
Title On the pressure transfer function for solitary water waves with
vorticity

Authors Henry, David

Publication date 2013-01-24

Original Citation Henry, D. (2013) 'On the pressure transfer function for solitary
water waves with vorticity', Mathematische Annalen, 357, pp.
23-30. doi: 10.1007/s00208-013-0899-0

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://link.springer.com/article/10.1007/s00208-013-0899-0 -
10.1007/s00208-013-0899-0

Rights © 2013 Springer-Verlag Berlin Heidelberg. This is a post-
peer-review, pre-copyedit version of an article published in
Mathematische Annalen. The final authenticated version is
available online at: https://doi.org/10.1007/s00208-013-0899-0

Download date 2024-04-20 11:41:08

Item downloaded
from

https://hdl.handle.net/10468/12193

https://hdl.handle.net/10468/12193


On the pressure transfer function for solitary

water waves with vorticity

David Henry
School of Mathematical Sciences, Dublin City University

Glasnevin, Dublin 9, Ireland

david.henry@dcu.ie

Abstract

In this paper we analyse the role which the pressure function on the
sea-bed plays in determining solitary waves with vorticity. We prove
that the pressure function on the flat bed determines a unique, real
analytic solitary wave solution to the governing equations, given a real
analytic vorticity distribution. In particular, the pressure function on
the flat bed prescribes a unique surface profile for the resulting solitary
water wave.
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1 Introduction

In this paper we investigate the role which the pressure function plays in
determining solitary waves with vorticity. This question, which is highly
significant from a theoretical viewpoint, furthermore is of great importance
in practical terms. The pressure function plays a key role, both in qualitative
studies of travelling waves [6, 7, 8, 10, 11, 16, 17], and in quantitative studies.
In field experiments, the free-surface profile of water waves is commonly
calculated by way of the so-called pressure transfer function [3, 21, 27], which
recovers the free-surface elevation using pressure measurements on the sea-
bed. The key to this approach is in deriving a suitable candidate for the
pressure transfer function, an issue which is the subject of a large body
of research, and which to this point has focussed entirely on irrotational
travelling water waves, primarily in the linear setting. Although the linear
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framework presents less complications when deriving the pressure transfer
function [14], it results in significant errors for waves of large amplitude [4].
Accounting for nonlinear effects is vital in this regime, and recently there have
been a number of advances in the nonlinear framework [5, 13, 24] in obtaining
a pressure recovery function for irrotational solitary water waves. At this
point, the work in [5] represents the most advanced theoretical progress, as
it presents an explicit exact transfer formula for the surface profile in terms of
the pressure on the flat bed, for fully nonlinear, large amplitude, irrotational
solitary water waves.

There is a striking paucity of literature concerning the role the pressure
function plays in flows with vorticity, chiefly due to the severe mathemati-
cal complications which are inherent in rotational flows. However, it is well
known that flows with vorticity are highly physically relevant, being vital
in the modelling of wave-current interactions, among other phenomena [25].
This is particularly pertinent when we take into account that the pressure
sensors providing the data for the transfer function are located on the sea-
bed— since the near-bed region is a location which commonly experiences
currents (accounting for sediment transport, for instance). It is therefore
highly desirous to extend the theoretical investigations of the pressure trans-
fer function from irrotational flows to flows with vorticity. Although allowing
for a general vorticity distribution destroys the possibility of obtaining an ex-
plicit recovery formula for the free-surface, this paper represents a first step
in the theoretical analysis of the relationship between the pressure function
on the flat bed, and the free-surface profile, for solitary water waves with
vorticity. In this paper we restrict our attention to solitary waves with ar-
bitrary vorticity distributions, the existence of which was rigorously proven
by differing methods in [15, 18]— in [18], the existence of small-amplitude
solitary waves was proven by way of a Nash-Moser type theorem, whereas
[15] uses spatial dynamical techniques. Unlike for the irrotational case [2],
the question of the existence of large amplitude solutions to the solitary wave
problem with vorticity has not yet been solved.

The aim of this paper is to prove our main result, which may be stated
as follows.

Theorem 1.1 Let h be a solution of the system (12), representing a steady

solitary water wave over a flow with real analytic vorticity function γ, such

that the wave speed exceeds the horizontal fluid velocity. Then the solution is

real analytic, and it is uniquely determined by the pressure function P for the

flow on the flat-bed. In particular, the wave surface profile of a solitary wave

with vorticity is uniquely determined by the pressure function on the flat bed.
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2 Preliminaries

We consider two-dimensional steady travelling waves, propagating on the
surface of an inviscid and incompressible fluid. The motion being steady
implies a functional dependence on the independent variables of the form
(X − ct, Y ), suggesting we transform to the reference frame moving with
speed c via the change of variables

{

x = X − ct,

y = Y.

