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Abstract

Dynamic positron emission tomography (PET) imaging can be used to track the

distribution of injected radio-labelled molecules over time in vivo. This is a pow-

erful technique, which provides researchers and clinicians the opportunity to study

the status of healthy and pathological tissue by examining how it processes sub-

stances of interest. Widely used tracers include 18F-fluorodeoxyglucose, an analog

of glucose, which is used as the radiotracer in over ninety percent of PET scans.

This radiotracer provides a way of quantifying the distribution of glucose utilisa-

tion in vivo. The interpretation of PET time-course data is complicated because

the measured signal is a combination of vascular delivery and tissue retention ef-

fects. If the arterial time-course is known, the tissue time-course can typically be

expressed in terms of a linear convolution between the arterial time-course and the

tissue residue function. As the residue represents the amount of tracer remaining

in the tissue, this can be thought of as a survival function; these functions been

examined in great detail by the statistics community. Kinetic analysis of PET

data is concerned with estimation of the residue and associated functionals such

as flow, flux and volume of distribution. This thesis presents a Markov chain

formulation of blood tissue exchange and explores how this relates to established

compartmental forms. A nonparametric approach to the estimation of the residue

is examined and the improvement in this model relative to compartmental model

is evaluated using simulations and cross-validation techniques. The reference dis-

tribution of the test statistics, generated in comparing the models, is also studied.

We explore these models further with simulated studies and an FDG-PET dataset

from subjects with gliomas, which has previously been analysed with compartmen-

tal modelling. We also consider the performance of a recently proposed mixture

modelling technique in this study.
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Chapter 1

Introduction

In recent times, positron emission tomography (PET) has become a vital tool in

the medical imaging of cancer and as time progresses, its uses are growing into

other fields. A PET scan is conducted by injecting a subject with a radiolabelled

molecule (radiotracer) and imaging the distribution of this radiotracer in the

body. Common radiotracers used in practice include radiolabelled glucose, which

allows energy consumption in the body to be observed [62]. The majority of the

data used in this thesis have been generated using a glucose radiotracer called

18F-fluorodeoxyglucose (FDG). This is generated by replacing one hydroxyl group

in glucose with an 18F isotope [2].

PET is considered quite versatile as the number of substances which have been

adapted to study various processes in the body, is large and continues to grow.

PET quantifies the metabolism of substrates, which is how PET is distinguished

from other imaging modalities that simply provide an image of structures in

the subject being studied. As cancers are generally aggressive and grow at an

alarming rate, one can often differentiate between healthy and cancerous tissue on

an FDG-PET image. In simple terms, one can visualise glucose uptake (energy

use) with an FDG-PET scan. This is important as glucose uptake is a prognostic

indicator of many cancers due to the accelerated rate of cell growth associated

with some malignancies. It is also worth highlighting that metabolism of the

tracer can be used to confirm the presence of cancer but further work is still

being conducted to examine the way tracers are absorbed by tissues.

There are however a number of disadvantages to PET. Firstly, the cost of doing

1



PET imaging is substantial compared to other medical imaging procedures. It

is extremely labour intensive, the radiotracers have to be manufactured using

complicated and expensive equipment and once the radiotracer is manufactured,

it is subject to rapid deterioration, dependent on its half-life. The half-lives for

the tracers used vary with the most widely used tracers in PET imaging have

half lives of between 2 minutes and 108 minutes. It is also the case that the

clarity of the images (resolution) is dependent on the dose of the tracer taken

by the subject, however increasing the dose results in increased toxicity. For this

reason, anatomical detail (resolution) is not as clear on a PET scan as say a

magnetic resonance (MR) scan. Another issue in PET is that when one looks

at a PET image, it presents a combination of flow and retention. To obtain a

clearer picture of what is occurring in the tissue, it is important to separate these

two components. It is this problem which leads to the work conducted in this

thesis on PET kinetic analysis. This field is discussed by Phelps et al. [63] which

introduces the ’measurement of local cerebral glucose metabolic rate in humans ’,

using FDG.

This first chapter of this thesis provides an introduction to the basic science

behind PET and medical imaging and is organised as follows: In Section 1.1, a

review of some of the uses of PET in research and clinical practice are presented,

with a view to highlighting the motivation behind this work. In Section 1.2, a

description of other fields of medical imaging are reviewed. This will not be a com-

prehensive treatment of medical imaging but just a brief introduction, designed

to give the reader an idea of what medical imaging is and how different imaging

techniques are used together to answer the questions clinicians seek to answer.

For more details the reader is referred to the literature. This naturally leads to an

outline of PET, the PET scanning procedure, the data analysis aspects of PET

and a discussion of the software used in this modelling, which are presented in

Section 1.3. The contribution of this thesis is then discussed in Section 1.4. This

includes a brief discussion on brain imaging with PET, PET residue analysis,

compartmental models and nonparametric regression. We conclude the chapter

with some discussion in Section 1.5.
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1.1 Motivation

PET scanning has become standard practice for cancer patients in the developed

world. The FDG tracer is the backbone of PET cancer imaging (as it is used

in over ninety percent of PET scans), however others have been developed with

specific cancers in mind. For example 18F-fluorocholine imaging has shown some

promise in prostate cancers [55]. In clinical cancer care PET can be thought

of as having mainly three distinct uses; (i) diagnosis and staging, (ii) treatment

response and (iii) recurrence assessment, which are discussed by Choi et al. and

Eisenhauer et al. [12, 19], and also outline guidelines for judging response using

PET.

Diagnosis and staging is determining whether disease is present or not and

if it is present how far the disease has progressed. Although PET can be used

to diagnose cancer, it is usually the case that cancer is initially detected by

a different imaging modality before a PET scan is conducted due to the cost

of a PET scan. PET can provide potentially better information on this front

than traditional imaging modalities as it measures the functional processes, such

as glucose uptake, that are taking place in tumours and lesions instead of just

providing a picture of the anatomical structures in the field of view. PET can

better identify issues such as necrosis in tumours, that other imaging techniques

might not detect.

The response of cancerous tissues can be analysed following a course of treat-

ment such as chemotherapy. If a mass remained in the subject, a PET scan can

allow one to quantify if the treatment has had any benefit by assessing whether

a cancerous region is using less glucose after treatment. A cancerous mass may

not have decreased in size but may be more active or may have increased in size

and be less active. PET can provide this information, while magnetic resonance

(MR) or x-ray computer tomography (CT) scans typically provide the shape and

size of the mass. It is worth noting, however that there are exceptions to this

such as functional MR, which can provide information on bodily functions such

as blood volume.

PET scans can be conducted on the entire body of a subject and so are ideal

for recurrence assessment. This means the primary and any potential secondary
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sites (metastases) can be examined simultaneously.

Another advantage PET imaging presents is that generally it can be used

very cost effectively. In the past, when a patient presented with a cancerous

mass there was often very little alternative but to carry out exploratory surgery

or a biopsy to determine if the mass was benign or malignant. This takes a toll

on a patients well-being and in addition to the risk of releasing cancerous cells

that might get distributed elsewhere in the body, and also has a high monetary

cost. However, nowadays a PET scan, which is relatively inexpensive compared

to exploratory surgery can be carried out and almost as much, or in some cases

more, information obtained from it.

1.2 Medical Imaging

Although PET is the focus of this thesis, it is not used in isolation. A patient

who undergoes a PET scan will likely undergo some other imaging procedures

such as a CT [17] scan using a device similar to the GE advance PET/CT scanner

shown in Figure 1.1. Other subjects may undergo an MR scan [44, 51] along with

a PET scan.

Figure 1.1: General Electric Advance PET Scanner [11].

PET studies which involve other imaging modalities will be presented later in

this thesis and so some of the most widely used medical imaging procedures are
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discussed here before discussing PET. We begin by explaining what we mean by

medical imaging. This is useful as it sets the stage for where PET imaging falls in

the clinicians assortment of tools. A medical imaging procedure is the process of

generating pictures of the human body for clinical purposes (medical procedures

seeking to reveal, diagnose or examine disease) or medical science (including the

study of normal anatomy and physiology) [8].

If you meet an ordinary person on the street and mention medical imaging

to them, they will naturally think of an X-ray. An X-ray is a form of electro-

magnetic radiation. When the term is used it often refers to a medical imaging

procedure, discussed by Spiegel [72], which involves aiming a source of X-rays at

a subject and examining how much of these X-rays are absorbed by the body

or, more accurately, how much of the source is attenuated by the body. This

technique is very common in a modern hospital and it can be used to diagnose

ailments from broken bones to lung cancer. However, the method is not perfect

as it involves exposing the subject to a relatively small dose of radiation and the

image produced is two dimensional and of low resolution. The downsides of this

procedure is offset by the ease and cost effectiveness of the technique.

When the detail produced by an X-ray image is not sufficient, X-ray computer

tomography (CT) can be used. This technique involves a larger dose of X-rays

to produce a more detailed two or three dimensional image of the whole body

or part of it. Similar to an X-ray, the CT image is generated by examining the

capability of the ROI to attenuate X-rays. However, as the dose is higher, an

image with improved anatomical detail (higher resolution) can be obtained. CT

has a wide variety of uses. To illustrate this point we simply state that there are

over sixty million CT scans conducted in the United States annually [17]. Similar

rates for CT scanning are likely to occur in Europe but this information is not

readily available. These scans are conducted in areas varying from emergency

medicine to cancer diagnosis. CT scans are relatively user friendly for both the

patient and physician [17]. It does however have a question mark hanging over

its safety. The subject being studied is exposed to a high dose of radiation during

the scan. A single CT scan can give a radiation dose as much as 400 chest X-rays

and it is estimated by some authors that, in healthy subjects, a CT scan gives the

subject a one in eighty chance of developing cancer. This is disputed amongst
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the radiography community with many arguments put forward by both sides.

Different perspectives of their arguments are presented in [15, 17, 49, 69]. CT

scanning has other uses such as creating an attenuation image for PET scanning.

This is done using a low dose CT scan to minimise the toxicity that the subject

being imaged is exposed to.

MR imaging is described by Brown [44] as a technique where strong magnetic

fields are used to spin the electrons contained within a subject. This movement

excites hydrogen atoms which give off a specific radio frequency. The magnetic

field is switched on and off many times during the scan and the rate at which the

atoms stop emitting the radio frequency of interest, generated by the spinning

is used to distinguish between different types of tissue. These scans provide

exquisite anatomical detail and are sometimes conducted alongside PET so that

a high resolution image of the area under study as well as the activity measured by

the PET scan can be examined by clinicians. This method has less risk associated

with it than CT imaging and is frequently in place of CT imaging in the case of

pregnant women.

Ultrasonography [67] is another medical imaging technique, which is used

mainly for imaging soft tissues and the unborn. This technique is similar to

how bats navigate as it directs pulses of ultrasound at the ROI in the subject

being studied and this is then reflected back to the source where it is detected

and an image is constructed. There are advantages and disadvantages to this

type of imaging. Firstly, there is no harmful radiation involved and this is why

ultrasonography is used to image the unborn. Secondly, it is also cheap. However,

it has drawbacks, for example, it is not possible to image parts of the body behind

dense tissue such as bone. A recent review of ultrasonography is available in [67].

Electrocardiography (EKG) [32] and electroencephalography (EEG) [53] are

techniques which are considered as part of medical imaging, but are quite different

to most medical imaging techniques. In the case of EEG, detectors are placed

on the subjects head to detect electrical impulses in the brain. This provides an

insight into how the brain works. With improvements in other imaging modalities,

EEG is not as widely used as it was previously. However, it provides excellent

temporal resolution, which other imaging procedures cannot as the data have a

continuous form. This is due to the fact that EEG continuously measures the
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electrical activity in the brain. EKG is similar to EEG, but instead the electrodes

are attached to the subjects chest and the area of interest is usually the heart.

Nuclear medicine is a field within medical imaging which detects radioisotope

emissions from radiotracers injected, ingested, inhaled or consumed in some way

by the subject to produce images of functional body processes. PET is a nuclear

medicine imaging technique which has already been mentioned and will be dis-

cussed in detail shortly. It is worth noting that nuclear imaging is not limited to

PET. Single photon emission computer tomography (SPECT) was widely used

for purposes similar to which a PET scanner is used for in a modern clinical set-

ting [81]. SPECT uses substances such as Iodine-123 for tumour imaging. This

type of scanning tool was in a sense a predecessor to PET and is based on similar

principles as it is a nuclear medicine imaging technique, but SPECT is based on a

single photon emission unlike PET, where two coincidental photons are detected

by the scanner.

