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1 Introduction to “AI at the Edge”  
for Smart Systems

In this paper members of the European Platform on Smart Systems Integration (EPoSS) have collected their 

views on the benefits of incorporating Artificial Intelligence in future Smart devices and defined the actions 

required to achieve this to implement “AI at the Edge”.

1.1  How to read this document
After a brief introduction to the topic and potential markets, in Chapter 2 the authors describe the oppor-

tunities that lie in applications of AI at the Edge based on typical use cases and current R&D&I projects in 

Europe. The current state of the art is covered in Chapter 3. Using future requirements the cross-domain 

technological challenges for the next 10 years are summarised in Chapter 4.

To address individual needs of our audience, we divided the structure of this document into two parts: the first 

part focuses on status quo: Chapter 1 includes the market potential of AI at the edge, Chapter 2 describes the 

possible application domains and challenges and Chapter 3 presents the state-of-the-art technologies that are 

available now.     

The second part addresses the future. Chapters 4 and 5 include the novel technologies, trends, and technological 

milestones that will drive the future research activities in the next ten years. Chapter 6 outlines the recommen-

dations of the experts to the political decision makes, in order to seize the full potential of AI at the Edge. Finally, 

the whitepaper concludes with the Summary of the major insights and recommendations.    

1. Market
IoT, Edge, AI

2. Applications
Automotive, Energy, Industry, Health, 

Agriculture, Smart Cities 

4. Future Challenges  
and Trends

5. Milestones for AI at  
the Edge in Smart Systems

6. Policy 
Recommendations 7. Summary

3. State-of-the-art
Hardware, Machine Learning, Distributed 

Learning over Edge and Cloud, Frameworks,  
Hardware and Software Co-Design 

TODAY

FUTURE

potential

conclusions

our vision and call
for actions
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1.2 	 Artificial	intelligence	at	the	Edge:	introduction	to	the	topic	

1.2.1 DEFINITION OF “AI AT THE EDGE”

Artificial Intelligence (AI) is a technical system which has the ability to mimic human intelligence as characterized 

by behaviours such as sensing, learning, understanding, decision-making, and acting. Owing to the availability of 

powerful computing hardware (GPUs and specialist architectures) and of large amounts of data, AI solutions espe-

cially Machine Learning (ML) and more specifically Deep Learning (DL) have found numerous and widespread ap-

plications over the past two decades (such as image recognition, fault detection or automated driving functions). 

Due to their reliance on large amounts of data, most current AI solutions require large-scale cloud data centres for 

computationally demanding processing tasks. Nevertheless, we are now in a new information-centric era in which 

computing is becoming pervasive and ubiquitous, thanks to the billion IoT devices connected to the Internet, and 

increasing digitalisation generates Zettabytes of data every year. Consequently, edge computing is emerging as a 

strong alternative to traditional cloud computing, enabling new types of applications (such as connected health, 

autonomous driving, Industry 4.0) with the advantage of implementing the required AI solutions as close as possi-

ble to the end-users and the data sources. 

Figure 1: Positioning of edge/extreme edge. The data processing stack for the Internet of Things consists of three lay-

ers: the edge layer, the fog layer and the cloud layer. In this paper we mainly address AI implementation at the Edge, 

close to smart sensors. The lowest layer represents the current use of AI-enhanced systems, often acting in a single 

system. As complexity and functionality increases, interaction between several AI systems is needed (between sensors 

for sensor fusion, between the AI model and a simulation model (Digital Twin) in Hybrid AI, or between a several AI 

systems). Ultimately, the highest complexity and functionality is achieved with distributed systems of systems (swarm 

AI, general intelligence). 
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Although a consensus across academia and industry on a worldwide AI roadmap is still to be reached, one 

fact is that the pure dominance of cloud computing will come to an end. To exploit the full potential of AI, 

data processing solutions will run on distributed edge computing nodes, interconnected by next-generation 

IoT platforms and communications. In future functionality, energy consumption, stability, resilience, robust-

ness and safety constraints will define their features. Figure 1 shows an example of the interaction between 

cloud and edge computing as envisioned for the future.

1.3  Impact for the European Smart Systems industry and market
Factors driving the demand on edge computing solutions include a growing adoption of the Internet of Things 

(IoT) from 7% in 2019 to 12% by 2025 across industry[1]. Low-latency processing and real-time, automated 

decision-making and a need for processing exponentially increasing data volumes and network traffic require 

novel edge-based approaches. Moreover, the emergence of autonomous vehicles, wearable devices, connect-

ed infrastructures and the need for lightweight frameworks and systems (to enhance the efficiency of edge 

computing solutions) will create additional market opportunities for edge computing vendors. The Linux Foun-

dation estimates in its “The 2021 State of the Edge”-Report[2] that between 2019 and 2028 up to $800 billion 

USD infrastructure investments will be rquired to cover the growing device and infrastructure edge demand. 

The expected investments into IoT devices and infrastructure edges will be relatively evenly split.

Technologies for wireless connectivity such as 5G are acting as a catalyst for market growth up to 35% CAGR 

alone for industrial IoT-solutions[3] with the total market for intelligent industrial edge computing (hardware, 

software, services) growing from $11.6B in 2019 to $30.8B  by 2025.

Current leaders in cloud technologies see this as an opportunity to increase their market share and have 

started investing in the edge ecosystem by engaging in partnerships with global telecom companies and 

smaller innovative vendors[4]. It is quite evident that 5G, and its predicted benefits, has the potential to create 

a powerful network-based technology that is expected to reorganize industrial value chains[5].

Yole Développement forecasts for AI computing in consumer applications (in particular stand-alone and em-

bedded sound and vision processors) a market increase from USD 2.3 billion in 2018 to 15.6 billion in 2024 at 

an average CAGR of 37.5%[6]. For AI in the automotive field (robotic vehicles, infotainment and ADAS) revenues 

starting from USD 174 million in 2018 to 13.8 billion in 2028 (average CAGR of 49%)[7], in AI for medical imaging 

from USD 332 million in 2019 to 2,886 billion in 2025 (CAGR of 36%)[8], and for neuromorphic computing and 

sensing an increase of the markets in the mobile, consumer, computing, automotive, medical and industrial 

fields from USD 112 million in 2024 to 25.993 billion in 2034 (CAGR of 64%)[9].

1.4 Technical advantages and opportunities of AI at the Edge 
AI solutions that run autonomously, are distributed and implemented at the Edge offer the following advantages: 

 � Increased real-time performance (low-latency): Edge applications process data and 

generate results locally on the sensing device. As a consequence, the device is not required 

to be continuously connected with a cloud data-centre. As it can process data and take 

decisions independently, there is increased real-time performance in the decision-making 

process, reduced delay of data transmissions and improved response speed.

 � Reliable low-bandwidth communication: Distributed devices can handle a large 

number of computational tasks, therefore reducing the need to send data to the 

cloud for storage and further processing. Overall, this results in minimizing the 

traffic load in the network and supports low-bandwidth communication. 
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 � Enhanced power-efficiency: As the amount and rate of data exchange with 

the cloud is minimized, the power consumption of the device is reduced thus 

improving battery lifetime, which is critical for many edge devices.

 � Improved data security and privacy: By processing data locally it does not 

have to be sent over a network to remote servers for processing. This improves 

data security and privacy as the data is not visible externally.

Figure 2: Especially for applications that need real-time performance (low latency) the processing or pre-processing of 

data athe the Application edge is mandatory.

1.5 Cost	effectiveness
Over the past decades, the emergence and growth of the smartphone market and the mass production of 
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AI may not be the best solution. 

Sensor and Smart Systems solutions have evolved in the recent years, reducing the gap between the semicon-

ductor chips and the final user/application. This strength allows a more tailored approach to AI system design 

that can mitigate the impact of components prices. This can provide adapted solutions for a wider range of 

devices and applications without a significant increase of cost when compared to “non-AI” solutions.

Figure 2: Especially for applications that need real-time performance (low latency) the processing or pre-processing of 

data athe the Application edge is mandatory.
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2 Applications for “AI at the Edge” 
In this chapter, a number of applications involving the adoption of Edge AI solutions are illustrated and an-

alysed with the goal to highlight the considerable breadth of scenarios where this technology can play an 

important role.

2.1 Automotive and multi-modal mobility

2.1.1 VEHICLE INTELLIGENCE AND V2X COMMUNICATION

Vehicle intelligence: While some advanced driver-assistance systems (ADAS), such as a lane keeping assistant 

or cruise control, are already commercially available. For several additional vehicle automation functions suffi-

ciently efficient and reliable performance must still be developed and implemented before human drivers can 

be replaced by AI (in all operating domains). Transferring driving tasks successively from human to AI drivers 

and meeting all requirements with respect to sensing (scene understanding), decision-making and acting, pres-

ents a complex technological challenge with respect to both AI hardware and software models. Today it is clear 

that besides AI, the connectivity vehicle-to-vehicle (V2V) and between vehicles and infrastructure (V2I) will be 

key to deploying automated vehicles, since it provides the basis for the coordination of vehicles. 

AI potential at the edge: Advances toward automated and ultimately autonomous mobility depend on prog-

ress in sensor and actuator technology, but most importantly on progress in AI technology. Each vehicle rep-

resents an edge node within the mobility system, connected to the cloud for services such as traffic or fleet 

management or mapping. Transferring AI tasks to the edge offers multiple benefits including improved system 

performance due to reduced communication and thereby processing latency, enhanced privacy or new func-

tions such as driver authentication. The combination of vehicle intelligence and intelligent infrastructure us-

ing, for example, Multi-access Edge Computing (MEC) can provide further significant safety improvements[10].

Challenges: The optimal distribution of intelligence between the edge nodes (cars), the fog computing layer 

(e.g. traffic lights at an intersection) and the cloud (e.g. traffic management centres) presents a key, and strong-

ly debated, topic in the field of vehicle automation. The answer is likely to differ for different operational do-

mains, as automated shuttles on dedicated lanes require far less coordination from a central intelligence than 

an automated vehicle moving through dense mixed traffic (including non-automated, partially automated and 

fully automated vehicles). 

2.1.2 OCCUPANT ACTIVITY “UNDERSTANDING” 

Automated driving: Automated driving is one of the four main automotive trends[11], driven by technical de-

velopments, market expectations and continual legislative tightening. The technical solutions are focusing on 

the human-centred component, which covers two challenges: the Human-Machine Interface (HMI) and human 

perception of automated driving. Advanced HMI is the essential interface for seamless operation between the 

(semi)automatic system and humans. The EU-funded HADRIAN project[12] is developing a holistic driving solu-

tion, focusing on the utility of dynamically adjusting (fluid) human-machine interfaces taking environmental and 

driver conditions into account. On the other hand, human perception of driving style and safety is crucial for the 

acceptance of new technology through the increase of trust. The EU-funded TEACHING project[13] explores AI 

techniques at the Edge to realise the human-centred vision leveraging the physiological, emotional and cognitive 

state of vehicle occupants for the adaptation and optimisation of the autonomous driving applications.

AI potential at the edge: Managing transitions between different levels of autonomy is fundamental. The 

AI-based observer is a key point of this system as it detects the behaviour and the mental state of the driver. 

