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Abstract avoided if at all possible. CP-nets cannot generally express

. o ) . . such statements (in a compact way).
A logic of conditional preferences is defined, with a language . . I .
which allows the compact representation of certain kinds of This paper develops a formalism along similar lines to
conditional preference statements, a semantics and a proof ~CP-nets, but where a richer language of preference state-
theory. CP-nets can be expressed in this language, and the se- Ments can be expressed: stronger conditional preference
mantics and proof theory generalise those of CP-nets. Despite ~ Statements as well as the usual CP-getsris paribustate-
being substantially more expressive, the formalism maintains ~ ments, and also allowing locally partially ordered prefer-
important properties of CP-nets; there are simple sufficient ences. The language consists of statements of the form
conditions for consistency, and, under these conditions, op- ¢ : 2 > 2/ [W], (whereW is a subset of) which repre-
timal outcomes can be efficiently generated. It is also then sents that for all assignmenis w’ to W and assignments
easy to find a total order on outcomes which extends the con- t10 S — W, tuzw is preferred tatuz'w’. So, givenu and

ditional preference order, and an approach to constrained op- : ) -

timisation can be used which generalises a natural approach anyt, x is prgferreq tox’ irrespeciive of the values ov.

for CP-nets. Some results regarding the expressive power of ~ CP-Netsceteris paribusstatements are represented by such
CP-nets are also given. statements witiV = ¢, and t_he strong conditional pref-
erence statement in the previous paragraph corresponds to
T :xz > a' [V — {X}], whereV is the set of all variables.

Introduction As in CP-nets, this is a compact representation: each state-

CP-nets (Boutilieret al. 1999; a) is a formalism for com-  ment typically corresponds to many preferences between
pactly expressing conditional preferences in multivariate outcomes.
problems. They involve statements of the form: 2 > 2/, Key properties of CP-nets generalise naturally for this for-

wherez, 2’ are values of a variabl®¥ andu is an assignment malism. In particular:
to a set of variable#/ (calledparents ofX). The interpre- th i d let f1h i
tation is that givenu, z is (strictly) preferred tar’, all else € Semantics and complete proot theory;
being equalceteris paribuy that is, for all assignments — there is still a simple and efficient algorithm for generat-
to the other variables, suz is preferred tosuz’, where ing an optimal outcome;
e.g.,sux is the outcome (complete assignmentjuch that
a(X) =z, a(U) = uwanda(S) = s. A set of such state-
ments generates a preference relation on complete tuples,
and consistency corresponds to the induced preference rela— there exists an efficient algorithm for picking a subset of
tion being acyclic, and hence being a (strict) partial order. ~ the optimal solutions, when the set of outcomes is con-
An acyclic CP-net involves a set of such statements struc-  strained.
tured in a particular way, so that the parent-child relation
on variables is acyclic. This condition ensures consistency.
They also possess a number of other attractive properties.
However, CP-nets are quite restrictive in the kinds of
preference statements that they can represent. c&tezis
paribusstatements they are based upon express a very nat-
ural kind of preference, but a rather weak one. An agent
will sometimes want to express much stronger statements
such as: is preferred tar’ irrespective of the values of other
variables where the variabléX is the most important vari-
able, and, for example; represents a value which should be

— there are simple sufficient conditions for consistency
based on acyclicity of variable order;

The next section introduces the formalism, which can be
viewed as a simple logic of conditional preferences. A se-
mantics is given and also a complete proof theory, based on
‘swapping sequences’ which is the natural generalisation of
flipping sequences in CP-nets. The following section exam-
ines the relative expressivity of the language as compared
with CP-nets. It shows how CP-nets can be represented
within the language; however, this stronger kind of prefer-
ence statement, which can be used, for example, to construct
a lexicographic order on outcomes, is not expressible within
the language of CP-nets (or TCP-nets).

Copyright © 2004, American Association for Artificial Intelli- Some of the main technical results in the paper use what
gence (www.aaai.org). All rights reserved. we call a partial conditional lexicographic (pcl) order on out-



comes, which is similar to a standard lexicographic order ex- each assignment to its parents. This kind of representation of
cept that it allows the importance ordering on variables to be conditional preferences is very flexible as regards elicitation:
only partial, and allows the value orderings to be partial, and we can reason with an arbitrary subfetf the language’,
conditional on the values of more important variables. If a so we can accept any conditional preference statements (of
setI" of preference statements satisfies a local consistency the appropriate form) that the agent is happy to give us (how-
property and the associated relation on variables is acyclic ever, to maintain consistency, we may insist on the condi-
then the induced preference order is dominated by a pcl tional preference theory having particular properties, such
order, which implies consistency, as pcl orders are strict par- as the conditions of Corollary 1 below). More statements
tial orders. Generating outcomes in an order consistent with can be added later, and, because the logic is monotonic, all

a pcl order is easy, just as it is for a standard lexicographic
order; this can then be used, for example, in a constrained
optimisation algorithm to generate some of the optimal (i.e.,
maximal) outcomes with respect ter, as discussed in the
penultimate section along with other applications of the re-
sults.