While this work focuses on PET, it is obvious that these other techniques

are also vital in medical science and generally PET scans are conducted along-

side these techniques and not in isolation. We will now discuss PET imaging

procedures in more detail.

1.3 PET

PET is a medical imaging procedure that produces a three-dimensional image

or picture of functional processes in the body [75]. The system detects pairs of

gamma rays emitted indirectly by a positron-emitting radioisotope (radiotracer),

which is introduced into the body on a biologically active molecule [40]. Three-

dimensional images of tracer concentration within the body are then constructed

by computer analyses. As PET measures information which involves metabolism

of the radiotracer in vivo, it adds a different type of information to the structural

information available from say an MR scan.

The concept of emission tomography was introduced by Kuhl and Edwards

[40] in the late 1950’s. Annihilation is a key part of emission tomography. Once

the positron is emitted from the subject being studied, it meets an electron and

these two particles destroy each other as they are anti particles. This reaction
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produces two photons which move away from each other at 180 degrees and it

is these photons the scanner detects. This work was then improved further by

Phelps and Ter-Pogossian [76] at Washington University and Sweet and Brownell

[73] at Massachusetts General Hospital who were responsible for the first use of

an annihilation for medical imaging. These technologies have been refined and

improved over the decades to give the equipment which forms the basis of the

modern PET scanners, which are used to generate images such as the pediatric

patient imaged with both PET and CT, which is shown in Figure 1.2. Where

medical images are superimposed like this they are said to be coregistered. In

this case a pediatric patient is imaged with 18F FDG.

Figure 1.2: PET-CT image of the head and torso a pediatric patient [7].

Over the decades PET has advanced and in 2012 Wacholtz [78], published

a report discussing the growing role for PET in clinical practice. The report

highlights that until recently, PET had been envisioned and employed as a re-

search tool, particularly in the study of neurophysiology. In the last few decades,

however, PET is being more widely used in clinical settings.

The PET scanning procedure can be divided into three stages. Firstly, the
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radiotracer must be manufactured for injection to the patient. Secondly, once this

is done the patient can be placed in the scanner and the scan can begin. Finally,

once the scan is completed the data from the scan has to be analysed. These

three components of PET data generation and analysis will now be discussed.

1.3.1 Radiotracers

Figure 1.3: Schematic of an FDG atom showing presence of 18F [64].

As was already mentioned, PET is conducted because a physician or scien-

tist wants to know how a particular region of the body is using a substance of

interest. To achieve this the molecule of interest is labelled with a positron emit-

ting radionuclide and then given to the subject being studied which allows its

distribution to be estimated in vivo. The rate of uptake of these tracers can be

examined to determine if there is an abnormal use of them within an ROI. In the

case of cancer, FDG (illustrated in Figure 1.3) can be used as an analogue for

glucose, which is a marker for energy usage by tissue.

There are two complications that must be noted when using FDG. Firstly,

FDG transforms into fluorodeoxyglucose-6-phosphate (FDG-6-P), which can re-

vert back to FDG during the scan. This leads to complications in understanding

the tracer uptake in tissue. Secondly, Figure 1.3 shows the structure of an FDG

molecule and the readers attention is drawn to the presence of the 18F isotope
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in the diagram. FDG has the chemical formula C6H11
18FO5 while the chemical

formula for glucose is C6H12O6. One can see here an atom of oxygen and an

atom of hydrogen are replaced by the 18F atom. In a sense this is not ideal,

however this limitation is not hugely significant as the information gained from

an FDG scan has been shown to have an impact on diagnosis staging and re-

currence assessment for lung, head and neck, colorectal, breast, ovarian, cervical,

uterine, gastroesophageal, pancreatic, testicular and thyroid cancers, along with

melanoma and lymphoma [21, 55]. Also, the fact that FDG has a long half-life

of approximately 108 minutes makes it very useful in practice.

The relationship between how glucose and how FDG behave in tissue is the

subject of much discussion in the literature [34]. Spence et al. [71] discuss this

in the context of brain tumours by comparing FDG and 11C glucose. FDG and

glucose enter cells in the same way, however FDG is not metabolised in the same

way as normal glucose or 11C glucose. Although this is more practical as FDG has

a longer half life than 11C glucose, it is at the expense of gaining the information

of how glucose behaves exactly. While 11C glucose can be used instead of FDG,

and it more accurately reflects how glucose behaves in the body, it is rarely used

in a clinical setting due to its relatively short half-life, which makes it expensive.

This outline of radiotracers, should not be considered an in depth treatment

but merely an introduction to the subject. For more detailed discussion the reader

is referred to [31].

1.3.2 Scanning Procedure

Figure 1.1 shows a typical scanner in routine clinical use. This particular scanner

is a GE advance PET scanner. One can see the bed like area at the front of

the scanner, where the patient lies. The detector rings are contained in the large

structure to the rear with a cylindrical internal shape. This process of conducting

a PET scan using a scanner such as this is illustrated in Figure 1.4 for the case

of a small animal study.

Depending on the type of study being conducted, a subject undergoing a

PET imaging procedure will arrive at the scanner and may be injected with the

tracer immediately or may be placed in the scanner sometime before injection.
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Figure 1.4: Illustration of PET scan procedure [29].

The differences arise because there are different half-lives for different tracers and

because different types of scanning protocols are implemented to test different

hypotheses.

It is worth mentioning again that PET scan measurements are made up of

emissions over a time window. For example, a study might involve measuring

the number of emissions over a five minute window. If the time-bin is very short,

there may be one or no emission from a region over a time-bin. This is not

very useful as the quality of the information obtained depends on the number of

emissions. Having such a small number of emissions in a region of interest would

lead to very noisy ROI data which would be difficult to analyse. Also, knowing

that one emission came from a region in a very short period of time is of little

practical use.

There are two different ways to gather the emission data used in practice and

these are called static imaging and dynamic imaging. Static images consist of

one single time-bin where the patient will generally wait a period of time between

injection of the tracer and being placed in the scanner to allow the material being

injected to distribute throughout the body and reach equilibrium. Here only one

time-bin is used to generate a single PET image.

If more than one snapshot is taken, it is referred to as dynamic imaging. Here,

the patient is imaged numerous times in order to generate a picture of how the
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tracer is distributed throughout the body over time. The patient is most likely

placed in the scanner prior to the injection of the radiotracer. Also, if more than

one image is being taken while the patient is in the scanner and the time-bins are

too long then not enough information about the changes over time is obtained.

In this case, the kinetics of how the tracer moves between blood and tissue

are of interest. Arterial sampling using a catheter may be conducted before and

during the scan to measure the volume of radiotracer in arterial blood as is the

case in [51, 52, 71]. Having an arterial input function (AIF) is important for the

analyses conducted on scan images and if it is not generated by arterial sampling,

there are other methods which can be used to generate this data from the dynamic

PET image [33, 56].

In spite of this drawback, there are many advantages to dynamic scanning.

These include gaining a better understanding of how the tracer distributes through-

out the body over time. It allows a better understanding of when an equilibrium

occurs, i.e. if the tracer in tissue has reached a steady state. Another benefit

is that if a new tracer is under study, the distribution of the tracer over time

can provide information to researchers as to what protocol should be used for

static imaging. It must be noted that static imaging is standard practice in a

clinical setting. This is mainly to do with the time and financial costs associated

with dynamic scanning and also that static imaging is usually sufficient for the

questions clinicians seek to answer in practice.

For both dynamic and static imaging, the patient lies still in the scanner for

the duration of the scanning procedure. The tracer within the patient will be

emitting positrons. These will travel a ’tiny’ distance (less than one millimeter)

prior to meeting an electron. As the positron and electron are antiparticles, once

they meet an annihilation occurs and two photons in the form of gamma rays

are given off. These photons move away from each other in opposite directions

(180◦ from each other). If these two photons are simultaneously detected by

the detectors, we can infer that the annihilation must have occurred along the

line connecting the two detectors. This line is referred to as the line of response

(LOR). It is these photons coincidentally hitting the scintillators (material that

fluoresces when it comes into contact with ionising radiation) contained in the

detector rings of the scanner that the PET scan measures (the scanner ignores
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non temporal pairs) [20]. From here the data can be reconstructed and sinograms

(two dimensional matrices) containing the counts from the scan be generated [20].

Figure 1.5A (ellipse) illustrates a subject undergoing PET imaging. The center

  

Figure 1.5: Illustration of PET scan reconstruction [20].

of the PET gantry is noted in the figure with an ’x’. A tracer which is absorbed

by the tumour has been administered to the patient. An emission occurs in

the subject which leads to a pair of photons detected on the LOR A in Figure

1.5A. The LOR is characterised by the angle of orientation of the LOR and the

shortest distance between the LOR and the center of the gantry. This is shown

in Figure 1.5B where the angle of orientation (0◦ in case of the LOR marked A) is

plotted on the y-axis, and the shortest distance between the LOR and the center

of the gantry is plotted on the x-axis. Three other LORs (B, C, and D) are

shown for three other emissions. These points are also plotted in Figure 1.5B. If

a large number of LORs are plotted from the same point (or pixel), the resulting

graph is half of a sine wave turned on its side, as shown in Figure 1.5B. This is

appropriately referred to as a sinogram.

As these data are made up of these sinograms, they need to be transformed
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to Cartesian co-ordinates. Details of this transformation will be presented later

in this volume, but an illustration of what an image looks like before and after

this transformation are presented in Figure 1.5C and 1.5D respectively.

Technology has advanced recently and new PET scanners use a technique

known as time of flight where the small time difference between the detection of

the two photons is used to help estimate the location where the emission occurred,

i.e. where on the line of response the emission occurred. This technology should

continue to advance in years to come and lead to better quality images.

1.3.3 Structure of PET Data

As was mentioned in the previous section, once the counts have been stored by the

scanner, these have to undergo a transformation to be in the form of coordinates

and activity. The basis for this is the Radon transform [82]. Iterative expectation-

maximization algorithms are now the preferred method of reconstruction. These

algorithms compute an estimate of the likely distribution of annihilation events

that led to the measured data, based on statistical principles [57]. The PET

reconstruction procedure will be outlined and then a brief discussion on the post

reconstruction data will be presented.

The Poisson Nature of Annihilation Detection

As has already been mentioned, the data is generated by detecting two photons

being emitted from an annihilation occurring between a positron and an electron.

We need to determine two pieces of information about the emissions. The location

and the time that each detected annihilation occurred. Scanners are set up so

that coincidental detections must be at approximately 180 degrees to each other

and happen within nanoseconds of each other. If this does not happen the data

are discarded.

In trying to gain an understanding of the distribution of the data one considers

a Bernoulli trial where there are two possible outcomes, usually called success or

failure. Consider an emission being detected to be success and an emission not

being detected as failure. There are a large number of of annihilations but only

a small proportion of these are actually detected and accepted by the scanner
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(i.e. probability of detection is small). In this case the Binomial distribution (the

distribution which describes the probability of having a number of successes or

failures in Bernoulli trials) can be approximated by the Poisson distribution [66].

We start with a Poisson process with rate r. As the emissions are assumed

independent, and can either be detected or not detected, we can categorise emis-

sions as (those detected and those not detected): detected, type 1 with probability

p and missed type 0 with probability 1− p, where p ∈ (0, 1) is a parameter. We

want to consider the type 1 and type 0 random points separately. For this reason,

this new random process is sometimes referred to as splitting the original Poisson

process. In some applications, the type 1 points are accepted while the type 0

points are rejected. Thus, the new random process is also referred to as thinning

the original Poisson process [66].

This can be described more succinctly by saying if all the annihilations, which

occur, are Poisson then the detected annihilations are also Poisson. That is to

say that if X ∼ Poisson(λ) and Y is a subset of X, then Y is also Poisson as we

have simply reduced the sample space or thinned the Poisson process. The fact

that the data are Poisson will be useful later in this work when choosing weights

for fitting models to the data. It is also useful to note that the sum of Poisson

variables is also a Poisson variable.