Edge AI offers the local calculation of the driver states, thus allowing for control of the response time thus 
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preventing personal data from leaving the vehicle and continuous learning to adapt the AI-based observer to 

each driver and passenger.

Challenges: Understanding vehicle occupants’ physiological state and their ability to take over control of the 

(semi)autonomous vehicle are crucial for driving safety. Those challenges are further complemented by the 

need for the most effective interfacing to the driver. Those calculations must be performed at the local level 

to avoid basic connectivity risks. The inherent conflict between safety and AI is an open challenge, which is also 

complemented by the need for continuous learning. 

2.1.3 AIR PATH CONTROL AND DIAGNOSTICS

Emission control and overall efficiency of the engine: The air path of an internal combustion engine is a cru-

cial component for emission control and overall efficiency of the engine. The goal of air path diagnostics is to 

detect faults or poor performance and to identify the root cause. 

AI potential at the edge: AI helps in efficiently executing the control strategy and in diagnostics of the air-

path. For example, the heavyweight processing (e.g. physics-based simulations) used in executing the control 

strategy can be substituted with ML workloads. Compared to the original simulation model, the execution of 

the trained model implementation is less demanding. The deployed model can thus be executed on the edge. 

As sensors are mounted on the vehicle, this requires a split of intelligence between the backend (e.g. crowd-

sourcing of vehicle-data to obtain the diagnostic model) and the edge (e.g. the various privacy related aspects). 

Challenges: Challenging requirements such as time-predictability, dependability, energy-efficiency, and secu-

rity need to be fulfilled. In this respect, the aim of ECSEL Joint Undertaking FRACTAL[14] is to create a reliable 

computing platform node, implementing a so-called Cognitive Edge with industry standards. This comput-

ing platform node will be the building block of scalable decentralized Internet of Things (ranging from Smart 

Low-Energy Computing Systems to High- Performance Computing Edge Nodes).

2.1.4 BATTERY LIFECYCLE MANAGEMENT

Predictive maintenance for battery aging: The in-use phase of a vehicle (road profile, climatic condition, driv-

ing, parking, charging) has a significant impact on battery aging. Batteries pose the risk of exploding (“thermal 

runaway”) in normal use and the existing methods such as strain-, acoustic – and/or temperature sensors to 

detect thermal runaways. 

AI potential at the edge: To better understand the aging behaviour of batteries, data-driven models based 

on aging experiments enable lifetime simulation and prediction. Predictive algorithms on the edge can crowd 

source data from vehicles and/or the lab. This provides critical correlations with battery safety and offers the 

potential of increasing the warning period. Within the ECSEL JU Integrated Development 4.0[15] a digital twin 

that allows the prediction of state of charge (SoC), state of health (SoH) and/or remaining lifetime is developed. 

Challenges: There are a large variety of modelling approaches ranging from models using first principles (e.g. 

electro-chemical models) to purely data-driven models (needing to collect aging-related data in the lab and 

while operating the vehicle). These can be applied to the cell, module as well as package-level. Hybrid models 

have to be developed that aim to combine the models from first principles and data-driven models.

2.1.5 THERMAL MANAGEMENT OF THE POWERTRAIN

Energy control in the vehicle: The perception of the environment is carried out via vehicle and powertrain sen-

sors coupled with the weather data and the traffic information that can be retrieved from dedicated service 

providers. The computing workload is split between processing in the backend (e.g. crowd-sourced data) and 

dedicated control units (energy control units) in the vehicle. 
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AI potential at the edge: AI has a tremendous potential in optimizing the energy efficiency based on the per-

ceived environmental conditions. For example, by considering weather and traffic conditions to accelerate or 

delay the cooling process, AI-based strategies can augment classical model-based thermal control strategies. 

In line with such efforts, the Horizon Europe draft work programme 2021/2022, Cluster 5, mentions safe, seam-

less, smart, inclusive, resilient, climate neutral and sustainable mobility systems in terms of their expected 

impacts.

Challenges: The perception of the environment of the vehicle is key to optimize the vehicle’s energy efficiency. 

Including the powertrain system (internal combustion engine, electric motor, fuel cell), energy storage system 

(hydrogen, electric), the passenger or cargo air conditioning system, and the traffic information (V2V, V2X). 

The collection of data offers the potential to characterize the context under which to perform the optimiza-

tion. However, continuously collecting such data requires highly reliable connectivity (V2V, V2X) and an agree-

ment on common mobility data sharing space[16]. In addition to standardization of data interoperability this 

includes data-lifecycle management that is designed around B2B, B2C and B2G data sharing. 

2.1.6 AUTONOMOUS (INLAND) SHIPS BY PROJECT A-SWARM

Autonomous inland ships: could play an important role for the transportation of goods in big cities in the fu-

ture. The German-funded A-Swarm[17] project explores this topic. It is planned in the project to fit a barge with 

near-field and far-field sensors as well as edge platforms with AI accelerators. 

AI potential at the edge: The accelerators will be used to run AI models that locally process the data from 

sensors and control the engines of the barge. Allowing for the implementation of a system with the necessary 

real time capabilities required to traverse the waterways in cities. 

Challenges: To realize this system many different problems need to be solved. One of the biggest is to filter 

out, in real time, the noise and movement generated by the water from the sensor data. Furthermore, it needs 

to be explored how different intelligent edge systems can efficiently communicate with each other to enable 

for example an automated unloading of the barge. 

2.1.7 MASSIVE SENSOR TECHNOLOGY AND NETWORKS

Massive sensor technology and networks: The new concepts for autonomous mobility, digital industry, and 

decentralized bidirectional and multi-modal energy supply, as well as smart city and smart home applications, 

require massively more sensor technology and electronics with significantly higher performance in each indi-

vidual product than today. At the same time, reliability and safety requirements are increasing dramatically, as 

the operation of automated and autonomous systems are no longer overseen by human operators. Instead, 

the lives of passengers, the economics of production, and the stability of utilities depend entirely on the func-

tionality of their electronics. The current way to ensure the highest standards of safety and availability relies 

mainly on redundancy at all levels of integration (including full system redundancy). This is very expensive, 

resource heavy and sub optimal. The failures can occur without warning and in both the primary and the re-

dundant unit. Therefore, the ultimate fallback solutions have to be used quite often (e.g. emergency stop). 

They are safe but usually mean the sudden end of operation. This approach would lead to an unreasonably low 

availability of ultra-complex systems like autonomous cars. New strategies with smart and pro-active safety 

assurance need to be developed that are based on continuous self-monitoring, remaining life estimation, and 

active failure prevention in the electronic systems. 
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AI potential at the edge: An intelligent approach to functional safety will achieve a higher level of confidence 

and trustworthiness with less redundancy than today. It will require the inclusion of artificial intelligence al-

gorithms as essential elements. Trained by data from comprehensive physics of failure (PoF) studies and big 

data-driven (DD) analyses, compact AI routines can be developed and implemented directly into the individual 

products to deliver maximum availability. 

Challenges: Despite the limited computational resources at this edge position, the AI routines should cover 

the current application scenario very well. This can be achieved by developing dedicated meta-models and by 

resource-optimized programming. In addition, a (non-permanent) connection to the cloud server allows dy-

namic updates to best adapt to changing scenarios (e.g. from summer to winter conditions) and to continuous-

ly improve the meta-models (e.g. by learning from the entire fleet). A number of projects have already started 

to explore this approach to AI-based smart safety solution for electronic systems, e.g. ECSEL iRel4.0[18] – PoF 

and DD analyses, ITEA3 COMPAS[19] – compact models for AI, H2020-GV EVC1000[20] – early warning indicators, 

lifetime estimation. However, the main part of the research work in this area is still ahead.

2.2 Energy

2.2.1 SMART GRID 

Distributed energy sources: The development of Smart Grids over the past two decades was a necessary re-

sponse to the fundamental shift from a unidirectional supply of electricity (from power plants to consumers) 

toward an increasingly decentralized, bidirectional and complex network. The widespread use of renewable 

energy sources has resulted in a corresponding growth in the number of network nodes. Advances in ICT have 

enabled smart home applications which, alongside the introduction of electric vehicles, constitute new agents 

and further increase the complexity at individual network nodes. At the same time, the introduction of smart 

meters at network endpoints and ubiquitous sensors throughout the grid, have added a digital layer compris-

ing a myriad of sensors and providing large amounts of data. This data availability and the increasing diversi-

fication and distribution of energy sources and applications call for an equivalent distribution of intelligence 

throughout the grid, to maximise network efficiency, optimize grid management and enable new (end-user) 

applications, including data privacy. 

AI potential at the edge: Large amounts of data concerning energy demand and supply accumulate at individ-

ual network nodes and must be processed efficiently at the Edge to exploit their full value. Machine learning 

applications for Smart Grids include classification and clustering models for big data processing, are used pri-

marily by utility suppliers and cloud service providers to group consumers according to their usage patterns 

and apply predictive models for future demand[21]. Prediction models can be used for the supply of renewable 

energy when weather forecasts are included. While many of these models can be applied for management, de-

cision-making and control processes at the (micro) grid level can be run in cloud data centres or fog gateways, 

some applications potential optimisations can only be fully unlocked using edge AI. Cognitive applications of 

edge computing in Smart Grids include intelligent agents used both for energy market issues (management, 

pricing and scheduling) and for network management (security, reliability, fault handling and efficiency). Pos-

sible use cases include:

 � Combination of AI and blockchain technology for the integration of 

electric vehicles in power management platforms for Smart Grids[22].

 � Dynamic pricing to balance demand and supply[23].

 � Pre-processing strategy of hierarchical decision-making to optimise 

resource usage based on service level requirements. 
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 � Data-driven methods to analyse equipment and end-user behaviour in the 

distribution network, for example, to provide energy as a service (EaaS)[24].

 � Fault detection and diagnosis in the transmission grid (e.g. video 

surveillance and scene interpretation using drones).

 � Real-time monitoring[25].

Challenges: A central challenge for the application of edge computing and AI in Smart Grids remains the de-

sign and implementation of efficient system architectures that meet the real time and safety requirements on 

AI at the device, network and application level and distribute tasks as well as required intelligence between 

cloud, fog and edge.

2.2.2 SMART BUILDINGS 

Buildings as networked cyber-physical energy systems: Buildings are a major contributor to the overall en-

ergy consumption. Since passive means (e.g. thermal insulation) are nearly fully exploited, smart buildings are 

envisaged to be the future enabler for further improvement in energy efficiency[26]. The objectives of building 

energy control systems are multi-dimensional and complex aimed at using a minimum of energy (preferably 

generated on-site from renewable sources), a prescribed level of comfort and a healthy indoor climate must be 

provided. Since the components of the building energy systems are integrating more sensors and embedded 

systems, buildings are becoming networked cyber-physical energy systems – especially larger objects like air-

ports, shopping malls or office buildings. 

