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Abstract: Near-infrared spectroscopy (NIRS) allows for continuous, non-invasive monitoring of
end-organ tissue oxygenation. The use of NIRS, cerebral NIRS (cNIRS) in particular, in neonatal care
has increased significantly over the last few years. This dynamic monitoring technique provides
real-time information on the cerebral and haemodynamic status of the neonate and has the potential
to serve as an important adjunct to patient care with some centres routinely utilising cNIRS to aid
decision-making at the bedside. cNIRS values may be influenced by many variables, including
cardiac, respiratory and metabolic parameters, and therefore it is essential to understand the
pathophysiology behind alterations in cNIRS values. Correct interpretation is required to direct
appropriate patient-specific interventions. This article aims to assist clinicians in deciphering cNIRS
values by providing an overview of potential causes of fluctuations in cNIRS values, illustrated by
common clinical scenarios, with particular emphasis on the preterm infant.

Keywords: near-infrared spectroscopy; NIRS; cerebral oxygenation; end-organ tissue oxygenation;
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1. Introduction

Although introduced into clinical care almost 40 years ago, it is only in the last decade
that near-infrared spectroscopy (NIRS) has grown in popularity in the Neonatal Unit (NNU) [1].
NIRS provides a continuous, non-invasive measurement of end-organ tissue oxygenation (rSO2) and
its ease of application and its potential usefulness has contributed to its increasing use, especially
in the very preterm infant. Cerebral NIRS (cNIRS) provides a potential window into the cerebral
and haemodynamic status of the neonate. The merits of NIRS monitoring have been discussed
previously [2] and NIRS monitoring either alone, or in conjunction with other modalities, potentially
has an important role to play in care of the newborn. Some centres now routinely use cNIRS to assist
in decision-making at the bedside, especially in the care of the preterm infant.

Unlike pulse oximetry which measures arterial oxygen saturation, NIRS measures tissue oxygen
saturation, which consists of a combination of arterial, venous, and capillary blood. While NIRS
monitoring provides relative regional saturations and reference guidelines have been suggested [3,4],
studies to date are heterogeneous in their study population and outcomes [5] and values have also been
shown to vary with gestational age (6). There are a number of different devices used with a variety of
algorithms incorporated, which may account for some of the variability that exists [6–9]. In addition,
the type of sensor used can produce differences of up to 14% in values [6] and reapplication of the
same probe in the same region can result in differences of up to 6% [8].
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As clinicians, we are becoming increasingly aware of the importance of interpreting physiological
data in the context of each individual infant, instead of a “one size fits all” approach, in order to provide
optimum and appropriate individualised care. As a result, the challenge facing many clinicians lies in
the interpretation of this relatively new bedside device. The trend of the values and signal itself are rich
in information [10,11] but unlike peripheral oxygen saturation levels (SpO2), cerebral tissue oxygen
saturation is influenced by many potential variables, including cardiac (blood pressure and cardiac
output), respiratory (partial pressure of carbon dioxide and oxygen in arterial blood), and metabolic
(glycaemia) parameters. Correct interpretation of the cerebral oxygenation values/trends in light of
such variables is essential if appropriate interventions are to be implemented, and changes in cerebral
NIRS values should prompt a clinical evaluation of the infant to determine the underlying cause.

To gain more insight in the balance between arterial oxygen delivery to the brain and the brain’s
oxygen uptake, fractional tissue oxygen extraction (FTOE) has been utilised [12]. In newborn piglets
this parameter appeared to correlate well with fractional oxygen extraction (FOE), as measured from
blood oxygen content in arterial and venous blood samples. FTOE is calculated by dividing the
difference between SpO2 and rSO2 divided by SpO2 ((SpO2–rSO2)/SpO2). This way, FTOE represents
the fraction of the delivered oxygen that has been extracted by the tissue measured [12]. In reality,
this also partly compensates for low arterial oxygen levels, as is often the case in preterm infants
with lung disease, or in infants with congenital heart defects [13]. In these situations, FTOE may
be a better parameter for brain perfusion (assuming a relative constant brain metabolism rate) than
rSO2, and potentially a better measure for the assessment of autoregulation when combined with
blood pressure [14]. Figures 1 and 2 provide a schematic overview of potential influencing factors of
NIRS values.