Reconstructed Data

PET image reconstructions have been examined in [16, 35, 45, 55, 57, 77]. In

spite of the fact that PET has been in use for decades, there is no canonical way

to do reconstruction. Techniques used by different machines vary and include

filtered back projection as well as expectation maximisation algorithms. The

basis for these methods is CT reconstruction. As this thesis is primarily focused

on analysing reconstructed data and this section is background material, we will

only focus on the least squares reconstruction, which is known as filter back

projection. We will also consider a simple two dimensional case rather than

the three dimensional case, as the two dimensional case is generalisable to three

dimensions and is much more understandable.

We have already stated that not every emission is detected by the scanner.
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There will be a number of these photons attenuated by the tissue. This is similar

to how an X-ray works. The attenuation characteristics of the tissue determine

what proportion of emissions make it to the detectors. The probability of de-

tection is a function of the line integral of attenuation on the LOR. This can be

thought of as a sum of the attenuation γ(s) at every point on the LOR

pl = e−
∫
l γ(s)ds.

We also note that at each location s in the field of view the expected number of

annihilations λ(s) is Poisson. The collection of observed counts

N = (n1, n2, ...nl),

are Poisson variables (thinned) with rates

(p1µ1, p2µ2, .., plµl),

where pi is the probability of detection.

We now consider a two dimensional image similar to what you would obtain

from a particular slice and time-bin in a PET study. This could have say 128×
128 voxels (three dimensional pixel). We have already seen µl =

∫
l
λ(s)ds. We

now express the data as a linear model i.e. µl =
∫
l
λ(s)ds = xTl λ, where xl is

the integral along l. Values of xl can be obtained by placing a point source at

each voxel in the field of view and obtaining a measurement (nowadays this is

approximated using CT images).

Let n∗l be the attenuation corrected count n∗l = nl
pl
, and N∗ = (n∗1, n

∗
2, ...n

∗
l ).

Then the form of the linear model is obtained as

N∗ = Xλ+ ε,

where X = (x1, x2, ...xl)
T and ε is a zero mean error term without constant

variance. That means the expectation of n∗l is xTl λ with variance
xTl λ

pl
. Using

weighted least squares squares an estimate for λ called λ̂ is found as

λ̂ = (XTX)−1XTN∗.

The use of least squares type methods has been the basis of reconstruction for

some time. Although others have proposed alternative methods, which may be
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more advantageous, discussing this is outside the scope of this work. For further

details the reader is referred to [16, 35, 45, 55, 57, 77].

In practice, the filter back projection solution is smoothed by convolution

with a Gaussian kernel. This can be thought of as multiplying the filter back

projection by a matrix Sh.

λ̂h = Sh(X
TX)−1XTN∗ = Shr ∗ b = rSh ∗ b,

where ∗ denotes a convolution, r = (XTX)−1 and b = XTN∗. It is

Correcting the Data for Volume and Duration

A window of time where the number of emissions is counted from a PET scan can

last from a few seconds to several minutes. There will likely be more emissions

in an interval of say five minutes over one of five seconds. Accordingly when

analysing a PET scan the time-bins can be thought of in terms of thinning the

Poisson process. Dividing each measured value by the duration of its time-bin

takes account for this. It is also necessary to take account of the volume being

examined. For example, if one examines a large region and a small region there

will be more emissions in the larger region as it has a larger volume. This is

compensated for by using a unit of radioactivity such as the Becquerel (Bq) per

unit volume. One Bq is the equivalent to one nucleus decay per second. In the

case of PET the data are usually written as kilo-Becquerels per cubic centimeter

or (KBq cm−3).

Correcting the Data for Decay

In Boyce and di Prima [10] radioactivity is discussed in the context of differential

equations. If one has a source of radiation N , which is decaying as follows:

dN

dt
=

1

τ
N, τ < 0

one can solve this equation as

N(t) = N0e
t
τ ,
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where 1
τ
< 0 is the decay constant and, in the case of radioactive decay, it can be

related to the half-life of the radioisotope by t 1
2

= τ log 1
2
. This is easily found by

solving
1

2
= e

t
τ

for t. The half-life plays a key role in deciding the dose administered to the

subject being imaged. In the case of 15O a large dose is injected as the half-life is

approximately two minutes and injecting a smaller dose would not yield an image

with useful resolution. In the case of FDG, which has a half-life of almost two

hours, smaller doses are sufficient.

If we consider the PET scan counts, are gathered over a collection of time-bins

whose intervals are defined by (s, e], where s and e are the start and end times of

the time-bin measured in seconds, we can convert this to decay corrected activity

as follows

Z = α
e

(s+e)τ
2

v(e− s)
λ̂h = aλ̂h,

where v is volume and α is called the calibration factor, which is usually available

from the scanner manufacturer.

Mean and Variance of PET Data

The linearity of the reconstruction allows us write down an expression for the

mean and the variance of the reconstructed data Z.

E(Z) = aE(λ̂h) = aSh(X
TX)−1XTE(N∗) = aShλ

V ar(Z) = a2Sh(X
TX)−1XTV ar(N∗)X(XTX)−1STh .

E(N∗) = Xλ and V ar(N∗) is a diagonal matrix with entries
xTl λ

pl
. It is worth

noting that if the V ar(N∗) is proportional to the identity, then

V ar(Z) = a2σ2Sh(X
TX)−1STh .

It has been shown that if we let C = aShλ, the resolution limited expected decay

corrected activity values, then we can represent the random deviation of Z from

C by

Z − C ≈ aC
1
2σhε,
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where ε is a standardised second order stationary process defined over the imaging

domain, whose power spectrum is simply related to the resolution filter. Thus,

reconstructed activities have a variance proportional to the mean, i.e.

V ar(zi) = σ2a2E(zi).

This result allows us to use the quasi-Poison nature of the data to our advantage

in modelling.

Analysis After Reconstruction

Once this process has been completed, it is extremely wasteful to simply look

at (eyeball) the PET image and do no quantitative analysis. If one were to

eyeball Figure 1.6, which shows the coronal, sagittal and transverse views of an

FDG brain study, and do no further analysis, then the best information available

from the scan may not be attained. This would be regrettable as the cost of

a PET scan in Ireland varies between e1,206 and e2,500 [4, 23, 37] and given

this significant cost, one would hope to get as much benefit from the procedure

as possible. However if the financial cost was not an issue, then it would still

make sense to do a quantitative analysis of the PET scan as information that

can be derived by this analysis could have an impact on treatment and outcome.

Such an analysis can determine if there is a higher volume of blood in one region

over another and can answer some other questions, that could have an impact on

treatment. In cancer, if tumours have developed their own vascular network, is

of interest and this is an important prognostic indicator. Hence estimating blood

volume is key here. Given the importance of the questions PET seeks to answer

and the significant financial cost associated with doing a PET scan, all available

useful information should be extracted from the scan.

The work in this thesis is based on dynamic scans where the kinetics of tracers

over time are of interest. We consider a subject who has been imaged with PET.

We may wish to know the activity in a particular region of the subject. The

activity at each voxel and at each time point in the ROI can be calculated. This

gives n time-courses where n is the number of voxels in the ROI. The number

of time points is the number of snapshots taken by the scanner. As there may

be a large number of these time-courses, it is customary to take a measure of
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Figure 1.6: FDG brain study of subject with a resected glioma,time activity

curve and AIF are also shown.

centrality of all these time-courses to represent the region as a whole. This is

usually the mean, however in some datasets, with a small number of voxels, it

may be more appropriate to use the median. Taking averages like this reduces

the noise in the system. An example of an average PET time-course (called time

activity curve) is shown in Figure 1.6. This is one of the key components required

to begin kinetic analysis of PET data.

Kinetic analysis of PET data is the focus of this thesis. To aid in this task,

the activity in the arterial blood is usually measured during the PET scan. An

example of an AIF which is used in this work is also shown in Figure 1.6. This

AIF has been generated by arterial sampling. This is where a catheter is inserted

into an artery (usually radial artery) of the subject being imaged and blood is

drawn from the patient. This is then examined to determine the activity in the

blood. However, having to conduct arterial sampling is seen as a disadvantage

by many clinicians. This has led to methods being developed to generate the

radioactivity in arterial blood without arterial sampling by generating the AIF

from the image, such as those proposed by Huang and O’Sullivan and O’Sullivan

et al. [33, 58].
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The software used in this work to view images is AMIDE [42] (A Medical Im-

age Data Examiner), which is a free software tool used for multimodality medical

image analysis. AMIDE allows PET, CT, SPECT and MR scans to be viewed,

manipulated and ROI time course data to be exported. There are a number of

tools provided by AMIDE such as cropping, Gaussian filtering, principal com-

ponent analysis and perhaps most importantly the ability to draw ROIs on the

images and subsequently extract these data. Three dimensional ROIs can be

drawn using ellipsoids, elliptic cylinder’s, boxes, isocontours, or by hand. Data

can then be extracted from these ROIs and statistics can be generated for these

regions. AMIDE was used to select ROIs that were of interest to be examined in

this chapter. Later an alternative software package Alice will also be introduced,

and this package serves a similar function.

The extracted data from the PET scan was then analysed using a common

freely available statistical software system called R [65] version 2.14.1. R is a

free software environment for statistical computing and graphics (R development

Core Team, 2008). As well as having many built in functions, R also allows the

user to write their own code to analyse data. These two pieces of software were

vital in the work contained in this thesis.

1.4 Technical Contribution of this Thesis

The primary goal in kinetic analysis is to separate the flow and retention charac-

teristics of the radiotracer. As has already been mentioned, the AIF is measured

by arterial sampling in our case and this represents the activity in the arterial

blood flowing around the body. What remains is the estimation of the amount

of tracer in the tissue. We consider the tracer in tissue in terms of the residue

function (which will be called R(t) later in this work) and this is what we seek

to estimate. This residue function, which describes the proportion of radiotracer

remaining in tissue over time, allows quantities to be estimated which have prog-

nostic value to the subject being imaged. For example, the initial value in the

residue is flow and the final value represents the metabolic flux.

As dynamic PET data contains two components, flow and retention, this can

be thought of as the atoms of radiotracer being in blood or in tissue. The fact that
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the atoms can be in distinct states leads to compartmental models being used to

examine the kinetics of the system. Those familiar with epidemiology will know

of compartmental models for subjects in different states, such as susceptible, in-

fected, or recovered. In Chapter 2, compartmental models used in kinetic analysis

and Markov modelling will be reviewed. Also, a novel Markov formulation of the

most widely used and well established compartmental model will be presented.

The relationship between the two formulations will be established and shown to

be equivalent in a limiting case. This Markov approach has not previously been

studied in the context of PET data.

Nonparametric estimation is a statistical method that allows the form of a

model to be varied based on the observed data. Nonparametric models differ

from parametric models in that the structure of the model may not be known

a priori but is estimated from the dataset. A nonparametric model is often

employed in cases where data is complex or the distributions underlying the data

are unknown. An example of a nonparametric estimator is a histogram, which

is used to estimate a probability distribution. This can be improved on by using

kernel smoothing. In this work, we will be interested in nonparametric estimators

for the residue function in PET imaging [28, 38, 59, 60].

In Chapter 3 a nonparametric model for PET data is introduced. Techniques

for model comparison will be presented in the case where models are nested or

non-nested. In the case of non-nested models, a cross-validation approach is em-

phasised as traditional analysis of variance techniques may not be appropriate

in this situation. The concept of this work has already been published in Hawe

et al. [28]. This is the first time a nonparametric method based on a piecewise

constant residue has been published. This will be applied to PET data and com-

parisons made between this and the compartmental model. Simulation studies to

examine the efficacy of the various models is undertaken. This includes looking

at rates of convergence for functionals and examines the test statistics used in

linear regression in this nonlinear case.

Waxman et al. [79] describe guidelines on brain PET imaging which are briefly

reviewed here, as the data used in this thesis is on brain imaging with FDG-

PET of subjects with gliomas. In the brain, glucose provides approximately 95

percent of the energy needed for the brain to function [79]. Waxman et al. discuss
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the relationship between glucose metabolism and neuronal activity highlighting

that “FDG is suitable for imaging regional cerebral glucose consumption with

PET since it accumulates in neuronal tissue depending on facilitated transport of

glucose and hexokinase mediated phosphorylation. Therefore changes in neuronal

activity induced by disease are reflected in an alteration of glucose metabolism”.

Simply put, if one has a hyper or hypoglycemic tumour, one can visualise higher

or lower than usual uptake respectively. The relationship between brain energy

consumption and neuronal activity is mentioned here, but there are other uses of

FDG-PET in brain imaging. For these the reader is referred to [71, 79].