AI potential at the edge: A high number of multivariate sensors are required to exploit the full potential of 

model predictive control schemes besides standard parameters such as temperature, humidity, CO2 and the 

occupation of rooms, which are usual inputs to the control system. While the main control system is usually im-

plemented as a centralized controller, there are relevant applications for data analytics and AI on edge devices 

and smart sensors; for example: the number of persons present inside a room is a relevant input parameter 

for building controls. Image sensors allow for a precise counting of people. But to enable a required level of 

privacy, raw image data should not be spread among open data networks. Implementing AI algorithms directly 

on the device can help to analyse the image in order to extract the relevant information for the control sys-

tem. Sensors in energy system components, like fans or air filters, are an enabler for predictive maintenance 

schemes, allowing higher efficiency and reduced maintenance costs. Using wireless technology, easy installa-

tion or retrofitting would be possible - especially at places that are hard to reach by the tethered data network. 

However wireless data transmission from basements can be difficult due to the metal structures in heating, 

ventilation and air conditioning systems. Data can be reliably transmitted, with a reduced bandwidth, by using 

data analytics at the sensor to provide only the relevant information on the current status of the component 

instead of time series data from pressure sensors etc.

Challenges: Only with a large number of sensors can explore the merits of energy savings, i.e. the economic 

benefit per sensor is rather low. In turn, a smart sensor for a building energy system must be a rugged and a 

low-cost system. Furthermore, in many use cases, wireless connectivity is strongly demanded. An optimized 

power consumption ensures long maintenance intervals, imposing challenges on energy efficiency of the on-

board data acquisition and processing.
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2.3 Digital Industry

2.3.1 PREDICTIVE MAINTENANCE

Industry 4.0 and predictive maintenance: Industrial applications of IoT are predicted to generate a signifi-

cant economic benefit. Predictive maintenance is a popular example enabled mainly by the analysis of huge 

amounts of data generated by sensors integrated into industrial assets. This is implemented by the classifica-

tion of the acquired data, with respect to the status of critical components, and using prediction models to 

enable a forecast of remaining lifetime and, in turn, to optimize maintenance schedules. 

AI potential at the edge: Implementing AI on the edge devices near the sensors would offer several benefits: 

reduction in the transmitted data volume, which is particularly important for sensors generating large data 

streams such as vibration time series. Data from heterogeneous sensors can be fused on the device. This also 

enables cross-validation of sensor data, improving the resilience of the system. Local data analysis can reduce 

the latency of the AI compared to a cloud based solution, this can be an important advantage when detecting 

critical faults.

Challenges: In order to gain economic benefits from the sensor signal analysis, the accuracy of the algorithms 

has to be very high. False alarms or undetected failures can cause severe financial losses or even damages to 

equipment. Another important aspect is the availability of training and validation data. Only for mass produc-

tion lines, the necessary amount of representative data can be collected in a reasonable time. In cases of more 

individualized production, algorithms have to cope with small training sets; or the application of synthetic data 

from simulation model scan be considered.

2.3.2 RELIABLE PREVENTION OF EARLY FAILURES

Reliable prevention of early product failures: Product reliability has a typical characteristic. A relatively high 

failure rate occurs during the first operating period. These early failures are caused by the small variations in 

material, shape, or process properties during fabrication. None of these stochastic deviations exceeds their spec-

ified limits, so current process control algorithms cannot detect the reliability risk that arises from unfortunate 

combinations of these variations. 

AI potential at the edge: Expanding the scope of process control, by including a larger number of process steps 

in advanced data analysis using artificial intelligence schemes, can detect a significant portion of these risky com-

binations of inherently permissible variations. The ECSEL project iRel4.0[27] explores this approach with the ex-

ample of microelectronic production. While the core part of AI-based data analysis can be performed by the large 

computer clusters, that provide general process control at the manufacturing site, additional edge capabilities 

are required to enable corrective countermeasures to be taken in real-time at all relevant process tools to provide 

the important data in a pre-aggregated form.

Challenges: The computational edge capabilities are thus an essential part of the overall AI system. The flexibili-

ty, latency, and security requirements of advanced process control cannot be met without them.

2.3.3 ROBOT CO-WORKING

Collaborative robots in industrial environments support human workforce in the fulfilment of repetitive jobs 

or heavy lifting, for instance. Applications can be found mainly in the manufacturing industry, e.g. assembly of 

automotive parts.

AI potential on the edge: Edge AI enables new possibilities for the cooperation of humans and robots, be-

cause in contrast to cloud based systems edge AI is fast enough to handle situations where the robot could 

inflict harm. To implement these new possibilities sensors need to be deployed that are able to monitor the 
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environment and the movement of humans and animals within range. The data from these sensors are locally 

processed by AI models in the robot or running on nearby edge nodes. Afterwards, edge AI-based components 

use the processed data to control the robot allowing for close cooperation with humans in performing com-

plex tasks like the manufacturing of custom products in workshops or rescue operations. To implement this 

vision of close cooperation many challenges need to be solved such as training the robots for new tasks.

Challenges: In addition to more traditional robotic applications, the safety of the human worker has to be con-

sidered, since the robot and the human share a common working space. Operational strategies ensuring safety 

of the worker require advanced sensing capabilities of the robot[28]. In addition, the sensor data, e.g. from an 

image sensor, has to be processed with low latency in order to enable a quick reaction of the robot in a critical 

situation. Thus, transferring cognitive and analytic capabilities to the edge, i.e. a single robot, is advantageous. 

Potential strategies include distribution of AI methods in a network of robotic devices[29].

Finally, reliability and functional safety requirements of the robotic system with integrated AI capabilities have 

to be met during the design process.

2.4 Health and wellbeing 

2.4.1 VITAL SENSING WITH RADAR

Vital sign monitoring based on radar sensors: will be an important component in many medical applications. 

However, a cloud-based implementation of the sensing would be too slow in time critical contexts. This is not 

the only problem of cloud systems as storing generated data in them is also a privacy concern. 

AI potential at the edge: Issues of latency and privacy can be solved by using edge AI. When the radar data is 

processed locally, the information about heart rate, respiration and so on are available fast enough to trigger 

other parts of the system that can save the life of the human. Furthermore, the results can then be deleted or 

anonymized before they are sent to the cloud.

Challenges: The accuracy of current edge AI implementations of such products is too low to avoid high false 

alarms rates. Hence, the accuracy of algorithms needs to be improved to enable better adoption of life saving 

applications.

2.4.2 PERSONALISED MEDICINE

Personalised Medicine: Human physiology can vary greatly from individual to individual. Examples for that in-

clude blood pressure or lung capacity. However, these differences need to be considered for accurate medical 

applications like vital sign monitoring. Due to privacy concerns, it is difficult to process this information in the 

cloud-based solutions. 

AI potential at the edge: Edge AI offers the possibility of maintaining privacy when processing medical data. 

Furthermore, many medical applications require real time processing, which can be better realized with local 

AI. By exploiting these two aspects, many medical and consumer applications can be implemented which were 

not possible in the past. For example, different organisations work on integrating sensors and AI into clothes 

allowing for feedback loop based training of athletes.

Challenges: Processing data at the Edge does not make it totally safe against malicious access. Hence, the 

security measures of edge AI processing pipelines need to be further improved to ensure that medical data or 

applications are not misused. 
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2.4.3 AFFECTIVE COMPUTING (“AI OF EMOTIONS”) 

Detecting and measuring human emotions: Affective computing is interested in automatically detecting and 

recognizing the emotional state of a human either with remote or “nearable” sensors (visible and IR imagery, 

audio, physiology), or with sensors in contact (wearables) for physiology, or activity monitoring. Emotions, a 

classic conceptual representation of which follows a 2D valence (negative / positive) versus intensity (calm / 

excited) pattern, have an essential role in human behaviour. These influence the mechanisms of perception, 

attention, decision making, and social behaviour. The purpose of estimating emotional states is to improve un-

derstanding of human behaviour. This is the strongest reason as emotional states are both very personal and 

evolving, very different from one individual to another, and from one situation to another. 

AI potential at the edge: The edge AI allows for maintaining the confidentiality of the data inside the mea-

surement device, to guarantee the autonomy of the devices, and to aim for an individual estimator learning 

over time. The objective of the studies conducted at the CEA LETI is to develop an autonomous and ambula-

tory stress observer based on physiological signals, aimed at self-assessment and coaching for well-being (see 

M.O.T.I.O.N project)[30].

Challenges: Privacy and personalisation. On the road to individual guidance –whether medical or for other 

purpose (wellbeing, sports or emotion management) – local processing of data answers potential issue of con-

fidentiality and data protection. In addition, the use of AI allows identification and adaptation to individual re-

sponse pattern to the targeted monitoring (activity, treatment…). Once anonymised, this individual response 

(learned and characterised thanks to the AI) can feed wider models so that it can be shared and benefits to 

other users/patients and helps them in managing their own activities.

2.4.4 SPORT ANALYTICS

Prevalence of lower-limb injuries: Lower-limb injuries are common among athletes, accounting for 77% of 

hospitalized sport-related injuries, and are a risk factor for early-onset osteoarthritis. High-impact forces are 

one of the factors contributing to lower-limb injuries. To decrease the prevalence of lower-limb injuries, and 

their associated long-term disability and economic burden, multiple injury prevention programs have been 

proposed. These take into account the study of ground reaction forces (GRFs) in order to enhance athletes’ 

performance, determine injury-related factors, and evaluate rehabilitation programs’ outcomes. 

AI potential at the edge: Together with industry partners, the Tyndall National Institute have developed a 

miniaturised monitoring system, integrating ultra-accurate accelerometers and neural networks, to estimate 

the impact GRF forces while running. Besides being a unique solution for multiple injury prevention, the devel-

oped solution can be used by elite athletes, sports teams, coaches, scientists, and consumers who would use 

novel performance monitoring systems to keep pushing the boundaries of their sports and gain performance 

advantages. 

Challenges: Major challenges in the system implementation are related to the development of a neural 

network that is sufficiently accurate to model GRFs while it is also simple enough to be deployed on a re-

source-constrained microcontroller with limited energy consumption. Moreover, an open challenge is related 

to the deployment of personalized athlete-specific models rather than general-purpose neural networks; this 

could be achieved by either training a whole network from scratch directly on the wearable unit by relying only 

on the data collected from the individual athlete, or by adopting a transfer learning approach where a number 

of layers in the general-purpose network are trained based on the data from all the available subjects and are 

frozen and deployed on the microcontroller and the data collected from the individual athlete are used to train 

only the last layers of the deployed neural network.
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2.4.5 PHYSIOLOGICAL MONITORING

Health markers: Elevated blood pressure is a major health concern and a risk factor for complicated cardio-

vascular morbidities including coronary heart disease, ischemic, and haemorrhagic stroke. WHO reported an 

estimated 7.5 million deaths due to elevated blood pressure. The accurate measurement of blood pressure is 

important to timely detect health threats. Therefore, to get a continuous, accurate, and reliable insight into a 

person’s cardiovascular health condition requires a practical approach.

Sepsis is also another good example, one of the leading causes of death worldwide, with incidence and mortal-

ity rates failing to decrease substantially over the last few decades. 

AI potential at the edge: Edge computing is experiencing a massive growth in healthcare applications as it 

helps to maintain the privacy of patients (e.g. data is locally processed, without engaging cloud services in the 

overall process), and allows a fast and real-time decision support system. 

