the length of the film perforation, 

defined as the sum of the effects of the thickness of the perforation and the 
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diameter of the perforation corrected by a characteristic factor of the end 

effects of the perforations (Ghosh and Anantheswaran 2001, Briassoulis et 

al. 2013). This implies that the mass transfer coefficient would be equal to:  

 

 𝐾 =
𝐷

𝐿+𝜀𝑑𝑝𝑒𝑟𝑓
                                     (4.12) 

 

where  is the characteristic factor of the end effect. It is noted that in 

the case of perforations, as L is much smaller than dperf, this model will be 

approximately equal to eq. 10, predicting that K is inversely proportional to 

the perforation diameter. 

In their work, Ghosh and Anantheswaran (2001) concluded that this 

model presented the best fitting for the experimental results, with  = 0.5, 

same value adopted by Fishman, Rodov, and BenYehoshua (1996) - 

predictions with equation 4.12 for this value of  will be denoted as KGA.  

On the other hand, Lee and Renault (1998) used data for nitrogen 

transport through perforations and obtained = 1.1 and Paul and Clarke 

(2002) obtained = 7/6 (app. 1.2) calculating it in terms of geometrical 

parameters. Predictions made with eq. 4.12 for these two values of  will be 

denoted as KLR and KPC, respectively. Briassoulis et al. (2013) used the 

same model without, however, identifying the  value considered. Lange et 

al. (2000) adopted = 5/6  or 3/7 under stagnated or moving air, 

respectively.  



 
 

189 
 

González et al. (2008) proposed an empirical relation between 

transmission rates (TR) and the area of perforation (𝑇𝑅 =  0.880 ∙ 𝐴𝑝
0.577). 

Fick’s law was then used for modelling the transmission rate, which leads 

to the following model for the mass transfer coefficient (KG): 

 

𝐾𝐺 = (
4

𝜋
)
1−𝑎2

∙
𝑎1∙104

𝑑(2−2𝑎2)∙864
                                   (4.13) 

 

with dp in m and KG in m/s 

It is noted that these authors considered perforations with an area of 

perforation smaller than most experiments presented in table 4.2. Also, the 

experiments used to develop the model were performed at 23°C, which has 

little practical interest as the storage temperature of fresh produce should 

generally be low, within the range used in the present work.  

Techavises and Hikida (2008) obtained an empirical equation 

relating what the authors called effective permeability to the diameter of 

perforation. The mass transfer coefficient (KT) would be given by: 

 

𝐾𝑇  =  
(2.98∙10−2∙𝑑2+5.37∙10−1∙𝑑+8.22∙10−1)∙0.101325∙10−3

𝐴𝑝∙3600
              (4.14) 

 

The constants given are valid for KG in m /s, the area of perforation 

Ap in m2 and the diameter d in mm. 
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There is a significant limitation in the use of this model, which is that 

that the authors calculated what they called permeability in units of flux, thus 

incorporating the area within the results, which means that their data are 

specific of the area of their perforations. This is the same problem that would 

occur with Emond et al. (1991) and Fonseca et al. (2000) models. Table 4.2 

shows the capacity of these models to predict the experimental data.  

 

Table 4.2– Mass Transfer Coefficient (K) obtained by applying different 
mathematical models 
 

Equation  E (%) Validation R2  Total R2 

Fick’s Law 0 2396.99 -1446.64 -855.30 

Ghosh and Anantheswaran (2001) 0.5 146.26 -6.51 -2.75 

Lee and Renault (1998) 1.1 19.28 0.91 0.70 

Paul and Clarke (2002) 7/6 14.08 0.95 0.66 

Lange et al. (2000) 

5/6 54.68 0.08 0.53 

3/7 189.10 -11.68 -5.62 

González et al. (2008) - 116.38 -3.50 -1.06 

Techavises and Hikida (2008) - 244.15 -21.11 -109.06 

 

It can be seen that the models described by eq. 4.12 with the values 

of  proposed by Lee and Renault (1998) and Paul and Clarke (2002) of 1.1 

and 7/6, respectively, provided quite good estimates for the 10 cases of the 

validation set of experiments, while all others overestimated the mass 

transfer coefficients quite significantly, but were not able to estimate the 

overall data with the same accuracy.  

4.4. CONCLUSION 
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Applying the principles of dynamic similarity with the -Buckingham 

method provided a good correlation to estimate the mass transfer coefficient 

through perforations, which is equal to the permeance provided by the 

perforation. Within the experimental variability, the correlation can be 

reduced to the ratio between the mass transfer coefficient and the air 

velocity being inversely proportional to the Peclet number, defined with the 

perforation diameter. This shows also that the Sherwood number is 

approximately constant and that dimensionless correlations with it would not 

be appropriate for this situation. This result explains why various models 

proposed in literature that can be reduced to the permeance due to a 

perforation being inversely proportional to the diameter have been widely 

reported in literature, but also show that not all such correlations use 

parameters that are acceptable. 
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5. ANALYSIS OF THE INFLUENCE OF THE OXYGEN CONCENTRATION 

GRADIENT ON THE PERMEANCE OF PERFORATED PACKAGING FILMS 

 

ABSTRACT 

 

The permeance due to perforations in packaging films has been 

estimated considering various geometric and process factors (e.g. 

perforation diameter, temperature, air velocity) that influence the 

hydrodynamic conditions surrounding the perforations and hence the mass 

transfer process. The dominant influence of the perforation diameter that 

has been widely proven shows that the average velocity of the flow through 

the perforation itself is a very important effect. This is influenced by the 

concentration gradient between the inside and the outside of the package, 

but this effect has not been assessed and the concentration gradient is not 

part of any proposed model of the mass transfer coefficients (or permeance 

due to perforations). The objective of this work was to determine the mass 

transfer coefficient as a function of concentration gradients and develop a 

dimensionless correlation for oxygen permeance applying the -

Buckingham method to ensure the principles of dynamic similarity and 

based on experimental data, collected in the range of values of air velocity 

0.76 to 4 m/s, temperature 5 to 10°C perforation diameters 270 to 750 m 

and oxygen concentration gradients 3 to 20 %. Mass transfer coefficients 

were obtained from the unsteady state measurements of oxygen 
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concentration in a container initiated with low oxygen concentration, allowed 

to equilibrate to outside air. Average mass transfer coefficients from time 0 

to time t were obtained and related to the instantaneous value at time t with 

Leibniz rule. The dimensionless correlation obtained fitted the experimental 

data well (R2=0.95). A further set of independent validation experiments was 

performed, with the model providing predictions with a correlation coefficient 

of 0.97 with the experimental values. However, results showed that the 

mass transfer coefficient is in fact approximately constant in the range of 

concentration gradients 5 to 20%, and therefore the predictive ability 

achieved by considering a constant mass transfer coefficient equal to the 

average was not significantly lower (correlation coefficient with the 

experimental data of the validation trials of 0.96). This implies that for food 

packaging applications,the relevance of the oxygen concentration gradient 

in the permeance due to perforations is only important if desired to model 

the earlier times of atmosphere modification when the gradient is building 

up to at least 5% (internal oxygen concentration above 15%) . 
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5.1. INTRODUCTION 

 

The oxygen concentration in a food package is modified from 

atmospheric due to the continuous metabolic activity of respiration, which 

oxidises nutrients (mainly glucose) to provide energy as adenosine 

triphosphate (ATP) (Sousa, Oliveira, and Sousa-Gallagher 2017).  A 

package therefore needs to be sufficiently permeable to oxygen to allow it 

to enter the package and replace the consumption, otherwise dangerous 

anoxia would eventually set in. Products with medium to high respiration 

rates typically require packaging films to be perforated as the package 

would be too impermeable otherwise. If the perforation profile is appropriate, 

it may restrict the influx of oxygen to a point of equilibrium between oxygen 

permeance and consumption by respiration, with low oxygen and high 

carbon  dioxide and relative humidity, which will extend the product shelf-

life by retarding respiration rates - the modified atmosphere packaging 

(MAP) concept (Mistriotis et al., 2016; Oliveira et al., 2012).     

Normal atmosphere contains approximately 78% of Nitrogen, 20.9% 

Oxygen, and small percentages of other gases, including water vapour. Due 

to respiration, CO2 is produced inside the package and flows out through 

the perforation in the opposite direction of oxygen.  Experimental analyses 

performed to study the permeability of perforated packages often try to 

mimic these conditions as much as possible, as this counter flow will 

certainly influence the rate of oxygen intake.  



 
 

195 
 

In experimental tests of film permeance, carbon dioxide is normally 

used to replace oxygen and an atmosphere of 20% CO2 and 80% N2 is 

generated inside the package (Mastromatteo et al. 2012, Montanez et al. 

2010b), which is then allowed to equilibrate to normal atmosphere (about 

0.1% of CO2). The permeance of the film is then calculated by this rate, 

which is an exponential evolution as given by the mass balance. Other 

scenarios have been used to create different concentration gradients 

between inside and outside of a test cell, such as  100% N2 (Ghosh and 

Anantheswaran 2001), 10% O2 – 10% CO2 (Moyls et al. 1998, Allan-Wojtas 

et al. 2008) and 5% O2 and 15% CO2 (Montanez et al. 2010a), balance with 

N2. 

Notwithstanding, in all cases the internal O2 concentration is 

constantly changing during the experiment, until equilibrium. The 

concentration gradient is linearly related to the average velocity of the gas 

fluxes into/out of the container through the perforation, which will affect the 

hydrodynamic conditions on the 2 sides of the package, especially the 

outside where there can be convective flow of air interacting with it (for 

instance, from cold room fans). Previous work (see chapters 2, 3 and 4) has 

shown that the most dominant effect in the permeance due to a perforation 

is its diameter, with much higher mass transfer coefficients as the diameter 

reduces size. The effect of the diameter in the gas fluxes is to increase the 

average velocity of the cross-perforation flow, thus showing that the greater 

this velocity the higher the permeance. Therefore, the permeance should 
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also be influenced by the concentration gradient, and be higher the greater 

the gradient. However, there have been no quantitative studies or analysis 

that would allow assess whether this is the case, and if so, to what extent. 

Ghosh and Anantheswaran (2001) observed an increase of the 

oxygen transmission rate due to an increase of the flow rate and associated 

it with an increase in the concentration gradient. However, mathematical 

models proposed to date have been considered independent of the gas 

concentration gradient in the various different approaches that have been 

used to quantify this phenomenon (Emond 1992, Lange et al. 2000, 

González-Buesa et al. 2009), chapter 2, 3 and 4. 

The objective of this study was to evaluate the effect of the 

concentration gradient of oxygen on its mass transfer coefficient 

(permeance) due to perforations, and develop a mathematical model to 

incorporate it using dimensionless correlations obeying the principles of 

dynamic similarity using the -Buckingham method..  

 

5.2. MATERIALS AND METHODS 

 

5.2.1. Experimental Procedure 

 

Hermetic containers with an open top where a 7.85·10-3 m2 oriented 

polypropylene (OPP) film could be hermetically crimped were used. The 

containers were flushed with 20-23% v/v of CO2 and the balance with N2 
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and kept in a walk-in controlled temperature cold room maintained within 

1°C of the set temperature (5, 10 and 15° C were used).   

The O2 concentration inside the containers was measured using a 

Fiber Optic Oxygen Transmitter (Presens, Germany). This device uses an 

optical probe to determine the inner concentrations without disturbing the 

inner atmosphere, from colorimetric changes in spots glued to the inner 

surface of the film, across its transparency.  

The films were perforated with a needle making one single 

perforation of the defined diameter (270, 450 or 750 m diameter). A fan 

located next to the packages was set at different speeds and the average 

air velocity over the package surface measured, using 3 different conditions: 

0.76, 2.7 and 4 m/s. A total of 47 experiments with all combinations of the 3 

values of temperature, air velocity and perforation diameter, including 

replicates, were performed.  

In order to validate the model, an additional set of 10 different 

experiments were performed, with 10 random combinations of 1, 2, 3 or 5 

perforations of 270, 450, 560, 600, 700 or 750 m of diameter, with 0.76 or 

2.7 m/s of air velocity and at 5 or 10ºC.   

These two sets of experimental data, one for model development and 

another for model validation, are the same as in chapter 4. 
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5.2.2. Determination of average and variable permeances  

 

The apparent permeance of the perforated film is obtained from a 

mass balance to the container: 

 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑛                                      (5.1) 

 

where C is the oxygen concentration (moles/m3), n is the molar flow 

rate of oxygen through the package (moles/s) and V the volume of the 

container (m3). The flow is proportional to the concentration gradient and 

area of the film (A), with the apparent permeance (Pa) of the perforated film 

being the proportionality constant: 

 

𝑛 = P𝑎 A (𝐶𝑒 − 𝐶𝑡)                                     (5.2) 

 

with the C subscripts e and t denoting external and at time t, 

respectively. C can be obtained by the ideal gas law, being equal to yp/RT 

where y is the molar (same as volumetric) fraction of oxygen, p the pressure, 

R the ideal gas constant and T the absolute temperature. If the permeance 

is  constant, replacing eq. 5.2 in 5.1 and integrating gives:  

 

 𝑦𝑡 = 𝑦𝑒 − (𝑦𝑒 − 𝑦0) ∙ 𝑒−
P𝑎 A

𝑉
∙𝑡
 (5.3) 



 
 

199 
 

 

where the subscripts t, e and O denote at time t, on the external side 

and at time 0, respectively. 

If the permeance is not constant, then the Pa value in equation 5.3 is 

the average permeance from time 0 to time t, which will be denoted by P𝑎̅, 

that is: 

 

P𝑎̅ = 
∫ P𝑎,(t)dt

𝑡

0

𝑡
                                               (5.4) 

 

where Pa,(t) is the function providing the change of permeance with time. 

With a small manipulation of eq. 5.4, taking then the derivative and using 

Leibniz rule, gives: 

 

P𝑎,(t)dt =
𝑑(𝑡P𝑎̅̅ ̅̅ )

𝑑𝑡
                                               (5.5) 

 

Leibniz’s rule is frequently applied in the study of variable mass or 

heat diffusivity (Ahmed 1999, Voller 2001, Nottale 2005). Equation 5.5 

states that the value of the permeance at instant t can be found by plotting 

the product between time and the average permeance from time 0 to that 

instant t, for several instants of time, and then taking the slope of the 

resulting line at that instant, as this is the graphical meaning of a derivative. 

If the only cause of variation of the permeance with time is the concentration 
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gradient (as all other factors in an experiment are rigorously constant), then 

Pa(t) is the value of the permeance for the concentration gradient that 

occurred at that time t. This converts from the Pa,(t) function to the Pa,(yt-ye) 

function. 

The apparent permeance is the result of the flow through the 

perforations and through the film itself and thus the relation between the 

mass transfer coefficient through the perforation and the apparent 

permeance of the film is given by (see chapter 3): 

 

 𝐾 = P𝑎
𝐴

𝐴𝑝
+ P𝑓𝑖𝑙𝑚  (

𝐴

𝐴𝑝
− 1) (5.6) 

 

The permeance of the unperforated film itself (Pfilm) was determined 

experimentally, thus incorporating the effective permeance under real 

conditions of use (relevant due to the influence of temperature and 

potentially of humidity in the permeance of a polymeric film, as well as 

eventual imperfections of the seal. This ensures that the values of K 

calculated were entirely due just to the gas flow across the perforations. 

This permeance of the polymeric film (plus any eventual leakage effects if 

the seal is not perfect) was not considered to vary with time (or 

concentration gradient) because the flux through the entire surface of the 

film is very mild compared to what occurs in a perforation, and is in fact 

dominated by diffusion through the polymeric film itself, so convection 

currents at the surfaces have a negligible effect in this permeance. 
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Data from an experiment where the concentration of oxygen varies 

from 0 to atmospheric over time were therefore handled as follows: for each 

instant of time for which there was an experimental data point, the average 

permeance from time 0 to time t was calculated with eq. 5.3. These average 

permeances multiplied by the respective time were then plotted against 

time. These data points were fitted to a polynomial function to determine the 

derivatives of the curves for each experimental sampling time, which gives 

the value of the permeance at that time. These values were then plotted 

against the respective gradients to reveal the Pa,(yt-ye) function. Equation 5.4 

was then used to determine the respective mass transfer coefficients for 

each of the experimentally measured gradients   (K(ye-yt)). 

To obtain predictions of the evolution of oxygen concentration with 

time, the mass balance can be solved numerically: 

 

 𝑉
𝑑𝑦𝑡

𝑑𝑡
= [𝐾(𝑦𝑒−𝑦𝑡)

𝐴𝑝

𝐴
+ P𝑓𝑖𝑙𝑚  (1 −

𝐴𝑝

𝐴
)]  A (𝑦𝑒 − 𝑦𝑡)   (5.7) 

 

5.2.3. Dimensionless Correlations 

 

Dimensionless numbers relevant to a specific phenomenon can be 

obtained by the -Buckingham theorem (Geankoplis 2003), following the 

principles of dynamic similarity. This is important to be able to compare 

different situations and even scale up, as this principle ensures that, 

provided that the dimensionless numbers are the same, their relationship is 
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the same regardless of the individual values of the various parameters 

(Grimvall 1999, Geankoplis 1993, Delaplace et al. 2015b). For packages all 

of the same thickness, the physical parameters that may influence the 

permeability according to the results of chapters 3 and 4 are: 

 

K = f (, v, D, , dperf, )                                           (5.8) 

 

where K is the mass transfer coefficient that quantifies the 

permeance to a gas provided by one perforation of diameter dperf for a 

concentration gradient across the perforation , with viscosity  and 

density  of air flowing over the surface at a velocity v and with D being the 

gas diffusivity through normal stagnated air. The total number of parameters 

is 7, adding the gas concentration gradient to those considered in chapter 

4. The concentration gradient is expressed with mass concentrations, 

otherwise it would be the only parameter with molar dimensions, thus the 

fundamental dimensions are kept at 3, which implies from -Buckingham 

theorem that the dimensionless correlation will involve 4 dimensionless 

numbers (or ’s). 

If the volumetric concentration inside is Cin and outside is Cout of a 

gas of molecular weight Mw, and with the molar gradient being equal to the 

volumetric gradient: 

 

∆𝜒 = |𝐶𝑖𝑛 − 𝐶𝑜𝑢𝑡| ∙ 𝑀𝑤                                           (5.9) 
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∆𝜒 therefore has units of mass per volume. Choosing for primary 

factors the same 3 as in chapter 4 (, v and D) and using the -Buckingham 

method (see chapter 1) gives the following dimensionless groups (the first 

3 being obviously the same 3 as in the previous chapter): 

Π1 =
𝐾

𝑣
 

Π2 =
𝑣𝑑𝑝𝑒𝑟𝑓

𝐷
= 𝑃𝑒 

 Π3 =
𝜇

𝜌𝐷
= 𝑆𝑐  

 Π4 =
∆𝜒

𝜌
  (5.10) 

 

A dimensionless correlation including the effect of the concentration 

gradient obeying the dynamic similarity principles will thus be given by: 

 

𝐾

𝑣
= 𝛽1 + 𝛽2 ∙  𝑆𝑐𝛽3 ∙ 𝑃𝑒𝛽4 ∙ (

∆𝜒

𝜌
)
𝛽5

                                    (5.11) 

 

There is no specific name for the ratio between the concentration 

gradient and the density of air (). These quantities are not involved in 

existing dimensionless numbers exactly, but they are similar to the 

buoyancy term in natural convection, except that instead of a gradient of 

densities due to differences in temperature between a surface and the bulk 

of the fluid, in this case there is a concentration gradient across a package.  
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The Archimedes number quantifies the ratio between buoyancy and 

viscous forces and is obtained by multiplying the Galileo number by a 

buoyant correction  ∙  (Ruzicka 2008). As  is equal to Mw ∙ C, 
𝑀𝑤

𝜌
∆𝐶 

is precisely the buoyancy correction term, and therefore, it can be said that 

 quantifies the enhanced buoyancy due to the flux caused by the 

concentration gradient across the package, over the perforation 

 

5.3. RESULTS AND DISCUSSION 

 

The 46 model development experiments provided 𝑡 × P𝑎̅ vs. 𝑡 plots 

that were all approximately straight lines up to 15% oxygen concentration at 

least (that is, concentration gradients of 5% or less), which means that the 

permeance is in fact constant until the concentration gradient becomes quite 

small. All data points in these graphs could be approximated by a 2nd order 

polynomial with R2 values over 0.999 and therefore these polynomials were 

used to fit the 𝑡 × P𝑎̅ vs. 𝑡, with the derivatives giving Pa,(t) (eq. 5.5). 