Children 2018, 5, x  2 of 15 

 

As clinicians, we are becoming increasingly aware of the importance of interpreting 
physiological data in the context of each individual infant, instead of a “one size fits all” approach, in 
order to provide optimum and appropriate individualised care. As a result, the challenge facing 
many clinicians lies in the interpretation of this relatively new bedside device. The trend of the values 
and signal itself are rich in information [10,11] but unlike peripheral oxygen saturation levels (SpO2), 
cerebral tissue oxygen saturation is influenced by many potential variables, including cardiac (blood 
pressure and cardiac output), respiratory (partial pressure of carbon dioxide and oxygen in arterial 
blood), and metabolic (glycaemia) parameters. Correct interpretation of the cerebral oxygenation 
values/trends in light of such variables is essential if appropriate interventions are to be implemented, 
and changes in cerebral NIRS values should prompt a clinical evaluation of the infant to determine 
the underlying cause. 

Figures 1 and 2 provide a schematic overview of potential influencing factors of NIRS values. 
To gain more insight in the balance between arterial oxygen delivery to the brain and the brain’s 

oxygen uptake, fractional tissue oxygen extraction (FTOE) has been utilised [12]. In newborn piglets 
this parameter appeared to correlate well with fractional oxygen extraction (FOE), as measured from 
blood oxygen content in arterial and venous blood samples. FTOE is calculated by dividing the 
difference between SpO2 and rSO2 divided by SpO2 ((SpO2–rSO2)/SpO2). This way, FTOE represents 
the fraction of the delivered oxygen that has been extracted by the tissue measured [12]. In reality, 
this also partly compensates for low arterial oxygen levels, as is often the case in preterm infants with 
lung disease, or in infants with congenital heart defects [13]. In these situations, FTOE may be a better 
parameter for brain perfusion (assuming a relative constant brain metabolism rate) than rSO2, and 
potentially a better measure for the assessment of autoregulation when combined with blood 
pressure [14]. 

 

Figure 1. Causes of low cerebral oxygen saturation. Figure 1. Causes of low cerebral oxygen saturation.



Children 2018, 5, 94 3 of 16Children 2018, 5, x  3 of 15 

 

 
Figure 2. Causes of high cerebral oxygen saturation. 

In this article, we concentrate solely on cerebral oxygen saturation values and suggest an 
approach to the interpretation of cNIRS at the bedside and provide examples of commonly 
encountered scenarios in the neonatal unit, with particular emphasis on the preterm infant in the first 
72 h of life. 

2. Hypotension 

For over four decades, the question of low blood pressure and the need for use of inotropes has 
largely remained unanswered. Much of this uncertainty results from a lack of good quality evidence 
from large randomised controlled trials [15,16]. The association between hypotension and brain 
injury or poor neurodevelopmental outcome remains controversial [17–20]. Recently, focus has 
shifted towards incorporating the use of surrogate markers of end organ perfusion as a means to 
determine when treatment should be instigated. cNIRS as a surrogate of cerebral blood flow 
(assuming a stable cerebral oxygen consumption) has gained momentum and has also been utilised 
to assess inotrope use in preterm infants and their effect on cerebral perfusion and blood flow [21–
23]. Also, when combined with blood pressure, as a surrogate for cerebral perfusion pressure it has 
the potential to provide a dynamic, continuous measurement of cerebral autoregulation [24]. 

Cerebral autoregulation is the mechanism by which cerebral blood flow remains constant 
despite fluctuations in cerebral perfusion pressure. Preterm infants are at an increased risk of 
impaired autoregulation, primarily due to the immaturity of smooth muscle cells of their cerebral 
arteries [25,26]. As mentioned, cNIRS can be used as an assessment of cerebral blood flow, and when 
combined with blood pressure as a surrogate for cerebral perfusion pressure, the cerebrovascular 
capacity in an infant can be evaluated. Uncertainty remains, however, regarding the interpretation of 
these values and the optimum algorithm to validly assess cerebrovascular autoregulation [24]. 
Accurate identification of periods of impaired autoregulation and cerebral compromise may provide 
opportunities for appropriate treatment to be initiated and continuously evaluated [27]. 