One of the objectives of the HOLISTICS project led by Tyndall National Institute[31], in cooperation with its in-

dustry partners, is the adoption of edge analytics into wearable devices for health-related use case scenarios 

(e.g. blood pressure monitoring). Cuffless blood pressure monitoring devices adopting AI solutions based on 

the analysis of PPG or PTT signals have shown promising results in recent years.

As an example to illustrate the value of edge-based AI models in the management of vital signs, the model can 

raise timely alerts pro-actively prompting clinicians without needing time-consuming and costly laboratory 

tests. AI solutions have, therefore, the potential to be used on wearable devices to predict the prognosis (e.g. 

blood pressure), and/or detect the pathogens causing an infectious process (i.e. sepsis).

Challenges: A typical challenge of health-related datasets is the presence of a high imbalance in the data. The 

development of the outcomes for patients with sepsis and recommend the treatment process (e.g. the medi-

cations to be used during sepsis), of techniques and approaches able to tackle this problem at a technical level 

(i.e. data augmentation, resampling techniques) and policy level (e.g. data collection process, data sharing pol-

icy, new standards) is diffusing steadily. Moreover, the possibility to provide tailored medical treatment (e.g. 

personalized medicine) is attracting increased attention over the recent years; however, its implementation 

and deployment into edge devices in real-world scenarios is still in its infancy.

2.5 Agriculture, Farming and Natural Resources

2.5.1 AUTOMATED WEEDING

Chemical weeding to reduce the competition between weeds and crops: Vegetable production imposes a 

wide variety of farming operations because of the diversity of crops and the related planting parameters such as 

the seedbed structure, the seeding density, the spacing between rows and the distance between plants in each 

row. In addition to these agricultural operations, vegetables require early weeding (7 to 15 days after sowing 

or planting) due to the strong competition between weeds and crop and the increasing difficulty of removing 

weeds without damaging the crop. Once the crops cover all the row, weeds are stifled as soon as they appear, 

and weeding becomes less critical. Chemical weeding is the classical solution to reduce the competition between 

weeds and crops. However, the growing consumers’ demand for product quality and for the absence of phytosan-

itary residues, is having an increasing impact on agricultural practices. Mechanical weeding (hoeing) is, therefore, 

increasingly necessary. Nevertheless, it remains difficult to implement weeding within the rows, because de-

stroying the weeds inside a row while preserving the plants is very delicate, especially when the sowing is dense. 

To date the only mechanized or automated solutions concern inter-row weeding (weeding between two rows). 
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AI potential at the edge: Commercial AI-based intra-row weeding solutions exist only for crops with significant 

inter-plant distances (lettuce or cabbage for instance). No automatic hoeing solution exist for carrot, peas, beans, 

sweet corn, onions, etc. To realize intra-weeding for these crops some AI-capabilities in the weeding machines 

are required to adapt to changing environment in real time. 

Challenges: A stable connection to the cloud cannot be guaranteed on fields all the time. Furthermore, the auto-

mated weeding machines should be as power efficient as possible. Both of these requirements could be solved 

by neuromorphic AI algorithms, due to their lower energy demand compared to standard neural networks at the 

Edge. Such algorithms and corresponding hardware are explored in European funding project Andante[32] but 

these topics will require much more work than which can be achieved within one project.

2.5.2 DRONES FOR PRECISION AGRICULTURE

Precision agriculture is one of the scenarios where Unmanned Aerial Vehicles (UAVs) or drones are currently being 

used and demonstrated. They are equipped with cameras and sensors which allow taking close images of the 

crops, field operations and of the machines. 

AI potential at the edge: This information can be used for tasks such as obtaining Normalised Difference Veg-

etation Index (NDVI) maps from multispectral cameras which can support decision making about spraying or 

perform additional operations in the crops, for example to recognise areas that may be affected by pests and to 

apply phytosanitary or pesticide treatments. They can even act as a network gateway to collect information from 

IoT sensors using low-cost and wide area network protocols like LoRaWAN (Long Range Wide Area Network).

Challenges: The deployment and the usage of drones and UAVs in the agriculture domain still presents challeng-

es that must be solved, e.g.

 � be intelligent enough to fly autonomously without requiring 

major interventions from specialised human operators

 � be capable of dynamically readjusting the missions based on context information 

coming from onboard sensors and other sources of data deployed in the crops

 � collaborate with other drones or ground robots to perform 

more complex tasks in complex and larger terrains

 � guarantee compliance with security regulations and incorporate 

trustworthy requirements and guidelines. 

To address most of the previous points, artificial intelligence processes will be embedded directly on drones and 

robots in order to increase their autonomy and real-time capabilities.

2.5.3 SOIL CONTROL

Efficient food production is important to ensure the food supply of mankind. Hence, more and more sensors 

are deployed around, and in fields to gather data about their state and planted crops. For soil monitoring Biode-

gradable sensors are being researched. The idea is to mix them into the fertilizer, which is then put on the field. 

Afterwards, they send their data for between six months and one year to a node near the field and this node 

transfers the data to the cloud.

AI potential at the edge: The amount of data generated by the field monitoring sensors is very high. However, 

not all of the data is relevant and can be averaged over multiple sensors e.g. the average soil moisture level of a 

field. Edge AI can be trained to analyse these large data volumes resulting in lower amounts of data needed to be 

sent to the cloud as well as lower network load. 
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Challenges: The critical point about bio-degradable sensors is that they cease to work after a specific amount 

of time. In addition, other sensors deployed around the field may have a lower average lifetime than sensors in 

other contexts. This requires the Edge AI solutions for this application to be able to handle fluctuating amounts 

of incoming data. Such high levels of flexibility are not well explored yet. 

2.6 Smart Cities

2.6.1 SMART STREETLIGHTS

Lighting systems adjusting the brightness to the individual conditions of the surroundings: Smart street-

lights could provide important services for smarter and greener cities in the future. 

AI potential at the edge: Using different kinds of sensors and edge AI, the streetlights can detect whether, and 

at what speed, a pedestrian or motorist is approaching. As long as the person is within the radius of the light, this 

area is illuminated by built-in LED lamps. If the person moves away, the lighting is reduced. In adverse weather 

conditions, such as snow or rain, the light output could be increased automatically as required. The edge AI eval-

uating the sensor data can run on microcontrollers in the lamp or on other nodes in the proximity. This dynamic 

light regulation saves energy and costs. Smart streetlights could also be used for implementing other important 

services like the charging of electric vehicles and the measurement of the air quality.

Challenges: A central challenge of this application is managing the access to the results of the Edge AI. The 

processed sensor data can be of interest to different parties, for example for the police in case of accidents or 

insurance services that insure shops near the smart street lights. One approach to solve this challenge would be 

to combine block chain technologies with Edge AI. However, this is a research field which is still in its initial phase.

2.6.2 AIR QUALITY

Improving air quality using gas sensors: Gas sensors currently available on the market are often quite unstable, 

inaccurate and show large cross sensitivities to other interfering gases. Moreover, they are often very large (not 

in a portable form factor) and quite costly. 

AI potential at the edge: Neural networks at the Edge are crucial to gas sensing especially when it comes to ac-

curately identifying different gases in an outdoor environment. While the sensor technology itself (materials, ge-

ometry, temperature modulation, number of sensing fields, etc.) can surely help to improve sensitivity to target 

gases, algorithms play a very important role when it comes not only to classifying gases but also to quantifying 

them in parts per billion (ppb). Since gas sensors in most use cases have limited connection to the internet, these 

algorithms need to be deployed on the sensor node.

Challenges: Recent results already show that traditional neural networks can strike the right balance between 

accuracy and robustness for air quality monitoring, still many open questions remain on the behaviour of air qual-

ity monitoring sensor deployed in the field over a long time. Here, it is even more crucial to ensure long battery 

life and wider online learning at the Edge for specific use cases and more self-diagnostics on the performance of 

the sensor.

2.6.3 ALARM SYSTEMS 

Increased safety with intelligent Alarm Systems: Edge AI-based alarm systems are a good example of how 

edge computing solutions enrich existing smart building systems.

AI potential at the edge: While previous alarm systems use a microphone and simple threshold rules to detect 

glass breakage when an unlawful entry is made into an apartment, the new generation of alarms process infor-
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mation from multiple data sources via data fusion and neural networks. This minimizes the number of false alarm 

and significantly increases the reliability of the system. This solution can easily be integrated into existing glass 

breakage alarm systems. 

Challenges: As these new generations of alarm system become more widely spread, they will become targets 

for attacks. Currently little work has been done in the area of securing neural networks, making them responsible 

for the whole system.
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3 State-of-the-art of “AI at the Edge”

3.1 Edge AI for smarter systems

Edge AI resides at the location where the virtual world of the network hits the real world, where sensors and 

actuators are the link.

Figure 3: At the system level, the place to run AI algorithms depends on multiple factors and is often a balancing 

act between the time and energy cost of local compute vs remote compute. Algorithms can be distributed at 

multiple levels as well. The balance point will shift over time, following advances in wireless technologies and 

neural processing.
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3.2 Hardware for edge AI 
Choosing the ideal hardware for a particular application requires careful consideration of all the requirements. 

A successful system design finds a balance between the different aspects of system architecture, such as mem-

ory footprint, executing time, model accuracy, power consumption, scalability, cost, and maintainability. While 

data-centres allow engineers to scale available computational power to the current demand (via GPUs or TPUs), 

an application running on edge devices needs to keep sufficient power reserves. An increasing number of ven-

dors are now moving from producing simple resource-scarce microcontrollers (e.g. ARM Cortex MCU) to pairing 

general-purpose processors with specialized units tailored to execute the computational tasks required to imple-

ment AI solution. As embedded systems are typically focused on using AI in the form of machine learning (ML) for 

interpreting incoming sensor data, these specialized sub-processors aim to speed up a classification or prediction 

tasks while maintaining a low power draw. This is especially important in applications running on battery power 

or with a low potential for cooling the system.

Figure 4: Depending on the particular application requirements, different types of hardware are available and 

have to be chosen for Edge AI realisation.  
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cores and pre-loading repeatedly used variables cuts down on time spent shuffling data around. Nowadays some 

accelerator hardware architectures are closely tailored to the operation of specific ML algorithms, allowing for 

very efficient computation. This specialization however comes at the cost of flexibility in a rapidly evolving field. 

A solution is presented using field-programmable gate arrays (FPGAs), which are becoming heterogeneous plat-

forms that combine powerful CPU systems, specialized arrays of AI accelerator cores and traditional fabric, where 

the hardware can be programmed by the use of hardware description language (HDL) or C/C++ via high-level 

synthesis tools. FPGAs combine the benefits of specialized hardware with the freedom to change the layout even 

after the chip has left the factory. The use of FPGA can create more dynamic, scalable, and flexible systems, even 

though they often carry higher cost.

