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Aurivillius phase thin films of Bi5Ti3(FexMn1�x)O15 with x¼ 1 (Bi5Ti3FeO15) and 0.7

(Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical

solution deposition. The method was optimized in order to suppress formation of pyrochlore phase

Bi2Ti2O7 and improve crystallinity. The structural properties of the films were examined by x-ray

diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and

pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the

sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free

films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of

pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3þ ions in Bi5Ti3FeO15 was

substituted with Mn3þ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si,

SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15 thin

films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis

orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature

electromechanical and magnetic properties of the thin films were investigated in order to assess the

potential of these materials for piezoelectric, ferroelectric, and multiferroic applications. Vertical

piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and

Bi5Ti3Fe0.7Mn0.3O15 thin films are piezoelectric at room temperature. Room temperature switching

spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an

applied bias demonstrate local ferroelectric switching behaviour (180�) in the films. Superconducting

quantum interference device magnetometry measurements do not show any room temperature

ferromagnetic hysteresis down to an upper detection limit of 2.53� 10�3 emu; and it is concluded,

therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy

lithography images of Bi5Ti3Fe0.7Mn0.3O15 thin films are presented. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4734983]

I. INTRODUCTION

Due to toxicological and environmental concerns, there

is an increasing need for lead-free materials for use as pie-

zoelectric actuators, sensors, and transducers, especially for

use at elevated temperatures in applications, such as inter-

nal combustion engines.1 Bismuth layer-structured ferro-

electric materials in the Aurivillius phase2 have received

increasing interest as lead free piezoelectric materials with

high ferroelectric Curie temperatures (Tc generally over

500 �C).3,4 Because of their fatigue-free nature, Aurivillius

phase materials have also been given significant attention

for their potential use in ferroelectric random-access mem-

ory (FeRAM),5,6 which combines the speed of dynamic

access memory (DRAM) with the non-volatility and lower

power requirements of hard disk and flash memory.5–9

These materials are naturally 2D nanostructured in nature,

consisting of (Bi2O2)2þ layers alternating with nABO3 per-

ovskite units, in blocks �1–2 nm thick, described by the

general formula Bi2O2(An�1BnO3nþ1).

The layered nature of these materials also allows for the

incorporation of magnetic ions with þ3 to þ5 oxidation

states10 in the B sites of the perovskite units, potentially

allowing cations that drive both ferroelectricity (unoccupied

d orbitals) and ferromagnetism (partially filled d orbitals) to

occupy adjacent perovskite units. In this way, the normally

conflicting electronic structure requirements11 for single

phase multiferroics could potentially be accommodated.

BiFeO3 has been shown to exhibit coupled ferroelectric and

antiferromagnetic ordering at ambient temperatures.12 How-

ever because this compound is antiferromagnetic, it cannot

be switched by a magnetic field. The synthesis of novel

room temperature single phase magnetoelectric multiferroic

materials is particularly appealing, not only because they

have properties of both parent compounds but also because

magnetoelectric coupling interactions, either directly

between the electric and magnetic order parameters or indi-

rectly via strain, can lead to additional functionalities and

could potentially lead to a new generation of magnetoelectric

a)Author to whom correspondence should be addressed. Electronic mail:

lynette.keeney@tyndall.ie.
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memory devices that can be electrically written and magneti-

cally read.13,14 This potential to electrically control magne-

tism means that single-phase magnetoelectric multiferroic

materials are of considerable interest for potential applica-

tions in spin based memory/logic devices.15

BiFeO3 (anti-ferromagnetic when in the pure perovskite

form)16 can be inserted into the normally three-layered Auri-

villius phase Bi4Ti3O12. This increases the number of perov-

skite layers, m, to form compounds such as the four-layered

structure, Bi5Ti3FeO15 (BTFO).17 On increasing the number

of perovskite layers (m), the microstructural, ferroelectric,

magnetic, and other physical properties of the Aurivillius

phase materials can be altered significantly.18 In fact, the

coexistence of ferroelectric and weak ferromagnetic proper-

ties at room temperature has been reported for the four-

layered Bi5Ti3FeO15 materials in thin film form.19,20 Mao

et al.21 reported enhanced multiferroic properties for the

Bi5Ti3Fe0.5Co0.5O15 ceramics by substituting B site Fe cati-

ons with Co cations, although a discussion of possible trace

impurities that may contribute to the ferromagnetic results

was absent in these articles.