A Logic of Conditional Preferences

In this section a logic of conditional preferences is defined,
with a language, semantics and a kind of proof theory. It is
strongly related to a system defined in (Lang 2002), where
general complexity results are derived. As we will see later,
CP-nets can be expressed within this language. The logic

has a somewhat restrictive language, but the restrictions en-

tail some nice properties, generalising properties of CP-nets.

The Language. Let V' be a set of variables. For each
X € V let X be the set of possible values &f. For subset
of variablesU C V letU = [[y.y X be the set of pos-
sible assignments t. A complete tupler outcomeis an
element ofV, i.e., an assignment to all the variables. For
complete tuplen and partial tupleuw € U, we may write

a | u to mean that projected toU givesw, which can
also be written as(U) = u.

The language&y (abbreviated taC) consists of all state-
ments of the formu : « > 2’ [W], whereu is an assignment
to a set of variable§’ C V (i.e.,u € U), z, 2’ are differ-
ent values of a variabl& ¢ U, andW is some subset of
V —U — {X}. The assignment to the empty set of variables
is written T. If ¢ is the statement : « > 2/ [W], we may
write u, = u, U, = U, z, = z, x;, =1/, W, = W and
T,=V-({X}UUUW).

Subsets ofL are calledconditional preference theories
(onV). Foro = u : x > ' [W], leto* be the set of pairs
of outcomes{ (tuzw, tuz'w’) : t € T,,w,w’ € W}. Such
pairs(«, ) € ¢* are intended to represent a preference for
« over 3, andy is intended as a compact representation of
the preference informatiop*. Informally, ¢ represents that,
givenu and anyt, z is preferred tar’, irrespective of the
assignments téV. For conditional preference theoly C
L, definel™ = UgaEF *. I'* represents a set of preferences.

of our previous deductions frof will still hold, in particu-
lar whether one outcome is preferred to another

We will associate with a conditional preference the-
ory I" a pair of binary relations on the set of variables
V. Let H(¢) = {(V,X,) : Y eU,} and letH(I') =
Uger H(#); this can be thought of as a directed graph,
which contains edgé¢Y, X) if and only if there is some
conditional preference statemepte I' which makes the
preferences foX conditional onY. Let G(y) = H(p) U
{(Xy,2) : Z € Wy}, and defineG(I') = U, er Glo)-
G(T) is H(T") with extra edge$.X, Z) when there is some
¢ € T representing some preference for valuesXofrre-
spective of the value of .

Example. I'm planning a holiday. | can either go next
week 1) or later in the yearl(). I've decided to go either
to Oxford () or to Manchesterm(), and | can either flyf()
or drive and take a car fernd]. So there are three vari-
ables, X, X, and X3, whereX; = {l ,n}, X5 = {mo}
and X3 = {d,f}. Firstly, I'd prefer to go next week ir-
respective of the choices of the other variables, as | could
do with a break soon. This can be represented by state-
menty; which equalsT : n > | [{X3, X3}]. This rep-
resents a sep; of pairs of outcomegnws,| w2), where
w1 andw,, are both arbitrary assignments to the set of vari-
ables{ X5, X3}; e.g.,w; = mf andw, = of gives the pair
(nmf, lof ) indicating the preference @imf overlof . ¢,
is a compact way of representing thé pairs inyj. Sec-
ondly, all else being equal, I'd prefer to go to Oxford rather
than Manchester. This is represented by the statepent
which equalsT : o > m[f]. This is an unconditional
ceteris paribusstatement. It represents se} of pairs of
outcomesx;0x3, x1Mr3) Meaning outcome;0x; is pre-
ferred tox;me3, wherex; is any value ofX; andz; is any
value of X5.

My preferences on variabl&; are conditional. I'd prefer
to fly rather than drive unless | go later in the year to Manch-
ester, when the weather will be warmer and a car would be
useful for touring around. This can be represented by con-
ditional preference statements, ¢4 andyp; defined as fol-
lows. p3isn: f > d[0],andpsiso : f > d[0]. ¢5is
Im : d > f [()], representing? which consists of the single

We assume here that preferences are transitive, so it is thenpreference ofmd overimf .

natural to define orderr, induced onV by I', to be the
transitive closure of*. In the next section it is shown that
CP-nets can be represented in terms of statements >
' [W]with W = (.