In Chapter 4, various analyses including the models mentioned in Chapter 2

and 3 along with another alternative, a mixture model, will be applied to a data

set from a clinical study from the University of Washington, Seattle. This is a

large dataset consisting of over forty patients. This data set consists of subjects

with resected gliomas imaged with FDG-PET. Whilst analyses have previously

been conducted on this data set by Spence et al. [71], this is a secondary analysis

examining other techniques, such as nonparametric models, which have not pre-

viously been applied to these data. Comparisons between all three models will

be presented. In each subject an individual analysis is conducted on four regions

of the brain. An analysis is also conducted on every single voxel in the field of

view. Analyses such as this are frequently seen in the literature as they provide

an advancement of the knowledge of medical sciences.

It is also worth noting that the work in this thesis was automated using batch

files in Windows XP and 7 to run analyses. This automation was particularly nice

as it was able to analyse all datasets contained in a folder and does not stop until

the analyses are completed. It has been suggested that this could be modified to

become an R package. This is presently being considered.

1.5 Discussion

There have been great advances with PET since the 1950’s. The work invested

in getting the technology to where it is today has not stopped and in the coming

years we can expect more advances in engineering and science to improve PET

scanners. Examples of improvements include scanners that can now conduct CT
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scans or MR at the same time as a PET scan as well as time of flight PET

scanners and PET scanners with better resolution.

The teams of scientists working on advancing PET are diverse. Although

this thesis is a statistical perspective on PET, there are engineers working to

improve scanning technology and resolutions, physicists and chemists working

on improving and making new radiotracers, physicians working with patients

are formulating hypotheses to be tested with PET along with those who try to

infer information from PET images. Even today, a large body of researchers are

attempting to improve the reconstruction process.

After reconstruction there is still much work being done in PET research. In

the case of static imaging, a lot of research is being conducted on cancer, such

as sarcoma, with a view to improving treatment and patient outcomes. This

work relies heavily on survival analysis [61]. In terms of dynamic imaging there

is a volume of work underway, including developing nonparametric techniques to

examine PET data such as that in [14, 28, 50, 60]. There are also many other

open problems in PET being investigated such as kinetic mapping, segmentation

and recovery of the AIF without arterial sampling [33, 58].

PET has been established and validated as a method for understanding cancer

in patients, how a patient’s heart is functioning, neurological disorders, as well as

other areas that PET is only now branching into. It can be expected that in the

future the areas PET will be used for will grow, leading to many new problems

for researchers to work on in statistics and other sciences.

In PET the role of statistics cannot be understated. In reconstructing the PET

image there is a wide variety of statistical problems which have to be solved. It

must be remembered that a PET data set is a very large data set. Once the

reconstruction is completed, a large number of techniques are applied depending

on what is of interest in the scan. In some cases a longitudinal study is presented

with the outcome of patients several years after diagnosis available. In this case

one may try and establish if parameters obtained from the scan have prognostic

value. Once this is established it may be used in a clinical practice to influence

the course of treatment. This is only a small taste of the use of statistics in PET.

To explain the position of statistics in medical imaging further, if one applies for

a medical imaging research grant from the United States National Institute for
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Health, one must include a section on statistics. If this is not included then the

proposal will not be considered. This seems a responsible attitude for funding

agencies to take as the volumes of data being produced are large and given the

sensitive nature of any record of a medical procedure, it seems prudent to have

statisticians involved from the start of the project.

25



Chapter 2

Compartmental Models and

Inference

2.1 Outline

In this chapter, models which are usually applied to PET data will be introduced.

These models are built on the work of Meier and Zierler [47] and have been

previously proposed by Kety and Schmidt [39] and Huang et al. [34] and are

discussed by Gunn et al. [26, 27]. While the AIF is known it remains to have

a form to model tissue activity, which is generally done using compartmental

models. These compartmental model equations have some assumptions, which

may not always be justified and so in this chapter we consider the compartmental

models from a stochastic point of view based on Markov chains.

In Section 2.2 we begin by discussing an equation called the basic equation of

dynamic PET. This equation contains a term representing the activity in blood

and another representing activity in tissue. A compartmental model technique

in estimating this tissue term will be presented in Section 2.3. In examining

compartmental models, we will review the assumptions inherent to the model

and the two most widely used models in PET, the one compartmental Kety-

Schmidt model and the two compartmental Sokolov-Huang model and discuss

parameters of interest. A Markov chain approach to modelling the PET data

is proposed in Section 2.4 and the relationship between the compartmental and

Markov models will be examined and presented here. A review of statistical
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inference will be presented in Section 2.5 which leads to an illustration of the

compartmental model which will be presented in Section 2.6.

It is worth highlighting here that there are alternatives to compartmental

models based on biochemistry of the human body or the vascular system [3]. In

a sense the work others have done such as the Physiome project (physiome.org)

has inspired the efforts in this Chapter.

2.2 The Basic Equation of Dynamic PET

In terms of modelling dynamic PET data, there are a number of assumptions

required, perhaps the most important of these are the fact that the data is con-

sidered linear and time invariant which allow the techniques presented in this

section to be used. Linear means that increasing the dose by an amount in-

creases the resolution by a related amount and that this relationship is linear.

Time invariant means that we assume had the dataset been generated at an ear-

lier or a later time, it would not effect the results. Perhaps this can be put simply

as if a subject is imaged now or several hours later should not effect the results

of the scan.

In the case of the PET scan, CT (t) is the concentration of atoms in a tissue

region i.e. the total tissue activity per unit volume (KBq/cm3). This is expressed

as a convolution involving the AIF (CP (t)) which is activity per milliliter (mL)

of blood and the tissue impulse response or residue function (R(t)), which is

necessarily positive and monotonically decreasing [47],

CT (t) = K

∫ t

0

R(t− s)Cp(s)ds (2.1)

where K is a proportionality constant, interpretable as an overall flow, with

units mL per unit time. Physically the residue function describes the fraction

of indicator, which remains in the tissue in response to an idealised bolus (Dirac

delta function) input concentration at time t = 0. Initially the residue must be

unity (R(0) = 1) and from there it decreases (at least does not increase) as t

increases. This has the same properties of a survival curve in statistics. The flow

and extraction of tracer is thus estimated using the residue function.
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If the fractional vascular volume within the tissue is vB, is in units mL of blood

per unit volume of tissue and measurement of the arterial time-course CP (t) is

made at a site (radial artery or heart) which is remote from the tissue region, a

delay term (∆) is included as well as a term to represent tracer in arterial blood

within the ROI, then Equation 2.1 becomes:

CT (t) = vBCp(t−∆) +K

∫ t

0

R(t− s)Cp(s−∆)ds (2.2)

Equation 2.2 is termed the basic equation of dynamic PET radiotracer imaging

[28, 60, 47].

We now consider some background to this equation by looking at material

derived in Meier and Zierler’s seminal paper [47] on indicator dilution theory. In

this work the authors provide a review of indicator dilution theory and prove the

central volume theorem, which states that

Blood Flow =
Blood Volume

Mean Transit Time
.

Although this theorem had been used widely before Meier and Zierler’s work was

published, a proof had not been published. The authors believed ”it may be of

some value to present a direct proof of its validity under appropriate conditions”.

Consider a vascular system, where a radiotracer has been injected into the

subject being studied. This radiotracer is making its way through a region of

tissue which includes a vascular system. A simple schematic of what a vascular

system might look like is shown in Figure 2.1. We note that this is a simpler

ENTRY 

EXIT 

Figure 2.1: Schematic of vascular system within a region of tissue.

system than the human body as one can see there is only one entry and exit

point in the system. We will assume the system has a constant vascular volume

V which flows at a rate of F.
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It is worth noting that all fluid particles need not take the same amount of

time to get through the system and in fact it is unlikely that they will. As

a consequence we will not have a constant travel time but instead will have a

distribution of travel times. We will also assume that this distribution is invariant

over time to simplify the modelling. Additionally, we require the flow of the

radiotracer in the system to represent the total flow of the substance occurring in

the body, i.e. the flow of the water tracer should be the same as how normal water

circulates around the body. It is also necessary to assume that there is a sink in

the system, that is to say that if a subject was injected with 15O water that the

total amount of tracer is eventually removed from the system (i.e. tracer ends

up in the bladder and is disposed of) and it is also assumed that recirculation

does not occur. Recirculation can be thought of simply as the radiotracer doing

a second lap of the body while in the blood.

Suppose q units of radiotracer were injected at the start of the vascular system

in Figure 2.1. The observed concentration at the exit of this system is a variable

and is called c(t). The amount of indicator leaving the system in a time interval

of length δt is given by the concentration of fluid at the exit multiplied by the

volume of this fluid leaving multiplied by the length of the interval (c(t)Fδt).

If all the radiotracer which enters the system must eventually leave the system,

then

q =

∫ ∞
0

c(t)Fδt = F

∫ ∞
0

c(t)δt.

However it may be the case in a PET scan that not all the radiotracer will have

left the system before the scan concludes so we consider

h(t) =
Fc(t)

q

as the fraction of radiotracer leaving the system per unit time. Naturally the

integral of this quantity over an infinite time window will be unity but

1−
∫ z

0

h(t)dt

for real z provides the amount of radiotracer left in the system at time z. Ob-

viously q can be considered as the concentration of tracer entering a region and

c(t) the quantity flowing out of it.

29



2.3 Compartmental Models

As previously mentioned in Section 2.1 PET kinetic analysis is conducted to

separate various signals measured by the scanner. In order to isolate the desired

component of the signal, a mathematical model relating the dynamics of the

tracer molecule in its various states is used. In compartmental modelling, each

of these states is represented by a distinct compartment. Compartmental models

are a well established technique in conducting kinetic analyses in PET [26, 27,

48, 62, 82], where each compartment is represented by the concentration of the

tracer within that compartment as a function of time.

More accurately, a compartmental model is a mathematical way to describe a

system where materials or energies are transmitted between different states. For

this type of modelling to be feasible, there are a number of assumptions which

must be satisfied. Firstly, each compartment must be homogeneous. Once a par-

ticle enters a compartment, it instantaneously follows the spatial and temporal

distribution of all particles in that compartment. The exchange between com-

partments is assumed to relate to the volume of the quantity of interest in each

compartment (Law of Mass Action). These assumptions are discussed in more

detail in the next section. There are more assumptions that are required in the

case of imaging that are not always true in other applications of compartmental

modelling, which are also presented in the next section.

There are a number of positive and negative aspects associated with using

compartmental models. There is a large body of work in the literature on the

background to compartmental models [9, 24, 26, 27]. While [24] discusses com-

partmental models generally, [26, 27] discuss compartmental modelling in the

context of PET and Bates and Watts discuss compartmental models in the con-

text of nonlinear regression [9]. Having a wide literature makes it much easier

to implement compartmental models and where problems arise, there may be

solutions in the literature.

Compartmental models are relatively straightforward to implement. Software

such as JSim (www.physiome.org) are designed to make applying compartmental

models to data quick and uncomplicated. They can also be implemented in R

as is the case in this work [65]. Although writing software to fit these models

30



can be straightforward, frequently the optimisation involved in fitting the models

converges to the wrong minimum or does not converge at all and finding the right

solution can be tedious and laborious.

In the rest of this section, a brief discussion of the the assumptions underlying

compartmental models and justification for the use of these models is presented.

2.3.1 Assumptions

Homogeneity

In the case of compartmental models, homogeneity means that the distribution of

tracer in each compartmental is uniform. This is not an unreasonable assumption

to make if a small region of a patient was under study such as a small white

matter region of a human brain or a small region of muscle in a limb. One has

to wonder if it is appropriate, however, to examine an entire human brain for

example and treat this as one compartment. Questionable analyses like these can

be seen in the literature and although, to the eye, fits of the model to the data

may look appropriate, this may not be the correct model to use and may result

in parameters estimated from this model being incorrect. An obvious example

of this is the case of a region containing diseased tissue. This will include both

healthy and damaged tissue and will not be homogeneous. In fact, if all that was

contained in the region was purely the disease, it may still not be homogeneous as

aggressive diseases tend to exhibit heterogeneous phenomena. To emphasise this

point further we consider a region containing a brain tumour and a neighbourhood

of that brain tumour. This could include cancer and healthy tissue, arterial blood,

venous blood, necrotic tissue, white matter, grey matter, spinal fluid and possibly

bone. This is far from homogeneous.