Another type of processor is emerging as a new class of processing accelerator for these predominantly data- 

centric heterogenous processing tasks as offload to the main CPU. These processors are called manycores and 

are referred as DPUs (Data Processing Unit) in the industry. For example, in the case of a car or a drone, the 

challenge is to integrate the AI in complex, heterogeneous, real-time systems especially regarding pre-pro-

cessing, DL-based processing, and post-processing. Intensive mathematical algorithms, signal processing, net-

work or storage software stacks in the context of end-to-end use case is critical to meet key requirements 

such as form factor/size, power consumption, and costs. DPU or manycores provide a solution for such complex 

requirements. One pioneer company in such processors is Kalray with its manycores MPPA (Massively Parallel 

Processor Array) solution.

Today, a system architect needs to weigh both current and future requirements of their systems when deciding 

on which combination of conventional and specialized computation cores to pick. Other than datacentres, where 

upgrades are done under controlled conditions, devices out in the field are harder to upgrade to more capable 

hardware, especially when faced with the number and variety of different customers. 

Figure 5: The system analysis results in constraints for computation speed, power consumption and power-

efficiency for the compute element, given a specific algorithm. The target performance zone is different for each 

application or application domains.

For each application, one can balance the energy cost and latency between computing the AI locally or transferring 

the data to cloud for processing. Typical mobile applications are limited by power constraints and a maximum laten-
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cy requirement. The performance and power efficiency of the local computation solution should be better than the 

performance and efficiency of the communication system. For instance, an AI processor on a small drone, tasked 

with running the tiny-YOLOv3 algorithm, should consume less than 10W, and provide more than 336 GOPS compute 

power able to run at 30 frames per seconds. Its power efficiency must be better than 112 GOPS/W (Giga Operation 

Per Second Per Watt) to be competitive with current 5G data transmission and computation at the edge. It is clear 

that improvements in communication level will push the minimal requirements for local AI computing even higher.

Even though vendors are typically focusing on ever more capable H/W accelerators, new development tools and 

libraries of algorithms and software can also contribute to boost the system performance.

3.3  Machine learning models for edge AI 
Current AI models for the edge are far more limited in terms of performance when compared to cloud-based 

models because of the relatively limited computation and storage abilities. Model training and inference on re-

source-scarce devices are still a debated problem throughout academia and industry. 

A number of novel libraries and algorithms have been developed in the recent years with the goal to adapt stan-

dard ML models to resource-constrained devices. A well-known example is given by ProtoNN which aims to adapt 

kNN in memory space-limited microcontrollers via sparse-projection and joint optimization. For low memory 

scenarios (< 2 kB), ProtoNN outperformed the state-of-the-art compressed models. In settings allowing 16-32 kB 

memory, it matched the performance of the state-of-the-art compressed models. Moreover, when compared to 

the best uncompressed models, ProtoNN was only 1–2% less accurate while consuming 1–2 orders of magnitude 

less memory.

Bonsai is another novel algorithm based, instead, on decision trees and aims to reduce the model size by learning 

a sparse, single shallow tree. When deployed on an Arduino Uno, Bonsai required only 70 bytes for a binary clas-

sification model and 500 bytes for a 62-class classification model. Its prediction accuracy was up to 30% higher 

than other resource-constrained models and even comparable with unconstrained models, with better predic-

tion times and energy usage.

The development of neural networks and deep neural networks with lighter and faster architectures (e.g. small 

size model, minimization of trainable parameters, minimization of the number of computations) for edge plat-

forms has also gained massive traction among researchers. Some examples are represented by CMSIS-NN (devel-

oped for Cortex-M processor cores) which generates neural networks that can achieve about a fourfold improve-

ment in performance and energy efficiency, yet minimizing the memory footprint.

Even recurrent neural networks (RNN) have been implemented in tiny IoT devices (FastGRNN and FastRNN). It is 

possible to fit FastGRNN in 1-6 kilobytes which makes this algorithm suitable for IoT devices, such as Arduino Uno.

Some of the well-known techniques considered for model size reduction include: 

 � knowledge distillation, whereby a small (easy to implement) model (student) is trained to 

behave like a larger trained neural network (teacher) while trying to preserve the accuracy 

of the teacher model, thus enabling the deployment of such models on small devices,

 � steps such as quantization, dimensionality reduction, pruning, components sharing, 

etc. These methods exploit the inherent sparsity structure of gradients and weights 

to reduce the memory and channel occupation as much as possible,

 � conditional computation reduces the amount of calculation by selectively turning off  

some unimportant calculations (for example with components shutoff, input filtering,  

early exit, results caching, etc.).
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3.4 Distributed learning at the Edge 
The computation resources of nodes at the Edge are limited in comparison to the cloud. Hence, the training of 

ML algorithms cannot be accomplished with a single edge node in many cases. There are several approaches to 

solve this problem by distributing the learning process.

The approaches can be divided into three categories. The first is data parallelism (Figure 6.1), which is about 

splitting the trainings data into smaller parts, training a model on each part and then implementing a model 

that combines the result of the other models. Due to the reduction of the amount of training data, the models 

are not as big and complex as a model trained on the whole dataset. In some cases, this means that one edge 

node can perform the entire training. In contrast to data parallelism, the second category, model parallelism 

(Figure 6.2), is about splitting the model into sub-modules and letting multiple nodes train each one of these 

modules on the same data. After the training is completed, the modules are combined again into one model. 

Offloading the training is the last category. Since the training and inference step have different requirements 

for computation power, it is possible to let a more powerful node take care of the training of the model and 

then to deploy the model for inference on a node with less resources for inference (Figure 6.3).

Figure 6.1: Distributed Learning – data parallelism

Figure 6.2: Distributed learning: model parallelism
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Figure 6.3: AI model distribution and reasoning at the Edge

A combination of data and model parallelism is Federated learning [33], which is based on training a series of lo-

cal models on different devices, which are then combined in a central node for a global model upgrade. The 

central node is also responsible for the coordination between edge nodes. However, this approach involves 

trade-offs between model performance and communication overheads. The data in federated learning is 

split into smaller parts, which would be distributed amongst the nodes of the edge network, as shown in 

Figure 6.4 below. Each node trains a separated model based on the data received, thus training a single part 

of the final DNN (Distributed Neural Network). 

Figure 6.4: Outline of the Federated Learning Approach 
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and challenges spanning hardware, power efficiency, software, connectivity, flexibility and interoperability, 
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use of data generated/collected over the long term. This is a necessary precursor to developing edge 

servers and processing solutions. Without a flexible edge-to-cloud integration platform and supporting 

software/middleware [34] libraries for IoT edge gateways[35] and other connected systems, solutions for high-

performance edge computing cannot scale or adapt to the dynamic requirements of solution providers and 

end users. Other major challenges are represented by cross-platform flexibility (e.g. usable on both Android 

OS and Linux OS), dynamic parallelisation of the computational tasks, model compression, and end-user 

customization. To address the challenges for data analysis of edge intelligence, computing power limitation, 

data sharing and collaborating, and the mismatch between the edge platform and AI algorithms, Zhang et 

al. introduced an Open Framework for Edge Intelligence (OpenEI), which is a lightweight software platform 

to equip the edge with intelligent processing and data sharing capability[36].

The goal of OpenEI is that any hardware, ranging from Raspberry Pi to a powerful Cluster, will become an in-

telligent edge. Meanwhile, accuracy, latency, energy, and memory footprint, will have an order of magnitude 

improvement compared to current AI algorithms running on the deep learning package.

The framework includes:

 � a Package Manager, which works as a running environment for AI algorithms on 

the edge platform, supporting both inference tasks and model re-training,

 � a Model Selector, which is designed to find the most suitable 

models for the specific edge platform based on users’ requirements 

in terms of accuracy, latency, energy, memory, etc.

 � RESTful API, which is used for communication with 

cloud, other edge devices, and IoT devices

 

3.6 Orchestration of AI between cloud and edge resources
The implementation of complex AI-based applications like self-driving cars is very difficult due to limited 

resources of edge devices. Hence, these kinds of systems are often distributed between the edge and the 

cloud. It means often that the time-sensitive part of processing is implemented at the Edge and parts that 

can take more time are executed in the cloud. A specific example for such a procedure is the “Big-Little 

approach” by E. De Conick et al.[37]. They proposed to split a classification problem into a smaller part with a 

limited number of high priority classes and a larger part including all other classes. Afterwards, a model is 

trained for each part. Due to the reduction of number of classes, the size of the model handling the smaller 

part of the problem is reduced allowing it to be deployed on lower powered edge devices. In contrast, the 

larger model is deployed in the cloud or on an edge device with high amount of computation power as de-

picted in Figure 7. 
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Figure 7: Architecture of Big-Little neural network: the little neural network only classifies a subset of the output 

classes, and can be executed locally with limited CPU power. When the little neural network cannot classify the 

input sample, a big neural network running in the Cloud can be queried.

Another distribution approach is to focus on the distribution of the processing of data. This means that as 

the data travels from its source at the Edge to the cloud each of the intermediate nodes that it passes per-

form a small share of the processing task until the final result of the processing pipeline is obtained in a cloud 

server. An implementation of this approach was proposed by S. Teerapittayanon et al.[38]. They exploited the 

fact that only the first few layers of a DNN are required for general processing to distribute one DNN over 

edge and cloud nodes. Furthermore, this implementation also introduces exits points that allow the termi-

nation of processing when the results are sufficiently accurate, are required earlier due to time constraints, or 

cannot be processed further due to a node failure. The deplyoment of this approach is presented in Figure 8.
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Figure 8: Overview of the DDNN architecture. The vertical lines represent the DNN pipeline, which connects the 

horizontal bars (NN layers): (1) is the standard DNN (processed entirely in the cloud), (2) introduces end devices and 

a local exit point that may classify samples before the cloud, (3) extends (2) by adding multiple end devices which 

are aggregated together for classification, (4) and (5) extend (2) and (3) by adding edge layers between the cloud 

and end devices, and (6) shows how the edge can also be distributed like the end devices.

Figure 8: Overview of the DDNN architecture. The vertical lines represent the DNN pipeline, which connects the 

horizontal bars (NN layers): (1) is the standard DNN (processed entirely in the cloud), (2) introduces end devices and 

a local exit point that may classify samples before the cloud, (3) extends (2) by adding multiple end devices which 

are aggregated together for classification, (4) and (5) extend (2) and (3) by adding edge layers between the cloud 

and end devices, and (6) shows how the edge can also be distributed like the end devices.

DDN over cloud, edge and 
device

DDN over cloud and geographically 
distributed edges and devices

Cloud-based DDN1

4

DDN over cloud and device 2

6

DDN over cloud and geo-
graphically distributed devices

 3

DDN over cloud, edge and geo-
graphically distributed devices

5

CLOUD EXIT

EDGE EXIT

LOCAL EXIT

CLOUD EXIT

EDGE EXIT

LOCAL EXIT

CLOUD EXIT

Cloud Cloud Cloud

CloudCloudCloud

CLOUD EXIT

EDGE EXIT

LOCAL EXIT

LOCAL EXIT

CLOUD EXIT CLOUD EXIT

LOCAL EXIT

Device Devices

Device

Edge Edge Edges

Devices

Devices

DISTRIBUTED DATA DISTRIBUTION NETWORK (DDN)



EPoSS – WHITE PAPER  AI at the Edge30

3.7 Hardware-software co-design for AI at the Edge
One of the most important challenges in the implementation of AI at the Edge is to be able to offer scalable 

solutions and yet meet diverse application needs, in terms of: 

 � end-users’ varying context (e.g. job to be done),

 � individual end-users’ characteristics (such as demographics),

 � latency expectations,

 � available battery power and computational power within the device.