Since enhanced electrical properties, positive magneto-

capacitance effects, and suppressed leakage currents have

been reported22,23 for pervoskite-type structures substituted

at the B site with Mn3þ cations, we previously devised a syn-

thetic method for the preparation of BTFO and Mn3þ substi-

tuted Bi5Ti3Fe0.7Mn0.3O15 (BTF7M3O) thin films.24

Piezoresponse force microscopy (PFM) has been highly

effective in the identification of these thin films as novel pie-

zoelectric materials.24 However, given the coexistence of

pyrochlore phase Bi2Ti2O7 in some of the films analyzed, it

is expected that single-phase films would have enhanced pie-

zoelectric properties. As yet, the magnetic properties of

BTF7M3O thin films have not been reported.

In this study, we report an optimised chemical solution

deposition method for the preparation of Bi2Ti2O7

pyrochlore-free BTFO and BTF7M3O thin films and investi-

gate the effect of substrate (Pt/Ti/SiO2-Si, SiO2-Si(100),

SrTiO3(100), and NdGaO3(001)) on thin film crystallinity,

phase purity, and morphology. The potential room tempera-

ture ferroelectric and multiferroic properties of Bi2Ti2O7

pyrochlore-free BTFO and BTF7M3O thin films on Pt/Ti/

SiO2-Si, SiO2-Si(100), SrTiO3(100) (STO), and NdGaO3(001)

(NGO) substrates have been investigated by vertical PFM,

switching spectroscopy PFM (SS-PFM), ferroelectric lithogra-

phy, and SQUID (superconducting quantum interference de-

vice) magnetometry.

II. EXPERIMENTAL

Sols of BTFO and BTF7M3O were prepared by dissolv-

ing the required amounts of Bi(NO3)3�5H2O (bismuth nitrate

pentahydrate) and Ti(OCH2CH2CH2CH3)4 (titanium(IV)

butoxide) in lactic acid (CH3CHOHCOOH) at room temper-

ature. Fe(NO3)3�9H2O (iron(III) nitrate nonahydrate) and

Mn(C5H7O2)3 (manganese(III) acetylacetonate) as required

were dissolved separately in acetylacteone (see Fig. 1).

When complete dissolution was achieved, this solution was

slowly dropped into the Bi3þ/Ti4þ solution under constant

stirring to prepare 0.7 mol dm�3 sols of BTFO and

BTF7M3O. The amount of excess bismuth added to the sols

during preparation ranged from 0 to 35%.

BTFO and BTF7M3O thin films were spin coated on Pt/

Ti/SiO2/Si, SiO2-Si (Si(100) with native oxide), STO, and

NGO substrates by a commercial spinner operating at 4500

rpm for 30 s (spin coater KW-4A, Chemat Technology)

yielding films of thicknesses of �100 nm for each spin-

coated layer deposited, as observed in cross-section SEM

measurements. Excess solvents and residual organics were

removed from the films by baking on a calibrated hot plate at

300 6 5.0 �C for approximately 10 min. The films were crys-

tallised by annealing in ambient air at 800 �C (BTF7M3O) or

850 �C (BTFO) for 1 h in a conventional furnace.

X-ray diffraction (XRD) profiles were recorded at room

temperature using a Phillips Xpert PW3719 MPD diffrac-

tometer, equipped with a Cu-Ka radiation source (40 kV and

35 mA) and a nickel filter on the incident beam over the

range 5� � 2h� 37.5�.
Topography was examined using high resolution scan-

ning electron microscopy (HRSEM) and atomic force mi-

croscopy (AFM). SEM images and energy dispersive x-ray

(EDX) analysis spectra were obtained using a FEI Nova 630

High Resolution Scanning Electron Microscope. A commer-

cial atomic force microscope (MFP-3D, Asylum Research)

in ac (alternating current) mode (intermittent contact mode)

was used for topography mapping of the films. Olympus

AC240TS/AC160TS silicon cantilevers (Al reflex coated,

�70/300 kHz resonant frequency, respectively) were used

for imaging.