Figure 5.1 shows examples for the 3 diameter sizes, the 2 replicate 

experiments with the lowest air velocity (0.76 m/s) and 10ºC. It can be seen 

that while there are some slight differences between a constant permeance 

(straight line) and a 2nd order polynomial, these are far less than the 

difference between repeats. The same was verified in all other cases. 
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 (a) 

 (b) 

 (c) 

Figure 5.1 - Plots to obtain instant values of the permeance for the 2 

replicates at 10°C with 0.76 m/s air velocity for perforations of (a) 270 m, 

(b) 450 m and (c) 750 m. Polynomial fits (equations and R2 indicated next 
to the lines) are shown in full lines, with the dotted lines showing the best 
straight line (the slope of which is the average permeance) 
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The values of permeance for each experimental data point were 

converted to the respective mass transfer coefficients with eq. 5.6, and eq. 

5.11 was then fitted to the experimental data with least squares regression. 

The parameters obtained are shown in table 5.1. 

 

Table 5.1 – Model fitting results with least squares regression  

 1 2 3 4 5 R2 

Eq. 5.11 -0.00265 4.37x105 42.47 -0.916 0.123 0.952 

 

Similarly to chapter 4, parameter 1 does not have statistical 

significance, nor does 2 and 3 independently because of the very small 

variation of the Sc number in the range of values of interest to food 

packaging. Simplifying the model gave the following result, with R2=0.951 

 
𝐾

𝑣
= 1.1003 ∙ 𝑃𝑒−0.994 (

∆𝜒

𝜌
)
0.130

 (5.12) 

 

It is further noted that the exponent of the Peclet number is not 

statistically different from 1 and therefore a simpler model provides an 

indistinguishable model fit, with R2=0.951: 

 

 
𝐾

𝑣
≈

1.120

𝑃𝑒
∙ (

∆𝜒

𝜌
)
0.129

 (5.13) 

 

The goodness of fit is shown in fig. 5.2, the predicted data points from 

eq. 5.11 with the parameters of table 5.1 are almost indistinguishable from 
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those of eq. 5.13. It is noted that many data points fall on top of others, the 

total number of data points in fig. 5.2 is 952. Similarly to chapter 4, this 

simplified model actually predicts no influence of the air velocity, with the 

mass transfer coefficient being inversely proportional to the perforation 

diameter: 

 

 𝐾 ≈
1.120×𝐷

𝑑
∙ (

∆𝜒

𝜌
)
0.129

 (5.14) 

 

 

Figure 5.2 - Diagnosis plot of the dimensionless correlation of eq. 5.11 with 

the parameters of table 5.1.  

 

The main cause of spread in fig. 5.2 is the difference between 

repeats. The influence of the concentration gradient is small, as noted in fig. 
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5.1. Fig. 5.3 shows an example, with the corresponding variations of the 

mass transfer coefficient with the concentration gradient for the 

experimental data points of fig. 5.1, together with the values predicted by 

eq. 5.11 and the average mass transfer coefficient in each case. The 

increase of permeance with the gradient was also observed by Javaherdeh, 

Mirzaei Nejad, and Moslemi (2015) studying mass transfer through porous 

medium. Notwithstanding, in the present case the difference between the 2 

replicates is very clear in fig. 5.3, and the influence of diameter is sufficiently 

dominant for the sets with each perforation to be also clearly separated. It 

is evident that differences between considering the concentration gradient 

effect or neglecting it (dotted lines and full lines) are less than differences 

between replicates. Similar results were found in all other cases.  
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Figure 5.3 - Influence of the concentration gradient on the mass transfer 

coefficient in two replicate experiments at 10ºC and 0.76 m/s air velocity for 

perforations of 270 m (filled spheres), 450 m (shaded squares) and 750 

m (open triangles). The horizontal dotted lines indicate the average mass 

transfer coefficient and the full lines the model predictions of eq. 5.11. 

 

The predictive ability of the model was studied independently with 

the set of 10 validation experiments, validating the very good ability of the 

model to predict various situations. The correlation coefficient between eq. 

5.13 predictions and the experimental data was 0.968. Fig. 5.3a shows the 

diagnosis plot. It is noted that considering a constant mass transfer 

coefficient throughout does not have statistically significant differences (fig. 

5.3b), where the model predictions have a slightly lower correlation 

coefficient of 0.961.  
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 (a) 

 (b) 

Fig. 5.3 - Comparison of the experimental values obtained in the validation 

trial with (a) eq. 5.13 predictions and (b) eq. 4.8 of chapter 4 (no influence 

of the concentration gradient). 
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The accuracy in predicting the independent set of experiments is 

particularly good given that the original set of data has a fair variability 

between repeats. This is most likely due to the natural variability of obtaining 

perforations of an exact dimension using a needle, because diameter has 

such a strong influence on the mass transfer coefficient. It was shown in 

chapter 3 that needles with a diameter of 270 m  presented an average 

effective diameter of 350 ± 124, needles with 450 m diameter resulted in 

holes of 418 ± 78 m  and 750 m  in perforations of 746 ± 87 m. This 

variability is however a problem that will occur in practical applications 

anyway.   
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5.4. CONCLUSION 

 

The oxygen concentration gradient has a small influence on the 

permeance due to perforations. For gradients of 5% or less the permeance 

is slightly lower, but increases rapidly as the gradient builds up, being 

approximately constant for gradients above 5% (internal oxygen 

concentrations of 15% or less). For practical applications in food packaging, 

this means that calculations of modified atmospheres at equilibrium do not 

require to consider the effect of the concentration gradient, as all cases of 

interest will have much higher gradients (typical oxygen concentrations 

being 3 to 10% at most). However, if it is desired to model the evolution of 

the internal atmosphere of the package from the beginning, the earlier times 

will be better predicted with a model that considers the effect of the 

concentration gradient, as the dimensionless correlation proposed here. 
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6. DETERMINATION OF THE MASS TRANSFER OF WATER VAPOUR 

THROUGH MICROPERFORATED PACKAGING FILMS 

 

ABSTRACT 

 

Modified atmosphere packaging (MAP) is a technology that allows to 

extend shelf-life of perishable produce by controlling the gas atmosphere 

inside the packaging. Products with medium to high respiration rates 

typically require perforations to avoid anoxia and reach a protective 

atmosphere. One of the critical components of a protective atmosphere is 

humidity, which should not be too high to avoid condensation and mould 

growth, nor too low to avoid drying and weight loss. Therefore, quantifying 

the water vapour transfer through perforations is critical to be able to design 

optimum packaging systems. The objective of this work was to analyse the 

mathematical models proposed in literature to describe the mass transfer of 

water vapour through perforations and propose models that benefit from the 

principle of dynamic similarity by developing dimensionless correlations 

using the -Buckingham method. The results obtained showed that none of 

the mathematical models previously proposed was able to provide good 

predictions. A dimensionless correlation relating the mass transfer 

coefficient of the water vapour to Schmidt and Peclet numbers provided a 

good fit to the data and was also able to then predict correctly the results of 

an additional set of validation experiments. It was found that despite the fact 
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that the proposed correlation provided good predictions when the conditions 

of relative humidity inside the package was different from 0%, by adding a 

term for the concentration gradient it was possible to obtain a more robust 

dimensionless correlation.  
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6.1. INTRODUCTION 

 

Modified atmosphere packaging (MAP) ensures a protective gas 

composition inside the package as a joint result of the respiration of the 

product itself and the permeability of the package (Spencer 2005). Fruits 

and vegetables are perishable products that maintain their metabolic 

activities, such as respiration, after harvesting and consequently during 

storage. As a result, air circulation around the products is crucial to remove 

the respiration heat and maintain the integrity and quality of the produce 

during storage (Rao 2015).  

Perforated films have been suggested for Modified Atmosphere 

Packaging (MAP) to reach appropriate permeances for highly respiring 

products that would otherwise reach anoxia conditions; however, the effect 

of hydrodynamic conditions has not received due attention, in spite of being 

a critical control factor of the effective permeability of such packages. The 

permeance of a perforated package is quantified by the convection mass 

transfer coefficient of the perforation(s), and this will be influenced by the 

surrounding air flows. 

Most literature data concerning microperforations for MAP consider 

the fluxes of oxygen, and some of carbon dioxide as well, but permeance to 

water vapour is equally critical: too high and the produce dries and loses 

weight, thus quality, and too low and there is condensation inside the 

package, which stimulates mould growth, again loss of quality (Ben-
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Yehoshua, Rodov, and Perzelan 2009, Fishman, Rodov, and BenYehoshua 

1996, Mastromatteo et al. 2012). Yet, few studies have explored the water 

transport through perforations, and none of them considered the impact of 

air movement surrounding the perforations, or the influence of the humidity 

gradient itself. The influence of external hydrodynamic conditions on the 

permeance to oxygen has been discussed by some authors (Montanez et 

al. 2010b, Rao 2015), chapters 2, 3 and 4.  

The purpose of this work was to analyse the mathematical models 

proposed in literature for water vapour transport through perforated films, 

and as these have significant inaccuracies, propose a dimensionless 

correlation able to explain various situations appropriately. In order to 

design the perforation profile to ensure MAP targets for extended shelf life, 

it is necessary to describe appropriately the mass transfer through a 

perforated package. The simplest, yet effective, best practice in mass 

transfer analysis is to determine the convection mass transfer coefficient, 

which due to the principle of dynamic similarity might be best described with 

dimensionless correlations.  

 

6.2. EXPERIMENTAL SET UP 

 

Oriented Poly-Propylene (OPP) was supplied by Huhtamaki 

(Forchheim, Germany). Permeation cells specially designed for the analysis 

were filled with CaCl2 to create an internal atmosphere of 0% relative 
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humidity. Films were fitted to the cells with a 5 cm diameter exposed area 

to the outside atmosphere. The cells were kept in a walk-in cold room and 

the films were single-perforated with a surgical needle, of one of 3 different 

sizes (0.270, 0.450 or 0.750 mm diameter), at 5 or 10°C. A fan was used to 

provide an air flow over the cells at set velocities between 0.75 and 4.5 m/s.  

Two sets of experiments were performed, one set for model 

developed (used to obtain model parameters for new models or to adjust 

empirical models used in literature) and another independent set for model 

validation, with random combinations of different conditions (some different 

from those of the other set, but within the same range).  For the model 

development set, experiments were replicated at least once for all 

combinations of the different values of perforation diameter, temperature 

and air velocity, in a total of 94 experiments. Relative humidity (RH) inside 

the cold room was 80% at 5°C and 85% at 10°C. For the validation set, 

additional experiments were performed using 10 random combinations of 

perforations of 360, 430, 580 or 730 m diameter, temperature of either 5 

or 10°C, and air velocity between 0.8 to 3 m/s, in a total of 13 runs. For this 

second set the relative humidity (RH) inside the cold room was 95.5% at 

5°C and 95.8% at 10°C.  

An extra set of experiments was also performed to study the mass 

transfer coefficient of perforations exposed to smaller relative humidity 

gradients. Perforations of 270, 360, 450, 680, 730 and 750 m diameter 

were used, and the relative humidity gradients were 16.6, 21.6, 52.6, 61.6 
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and 68.6 %. Containers were stored at 5°C and a total of 12 experiments 

was performed. The RH in the cold room was 96.6% and the internal RH 

was created by using saturated solutions as suggested by Stokes and 

Robinson (1949), The RH of the ambient created by the saturated solutions 

at 5°C was verified with Escort iMini Temperature and Humidity data logger 

(Cryopak, France). Air velocity was set with a fan blowing air over the 

packages at average velocities between 0.8 and 4 m/s. 

The water vapour flow rate was measured by the weight gain of the 

CaCl2 salt for 0% RH (or respective solution for other internal relative 

humidities). Assuming that water vapour permeance is constant, the mass 

balance gives a linear variation of the weight with time, with the slope being 

equal to the permeance multiplied by the area of the film and the partial 

pressure gradient. As OPP is quite impermeable to water vapour, this 

permeance is due to the convection mass flow through the perforation, 

giving the mass transfer coefficient (K) from Newton’s convection law, which 

is equal to the permeance multiplied by the ratio between the area of the 

film and that of the perforation. This was validated by determining the 

permeance of non-perforated films with the same system (that would 

therefore also account for any imperfections of the sealing), which yielded 

values of permeance to water vapour 5 orders of magnitude lower than 

those of the microperforated films.  
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6.3. RESULTS AND DISCUSSION USING MODELS FOR WATER 

VAPOUR FLUXES THROUGH PACKAGING PERFORATIONS 

SUGGESTED IN LITERATURE 

 

One of the most common approaches to quantify the gas exchange 

through pores is Fick’s Law (Han 2014). However, when the average gas 

diffusivity in air is considered in the calculations, the results obtained are far 

from the reality.  

 

  𝑛̇𝑝𝑒𝑟𝑓 = 𝐷 ∙ 𝐴𝑝 ∙
∆𝐶

𝐿
                                                            (6.1) 

 

In order to correct the calculations, some authors have proposed 

modifications to the model, and the concepts of end effect (or end 

correction) and effective opening depth were introduced. The “end 

correction” to account for convective effects at the interface with circulating 

air was suggested by Meidner and Mansfield (1968), working on diffusion 

through stomata. They proposed an end effect of /8 ∙ d, where d is the pore 

diameter. This would lead to a mass transfer coefficient K equal to the 

diffusivity of water vapour through air divided by the sum of the film’s 

thickness to this end effect, as follows: 

 

𝑛𝑝𝑒𝑟𝑓 =
𝐷∙𝐴𝑝

𝐿+ 
𝜋

8
∙𝑑

∙ ∆𝐶                                                           (6.2) 
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As a result, the mass transfer coefficient thought perforations could 

be simplified as follows: 

 

𝐾𝑀𝑀 =
𝐷

𝐿+ 
π

8
 ∙ d

                                                             (6.3) 

 

Nobel (1974) applied a similar concept, named “effective opening 

depth” of stomata on leaves, where the end effect would be equal to the 

radius of the pore, i.e. d/2. As 8/ is slightly over 2.5, this implies a 25% 

bigger end effect compared to Meidner and Mansfield (1968). 

Nobel (1974) claimed that small pores (in the order of microns) are 

subjected to molecular interactions with the sides of the opening that affect 

the mass transfer and this geometrical correction is suitable. K is calculated 

as: 

 

𝐾𝑁 =
𝐷

𝐿+ 
𝑑

2

                                                               (6.4) 

 

More recently, authors working with food packages have suggested 

the end effect concept to calculate the gas exchange through perforated 

films.  Fishman, Rodov, and BenYehoshua (1996) adopted Nobel’s effective 

opening depth, while Lee, Kang, and Renault (2000) considered an end 

correction of 1.1 ∙ d, which is an end effect more than twice as big as 

Nobel’s. 
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Mastromatteo et al. (2012) put forward an empiric model for the 

permeability instead, as follows: 

 

𝑊𝑉𝑃𝑡𝑜𝑡 = 𝑊𝑉𝑃𝑓𝑖𝑙𝑚 + 𝛽1 ∙
𝑛

𝐴
∙ 𝑒𝛽2∙𝑑2

                                      (6.5) 

 

Knowing that the permeance Pa is equal to the ratio between the 

water vapour permeability WVPtot and the film thickness, the mass transfer 

coefficient could be calculated as: 

𝐾 = P𝑎,𝑓 +
𝛽1∙𝑅∙𝑇∙𝑒(𝛽2∙(𝑑×106)2)

162∙𝜋∙𝑑2∙𝐿
                                         (6.6) 

 

Where Pa,f is the permeance through the film, R is the universal 

constant of gases in m3 ∙ atm ∙ K-1 ∙ mol-1, T in K, d in m, and K in m ∙ s-1. 1 

and 2 are constants proposed by the authors considering the experimental 

results obtained on their research; 1 is 1.0015 ∙10-9 g ∙ cm ∙ m2 ∙ cm-2 ∙ h-1 ∙ 

atm-1 and 2 is 4.4585 ∙10-5 m-2. 

Techavises and Hikida (2008) obtained an empiric equation relating 

what the authors called effective permeability to the diameter of perforation. 

The mass transfer coefficient could be calculated as follows: 

 

𝐾 =  
(2.98∙10−2∙𝑑2+5.37∙10−1∙𝑑+8.22∙10−1)∙0.101325∙10−3

3600 × 𝐴𝑝
                       (6.7) 

K is obtained in m ∙ s-1 when area of perforation Ap is given in m2 and 

diameter d in mm. 
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A set of 13 experiments were performed with different combinations 

of air velocity, perforation diameter and temperature and the models cited 

above were used to test the predictive ability of all models. 

The results are shown in Fig. 6.1 and it can be seen that all these 

end effect models underestimated the mass transfer coefficient very 

significantly. End effects of /8 or half of the perforation diameter provided 

estimates that were between 3 and 10 times lower than the experimental 

results, while an end effect of 1.1 underestimated by a factor of 7 to 20 times 

the real values.  

The model proposed by Techavises and Hikida (2008) predicted 

results 25 to 60 % smaller than those obtained experimentally. Authors 

claimed that their prediction is valid for films less thick than 0.025 mm and 

the films used were 0.30 mm thick. However, this difference is probably not 

sufficient to justify such differences in the mass transfer coefficients. The 

authors described the mass transport through the perforations in terms of 

flux per unit of pressure and their data are dependent on the area used in 

their experiments. As they used perforations much larger than the diameters 

used in this work, this is a more likely justification for the mass transfer 

coefficient being predicted poorly by this model.  

Due to the fact that the Mastromatteo et al. (2012) model with the 

parameters suggested in the original paper provided estimates with 

completely different orders of magnitude, this model was re-fitted to a set of 

94 other experimental data points (used for model development) to ensure 
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the best parameters for the system being analysed. This fit yielded 5.56x10-

8 for 1 and 4.10x10-7 for 2 in the units used by the original authors 

(g.cm.m2.cm-2.h-1.atm-1 and mm-2 respectively). However, this fit was poor, with 

a R2 of just 0.73, and as shown in the diagnosis plot in Fig. 6.2, illustrating 

the almost obvious reason that it does not account for the influence of the 

different air velocities. During storage, fresh fruits and vegetables are 

exposed to air movement in cold rooms and fridges, and so the effect of the 

air movement on the mass transfer needs to be considered (Montanez et 

al. 2010b). 