To address these challenges, it is quite important to ensure that both the hardware and software adapt to the 

dynamic context at the Edge and devices’ state. Here, hardware-software co-design helps to ensure that this adap-

tation and personalization happen seamlessly.

While, in general, AI models have been designed with a top-down design flow, mainly focused on achieving the 

highest possible accuracy and performance, assuming that the HW will deliver the computational tasks required. 

This approach ignores the limitations present in the deployment of intelligent systems at the Edge. Instead, AI 

models should be built bottom-up with adequate understanding of the hardware constraints. In order to provide 

an optimized solution it is most important that AI models and the associated HW are developed simultaneously.

A good example of this co-design approach is that some smart sensors include self-learning AI together with oth-

er non-AI signal processing functions. As the sensor’s co-processor is capable of executing context-sensitive firm-

ware on-demand, the device can switch between AI and non-AI firmware depending on the need. This solution 

can thereby reduce electronic-waste by having specialized hardware for AI and minimise overall bill of material 

cost. Additionally, the co-design of software and hardware helps to extend, or easily integrate, further physical 

and virtual sensors (e.g. magnetometer, pressure sensors, inertial sensor, etc.) as additional external inputs. This 

enables faster and more robust learning from an expandable list of input sources, chosen according to edge appli-

cation, as opposed to pre-programmed (AI) solutions with a fixed number of physical inputs and without a built-in 

learning function. As the self-learning AI function executes on the sensor’s co-processor, the overall system pow-

er and memory requirements are extremely low in comparison to other non-edge AI systems.

In summary, as highlighted in the previous paragraphs, H/W aspects, models, and communication platforms are 

inter-linked when developing a system working at the Edge. Hardware-software co-design of edge-AI systems 

provides a path to the execution of a wide variety of applications (AI and non-AI included), whilst having the ca-

pability to adapt to the application needs on-demand.



 1 POTENTIAL OF AI AT THE EDGE FOR SMART SYSTEMS 31

4 Future Challenges and Trends  
The development and deployment of a secure and trustworthy Edge AI will require a wide number of challenges 

to be addressed and solved.

4.1 Trust and explainability 
AI algorithms, and especially deep neural networks, are often considered as black boxes. The decision-making 

process of typical ML algorithms is not always transparent, and usual data models based on NN do not represent 

the characteristics of the process to be represented. Furthermore, their internal computations present a black-

box and are not easily understandable for humans. The drawbacks of such algorithms include:

 � any bias within the training data is potentially transferred 

to the algorithm and remains undetected,

 � users may not trust their predictions,

 � and that they lack robustness in operational environments.

Explainable AI aims to provide insights into the internal decision-making process of machine learning algorithms. 

Using these insights, algorithms can be developed whose predictions are not only correct but right for the right 

reasons[39].

4.2 Re-learning
Acceptance and market uptake of products and services are directly dependant on trust into offered solutions. That 

is particularly manifested in emerging automotive applications, such as Driving Automation, which are heavily reliant 

on edge AI. Hence, it is of utmost importance that a common approach to AI is based on trust and excellence.

Considering the importance of edge AI, there is a need for commitment to consider the impact of edge AI 

throughout its lifecycle. To that extent, the developed algorithms must be kept up to date and performant on 

new data, with the ability to integrate external sources through re-training. In addition to meet the requirements 

and defined metrics that indicate the training state of the AI system, the re-training must also consider any con-

sequence it may have on other components or the system itself. The implication is that rather than having to 

spend time and resources on re-training from scratch, to incorporate slightly different insights, the re-training 

should focus on creating more generic models. The aim is to permit improvements in performance through a 

quick re-training of an edge AI model that has already been trained using previous data sets. Equally, the re-train-

ing of one model should not compromise the performance of other components within the system (or other 

systems within a system of systems). In simple terms, the re-training must enable improved performance through 

exploitation of new data and in parallel it must not negatively impact its surroundings. Additionally, changes in 

calibration (e.g. of sensors or actuators) should be permitted without the need to retrain the edge AI.

4.3 Security and adversarial attacks 
In distributed learning, a communication overhead is introduced in order for the edge platforms and the system 

aggregator to transfer data during training and inference. When compared to data processing in large central 

data centres, data produced on resource-constrained end devices in a decentralized distributed setting is partic-

ularly vulnerable to security threats and the necessary level of protection against such risks should be considered 

carefully for specific applications.  
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Figure 9: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble method 

described in Section 3. When a photo of a tabletop with a banana and a notebook (top photograph) is passed 

through VGG16, the network reports class ’banana’ with 97% confidence (top plot). If we physically place a sticker 

targeted to the class “toaster” on the table (bottom photograph), the photograph is classified as a toaster with 

99% confidence (bottom plot). See the following video for a full demonstration: https://youtu.be/i1sp4X57TL4 

(Source: https://arxiv.org/pdf/1712.09665.pdf, Foto: Pixabay)

An example of a security threat debated in the recent years is adversarial attacks. Adversarial attacks de-

scribe the use of erroneous data to manipulate the results of AI algorithms, especially of neural networks. In 

the context of image or video classification, attacks are done by designing specific noises, colours, lighting, 

or orientation patterns, which are then integrated in the corresponding data. An example of the so-called 

“adversarial patches attack” was presented at NIPS 2017 – Conference on Neural Information Processing 

Systems. After their generation these patches can be placed anywhere within the field of view of the classi-

fier and cause the classifier to output a targeted class. In Figure 9 above, a banana is correctly classified as a 

banana. Placing a sticker with a toaster printed on it is not enough to fool the network and it continues to 

classify it as a banana. However, with a carefully constructed “adversarial patch”, it is easy to trick the net-

work into thinking that it is a toaster. This patch attack is especially difficult as these patches can easily be 

distributed after their creation. 

Adversarial attacks exist for other kinds of AI-based data processing, e.g. audio or LiDAR (Light Detection 

And Ranging). However, to date, these areas are not as well investigated as attacks on image or video clas-

sifiers. 

Further research is required to increase the security, privacy, and robustness of edge AI by reducing the 

overhead, or by adopting novel approaches such as clustered federated learning or federated distillations.

Figure 9: A real-world attack on VGG16, using a physical patch generated by the white-box ensemble method 

described in Section 3. When a photo of a tabletop with a banana and a notebook (top photograph) is passed 

through VGG16, the network reports class ’banana’ with 97% confidence (top plot). If we physically place a sticker 

targeted to the class “toaster” on the table (bottom photograph), the photograph is classified as a toaster with 

99% confidence (bottom plot). See the following video for a full demonstration: https://youtu.be/i1sp4X57TL4

(Source: https://arxiv.org/pdf/1712.09665.pdf, Foto: Pixabay)
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4.4 Learning at the Edge 
Training artificial neural networks at the Edge remains a challenge. Work has been done to optimize inference 

at the Edge by optimizing algorithms and accelerators for low precision, low memory footprint and feed-for-

ward computations. However, an additional re-training phase of an artificial neural network can undo part of 

those optimizations as higher precision is needed to enable the iterative approach typically used and more 

storage is needed to keep track of the intermediate data required. Also, the frequent weight updates during 

training can pose additional challenges regarding energy efficiency as well as reliability.

As such, neuromorphic-based architectures hold potential, as they allow on-line learning to be built in by mod-

elling plasticity. Plenty of challenges remain to achieve this goal as it is difficult to make a single synapse and 

neuron device that allows the capture of a very wide range of time constants.

Another approach for edge learning is to implement a pre-trained neural network for inference but permit ad-

aptation of the final network layers to tune classification or detection, this approach is called transfer learning.

4.5 Integrating AI into the smallest devices 
Recently a number of tools have been developed with the goal of implementing AI models which could fit the 

memory available in edge platforms.

As an example, tinyML is about processing sensor data at extremely low power and, in many cases, at the outer-

most edge of the network. Therefore, tinyML applications could be deployed on the microcontroller in a sensor 

node to reduce the amount of data that the node forwards to the rest of the system. These integrated “tiny” 

machine learning applications require “full-stack” solutions (hardware, system, software, and applications) 

plus the machine learning architectures, techniques, and tools performing on-device analytics. Furthermore, 

a variety of sensing modalities (vision, audio, motion, environmental, human health monitoring, etc.) are used 

with extreme energy efficiency (typically in the single milliwatt, or lower, power range) to enable machine in-

telligence at the boundary of the physical and digital worlds.

Tensorflow Lite (TFLite) was created specifically for this purpose, it proposes a set of tools that help program-

mers to run AI models on embedded, mobile, and IoT devices. A typical workflow will involve the definition of 

the AI model in Keras/Tensorflow, followed by the conversion of the model from Keras to TFLite, and the final 

compression of the model (for example, via post-training quantization) to further decrease the overall foot-

print. Many tinyML implementations actually use TFLite under the hood.

With the increase in dedicated hardware for machine learning, an important direction for future work is the de-

velopment of compilers, such as Glow, and other tools that optimize neural network graphs for heterogeneous 

hardware or train and handle specialized technologies and algorithms.

4.6 Data as a basis for AI
Data is the fundamental piece behind ML/AI. However, one of the major problems when developing AI solu-

tions can be the lack of sufficient data to achieve the required performance in a specific application. In recent 

years several techniques have been considered to deal with this problem in the context of cloud-based solu-

tions; for example, by using semi-supervised learning (to take advantage of the large amounts of unlabelled 

data generated by edge devices), by using data augmentation (via Generative Adversarial Networks (GANs) or 

transformations), or by transfer learning. These have become cutting-edge methods deployed to improve the 

overall performance in AI models. However, the adoption of these techniques in edge computing still needs to 

be thoroughly investigated.



EPoSS – WHITE PAPER  AI at the Edge34

Moreover, edge systems need to interact with various types of IoT sensors, which produce a diversity of data 

such as image, text, sound, and motion. Edge analytics should be able to deal with those heterogeneous en-

vironments and adapt to be multimodal allowing learning from features collected over multiple modalities.

4.7 Neuromorphic technologies
Neuromorphic engineering is a ground-breaking approach to the design of computing technology that draws 

inspiration from powerful and efficient biological neural processing systems. Neuromorphic devices are able 

to carry out sensing, processing, and control strategies with ultra-low power performance. Today, the neu-

romorphic community in Europe is leading the State-of-the-Art in this domain. The community includes an 

increasing number of labs that work on the theory, modelling, and implementation of neuromorphic comput-

ing systems using conventional VLSI technologies, emerging memristive devices, photonics, spin-based, and 

other nano-technological solutions. Extensive work is needed in terms of neuromorphic algorithms, emerging 

technologies, hardware design and neuromorphic applications to enable the uptake of this technology, and 

to match the needs of real-world applications that solve real-world tasks in industry, health-care, assistive 

systems, and consumer devices. It is important to note that “neuromorphic” is most commonly defined as the 

group of brain-inspired hardware and algorithms.