Electromechanical responses of the films were measured

by PFM using the AFM in contact mode equipped with a

HVA220 Amplifier for PFM. Out-of-plane electromechani-

cal responses of the films were investigated by the Dual AC

Resonance Tracking Piezoresponse Force Microscopy

(DART-PFM)25 mode. Vertical DART-PFM hysteresis loop

measurements were obtained by SS-PFM (Refs. 26–28)

using a triangle step waveform (comprised pulse dc (direct

current) bias voltage (16.5 V) and an ac signal (5.5 V)). The

waveform was cycled twice at a frequency of 0.4 Hz with 48

FIG. 1. Flow chart for the preparation of BTFO and BTF7M3O sols.
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ac steps per waveform. Olympus AC240TM electrilevers,

Ti/Pt coated silicon cantilevers (Al reflex coated, 70 kHz res-

onant frequency, �320 kHz contact resonance frequency)

were used for PFM imaging and the inverse optical lever

sensitivity (InvOLS) of the cantilevers was calibrated

according to the MFP-3D Procedural Operation

“Manualette.” Ferroelectric lithography was performed using

the PFM lithography mode by converting an imported grey-

scale image into a bias map.

Room temperature magnetic measurements of the thin

films were carried out using a Quantum Design SQUID mag-

netometer (Quantum Design USA; Model—MPMS XL5)

over an applied magnetic field range of 65000 Oe. The film

weight was estimated from sample area and film thickness

measurements (determined from HRSEM measurements),

combined with the x-ray density to be 1.29� 10�5 g.

III. RESULTS AND DISCUSSION

A. Studies on effect of excess bismuth on BTFO thin
film crystallinity

Previous work reported24 the crystallization of BTFO

thin films on Pt/Ti/SiO2-Si substrates at annealing tempera-

tures of 850 �C. With 5% excess bismuth, however, the pres-

ence of impurity pyrochlore phase Bi2Ti2O7 is evident, as

indicated by the presence of the (222) and (444) reflec-

tions.24 Studies on the addition of between 0 and 35% excess

bismuth to the BTFO sols demonstrate that the addition of at

least 5% excess bismuth improves BTFO phase crystallinity

and decreases the formation of Bi2Ti2O7 pyrochlore phase

(Joint Committee for Powder Diffraction Standard (JCPDS)

No. 32-0118) in BTFO films on Si(100) (Fig. 2(a)) and Pt/Ti/

SiO2-Si (Fig. 2(b)) substrates. Optimum crystallinity and

pyrochlore phase suppression is achieved by the addition of

between 15 and 25 mol. % excess bismuth. Addition of fur-

ther bismuth excess leads to the formation of secondary

phase peaks, including peaks which match to the reflections

of the impurity phases Bi2SiO5 (JCPDS No. 75-1483) and

Bi4SiO3 (JCPDS No. 88-0243). It is likely that at the proc-

essing conditions used for crystallizing the main phase

(850 �C) and having an excess of Bi in the film, a reaction

between Bi2O3 and SiO2 occurs at the interface between the

film and substrate to form the observed bismuth-silicate

phases29–32 on cooling.

SEM images reveal grain structures crystallised in plate-

like morphologies, which is characteristic of the layered

Aurivillius-type structures (Fig. 3). Due to the layered nature

of the grains, cross-sectional SEM images (Fig. 3(b)) reveal

varying thicknesses across the course of the films, with aver-

age thickness of �100 nm. AFM images are complementary

to the XRD data, where grain size increases and the charac-

teristic Aurivillius-type layer structures are revealed for 0 to

15% excess bismuth addition (Fig. 4). With further bismuth

excess, however, both smaller and larger secondary phase

structures are evident, in addition to the Aurivillius phase

plate-like structures.

Based on this study of the optimisation of BTFO on Pt/

Ti/SiO2-Si and Si(100) substrates, 17.5 mol. % excess bis-

muth (>15% but <25% excess bismuth) was used to prepare

thin films of BTFO on SrTiO3(100) and NdGaO3(001) sub-

strates and BTF7M3O thin films on Pt/Ti/SiO2-Si, SiO2-

Si(100), SrTiO3(100), and NdGaO3(001) substrates.