 

Figure 6.1 –Mass Transfer Coefficient (K) predicted by the 6 models 
compared to the experimental results in the validation set of experiments. 
Legend: (◊) Eq. 6.3, (∆) Eq. 6.4, (□) using the end correction proposed by 
Lee et al. (2000),.  

 

Notwithstanding, this model with re-calculated parameters was used 

to predict the results of the 10 validation experiments, shown in figure 6.1 

as well. Although the performance of this equation was not as bad as the 
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other 5 models, it was not robust enough to provide satisfactory predictions. 

Its correlation coefficient was 0.81 and some points were overestimated by 

40%. 

 

6.4. DEVELOPMENT OF NEW MODELS USING DIMENSIONLESS 

NUMBERS  

 

Regretfully, none of these models obeys the principle of dynamic 

similarity, with the mass transfer coefficient being given in all cases by 

expressions that are not dimensionless. This means that there is a high 

probability that parameters determined with a given set of data under given 

system characteristics might not predict well other scenarios, and this is 

what likely happened. It is therefore very important to obtain models that 

have a generic applicability, otherwise there would be one model for each 

set of data, which explains why different authors proposed different models 

and in each case they validate their models with their set of data. 

Furthermore, the end effect concept may make sense in the original 

stomata work, where the pores are much longer than wide and therefore 

most gas flow occurs by fully developed diffusional flow along the pore, 

which is disturbed at the interface by the convection movements. In the case 

of perforated packages however, the situation is totally the reverse, so there 

is in fact virtually no fully developed diffusion flow. 
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Therefore, two dimensionless correlations were developed to 

estimate the mass transfer coefficient, to be determined by fitting the 

correlations to the set of data obtained experimentally, as these could 

benefit from the principle of dynamic similarity and therefore be more widely 

applicable to different scenarios, provided that the dimensions numbers are 

the same. First, a usual model, with the Sherwood number being a function 

of the Reynolds and Schmidt numbers, was tried:  

 

𝑆ℎ = 𝛽1 + 𝛽2 ∙  𝑅𝑒𝛽3 ∙ 𝑆𝑐𝛽4  (
𝐿

𝑑𝑝
)

𝛽5

                                          (6.8) 

 

Then, the -Buckingham theorem was applied to determine a set of 

dimensionless numbers that would fulfil the requirements of dynamic 

similarity. This resulted in the dimensionless number obtained by dividing 

the mass transfer coefficient by the air velocity, being a function of the 

Schmidt and Peclet numbers, 
𝐾

𝑣
 (𝑆𝑐, 𝑃𝑒), as follows (see chapter 4): 

 

𝐾

𝑣
= 𝛽1 + 𝛽2 ∙  𝑆𝑐𝛽3 ∙ 𝑃𝑒𝛽4                                             (6.9) 

 

The Sherwood correlation has been used to describe mass transfer 

caused by convection widely for various situations, such as mass transfer 

through membranes, determining the external resistance to heat transfer in 

processes where the diffusional resistance through a medium is the 
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dominant phenomenon, and convection quantifies the conditions at the 

boundary (Karode and Kumar 2001, Lipnizki and Jonsson 2002, Cussler 

2009, Raisi, Aroujalian, and Kaghazchi 2008, Oliveira and Oliveira 2010).  

The models in equations 6.8 and 6.9 were fitted to the set of 92 

experiments of the model development set with least squares regression, 

giving the results shown in Table 6.1 and diagnosis plots in fig. 6.3. The 

Sherwood correlation (eq.6.8) was able to explain only 78% of the variance, 

which is a better result than observed with Mastromatteo’s equation but still 

poor.  

 

Table 6.1- Goodness of fit (coefficient of determination) of 3 empirical 
models for the convection mass transfer coefficient in microperforations 
obtained with the 94 experimental data points 
 

Model 1 2 3 4 5 R2 

(Mastromatteo 
et al. 2012) 

5.56E-08** 4.10E-07*** - - - 0.73 

Sh (Re, Sc) 133.010 95.941 -0.261 11.05 2.059 0.78 

K/v (Sc, Pe) 0.078 5.34E09 36.819 -2.0 - 0.90 

*v is the average air velocity; **in g ∙ cm ∙ m2 ∙ cm-2 ∙ h-1 ∙ atm-1; *** in mm-2 
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Figure 6.2 –Diagnosis plots of the Sherwood correlation (a) and K/v (b) 
fitting                   

 

As the variability of the Schmidt number is very little, equation 6.9 

can be simplified to a model without 3. The mathematical model obtained 

gave a good fit to the data, with a R2 value of 0.892. Unlike the results 

observed in chapter 4, the mass transfer coefficient of water vapour is 

dependent on the air velocity.  

 

𝐾

𝑣
= 0.070 + 174.407 ∙ 𝑃𝑒−2                 (6.10) 

 

Figure 6.3 shows the comparison between the predictions of the 

resulting models and the experimental data of the independent set of 13 

experiments (same as those in fig. 6.1), where it can be seen that the model 

of eq. 6.9 with the parameters of table 6.1 predicted the validation trial 

values very well and observed of 0.96, which indicates that this model works 
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very well for predicting results different from those initially used to establish 

the parameters. The predictions of the Sherwood correlation still presented 

a better ability than the literature models, with a correlation coefficient of 

0.87. Results obtained with equation 6.10 presented a performance that 

does not distinguish much from equation 6.9, with a correlation coefficient 

of 0.95. 

 

 

Figure 6.3 –Mass Transfer Coefficient (K) of the validation set of 
experiments predicted by the proposed models. Legend: (▲) Eq. 6.8, (◊) 
Eq. 6.9, (♦) Eq. 6.10. 
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Figure 6.4– K values obtained by the proposed dimensionless correlations 

(♦) 270 m at 5ºC, (◊) 270 m at 10ºC, (■) 450 m at 5ºC, (□) 450 m at 

10ºC, (▲) 750 m at 5ºC, (∆) 750 m at 10ºC. 
 

Figure 6.4 shows the values predicted for some conditions using the 

dimensionless correlation model of eq. 6.10, showing both the very 

significant influence of the perforation diameter, and also a relevant impact 

of the air velocity. Techavises and Hikida (2008) also reported the effect of 

perforation diameter, with smaller perforations presenting higher K values, 

but did not assess the influence of air velocity.  

The influence of air velocity shown in fig. 6.5 is much more significant 

than that found in chapter 4 for oxygen, and seems somewhat complex. A 

slight to negligible influence of air velocity (similar to chapter 4 results for 

oxygen) is seen for air velocities above 2 m/s only, with the mass transfer 

coefficient increasing quite sharply when lowering velocity. It seems difficult 

to explain physically why decreasing convection currents would increase 
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the mass transfer coefficient, so there must be an effect other than average 

air velocity to explain this effect.  

When air velocity was lower than 1.5 m/s the flow over the film is 

laminar and therefore one would expect a decrease in K with lower 

velocities, not an increase, so flow effects do not justify the results. 

However, in the case of water vapour there is an important effect to bear in 

mind, which is that there is a maximum water content in air, which is defined 

by the point of saturation, and this depends on pressure and on 

temperature. Flow causes a decrease on the water retention capacity of the 

air and a drop of vapour pressure (Rao 2015) or a cooling effect and 

therefore the water vapour gradient may be affected by this. 

It is possible to assess the effect of the velocity on temperature and 

pressure. The relation between pressure and velocity of a gas is given by 

Euler's equation (not Bernouilli's equation, which is the integrated form but 

only valid for incompressible fluids (Bird, Stewart, and Lightfoot 2007). For 

a same height from the ground and assuming no head losses (in reality they 

may be relevant and are likely to be proportional to the square of the 

rotational velocity of the fan): 

 

𝑑𝑝

𝜌
+ 𝑣 ∙ 𝑑𝑣 = 0                                         (6.11) 

 

For air at normal pressures the ideal gas law is valid, so ρ is the ratio 

between the product between p and molar mass of air Mair and the product 
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between the ideal constant of gases R and temperature T. Also from the 

ideal gas law, the ratio p - T can be assumed constant (= n∙R/V) by 

attributing all cooling to the pressure difference (no expansion nor 

contraction of the volume), in which case applying Euler's equation between 

a point moving at a velocity v1 and another at velocity v2 gives indeed 

Bernouilli's equation. 

 

𝑝−𝑝

𝜌
=

𝑣2
2−𝑣1

2

2
                                        (6.12) 

 

If point 2 is static and point 1 is moving at the circulation speed 

induced by the fan: 

 

𝑝𝑎𝑡 𝑣 = 𝑝𝑠𝑡𝑎𝑡𝑖𝑐 −
𝜌𝑠𝑡𝑎𝑡𝑖𝑐∙𝑣

2

2
                             (6.13) 

 

Using the ideal gas law (and T in Kelvin): 

 

𝑇𝑎𝑖𝑟 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑡 𝑣 = 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 ∙
𝑝𝑎𝑡 𝑣

𝑝𝑠𝑡𝑎𝑡𝑖𝑐
= 𝑇𝑠𝑡𝑎𝑡𝑖𝑐

𝑝𝑠𝑡𝑎𝑡𝑖𝑐−
𝜌𝑠𝑡𝑎𝑡𝑖𝑐𝑣2

2

𝑝𝑠𝑡𝑎𝑡𝑖𝑐
        (6.14) 

 

Therefore: 

 

𝑇𝑎𝑖𝑟 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑡 𝑣 = 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 −
𝑀𝑎𝑖𝑟𝑣2

2𝑅
= 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 − 1.732 × 𝑣2       (6.15) 
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Similarly 

𝑝𝑎𝑡 𝑣 = 𝑝 −
𝜌𝑠𝑡𝑎𝑡𝑖𝑐𝑣

2

2
= 𝑝 ∙ (1 − 1.732

𝑣2

𝑇𝑎𝑡 𝑣
)                   (6.16) 

 

Hence, the humidity in air might be affected by the air velocity, as it 

is dependent on both pressure and temperature. To consider the effect of 

the moisture present in air on K, one might adopt the absolute humidity habs. 

In this case, the molar mass fraction can assume one of two values: 

 

i) 𝑦𝑤 =
ℎ𝑎𝑏𝑠

1+ ℎ𝑎𝑏𝑠
, when habs is smaller than the humidity of 

saturation of the moving air; 

 

ii) 𝑦𝑤 = 𝑦𝑠 𝑎𝑡 𝑣, when the air in movement reaches its saturation. 

𝑦𝑠 𝑎𝑡 𝑣 is calculated considering 𝑝𝑎𝑡 𝑣 and 𝑇𝑎𝑖𝑟 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑡 𝑣. 

 

The results on Fig. 6.5 show the effect of velocity on K corrected to 

consider its impact on the humidity. The molar mass fraction of the humid 

air was determined not by the relation between relative humidity and mass 

fraction of saturation of the stagnant air but according to the real amount of 

water in air, i.e. the mass fraction of the saturated air in movement or 

determined by its relation to the absolute humidity of air. The increase in K 

due to the velocity now becomes evident. This shows that an even mild 

effect in temperature and/or pressure affecting the saturation point, while in 

some cases too small to be relevant for temperature itself, (the difference 
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between the experimental temperature (5 or 10°C) and the temperature of 

the air moving at the defined air velocity varies from 1.10 to 27.7 K), is 

sufficient to cause significant differences in the concentration gradient and 

thus in the calculation of K. 

 

 

Figure 6.5– Mass transfer coefficients obtained initially ignoring the effect of 

velocity on the saturation point at (♦) 270 m at 5°C, (◊) 270 m at 10ºC, 

(▲) 750 m at 5°C, (∆) 750 m at 10°C, and obtained with the correction of 
the saturation point from the cooling effect of velocity denoted by (●) and (○) 
on both graphs for 5 and 10°C, respectively. 

 

It can be seen that the mass transfer coefficients now have a far 

greater influence of the air velocity, increasing significantly with it, a very 

different result from that of oxygen. 

Increase in air velocity leads to turbulence around the perforation.  At 

high air velocity, the flow is turbulent, and according to McCabe, Smith, and 

Harriott (2005) turbulence leads to an increase in the rate of transfer per 

area and probably facilitated the movement of water molecules from one 

side to the other. However, comparing with the results for oxygen and the 
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difference between fig. 6.4 and fig. 6.5, it can be said that the most 

significant effect of air velocity is due to the difference that it causes in the 

saturation point of the air that surrounds the perforations and hence on the 

effective concentration gradient. 

Fig. 6.5 also shows a relevant interactive effect between air velocity 

and diameter, as the curves for different diameters are not parallel. It 

suggests that air velocity and diameter act synergistically on the mass 

transfer coefficient. It is possible to identify this interaction clearly by 

observing that the increase on K due to the air velocity is more significant 

on 270 m perforations that on 750 m (Fig. 6.5.a and b, respectively). 

Moreover, if there were more K values at higher air velocities the curves 

would probably cross each other as a result of the interaction effect between 

air velocity and diameter (Calado and Montgomery 2003).   

It seems that K decreased slightly with the increase of temperature 

from 5 to 10°C, but its effect was smaller than the effect of perforation 

diameter and air velocity as it is barely observable in the curves. This 

behaviour was also found for oxygen transport through perforated films (see 

chapter 4) and is attributed to thermodynamic and transport properties of 

the gases such as viscosity, diffusivity and density. As there is very little 

change on these properties from 5 to 10ºC, it is reasonable that temperature 

presents a small effect on K (Techavises and Hikida 2008). 

A more accurate correction of K would require the determination of 

the head losses, because they might be also relevant and are likely to be 



 
 

235 
 

proportional to the square of the rotational velocity of the fan; however, its 

determination is more complex than that and demands numerical 

calculations. Hence, the results of Fig. 6.5 do not intend to be the corrected 

results of K, but only serve as means to evaluate the effect of air velocity on 

humidity, and therefore on K, and justify the shape of the curves of fig. 6.4. 

That said, Eq. 6.9 using the parameters of Table 6.1 incorporates the effect 

of air movement on the ambient humidity and therefore is enough to analyse 

the problem. 

In summary, high air velocities culminate in a drop on air moisture 

that reflected a smaller humidity gradient and consequent decrease of K. 

Unfortunately it also indicates that this model might not predict data with the 

same accuracy when the air circulation occurs on the side where the relative 

humidity is lower, because then it would increase the gradient and create 

the inverse effect, i.e. greater K values at high velocities. As this 

dimensionless correlation was successfully applied on this situation, it is 

very likely that a simple re-fit of data generated from containers with higher 

relative humidity on the inside might be enough to have good prediction on 

both situations. However, it must be cautioned that dimensionless 

correlations for water vapour transport may therefore be very different 

depending on the direction of the flow. In the case of oxygen or carbon 

dioxide, this direction is always the same while in the case of water vapour 

it may depend on what the relative humidity of the storage atmosphere is. 
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A small gradient of relative humidity is recommended for fresh 

produce in order to avoid drying during storage, and to achieve that, it is 

important to keep the relative humidity high outside the package. The air 

velocity during storage is important to remove the respiration heat but is this 

limited by the maximum dryness that the product can tolerate. 

The parameters in Table 6.1 were obtained for mass transfer 

coefficients through perforations exposed to only two relative humidity 

gradients, 0.8 and 0.85, in the model development set of experiments and 

the relative humidity inside the cells was always 0%. Results obtained in the 

validation set of experiments (Figs. 6.1 and 6.3) were performed with an 

external atmosphere of 95.5 and 95.8% RH and were successfully 

calculated using Eq. 6.9 with the parameters from the previous fitting. At the 

same time, both sets of data presented an internal RH of 0%, and it is 

necessary to verify if the same correlation is valid under different RH 

gradients.  

Another set of data obtained from 12 experiments with relative 

humidity gradients varying from 16.6 to 68.6% was performed and the 

results obtained experimentally compared with the predictions obtained 

from eq. 6.10 with the parameters in table 6.1. The correlation coefficient 

was 0.93, indicating that the model predicted very well also these totally 

different set of results. Figure 6.6 shows the comparison between K values 

obtained in this set of data and the model predictions (open symbols).  
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Figure 6.6 – Diagnosis plot of experimental data obtained in the 3rd set of 
experiments with different internal humidities and the predictions made with 
eq. 6.10 (●) and with eq. 6.17 (○) 

 

However, a better fit was obtained with a variation of Eq. 6.9 that 

considers the effect of the concentration gradient across the perforation 

(similar to chapter 5 for oxygen):  

 

𝐾

𝑣
= 𝛽1 + 𝛽2 ∙  𝑆𝑐𝛽3 ∙ (

𝑣∙𝑑𝑝𝑒𝑟𝑓

𝐷
)
𝛽4

∙ (
∆𝜒

𝜌
)
𝛽5

                         (6.17) 

 

The density used in the calculations was the density of humid air 

inside the cell, which varied with the internal relative humidity. In order to 

provide parameters that could be applied to the largest range of RH 

possible, results used on Fig. 6.6 were added of 6 experimental points with 

a gradient of RH of 80% (2 results for each diameter).   
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The parameters obtained by fitting eq. 6.17 to this set of experiments 

with different internal humidities were 1 = -0.047, 2 = 1.134, 3 = 0, 4 = -

1.00 and 5 = -0.4657. Eq. 6.17 was able to explain 96.6% of the variance. 

The predictions are also shown in fig. 6.6. Although they are slightly better 

that those with eq. 6.9 and table 6.1 parameters, it must be noted that eq. 

6.17 is giving a model fit of this set of data and therefore it would inevitably 

have a better correlation.  

Films highly permeable to water may rely very little on the mass 

transfer of water vapour through the perforations because the film can be 

responsible for great part of the transport; however, perforations are the only 

path water vapour can take through films with low permeability to water, and 

therefore it is crucial to calculate properly how much water is passing 

through the perforations in order to avoid condensation inside the package. 

Besides, even films more permeable to water that are used to pack produce 

with a high respiration rate that releases a great amount of water or demand 

many perforations can be affected by the mass transfer through the 

perforations. 

Data given by Mistriotis et al. (2016) was used as an example. The 

authors provided the permeance of PLA at 20ºC and the rate of water loss 

for tomatoes and peaches. Some assumptions were necessary so that it 

was possible to study the application of the proposed dimensionless 

correlation to the design of perforated packaging for these commodities. As 

the authors do not provide any data for air velocity surrounding the 
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packages, 0.75 was assumed due to the fact that was the smallest value 

used in the present research. It was also assumed that Eq. 6.17 can be 

applied to situations where the smaller relative humidity is inside the 

package. Besides, despite the fact that the parameters of Eq. 6.17 were 

obtained with data at 5ºC, it is possible that the predictions for 20ºC will not 

be far from the real values because temperature has a small effect on K. 

Moreover, this example just intends to illustrate the impact of the mass 

transfer through the perforation on the permeability of the film and does not 

intend to provide exact results.  

The total permeance can be obtained as follows: 

 

𝑃𝑎 =
𝐾∙𝐴𝑝+𝑃𝑎,𝑓 ∙ (𝐴−A𝑝)

𝐴
                                   (6.18) 

 

Where A is the area of the film, Ap is the area of perforation and Pa,f 

the permeance of the film (as obtained by Auras et al. (2003) for PLA films 

at 20°) . 

In order to avoid condensation, the total flux through the film 

(unperforated film + perforations), calculated by the product of total 

permeance, area of the film and concentration gradient should be equal to 

the product between the transpiration rate and the mass of produce. 

The authors used the permeability to CO2 to establish the number of 

perforations; they relied on the fact that water vapour permeability of PLA is 

much higher than its barrier to CO2. Hence, in order to design the area of 
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film necessary to avoid condensation due to the water release, they used 

only the WVP of PLA films, and disregarded the mass flux through the holes. 