Note that conditional preference theories allow locally

LetT' = {¢1,...,95}. G(I') equals the total order on
variables, {(X1, X2), (X1, X3), (X2, X3)}, and H(T")
{(X1,X3), (X2, X3)}. The statemenp; cannot be repre-
sented in a CP-net oW = {X;, X5, X3}. The others all
can as they involve empti# and they express locally to-

partially ordered preferences: we do not need to assume thattally ordered preferences.

we can elicit a total order on the values of a variable given

The induced partial ordering>r on outcomes can



be shown to be the transitive closure ofnof >r
{nod,nmf} >r nmd >r lof >plod >rImd >p Imf,
so that>r is almost a total order, with only the pair of out-
comesnod andnmf not being ordered.

Semantics. We define models of’ to be strict total or-
ders onV/, i.e., irreflexivé transitive binary relations- on
V such that for alby and 5 in V, with « # 3, eithera >
or 3 > a.? For such a total order, we say> |= ¢ if and
only if > D ¢*, so that> is a model ofp = u : z > 2’ [W]
if and only if for allt € T andw, w’ € W, tuzw > tuz'w’.
ForT' C Lwesay> Tifandonlyifforallp € T, >
@, which is if and only if> 2 I'*, ForI' C £ andy € L,
we define the semantic entailment relationIby= ¢ if and
only if > = ¢ for all > such that> =T'. Fora,3 € V we
also say thal’ = («, 8) if « > (8 holds for all models> of
I'. We say thal is consistenif it has a model, i.e., if there
exists strict total order> with > = T". The construction of
semantic entailment relatida ensures that it is monotonic.
In the examplel” is consistent; in fact, there are two total
orders> on outcomes which satisfy/ (i.e., contain>r);
they only differ according to whether they haved > nmf
or nmf > nod.

Proof theory. Leta, 5 € V be two outcomes. We say that
(3 is a worsening swap fromy with respect to conditional
preference theory if and only if («, 3) € T, i.e., iff there
existsp = (u : z > 2’ [W]) € ' such thatx |= v, § = u,
a(X) =z, f(X) = 2/, anda(T,) = B(T,). We say
that 5 can be reached from with a worsening swapping
sequencéwith respect td") if there exists a sequence=
at,...,ap = pwith foreachk = 1,...,1 — 1, apy1 is a
worsening swap fronay, i.e., (ag, ag+1) € T*. Clearly,
then(a, §) is in the transitive closurer of I'*. Conversely,
if (o/, ') is in the transitive closure df* then there exists a
sequence’ = ay,...,q; = ' withforeachk =1,...,1—
1, (ag,ar4+1) € T*. In fact we have the following result

Expressing CP-nets in the language

A CP-net overV is defined (see (Boutiliegt al. 1999) and
especially definitions 1, 2 and 3 of (Boutiliet al. a)) to
be a pairN = (H,CT) whereH is a (binary) relation on
V' (which is conventionally thought of as a directed graph)
andCT is a function which assignsanditional preference
tableto each variableX € V. The conditional preference
table CT(X) is defined to be a function which assigns to
each u € Pay (X) a strict total ordesX on X.

Let > be a (strict) total order of. Let X be a variable
and letu € Pay(X) be an assignment to the parentsXdf

LetT = V — Pay(X) — {X}. > is said to satisfy-: if
tur > tuzr’ holds for allt € T and for allz, ' € X such
thatr =X 2/,

> is said to satisfy CP-nelN = (H,CT) if for all
X € V,and allu € Pay(X), > satisfies~X (where
=X= CT(X)(u)). CP-netN is said to be satisfiable if there
exists some> which satisfiesV. There is a simple sufficient
condition for satisfiability of a CP-néY: that its associated
relationH is acyclic.

For CP-netN define relation- on V as follows. For
a,B€V,a =N gifand only if « > 3 for all total orders
> satisfying N. Therefore> y is the intersection of alt
satisfyingN.

For X € V andu € Pay(X), letTx™" C L be the set
of statement (v : > 2/ [()]) : z,2’ € X,z =X 2'}. Let
conditional preference theoiyy be the union of set‘s“ﬁ’“
over all X € V andu € Pay(X). Note that the construc-
tion of 'y is linear in the size of the conditional preference
table* Now, > = Fﬁ”‘ if and only if > satisfies-:X. So
> |=T'y if and only if > satisfiesV. Using Theorem 1 this
leads to:

Proposition 1 Let N be a CP-net, and', C £ (as defined
above) be its associated conditional preference theory. Then

which is a soundness and completeness result for worsening y is satisfiable if and only if' v is consistent. IfV is satis-

swapping sequences.