Parallel to the advancement in neuromorphic computing, the underlying computation of such technology gets 

increasingly complex and requires more and more parameters. This triggers further development of efficient 

neuromorphic hardware designs, e.g. the development of neuromorphic hardware that can tackle the well-

known memory wall issues and limited power budget in order to make such technology applicable on edge de-

vices. The emerging memory technologies provide additional benefits for neuromorphic solutions, especially 

memory technology that can allow us to perform computation directly in the memory cells themselves instead 

of having to load and store the parameters, inputs, and outputs into computation cores.

Such technology, coupled with the properties of neuromorphic computing, delivers many benefits. Firstly, DL 

and spiking neural networks (SNN) parameters are often fixed and/or modified very seldom. This matches the 

capability of emerging non-volatile memories where write accesses are typically one or two orders slower than 

read accesses as the number of memory writes required is lower. Secondly, most computations are matrix ad-

dition and multiplication. This operation can be mapped efficiently in memory arrays. Thirdly, inference of such 

neuromorphic networks can be optimized for low-bit precision and coarse quantization without sacrificing the 

quality of the network outputs. Some tasks, such as classification, are proven to be good enough even when 

networks are optimized to binary and/or ternary representation. This provides an excellent opportunity as the 

underlying operation can be simply replaced by AND/XOR logic. Fourthly, neural networks are robust to error. 

Thus, process variations on the emerging memory technologies do not limit their capability to compute and/

or and load/store in the networks. These benefits can be achieved by in-memory compute technology using 

emerging memory technologies.

4.8 Meta-learning
In most of today’s industrial applications of deep learning, models and related learning algorithms are tai-

lor-made for very specific tasks[40][41]. This procedure can lead to accurate solutions of complex and multidimen-

sional problems but it also has visible weaknesses[42][43]. Normally, these models require an enormous amount 

of data to be able to learn how to correctly solve problems. Labelled data can be costly as it may require the 

intervention of experts or not be available in real-time applications due to the lack of generation events.
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A question can therefore arise: in addition to having the correct formulation and the descriptive data for the 

problem, is it possible not only to try to solve it but also to learn how to solve it in the best way? Therefore: “is it 

possible to learn how to learn?” Precisely on this question, the branch of machine learning, called  meta-learn-

ing (Meta-L), is based[45][46].

In Meta-L the optimization is performed on multiple learning examples that consider different learning objec-

tives in a series of training steps. In base learning, an inner learning algorithm, given a dataset and a target, 

solves a specific task such as image recognition. During meta learning, an outer algorithm updates the internal 

algorithm so that the model learned during base learning also optimizes an outer objective, which tries, for 

example, to increase the inner algorithm’s robustness or its generalization performance[47]. 

This two-step iterative approach is resulting in successful solutions to problems where few labels or, in general, 

little data is available, as the highest level of information is extracted thanks to the formulation of the opti-

mization problem itself. Intelligent extraction of information, by addressing the problem from a general point 

of view can also lead to the ability of the inner algorithm to handle new situations quickly and with little data 

available with a robust approach[48].

Exactly for the reasons listed above, Meta-L is gaining significant attention in Edge AI, where the new data 

collected can be immediately processed and fed to the algorithms to increase the robustness of the model 

and generalisation of new tasks that may be useful for systems, even in the deployment phase. Looking at 

the advantages of Meta-Learning and the possibility of using it together with Edge computing to increase 

its benefits, provides a good outline of how this branch of ML can soon find concrete uses in the most varied 

application scenarios[49].

4.9 Hybrid modelling
Data-based and knowledge-based modelling can be combined into hybrid modelling approaches. Some solu-

tions can take advantage of a-priori knowledge in the form of physical equations describing known causal re-

lationships in the behaviour of the systems or by using well known simulation techniques. Whereas dependen-

cies not known a priori can be represented by many kinds of machine learning methods using big data based on 

observing the behaviour of the systems. The former type of situation can be seen as white box modelling as the 

internal states possess a physical meaning, while the latter is referred to as black box modelling, using just the 

input-output-behaviour, but not maintaining information on the internal physical states of the system. Howev-

er, in many cases, a model is not purely physics-based nor purely data-driven, giving rise to grey box modelling 

methods that can be formulated[50]. The assignment of models to the scale varies within the literature: For 

instance, a transfer function can be derived from physical considerations (white), identified from measurement 

data with a well-educated guess of the model order (grey) or without (black).

Approaches for combining machine learning and simulation, by simulation-assisted machine learning or by ma-

chine-learning-assisted simulation and combinations are described by von Rueden et al. in “Combining Machine 

Learning and Simulation to a Hybrid Modelling approach: Current and Future Directions”[51] and in “Informed 

machine learning – towards a taxonomy of explicit integration of knowledge into machine learning.”[52] advan-

tage of hybrid modelling is avoiding the necessity of learning a-priori the behaviour of systems from huge 

amounts of data, if they can be described by simulation techniques. Also, in the case of missing data, hybrid 

modelling is a possible approach[53].

A practical example of combining physical white-box modelling and machine learning to improve a model for 

the highly non-linear dynamic behaviour of a ship, described by a set of analytical equations has been recently 

investigated by Mei et al.[54]. Another example is hybrid modelling in process industries[55].
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4.10 Energy	efficiency
Reducing energy consumption is a general goal, not only, but especially for smart systems providers to 

address the challenges of global warming and enable a higher degree of miniaturization of intelligent 

devices. For a long time power reduction has been a challenge in micro and nano electronics and also a target 

for all AI applications, regardless of whether data is processed in the cloud or at the edge. But at the edge, 

this target is especially important as applications usually have only limited power resources available. They 

often have to be battery powered or even use energy harvesting.

Special energy-efficient neural network architectures have been investigated[56]. Not only is the hardware 

crucial for low-power AI applications, but also the implemented methods and models have great influence 

on the energy consumption. This has been examined for the example of computer vision[57].

Moving away from traditional von Neumann processing solutions and using dedicated hardware[58] allows for 

additional power reduction. Even more can be achieved with neuromorphic architectures[59].

The “ultimate benchmark” in power consumption for artificial intelligence would be the “natural intelligence” 

in form of the human brain, which has 86 bn. neurons[60] and approximately 1014–1015 synapses[61] with an 

energy consumption of less than 20W, based on glucose available to the brain, or only 0.2W, when counting 

the ATP usage instead of glucose[62]. Current GPU based solutions with that complexity are far from this 

energy efficiency. There is obviously plenty of headroom for further development.
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5 Milestones for AI at the Edge in Smart Systems 
Edge AI is a key technological area that is ending the pure dominance of the cloud in the data analytics world. 

As shown by the numerous scenarios and contexts reported in this white paper, Edge AI technology is poised 

to disrupt a wide variety of industries because of the huge advantages introduced, such as increase real-time 

performance, improved energy efficiency, improved security and privacy etc. 

The evolution of a new generation of edge intelligence systems will take place during the next 5–15 years, with 

the completion of different technological steps supporting the development of new devices, technology and 

applications. 

However, there are still several challenges that have to be addressed: 

 � the development of new algorithms and applications,

 � the development of neuromorphic-based chips and new specialized 

computing platforms and their integration with classical systems,

 � the development of efficient and automated transfer learning to support federated learning  

as well as the optimization of neural networks from general-purpose to application-specific scenarios,

 � the implementation of new tools and frameworks allowing (semi)-automatic design 

exploration as well as an automatic generation of deep networks architecture,

 � the development of open architecture (based on opens source SW, open data, 

open edge platforms, open HW) allowing fast turn-around deployment,

 � the implementation of energy and cost-efficient AI training on 

the Edge and security, privacy, and explainability.

We expect a significant growth in these research fields that will address the main challenges identified in this 

white paper. 

Figure 10: Roadmap for AI at the Edge in Smart Systems
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6 Policy Recommendations

6.1 Sustainable business model innovation
While the edge AI building blocks are contributing towards expanded functionality and more dependable Cyber 

Physical Systems (CPS), it is the exploitation of these results that is going to create impact. That impact can 

be maximised if solutions to the technical challenges are capable of improving end-user acceptance and con-

sequently lend themselves to increased usage. It is the documented use cases (such as those of chapter 2) that 

have a potential of determining the suitability of the technological advances for entry into the mass market. 

Such commercialisation is driving the formation of appropriate go-to-market strategies. The selected strategy 

must take into consideration a wide range of stakeholders who are crucial for the acceptance of new solutions. 

The resulting cooperation is also driving cross-fertilisation across the industrial domains. The anticipated impact 

is based on the ability to improve real-time decision making and transforming the way that business is done, 

hence offering opportunities for sustainable implementation through expanded capabilities, gained efficiency 

and improved business processes. These opportunities must be taken immediately as the fast-paced technologi-

cal evolution leaves little room for hesitation when integrating AI into existing businesses. The integration should 

consider the following principles: 

 � Objective: The starting point for consideration should be the required outcome for existing or new 

business models, rather than the technology and its integration. 

 � Start Small: As the off-the-shelf solutions are becoming more common and easier to leverage, it is crucial 

to perform incremental (learning infused) steps. Small, but scalable, applications aid understanding of 

the user needs for a specific domain. This is then followed by scaling up to further domains and solutions.

 � Continual Upgrades: As algorithms are adapting their performance based on the training data, it is less 

likely for it to be applied to a full system, as customisation would be complex and the potential benefit 

may not be worth the effort. Hence, performing small steps and building on the generated solutions is a 

reasonable way forward. That may, but does not have to, rely on the principle of Minimum Viable Product 

(MVP).

 � Open Collaboration: The small start and additional steps must also consider the need for the very wide 

range of skills required and the fact that there are few stakeholders who are capable of implementing 

full solutions. Hence, it is highly advisable to employ open innovation and collaborative projects where 

partners with complementary core competencies can join forces to create solutions for the common good 

while supporting the interests of individual organisations. 

 � Evolving Innovation: the progress could benefit from the evolution of innovation. By building benefit-

yielding functionalities one must monitor improvements to the existing business activity. It is normal to 

encounter some resistance to change due to the apparent lack of immediate returns on investment. So, it 

is crucial to highlight incremental improvements and the long-term vision.

 � Job Market Transformation: one should consider that this transition period is removing the need for 

certain job roles, (e.g. maintenance) and at the same time creating new employment opportunities[63]. 

In such an environment there is an implicit need for (re)training to take advantage of the transforming 

market and to keep up with the changes in the job market.

 � Refocus: There is a paradigm shift from the focus on the traditional solutions (such as solely production-

based) towards the provision of services. This is especially evident in the automotive sector.

 � Data: Considering that data fuels edge AI’s superior performance, one must define what value AI needs to 

provide. That answer should be followed with the definition of the required, available and missing data. 
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 � Customisation/personalisation: Improved customisation is resulting from the edge-AI learnings from 

the available data. In terms of business opportunities, this implies leveraging data can improve the 

understanding of customer behaviour and their needs in order to evolve a deeper and more personal 

approach to customer engagement. Such customisation generally improves user experience and hence 

lowers resistance to the new technologies. 