However, as already shown in chapter 1 (see table 1.5), the perforations 

can be responsible for a great amount of the mass flux.  

 

Table 6.2– Design of PLA packages for tomatoes and peaches 
 

  Tomato Peach 

n 5 5 100 

d (m) 200 200 200 

Area (cm2) 650 400 900 

RHi 80 90 85 

K (m/s) 2.11 1.65 1.84 

Pa (m/s) 9.04E-05 9.18E-05 1.49E-04 

𝑛̇𝑝𝑒𝑟𝑓 𝑛̇𝑡𝑜𝑡𝑎𝑙⁄  (%) 5.64 7.04 42.90 

Area (cm2) considering K  607.26 358.95 465.69 
Where n is number of perforations, d is the diameter of perforation, K is the mass transfer 
coefficient, 𝑛̇ is the mass flux through the perforations (subscript perf) or through both film 
and perforations (subscript total) 

 

Results in Table 6.2 confirmed that the flux through the perforations 

play an important role on the total mass flux, representing 5.64, 7.04 or 

42.90% depending on the number of perforations, produce and relative 

humidity outside the package. If the mass transfer coefficient of water 

vapour were considered, the reduction in material consumption could reach 

48% depending on the number of perforations. Although the K obtained may 

be considered only as an approximation, these results show the applicability 

of the proposed dimensionless correlation and the importance of 

considering not only the film material but also the characteristics of the 

perforation on the design of MAP. 
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6.5. CONCLUSIONS 

 

The permeance of microperforated packages to water vapour was 

not estimated properly by any of the end effects models suggested in 

literature, which significantly underestimated the convection mass transfer 

coefficient. This is likely due to the fact that the thickness of a package is 

very small and therefore the diffusional component of a model composed 

by diffusion mass transfer plus end effects correction is negligible and 

therefore in practice those models applied to this situation estimate that 

permeance is due to end effects only. Also, the models do not consider the 

effect of air movement around the packaging, which is common in food 

storage and should be considered in the design of MAP using perforated 

films.  

The application of a dimensionless correlation, developed from 

independent experimental data, provided good estimates, especially when 

the model complied with the dynamic similarity principles of the -

Buckingham theorem.  

The correlation proposed predicts a fall of the mass transfer 

coefficient with air velocity up to a point, followed by a slight increase. 

However, this may be justified by the effect of velocity on the real saturation 

point of air and hence on the effective gradient. Considering a cooling effect 

the corrected mass transfer coefficients would show a significant increase 

with air velocity, shaper the higher the velocity. 
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Air velocity therefore has a much more significant effect on the 

permeance of a package to water vapour than it does to oxygen, and this is 

likely to be due to this thermodynamic impact on the saturation point then it 

is to convection and turbulence itself. 
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7. ANALYSIS OF PLASTICIZING AND ANTIPLASTICIZING EFFECTS OF 

HUMIDITY ON THE PERMEABILITY OF BIOBASED FILMS TO WATER 

VAPOUR  

 

ABSTRACT 

 

Biobased films have generally high affinities with water, which may 

imply significant effects of humidity on their water vapour permeability. The 

effect of the water content corresponding to equilibrium with atmospheres 

of different relative humidities was studied for two biobased films, poly-lactic 

acid (PLA) and NatureFlexTM NVS, a cellulose-based film. Water Vapour 

Permeance (WVP) was divided in its two components, phase equilibrium 

(characterised by adsorption and desorption isotherms) and molecular 

diffusion of the dissolved water (with diffusivity depending on water content). 

NVS showed a typical plasticizing effect of water content on the permeance, 

which was well described by applying the WLF equation to quantify 

molecular diffusion as a function of glass transition temperature, in turn 

related to water content by Gordon-Taylor equation, and with Park’s model 

for the sorption isotherms. Qualitatively, this corresponds to a behaviour 

where the higher the atmospheric humidity, the higher the permeance of the 

film to water vapour. The model and additional experiments with various 

humidity gradients show very clearly that WVP values obtained with ASTM 

methods with 0% RH on one side of the film and a high RH on the other 
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underestimate 2 to 6 times the WVP in conditions of practical interest for 

food packaging. The PLA film studied showed a different behaviour, with 

anti-plasticizing effects that could be related to a rearrangement of the 

molecular structure of the polymer, increasing its crystallinity, at higher 

water contents. This led to a lower permeance of the films when exposed to 

very high relative humidities. 

  



 
 

245 
 

7.1. INTRODUCTION 

 

Eco-friendly plastic materials made of biopolymers are frequently 

proposed as an alternative to synthetic polymers for environmental and 

sustainability reasons, minimising the need for non-renewable materials (oil 

derivatives). However, they often present poor mechanical and barrier 

properties and are usually highly hydrophilic; normally these characteristics 

are considered as flaws of biobased materials (Azeredo 2009, Magalhães 

and Andrade 2009, Nascimento, Calado, and Carvalho 2012). 

Improvements have been suggested with the addition of different types of 

fillers, such as clay minerals (Choudalakis and Gotsis 2009), cellulose 

nanowhiskers (Sanchez-Garcia and Lagaron 2010) and starch nanocrystals 

(Calado and Ramos 2016). 

High permeabiltty to water vapour is not necessarily a hinderance, 

depending on the product being packed. Highly respiring products such as 

fresh-cut fruits and salads, for instance, will release significant amounts of 

water due to respiration (for instance, for sugar substrates like glucose and 

fructose, one mole of water vapour is produced for each mole of carbon 

dioxide equally produced). If these significant quantities of water vapour are 

not released through the package to the outside atmosphere, the internal 

atmosphere will quickly reach saturation resulting in significant 

condensation of water. This is visible for consumers in inappropriate 

packages with water droplets all over the internal film and accumulation of 



 
 

246 
 

liquid water at the bottom of the package. In turn, this leads to mould growth 

and/or fermentation, with fast deterioration of quality. 

Conventional synthetic films used for packing fresh and minimally 

processed fruits and vegetables have been perforated to achieve a desired 

atmosphere inside the package, increasing permeability both to oxygen and 

water vapour to the level required for products with medium to high 

respiration rate. Properly designed perforation profiles allow to ensure a 

favourable atmosphere inside the package by controlling the gas exchange 

through the perforations (Hussein, Caleb, and Opara 2015).  

Highly hydrophilic biobased materials can therefore be an alternative 

to perforations for Modified Atmosphere Packaging, with their high WVP 

allowing the release of the produced water vapour without requiring 

perforations. However, high hydrophilic behaviour typically means higher 

quantities of dissolved water in the polymeric structure, which can be a 

problem as it may imply significant variation with the humidity of the 

atmospheres that the package is subjected to. Water equilibrium polymer-

atmosphere in hydrophobic polymers usually obeys Henry’s Law and just a 

small amount of water is absorbed (Van Krevelen and Te Nijenhuis 2009). 

For hydrophillic polymers the relation is much more complex, with the 

isotherms showing a sigmoidal shape defined as type II in the BET 

classification. This corresponds to increasingly sharp variations in water 

content of the film as the relative humidity (water activity) approaches 

saturation.  
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Water is the most important plasticizer in biological systems, 

affecting the thermophysical properties of hydrophilic materials. However, 

polymers may also show antiplasticizing  effects, whether for water or other 

plasticizers, such as glycerol, that are often used in polymeric matrices to 

improve physical properties and manufacturing processes such as 

extrusion (Chang, Abd Karim, and Seow 2006).  

Water molecules tend to form hydrogen bonds originating water-

water or water-polymer interactions through polar groups on the polymeric 

chain. The latter is normally observed in hydrophilic polymers, where each 

polar group connects to one water molecule. The polymer hydrophilicity will 

depend on the amount of polar groups, the intensity of water-water versus 

water-polymer interactions and the effect of water on the crystallinity of the 

material.  

Therefore, it may be critical to quantify the effect of humidity on water 

content and the resulting permeability of films in order to design and assess 

the performance of packaging films sensitive to water under various 

conditions of use. Due to the resistance of the film to gas transfer, the 

internal atmosphere of packages will be high - this is good to avoid 

excessive water loss with transpiration, but up to the point where the 

atmosphere does not reach saturation. The outside of the package may be 

exposed to atmospheres of quite variable relative humidities, though 

typically around 70 to 80%. This depends not only on environments, which 

means variations in geographic locations and time of the year, but also on 
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the storage conditions. Usually cold rooms are used to extend shelf life and 

at low temperatures high relative humidities are reached more easily. Thus, 

most food packages will be exposed to high relative humidities, precisely 

the conditions where their WVP might therefore vary the most due to 

variations in the corresponding water content of the polymer and its impact 

on molecular mobility. 

Material data sheets shed no light on this issue. ASTM 96 (1995) 

methods involve the determination of WVP at temperatures between 21 and 

36°C (when extreme conditions, also denoted as tropical, are desired) with 

films exposed to close to 0% and 100% RH on each side. This implies a 

gradient of water content in the film from 0 to its maximum and therefore 

WVP values thus obtained are averages of the specific condition chosen 

and resulting concentration profile, which cannot thus be related with any 

other conditions, and hence is an insufficient data to predict how WVP will 

be affected by exposition to different atmospheric humidities.  

The objective of this work was to assess the influence of relative 

humidity on the WVP of two biobased films (examples of films showing anti-

plasticizing and plasticizing water effects) and the ability of polymer science 

models that quantify plasticising effects to predict accurately this influence. 

Poly lactic acid (PLA) and NatureFlexTM NVS were used. PLA is a biobased 

material that has been produced in commercial scale since the 1990s. 

(Auras et al. 2010). NatureFlexTM NVS (NVS) film is a metalized heat-

sealable cellulose-based compostable film. It is semi-permeable to 
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moisture, presents good barrier to water and aroma and was designed to 

keep its integrity at humid storage conditions (Innovia 2015, Dukalska et al. 

2013).  

 

7.2. MATERIALS AND METHODS 

 

7.2.1. Mathematical methods 

 

7.2.1.1. Quantification of WVP 

 

WVP measures the rate of transfer of water vapour from the 

atmosphere on one side of the film to the other, which is the net effect of 

possibly 5 phenomena: hydrodynamic movement of water vapour within the 

atmosphere on one side up to the surface of the film, polymer-atmosphere 

phase equilibrium on that surface, movement of the dissolved water from 

one side of the film to the other, phase equilibrium on that other side, and 

hydrodynamic movement of the surrounding gas. With the molecular 

diffusion of the dissolved water through the film being a slow process, the 

hydrodynamic movements on the two sides (boundary mass transfer 

resistances) can be neglected and thus two phenomena need to be 

described to provide a proper quantitative analysis of WVP: phase 

equilibrium (which will occur on the two sides at different points of the 

equilibrium relation) and molecular diffusion of dissolved water through the 
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polymer. If a packaging film is composed of more than one material (layers), 

it is assumed that one of them controls the diffusion rate (this being a case 

of resistances in series), and unit partition coefficients for equilibrium 

between different layers are considered. 

The complexity of these phenomena needs to be noted. In relation to 

phase equilibrium, sorption may show hysteresis, which means that the 

phase equilibrium on the side that is adsorbing water molecules may be 

different from that on the side where they desorb, and the point of 

equilibrium depends on whether the film was previously dried or wetted 

(Piringer 2000). In the case of molecular mobility through the polymer, water 

content may influence diffusivity significantly, and to interpret data from 

close to 0 to 100% RH through the film requires a good model to account 

for this influence over significant gradients. 

If the only effect of water is plasticizing the polymer structure, then 

there is a well established way of describing molecular diffusivity in polymer 

science: 

 Mass transfer of the dissolved molecules in the polymer structure occurs 

by diffusion, which is quantified by Fick's laws. In steady state, and as 

water content is necessarily small, true and pure diffusion are the same 

and Fick’s 1st law can be written as: 

 

 𝑚 = 𝐷𝐴𝜌𝑓
𝑑𝑥

𝑑𝑙
 (7.1) 
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where m is the mass flow rate of water through the polymer (e.g., g/s), 

D the diffusion coefficient of water in the polymer (cm2/s), A the area 

perpendicular to the movement (cm2), l the distance from the wetter 

surface in the direction of the movement, 𝜌𝑓 the density of the film 

(g/cm3) and x the mass fraction of water in the film (g water / g film). If 

the diffusion coefficient was constant, then: 

 

 𝑚 =
𝐷̅𝐴𝜌𝑓

𝛿
(𝑥1 − 𝑥2) (7.2) 

 

where  is the film thickness and the subscripts 1 and 2 refer to the 2 

sides of the film, the former being the wetter side. If the diffusion 

coefficient is not constant, then eq. 7.2 gives the average coefficient for 

the particular concentration profile, denoted by 𝐷̅, that is: 

 

 𝐷̅ =
∫ 𝐷(𝑥)𝑑𝑥

𝑥1
𝑥2

𝑥1−𝑥2
 (7.3) 

where the subscript (x) in D is used just to stress that D is the 

concentration-dependent value of diffusion for a specific location of the 

film with its corresponding water content. 

 The diffusion coefficient is directly related to molecular mobility and 

relaxation times and thus varies with the glass transition temperature 

according to the WLF (Williams, Landell and Ferry) model (Williams, 
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Landell and Ferry) model, which can be written as (Roos and Karel 

1991): 

 

 𝐷(𝑥) = 𝐷𝑔10
±

𝐶1(𝑇−𝑇𝑔)

𝐶2+(𝑇−𝑇𝑔) (7.4) 

 

with the + sign below glass transition and the - sign above, T being the 

temperature of the medium, Tg the glass transition temperature of the 

polymer, which depends on its water content, and Dg the diffusion 

coefficient at glass transition Tg. The model constants C1 and C2 are 

physical properties of the polymer to be determined experimentally and 

that are different above and below glass transition. For a wide variety of 

polymers, the original authors reported average values above glass 

transition of 17.44 (dimensionless) and 51°C (Williams, Landel, and 

Ferry 1955), respectively. 

 The influence of water content on the glass transition temperature of a 

polymer is generally well described by the Gordon-Taylor equation  

(Gordon and Taylor 1952): 

 

 𝑇𝑔 =
𝑥𝑇𝑔,𝑤+𝑘(1−𝑥)𝑇𝑔,𝑠

1+𝑘(1−𝑥)
 (7.5) 

 

where k is the Gordon-Taylor constant, to be determined 

experimentally for the specific polymer, and the subscripts w and s for Tg 
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denote the glass transition temperatures of water and the totally dry polymer 

solid, respectively. The latter needs to be determined experimentally, while 

Tg,w is given the theoretical value of 138 oC (Levine and Slade 1986). 

For phase equilibrium, it is necessary to determine experimentally 

the isotherms for films from totally dry to saturation (adsorption) and then 

from saturated to dry (desorption). Different empirical and semi-empirical 

models have been used to describe polymer-gas equilibrium. The following 

were considered in this work, to select a best one from the experimental 

data: 

 

GAB (van den Berg 1985): 

 

𝑋 =
𝑋𝑚𝑜𝑛𝑜∙𝐶𝐺∙𝐾𝐺∙𝑎𝑤

(1−𝐾𝐺∙𝑎𝑤)∙(1−𝐾𝐺∙𝑎𝑤+𝐶𝐺∙𝐾𝐺∙𝑎𝑤)
                                            (7.6) 

 

Oswin (1946): 

 

𝑋 = 𝑐𝑂,1 (
𝑎𝑤

1−𝑎𝑤
)
𝑐𝑂,2

                                                   (7.7) 

 

Peleg (1993): 

 

𝑋 = 𝐾𝑃,1𝑎𝑤
𝑛𝑃,1 + 𝐾𝑃,2𝑎𝑤

𝑛𝑃,2                                             (7.8) 

 

Viollaz and Rovedo (1999): 
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𝑋 =
𝑥𝑚𝑜𝑛𝑜∙𝐶𝑉∙𝐾𝑉∙𝑎𝑤

(1−𝐾𝑉∙𝑎𝑤)∙(1−𝐾𝑉∙𝑎𝑤+∙𝐶𝑉∙𝐾𝑉∙𝑎𝑤)
+

∙𝐶𝑉∙𝐾𝑉∙𝑘𝑉,2∙𝑎𝑤
2

(1−𝐾𝑉∙𝑎𝑤)∙(1−𝑎𝑤)
                          (7.9) 

 

Park (1986): 

 

𝑋 = 
𝐴𝑃,𝐿∙𝑏𝑃,𝐿∙𝑎𝑤

1+ 𝑏𝑃,𝐿∙𝑎𝑤
+ 𝐾𝑃,𝐻 ∙ 𝑎𝑤 + 𝐾𝑃,𝑎 ∙ 𝑎𝑤

𝑛𝑃                                 (7.10) 

 

where aw, the water activity, is equal to the relative humidity of the air 

at equilibrium with the film and X is the mass fraction in dry basis (e.g. g 

water / g dry film). The relationship between dry basis and normal (wet) 

basis is: 

 

 𝑋 = 
𝑥

1−𝑥
                                  (7.11) 

 

The relationship between sorption - diffusion and WVP is easier to 

see when one of the sides is kept totally dry (0% RH, aw=0), that is, x2=0, 

whatever the sorption model. WVP is determined simply from the 

measurements of water flow rate across the polymer and the humidity 

gradient. ASTM methods and material data sheets often use WVTR (water 

vapour transmission rate), which simply incorporates the vapour pressure: 

 

𝑚 = 𝑊𝑉𝑃 ∙ 𝑝𝑣 ∙ 𝐴 ∙ (ℎ𝑟,1 − ℎ𝑟,2) =  𝑊𝑉𝑇𝑅 ∙ 𝐴 ∙ (ℎ𝑟,1 − ℎ𝑟,2)     (7.12) 



 
 

255 
 

 

where pv is the vapour pressure at the particular temperature and the 

relative humities hr are equal to the water activities in the film aw. Thus, when 

hr,2 = aw,2 = x2 = 0: 

 

𝐷̅ =
𝑊𝑉𝑇𝑅 ∙ 𝛿 ∙ 𝑎𝑤,1

𝜌𝑓 ∙ 𝑥1
 

 

Hence, comparing with eq. 7.2: 

 

 𝐷̅ =
𝑊𝑉𝑃∙𝑝𝑣∙𝛿∙𝑎𝑤,1

𝜌𝑓∙𝑥1
 (7.13) 

 

with the ratio aw,1/x1 being given by the chosen adsorption isotherm 

(as water is adsorbing into the wetter surface).  

Note however eq. 7.3 giving the 𝐷̅ dependent on the whole 

concentration profile from 0 to x1, not only the point for x1. 

 

7.2.1.2. Data analysis to determine variable diffusion 

coefficients 

 

Values of the diffusion coefficient for different water contents are 

easily determined from experimental data with 0% relative humidity on one 
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side and various relative humidities on the other. In these case eq. 7.3 

becomes: 

 

 𝐷̅ =
1

𝑥1
∫ 𝐷(𝑥)𝑑𝑥

𝑥1

0
 (7.14) 

 

Thus, using Leibinz's rule of derivation of integrals: 

 

 𝐷(𝑥) =
𝑑(𝑥1𝐷̅)

𝑑𝑥1
 (7.15) 

 

Hence, determining values of 𝐷̅ for various x1 allows building a plot 

𝑥1 × 𝐷̅ versus 𝑥1 and the values of 𝐷(𝑥) are the tangents of the resulting 

curve at the respective 𝑥 point. In general cases for concentration 

dependent diffusion coefficients (Crank 1975), the easiest is to fit a simple 

mathematical expression to 𝑥1 × 𝐷̅ versus 𝑥1 data and obtain 𝐷(𝑥) from the 

derivatives of that model. A straight line (or parts of the plot well described 

by straight lines) corresponds to constant diffusion coefficients. 