Theorem 1 LetT" be a conditional preference theory én
and leta, 8 € V be outcomes. Then >  if and only

if there exists a worsening swapping sequence with respect

toT froma to 3. AlsoT is consistent if and only it is
irreflexive. IfT" is consistent thel = («, 8) if and only if
a>r (.

CP-nets and Expressibility

In this section we show how CP-nets can be expressed as

conditional preference theories, using statementsz >

' [W] with W = (. Itis also shown that the language is a d

good deal more expressive than CP-nets.

!Relation> on setA is irreflexive if and only if for alla € A,
itis not the case that > «. It is acyclic if and only if its transitive
closure is irreflexive, so that there are no cyates a’ > a” >
“ee > a.

2Binary relations on setV is defined to be a subset Bfx V;
the notations («, 3) €>"and “«a > (" are used interchangeably.

fiable, then>p, = >x.

This shows that a CP-net can be represented within the
language’, with the same associated order on outcomes.

Representing lexicographic orders

For set of variable$’, a lexicographic order ol involves
an orderingX,, ..., X,, of the variablesV/, and for each
X, a total order>; on the set of value(; of X;. Define
relation >;., as follows. Fora,3 € V, a >, 3 if and
only if « # fanda(X;) >; B(X;), whereX; is the first
variable (i.e., with minimak) such thate(X;) # B(X,).
The lexicographic order,., is a strict total order ofy.

The following proposition shows that lexicographic or-
ers can be represented by conditional preference theories,
i.e., for any lexicographic ordes;.,., there existd" such
that its associated orderr equals>.,..

3Pay (X), the parents oX with respect toH, is the set of all
Y suchthatY, X) € H.

“If the domain of variableX is large, one might represent total
order =X by a sub-relation whose transitive closure-ig; the

sub-relation could then also be used in the definitiofi Hf".



Proposition 2 For each variableX;, letT'; be the set of all
statementS : z > 2’ [{X;41,..., X, }], wherez, 2’ € X;
are such thatr >; 2/. LetI' = I'y U---UT,,. Then the
associated orderr equals>.,.

The following lemma is useful for revealing the limited

expressiveness of CP-nets (and TCP-nets (Brafman, Domsh-

lak, & Shimony 2002)). We say thatcoversi with respect
to a (transitive) relatior+ onV if « > [ and there does not
existy € V. with a > v > S.

Lemmal

(i) LetI’ be a conditional preference theory. Suppeseov-
ers 3 with respect to>r. Theng is a worsening swap
froma.

Let N be a CP-net. Suppose coversj with respect to
>=n. Thena and g differ on precisely one variable. In
other words, there exist¥ € V with «(X) # 3(X) and
forall X' e V — {X}, a(X') = B(X).

Let M be a TCP-net, with associated relation,,; (so
that~y >, ¢ if and only ify > § is a consequence af).
Supposex coversg with respect to-,,. Thena and
differ either on one variable or on two variables.

(ii)

(iii)

All three parts follow easily from the appropriate com-
pleteness theorems for swapping/flipping sequences: Theo-
rem 1 above for (i); Theorem 8 (the CP-nets completeness
result for flipping sequences) of (Boutiliet al. a) for (ii);
and for (iii): the TCP-nets completeness result: see lemma
5 of (Brafman, Domshlak, & Shimony 2002). For example,
to prove (iii): o coversg with respect to-,,; implies, by
lemma 5 of (Brafman, Domshlak, & Shimony 2002), that
there exists a worsening flipping sequence freno 5; but
sincea coversg, there can be no element in the sequence
betweenx and /3, sof is a worsening TCP-net flip from.
Thereforea: and g differ on either one or two variables, ac-
cording to whether it's a CP-flip or an I-flip (see definition 4
of (Brafman, Domshlak, & Shimony 2002)).

In the example, there are a pair of outcomesyd and
lof , which are consecutive in the preference orderthat
differ on all three variables. The lemma then implies that
the preferences in the example cannot be represented by
CP-net or TCP-net, i.e., there’s no CP-net or TCPHiain
V with > = >r.