The fluid domain Dη in the moving frame is bounded by the unknown free-
surface y = η(x) and the flat bed y = −d, and the motion throughout is
governed by the mass conservation equation

ux + vy = 0 in Dη, (1a)

together with Euler’s equation

(u− c)ux + vuy = −Px, (1b)

(u− c)vx + vvy = −Py − g in Dη. (1c)

Here the velocity field is represented by (u(x, y), v(x, y)), P (x, y) is the pres-
sure function, and g the gravitational constant of acceleration. The kinematic
and dynamic boundary conditions for the fluid are given by

v = (u− c)ηx on y = η(x), (1d)

v = 0 on y = −d, (1e)

P = Patm on y = η(x), (1f)

where Patm is the constant atmospheric pressure. A solitary wave is, roughly-
speaking, a localised lump of fluid which levels out in the far-field to a flat
surface (the small-amplitude solitary waves derived in [15, 18] are waves of
elevation which decay exponentially to a horizontal laminar flow at infinity).
Hence, for solitary waves we additionally impose the far-field conditions

lim|x|→∞ η(x) → 0,
lim|x|→∞ v(x, y) → 0 uniformly in y.

(1g)

In the current paper we admit flows which have a general vorticity distribu-
tion, and for two-dimensional flows the vorticity distribution is given by

ω = uy − vx. (1h)
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We furthermore make the assumption that there are no stagnation points
throughout the fluid by insisting that

u(x, y) < c (x, y) ∈ Dη. (2)

This hypothesis expresses the absence of stagnation points throughout the
fluid, and is a physically reasonable assumption for water waves, without
underlying currents containing strong non-uniformities, and which are not
near breaking [6]. We use equation (1a) to define the stream function ψ up
to a constant by

ψy = u− c, ψx = −v, (3)

and we fix the constant by setting ψ = 0 on y = η(x). If we define the
relative mass flux p0 by

p0 =

∫ η(x)

−d

(u(x, y)− c)dy < 0,

then it follows by direct calculation that p0 is a constant of the flow, and
furthermore ψ = −p0 on y = −d. Hence

ψ(x, y) = −p0 +

∫ y

−d

(u(x, s)− c)ds.

The level sets of ψ(x, y) are the streamlines of the fluid motion. Furthermore,
once we assume that (2) holds, it follows that the vorticity is a function of
the streamline alone,

ω = γ(ψ), (4)

where γ is the vorticity function. We note that, owing to the boundary de-
cay conditions (1g), the rotational solitary wave is a particularly illustrative
archetype for describing the role which vorticity plays in wave-current inter-
actions. Since in the far-field the flow is laminar, the velocity field there is a
shear flow, or pure current:

lim
|x|→∞

(u(x, y)− c, v(x, y)) = (U(y)− c, 0) , (5)

where U is an arbitrary (sufficiently regular) function, and ω = U ′(y). Thus,
in the far-field laminar region the vorticity is generated purely by the un-
derlying current (5), and in the region of wave-current interaction where the
solitary wave causes a disturbance the vorticity is prescribed by (4) (condi-
tion (2) implies that, for fixed x, the map y 7→ ψ(x, y) is an isomorphism).
As a consequence of (1g) we get

p0 =

∫ 0

−d

(U(y)− c)dy, (6)
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and in particular for irrotational flows p0 = −cd.
If we recast Euler’s equation in terms of the stream function we derive

Bernoulli’s law, which states that the expression

E := |∇ψ|2 + 2gy + 2P + 2Γ(−ψ) (7)

is constant throughout the fluid, where Γ(s) =
∫ s

0
γ(−s′)ds′ for s ∈ [p0, 0].

We take advantage of the far-field conditions (1g) to evaluate this expression
on the surface:

E = c20 + 2Patm, for c0 = c− U(0). (8)

Using the stream function, we can reformulate the governing equations (1) in
the moving frame as an elliptic equation with nonlinear boundary conditions,
namely

∆ψ = γ(ψ) in Dη, (9a)

|∇ψ|2 + 2gη = c20 on y = η(x), (9b)

ψ = 0 on y = η(x), (9c)

ψ = −p0 on y = −d, (9d)

where
lim|x|→∞ η(x) → 0,
lim|x|→∞ ∇ψ → (0, U(y)− c) for − d ≤ y ≤ 0.