B. Studies on effect of substrate on BTFO and
BTF7M3O thin film crystallinity

Investigations on the growth of BTFO (Fig. 5) and

BTF7M3O (Fig. 6) thin films on Pt/Ti/SiO2-Si, SiO2-Si(100),

NdGaO3(001), and SrTiO3(100) substrates demonstrate that

films of the m¼ 4 Aurivillius phase (JCPDS No. 38-1257),

free from Bi2Ti2O7 pyrochlore phase, were obtained at anneal-

ing temperatures of 850 and 800 �C, respectively. This demon-

strates that 17.5 mol. % excess bismuth is sufficient for

suppressing pyrochlore phases in the films on the substrates

studied. EDX analysis spectra confirmed that manganese was

successfully inserted into the Aurivillius structures of

BTF7M3O. The relative intensities of the (00l) reflections are

greater on SrTiO3(100) and NdGaO3(001) substrates than on

the Pt/Ti/SiO2/Si and SiO2-Si(100) substrates. In general, the

full-width at half maximum (FWHM) values of the (00l)
reflections decrease in the order SiO2/Si or Pt/Ti/SiO2-

Si>NdGaO3(001)> SrTiO3(100). The relative intensities of

the (200) reflections for the BTFO and BTF7M3O thin films

FIG. 2. Effect of addition of 0 to 35% excess bismuth during preparation on

the XRD patterns of BTFO thin films on (a) Si(100) and (b) Pt/Ti/SiO2-Si

substrates annealed at 850 �C.
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are highest on the SiO2-Si(100) substrates. The intensity ratio

between a (h00) and a (00l) peak is a measure of the content of

the phase with a-axis orientation. Using the data in Fig. 5,

ratios of the (200) and the (0016) peaks (I200/I0016) are deter-

mined to be 0.0181, 0.0310, 1.589, and 1.296 for BTFO on

STO, NGO, SiO2/Si, and Pt/Ti/SiO2-Si, respectively. The data

in Fig. 6 present values of 0.0452, 0.0599, 21.35, and 16.140

for the ratios of the (200) vs. (0016) peaks (I200/I0016) for

BTF7M3O on STO, NGO, SiO2/Si, and Pt/Ti/SiO2-Si, respec-

tively. The x-ray diffraction data thus indicate that the crystals

in BTFO and BTF7M3O films grown on SrTiO3(100) exhibit

a significantly greater degree of c-axis orientation.

The impurity peaks noted for the BTFO films on

SrTiO3(100) and NdGaO3(001) are possibly due to the pres-

ence of the non-ferroelectric pyrochlore phase Bi2Fe4O9

(orthorhombic; JCPDS No. 74-1098). A possible match for

the peak at the 2h value of 14.3� is the (008) reflection of

Bi6Ti3FeO18. The unidentified peaks in the BTF7M3O films

do not correspond to the peaks observed by Ahn et al.,33 cor-

responding to the structural change from Bi5Ti3FeO15 in the

case of Bi5Ti3Fe1�xMnxO15 ceramics where x� 0.5.

Obvious oxide phases do not account for the unidentified

peaks in the BTFO and BTF7M3O thin films.

Layered grains of different orientations overlapping one

another can also be seen in the AFM images of the BTF7M3O

films (Fig. 7). AFM images are complimentary to the x-ray

diffraction data (Fig. 6), where it can be seen that BTF7M3O

grain size increases in the order SiO2-Si<Pt<NGO< STO

films.

C. Ferroelectric investigations using vertical
DART-PFM switching spectroscopy-PFM

Previous single frequency PFM investigations35 demon-

strate that the films are piezoelectric at room temperature

FIG. 3. Representative (a) top-view and

(b) cross-section HRSEM images of

BTFO thin film on SiO2-Si(100) annealed

at 850 �C. 17.5% excess Bi was used dur-

ing preparation.

FIG. 4. Representative AFM images of BTFO thin films on SiO2-Si(100) annealed at 850 �C with (a) 0%, (b) 5%, (c) 15%, (d) 25%, (e) 35% excess Bi addi-

tion during preparation.
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with the major polarization vector in the lateral plane of the

films, as is characteristic34 for Aurivillius phase materials.

Vertical PFM measurements were carried out using the

DART-PFM mode. This technique uses the cantilever reso-

nance frequency to boost the piezo signal in the vertical

direction, while reducing crosstalk between changes in the

sample-tip contact stiffness and the PFM signal by tracking

the resonance frequency based on amplitude detection feed-

back.25 The amplitude is measured at one drive frequency

below the resonance frequency and another above it. The

error signal allows changes in the resonance frequency to be

tracked, thereby reducing the effects of cross-talk between

PFM signal and changes in the sample-tip contact stiffness.

Representative images of the vertical electromechanical na-

ture of the films investigated by the DART-PFM technique

are shown in Fig. 8. Since DART mode uses the contact

resonance to amplify the piezo-response signal, the piezo-

response measured will be larger than the unamplified piezo-

response. However, since the gain on this amplification is

likely to change over the surface, extraction of absolute val-

ues piezo-response from these images was not conducted.