A consequence of the above lemma is that, except in some
trivial cases, ifN is a CP-net or a TCP-net, theny is never
a lexicographic order. This is because lexicographic orders
on n variables include consecutive elements that differ on
all n variables (assuming the domain of each variable has
more than one element). To illustrate this, consider the case
of boolean variables and the order on complete tuples being
just the usual order of binary numbers. THeno,0,...,0)
and(0,1,1,...,1) are consecutive in the order, but they dif-
fer on all the variables. Therefore, by the lemma the order
cannot be generated by a CP-netif- 1 and the order can-
not be generated by a TCP-netif> 2.

Proposition 3 Let>,.,. be alexicographic order (as defined
above) onV/, where the domain of each variables contains
more than one element, i.e., for &l € V, |X| > 1. Then
(@) if |[V] > 1, there exists no CP-néY on V' with >y =

>iez; (D) if |V] > 2, there exists no TCP-nét/ on V' with
M = Zlex-

Representing stronger conditional preferences

Lexicographic orders are a very special type of order, but the
kind of statements they represent can be natural-Le¢ a
strict partial order (i.e., a transitive irreflexive relation)¥dn
LetX e VandW CV —{X}andletl' =V - {X}-W,

so that{ X}, W andT partitionV. Let >x be a non-empty
partial order onX. We sayX (unconditionally) dominates

W with respect tq>, > x ) if the following condition holds:

for a,8 € V, a = [ holds whenevery and 3 are such
that: a(X) >x B(X) anda(T) = B(T). In particular,

if X dominates = V — {X} with respect to(>-, > x),

then a sufficient condition forr > 3 is a(X) >x B(X).

This is a stronger form of preference statement theteris
paribusstatements. It represents a situation where the value
of variable X is much more important than the values of any
other variable; we prefer any outcome that does better on
variableX.

This kind of condition is naturally represented within
the languageC. Let® = {(T :z > 2’ [W]) : = >x o'}
Then, ifT" O ©, X dominatesV with respect td>r, > x).
Such statements can be used to represent a lexicographic or-
der, as shown above.

This type of variable dominance is not at all natural for
CP-nets and TCP-nets, as the following two propositions in-
dicate. But it is easy to construct consistEnwvhich satisfy
the hypotheses of the two propositions (elg~+ O for the
representatio® above), or extensions @&, in particular, a
lexicographic order).

Proposition 4 Consider any satisfiable CP-n&t on V' =
{X1,...,X,} (n > 2) such thatX, has no parents and
|X2| > 1 with associated order-n on V. Then for no
(non-empty)>; on X; is it the case thatX; dominates
{Xa,..., X, } with respect tq>> 7, >1).

In the example X; dominates{ X5, X3} with respect to
(>r,>1), wheren >; |; also X, has no parents. The
proposition then implies (without looking at the level of out-

acomes) that there’s no CP-ndton V with =y = >p . It

also implies that the same would hold if we were to change
the preferences oX; in any way.
There is a similar result for TCP-nets:

Proposition 5 Consider any TCP-netM on V
{X1,...,X,} (n > 3) such thatX, has no parents and
X3 has no parents, X[, | X5| > 1 and the associated rela-
tion =, onV is acyclic. Then for no total ordes; on X;
is it the case thaf{; dominates( X, ..., X,,} with respect
to (-ar,>1)-

Generating precisely a total order on outcomes We fin-

ish this section with an expressibility result that can be
proved with the help of Theorem 2 and Lemma 1, illus-
trating how hard it is to generate a CP-net associated to a
total order of outcomes. (However, one should not usually
expect an agent's preferences to generate a total order, so
this should not be considered as a damning criticism of CP-
nets.) It shows that once one removes the obvious symme-



tries concerned with variable and value ordering, there is a X with associated statementsIih (u;

T > T4 [WZ]),

unique CP-net on a set of boolean variables which generatessuch thatx = u;, anda(X) = z; = xj. This would give a
a total order of outcomes. This contrasts with the situation worsening swapping sequence frairto o (only involving
for conditional preference theories, where there are precisely changing variable), thus implying that" is not consistent,

22"~ total orders> with maximum element1, 1, ..., 1)
on V with are equal to some-r, for I' such thatG(T") is
consistent with the variable ordering,, ..., X,,.

Proposition 6 There is a uniqgue CP-néY on boolean vari-
ablesV = {X;,..., X, } satisfying the following proper-
ties: (i) the CP-net order- is a total order of outcomes
with maximum elemerft, . . ., 1); (ii) the variable ordering
is consistent with the relatiofif on V' associated withV,
ie.,(X,;,X;) € Himpliesj < i.

It can be shown furthermore thaf is maximally large:
H = {(X;,X;) : j < i} so that the parents set @) of
X;is{Xy,...,X;—1}. The conditional preference tables
(when written out explicitly) are therefore of exponential

by Theorem 1. Therefore local consistency is a necessary
condition for consistency.