(10)

3 Semi-Lagrangian hodograph transformation

Since a major part of the difficulty of the water wave problem (9) is connected
to the boundary at the free-surface being unknown, we can bypass this to
some extent by applying the following semi-Lagrangian hodograph transfor-
mation, which transforms from the fluid domain Dη to the fixed semi-infinite
rectangular domain R = R× [p0, 0]:

{

q = x,

p = −ψ(x, y).
(11)

For the height function in the new (q, p)-variables,

h(q, p) = y + d,

the change of variables (11) transforms the system of equations (9a)-(9d) on
an unknown domain into the following system for the function h(q, p) in the
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fixed rectangular domain R:

(1 + h2q)hpp − 2hqhphpq + h2phqq = γ(−p)h3p in R, (12a)

1 + h2q +

[

2g(h− d)−
1

c20

]

h2p = 0, p = 0, (12b)

h = 0, p = p0, (12c)

with the boundary conditions

lim
|q|→∞

h(q, 0) = d, lim
|q|→∞

hq(q, p) = 0. (13)

If h ∈ C3,α(R), then the equivalence of the systems (1), (9) and (12) follows
as for periodic waves [12, 18]. We note that the non-stagnation condition (2)
implies that

hp(q, p) =
1

c− u
> 0, (14)

and this function has a limiting value at infinity which is given by (10).
Now, equation (12a) is uniformly elliptic (due to (14)), and the boundary
conditions satisfy the complementing condition (cf. [6] for discussions of
the complementing condition). Hence it is in a suitable form to derive the
following regularity result, which states that if the vorticity function γ is real
analytic in p, then the corresponding solution h of the water wave problem
(12) is a priori real analytic in the (q, p)−variables throughout R.

Lemma 3.1 Let γ ∈ Cω([p0, 0]) and consider the corresponding solution

h ∈ C3,α(R) of the governing equations (12), representing a travelling solitary

water wave with vorticity such that the wave speed exceeds the horizontal fluid

velocity throughout the flow. Then h ∈ Cω(R).

Proof As the quasilinear system (12) is uniformly elliptic, and the boundary
conditions satisfy the complementing condition (in the sense of [1]), if γ ∈
Cω([p0, 0]) we may apply the elliptic regularity results of [23] to infer that
h ∈ Cω(R).

The first analytic regularity result for irrotational travelling waves was pro-
vided in the paper [22]; see the discussion in the survey paper [26]. For re-
cently obtained results regarding the analyticity of periodic travelling waves
with vorticity cf. [9]. For the remainder of this article we will assume that γ
is real analytic in p.
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4 Proof of Theorem 1.1

We express Bernoulli’s law (7) in terms of the height function,

1 + h2q

h2p
+ 2g(h− d) + 2P + 2Γ(p) = E, (15)

where E is the constant given by (8) above. On the flat bed (where h = 0)
this expression becomes

1

h2p(q, p0)
− 2gd+ 2P (q, p0) + 2Γ(p0) = E, (16)

where p0 is given by (6), and so it follows that the pressure function P on
the flat bed determines hp on the flat-bed. Let us now define a further
transformation in terms of the independent variables hq, hp as follows:

F =
hq

hp
, G =

1

hp
. (17)

This transformation (which is feasible due to (14)) reformulates the second
order, uniformly elliptic equation (12a), as the following nonlinear first order
system:

Fp =
F

G

(

GFq + FGq −Gγ(−p)

F 2 +G2

)

−
Gq

G
, (18a)

Gp =
GFq + FGq −Gγ(−p)

F 2 +G2
in R. (18b)

Although a consequence of this transformation is a loss of ellipticity in the
system, we can now work as follows. Let h be a solution of (12) satisfying the
boundary conditions (13). If follows, from (12c) and (17), that F = 0 on the
flat-bed p = p0. Furthermore, it is a consequence of (16) that the pressure
function P determines G on the flat-bed (at p = p0). Since we assume that γ
is real analytic in p, the above system satisfies the conditions of the Cauchy-
Kowalevski theorem [19]. This assures us of the existence of solutions F,G
of the system (18), which are real analytic in the (q, p)-variables, in an open
neighbourhood N of the flat bed. We deduce, from standard results for real
anaytic functions (cf. [20]), that the corresponding functions hp, hq, and in
turn h, given by (17), are real analytic functions in the (q, p)−variables, in
the same neighbourhood N . Furthermore, the Cauchy-Kowalevski theorem
ensures that the solutions F,G of (18) are unique in the class of real an-
alytic functions on N . Since, from Lemma 3.1, all solutions h of (12) are
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real analytic throughout R, by applying unique continuation results [20] for
functions which are real analytic throughout R, and which match on N , the
Cauchy-Kowalevski theorem implies the uniqueness of solutions h to (12),
which satisfy (16), once the pressure function is prescribed on the flat bed.
Our result follows.
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