Figure 2. Causes of high cerebral oxygen saturation.

In this article, we concentrate solely on cerebral oxygen saturation values and suggest an approach
to the interpretation of cNIRS at the bedside and provide examples of commonly encountered scenarios
in the neonatal unit, with particular emphasis on the preterm infant in the first 72 h of life.

2. Hypotension

For over four decades, the question of low blood pressure and the need for use of inotropes has
largely remained unanswered. Much of this uncertainty results from a lack of good quality evidence
from large randomised controlled trials [15,16]. The association between hypotension and brain
injury or poor neurodevelopmental outcome remains controversial [17–20]. Recently, focus has shifted
towards incorporating the use of surrogate markers of end organ perfusion as a means to determine
when treatment should be instigated. cNIRS as a surrogate of cerebral blood flow (assuming a stable
cerebral oxygen consumption) has gained momentum and has also been utilised to assess inotrope use
in preterm infants and their effect on cerebral perfusion and blood flow [21–23]. Also, when combined
with blood pressure, as a surrogate for cerebral perfusion pressure it has the potential to provide a
dynamic, continuous measurement of cerebral autoregulation [24].

Cerebral autoregulation is the mechanism by which cerebral blood flow remains constant despite
fluctuations in cerebral perfusion pressure. Preterm infants are at an increased risk of impaired
autoregulation, primarily due to the immaturity of smooth muscle cells of their cerebral arteries [25,26].
As mentioned, cNIRS can be used as an assessment of cerebral blood flow, and when combined with
blood pressure as a surrogate for cerebral perfusion pressure, the cerebrovascular capacity in an infant
can be evaluated. Uncertainty remains, however, regarding the interpretation of these values and the
optimum algorithm to validly assess cerebrovascular autoregulation [24]. Accurate identification
of periods of impaired autoregulation and cerebral compromise may provide opportunities for
appropriate treatment to be initiated and continuously evaluated [27].
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Below we illustrate the advantage of cNIRS when assessing the potential need for intervention
in periods of low blood pressure. The figures provided are recorded using a Moberg CNS device
(Moberg, PA, USA) and an INVOS 5100 (Somanetics, Troy, MI, USA) NIRS monitor with a neonatal
probe. Figure 3 illustrates fluctuations in the infant’s mean arterial blood pressure, with associated
periods of low blood pressure, but the cerebral rSO2 values remain stable and mean blood pressure
spontaneously increases with time. The stable cNIRS trend during this period of low blood pressure
may be a useful adjunct in decision-making about interventions, such as whether inotropes should be
commenced or not.
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Figure 3. Cerebral rSO2 remains stable despite changes in blood pressure. This figure reflects the case
of neonate born at 24 + 5 weeks gestation. Birth weight (BW) 660 g, day of life (DOL) 1.

In Figure 4 however, the periods of low blood pressure are associated with periods of simultaneous
changes in cerebral oxygenation. This would suggest that cerebral autoregulation is not maintained
and this infant may benefit from methods to stabilize the mean arterial blood pressure, although the
cerebral oxygen saturation appears to be within adequate ranges.

Low cNIRS values can also provide invaluable information in assessing systemic circulation.
A low cerebral rSO2 value associated with signs of poor systemic perfusion such as a prolonged
capillary refill time (CRT), and increased lactate or poor urine output would probably necessitate
treatment to improve cardiac output [28,29] and tissue perfusion rather than an observational approach
to the management. However, there is limited evidence from clinical studies to support such
an approach.
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3. Patent Ductus Arteriosus: Significant or Not?