Vertical PFM response appears to arise from a-axis oriented

grains (Figs. 5 and 6). These grains have their crystallo-

graphic a-axis tilted out-of-plane and are therefore accessible

to probing by vertical PFM. No significant vertical PFM

response was observed for BTFO thin films on SrTiO3,

which are preferentially c-axis oriented.

PFM switching spectroscopy can locally generate hyster-

esis loops and thereby provide information on local ferroelec-

tric switching behaviour. During acquisition of a hysteresis

loop, the conducting PFM tip is fixed at a given location on

the sample surface and a triangle-step bias waveform (com-

prised pulse dc bias voltage and an ac signal) is applied.26–28

Vertical DART-PFM switching spectroscopy hysteresis loops

were generated at room temperature in the presence and ab-

sence of an applied dc bias at different points across the

BTFO and BTF7M3O thin films. Flat, c-axis oriented grains

did not display hysteresis, while tilted (a/b-axis oriented)

FIG. 5. XRD patterns of BTFO on Pt/Ti/SiO2-Si,

SiO2-Si(100), NdGaO3(001), and SrTiO3(100) sub-

strates annealed at 850 �C.

FIG. 6. XRD patterns of BTF7M3O on Pt/Ti/

SiO2-Si, SiO2-Si(100), NdGaO3(001), and

SrTiO3(100) substrates annealed at 800 �C.
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grains demonstrated 180� ferroelectric switching behaviour.

Local ferroelectric switching was demonstrated for both sets

of films, with the exception of BTFO thin films on SrTiO3.

Local remanent DART-PFM hysteresis loops for BTFO and

BTF7M3O thin films on Pt/Ti/SiO2-Si substrates, clearly

demonstrating ferroelectric switching, are shown in Fig. 9.

D. Ferroelectric lithography investigations

When an applied dc field from the PFM probe is greater

than the ferroelectric coercive field of a thin film sample, it

can induce ferroelectric polarization reversal. The PFM li-

thography mode uses this technique to vertically “write” sin-

gle domains, domain arrays, and complex patterns without

changing the surface topography. The “read” operation

involves PFM detection of written domains. X-ray diffrac-

tion patterns demonstrated that the degree of a-axis orienta-

tion of the BTF7M3O thin films on SiO2-Si was higher than

that of the other films investigated; therefore, this sample

was the most suitable candidate to probe vertical polarization

reversal along the a-axis, where the major polarization vec-

tor of the Aurivillius phase materials lies. Furthermore, this

FIG. 7. Representative AFM images of BTF7M3O (annealed at 800 �C) on (a) SiO2-Si(100), (b) Pt/Ti/SiO2-Si, (c) NdGaO3, and (d) SrTiO3 substrates.

FIG. 8. (a) Topography image of BTFO thin film on Si substrate. (b) DART-PFM amplitude and (c) DART-PFM phase images of BTFO thin film on Si

substrate.
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film is single-phase Aurivillius. No impurity phase peaks are

noted in this film, which could otherwise decrease the elec-

tromechanical response of piezoelectric films. By applying a

dc bias of 16.5 V (applied field 165 V/lm) vertically to an

area of the BTF7M3O thin films (“write” step), ferroelectric

polarization reversal over areas of the film was achieved as

detected by the subsequent PFM scan (“read” step), as is

demonstrated in Figures 10 and 11. Tests conducted over an

8 h period demonstrated that the films retain polarization for

this finite period of time.