The set of statementsin the example is easily seen to be
locally consistent. However, if; were changed tg; = m:
d > f [(] thenI” would no longer be locally consistenta$
andps =n : f > d[0] would give conflicting preferences
for X3 under the conditionsm Leta = nmd Then>Xs is
not irreflexive sincel > f usingyf andf >Xs d using
3, sod >Xs d. T would no longer be consistent as-
is no longer irreflexive: we havemd >r nmf >r nmdso
o >1 o

For X € V, let Ux = Payr)(X) be the parentsof

X with respect toH (I'). Then>7 equals>} whenever

size. They can be expressed compactly as follows: for each ®(Ux) = #(Ux), so for anyu € Ux we can define relation

i =1,...,n,and assignment to PX;), 1 =X 0 if and

>X to be>X for anya such thaty(Ux ) = u. Local consis-

only if u (viewed as a sequence of boolean values) contains tency can then be expressed in terms of these relatioiss:

an even number of zeros.

Ensuring Consistency

The main purpose of this section is to give simple and natu-

ral sufficient conditions for a conditional preference theory

locally consistent if and only if for alk € V andu € Ux,
>X is irreflexive.

Often checking local consistency will be easy; in partic-
ular, when the sets Par)(X) are small (as in intended ap-
plications of CP-nets) one can efficiently construct each re-

to be consistent. There is a clear necessary condition, which lation >:X explicitly. (CP-nets assume these\ relations

we call local consistency, based on considering each variable have already been computed, or directly elicited; they are
separately (that always holds for CP-nets). The main result also assumed to be total orders, so local consistency is guar-
of this section is that givet(T") is acyclic,T is consistent ~ anteed.) To give another example, when all the variables are
if and only if T is locally consistent. (This generalises the binary, local consistency can be determined in time propor-

acyclicity condition for CP-nets since, for CP-nets, the rela- tional to|T[?*V'|.

tionsG and H (of the corresponding conditional preference

theory) are equal.) To prove this we use a more general form Partial conditional lexicographic orders

of lexicographic order, which we call a pcl order: a partial
conditional lexicographic order. It is like a lexicographic or-

der except that the importance order between variables nee
only be a partial order, and the order on values of a variable
can be partial and conditional on the values of more impor-
tant variables. A pcl order is a strict partial order. We show
that for any locally consistent conditional preference theory

I" such thatZ(T") is acyclic, the associated ordef on out-

comes is a subrelation of a pcl order; this then implies that

>r is irreflexive, sal is consistent by Theorem 1.

Local consistency

In certain cases, it's clear thatis not consistent, by just
looking at local conditions: if there’s a sequence of wors-
ening swaps from some to itself, which just change the
values of a single variabl& .

Fix conditional preference theody on V', and consider
outcomex € V and variableX € V. Say that paifz, z’) of
values ofX is validated by if there exists some statement
(u:xz > 2" [W]) €I witha | u (i.e., uis a projection of
). Define relation>X on X to be the transitive closure of
the set of all pairgx, ') validated bya. We say thaf is
locally consistenif for all « and X, >X is irreflexive.

If T" were not locally consistent then there would exist out-
comeq, variableX and a sequence,, ..., z; of values of

For a,8 € V, define A(a,3) to be the set of vari-

gables wherev andg differ, i.e. {X € V' : a(X) # B(X)}.

For relation G on V, let G° be the transitive clo-
sure of G, and forU C V, define ming.(U) to be
{XeU :VY eU,(Y,X) ¢ G°}, that is, the set of un-
dominated variables i/ with respect toG°, i.e., the set
of variables inU which have no ancestors iA (with respect
to G). If G is acyclic then for any non-empty, ming. (U)
is non-empty.

A pcl structure on set of variablés is defined to be a tu-
ple (G,H,{~X: X € V,u € Payg(X)}), whereG and H
are acyclic relations ol with G © H, and for each vari-
able X € V, and eachu € Pay(X), =X is a (possibly
empty) strict partial order (a transitive irreflexive relation)
on X. Associated with a pcl structugeis a binary relation
>p onV, called thepcl order, given as follows:

Fora,8 € V, a >, pifand only if o« # [ and for
all X € minge (A(a, B)), a(X) =X B(X), whereu =
a(Pag (X)) (which equalsg(Pay (X)) since any variable
Y in Pay (X) is an element of Ra(X) so is not inA(«, 3)
by minimality of X, soa(Y) = 8(Y)).

®The set of parents Rg X ) of X with respect to relatiotf is
defined to be the set of af such tha{Y, X) isin H.