Patent ductus arteriosus (PDA) is the most common cardiovascular finding in preterm infants [30].
Although PDA is associated with significant pathologies, including necrotising enterocolitis (NEC),
chronic lung disease, and intraventricular haemorrhage (IVH), causality remains debatable and the
optimal management of PDA remains controversial [31]. Numerous studies have sought to provide
guidance on what constitutes a haemodynamically “significant” PDA (hsPDA) and how to effectively
identify which PDAs require medical/surgical closure [32–34]. Although many studies utilise chronic
lung disease and ventilator dependence as primary outcomes, Lemmers et al. have demonstrated
significantly lower cerebral rSO2 values in infants with hsPDAs. In addition, these values normalised
to values of infants in the control group following medical closure of the PDA [35–37]. This finding
was even more pronounced in infants who were born small for gestational age (SGA) [38]. However,
other studies report stable cNIRS values despite showing differences in mean arterial blood pressure
(MABP) and abdominal rSO2 values. It is recognised that with preservation of cerebral autoregulation,
perfusion may be maintained in the face of a hsPDA [39–43].

An additional potential role of cNIRS is the assessment of cerebral perfusion during medical and
surgical therapy directed at hsPDA closure. Ibuprofen has been the first-line medical treatment
of PDA for over a decade. Prior to its introduction into routine clinical practice, Patel et al.
conducted a randomised controlled trial comparing the effects of indomethacin and ibuprofen on
cerebral haemodynamics. Indomethacin resulted in a significant decrease in cerebral blood flow
and oxygen delivery after administration, whereas ibuprofen had no negative effects on cerebral
haemodynamics [44]. A 2018 study reported that paracetamol administration did not affect cerebral
haemodynamics as measured by NIRS. This evidence is useful in supporting the safety profile of
paracetamol, which is increasingly prescribed following failure of PDA closure with ibuprofen [45].

The effect of surgical PDA ligation on cerebral oxygenation remains controversial. Huning et al.
utilised cNIRS to report that there is no change in cerebral oxygenation during PDA ligation [46].
Contrary to this, studies have demonstrated a reduction in cNIRS values during and immediately
after surgical PDA ligation [47–49]. Whether this is as a result of impaired blood flow or increased
tissue oxygen utilisation during surgery is unclear, with studies reporting conflicting results.
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Another consideration is that infants who undergo surgical PDA ligation tend to be of greater postnatal
age and may have already failed medical/conservative management, which may have an impact on
their baseline pre-surgery rSO2 values and subsequent outcomes [50].

Studies are now attempting to link cNIRS findings to subsequent neurological outcome.
Verhagen et al. have demonstrated a correlation between cNIRS values in the first two weeks of life and
neurodevelopmental outcome at 2–3 years [5]. Further to this, Lemmers et al. have noted a relationship
between longstanding low cerebral oxygenation values on cNIRS in premature infants requiring
surgical ligation for hsPDA and decreased cerebellar volume on MRI imaging at term equivalent
age. They postulate that low cerebral oxygenation secondary to hsPDA and systemic steal may
cause reduced brain volume and myelination, with subsequent consequences on neurodevelopmental
outcomes [50].

There are many physiological variables that influence the haemodynamic significance of a PDA
including the oxygen carrying capacity of the blood, fluid and respiratory status, shunt severity,
and autoregulatory capacity of the infant. Additionally, echocardiographic indices may not correlate
directly with impaired cerebral oxygenation [39,41]. Therefore a thorough evaluation of the entire
physiological status of the infant is required to determine the haemodynamic significance of a PDA.
cNIRS measurements may prove a useful adjunct to the clinical, biochemical, and echocardiographic
assessment of shunt significance and whether PDA closure should be pursued medically or surgically
for an individual patient. The impact of post ligation syndrome and its management has not been
evaluated with cNIRS.

4. Peripheral Arterial Oxygen Saturation

Until recently, pulse oximetry was the sole measure of effective provision of supplemental oxygen
to meet metabolic demands. Studies have demonstrated a higher survival rate in infants <28 weeks
gestation who were randomised to a SpO2 target of 91–95% compared to those in the target SpO2

group of 85–89% [51,52]. Clinical trials have also demonstrated an increased risk of morbidity in
preterm infants with higher peripheral oxygen saturation targets, specifically an increased risk of
chronic lung disease and retinopathy of prematurity (ROP) [51–56]. However, SpO2 alone does not
provide clarity on specific end organ perfusion and NIRS may be utilised to assess real-time end
organ/cerebral oxygenation status. Baerts et al. demonstrated significantly higher cerebral rSO2 values
in preterm infants who were administered increased fractionated inspired O2 (FiO2) during an episode
of desaturation, and cerebral rSO2 remained high for several minutes afterwards [57]. They speculate
that this is may be the result of an adaptation phenomenon of post hypoxic reperfusion in a cohort of
infants with limited cerebral autoregulation. Figures 5–7 demonstrate fluctuations in cerebral rSO2