E. Magnetic investigations using SQUID
magnetometry

In-plane magnetic measurements of BTFO thin films on

SrTiO3 and BTF7M3O thin films on SrTiO3 and Pt/Ti/SiO2-

Si substrates (Aurivillius phase film thickness �100 nm) were

carried out at room temperature using a SQUID magnetome-

ter over an applied magnetic field range of 65000 Oe. No net

magnetization was observed for the in-plane magnetization

(M) vs. applied magnetic field (H) measurements of the

BTFO and BTF7M3O thin films down to an upper detection

limit of 2.53� 10�3 emu (196 emu/g), which implies both a

lack of ferromagnetic behaviour in the Aurivillius phase and

the absence of any ferromagnetic phase impurities within the

sample, which are difficult to detect at low levels (see supple-

mentary material Fig. S1 (Ref. 38)). Given the absence of

ferro/ferri-magnetic hysteresis, it is concluded that the BTFO

and BTF7M3O thin films investigated do not show room tem-

perature multiferroic behaviour. This is at-odds with some

results published in the literature19,20,36 which indicate some

evidence for weak ferromagnetism in BTFO thin films and

bulk ceramics at room temperature, although there is some

variance in the reported saturation magnetization (Ms) values

(e.g., Ms ranges from �0.21 to 3.1 emu/cm3 for the BTFO

thin films). The occurrence of weak ferromagnetic behaviour

in these compounds was attributed to local ferromagnetic Fe-

O-Fe interactions; therefore, random distribution of the iron-

oxygen and titanium-oxygen octahedra in the different BTFO

compounds investigated may account for the variation in the

observed magnetic behaviour. On the other hand, our previous

investigations of the Bi5Ti3Fe0.7Co0.3O15 thin films35 and

Bi5Ti3Fe0.5Co0.5O15 ceramic samples37 demonstrated that the

observed ferromagnetic response was accounted for by the

presence of trace amounts of second-phase ferromagnetic

inclusions (undetected by x-ray diffraction measurements),

whereas no magnetic response from the main Aurivillius

phase was detectable. The previous reports19,20,36 of ferro-

magnetic response in BTFO do not discuss the possibility of

spinel phases such as iron oxide contributing to the ferromag-

netic response observed. Given the absence of ferromagnetic

hysteresis in the films studied here, the variance in the previ-

ously reported values and since trace amounts of magnetic

impurities could lead to the magnetization values obtained,

detailed analysis for possible magnetic impurity phases, and

analysis of their effects should be performed before denoting

FIG. 9. Vertical DART-PFM switching spectroscopy (a) phase and (b) pie-

zoresponse loops of BTFO and BTF7M3O thin films on Pt/Ti/SiO2-Si in the

absence of an applied DC bias.

FIG. 10. Images of BTF7M3O on SiO2-Si: (a) topography, (b) out-of-plane PFM amplitude, and (c) out-of-plane PFM phase after PFM lithography with an

applied dc bias of 16.5 V.
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the Bi5Ti3FeO15/Bi5Ti3Fe0.7Mn0.3O15 materials as being

ferromagnetic.

IV. CONCLUSIONS

Thin films of Aurivillius phase BTFO and BTF7M3O

(m¼ 4), free from the non-ferroelectric Bi2Ti2O7 pyrochlore

phase, were synthesized on Pt/Ti/SiO2-Si, SiO2-Si(100),

NdGaO3(001), and SrTiO3(100) substrates by an optimized

chemical solution deposition method (using 17.5% excess

bismuth). Minor impurity phase peaks were observed for

BTFO films on NGO and STO and BTF7M3O films on Pt,

NGO, and STO. BTFO and BTF7M3O thin films on Pt/Ti/

SiO2-Si and SiO2-Si(100) substrates were achieved with a

higher degree of a-axis orientation compared with the films

on SrTiO3(100)/NdGaO3(001) and thus most suited for prob-

ing piezoelectric/ferroelectric properties along the major

polarization axis of the m¼ 4 Aurivillius phase.

Piezoresponse force microscopy measurements estab-

lished that the BTFO and BTF7M3O thin films on Pt/Ti/

SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001)

substrates are piezoelectric and ferroelectric at room tem-

perature with the major polarization vector in the lateral

plane of the films. However, the absence of a detectable fer-

romagnetic hysteresis loop in the SQUID magnetometry

measurements indicates that the BTFO and BTF7M3O

films are not room temperature multiferroics. Since room

temperature ferroelectric switching was observed for the

BTFO and BTF7M3O thin films, the Bimþ1Fem�3Ti3O3mþ3

Aurivilllius phase system could act as a perfect precursor

for multiferroic thin film materials via B site substitution

using alternative magnetic cations. Indeed, the coexistence

of ferroelectricity and ferromagnetism above room temper-

ature has recently been reported21 in the Bi5Ti3Fe0.5-

Co0.5O15 ceramics.

Along with the potential commercial applications of

these novel ferroelectric thin films as lead-free piezoelectrics

for adverse environments, the ability of the ferroelectric

BTFO and BTF7M3O thin films to exist in and switch

between two polarized states and retain polarization for a fi-

nite period makes possible their application as the active

component of energy efficient FeRAM capacitors. Ferroelec-

tric lithography investigations of BTF7M3O on silicon dem-

onstrate that polarisation information can be stored in the

films and recovered by PFM.
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