An emerging issue from the above set of principles, which is especially related to the transformation in the job 

market, is that of emerging gaps in the ecosystem, as depicted in Figure 11. In principle, many of the edge AI-related 

assets already exist. However, the interconnections are often missing because of development being undertaken 

in silos. These gaps must be bridged and, in turn, enhance the potential for business model innovation. If that 

innovation process is continuously driven it increases the probability of sustainable businesses. The sustainability 

is further underpinned by a mixture of different skill sets in combination with the industrial domain knowledge 

i.e. the technology providers and industrial users are mutually benefiting from the cooperation. The inevitable 

benefits are the enabled learning for all, through cross-fertilisation and creation of a competitive advantage over 

generic solutions. 

By bridging the gaps within the ecosystem, it is inevitable for the new opportunities to be created and comple-

ment the existing sources of revenue (Figure 11). Upon identifying the new sources, organisation should focus on 

achieving the new revenue mixture (e.g. use cases, technologies, products, services, customers/users, partners 

etc.) to deliver the envisaged growth opportunities. 

Figure 11: Layered structure and emerging gaps in the ecosystem 

6.2 Our vision – cross domain technology stack
The technology stack for data-driven applications[11] is continually evolving in relation to the European commu-

nities. Figure 12 depicts grouped components of the stack according to functionality i.e. centralized computing, 

connectivity and edge applications. The tight collaboration with further stakeholders of the “digital stack” is 

required to finally provide a consistent technology stack. As highlighted in section 1.3, value creation results from 

deployment of tailored end-to-end solutions for specific application domains. The deployment across different 
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domains helps identify the common requirements (and resulting technologies). It also enhances understand-

ing in terms of how to tailor this common basis to domain specific activities.

As a result of this, the “competence-focused” way of thinking must be re-organised into an “end-to-end solu-

tion” way of thinking. New ways to interact with the relevant (European) communities are required to integrate 

the relevant stakeholders effectively and efficiently in this process and, finally, contribute to the European 

industrial digital transformation. 

Figure 12: Technology stack in relation to relevant European communities

6.3 Common standards
One of the major problems faced by data scientists when using data from external sources is to understand 

how the data was collected, and what it represents. Data management standards, such as CRISP-DM, need 

to be enforced on a wider scale with the goal of reducing production time and making the development of 

AI solutions simpler. Moreover, data sharing on platforms should be promoted as much as possible to ensure 

that academia and industry can leverage the full potential of the collected data, as also currently proposed by 

several global funding bodies.
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Several efforts have recently been deployed with the goal of defining a common edge computing view world-

wide. For example, ISO/IEC TR 23188 aims to describe edge computing and the significant elements which con-

tribute to the successful implementation of edge computing systems. It is based on an emphasis on the use of 

cloud computing and cloud computing technologies in the context of edge computing, including the virtualiza-

tion of compute, storage and networking resources. Moreover, ISO/IEC TR 30164 takes a view of edge computing 

from the point of view of IoT systems and the IoT devices which interact with the physical world.

For example, the upcoming MPEG-7 Part 17 standard (ISO/IEC 15938-17 NNR) will define tools for compression 

of neural networks for multimedia applications and representing the resulting bitstreams for efficient transport. 

NNR targets a compression efficiency over 95% without degrading classification quality.

Finally, eighteen organizations (including Huawei, Analog Devices, Arm, Bombardier, Fraunhofer Institute for 

Open Communication Systems – FOKUS, German Edge Cloud – GEC, German Research Center for Artificial In-

telligence – DFKI, IBM, Intel, National Instruments, Renesas Electronics, Schneider Electric, etc.) have signed a 

cooperation agreement to form the European Edge Computing Consortium (ECCE). ECCE aims to provide a com-

prehensive edge computing industry cooperation platform with the aim to create a standard reference architec-

ture and technology stack that can be deployed across smart manufacturing, other industrial IoT applications, 

and network operators. The goals of the initiative include the specification of a reference architecture for edge 

computing (ECCE RAMEC), the development of reference technology stacks (ECCE edge nodes), the identifica-

tion of gaps and the recommendation of best practice. These are based on evaluating approaches within multiple 

scenarios (ECCE Pathfinders) and the synchronization with related initiatives, standardisation organisations and 

the promotion of the results.

6.4 Heterogeneous approaches, multiple vendors
Many different AI development frameworks are in use today, often originating from one of the major cloud provid-

ers. These frameworks are vertically integrated and seldom show portability towards edge devices. The best-sup-

ported exchange format is ONNX (Open Neural Network Exchange format). This is however still a high-level de-

scription of the neural network and requires a complete tool flow to allow the execution on an embedded neural 

accelerator. Hardware vendors need to support several software flows, as there is no de facto standard. There is 

a strong need for standardised interfaces / API definitions to describe the hardware capabilities etc. 

Having formalised interfaces between the different implementation steps will enable hardware and software 

vendors to provide parts of the tool flow (compiler, deployment tools, hardware-aware code transformations) 

without the overhead of developing multiple interfaces. This ensures that AI developers can target multiple plat-

forms with relative ease. A good example is the Apache TVM flow, which allows mapping from ONNX (Open 

Neural Network Exchange) to compiled code, and provides interfaces and intermediate representations with 

which third-party tools can interface. Promoting projects focused on inter-operability and standard tool flows 

and interfaces has the potential of opening the market for both large and small companies

6.5 Education and network building
Despite the importance that edge AI is showing at a European level in a number of industries, companies are fac-

ing a shortage of highly-skilled scientists in this field. This is also due to the lack of specific training, modules or 

courses in third-level education which could encompass all the multidisciplinary aspects of edge AI (e.g. hardware 

platforms and electronics, firmware development, embedded systems, data mining and machine learning for 

cloud platforms and resource-constrained devices, communication protocols, etc.). 
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Moreover, it is evident that there is a lack of networks focussed on this topic, which could strengthen and connect 

the small and fragmented community of researchers and engineers in academia and industry. 

6.6 Data collection, testing and  
experimentation facilities for AI at the Edge

Scientific experiments are generally considered to be controlled studies aimed at enhancing understanding of 

relationships between the cause and effect. The focus is on data collection through either surveys or, more objec-

tively, instrument-based methods. When it comes to edge AI applications, the distinctions may become blurred. 

Considering the black-box property of AI solutions, this relationship between the cause and effect is upgraded to 

a higher level of abstraction, which poses a greater challenge in terms of analysis and understanding. Addition-

ally, edge AI solutions frequently place humans in the control loops. This human-centric approach imposes the 

need for mapping and alignment of objectively acquired sensor data with the subjective estimates, as perceived 

by the participants. This is emphasised in automotive applications e.g. driving automation, where control func-

tionality must take into account the passenger stress and comfort levels.

Some of the direct implications of the edge AI data properties on experimentation for emerging applications are: 

 � Regulatory/certification: While deemed as one of the most promising contributors for the development 

of highly automated driving, provision of holistic edge AI algorithms as a replacement of the human 

decision making is unlikely in the near future[64]. The main stumbling block is the non-compliance of AI 

solutions with imposed regulations for safety-critical applications (e.g. automotive or avionics domains). 

A potential solution to this issue is seen in a conceptual shift from pure experimentation in standard test 

facilities towards a mixture of those tests with continual and holistic experimentation during the full life 

cycle of the offered assets. 

 � User acceptance and trust: As specified in section 2.4, a common approach to AI must be based on trust 

and excellence, as the black box issue feeds into end-users’ fears and lack of trust in decisions made by 

edge AI-based solutions. As trust is the key component for acceptance of driving automation[65], an added 

focus on the demonstrations is a method of improving user acceptance. Hence, testing facilities and 

experiments must be adapted to facilitate increased exposure of the novel technology. 

 � Cyber-security: As the edge AI utilises connectivity, the resulting highly connected networking exposes 

vulnerabilities and amplifies the attractiveness level for cyber-attacks. That is further contributed by the 

usage of certain sensors. The elimination of consequent privacy protection issues and compliance with 

the GDPR are reliant on identification and mitigation of risks posed by potential cyber-attacks. These 

challenges must be considered when testing and experimenting with the novel solutions, or else there is 

a significant potential for breach of privacy. 
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7  Summary
In this white paper experts from the smart systems integration community of EPoSS present their views on the 

state-of-the-art and future technology milestones in the Edge AI domain. They have put forward a range of 

policy recommendations aimed at accelerating the development and deployment of Edge AI solutions in the 

coming decade.

The experts from the Automotive, Energy, Industry, Health, Agriculture and Smart Cities domains provided use 

cases to illustrate the huge potential for edge AI applications and their future benefits for our society. Some 

areas, such as AI specific hardware/accelerators, distributed learning for edge methods and algorithms, plat-

forms and frameworks for software and hardware co-development, have already reached a high maturity level 

for “real world” applications. However, there are still security, safety and trustworthiness challenges to be 

solved to enable the full potential of AI at the Edge. These challenges may apply to AI in general but many have 

additional specific needs for applications at the Edge. Future research and applications will be driven by achiev-

ing technology milestones such as: implementation on the smallest devices, high quality data, meta-learning, 

neuromorphic computing and other novel hardware-architectures.

Finally, the experts compiled a set of policy recommendations as a framework for R&D&I projects to address 

objectives such as sustainability, energy efficiency, safety and security.  These should guide the future research 

and development efforts. Lower energy consumption of both hardware and software algorithms will underpin 

these ambitious goals. 

Critical will be cross-domain and cross-technology working that will allow cooperation between various ven-

dors combining the best hardware and software know-how and technologies. 

 Realization of the vision described in this paper requires a set of concrete actions and coordinated effort by 

companies, academia and public authorities. In the face of strong international competition in this developing 

field, a fast exploitation of the broad range of available state-of-the-art technologies is of highest importance 

for Europe. The leadership in cloud computing is lost for European players – but AI at the Edge is still an 

open opportunity and a must for European smart systems providers (especially sensor companies) to remain 

competitive and maintain their strong position in these markets.

 To achieve the industrial goals, the experts propose the following actions: 

 �  Provide internationally compatible funding for academic research in AI 

at the Edge and for companies to address their R&D&I needs

 � Make security, privacy, energy consumption and sustainability 

key attributes of European AI at the Edge solutions

 � Strengthen R&D&I projects by enabling cooperation along and across value chains for both 

hardware and software experts in the field of smart systems and the AI and IoT community

 � Address the new engineering and software development skills needed, in both 

AI hardware and software through support of cross-domain software and 

hardware education and network building for both academia and industry

 � Provide incentives to build the European talent pool to 

maximise the impact of European initiatives

 � Support the development of European data spaces, in order to collect and share 

high quality, trustworthy data as outlined in the European Data Strategy[66]
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 � Develop standards for distributed data exchange and machine 

learning models to complete the tool-chains 

 � Establish experimentation and test facilities for distributed data 

collection and software and hardware co-design

 � Increase usability, acceptance and safety based on 

considered regulation and efficient certification

Further steps require in-depth analyses of the European ecosystem and a closer collaboration across all actors in 

the field of IoT, AI and the smart systems and electronics community. 
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