values associated with alterations in peripheral SpO2 values. Low cerebral rSO2 values are resolved
by improving pulmonary oxygen uptake, by either increasing the amount of supplementary oxygen
administered or increasing the mean airway pressure. Following oxygen supplementation for an
episode of desaturation the rSO2 levels remain high, consistent with the above mentioned findings of
Bearts et al. Increasing FiO2 was the most common intervention identified in the recent SafeBoosC
intervention trial, which reported a significant reduction in the burden of cerebral hypoxia in the
experimental group with cNIRS monitoring [3]. The opposite is true with cerebral hyperoxia in which
high levels of supplementary oxygen administered can result in undesired elevated cerebral rSO2 levels,
but there was no excess cerebral hyperoxia identified in the SafeBoosC trial. Isolated bradycardias
have a lower impact on cerebral saturations than isolated desaturations or combined desaturation
with bradycardia [58,59]. SGA infants appear to have higher cerebral rSO2 values along with higher
haemocrit levels [60]. This is possibly related to chronic in-utero hypoxia and a redistribution of blood
flow in-utero [61,62]. Studies have shown that if foetal Dopplers show evidence of brain sparing in
relation to the cerebral blood flow in the foetal circulation, this effect persists in the first 72 h of life,
with a relatively greater cerebral blood flow compared to renal blood flow [61].



Children 2018, 5, 94 7 of 16

Children 2018, 5, x  7 of 15 

 

 

Figure 5. Decrease in cerebral rSO2 associated with decrease in peripheral SpO2 due to desaturations. 
The subsequent overshoot is likely due to the increased FiO2.This figure reflects the case of a neonate 
born at 25 + 2 weeks gestation. BW 530 g, DOL 3. 

 

Figure 6. Cerebral hyperoxia following an episode of desaturation treated with increased FiO2. This 
figure reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 3. 

 
Figure 7. Cerebral rSO2 and peripheral SpO2 are decreased by reducing administered FiO2. This figure 
reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 1. 

Figure 5. Decrease in cerebral rSO2 associated with decrease in peripheral SpO2 due to desaturations.
The subsequent overshoot is likely due to the increased FiO2.This figure reflects the case of a neonate
born at 25 + 2 weeks gestation. BW 530 g, DOL 3.

Children 2018, 5, x  7 of 15 

 

 

Figure 5. Decrease in cerebral rSO2 associated with decrease in peripheral SpO2 due to desaturations. 
The subsequent overshoot is likely due to the increased FiO2.This figure reflects the case of a neonate 
born at 25 + 2 weeks gestation. BW 530 g, DOL 3. 

 

Figure 6. Cerebral hyperoxia following an episode of desaturation treated with increased FiO2. This 
figure reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 3. 

 
Figure 7. Cerebral rSO2 and peripheral SpO2 are decreased by reducing administered FiO2. This figure 
reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 1. 

Figure 6. Cerebral hyperoxia following an episode of desaturation treated with increased FiO2.
This figure reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 3.

Children 2018, 5, x  7 of 15 

 

 

Figure 5. Decrease in cerebral rSO2 associated with decrease in peripheral SpO2 due to desaturations. 
The subsequent overshoot is likely due to the increased FiO2.This figure reflects the case of a neonate 
born at 25 + 2 weeks gestation. BW 530 g, DOL 3. 

 

Figure 6. Cerebral hyperoxia following an episode of desaturation treated with increased FiO2. This 
figure reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 3. 

 
Figure 7. Cerebral rSO2 and peripheral SpO2 are decreased by reducing administered FiO2. This figure 
reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 1. 

Figure 7. Cerebral rSO2 and peripheral SpO2 are decreased by reducing administered FiO2. This figure
reflects the case of a neonate born at 25 + 2 weeks gestation. BW 530 g, DOL 1.