In the present case, there is actually a model for this variation. From 

equations 7.4 and 7.5, and noting that the glass transition temperature of a 

usable packaging film should be above its operating temperature: 

 

 𝐷(𝑥) = 𝐷𝑔10

𝐶1(𝑇−
𝑥𝑇𝑔,𝑤+𝑘(1−𝑥)𝑇𝑔,𝑠

1+𝑘(1−𝑥)
)

𝐶2+(𝑇−
𝑥𝑇𝑔,𝑤+𝑘(1−𝑥)𝑇𝑔,𝑠

1+𝑘(1−𝑥)
)
 (7.16) 
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Replacing this model in eq. 7.3 (x2=0) and then solving the integral 

numerically gives 𝐷̅ model predictions. Experimental data determining water 

vapour mass flow rates give experimental values of 𝐷̅ model, from 

combining eqs. 7.11 and 7.12: 

 

 𝐷̅𝑒𝑥𝑝,0−𝑥1
=

𝑚𝑒𝑥𝑝,0−𝑎𝑤,1 ∙𝛿

𝐴∙𝜌𝑓∙𝑥1
 (7.17) 

 

where the subscripts exp,0-x1 and exp,0-aw,1 are used just to stress 

that these quantities refer to experimental values determined with no 

humidity (water content) on one side, and x1,aw,1 (point of an adsorption 

isotherm) on the other. 

 Fitting the WLF + Gordon-Taylor model predictions of  𝐷̅ from the 

numerical integration of eq. 7.14 with eq. 7.16 giving D(x) to the experimental 

values for each data point with least squares regression at a constant 

temperature T provides the 4 parameters of this model, C1, C2, k and Tg,s.  

 

7.2.2. Experimental methods 

7.2.2.1. Materials 

 

PLA (poly-lactic acid polymer) was supplied by Huhtamaki 

(Forchheim, Germany), and NatureFlexTM NVS by Innovia Packaging Group 
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(Wigton, UK). NVS is a compostable cellulose-based film developed by this 

company.  

  

7.2.2.2. Experimental procedures 

 

Differential scanning calorimetry (DSC) measurements were 

performed with a NETZSCH DSC 200 F3 calorimeter (from NETZSCH-

Gerätebau GmbH, Germany) equipped with a thermal analysis data station 

(NETZSCH Proteus® 6.0, Germany). 

The glass transition temperature (Tg) was characterized as the 

midpoint of the inflexion on the baseline in a differential calorimetry scan 

due to a discontinuity on heat capacity. At temperatures below the Tg, the 

rearrangements on the backbones of polymeric chains are very slow 

(Ghanbarzadeh and Oromiehi 2008, Ferry 1980). The Tg was determined 

on a second heating after one heating and cooling cycle in order to eliminate 

effects of sample history (Gontard and Ring 1996, Tumwesigye et al. 2016). 

The melting temperature (Tm), observed as an endothermic peak, and the 

associated enthalpy (Hm) were also determined (and expressed as J∙g-1). 

Each sample was heated at a rate of 10°C∙min-1, from 5 to 250°C, under an 

inert atmosphere (N2). The experiments were performed at least in 

duplicate, using aluminium DSC pans containing 10 mg of sample. An 

empty pan was used as reference. 
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X-ray diffraction (XRD) measurements were performed on a D2-

Phaser diffractometer (Bruker, Karlsruhe, Germany) with a CuK radiation 

( = 1.5418 Å), at 30 kV and 10 mA. Films were scanned over the range of 

diffraction angle 2 = 2  45, at a rate of 0.15°/min, a step size of 0.02°, 

a divergence slit width of 0.6 mm, a scatter slit width of 0.6 mm and a 

receiving slit width of 0.2 mm. 

For the determination of water sorption and mass flow rates through 

films the temperature of 5°C was chosen, being a typical average 

temperature of storage for fresh packed products. 

Water sorption isotherms were obtained by maintaining the films 

under different relative humidities from 0 to 100% at 5°C and calculating the 

moisture absorbed by weight difference from a fully dried film. To obtain fully 

dried samples, films cut into 75 x 15 mm strips were dried at 35°C until 

reaching constant weight and kept at 0% RH. Such films were then placed 

in environments kept at 5°C under different relative humidities, up to fully 

saturated air for the adsorption isotherm. For the desorption isotherm fully 

wet films equilibrated with saturated atmospheres were then placed in 

environments at different, and lower, relative humidites. Water and 

anhydrous calcium chloride were used to maintain relative humidity at (close 

to) 100% and 0%, respectively. Other relative humidities were obtained with 

glycerol solutions, as proposed by Wheeler et al. (2012), or saturated 

solutions (Stokes and Robinson 1949, Winston and Bates 1960): 0.16, 0.28, 

0.5, 0.57, 0.65, 0.7, 0.8, 0.85, 0.9, 0.95. The weights of the samples were 
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checked for 3 weeks, and equilibrium was judged to have been attained 

when the difference between consecutive sample weightings was less than 

1mg/g dry solid. 

The water vapour transmission rate through the film was determined 

by a gravimetric method based on ASTM E96/95 with modifications (ASTM 

96 1995). Permeation cells were kept at 5°C in enclosed in humidity-

controlled containers stored in temperature controlled incubators, and the 

water vapour gradient was obtained by creating different atmospheres 

inside and outside the cell, which were equilibrated with solutions similar to 

the determination of isotherms. Relative humidity outside the cells was 

controlled by using a Temperature and Humidity Data Logger (Cryopak, 

France). The measurements were performed over 48 h. The variation in 

weight of the solutions inside the cell provided the measurements of the 

mass flow rate of water, with WVP then given by eq. 7.12. 

Models were developed from data with 0% RH inside the container 

and various RH outside. For model validation and analysis of the practical 

implications of the findings, an additional set of data was obtained with 

different internal RH as well.  

It is important to note that the drier side must be the inside of the 

container. It was verified experimentally that if water vapour moves from the 

inside out, there is a decrease in pressure because the film is much more 

impermeable to other gases and thus the loss of water vapour molecules 

from the internal atmosphere is not compensated fast enough by an influx 
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of nitrogen and oxygen. Furthermore, there should also be a cooling effect 

due to the latent heat of evaporation of water given the small volume of the 

container. Both effects, even if very small in absolute terms for temperature 

and pressure themselves, have a significant impact in increasing the relative 

humidity inside the container from the assumed conditions of temperature 

and pressure outside it. For instance, WVTR measurements with 90% RH 

inside and 50% outside were 64% higher than those determined with 50% 

RH inside and 90% outside, which due to the influence of relative humidity 

on the permeance that will be shown in the results section is explained by 

an increase in the real internal relative humidity from 90% to closer to 

saturation due to the pressure loss resulting from the uncompensated 

outward flow rate of water and to evaporative cooling. 
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7.3. RESULTS AND DISCUSSION 

 

7.3.1. Sorption isotherms at 5°C 

 

The adsorption and desorption isotherms of PLA and NVS are shown 

in figure 7.1. Adsorption and desorption data for PLA did not vary more than 

experimental error and thus a single sorption curve was considered. The 

same occurred with NVS but only up to 95% relative humidity, with 

significant hysteresis for higher water activities, thus leading to different 

adsorption and desorption curves, even though the predictions are 

indistinguishable between the 2 within experimental error up to aw=0.95. 

The parameters obtained with least squares regression for the 

various models and the goodness of fit statistics are shown in table 7.1. 

  

                               (a)       (b) 

Figure 7.1 - Sorption isotherms of (a) PLA (▲) and (b) NVS (■) films at 5°C. 
Open symbols are experimental data for desorption and full symbols for 
adsorption; the lines show fits of Park's model (joint adsorption-desorption for 
PLA and for NVS, solid line for adsorption and dashed line for desorption). 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1

x 
(g

w
at

er
/ 

g d
ry

 m
at

te
r)

aw

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

x

aw



 
 

263 
 

 

Table 7.1– Model parameters and goodness of fit of the sorption curves of 
PLA and NVS at 5 oC 

Model Parameter PLA 
NVS 

Sorption Desorption 

GAB 

qmono 0.009 0.131 0.071 

C 9484946.6 17.011 47584.5 

K 0.832 0.667 0.912 

R2 0.578 0.911 0.894 

E(%) 23.218 17.027 26.680 

Oswin 

c1 0.021 0.172 0.176 

c2 0.142 0.330 0.247 

R2 0.924 0.846 0.689 

E(%) 11.380 11.315 16.447 

Peleg 

k1 0.047 0.275 0.548 

k2 33.730 2.088 139.047 

n1 0.027 0.101 0.293 

n2 0.266 0 0.646 

R2 0.938 0.919 0.964 

E(%) 10.133 15.936 19.271 

Viollaz e Rovedo 

qmono 0.027 0.109 0.139 

C 87657.526 36.290 30.000 

K 0.000 0.761 0.503 

k2 0.000 0.000 0.000 

R2 0.593 0.888 0.128 

E(%) 11.097 17.227 22.163 

Park 

AL 0.031 0.101002 0.059 

bL 4.931 1496.942 1496.941 

Kh 0 0 0.245 

Ka 0.047 0.275139 0.537 

n 32.973 2.092132 126.108 

R2 0.939 0.919 0.966 

E(%) 10.175 15.935 18.191 

 

For this set of data Park’s model provided the best results, requiring 

only 4 parameters for PLA and NVS adsorption, although Peleg’s model 

would provide indistinguishably good fits.  
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Park’s model parameters have a semi-empirical meaning, as the 

equations can be seen to be a composition of different elements. It 

incorporates Henry's law or Flory-Huggins-type sorption, Langmuir-type 

sorption on internal pore surfaces and the formation of clusters; and as a 

consequence, it is useful to predict the water sorption of not only hydrophilic 

materials but also hydrophobic ones (Park 1986). The parameters of Park’s 

model have a physical meaning, which is interesting to evaluate the water-

related behaviour of the materials. AP,L is the monolayer capacity, bP,L the 

Langmuir affinity constant, kP,H Henry’s solubility coefficient, KP,a the 

equilibrium constant for the clustering reaction and nP the mean number of 

water molecules per cluster. The first term is a Langmuir’s isotherm and 

thus provides the fit for low water activities, giving a portion of the curve that 

tends to the monolayer value (water content of the first molecular layer of 

water, strongly adsorbed physically and chemically to the polymer surface), 

which is thus the meaning of parameter AP,L. It provides a measure of the 

extent of the internal pore surfaces per unit volume of membrane while bP,L 

is the Langmuir sorption (or affinity) parameter quantifying the curvature (the 

higher its value, the lower the aw at which the monolayer is reached). Both 

had smaller values for PLA films than NVS and the difference was very 

pronounced for bL. This suggests that NVS films had greater surface 

solubility than PLA films, indicating more capacity to form bonds with the 

water molecules (Alix et al. 2009, Wolf et al. 2016). The much higher value 
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of AP,L of NVS compared to PLA quantifies the much higher solubility of 

water in this material, about 10 times more than PLA. 

KP,H would be Henry’s constant (if AP,L = KP,A = 0, Parks’ model gives 

the linear isotherm corresponding to Henry’s law), and could be used for 

very low water activities (there being no experimental data at low aw it is 

thus not surprising that this parameter is not statistically significant in this 

data regression; it is noted that low ranges are not relevant in practical 

applications of food packaging). This implies that the relevant part of the 

sorption behaviour is driven by water aggregation, or cluster formation, 

following the initial adsorption into the micro-porosities of the polymer 

explained by the Langmuir relationship (1st term of Park’s model, Park, 

1986). 

The 3rd term provides the sigmoidal part of the curve, rising rapidly 

from the monolayer value for higher water activities, with nP quantifying the 

curvature. It can be seen in figure 7.1 that with the exception of adsorption 

in NVS the curvature is only sharp at quite high values of aw, which 

numerically corresponds to high values of nP in table 7.1. This means that 

clustering of water molecules occurs only for high relative humidities (this 

will have particular relevance for PLA, as will be discussed later). This 

desorption behaviour is similar to those observed by other authors in 

polymers such as polyester filled with flax fibre (Alix et al. 2009), cellulose 

whiskers and microfibrils films (Belbekhouche et al. 2011) and sodium 

caseinate films (Colak et al. 2015). 
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7.3.2. Water diffusivity through the polymers at 5°C 

 

The glass transition temperatures of fully dried films determined by 

DSC, as described in the methods section, were 125°C for NVS and 40°C 

for PLA.  NVS actually showed 2 Tg points, 95°C being the other, as it is a 

multilayer material with the cellulose composite covered on both sides by a 

proprietary material to provide printability and sealability (the coating may 

vary depending on client’s specifications). As mentioned in the introduction, 

it is assumed that one of the layers (with higher Tg) is the dominant 

resistance to water vapour (as it would be the purpose of that layer in the 

film) and that the partition coefficient of water between the two polymeric 

materials is 1.  

 

7.3.2.1. Results for NVS 

 

For model development, the water vapour flow rate through the films 

was determined with internal atmospheres of 0% RH and external of 50, 65, 

70, 75, 80, 85, 90 and 100% (the latter was confirmed with a humidity meter) 

for NVS, with 3 replicates in each case. Least squares regression of the 

average diffusivities calculated numerically with eq. 7.14 (with individual 

diffusivities given by eq. 7.16) and obtained experimentally (eq. 7.17) 

yielded the parameters shown in table 7.2. The plot can be seen in fig. 7.2, 
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which also shows the diagnosis plot for the ability of the WLF and Gordon-

Taylor combination, with table 7.2 parameters, to describe the variation of 

diffusivity with water content. Fig. 7.2b shows the 𝑥1 × 𝐷̅ versus 𝑥1 plot used 

to determine variable diffusion coefficients generically. The model 

predictions have a 0.989 correlation coefficient with the experimental values 

in this plot, a much better fit than any empirical model would provide 

(exponential, power, polynomial, etc.), even though the model parameters 

were not obtained with this regression, but with the average diffusivities 

themselves (fig. 7.2a). The individual values of diffusivity for each water 

content are the tangents of the curve in fig. 7.1b. Fig. 7.2c shows how these 

individual coefficients, the average from 0 to the specific water content, and 

the glass transition temperature vary with the water content of the film. 

 

Table 7.2 - WLF and Gordon-Taylor parameters obtained by least squares 

regression of average diffusivities of water through NVS and PLA at 5°C 

Parameter NVS PLA ** units 

Dg 8.270 x 10-14 9.38 x 10-12 cm2/s 

C1 2.86 2.07 dimensionless 

C2 23.9 7.78 oC 

k 1.20 0.738 dimensionless 

Tg,s * 125 40 oC 

R2 93.1% 13.7%  

* determined experimentally with DSC, ** for aw<0.95 only 
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The C1 and C2 parameters are different from the universal constants 

17.44 and 51.6, but as affirmed by Ferry (1980), the differences from one 

polymer to another may be significant. Paz et al. (2005), for example, 

studied the permeability to ethylene of wheat gluten films and obtained 

values of C1 and C2 very different from the universal values (28.2 and 360.2, 

respectively). It should also be noted that table 7.2 parameters refer to 

conditions below Tg. It has been shown that C1 and C2 depend not only on 

the material but also on the property evaluated and on the temperature used 

as reference, and consequently those parameters should not be 

generalised to all cases as they can assume significantly different values 

(Peleg 1992, Roos 2000). Notwithstanding, the values obtained in table 7.2 

for the permeability of NVS to water vapour are of the usual order of 

magnitude and well within typical values. 

The use of a single Tg in a film with 2 different materials is 

questionable, but it has been applied to copolymers that also presented two 

Tg (Kumins and Roteman 1961). The justification in this case, as already 

noted, is that it is assumed that one of the materials dominates the 

resistance to water diffusion and hence diffusivity depends only on the Tg of 

that material (which is likely to be the one with highest Tg). 

Values of the parameter k are obtained from fitting the mathematical 

model to the data and reflect the strength of interaction between compounds 

and the plasticization effect; for instance, the effect of triacetin glycerin and 

polyglycidyl ether as plasticisers on cellulose diacetate based 
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biocomposites (Phuong and Lazzeri 2012) and  the compatibility of  

cellulose acetate hydrogen phthalate and poly methyl methacrylate (Rao, 

Ashokan, and Shridhar 1999).  

The results in this work suggests that water content has a mild 

plasticiser effect on NVS because the value of k is relatively low 

(Arvanitoyannis and Biliaderis 1998, Chaudhary, Adhikari, and Kasapis 

2011). High values of k are associated with highly hydrophilic materials, very 

susceptible to water (Gontard and Ring 1996). It must be noted that table 

7.2 data are for 5°C, which is a typical storage temperature for fresh foods, 

but it is not surprising that plasticising effects are milder under these 

conditions. 

It can be concluded that the WLF and Gordon-Taylor models provide 

an excellent description of the influence of water content (and humidity) on 

the diffusion coefficient, showing a typical plasticizing effect in the whole 

range of humidities 50 of 100 % of interest to food packaging. WLF and 

Gordon-Taylor equations are often used to study Tg and its effect on 

different material properties, but it is not common to find literature 

references connecting both models to study the influence of water content 

in molecular mobility in a polymer. Räderer, Besson, and Sommer (2002) 

successfully applied both models to describe the drying kinetics of a 

shrinking film and its dependence on glass transition temperature and 

hence on the water content. 
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 (a) 

 (b) 

 (c) 
Figure 7.2 - Experimental average diffusivities (symbols) of water through 
NVS at 5°C and model predictions (lines). (a) average diffusivities; (b) 
variable diffusivity diagnosis plot; (c) variation of individual and average 
(from 0) diffusivities (full and dashed lines, respectively, on the left y-axis) 
and glass transition temperature (dash-dot line, on the right y-axis) with the 
water content of NVS. 
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7.3.2.2. Results for PLA 

 

For model development, the water vapour flow rate through the films 

was determined with internal atmospheres of 0% RH and external of 35, 50, 

60, 75, 80, 95 and 100% (the latter was confirmed with a humidity meter) 

for PLA, with 3 replicates in each case. The model fitting results are shown 

in table 7.2 and the plots in fig. 7.3. 

There are two anomalies in these results: (i) the value for 100% RH 

is two orders of magnitude smaller than all the others, showing a drastic fall 

of the water vapour permeability for the fully wetted film and hence cannot 

be added to the model fitting; (ii) although the concentration dependence of 

diffusivity in the diagnosis plot (fig. 7.3b) is well described by the WLF and 

Gordon-Taylor models with the parameters of table 7.2 for the data points 

up to 95% RH, it is not statistically different from a simple straight line, that 

is, the diffusion coefficient could be considered constant within the margin 

of error. Fig. 7.3a indeed shows that a constant average diffusivity would fit 

the data points equally well, hence the R2 in table 7.2 is very poor. 