Instant Mixing Within Compartments

Compartments are assumed to be homogeneous for all time, so when a particle

enters a compartment it is assumed that the distribution within the compartment

will remain the same. This is not a massive stretch in that if there are a thou-

sand particles in a region and one more arrives it will not significantly effect the

distribution of the particles in the compartment. However, in the case of a PET
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study, particles may be attracted to one particular region of tissue over another

and, if cancer cells are present, this is even more likely. Again as was the case for

homogeneity, we highlight that cancer does not behave in a well stirred fashion.

Law of Mass Action

The law of mass action states that the rate at which a reaction occurs is propor-

tional to the product of the concentrations of the participating molecules [74].

This law assumes continuity of the quantity of interest and this means that the

compartments can be considered to be in continuum, i.e the number of atoms of

tracer is a continuous and differentiable quantity. This allows us to translate the

compartmental models to a mathematical formulae later in this chapter. This is

at odds with the fact that the tracer is absorbed by the tissue in small amounts.

Assumptions about the tracer

We assume that the tracer being added to the system does not alter the behaviour

of that system. This assumption is really stating that the tracer does not change

what we seek to measure. In the case of FDG we assume that the FDG being

present in the system does not effect the subject’s glucose utilisation. This is

important as the goal of the scan is to understand a process in the body. However

if the tracer changes the process of interest in the body, then we are measuring

something different to what we intend.

It is assumed that the tracer behaves in the same way as the substance it seeks

to emulate i.e. it behaves similarly to glucose, etc. Again this is obvious as if the

radiotracer does not behave in the same way as the substance it emulates, then

we are not measuring what we want. In the case of FDG, there are differences

between how glucose and FDG behave, however these have been discussed in

Chapter 1 and the use of FDG in a clinical setting is well established. We also

assume that the labelling procedure does not effect the way the body uses the

tracer. Although this is not the case for FDG it has a long half-life which is

advantageous in practice as it lasts longer. 11C Glucose would be a more accurate

glucose analogue but with a half life of approximately 20 minutes, it is of little

use in clinical practice. It has also been highlighted in Chapter 1 of this thesis
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that FDG has been validated as a good prognostic indicator for many cancers.

2.3.2 Justification for the Use of Compartmental Models

While the assumptions provided above are somewhat questionable, one should

also realise that there is significant justification for the use of compartmental

models in practice. Studies carried out in vitro have shown that in a test tube

setting the models are accurate and this was recently mentioned in the context

of nonparametric modelling by O’Sullivan et al. [60]. The extension from this

to small heterogeneous regions of the body seems reasonable and is the main

justification for this in practice.

2.3.3 The One Tissue Compartment (Kety Schmidt) Model

Figure 2.2: One tissue compartmental model [27].

The present formulation of the transport of drug through a subject has been

described by Kety and Schmidt [39] and Phelps et al. [63]. As previously men-

tioned, this can be written down simply by assuming the rate of change of con-

centration of drug in tissue C1(t) is equal to the rate constant associated with

going from the plasma into tissue multiplied by the amount of drug in the blood

and subtracting from it the concentration in the tissue multiplied by the rate

constant associated with moving from tissue to plasma. For the Kety-Schmidt

model, shown in Figure 2.2, this gives Equation 2.3.

dC1

dt
= K1CP (t)− k2C1(t) (2.3)

Here our method of solution is to assume that the concentration in the plasma

is known and simply solve this equation for C1(t). This is sensible as in the case of
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a PET study the arterial input is usually measured by arterial sampling. Equation

2.3 is a first order linear ordinary differential equation [10] and can be solved by

the technique of an integrating factor [10]. Detailed workings are present in

Appendix A at the end of this chapter, where the solution is found to be:

C1(t) = K1

∫ t

0

ek2(t−s)CP (s)ds. (2.4)

One can see that C1(t) can be related to the fundamental equation if the residue

function R(t) = e−k2t giving

CT (t) = vBCP (t− s) +K1

∫ t

0

ek2(t−s)CP (s)ds.

It is worth highlighting that the residue is the key parameter, we seek to esti-

mate in this work and that physiologically it represents the proportion of tracer

remaining in tissue, in response to an idealised bolus and physiologically it can

be interpreted as the fraction of indicator remaining in tissue.

2.3.4 The Two Tissue Compartment (Sokolov Huang) Model

Figure 2.3: Two tissue compartmental model [27].

In the case where the tracer undergoes a reaction in tissue, a second tis-

sue compartment is added [63, 70] as shown in Figure 2.3. For example the FDG

tracer is transformed into FDG-6-P and back during the imaging procedure. Sim-

ilar to the Kety Schmidt model, one can write down first order linear continuous

deterministic differential equations for the system.

dC1

dt
= K1CP (t)− (k2 + k3)C1(t) + k4C2(t) (2.5)

dC2

dt
= k3C1(t)−K4C2(t). (2.6)
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Again, we assume that the concentration in the plasma is known and simply

solve this equation for C1(t) and C2(t). Equations 2.5 and 2.6 are a coupled

system of order linear ordinary differential equations and can be solved using

Laplace’s transformation [10, 34, 82] and linear algebra [6]. The workings in

finding a solution to these equations are given in Appendix B at the end of this

chapter. One can see that C1(t) and C2(t) can be related to the fundamental

equation if R(t) is a mixture of exponentials giving

CT (t) = vBCP (t− s) +K

∫ t

0

(φ1e
θ1(t−s) + φ2e

θ2(t−s))CP (s)ds,

where φi and θi depend on the rate constants and the residue function R(t) =

φ1e
θ1(t−s)+φ2e

θ2(t−s). Full details relating these rate constants and φi and θi along

with the method of solution for the two compartmental model using Laplace’s

transformation can also be found in Appendix B.

These techniques for the one and two compartmental models can be gener-

alised to more complicated models which arise with receptor tracers or tracers

which undergo a more complicated transformation. Further details of these mod-

els can be found in [26, 27, 43].

2.3.5 Parameters of Interest

Figure 2.4: Residue function with key functionals highlighed.
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Parameters of interest which are generated in this work stem from the residue

function as is shown in FigureRESILL. Having an estimated residue allows the

subsequent parameters to be estimated. We now briefly discuss five parameters.

Firstly we discuss extraction, which is the proportion of radiotracer which remains

in tissue at the end of the scan. In theory it is hoped that a steady state has

been reached in the body and at this point the extraction is constant. In reality

this may not be the case as the scan is usually only 90 minutes long. However, it

is the best estimate for extraction. It is estimated as the last time point in the

residue function.

Flow has already been discussed in the context of defining the basic equation

of dynamic PET. The goal in carrying out kinetic analysis is to separate flow from

retention. In different scenarios, high and low values of flow can have positive or

negative outcomes for patients. The flow parameter can be measured by fitting

the compartmental model to data and obtaining the value at the start point of

the residue function.

Another parameter frequently measured in PET studies is the metabolite flux,

which is the extraction multiplied by flow. At late time points on an FDG scan

flux dominates the image.

The volume of distribution (vD) typically refers to the volume of blood (or

plasma) that would be required to account for the amount of drug in the entire

body - assuming the drug is distributed uniformly [36]. More simply this can be

described as the number of liters of blood required to have the same amount of

PET tracer as that contained in the tissue. This can be estimated as the integral

of the residue function.

The fractional blood volume (vB) is the volume of space in an ROI occupied by

arterial blood. This is a proportion of the entire ROI so obviously as it represents

a proportion, it can only take on values between zero and one. This parameter

is of clinical significance when a patient has suffered an injury or illness such

as brain injury or stroke, or in cancer care where physicians seek to answer the

question of whether a malignant mass has developed its own vascular network,

or stroke where blood flow in a key prognostic indicator.

As our goal is to estimate these parameters, it is important to have the right

model to fit to the data. Key to this is that assumptions are not violated and
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that the model is appropriate for the data. As has already been established in

some cases the compartmental models use is questionable at best and so we now

consider what happens at the molecular level.

2.4 A Markov Formulation of Compartmental

Models

We have already stated that compartmental models are based on a number of

assumptions, which some analysts have called into question [14, 28, 50, 60]. These

assumptions include that the concentration of tracer in tissue is a differentiable

quantity, that there is instant mixing within compartments, that the exchange

rate of materials among compartments is related to the densities of these com-

partments and that the compartments are homogeneous.

An exploration of compartmental models was undertaken with a goal of gain-

ing an insight into how these models can be generated from a stochastic modelling

perspective. This flow from the discrete stochastic approach to the continuum

hypothesis is an interesting area to study in itself. Although, the work here may

not be of direct interest to others for practical use, the understanding of how

the compartmental models work that is gained by an analysis such as this is

invaluable.

Directly, this is not likely to make an impact on how PET data are modelled as

this analysis is a level far far below the resolution, which a PET scanner is capable

of, however taking an approach such as this allows us exploration of the models

in a new way and provides avenues of future research such as the nonparametric

method, which will be presented in Chapter 3.

Compartmental models are widely used in fields such as epidemiology where

the variable in question is not a quantity that can be measured in a quantita-

tive state, or in a pharmaceutical plant where containers are undergoing constant

agitation. Instead they are used to model different states that the variable can

take on. For example, a subject in an epidemiological study can be susceptible

to disease (S), infected (I) or recovered (R) from disease and this is how the SIR

model in epidemiology has been established. In the case of a PET radiotracer it
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can be thought of as being in the circulatory system or in tissue and a similar

formulation applies. However, it is not as clear cut as to what state an atom

of radiotracer is in, as is the case in the SIR population model as the infected

populations are much more homogeneous compared to the human body, and in-

stant mixing may not occur in vivo. You are either susceptible or not susceptible,

infected or not infected, recovered or not recovered. In the case of a region of

tissue, you can be in arterial blood or in venous blood, be absorbed by one of

many types of tissue, etc. This is much more complicated.

This following section of this chapter presents an alternative approach to

modelling these states using a Markov chain approach. Results related to the

Markov model are presented and a limiting case where both formulations are

equivalent is presented.

2.4.1 Markov Chains

A Markov chain is a discrete stochastic model, which can take on a number of

states. The future state of the process depends only on the present and not on

the past. We can express this as

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x|Xn = xn).

This is why Markov chain models are described as memoryless or time homoge-

neous. The transitions from state to state are modeled by a matrix of transition

probabilities (P ) [13]. The (i, j)th entry in P is the probability that an atom

presently in state i will be in state j at the next time step. This can be written

as a discrete equation

xn+1 = P xn. (2.7)

A simple example of a Markov chain is to consider a random walk, where you

start at the origin and at every time point you move either one unit left or one unit

right with equal probability. In this case where you have walked previously does

not effect where you will end up next, all that matters is your present position.

This is illustrated in Figure 2.5, where the random process is moving from blood

to tissue.
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A more complicated example is the exponential distribution. In this case we

can write down a probability density function for the distribution as

fx(x|λ) = λe−λx x > 0

fx(x|λ) = 0 otherwise.

The mean and variance can be found as 1
λ

and 1
λ2

respectively. This distribu-

tion can be found to exhibit the memoryless property as follows: The cumulative

density function for the exponential distribution is given by eλt. This is the prob-

ability that the random variable is greater than some known value called say t.

If we try and find the probability of the random variable being greater than t+ ε

given that the variable is bigger than ε, we find the same answer, again owing to

the memoryless property of the exponential distribution. This example has been

highlighted as the memoryless property of the exponential distribution is well

known and also because the retention times for particles within a compartmental

model are exponential and this distribution is memoryless. The reason the expo-

nential distribution is mentioned here is that the retention time of a particle is

exponential. Relating this to the residue function is the basis of further work in

this chapter.

Figure 2.5: Random process of an atom being in the blood or tissue at

various times.
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2.4.2 The Relationship Between Discrete Markov Chain

and Continuous Differential Equation Models

Simple Markov Models for Chemical Equations

This section involves some theoretical analysis of the compartmental models from

a probabilistic point of view. Work like this has previously been used in chemical

equations, but not in the context of PET compartmental models. Anderson et

al. [5] considers a chemical reaction where A and B mix to form C, the basis

of the model is that the probability of a reaction occurring in a time interval ∆t

should be proportional to the product of the number of atoms of A and B and

the length of the time interval ∆t.