Children 2018, 5, 94 8 of 16

5. Carbon Dioxide: Hypocarbia versus Hypercarbia

Carbon dioxide is an important regulator of cerebral blood flow. Hypocapnia, particularly
levels lower than 30mmHg, can negatively affect cerebral blood flow as a result of cerebral
vasoconstriction [63]. This in turn leads to a reduction in oxygen delivery and can be identified
by a low cerebral rSO2 level [64–67]. Many studies document that low PaCO2 levels are an
important risk factor for white matter injury and subsequent development of cerebral palsy [63].
This is of particular relevance for ventilated infants where overventilation may result in hypocapnia.
Low cerebral rSO2 may be a visual marker to prompt assessment of ventilator settings and PaCO2

levels. Figure 8 demonstrates a downward trend in cerebral rSO2 with associated low PaCO2 levels
due to overventilation.
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Figure 8. Elevated cerebral rSO2 values associated with increased CO2 levels which reduce following
a decrease in CO2 levels. This figure reflects the case of a neonate born at 25 + 2 weeks gestation.
BW 830 g, DOL 1.

Conversely, the opposite is true of elevated PaCO2 levels. Cerebral vasodilation may lead to
increased cerebral blood flow with increased oxygen delivery and cerebral hyperperfusion. Hyperoxia
as a result of increased PaCO2 levels has also been associated with decreased brain activity as measured
with electroencephalography (EEG) [68]. Cerebrovascular autoregulation is also challenged during
hypercarbia [69–71]. Figure 9 illustrates increased cerebral rSO2 levels in association with increasing
CO2 levels.
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Figure 9. Initially low cerebral rSO2 and end-tidal CO2 (EtCO2) levels which increase with increasing
CO2. This figure reflects the case of a neonate born at 23 + 6 weeks gestation. BW 530 g, DOL 2.

6. Anaemia: Anaemia versus Polycythaemia

Optimal cerebral oxygenation relies on appropriate oxygen delivery to the brain. Infants with
anaemia have been shown to have lower cerebral rSO2 values and higher fractional tissue oxygen
extraction (FTOE) than infants with normal haemoglobin levels [72]. These values normalise following
blood transfusion [64,73–76]. Infants with a low cerebral rSO2 level and low haemoglobin level may
benefit from a red cell transfusion to improve the oxygen-carrying capacity of the blood [77].

Interestingly, polycythaemia also results in impaired cerebral haemodynamics, specifically a
lower cerebral blood flow velocity [78–80]. Partial exchange transfusions result in increased cerebral
oxygenation levels likely secondary to improved cerebral blood flow [81].

7. Blood Glucose Level: Hypoglycaemia

Low birth weight infants are at a significantly higher risk of hypoglycaemia than their term
counterparts; however, hypoglycaemia can be difficult to identify as most preterm infants are rarely
symptomatic [82,83]. Hypoglycaemia is an independent risk factor for poor neurodevelopmental
outcome [84,85], and thus clinicians must have a high index of suspicion and actively monitor
for hypoglycaemia. cNIRS may have a role to play in hypoglycaemia monitoring in the future.
Studies have shown that glycaemia affects cerebral oxygenation, particularly in the first days of
life [86,87]. Low blood glucose level (BGL) is associated with increased cerebral blood flow and
increased cerebral rSO2 levels [88]. cNIRS may be a useful indicator of low blood glucose values and
its subsequent management.

8. Discussion

This overview highlights the various causes for fluctuations in cerebral oxygenation in preterm
infants, or especially low or high absolute values, and suggests a novel individualized approach
to the preterm infant. It will require a new way of thinking, where multiple parameters are given
due consideration in order to establish a composite assessment of an individual infant’s current
physiological status. Instead of one solution for an abnormal value, such as increasing FiO2 when
SpO2 is low, one now must give careful consideration to all the potential causes for the value observed.
Once the cause has been determined, a dynamic and patient specific management plan may be initiated.
This multi-step and individualized way of approaching a problem may potentially reduce the infant’s
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burden of hypoxia/hyperoxia and the number of unnecessary interventions during the first days of
life, and ultimately improve short term outcomes.