Therefore, PLA shows a negligible plasticization effect from the water 

contents at equilibrium with relative humidity in the 35 to 95% range, but at 

higher relative humidites the diffusion coefficient was 100 times lower than 

with the other water contents. 
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 (a) 

 (b) 

 (c) 
Figure 7.3 - Experimental average diffusivities (symbols) of water through 
PLA at 5 oC and model predictions (lines) for aw≤0.95. (a) average 
diffusivities; (b) variable diffusivity diagnosis plot; (c) variation of average 
and individual diffusivities (full and dashed lines, respectively, on the left y-
axis) and glass transition temperature (dash-dot line, on the right y-axis) 
with the water content of PLA; the constant diffusivity for this range of water 
contents is also shown as a dotted line. 
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It is reminded that the adsorption isotherm of PLA shows a very sharp 

curvature, with the water content at 100% RH being more than twice the 

amount at equilibrium with 95% RH (fig. 7.1a). It is also noted that the glass 

transition temperature of the fully dry PLA was fairly low, just about 40°C. 

Therefore, it is quite possible that the glass transition temperature of the 

wetted film approaches the environment temperature (5°C), even possibly 

becoming lower, and thus the molecular mobility of the structure with these 

higher water contents increases very significantly. This would allow the 

polymer to recrystallize to some extent. As diffusion through crystalline 

polymer is much slower than through amorphous, an increase in the 

crystallinity of the PLA enabled by the high water contents would justify the 

fall in water vapour permeability. A similar effect was observed by Colak et 

al. (2015) with sodium caseinate films, where diffusivities decreased with 

increased relative humidity when the films were subjected to RH over 50%.  

Another factor that might compromise the water diffusivity is that 

water adsorption might be led by hydrolytical degradation. As observed by 

Holm, Ndoni, and Risbo (2006) the amount of water on PLA films might not 

be entirely transported through the film, but could react with the membrane 

on its way. 

Auras et al. (2003) observed similar results for WVP of PLA films, 

which, according to those authors, make PLA films an interesting choice to 

form multilayer structures with other polymers more susceptible to moisture. 

However, for food packaging this is a detrimental effect. The packed fruits 
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or vegetables will produce significant quantities of water vapour due to 

respiration, even if the internal package environment is sufficiently humid to 

limit transpiration. Therefore, in most cases it is important that the released 

water vapour is allowed to escape the package at an appropriate rate to 

prevent condensation. This rate is proportional to the permeance of the film 

and the gradient of relative humidities. The internal atmosphere will always 

be humid due to respiration, so if the external atmosphere is also relatively 

humid, the film has a high water content throughout and a low gradient, so 

the permeance needs to be higher the more humid the outside environment. 

Thus, anti-plasticizing effects will denote films that are much more likely to 

lead to internal condensation the higher the storage humidity. 

WVP of PLA films has been described as driven by the water cluster 

model rather than the solution diffusion model. The water-water interactions 

are probably stronger than the water-polymer interactions, which is typical 

of polymers that are not very hydrophilic and do not have many polar groups 

(Almenar and Auras 2010, Van Krevelen and Te Nijenhuis 2009, Siparsky 

et al. 1997). These results also concur with the findings of Du et al. (2012), 

who investigated the clustering of water molecules into PLA matrix by 

evaluating the enthalpy of water sorption and observed a strong indicative 

of clustering in PLA films. As fig. 7.1a and table 7.1 parameters show, water 

clustering on the PLA film tested at 5°C occurs only at very high humidities, 

above aw 0.95 (sharp curvature of the sorption isotherm; high value of nP); 

above these conditions polymer restructuring and/or clustering effects are 
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more important than plasticization, whereas below this the balance between 

different effects leads to a roughly constant rate of diffusion. 

Tg is a secondary order transition corresponding to the point that the 

polymer becomes rubbery with a liquid-like mobility. The increase in the 

chain mobility demands more molecular space for the long-range 

movement. Plasticisers intentionally added or absorbed by the polymer tend 

to lodge among the polymeric chains, moving them apart from each other. 

This separation of the chains reduces the intermolecular interaction forces, 

increasing the chain mobility of the amorphous phase. The molecular 

lubrication promoted by the plasticizer decreases the energy necessary to 

give mobility to the chains (Canevarolo 2006).  The anti-plasticization effect 

of water molecules in a polymer has been attributed to water molecules 

occupying the intermolecular spaces, filling the polymer free volume. 

Consequently, the molecular mobility decreases due to the increase of 

water molecules into the polymeric matrix, which is reflected as a raise in Tg 

(Robeson 1969). Water might appear as an anti-plasticizer of polymers 

commonly used at temperatures above Tg (Pittia and Sacchetti 2008). 

According to Guo (1993), when molecules of plasticizer interact with the 

polymer the molecular mobility decreases, which is likely to happen in 

systems with low content of plasticizer. It was also observed by Liu et al. 

(1990) studying films of glassy polycarbonate containing relatively low 

concentration of the diluent di-n-butyl phthalate. It is noted from fig. 7.1 and 
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table 7.1 parameters that the water content of PLA was particularly low 

compared to NVS. 

Notwithstanding the physical justifications, these results indicated 

the necessity of studying the effect of the water content on the crystallinity 

of PLA in order to validate the causes of the structural effect of water.  

First, a simple experiment was performed in order to observe the 

effect of the water molecules on the structure of the matrix. PLA films were 

stored at 50% RH for 15 days and the WVP determined at 5oC as in the 

previous set of experiments, with 0% RH inside and 50% outside. Results 

are shown in Table 7.3, row I. After that, these films were stored at 75% RH 

for 15 days and again the WVP was determined at 5oC, in this case with 

75% RH outside, giving the results in Table 7.3, row II. Finally, the same 

samples were stored at 50% RH for another 15 days and the WVP was 

again determined at 5°C with 50 % RH outside, giving the results in Table 

7.5, row III.  

 

Table 7.3 – Water Vapour Permeability of PLA previously stored at different 
Relative Humidity (RH) conditions at 5°C (in g ∙ m-2 ∙ day-1, average of 3 
replicates) 

 storage prior to testing RH outside WVP * 

I 15 days at 50% RH 50% 23.437 a 

II + 15 days at 75% RH 75% 58.805 b 

III + 15 days at 50% RH 50% 66.018 c 
* different letters refer to different homogenous groups 
according to a Tukey HSD test at 95% confidence level 

 

It can be seen that the water vapour transmission rates of the 3 

samples were statistically different, according to a Tukey HSD test at 95% 
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confidence level. The difference between I and II can be due to the 

plasticising effect of water between 50 and 75% and not to changes during 

storage, although the previous results did not suggest a significant 

difference of the average diffusivities. However, the very significant 

difference between I and III can only be explained by the film having 

changed irreversibly as a result of the previous storage. Issues related to 

water-water versus water-polymer interactions, clustering effects, etc., 

would not justify that the previous storage history of a film would affect its 

permeability. 

To investigate the changes that occur with high humidities in the PLA 

film, X-ray diffraction was used. The X-ray patterns of PLA films are shown 

in Figure 7.4 and two peaks were observed in all samples. Films stored at 

0% RH presented peaks at 2 16.56 and 29.9°. These peaks were slightly 

displaced on other films due to the water content.  A decrease of the peak 

intensity is noticeable from the film stored at 0% RH to 50% RH, with the 

reduction of peak width and height. This is expectable in a plasticizing effect. 

The peak at 75% recovered somewhat compared to 0 RH, but still shows a 

plasticizing effect compared to the dried film, but not to 50%. Films stored 

at 100% RH presented a much sharper peak, higher and wider than the 

others. This suggests that at 100% RH recrystallization of the polymeric 

matrix occurred to a significant extent. 
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Figure 7.4– X-ray pattern of PLA films conditioned to different relative 
humidity conditions by storage over 15 days 

 

Crystallization in films due to the presence of water molecules can 

happen due to the structural effect of the water. The presence of the 

plasticiser in low concentration gives enough molecular mobility that it 

allows the molecules to reorganize, hence improving the crystallinity 

(Lourdin, Bizot, and Colonna 1997). 

Cairncross et al. (2006) pinpointed that results in literature 

concerning PLA films were inconsistent and contradictory. They also 

observed in their work that the crystallinity of the polymer did not affect the 

water sorption, that had been dismissed a priory by the authors, but the 

present work shows that it does indeed influence water sorption. Despite 

the fact that well-defined crystallites are not subjected to the effect of water, 

polar groups on their surface may react with water (Van Krevelen and Te 
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Nijenhuis 2009). The presence of the plasticizer might also increase 

crystallinity by increasing the number of cross-links on the polymeric chain, 

increasing the rigidity of the polymer (Lourdin, Bizot, and Colonna 1997).  

A justification for anti-plasticizing effects can be that the reality is a 

structural change from amorphous to crystalline in polyvinyl chloride (PVC) 

materials seems the most appropriate in the present case also. It has been 

observed that the presence of small quantities of plasticizer increases the 

chain mobility allowing the polymeric chain to reorganize, and the materials 

can reach the same crystallinity of unplasticized polymers (Guerrero 1989), 

which was exactly what was observed in this work for PLA films. The 

decrease of chain mobility due to the presence of plasticiser was also 

identified  by Sun et al. (2013); and its effect on mechanical properties of 

films were observed by Suppakul et al. (2013) and Chang, Cheah, and 

Seow (2000).  

Considering the results in Table 7.5, it is possible that the 

inconsistency in published literature reported by Cairncross et al. (2006) 

may be due to the fact that the properties of PLA may be strongly dependent 

on the storage conditions, which means that sorption, WVP and Diffusion 

may vary with the history of the polymer. This implies that for practical 

applications the WVP of PLA must be determined at the time of usage, and 

repeated over storage periods, with the standard values of the material data 

sheets providing, at best, a rough indication of what to expect. 
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7.3.3. Water vapour permeance under different conditions of use 

 

The previous results and eqs. 7.2 and 7.12 clearly show that the 

WVP of a film will depend on the actual humidities on both sides of the film. 

Thus, standard measurements of WVP may give very inaccurate predictions 

of the effective capacity of a film to be permeated by water vapour (typical 

ASTM conditions being 0% relative humidity on one side of the film and 

100%, or another very high value, on the other). Literature suggests 

predicting the flow rate of water through a film by multiplying the standard 

WVTR by the humidity gradient (of the WVP by the vapour pressure and the 

humidity gradient). However, the models show very clearly that a same 

gradient will give significantly different results depending on the absolute 

values.  

A series of experiments were performed to validate the models and 

prove this point, with various internal and external atmospheres. For NVS, 

WLF and Gordon-Taylor models can be used, whereas for PLA the result 

was a constant diffusivity up to 95% RH and a sharp fall above that, so NVS 

was chosen. 

From eqs. 7.2 and 7.12, the WVTR that should be measured in a 

particular test with different relative humidities inside and outside the film is 

related to diffusivity by: 

 

 𝑊𝑉𝑇𝑅 =
𝐷̅∙𝜌𝑓∙(𝑥1−𝑥2)

𝛿∙(ℎ𝑟,1−ℎ𝑟,2)
 (7.18) 
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where hr,2 is the relative humidity of the drier side and x2 the point for 

aw=hr,2 of the isotherm and hr,1 is the relative humidity of the more humid 

side and x1 the point for aw=hr,1 of the isotherm. Whether the adsorption or 

desorption isotherm need to be used depends on the history of the film; in 

the case of films used from the roll and hence dry, it is the adsorption 

isotherm that applies to both sides. The value of 𝐷̅ is given by eq. 7.3 with 

the diffusivity following WLF and Gordon-Taylor models as in eq. 7.16, that 

is, by solving numerically the integral: 

 

𝐷̅ =
𝐷𝑔

𝑥1−𝑥2
∫ 10

𝐶1(𝑇−
𝑥𝑇𝑔,𝑤+𝑘(1−𝑥)𝑇𝑔,𝑠

1+𝑘(1−𝑥)
)

𝐶2+(𝑇−
𝑥𝑇𝑔,𝑤+𝑘(1−𝑥)𝑇𝑔,𝑠

1+𝑘(1−𝑥)
)
𝑑𝑥

𝑥1

𝑥2
                (7.19) 

 

Tests were performed in triplicate with two pairs of internal and 

external relative humidities in the range of interest to food packaging 

conditions: 50 and 90% in 3 experiments and 75% and 100% in 3 others.  
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Figure 7.5 - Water Vapour Transmission Rates of NVS at 5°C 

obtained experimentally (full spheres for 50%-90% humidity gradient and 

open squares for 75%-100%), predicted by the model for the dryer side at 

0% RH (full line), 50% RH (dashed line) and 75% RH (dotted line), with 

wetter side on the x-axis, and obtained with ASTM E36 method at 5°C 

(dash-dot line). 

 

Figure 7.5 shows how the WVTR measured depends on the relative 

humidity gradient according to the model predictions. Three lines are shown 

for 3 different dryer environments: 0%, 50% and 75% RH (solid, dashed and 

dotted, respectively). The ASTM E96 value is also shown as a dotted-

dashed line, this being the method used in the material datasheets of NVS.  

This method measures WVTR at 100°F with 0% RH on one side and 90% 

on the other; at that temperature the material data sheets correspond to 

WVTR = 556.6 g/(m2.day). These experimental conditions for the 

temperature of 5oC used in this work were part of the model development 
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data set, so the value obtained in those 3 replicates of WVTR = 76.45 

g/(m2.day) is the ASTM E96 value shown here. The points obtained 

experimentally are also shown, with full circles for 50%-90% gradient (which 

thus compares with predictions of the dashed line) and open squares for 

75%-100% gradient (which compares with the dotted line). 

The relevance of the actual relative humidities is very clear in figure 

7.5. For instance, for 0-50% (in the full line) WVTR predicted by the model 

is 46.2 g/(m2.day) whereas for 50%-100% (in the dashed line) it is 192 

g/(m2.day), which is around 4 times higher, even though the gradient itself 

is 50% in both cases. The 3 experimental points obtained with the 50%-90% 

conditions are slightly under predicted by the model (149, 176 and 137, 

experimental values compared to 130 g/(m2.day) of the model), still within 

the margin of error though. However, the model underpredicts significantly 

the WVTR obtained with 75%-100% (445, 453 and 395 experimental 

values, compared to 273 g/(m2.day) of the model). This is however within 

the margin of error of the isotherm, as there were no points between aw=0.95 

and aw=1 in the adsorption isotherm determination, which is where the 

isotherm curves vary significantly. A small error in the isotherm model 

results in a very significant difference in water content, as can be seen in 

fig. 7.1b. However, the main point is that the ASTM values would be totally 

inappropriate, the more so the higher the relative humidities of the two sides. 

The 50%-90% conditions show an experimental WVTR that is twice the 

ASTM value. 
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This is extremely relevant to food packaging, because the real 

conditions of use are a high internal relative humidity and an external that 

depends on storage conditions, but is usually high (excessively dry storage 

atmospheres would cause too much water loss due to transpiration/drying). 

90%-50% would be underestimating likely atmospheres in practical 

applications, and the real WVTR at 5°C is already more than twice the ASTM 

value. For a package near saturation inside and with 75% RH outside, a not 

too unusual situation, the model predicts a WVTR that is 3 times the ASTM 

value (and experimentally, values 6 times higher were found). 
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7.4. CONCLUSION 

 

Water content showed a very significant effect on the water vapour 

permeance of PLA and NVS. In the latter case this could be described well 

by applying WLF and Gordon-Taylor equations to quantify the diffusion of 

water molecules through the polymer and Park’s equation for the sorption 

isotherms. PLA showed an approximately constant WVP up to 95% RH but 

a very significant loss of permeance for 100% RH, to just 1% of the 50-95% 

RH value.  

In practical conditions of food packaging internal atmospheres are 

humid and storage atmospheres should be too, implying that the values 

determined with ASTM methods may underestimate WVP significantly. It is 

therefore important to determine the WVP of a packaging film in the real 

conditions of use, and to understand and describe appropriately the effect 

of humidity and water content on the effective WVP. 

Plasticising effects, like those found for NVS, are beneficial for food 

packaging because higher humidities will typically occur with lower 

gradients between inside and outside of the package, and therefore it is 

beneficial that WVP increases with lower gradients. The internal 

atmosphere will always be humid due to respiration, so high gradients would 

imply a dryer storage environment, and the decrease of WVP resulting from 

that effect thus compensates somewhat to minimise the loss of water and 

potential drying and consequent loss of quality. 
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Structural effects, like those found in PLA are detrimental because if 

a package is subjected to relative humidities close to saturation (for 

instance, if the high respiration rate of the product on packaging is high, 

which is likely due to temperature and the mechanical stresses of handling 

and processing) the film will irreversibly lose permeance, thus becoming 

even more likely to cause internal condensation and loss of quality. 
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8. MAXIMISING THE CONFORMITY OF THE EFFECT OF SEAL 

LEAKAGE IN THE EFFECTIVE PERMEANCE OF PACKAGES 

 

ABSTRACT 

 

The contribution of seal leakage to the oxygen permeability of 

packages was analysed using APET trays sealed with NatureFlex NVS 

films. The influence of 3 sealing factors, sealing temperature, time and 

compression force, on the seal leakage and on its variability was assessed 

on a small sealing machine. The Taguchi method for robust engineering 

design was applied using an experimental design with a 5-times replicated 

L-8 orthogonal array (full factorial design). In spite of differences due to the 

sealing factors being generally of the order of magnitude as variabilities 

between repeats, sealing temperature had a significant effect on the 

effective oxygen permeability of the sealed package at 95% confidence 

level and was also the most influential factor on the variability, quantified by 

the signal-to-noise ratio. Sealing time had a marginal impact on repeatability 

(with an interaction with temperature for the effective permeance, but not for 

its variability) while compression force did not show significant effects. 

Adding a 4-times replicated centre point to the design and assessing the 

dispersion effects indicated however that compression force may have 

relevant interactions with both temperature and time, and also indicated that 

the centre point provided the sealing settings with greatest consistency. This 
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approach illustrates the relevance of sealing in the effective permeability of 

packages, the importance of ensuring its consistency to design optimum 

packages for maximum shelf life, and a simple methodology based on 

Taguchi concepts to establish optimum settings for that objective. 
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8.1. INTRODUCTION 

 

Food packaging is an extensive research field that covers many 

areas, from packaging materials related to polymer science and technology 

to aspects connected to other areas such as cold chain management and 

post-harvest physiology. For fresh and minimally processed fruits and 

vegetables the main purpose is to design packaging systems that maximise 

their protection value to quality and thus maximise the shelf life, reducing 

losses and ensuring quality of the produce to the consumer.   

For packed products, protection means a protective atmosphere with 

low oxygen and high carbon dioxide and humidity, specific values 

depending on the actual commodity, and so a major concern for food 

packaging is the package barrier against gases. Excessive permeance 

offers no added protective effect to normal atmosphere, whereas excessive 

barrier can be very detrimental and even a health hazard if anoxia 

conditions set in as a result of the product’s respiration consumption of 

oxygen not being compensated by the influx from the atmosphere through 

the package.  Several authors in literature have worked on oxygen, carbon 

dioxide and water vapour permeability, either trying to improve barrier 

properties of permeable films (Calado and Ramos 2016, Azeredo 2009) or 

perforating films in order to achieve a desired permeance (Hussein, Caleb, 

and Opara 2015, Fonseca et al. 2000). Achieving maximum shelf life 
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therefore requires an accurate determination of both respiration rates and 

effective permeability of the package. 

Perforated packaging films are used for designing modified 

atmosphere packaging (MAP), which is a technique that relies on the proper 

calculation of the permeabilities through both film and perforations. 

However, the contribution of package seals lacks proper attention. It has 

been argued that leaks on the packaging may spoil MAP’s performance by 

increasing the effective permeability (Tumwesigye et al. 2017).  There are 

many registered patents of sealing systems trying to improve the sealing 

and ensure reliability (Pfaffmann 1992, Douglas 2004, Massey et al. 2002, 

Ishikawa et al. 2014).  