Let us first assume that the number of atoms in A, B and C are known and

called XA(t), XB(t) and XC(t) respectively that the rate constant associated with

the reaction of A and B to form C is κ. We can say that

P (Reaction occurs in interval ∆t|Ft) ≈ κXA(t)XB(t)∆t,

where Ft represents the previous known information about the system available

at the start of ∆t and κ is a rate constant for the reaction. One can see the

relationship between this formulation and the mass action formulation used to

generate the differential equations for the compartmental models.

We now seek to turn this into a mathematical model. We can say that ev-

ery time a reaction occurs (called C(t)) then the number of atoms of A and B

decreases by one and the number of atoms of C increases by one. Hence

X(t) = X(0) + C(t)(−1,−1, 1)T ,

where X = (XA,XB,XC)T, the number of atoms of A, B and C present in the

system and we assume that the time intervals ∆t are sufficiently small that only

one reaction occurs in any interval and that initially C(t) = 0. A form for C(t)

can be derived from the assumption that the number of reactions are Poisson. In

this case

C(t) = Y (

∫ t

0

κXA(s)XB(s)ds),

where Y is a Poisson process and κ is the rate constant associated with the
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reaction. The number of atoms of A and B which are available to react are

denoted by XA and XB respectively.

Hence we can write

X(t) = X(0) + Y (

∫ t

0

κXA(s)XB(s)ds)(−1,−1, 1)T .

If Y and X(0) are known this equation uniquely determines X(t). This can

be made clear by considering the first interval of length ∆t. If we let ψ =

(−1,−1, 1)T , then X(t) = X(0) + ψ will determine the value of X(t) at the

end of the first interval. In the second interval we will have X(t) = X(0) + 2ψ

and so on.

We now seek to justify why the probability of a reaction occurring in a time

interval ∆t is κXA(s)XB(s)∆t. We first note that the probability of a reaction in

an interval ∆t is equivalent to R(t+ ∆t) > R(t).

P (C(t+ ∆t) > C(t)|Ft) = 1− P (C(t+ ∆t) = C(t)|Ft)

= 1− P (Y (

∫ t

0

λ(X(s))ds+ λ(X(t))∆t) = Y (

∫ t

0

λ(X(s))ds)|Ft))

= 1− e−λ(X(t))∆t ≈ λ(X(t))∆t.

While this simple illustration from Anderson’s paper [5] is useful, it is more

useful to look at a general case as we are interested in compartmental modelling.

General Markov Models for Chemical Equations

Anderson [5] generalises the above chemical model to the case where there are M

reactions with N species S1...SN . In this, he writes the chemical reactions as

N∑
i=1

νikSi →
N∑
i=1

ν ′ikSi,

where νik and ν ′ik are nonnegative integers. As previously, X(t) represents the

number of atoms of each species in the model and νk is the vector whose ith

entry is νik, being the number of molecules of the ith species consumed in the kth

reaction. Similarly, ν ′k and ν ′ik represent molecules created in the reaction.

Using the same notation as in the case of a single chemical reaction, we can

write

P (Rk(t+ ∆t) > Rk(t)|Ft) = λk(X(t))∆t+ o(∆t) as ∆t→ 0.
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Similar to the simple case the reactions will follow a Poisson process and so

Rk(t) = Yk(
∫ t

0
λk(X(s))ds) and noting ψk = (ν ′k − νk), we write

X(t) = X(0) +
∑
k

Yk(

∫ t

0

λk(X(s))ds)ψk

We have already discussed the fact that the rates of the reactions are Poisson

but now it seems appropriate to discuss them generally as we have written down

the form of a compartmental model equation. Anderson [5] states that the law of

mass action says that the rate at which a reaction occurs should be proportional

to the number of distinct subsets of the molecules present that can form the

inputs for the reaction. That is

λk = κk
∏
i=1

(
xi

νik

)
1xi≥vik .

This result does not directly effect compartmental models. It is stated here to

aid the understanding of the stochastic approach. What this result really means

is that if you have a binary reaction such as

2S1
κ1−→ S2,

then in this case the rate of the reaction occurring is:

λk = κ1x1(x1 − 1),

which differs from the deterministic continuum case of κ1x
2
1.

The Stochastic Equation for Compartmental Models

Using the work in the previous section on a general stochastic equation for chem-

ical reactions we consider the compartmental model analogous to chemical equa-

tions. If we consider the simple one tissue compartmental model in Figure 2.2,

we arrive at the following stochastic equation:

X(t) = X(0) + Y1(

∫ t

0

K1XP (s)ds)(−1, 1)T + Y2(

∫ t

0

k2X1(s)ds)(1,−1)T .

For the two compartmental model the equation is

X(t) = X(0) + Y1(

∫ t

0

K1XP (s)ds)(−1, 1, 0)T + Y2(

∫ t

0

k2X1(s)ds)(1,−1, 0)T

+Y3(

∫ t

0

k3X1(s)ds)(0,−1, 1)T + Y4(

∫ t

0

k4X2(s)ds)(0, 1,−1)T .
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Relating Stochastic and Deterministic Equations

Again a main reference here is Anderson [5], particularly for the theorems and

lemmas. As compartmental models are generally first order linear models, work

on first order chemical reactions is generalisable to compartmental models. Firstly

we define what we mean by first order. A first order reaction is one where the

rate parameters are linear and the reactions are unary (only involve one substance

reacting or changing state). This will be the case for PET compartmental models.

Theorem 2.1 If Y is a unit Poisson process, then for each u0 > 0,

limn→∞supu≤u0|
Y (nu)

n
u| = 0a.s.

Proof. For fixed u, by the independent increments assumption, the result is

just the ordinary law of large numbers. The uniformity follows by monotonicity.

The classical central limit theorem implies

limn→∞P |
Y (nu)
n

nu
√
n
≤ x| =

∫ ∞
0

1√
2pi

e
−y2
2 dy = PW (u)x

where W is a standard Brownian motion. This result suggests that for large n

Y (nu)nu√
n ≈ W (u)

and
Y (nu)

n
≈ u+

1√
n
W (u)

where the approximation is uniform on bounded time intervals. One way to

make this approximation precise is through the following lemma.

Lemma 2.1 A unit Poisson process Y and a standard Brownian motion W

can be con- structured so that

Γ = supt ≥ 0
|Y (t)tW (t)|
log(2t)

<∞a.s.

and there exists c > 0 such that E[ecΓ] < ∞. For a proof of this the reader is

referred to Anderson and Kurtz [5]. Here we simply note that:

|Y (nt)nt√
n
− 1√

n
W (nt)| ≤ log(nt2)Γ√

n

and 1√
n
W (nt) is Brownian motion.
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Lemma 2.2 [5] Assume that C = (C1, ..., Cm) is a system of counting pro-

cesses with no common jumps and λl is the Ft−intensity for Cl . Then there

exist independent unit Poisson processes Y1, ..., Ym (perhaps on an enlarged sam-

ple space) such that

Cl(t) = Yl(

∫ t

0

λl(s)ds)

This lemma suggests the following alternative approach to relating the inten-

sity of a counting process to the corresponding counting process. Again, given

nonnegative, non-anticipating functions l , the intuitive problem is to find count-

ing processes Cl such that

PCl(t+ ∆t) > Cl(t)|Ftl(t, C)∆t,

which we now translate into the following martingale problem. In the following

definition Jm[0,∞) denotes the set of mdimensional Cadlag counting paths.

Definition 2.1 Let l , l = 1, ...,m, be nonnegative, non-anticipating functions

defined on Jm[0, ). Then a family of counting processes C = (R1, ..., Cm) is a

solution of the martingale problem for (1, ...,m) if the Rl have no simultaneous

jumps and there exists a filtration Ft such that C is adapted to Ft and for each

l and k,

Cl(t ≥ τk)−
∫ t>τk

0

γl(s, C)ds

Lemma 2.2 implies that every solution of the martingale problem can be writ-

ten as a solution of the stochastic equation. Consequently, the stochastic equa-

tion and the martingale problem are equivalent ways of specifying the system of

counting processes that corresponds to the l .

This gives rise to the useful property that

E[λk(X(s))] = λkE[X(s)],

for all k. There we can write

E(X(t)) = E(X(0)) +
∑
k

E(Yk(

∫ t

0

λk(Xk(s))ds))ψk
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= E(X(0)) +
∑
k

ψk

∫ t

0

λk(E[Xk(s)])ds.

This gives an easy way to find the mean of X(t). By turning the above integral

equation into a differential equation, a solution can be found.

We can recall that the deterministic ordinary differential equation associated

with

X(t) = X(0) +
∑
k

Yk(

∫ t

0

λk(Xk(s))ds)ψk

is
dx(t)

dt
=
∑
k

λ̂(xk(t))ψk,

where λ̂(x) = κ̂k as the reactions in this work are unary.

The Classical Scaling

We begin by defining

XV (t) =
X(t)

V
,

which defines concentration per unit volume. This leads to a slightly different

stochastic equation

XV (t) = XV (0) +
∑
k

1

V
Yk(

∫ t

0

λk(X
V (s)ds))ψk

≈ XV (0) +
∑
k

1

V
Yk(V

∫ t

0

λ̃k(X(s)ds))ψk

= XV (0) +
∑
k

1

V
Ỹk(V

∫ t

0

λ̃k(X(s)ds))ψk +

∫ t

0

F (X(s))ds,

where Ỹk(u) = Yk(u) − u and owing to the process being centered we must add

in an extra term, F (z) =
∑

k κk
∏

i z
νij
i ψk.

Using the law of large numbers,

Ỹ (V u)

V
≈ u,

which implies

XV (t) = XV (0) +
∑
k

∫ t

0

κk
∏
i

(XV
i (s)νijψkds)),
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= XV (0) +

∫ t

0

F (XV (s))ds,

which in the limit as n→∞ gives the classical deterministic mass action result:

dx

dt
=
∑
k

∏
i

Xi(t)
νikψk.

Owing to the fact that

1√
V
Ỹk(V u) =

Yk(V u)−Nu√
V

is approximately Brownian motion.

Letting

V N(t) =
√
V (XV (t)−X(t))

= V N(0) +
∑
k

1

V
Yk(V

∫ t

0

λk(X
V (s)ds))ψk +

∫ t

0

√
NF (XV (s)− F (X(s)))ds

= V N(0) +
∑
k

Wk

∫ t

0

λk(X(s)ds)ψk +

∫ t

0

∇F (X(s))− V N(s)ds,

as n→∞ gives V N → V where

V (t) = V (0) +
∑
k

Wk

∫ t

0

λk(X(s)ds))ψk +

∫ t

0

∇F (X(s))− V (s)ds,

which gives the approximation

XN(t) = X(t) +
1√
V
V (t).

2.5 Statistical Inference

In discussing statistical inference it is natural to briefly review linear modelling

before coming to nonlinear regression for compartmental models. This is only a

brief outline and for a detailed treatment of these areas the reader is referred to

Bates and Watts [9] and Weisberg [80] for a treatment of nonlinear and linear

regression respectively.
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2.5.1 Linear Regression

Simple Linear Regression

If we consider the simple case again where there is one predictor x and one

response y, which are related and this relationship is a straight line, we can write

E(Y |X = x) = β0 + β1x.

In reality measured data contains variability and so the level of variability in

the data needs to be quantified. If we assume the errors are independently and

identically distributed (iid) coming from a zero mean normal distribution with

constant variance(σ2), then we can write

yi = β0 + β1xi + ei,

where ei
iid∼ N(0, σ2) and yi and xi are the ith values of the response and predictor

respectively.

After estimating the parameters of interest and fitting the estimated line to

data the difference between each observed and expected value can be computed.

These are called the residuals, i.e. êi = yi − ŷi.
We now return to estimating the parameters of interest. If we consider the

data set and the parameters from a likelihood perspective, i.e. the likelihood of

the data given the parameters, the probability of the data set is a product of

normal variables and is proportional to

n∏
i=1

1√
2πσ2

e(−
yi − ŷi

2σ
)2.

Finding the maximum likelihood estimator reduces to minimising the residual

sums of squares.

Having estimates for the parameters is only part of the story it remains to

generate an estimate for the variance. An unbiased estimator is attained by

dividing the RSS by its degrees of freedom.