The question that must be answered before implementing such an approach is whether there
is any true and relevant benefit for the patient. Does it really help to incorporate cerebral NIRS
measurement in daily clinical neonatal care? The SafeBoosC trial was the first attempt at evaluating
this important question. In this multicentre study, 166 preterm infants were randomly assigned to
having visible cerebral NIRS measurements in combination with a pathophysiologically-oriented,
evidence-based treatment guideline [89] which aimed to maintain cerebral saturation between 55 and
85%, or to the non-visible NIRS measurement and standard care. This treatment guideline contained
the same items discussed in this review, for which the level of evidence varies between high quality
evidence, i.e., with regards to blood transfusion for anaemia, and low-level evidence with regards
to decreasing minute ventilation for pCO2 reduction. The cut-off values were experience-based,
and the INVOS device with the adult sensor was used [90] in this particular trial. A fluctuation
from baseline cNIRS measurements, as we have proposed as a prompt to assess for causation and
consideration of therapeutic intervention, was not part of the original trial. Following completion
of this phase 2 trial, it was clear that it is feasible to reduce the burden of cerebral hypoxia, whereas
the burden of hyperoxia was not reduced in the treatment arm. Increasing FiO2, which is arguably
the easiest intervention to increase a low cerebral rSO2 value, was the most common intervention
used (72.1%). Other interventions included altering ventilator settings in 13.7% and commencing an
inotrope/vasopressor in 5.1%. A PDA was treated as a response to low cerebral saturations in 0.4% of
cases. The causes for high cerebral oxygenation are less amenable to intervention and bar lowering the
FiO2, it is difficult to influence high rSO2 values other than ensuring that the PaCO2 value is stable.

Although cerebral hypoxia was reduced in this study, only a limited effect on the short term
neurological outcomes was demonstrated. EEG and blood-derived markers for brain injury were not
different between the groups [3]. Also, cranial ultrasound and brain MRI findings were not significantly
different between intervention and control groups [91]. Interestingly, analysing the results as a function
of burden of hypoxia, regardless of allocation to intervention or control group, the authors found more
severe IVH, lower EEG burst rates and death in the infants in the fourth quartile of the burden of
hypoxia, compared with the first to third quartiles. This effect was not seen for blood biomarkers [92].
We await the long-term outcome data from this group.

The fact that no short-term neurological differences were found between the experimental and
control groups may potentially be due to a non-individualised approach to abnormal values; the exact
and specific cause of the cerebral hypoxia may not have been targeted in each case. A ‘one size fits all’
approach of increasing FiO2 for all low cerebral oxygen saturation values may not result in improved
outcomes as the patient may have required an alternative intervention. Improved focus on eliminating
other causes for reduced oxygen supply to the brain, such as hypocarbia, might prove effective in
maintaining an adequate cerebral blood flow and accompanying oxygen saturation. Although not
identified in the SafeBoosC trial, ubiquitous use of increased FiO2 might even lead to unintended
hyperoxia [57].

9. Conclusions

The patterns described in this review are examples of alterations in cerebral oxygenation related
to differing clinical scenarios. It is hoped that these visual descriptions will assist in pattern recognition
at the bedside, and will provide additional information to the clinician to guide more individualised
interventions. The ultimate usefulness of cNIRS will need to be evaluated in a larger clinical trial.
A larger phase 3 SafeBoosC trial is being planned which aims to enroll 1500 preterm infants to examine
if cerebral NIRS can reduce the risk of death or severe brain injury at 36 weeks of gestation [93]
This study aims to assess if monitoring and treating episodes of cerebral hypoxia and hyperoxia,
results in improved outcomes for preterm infants. In the meantime, cNIRS is currently providing
many valuable insights into the cerebral haemodynamics and effects of therapeutic interventions in
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this very vulnerable population. This tool requires further study in order to fully ascertain its role in
active neonatal management and ability to prognosticate neurodevelopmental outcome. It is hoped
that the patterns described in this review will assist in identification of potential causes of altered
cerebral oxygen saturation, thus providing the clinician with additional information to make a more
informed management choice.
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