However, whether a package leaks through seals or not is in fact a 

secondary issue, it may even be beneficial to have sealing leakage 

providing an appropriate permeance instead of perforations. Perforations 

remove a physical barrier to microbial (and even insect) contamination and 

if covered inadvertently will then cause anoxia in the package. A somewhat 

permeable seal could be a better choice to achieve appropriate 

permeabilities for products with medium to high respiration rates. Seals can 

be responsible for the effective permeance of a package being significantly 

higher than that of the film itself, for instance, Reinas et al. (2016) reported 

that 25% of the total mass transfer through the package was due to sealing 

leakage.   
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Thus, the critical issue about seals in MAP is not necessarily to 

ensure that they are truly hermetic, the problem of seal leakage for 

successful MAP is inconsistency in the effect. The permeability of a film may 

vary somewhat with operating conditions but it is a fairly well controlled 

property of the material. Likewise, if perforation sizes are accurately 

controlled, so is the variability of the permeance they cause. The problem 

of sealing leakage is whether it can be controlled within accepted variability. 

This is the type of problem that is often addressed industrially by applying 

the Taguchi method of robust engineering design (Rekab and Muzaffar 

2005, Myers, Montgomery, and Anderson-Cook 2016), the objective of 

which is to establish the process settings that result in maximum conformity 

of performance. In this particular case, it does not actually matter too much 

what the permeance contribution of seals is, what matters most is that it is 

a consistent contribution that does not vary excessively from package to 

package. A package can be designed for any condition, it is possible to 

incorporate the effect of the seal in the permeance (material, product weight, 

film area, perforation profile, etc.), the critical issue is repeatability. This 

problem has not been analysed to date.  

Seals are made by heating two thermoplastic materials under 

pressure during sufficient time to promote the necessary melting of the 

surfaces that are weld together as the material cools (Yam 2010). Often, 

one or both surfaces are coated with an adhesive material to improve 
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sealability, but not necessarily, especially if the two surfaces are actually the 

same polymer.  

The objective of this work was to assess the influence of sealing 

parameters on the effective permeability of a package (due to the packaging 

materials and the seal) and on its variability between repeats. Taguchi and 

statistical methods were intended to illustrate an approach to establish the 

sealing parameters that would ensure maximum repeatability.   

 

8.2.    MATERIALS AND METHODS 

 

8.2.1. Experimental procedure 

 

APET/RPET (Amorphous Polyethylene Terephthalate/ Recycled  

Polyethylene Terephthalate) Trays (607 B, Avoncourt, Ireland) with an open 

top were used, to be sealed with a 226.77 m2 NatureFlexTM NVS film 

(Innovia Packaging Group, Wigton, UK). A small pilot sealing machine (VS 

300, Maple, United Kingdom) was used. Slotted weights (100, 120 or 140 

N) were used to exert different compression forces on the sealing machine. 

Sealing was carried out at 8, 12 or 16 seconds, and the temperature was 

controlled to settings 3, 3.5 or 4 on the sealing machine, which correspond 

to approx. 115, 145 and 185°C, respectively. The containers were flushed 

with 20-23% v/v of CO2 and the balance with N2 and kept in a walk-in 

controlled temperature cold room maintained at 10°C.   
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A full  factorial design at 2 levels with the extreme settings of each 

factor was used first, with 5 replicates for each combination, totalling 40 

trials. Four replicates of the centre point were then also performed. 

The O2 concentration inside the containers was measured using a 

Fiber Optic Oxygen Transmitter (Presens, Germany). This device uses an 

optical probe to determine the inner concentrations through the transparent 

film, without piercing nor disturbing the inner atmosphere.  

The apparent permeance of the perforated film is obtained from a 

mass balance to the container: 

 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑛                                                              (8.1) 

 

where C is the oxygen concentration (moles/m3), n is the molar flow 

rate of oxygen through the package (moles/s) and V the volume of the 

container. The flow is proportional to the concentration gradient and area of 

the film (A), with the apparent permeance (Pa) of the perforated film being 

the proportionality constant: 

 

𝑛 = P𝑎 A (𝐶𝑒 − 𝐶𝑖)                                                (8.2) 

 

C can be obtained by the ideal gas law, and is equal to yp/RT where 

y is the volumetric fraction of oxygen, p the pressure, R the ideal gas 

constant and T the absolute temperature, and developing the equations: 
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 𝑉
𝑑𝑦

𝑑𝑡
= P𝑎 A (𝑦𝑒 − 𝑦𝑡)                                            (8.3) 

  

where yt is the molar fraction inside the container at any given time t, 

ye the outer atmosphere and y0 the value of yt at time t=0.  

The apparent permeance is due to two possible fluxes: through the 

film itself and through the seal. 

 

8.2.2. Statistical analysis 

 

The results were analyzed using Statistica software for Windows v. 

7.1 (Tulsa, USA). In order to avoid the elimination of some results that could 

be important to explain some observed phenomena, results with 0.05 < p < 

0.1 were called marginally significant, and also considered in the analysis 

(Montgomery 2013).  

Repeatability was assessed by the standard deviation determined 

with replicates of a same set of operating conditions () and wit the Signal-

to-Noise ratio used in the Taguchi method, for 2 possible targets: the highest 

possible permeance (SNRmax) and the lowest (SNRmin):  

 𝜎𝑗 = √
∑ (𝑃𝑎,𝑖,𝑗−𝑃𝑎,𝑗̅̅ ̅̅ ̅)

2𝑛𝑟,𝑗
𝑖=1

𝑛𝑟,𝑗−1
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𝑆𝑁𝑅𝑚𝑖𝑛,𝑗 = −10 × 𝑙𝑜𝑔10

[
 
 
 
 ∑ (

1
𝑃𝑎,𝑖,𝑗

)
2

𝑛𝑟,𝑗

𝑖=1

𝑛𝑟,𝑗

]
 
 
 
 

 

 

 𝑆𝑁𝑅𝑚𝑎𝑥,𝑗 = −10 × 𝑙𝑜𝑔10 [
∑ 𝑃𝑎,𝑖,𝑗

2
𝑛𝑟,𝑗
𝑖=1

𝑛𝑟,𝑗
]                    (8.4) 

 

where the subscript j denotes values obtained with combination j of 

the sealing parameter settings and i is the counting variable of replicated 

values obtained at the respective set of conditions. nr,j is therefore the 

number of repeated values of combination j and Pa,i,j the values of Pa 

obtained experimentally. 

 

8.3. RESULTS AND DISCUSSION 

 

Results obtained are summarised in table 8.1. 
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Table 8.1 Effective permeance (Pa) of sealed packages with different 
sealing conditions. 

 Temp 
(oC) 

Force 
(N) 

Time 
(s) 

average Pa 
106(cm/s) 





 
SNRmin 

 
SNRmax 

2 level 
design 

115 100 8 5.047 5.776 -118.57 95.84 

185 100 8 1.790 0.771 -126.03 107.35 

115 140 8 6.018 8.968 -120.35 92.99 

185 140 8 1.832 0.748 -125.01 107.21 

115 100 16 16.279 30.226 -118.11 83.03 

185 100 16 2.751 2.344 -123.73 102.23 

115 140 16 15.181 29.394 -120.27 83.36 

185 140 16 2.075 0.785 -123.88 106.20 

centre 
point 

145 120 12 
1.459 0.706 -126.96 108.98 

 

The permeance of OPP itself (determined as described in Chapter 3) 

was 1.11∙10-6 cm/s, thus showing that depending on the sealing conditions 

permeances could be otained between 30% and 14 times the permeance 

of a truly perfectly hermetic seal. 

The analysis of variance of the 2-level full factorial design with all 8 

combinations of the 2 extreme values of each factor is given in table 8.2. 

For the SNR, as the method eliminates degrees of freedom due to data 

except for the 3-level interaction, effects that are not significant are pooled 

with the error until only statistically significant effects at 90% confidence 

level are left, i order to improve the estimate of the error.   

It can be seen that within the margin of variability of the repeats 

sealing temperature has a marginally significant effect (significant at 90% 

confidence level, but not at 95%) on the effective permeance whereas the 

compression force has no influence at all. Sealing time and its interaction 

with temperature may however be relevant for repeatability, as they affect 
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the SNR should the objective be a sealing as perfect as possible. Only 

temperature is relevant for conformity if the objective would be a higher 

permeance of the seal. 

 

Table 8.2 - Analysis of variance of the effective permeances of the 2-level 
design. Raw sums of squares (SS) and probability of the null hypothesis are 
shown (p<0.1 is significant at a 90% confidence level. Statistically significant 
effects at 90% confidence level are highlighted in bold  

Factors 
Pa SNR min SNR max 

SS p SS p SS p 

time (t) 291.55 0.276 101.96 0.0043 pooled  

force (F) 0.3617 0.9691 pooled  pooled  

t x w 4.8581 0.8871 pooled  pooled  

Temperature (T) 725.77 0.0899 574.18 0.0002 56.933 0.0005 

1 x T 230.15 0.3321 33.21 0.0292 pooled  

F x T 0.1604 0.9794 pooled  pooled  

t x F x T 1.1393 0.9452 pooled  pooled  

error 7594.7  12  7.4502  

Total 8848.7  721.34  64.383  

 

Therefore, the best option for consistency is to target a minimum 

permeance, where using the highest temperature rather than the lowest is 

the key factor.  

The effect of temperature in plastics is related to the properties of the 

polymer, and heat sealing is associated to the melting temperature (Yam 

2010, Tongnuanchan et al. 2016). NVS films presented a melting 

temperature between 188.7 and 215.1, depending on the water content in 

the film. It might explain the dependence of temperature effect on force, as 

the temperature of the sealing machine was lower than the minimum 

required to melt the film, but as this is coated with an adhesive it may explain 
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the sealing at the lower temperatures. Besides, temperature helps smooth 

the surface area and the pressure acts improving the contact between the 

thermoplastic materials (Yam 2010). 

The effect of temperature on sealing was observed by Leminen et al. 

(2015) , but the melting temperature of their film was lower than the sealing 

temperature. The authors also identified empirically a dependence between 

temperature and sealing pressure, and concluded that the sealing pressure 

was the most important aspect with influence on the leakage, which 

corresponds to the compression force in the present work (pressure is the 

ratio between force and area).  

The 2-level design has the advantage of allowing to test all 

interactions, but does not allow to analyse curvatures, that is, a point of 

optimum may exist within the solution space defined by the extremes. 

Adding the centre point to the analysis allows to assess this effect, albeit 

requiring now the use of a model to obtain the ANoVA results.  

It is common to find in literature research involving a design of 

experiments without replicates, such as on the barrier properties of films 

(Tihminlioglu, Atik, and Özen 2010, Mali et al. 2004), other properties such 

as tensile strength and solubility (Tapia-Blácido, Sobral, and Menegalli 

2005, Tao et al. 2007). Unreplicated 2k design is perhaps the most used 

design, and by adding central replicates the results provide some 

assessment of the effect of curvature and an independent estimation of the 

error may be obtained (Montgomery 2013). Notwithstanding, unreplicated 
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designs would be pointless for the purpose of this work where repeatability 

is the most important issue. 

Full results are not shown, but they would indicate a negligible 

curvature (p=0.48), and similarly to table 8.2 results, temperature is the only 

significant effect with p between 0.05 and 0.1. Notwithstanding, table 1 

shows that the middle point would be slightly better than combination 2 for 

lower permeance, lower standard deviation and higher SNRmin. 

A more thorough assessment of variability is therefore needed. 

Dispersion effects Fi are those that affect the replication variance and exert 

a significant effect on the mean (or location) effect (Myers, Montgomery, 

and Anderson-Cook 2016). Fi may be calculated as the ratio between the 

average variance when factor i is positive and negative. A log transformation 

is recommended due to its efficiency in stabilizing variability (Montgomery 

2013). 

 

𝐹𝑖 = 𝑙𝑛 | 
𝑠2

𝑖+
̅̅ ̅̅ ̅̅  

𝑠2
𝑖−

̅̅ ̅̅ ̅̅  |                                              (8.5) 

  

where i is the number of effects and s2 the variance. 

An approximate normal distribution would result in both variances 

being equal and Fi close to zero suggests a variance that is not significant. 

The dispersion effects can be used to create normal plots and their 

normality evaluated. Points far from the straight line are the effects that are 

important to the dispersion of the variance (Montgomery 2013). The use of  
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normal plots as a graphical valuable technique was suggested by Daniel 

(1976) and George and Meyer (1986) successfully applied it to study the 

dispersion effect by using the residuals of unreplicated experiments.   

Myers, Montgomery, and Anderson-Cook (2016) pinpointed that the 

dispersion effect could be analysed for both replicated and unreplicated 

data graphically via normal plots. 

 

 

Figure 8.1- Normal plots of dispersion effects Fi, where T is the 
Temperature, F is Force and t is the time.  

 

Fig. 8.3 indicates that the interactive effects between Temperature 

and Force (T x F) and Force and time (F x t) had the greatest effect on 

variability. The fact that the main effects had a lower influence on the 

variance, but the interaction effects were important, suggests that the 
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effects of time, force and temperature are not independently additive and 

interactions would need to be considered. When the interaction is large, the 

main effects have less importance. In practice, it means that the effect of 

temperature tends to be dependent on the applied force (and vice versa), 

and force and time also depend on each other (Montgomery, Runger, and 

Hubele 2010). On the other hand, the interaction time-temperature was 

almost normal, and therefore did not have effect on the variance. The 

sealing time was high compared to the approx. 2 seconds recommended by 

the manufacturer, the 1 or 1.5 seconds used by Tongnuanchan et al. (2016) 

or the 2.5 seconds adopted by Leminen et al. (2015); however, it was not 

possible to seal the packages at a setting temperature of 3 in less than 8 

seconds. In fact, at a setting temperature of 4, the minimum time required 

to seal a tray was 5 seconds. In high speed machineries, the sealing time 

tends to be around 1 second, and it is likely that force and temperature 

become even more relevant than time in these processes.  

Therefore, even though the addition of the centre point gives 

negligible quadratic effects, it brings in a possible relevance of interactive 

effects within the solution space that the 2-level design (working only with 

points from the boundary of the solution space) did not identify. 
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8.4. CONCLUSION 

 

The results indicated that in order to obtain reliable results of 

permeance of sealed packages, replicates are important to establish the 

variance and determine the settings that provide greater consistency. In the 

case studied, greater consistency was obtained with the lowest permeance. 

Although it is possible to seal the package with a permeance up to 3 times 

higher with some consistency, those conditions show a greater variability. 

The most influential factor was the sealing temperature, with the lowest 

temperature giving higher permeances and higher variability. The sealing 

leakage represented an increase of between 30% to 14 times the 

permeability of OPP itself, which emphasises the importance of establishing 

operating conditions that result in less variability in the sealing. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

9.1. GENERAL CONCLUSIONS 

 

The research carried out in this three year-study showed that it is 

very important to design a package with a proper understanding of the effect 

of the storage conditions on its performance in the modulation of a 

protective environment, able to extend shelf life with security.  

Perforated packages are frequently stacked, which tends to cover 

the perforation and compromise the packaging performance. Also, there is 

air movement surrounding the packaging either caused by the refrigeration 

system or simply from natural convection currents. This work provided data 

showing that air movement has significant impact on mass transfer 

coefficients, and therefore on the effective permeances of perforated 

packages. It was observed that the diameter of perforation has the greatest 

impact on the mass transfer coefficient, and temperature has a significant, 

but smaller effect. In addition, it was shown that a robust model developed 

in terms of dimensionless numbers can be constructed by applying the 

BuckinghamTheorem and it was also shown that establishing other 

empirical relations can lead to overspecific or even inaccurate results. 

Ensuring that the BuckinghamTheorem conditions are verified is 

therefore very important. The mathematical model obtained on this analysis 

was: 
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𝐾

𝑣
= 𝛽1 + 𝛽2 ∙  𝑆𝑐𝛽3 ∙ 𝑃𝑒𝛽4 ∙ (

∆𝜒

𝜌
)
𝛽5

 

 Where Sc is the Schmidt number, Pe is the Peclet number, K is the mass 

transfer coefficient, v is the air velocity, is the concentration gradient 

across the perforation and the density of the air. i are the i parameters 

obtained from the adjustment of the curve to the mass transfer coefficient 

obtained experimentally for oxygen and for water vapour. The Schmidt 

number varied very little and for the range of conditions tested the models 

could be simplified to, within the margin of variability between repeats and 

model lack of fit: 

 

oxygen: 
𝐾

𝑣
=

0.893

𝑃𝑒
 

water vapour:  
𝐾

𝑣
= 0.070 +

174.407

𝑃𝑒2  

 

Relative humidity and actual gas composition also affected both O2 

and water vapour permeability and thus design of packaging of products 

that are subjected to different conditions should not rely on data obtained 

under standard conditions. This is especially dramatic for water transport 

through biobased materials, where temperature and water concentration 

exert great impact on the polymer properties. It is shown that in this case 

the most appropriate is to provide complete information on the water 

adsorption-desorption profile and dependence of Diffusion and Permeability 

on the water content. for water plasticizing effects, an appropriate 
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description of water vapour permeance was obtained for NVS films 

combining sorption isotherms with Gordon-Taylor and WLF equations. At 5 

oC the adsorption isotherm of NVS films was well described by Park’s model 

with AL = 0.10, bL = 1496.942, KH = 0, Ka = 0.275 and n = 2.09 for adsoprtion 

and: AL =0.059, bL = 1496.941, KH = 0, Ka = 0.537 and n = 126.108 for 

desorption.  The parameters obtained for WLF and Gordon-Taylor 

equations were C1 = 2.86, K = 1.20,  C2 = 23.9and Dwg = 8.27 ∙ 10-14 cm2/s, 

with the Tg of the dry polymer determined experimetnally at 125 oC. 

Finally, it was also illustrated how the operating parameters of a 

packaging sealing machine can be tuned to provide the most consistent 

effective permeability, that is, attempting to have seals as providing some 

contribution to the permeance that is as consistent as possible. It is better 

to have a somewhat permeable seal provided that the permeability it gives 

is consistent, as then the package can be properly designed accounting for 

the seal, this will be a more robust system, with less losses. 
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9.2. FUTURE WORK 

 

Results of this work indicate that it is highly recommended that 

research on hydrophilic films presents data of isotherms of sorption-

desorption, and data on the integrated model of WLF and G-T equations, 

as presented in this research. Predicting WVP implies describing Diffusion 

and phase equilibrium in the films at any desired condition of analysis. 

Hence, it is imperative that the WVP obtained under a specific condition of 

relative humidity (internal and external) not be used to predict behaviour 

under different conditions, as WVP can be highly dependent on water 

content. More word is therefore needed regarding the influence of humidity 

and water content on permeability. 

The next step in the study of Mass Transport in Food Packaging 

should definitely be to include ethylene in the analysis. It may affect 

respiration rates substantially in ways that have not been properly quantified 

yet with appropriate models. Furthermore, ts presence might affect the 

mass transport of the other gases through perforations, and as ethylene is 

an organic gas, it is possible that it would also affect the diffusion through 

the polymer. Therefore, an accurate design of MAP for climacteric produce 

should take into account the effect of ethylene. 