Multiple Linear Regression

We now generalise the discussion on simple linear regression to the case where

there is more than p predictors. In this case it is more convenient to use matrix
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notation. The model is

Y = Xβ + e,where e
iid∼ N(0,Σ),

The estimates are found to be β̂ = (XTX)−1XTY. As per simple linear regres-

sion, the estimate for the variance is the RSS divided by its degrees of freedom.

From this estimates for the variance of parameter estimates can be generated.

An alternative formulation of Least Squares

An alternative formulation of least squares can be done using a QR factorisation.

We can write R as R =

(
R1

0

)
, where R1 has dimensions P × P and upper

triangular. Q can be written as

Q = [Q1|Q2],

where Q1 is the first P columns of Q and Q2 is the remaining columns of Q.

Hence

X = QR = Q1R1.

Geometrically the columns of Q form an orthogonal basis for the response. Also

the first P columns span the expectation plane. For example the response can be

transformed

w = QTy,

which can be broken into two components w1 = QT
1 y and w2 = QT

2 y. The pro-

jection of w onto the expectation plane is then

(
w1

0

)
, in the Q coordinate space

and Xβ = Q

(
w1

0

)
= Q1w1, in the original coordinate space.

We can also look at hypotheses testing and confidence intervals for parameters

by noting:

Y = Xβ + e = QRβ + e.

An expression for the errors is given by

u = w −Rβ,
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where u = QTe, as eIn ∼ N(0, σ2), and Q are orthogonal, then u ∼N(0, σ2).

Also as the errors in e are iid, so u will also be iid. Again u can be broken into

two components, one with the first P elements called u1 and the remaining n− p
elements are called u2 As it is assumed that these errors are normal, their sums

of squares will be χ2, scaled appropriately for variance

||u1||2 ≈ σ2χ2
p and ||u2||2 ≈ σ2χ2

n−p.

Using independence, we can assume that the ratio of mean squares u1 and u2

follow an F -distribution with p and n − p degrees of freedom respectively. This

can be used to determine if a particular value for β is appropriate. This will be

discussed in detail shortly.

Weights

Up to now in this chapter, we have considered the case where the variance was

constant in the data. However this is not always the case and will not be the case

for PET imaging. Instead of assuming the variances are constant we will assume

that they can be scaled by a factor at each measure to make the variances equal.

This type of scaling is called weighting. Simply we write

wivar(ei) = σ2,

where w1, w2, ..., wn are known positive numbers. In matrix terms this can be

written as

Y = Xβ + e V ar(e) = σ2W−1,

where W is a diagonal matrix with the wi in the ith row.

We will continue to use β to represent the parameters we seek to estimate,

however these will now represent estimates generated using weighted least squares

instead of the more straightforward approach. The least squares function we now

seek to minimise is now given by:

WRSS(β) = (Y −Xβ)TW(Y −Xβ)

=
∑

wi(yi − xT
i β)2,
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where xTi is the transpose of the ith row of the X matrix. Using a similar argument

to the simple constant variance case, the weighted least squares estimates can be

written as

β̂ = (XTWX)−1XTWY.

Comparing Regression Models

We will now consider the case where a dataset of interest consists of one predictor

(y) and one response (x) which is estimated using least squares. We now wish

to find the distribution of the RSS in closed form. We begin by noting that

if A is any non random symmetric idempotent matrix and z is a multivariate

standard normal random vector, then zTAz has a chi-square distribution with

rank of A degrees of freedom. This can be shown to be true by finding the

singular value decomposition of A = ODOT, where O and D are the matrices

generated from the matrix decomposition. If zTAz = wTDw, where w = zO

then the first p eigenvalues of A are equal to one and the rest equal to zero, then

wTDw = Σp
i=1w

2
i is χ2 with p degrees of freedom.

Bringing this back to the case of residual sums of squares,

êTê = eT(I−H)e,

can be rewritten as
RSS

σ2
= zT(I−H)z,

where z = e
σ
. As (I−H) has rank n− p, RSS

σ2 follows a χ2 distribution with n− p
degrees of freedom as the rank of an idempotent matrix is equal to the trace of

that matrix [6].

Consider two regression models, model one: Y1 = X1β1 + e1 and model two:

Y2 = X2β2 + e2, where model one is a simpler model and is nested in model two.

These models will both have a hat matrix associated with them H1 for model

one and H2 for model two. It is not immediately obvious that if the models are

nested then H1H2 = H2H1 = H1. This is perhaps easier if one thinks of this

in terms of projections and the spaces defined by the bases associated with each

model.
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This can be seen by realising that every vector of the form H1y1 can be

written in the form H2y2 as model two is contained in model one. Hence

H2H1y1 = H2
2y2 = H2y2 = H1y1

and so H2H1 = H1. Similarly, it can be shown that H1H2 = H1. We now wish

to generate a form for a test statistic to see which of two models should be chosen

as the better model. From the previous section, it is known that the denominator

( ||e2||
2

σ2 ) follows a χ2 distribution with n− p degrees of freedom. We must find the

form of the numerator
||ŷ2 − ŷ1||2

σ2

=
(ŷ2 − ŷ1)T(ŷ2 − ŷ1)

σ2

This is similar to the previous section where we showed the residuals scaled by

variance were approximately chi squared, so = eT(H2−H1)e
σ2 will have a chi squared

distribution with rank of H2 −H1 degrees of freedom, which is p2 − p1.

Before we simply take the ratio of these two variables we must show that they

have a covariance of zero. If this is the case the distribution of two chi squared

variables follows an F -distribution as the errors are assumed to be Normal. If

not the problem becomes more complicated. We know that the expectation of ê2

is zero so we now need to show that the expectation of ê2(ŷ2 − ŷ1)T is zero.

E(ê2(ŷ2 − ŷ1)T) = E[(1−H2)e(µ+ e)(H2 −H1)] = σ2(I−H2)(H2 −H1) = H2−H1−H1+H2H1 = 0

Hence,

F =

||ŷ2−ŷ1||2
(p2−p1)

||e2||2
(n−p2)

has an F -distribution with p2 − p1 numerator degrees of freedom and n − p2

denominator degrees of freedom when both models are correct.

When only the larger model is correct then the denominator still has the same

distribution but the numerator is approximately µ(H2 −H1)2µ where µ is the

true unknown mean of y. This is not zero when the smaller model is incorrect.

Hence this F -statistic is a sensible method to test the hypothesis that the smaller

model is correct against the alternative the smaller model is incorrect but the

larger model is correct as the value of this statistic will be significantly larger

than its expected value if the simpler model is not an appropriate fit.
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2.5.2 Nonlinear Regression

Nonlinear regression can be thought of as the generalisation of linear regression

to the case where the relationship between predictor and response is not linear.

While the basic ideas behind nonlinear regression and linear regression are similar

there are some complications which arise due to the nonlinearity of the model.

Estimation and Linear Approximations

A nonlinear regression problem can be written as:

Y = f(X;θ) + e

where f(X;θ) is the mean function which is nonlinear, X are the predictor vari-

ables as was the case in the linear model. θ are the parameters we seek to estimate

and as per the linear case, e are the errors and Y is the response. Frequently,

the following notation is used:

η(θ) = f(xi;θ), i = 1, ..., N,

which allows the model to be written as

Y = η(θ) + e.

As for the linear case we assume that

E[e] = 0 and V ar[e] = σ2In,

which some may question as there may be serial autocorrelation present in these

data, but as this is the method, which has been used in medical imaging for some

time, we will use it here. It is also generally assumed the errors are independent,

and identically distributed and are Normal as was the case in the section on linear

regression. The likelihood function will then be the same as in the linear case

and we will seek to minimise the RSS.

In the case of PET data, we cannot assume that the errors are independent

and identically distributed as the variance in the data is proportional to the mean.

Luckily,using weights is also generalisable to nonlinear regression. The details of

this have been omitted from this section as although it does not make the analysis
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much more complicated it does make the algebra less tidy. In the case of the PET

data which are quasi-Poisson, we have a nonlinear model

CT (t) = vBCP (t) +K

∫ t

0

(φ1e
−θ1(t−s) + φ2e

−θ2(t−s))CP (s)ds+
1√
wtst

εt

where CT (t) is the measured value, vB is blood volume, CP (t) is the AIF, the

wts are added to take account of the variance as the data are Poisson and the

relationship between these and the weights used in the regression are obviously

related, εt is assumed to be Normal and the other values are estimated by the

regression to form the residue function. The parameters estimated here are vB,

and the φ and θ values, which are a combination of the rate constants.

One may ask, why would one not use a more direct quasi-Poisson approach

and so avoid using weights altogether. It is a very valid point, but as this is the

method used almost exclusively in the literature, it was decided to proceed using

the same method as others in the field.

Therefore fitting a nonlinear model is similar to the linear case and is based

on minimising the RSS. The nonlinearity makes finding this minimum more com-

plicated. In the linear case an explicit formula for the least squares estimate can

be written down, while in the nonlinear case ηi(θ) defines a surface of dimension

equal to the number of parameters we seek to estimate. The point on this surface

which is closest to Y is the point we seek to estimate. It is not possible to write

down an expression for the estimate in the nonlinear case so iterative methods

are used instead.

The basic ideas of finding the estimator are simple. One finds the point on the

surface which is closest to the response and then tries to find what are the values

of the parameters at that point on the surface. In the nonlinear case finding this

minimum and generating the parameters from the point on the surface may not

be straightforward as was the case in linear regression. We will now discuss one

method of generating estimators using a Taylor approximation. This is called

Gauss-Newton’s method [9, 54], which is implemented in the nls() function in R

[65].

This technique begins by taking an initial guess for the parameters we seek to

estimate from the user. This guess can be formulated in many ways. In the case
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of PET brain imaging one can look at previous studies estimates for parameters

and use these as starting values for the study at hand. Once the starting values

θ0 are provided, η(θ) is simplified using Taylors theorem [1, 9]

η(θ) ≈ η(θ0) + V0(θ − θ0),

where V0 is a matrix with n rows (number of data points) and p columns (number

of parameters we seek to estimate) containing

∂f(xi,θ)

∂θp

evaluated at θ0 [9].

We now define the residuals

ê = Y − η ≈ y − η(θ0) + V0(θ − θ0) = e0 −V0(θ − θ0).

The next step is to calculate the increment in the RSS. Similar to linear regression

a matrix decomposition called the QR transformation of V0 is useful here. As

in the case for linear regression a number of entries in the R matrix will be

zero which allows us to consider a smaller version of Q and R called Q1 (which

forms an orthogonal basis) and R1. By projecting the residuals into Q1 space the

subsequent values for η can be found

η(θ1) = Q1w1,

where w1 = QT
1 e0.

As R1(θ − θ0) = w1, the new value for η1 will give a fit that will be closer

to the response than the previous estimate for a suitable step size. An impor-

tant question is when should you stop iterating. Some argue once the relative

increment over a step is sufficiently small [9]. However this does not guarantee

convergence. Another alternative Bates and Watts propose is to examine the

improvement in the residual sums of squares. There are many other alternatives

including examining gradients or continuing until the expectation and residual

surfaces are orthogonal.

The Gauss-Newton approximation is a linearisation of the nonlinear problem.

Naturally this leads us to apply linear inference techniques to the problem. Ap-

proximately, θ̂ ∼ N(θ, (XTWX)−1σ2), which allows us to follow the steps in
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linear regression. Recall in the linear case of linear regression a confidence region

was defined by

(β − β̂)XTX(β − β̂) ≤ Pσ̂2F (P,N − P ;α).

In the nonlinear case this becomes

(θ − θ̂)V̂TV̂(θ − θ̂) ≤ Pσ̂2F (P,N − P ;α)

or

(θ − θ̂)R̂T
1 R̂1(θ − θ̂) ≤ Pσ̂2F (P,N − P ;α).

This also allows us to define an ellipse which defines the inference region for the

parameters {θ = θ̂+
√
Ps2F (P,N − P, α)R̂−11 d such that ||d|| = 1}. Again this

is familiar from our discussion of linear models. Inference bands for the response

are generated by replacing xT
0 b in the linear model with f(x0b, θ̂), giving

f(x0b, θ̂)± σ̂||vT
0 R̂−11 ||t(N − P, α/2).

The fact that these results are based on the linear approximation means that

these are only approximately true in the nonlinear case.

It has been mentioned that in the linear case that the estimates exist in closed

form while this is not the case for nonlinear regression. In fact, in the linear case,

the sum of squares function itself can be found analytically. This is not generally

possible in the nonlinear case.