The idea is thaining. (A(«, 3)) is the set of most im- This shows that, as long d$is chosen so that the as-
portant variables where and 3 differ. « is preferred to sociated ordel7(I") on variables is acyclic, and the local
g if « is better than3 on each of these variables. A stan- consistency property is confirmed, thEns guaranteed to
dard lexicographic order compares two outcomeand 3 be consistent and the associated order on outcomes will be
by considering the most important variab¥e on which« irreflexive (and hence acyclic). It gives an agent consider-
and g differ, and preferringy to g if a(X) is preferred to able flexibility in making their preference statements, with-
B(X). So a pcl order generalises a standard lexicographic out risking inconsistency.
order by allowing: (i) there to be more than one best vari-
able on whicha and g differ, because=° is only a partial Further Applications
order; and (ii) the local preference @f X') over3(X) to be
partial and conditional on some of the earlier variables.
Proposition 7 For any pcl structurep, the associated order ~ Choosing a total order compatible withT" - For some ap-
-, Is transitive. plications, one does not need to determine precisely; it

is sufficient to be able to list outcomes in an order compati-

ble with >r, i.e., compatible with the preferences expressed

We consider some further consequences of our results.

Hence>, is a partial order, since it is also irreflexive.

Generating a Partial Conditional Lexicographic Order by I'. Theorem 2 shows that this is easy (given thas lo-
from I'. If T is locally consistent and such th&{(T') is cally consistent and?(T") is acyclic), since we can pick an
acyclic then we can generate a pcl structure fidBmAb- ordering compatible with, ), and hence compatible with
breviate Pg r(X) to Ux. For each variableX € V, >p. We list the variables in an ordef, ..., X;, compati-
and eachu € Uy, define relation->X on X to be just ble withG(T") and we extend each local partial order relation

>X to a total order onX (this can be done implicitly using

a default ordering onX). We can then generate outcomes
lexicographically: to start with, we pick the best valueof

X, first and then pick the best valug of X, conditional on
x1, etc. Note that it is also very easy to check, for this total
order>, if a > 3 for outcomesy andg.

>X (see Local Consistency section). Becausés lo-
cally consistent, each-X is a (strict) partial order, so
(G),HI),{~X: X € V,ue Ux}) is a partial condi-
tional lexicographic structure, and we write the associated
order>, as>,r).

With the example, we have e.g., the following conditional
preferences foKs: ~ng = ~nf= >|)63 defined byf ~ng Finding optimal (maximal) outcomes Clearly, one can
d, and alsod *I)r(ﬁ f. The relation-, is in this case a use the abpve algorithm to efficiently find an outcome which

. : » is >p-maximal. It can also be done more directly. Assume

total order, which extends . with the additional preference - 171y is acyclic andr" is locally consistent (actually,
nod »-pr) nmf, because variabl&’; is more important the latter condition can be considerably weakened; c.f. the
than X3 according toG7(I). As we see below, itis a general o6t of Theorem 2 in (Domshlakt al. 2003)). WriteV
result that-,,r) extends>r. Itis also the case that given  45¢x, . X, } where the variable ordering is consistent
conditional preference theolly C £, we can extend" to a with H(T'). We say that’ € X; is undominated givep
setl’ making the associated ordering on outcomes equal to if there does not exist statement: z > ' [W]in T such

the pcl ordering. thaty = « (i.e., such that: is a projection ofy). We can

FixT C L. Fore = (u:x > 2'[W]) € T letp be : ; . ;
] Pty . generate (without backtracking) a (in fact, amy)-maximal
(u: 2 > a’ [W']) whereW” is the set of descendants At outcomex as follows: fori = 1,...,n, we leta(X;) = o/

in G(T) (_i._e., the set of variable]s_’ such thiit(X, Y)isin for anya’ € X, undominated giveica(X, ), .. ., a(Xi_1))
the transitive closure of(I")). Definel’ = { : ¢ € I'}. (local consistency ensures that there always is suct)an

Theorem 2 If T" is locally consistent and?(I") is acyclic This can be done in time approximately linear in the size of
then>, ) = >,F = >¢ 2 >1- r.