Water vapour transport through perforations were analysed under a 

higher relative humidity outside than inside the package. It is likely that the 

effect of air velocity on the mass transfer coefficient when the gradient is the 
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other way around will be different, due to the vapour pressure reduction due 

to the air movement and consequent influence on the actual relative 

humidity in contact with the package surface. If the relative humidity on the 

outside is smaller than inside, and the air velocity is likely to decrease the 

vapour pressure even more, the relative humidity gradient will tend to be 

greater in practice than if the relative humidity outside was the highest. 

Therefore, the mass transfer coefficient of water vapour through 

perforations is likely to be different in both cases. As fruits and vegetables 

tend to be stored at an ambient relative humidity lower than inside the 

packaging, there is a chance that the model proposed in this work will not 

cover properly a scenario more similar to a real condition of storage. Hence, 

it might be necessary to investigate the mass transfer coefficient of water 

vapour through perforations with relative humidity gradients more similar to 

real conditions of storage, and obtain the parameters that apply to this 

situation.  

  



 
 

308 
 

REFERENCES 

 

Abdillahi, H., E. Chabrat, A. Rouilly, and L. Rigal. 2013. "Influence of citric 
acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier 
properties and water vapor sorption isotherms." Industrial Crops 
and Products no. 50:104-111. doi: 
http://dx.doi.org/10.1016/j.indcrop.2013.06.028. 

Aguirre-Loredo, Rocio Yaneli, Adriana Inés Rodriguez-Hernandez, and 
Gonzalo Velazquez. 2017. "Modelling the effect of temperature on 
the water sorption isotherms of chitosan films." Food Science and 
Technology (Campinas) no. 37:112-118. 

Ahmed, S.G. 1999. "An approximate method for oxygen diffusion in a 
sphere with simultaneous absorption." International Journal of 
Numerical Methods for Heat & Fluid Flow no. 9 (6):631-643. doi: 
doi:10.1108/09615539910276115. 

Akanbi, Charles Taiwo, Remi Sikiru Adeyemi, and Ademola Ojo. 2006. 
"Drying characteristics and sorption isotherm of tomato slices." 
Journal of Food Engineering no. 73 (2):157-163. doi: 
http://dx.doi.org/10.1016/j.jfoodeng.2005.01.015. 

Al-Muhtaseb, A. H., W. A. M. McMinn, and T. R. A. Magee. 2002. 
"Moisture Sorption Isotherm Characteristics of Food Products: A 
Review." Food and Bioproducts Processing no. 80 (2):118-128. doi: 
http://dx.doi.org/10.1205/09603080252938753. 

Alix, S., E. Philippe, A. Bessadok, L. Lebrun, C. Morvan, and S. Marais. 
2009. "Effect of chemical treatments on water sorption and 
mechanical properties of flax fibres." Bioresource Technology no. 
100 (20):4742-4749. doi: 
https://doi.org/10.1016/j.biortech.2009.04.067. 

Allan-Wojtas, P., C. F. Forney, L. Moyls, and D. L. Moreau. 2008. 
"Structure and gas transmission characteristics of microperforations 
in plastic films." Packaging Technology and Science no. 21 (4):217-
229. doi: 10.1002/pts.804. 

Almenar, Eva, and Rafael Auras. 2010. "Permeation, Sorption, and 
Diffusion in Poly(Lactic Acid)." In Poly(Lactic Acid), 155-179. John 
Wiley & Sons, Inc. 

Amorós, A., M. T. Pretel, P. J. Zapata, M. A. Botella, F. Romojaro, and M. 
Serrano. 2008. "Use of Modified Atmosphere Packaging with 

http://dx.doi.org/10.1016/j.indcrop.2013.06.028
http://dx.doi.org/10.1016/j.jfoodeng.2005.01.015
http://dx.doi.org/10.1205/09603080252938753


 
 

309 
 

Microperforated Polypropylene Films to Maintain Postharvest 
Loquat Fruit Quality." Revista de Agaroquimica y Tecnologia de 
Alimentos no. 14 (1):95-103. doi: 10.1177/1082013208089985. 

Arvanitoyannis, Ioannis, and Costas G. Biliaderis. 1998. "Physical 
properties of polyol-plasticized edible films made from sodium 
caseinate and soluble starch blends." Food Chemistry no. 62 
(3):333-342. doi: http://dx.doi.org/10.1016/S0308-8146(97)00230-6. 

Astarita, Gianni. 1997. "Dimensional analysis, scaling, and orders of 
magnitude." Chemical Engineering Science no. 52 (24):4681-4698. 
doi: http://dx.doi.org/10.1016/S0009-2509(97)85420-6. 

ASTM 96. 1995. ASTM 96: Standard Test Methods for Water Vapor 
Transmission of Materials. In Annual Book of ASTM Standards. 
Conshohocken, PA: ASTM. 

Auras, R.A., L.T. Lim, S.E.M. Selke, and H. Tsuji. 2010. Poly(lactic acid): 
Synthesis, Structures, Properties, Processing, and Applications: 
Wiley. 

Auras, Rafael A., Bruce Harte, Susan Selke, and Ruben Hernandez. 2003. 
"Mechanical, Physical, and Barrier Properties of Poly(Lactide) 
Films." Journal of Plastic Film & Sheeting no. 19 (2):123-135. doi: 
doi:10.1177/8756087903039702. 

Auras, Rafael, Bruce Harte, and Susan Selke. 2004. "Effect of water on 
the oxygen barrier properties of poly(ethylene terephthalate) and 
polylactide films." Journal of Applied Polymer Science no. 92 
(3):1790-1803. doi: 10.1002/app.20148. 

Azeredo, Henriette M. C. de. 2009. "Nanocomposites for food packaging 
applications." Food Research International no. 42 (9):1240-1253. 
doi: http://dx.doi.org/10.1016/j.foodres.2009.03.019. 

Baehr, H.D., and K. Stephan. 2006. Heat and Mass Transfer: Springer 
Berlin Heidelberg. 

Ballantyne, A., R. Stark, and J. D. Selman. 1988. "Modified atmosphere 
packaging of shredded lettuce." International Journal of Food 
Science & Technology no. 23 (3):267-274. doi: 10.1111/j.1365-
2621.1988.tb00578.x. 

Basu, Santanu, U. S. Shivhare, and A. S. Mujumdar. 2006. "Models for 
Sorption Isotherms for Foods: A Review." Drying Technology no. 24 
(8):917-930. doi: 10.1080/07373930600775979. 

http://dx.doi.org/10.1016/S0308-8146(97)00230-6
http://dx.doi.org/10.1016/S0009-2509(97)85420-6
http://dx.doi.org/10.1016/j.foodres.2009.03.019


 
 

310 
 

Beaudry, R. M. 1999. "Effect of O2 and CO2 partial pressure on selected 
phenomena affecting fruit and vegetable quality." Postharvest 
Biology and Technology no. 15 (3):293-303. doi: 
http://dx.doi.org/10.1016/S0925-5214(98)00092-1. 

Becker, B. B., and B. A. Fricke. 1996. "Transpiration and respiration of 
fruits and vegetables." New Developments in Refrigeration for Food 
Safety and Quality. 

Becker, Bryan R. , and Brian A.  Fricke. 2015. Transpiration and 
Respiration of Fruits and Vegetables  2015 [cited July 17th 2015]. 
Available from 
b.web.umkc.edu/beckerb/publications/chapters/trans_resp.pdf. 

Becker, Bryan R., Anil Misra, and Brian A. Fricke. 1996. "Bulk 
Refrigeration of Fruits and Vegetables Part I: Theoretical 
Considerations of Heat and Mass Transfer." HVAC&R Research 
no. 2 (2):122-134. doi: 10.1080/10789669.1996.10391338. 

Behkam, Bahareh, and Metin Sitti. 2004. "E. Coli Inspired Propulsion for 
Swimming Microrobots."  (47063):1037-1041. doi: 
10.1115/IMECE2004-59621. 

Belbekhouche, Sabrina, Julien Bras, Gilberto Siqueira, Corinne Chappey, 
Laurent Lebrun, Bertine Khelifi, Stéphane Marais, and Alain 
Dufresne. 2011. "Water sorption behavior and gas barrier 
properties of cellulose whiskers and microfibrils films." 
Carbohydrate Polymers no. 83 (4):1740-1748. doi: 
http://dx.doi.org/10.1016/j.carbpol.2010.10.036. 

Ben-Yehoshua, S., and A. C. Cameron. 1989. "Exchange Determination of 
Water Vapor, Carbon Dioxide, Oxygen, Ethylene, and Other Gases 
of Fruits and Vegetables." In Gases in Plant and Microbial Cells, 
edited by Hans-Ferdinand Linskens and John F. Jackson, 177-193. 
Berlin, Heidelberg: Springer Berlin Heidelberg. 

Ben-Yehoshua, Shimshon, Stanley P. Burg, and Roger Young. 1985. 
"Resistance of Citrus Fruit to Mass Transport of Water Vapor and 
Other Gases." Plant Physiology no. 79 (4):1048-1053. doi: 
10.1104/pp.79.4.1048. 

Ben-Yehoshua, Shimshon, and Victor Rodov. 2002. "Transpiration and 
Water Stress." In Postharvest Physiology and Pathology of 
Vegetables. CRC Press. 

Ben-Yehoshua, Shimshon, Victor Rodov, and Jacob Perzelan. 2009. 
Control of water condensation and effects of perforation of the 

http://dx.doi.org/10.1016/S0925-5214(98)00092-1
http://dx.doi.org/10.1016/j.carbpol.2010.10.036


 
 

311 
 

plastic film of the sealed. Paper read at 10th International 
Controlled & Modified Atmosphere Research Conference,, at 
Antalya, Turkey. 

Bilck, Ana Paula, Maria V. E. Grossmann, and Fabio Yamashita. 2010. 
"Biodegradable mulch films for strawberry production." Polymer 
Testing no. 29 (4):471-476. doi: 
http://dx.doi.org/10.1016/j.polymertesting.2010.02.007. 

Biliaderis, C. G., A. Lazaridou, and I. Arvanitoyannis. 1999. "Glass 
transition and physical properties of polyol-plasticised pullulan–
starch blends at low moisture." Carbohydrate Polymers no. 40 
(1):29-47. doi: http://dx.doi.org/10.1016/S0144-8617(99)00026-0. 

Bird, R. B., W. E. Stewart, and E. N. Lightfoot. 2007. Transport 
phenomena, Inc. 2nd. Edition ed, AIChE Journal. New York - USA: 
John Wiley and Sons Inc. 

Blaney, C.A., W.F. Cartwright, and D.C. Strack. 2000. Microporous film 
containing a microbial adsorbent. Google Patents. 

Bovi, Graziele G., Oluwafemi J. Caleb, Manfred Linke, Cornelia Rauh, and 
Pramod V. Mahajan. 2016. "Transpiration and moisture evolution in 
packaged fresh horticultural produce and the role of integrated 
mathematical models: A review." Biosystems Engineering no. 
150:24-39. doi: 
http://dx.doi.org/10.1016/j.biosystemseng.2016.07.013. 

Brandelero, Renata P. Herrera, Maria Victória Grossmann, and Fabio 
Yamashita. 2013. "Hidrofilicidade de filmes de amido/poli(butileno 
adipato co-tereftalato) (Pbat) adicionados de tween 80 e óleo de 
soja." Polímeros no. 23:270-275. 

Briassoulis, Demetrios, Antonios Mistriotis, Anastasios Giannoulis, and 
Dimitrios Giannopoulos. 2013. "Optimized PLA-based EMAP 
systems for horticultural produce designed to regulate the targeted 
in-package atmosphere." Industrial Crops and Products no. 48 
(0):68-80. doi: http://dx.doi.org/10.1016/j.indcrop.2013.03.017. 

Brunauer, Stephen, Lola S. Deming, W. Edwards Deming, and Edward 
Teller. 1940. "On a Theory of the van der Waals Adsorption of 
Gases." Journal of the American Chemical Society no. 62 (7):1723-
1732. doi: 10.1021/ja01864a025. 

Brunauer, Stephen, P. H. Emmett, and Edward Teller. 1938. "Adsorption 
of Gases in Multimolecular Layers." Journal of the American 
Chemical Society no. 60 (2):309-319. doi: 10.1021/ja01269a023. 

http://dx.doi.org/10.1016/j.polymertesting.2010.02.007
http://dx.doi.org/10.1016/S0144-8617(99)00026-0
http://dx.doi.org/10.1016/j.biosystemseng.2016.07.013
http://dx.doi.org/10.1016/j.indcrop.2013.03.017


 
 

312 
 

Buckingham, E. 1914. "On physically similar systems." Phys. Rev. no. 4 
(2):345. 

Cairncross, Richard A., Jeffrey G. Becker, Shri Ramaswamy, and Ryan 
O’Connor. 2006. "Moisture Sorption, Transport, and Hydrolytic 
Degradation in Polylactide." In Twenty-Seventh Symposium on 
Biotechnology for Fuels and Chemicals, edited by James D. 
McMillan, William S. Adney, Jonathan R. Mielenz and K. Thomas 
Klasson, 774-785. Totowa, NJ: Humana Press. 

Calado, V., and D.C. Montgomery. 2003. Planejamento de Experimentos 
usando o Statistica: E-Papers Serviços Editoriais. 

Calado, Veronica M. A., and Andresa Ramos. 2016. "Applications of 
Starch Nanocrystal-based Blends, Composites and 
Nanocomposites." In Starch-based Blends, Composites and 
Nanocomposites, 143-216. The Royal Society of Chemistry. 

Caleb, Oluwafemi J., Kathrin Ilte, Antje Fröhling, Martin Geyer, and 
Pramod V. Mahajan. 2016. "Integrated modified atmosphere and 
humidity package design for minimally processed Broccoli (Brassica 
oleracea L. var. italica)." Postharvest Biology and Technology no. 
121:87-100. doi: 
http://dx.doi.org/10.1016/j.postharvbio.2016.07.016. 

Caner, C., P. J. Vergano, and J. L. Wiles. 1998. "Chitosan Film 
Mechanical and Permeation Properties as Affected by Acid, 
Plasticizer, and Storage." Journal of Food Science no. 63 (6):1049-
1053. doi: 10.1111/j.1365-2621.1998.tb15852.x. 

Canevarolo, S. V. 2006. Ciencia de Polímeros: um texto básico para 
tecnólogos e engenheiros. São Paulo: Artliber Editora. 

Cantwell, Marita I., and Michael S. Reid. 1993. "Postharvest Physiology 
and Handling of Fresh Culinary Herbs." Journal of Herbs, Spices & 
Medicinal Plants no. 1 (3):93-127. doi: 10.1300/J044v01n03_09. 

Cassini, A. S., L. D. F. Marczak, and C. P. Z. Noreña. 2006. "Water 
adsorption isotherms of texturized soy protein." Journal of Food 
Engineering no. 77 (1):194-199. doi: 
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.059. 

Cerqueira, Miguel A., Bartolomeu W. S. Souza, José A. Teixeira, and 
António A. Vicente. 2012. "Effects of Interactions between the 
Constituents of Chitosan-Edible Films on Their Physical 
Properties." Food and Bioprocess Technology no. 5 (8):3181-3192. 
doi: 10.1007/s11947-011-0663-y. 

http://dx.doi.org/10.1016/j.postharvbio.2016.07.016
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.059


 
 

313 
 

Chang, Y. P., A. Abd Karim, and C. C. Seow. 2006. "Interactive 
plasticizing–antiplasticizing effects of water and glycerol on the 
tensile properties of tapioca starch films." Food Hydrocolloids no. 
20 (1):1-8. doi: http://dx.doi.org/10.1016/j.foodhyd.2005.02.004. 

Chang, Y. P., P. B. Cheah, and C. C. Seow. 2000. "Plasticizing—
Antiplasticizing Effects of Water on Physical Properties of Tapioca 
Starch Films in the Glassy State." Journal of Food Science no. 65 
(3):445-451. doi: 10.1111/j.1365-2621.2000.tb16025.x. 

Charlon, Sébastien, Nadège Follain, Jérémie Soulestin, Michel Sclavons, 
and Stéphane Marais. 2017. "Water Transport Properties of 
Poly(butylene succinate) and Poly[(butylene succinate)-co-
(butylene adipate)] Nanocomposite Films: Influence of the Water-
Assisted Extrusion Process." The Journal of Physical Chemistry C 
no. 121 (1):918-930. doi: 10.1021/acs.jpcc.6b11077. 

Chaudhary, Deeptangshu S., Benu P. Adhikari, and Stefan Kasapis. 2011. 
"Glass-transition behaviour of plasticized starch biopolymer system 
– A modified Gordon–Taylor approach." Food Hydrocolloids no. 25 
(1):114-121. doi: https://doi.org/10.1016/j.foodhyd.2010.06.002. 

Cheng, Hongyuan, and Alan Friis. 2010. "Modelling extrudate expansion in 
a twin-screw food extrusion cooking process through dimensional 
analysis methodology." Food and Bioproducts Processing no. 88 
(2–3):188-194. doi: https://doi.org/10.1016/j.fbp.2010.01.001. 

Chitarra, A. B., and R. E Alves. 2001. Tecnologia de Pós Colheita para 
Frutas Tropicais. Fortaleza, CE: FRUTAL’2001. 

Chitarra, M. I. F., and A. B. Chitarra. 2005. Pós-Colheita de Frutas e 
Hortaliças: Fisiologia e Manuseio. 2 ed. Lavras (MG) - Brazil. 

Choudalakis, G., and A. D. Gotsis. 2009. "Permeability of polymer/clay 
nanocomposites: A review." European Polymer Journal no. 45 
(4):967-984. doi: http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027. 

Chung, Donghwan, Spyridon E. Papadakis, and Kit L. Yam. 2003. "Simple 
models for evaluating effects of small leaks on the gas barrier 
properties of food packages." Packaging Technology and Science 
no. 16 (2):77-86. doi: 10.1002/pts.616. 

Cliffe-Byrnes, V., C. P. Mc Laughlin, and D. O'Beirne. 2003. "The effects of 
packaging film and storage temperature on the quality of a dry 
coleslaw mix packaged in a modified atmosphere." International 
Journal of Food Science & Technology no. 38 (2):187-199. doi: 
10.1046/j.1365-2621.2003.00658.x. 

http://dx.doi.org/10.1016/j.foodhyd.2005.02.004
http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027


 
 

314 
 

Colak, Basak Yilin, Fabrice Gouanve, Pascal Degraeve, Eliane Espuche, 
and Frédéric Prochazka. 2015. "Study of the influences of film 
processing conditions and glycerol amount on the water sorption 
and gas barrier properties of novel sodium caseinate films." Journal 
of Membrane Science no. 478:1-11. doi: 
http://dx.doi.org/10.1016/j.memsci.2014.12.027. 

Crank, J. 1975. The Mathematics of Diffusion. 2nd ed. Bristol, England: 
Oxford University Press. 

Curtis, W. D., J. David Logan, and W. A. Parker. 1982. "Dimensional 
analysis and the pi theorem." Linear Algebra and its Applications 
no. 47 (0):117-126. doi: http://dx.doi.org/10.1016/0024-
3795(82)90229-4. 

Cussler, E. L. 2009. Diffusion: Mass Transfer in Fluid Systems. Third Ed. 
ed: Cambridge University Press. 

Damodaran, S., K.L. Parkin, and O.R. Fennema. 2007. Fennema's Food 
Chemistry, Fourth Edition: Taylor & Francis. 

Daniel, C. 1976. Applications of Statistics to Industrial Experimentation: 
Wiley. 

de la Cruz, G. Velázquez, J. A. Torres, and M. O. Martıń-Polo. 2001. 
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