The most important part of this theorem is the result that - constrained Optimisation The approach to constrained
=pr) 2 >1, l.e., thatifa >p §thena >, 3. This can optimisation described in (Boutilieet al. b) can be eas-
be proved by showing that, ) 2 I'*, which implies the jjy generalised to finding maximal outcomes with respect to
result, since-,r) is transitive (by Proposition 5) anslr- is >r that satisfy a set of constraints. Furthermore, the follow-
the transitive closure df*. _ ing result shows that each outcome whick-i)-maximal

If locally consistent conditional preference thedryis among those satisfying a set of constraints, is also maximal
such thatG(T") is acyclic then by Theorem 2,y 2O >r with respect ta>r-.

which implies that>r is irreflexive since-,r is irreflex- i

ive, and hence by TheoremIljs consistent. So we have the ~ Corollary 2 (of Theorem 2) LetI' be a locally consistent
following result (since local consistency is a necessary con- conditional preference theory such th@{I") is acyclic. For
dition for consistency), which generalises the consistency 2 € V. if ais -,r)-maximal inQ2 thena is >p-maximal
result for acyclic CP-nets (i.e., CP-nets whose associated re- N Q.

lation H is acyclic). Finding the:,r)-maximal outcomes satisfying a set of
Corollary 1 (Consistency) Let conditional preference the-  constraints is relatively easy. In particular, we can modify
ory T be such thatZ(T") is acyclic. Ther is consistent if the complete algorithm given in section 3.1 of (Boultilétr
and only ifT" is locally consistent. al. b) by replacing each (generally hard) dominance test



tions allowing some good properties). There are many nat-
ural ways of augmenting the language to allow the compact
representation of other kinds of preferences. For example,
one could allow statements of the foim s > s’ [IW] where
s ands’ are assignments to a set of variahtggather than

a =n (3 by the testv -,y 3, which is easy because of
the lexicographic-style construction ef, . To determine
if o >, B or not, we consider the sét(«, ) of all vari-
ables on whichy andg differ; we find all variablesX which
are minimal inA(«, 3) with respect to the transitive closure
of G(T"), and we check the local conditier( X) >:X 3(X), just a single variableX. One could allow statements of the
whereu = o(Pay (X)). formw : s > «[W] meaning that conditional on, s is

For moderate to large problems, often even the number of the most preferred assignment of variabfesThe language
- p(r)-Maximal outcomes will be very large, so that we can might also be extended to allow the representation of indif-
enumerate more than enough,y-maximal outcomes; in feren'ce between values or partllal tuples.
such cases there may be little advantage in using the much This paper has focused mainly on CP-nets rather than
less efficient complete algorithm. These remarks of course their extension TCP-nets. (Wilson 2004) considers the rela-

also apply when we restrict to CP-nets.

Searching for Swapping Sequences If one wants to prove
thata >r (3, one may well need to search for a worsen-
ing swapping sequence fromto 5. Since these generalise
flipping sequences, this can be a hard problem, as shown in
(Boutilier et al. a; Brafman & Domshlak 2002). The fol-
lowing proposition is useful in restricting the swaps that one
need consider, as only certain variables need be changed.

Proposition 8 (prefix and suffix fixing) Let  conditional
preference theont" be locally consistent and such that
G = G(T) is acyclic. Suppose: >r (. DefineR to be
the set of variablesX € V such thata(X) = §(X) and
for all ancestorsY in G of X, a(Y) = B(Y). DefineS
to be the set of variableX € V such thatn(X) = 5(X)
and for all descendant& in G of X, a(Z) = 3(Z). Then
there exists a worsening swapping sequence fiotm 5 in
which the values o U .S remain constant. Furthermore, in
any worsening swapping sequence- oy, ...,q; = [ the
values ofR remain constant, i.e., forat = 1,...,[, and
forall X € R, a(X) = a(X) = B(X).

This means that when searching for a worsening swap-
ping sequence from ta to 5 we need only consider swaps
that don’t change the values &f U S. Suffix fixing gen-
eralises the CP-nets property described in (Boutieal.
1999; a). Prefix fixing also generalises a property of CP-

nets, and can be seen to be revealing regarding the structure

of >r.

Conclusion

In this paper, a logic of conditional preferences is defined,
with a language which allows the compact representation
of certain kinds of statements of conditional preference. It

is shown that the language can express CP-nets, and that
the semantics and proof theory generalise those of CP-nets.

The formalism also generalises other important properties
of CP-nets; maximal outcomes can be efficiently generated,
and there are simple sufficient conditions for consistency. It
is also easy, under such conditions, to find a total order on
outcomes compatible with the conditional preference order,
and a similar approach to constrained optimisation can be
used as for CP-nets. Along the way, a number of results were
given illustrating the restrictive expressive power of CP-nets
and TCP-nets.

Despite being a substantially more expressive language
than CP-nets, it is still quite restrictive (with these restric-

tionship with TCP-nets, which can be expressed with state-
mentsu : > ' [W] with |IW| = 0 or 1, and derives similar
results to this paper under weaker acyclicity conditions.
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