It is also worth highlighting that although the Gauss-Newton method is em-

phasised here as it is widely used and is implemented in the nls() function in R [65]

there are other methods such as Newton-Raphson which could have been used.

This however would be less computationally efficient than the Gauss-Newton al-

gorithm, which does not require second derivatives to be calculated.

2.6 An Illustration with FDG Data from a Brain

Tumour Study

We now illustrate the steps involved in turning a PET image into a dataset and

fit the compartmental model to this dataset. We begin by displaying a dataset in
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Figure 2.6: FDG-PET scan generated on a GE Advance scanner shown

in AMIDE [42].

AMIDE [42], where the transverse, coronal and sagittal views are shown in Figure

2.6 with a grey matter region highlighted in yellow. This particular dataset has

been reported on in [71]. It is made up of 128 × 128 voxels for 35 slices over

31 time-bins. The first time-bin is one minute and this is before the patient is

injected with the radiotracer. It is followed by four 15 second bins, four 30 second

bins, four 1 minute bins, four 3 minute bins and fourteen 5 minute bins. This

timing information is important when modelling PET data as it defines the start

time, end time and duration of each time-bin. As the data is made up of the

number of emissions per time-bin, the number of emissions per bin is divided by

the length of the time-bin so that they can be compared with each other. This

was discussed in Chapter 1.

An AIF is also available for analysis. This is shown in Figure 2.7. In this case

it has been derived by arterial sampling as follows: five measurements 10 seconds

apart, two 20 seconds apart, four 30 seconds apart, four 60 seconds apart, two

180 seconds apart and nineteen 300 seconds apart.

AMIDE provides the facility to extract the information in the highlighted ROI

to a text file containing the measured values in the region and their coordinates

along with an estimate of how accurate the measured values are likely to be.

This file can be taken and used in statistical software packages such as R [65] for

analysis.

When reading the scan data into R, one must realise that the measured values

are in one large column. It is necessary to take the column of measured values
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Figure 2.7: AIF for an FDG PET study.
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Figure 2.8: Raw uncorrected FDG-PET counts from PET scan image.

and transform this into a matrix with the number of columns being the number

of time points. This gives a matrix of dimension the number of voxels in the

ROI by the number of time points. Generally we average over the ROI to get

one value to represent each time point. A picture showing what this looks like is

shown in Figure 2.8.

This picture does not seem particularly appealing to the naked eye. It is not
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smooth and appears to have steps in the function. Dividing the value at each

time-bin by the length of the interval makes this curve smooth. However we are

interested in glucose uptake and not in values decreasing as a result of decay.

Accordingly, a correction for decay, which is based on a half life of 108 minutes

is made. Following this decay correction and a correction for the duration of

the time-bin we then arrive at the time activity curve which was introduced in

Chapter 1 of this thesis. This is shown in Figure 2.9.
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Figure 2.9: Time activity curve corrected for decay and duration and

weights used in nonlinear regression.

We have previously discussed the assumptions of regression in Section 2.5.

One of these was that the variance of the errors was constant. In the case of

PET data, the variance of different time bins will not be the same as the data are

counts over intervals of varying intervals. In implementing this model, we need

to chose weights for the regression. These weights are shown in Figure 2.9. As

the data are quasi-Poisson the weights chosen were

1

zk + ε
,

where zk is the measured PET data at the kth time bin. The ε, which is one

tenth of the average of all measured PET values is added in to prevent dividing

by zero errors [28, 45, 60].

The model is fitted using the following R code. Full details of the modx1 and

modx2 functions which represent the AIF and tissue compartments respectively.
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nlmod <- nls(z ~ cbind(modx1(ts,te,tp,cp,hlife,del),

modx2(ts,te,tp,cp,hlife,del,k2)),weights = wts,

start=list(del=.6,k2=.03),

algorithm = ’plinear’,trace = TRUE,

control=nls.control(maxiter=100,warnOnly=TRUE) )
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Figure 2.10: Two compartmental model fit to FDG-PET time activity

curve along with estimated residue function. The black stars are the data

and the red line is he compartmental model fit. Both lines on the residue

function (red line and stars) are the compartmental model estimator.

Having finished running this code an estimate is generated for the data based

on the compartmental model, which is shown in Figure 2.10. This fit gives a

number of estimates for parameters of interest along with standard errors and

these are presented in Table 2.1. It is worth noting that sometimes it is advanta-

geous to scale parameters to have similar ranges, however to make these results

as aligned as possible, this was not done here [68].

The key to the work in this thesis is the residue function which allows the func-

tionals reported above to be calculated. This residue function is also presented

in Figure 2.10.

In Weisberg [80], which has been reviewed earlier in this chapter, it was stated

that after generating a fit it is not acceptable to simply say that the job is done
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Flow (SE) Flux (SE) VD (SE) VB (SE)

0.083 (0.007) 0.026 (0.003) 3.03 (0.1009) 0.18 (0.01)

Table 2.1: Parameter Estimates along with standard errors in parenthesis

for flux, flow, volume of distribution (vD) and blood volume(VB) for the

FDG glioma region.

Figure 2.11: Weighted residuals for two compartmental model fit to FDG-

PET data, note the x-axis is an index not time.

and move on. Analysis of the fit should be undertaken to see how appropriate it

is. We begin this by examining the plot of the weighted residuals for the fit. The

weighted residuals are
1√
wtsk

(zk − ẑk),

which are clearly related to the weights used to carry out the regression in this

chapter.

and these are shown in Figure 2.11. This fit appears to have an issue as the values

of the estimator appear to have a lot of variability at early time points in the

scan with two very strong outliers showing a systematic lack of fit here. This is

addressed in Chapter 3, which proposes a nonparametric residue function. It also

appears that there may be a pattern in the residuals at later times. This plot is

far from a null plot, which would be a positive indicator for the model fitting the
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Source DF SS MS F P

SSReg 6 0.084745 0.01412425 0.020008 0.0063

Residual 24 16.94159 0.705899

TSS 30 17.02634 0.0567544

Table 2.2: ANOVA table for compartment model fit to PET data.

data.

Another method in examining fits of models is to consider ANOVA. This has

already been discussed in this chapter and here we present the ANOVA table in

Table 2.2.

The chi-square test [66] is used to test if a sample of data came from a popula-

tion with a specific distribution. For the chi-square goodness-of-fit computation,

the data are divided into k bins and the test statistic is the RSS. More succinctly,

if we consider a χ2 test to determine the goodness of fit, we are testing the hy-

pothesis that the RSS scaled by the variance follow a χ2 distribution as is the case

if the errors are normal. In the case of this data set, we find that this hypothesis

is rejected with a level of significance of 0.01.
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Figure 2.12: QQ-plot for model residuals.

Finally, we examine the residuals to see if they appear normal using a QQ-plot
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shown in Figure 2.12. This is a plot of the theoretical normal quantiles against

the quantiles in the data. If the residuals are approximately normal, then this

plot should result on the data being approximately on the line y = x, which is

the red line in the plot. Clearly, as this does not appear to be the case here the

Shapiro-Wilkinson test rejected the hypothesis at the 0.01 level. It is also worth

noting that the two outliers are present here again on the QQ plot as on the

weighted residuals.

The assumptions about the compartment model have been outlined at the

beginning of this chapter and even here in the case of a relatively small region of

interest, the assumptions clearly do not hold. The data does not behave as a well

stirred compartment. The results lead us to seek an alternative formulation for

the residue function, which comes out of compartmental models in this chapter.

Practical Considerations in this Nonlinear Regression

There are numerous difficulties associated with nonlinear regression. This section

outlines some of those associated with the work presented here and techniques

used to circumvent these difficulties. One case where the assumptions of the dis-

tribution of the errors are broken is when the variance is not constant. Testing to

see if the variance is constant is possible when the data contains a large collection

of points and has a lot of repetition. Even when this is not the case it is possible

to make a plot of residuals and see if constant variance seems plausible. It is also

possible to use analysis of variance techniques to see if the variance is constant.

In the case where the variance is not constant, weights can be used as was the

case in linear regression. Taking advantage of the quasi-Poisson nature of PET

data allowed this be dealt with.

When the Gauss-Newton algorithm was first introduced, we mentioned that

it is necessary to provide an initial guess for the first iteration. This is not trivial.

If the initial values are not sufficiently close to the true answer convergence to the

wrong minimum is possible and this happened many times in analysing the data

contained in this thesis. In the illustration in this chapter fitting PET compart-

mental models will be demonstrated. For a single study it took hours of trial and
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error to generate starting values which converge to the correct minimum. Start-

ing values are found by using values consistent with previous studies and then

varying these values until convergence is obtained. It is also worth highlighting

that the parameter which appears to have been the main source of issues in doing

this analysis is delay.

Aside from these concerns it is appropriate to add constraints to some pa-

rameters such as the percentage of blood volume in a region of tissue. Naturally,

this should be positive. To accomplish this the nls() procedure is implemented

with an order restricted function from the ic.infer package in R [25, 65] or with

constraints, which the function is designed to use. Using the ic.infer package

has also been found to make the model less sensitive to finding starting values.

This is not surprising as it reduces the number of parameters in the nonlinear

regression part of the estimation by estimating the coefficients of the nonlinear

functions separately.

Obtaining convergence is often difficult and when this difficulty occurs one

should consider if the mean function is correct, has the data been read in cor-

rectly, are there any outliers and are the starting values appropriate? If the

answer to all these is correct then getting the values of the parameters and the

RSS at each iteration can be useful. In R this is accomplished by including

’trace=TRUE’ in the nls() procedure. This allowed an issue with the delay term

becoming approximately 10 minutes when blood volume was low to be uncovered

and avoided.
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Appendix

A Solution of One Compartment Model Ordi-

nary Differential Equation

From Figure 2.2, a coupled set of differential equations can be written down to

model deterministically the system of interest assuming the law of mass action

[26, 27, 34, 39, 63]. These first order linear ordinary differential equations are

presented as Equations A1 and A2. These equations explain how the radiotracer

moves between blood and tissue.

dC1

dt
= K1CP (t)− k2C1(t) (A1)

dCP
dt

= k2C1(t)−K1CP (t) (A2)

Here, CP (t) and C1(t) are the concentrations of tracer in the blood and tissue

respectively. K1 and k2 are the rate constants. As CP (t) is known due to arterial

sampling or otherwise, the equation regarding CP (t) can be disregarded and we

simply need to solve A1, which is a first order linear ordinary differential equation

and can be solved by the technique of an integrating factor [10]. Multiplying A1

by ek2t gives

ek2t
dC1

dt
+ ek2tk2C1(t) = K1e

k2tCP (t) (A3)

d

dt
(ek2tC1(t)) = K1e

k2tCP (t) (A4)

Integrating both sides gives

ek2tC1(t) =

∫ t

0

K1e
k2sCP (s)ds (A5)

and hence

C1(t) =

∫ t

0

K1e
−k2(t−s)CP (s)ds. (A6)
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B Solution of Two Compartment Model Ordi-

nary Differential Equation

In the case where the tracer undergoes a reaction in tissue a second tissue com-

partment is added to the simpler model. This model is discussed by Sokolov et al.

and Phelps et al. in [63, 70] and a schematic of this model is shown in Figure 2.3.

Similar to the Kety Schmidt model, one can write down continuous deterministic

differential equations for the system using the law of mass action.

dCP
dt

= k2C1(t)−K1CP (t) (B1)

dC1

dt
= K1CP (t)− (k2 + k3)C1(t) + k4C2(t) (B2)

dC2

dt
= k3C1(t)−K4C2(t), (B3)

Huang et al. [34] discuss this model and use a method similar to the one

compartmental model, where the concentration in the plasma is assumed to be

known and simply solve this equation for C1 and C2 given a known CP . This

is sensible as in the case of a PET study the arterial input is usually known.

Equations B2 and B3 are a coupled system of order linear ordinary differential

equation and can be solved using Laplace’s transformation [10].

Decoupling this set of differential equations for the two compartmental model

is more complex than simply using an integrating factor to solve a single equation

with a single unknown for the one compartmental model. To solve this equation

it is necessary to transform the data into Laplace space using the Laplace trans-

formation.

SC1(S) = K1CP (S)− (k2 + k3)C1(S) + k4C2(S),

and

SC2(S) = k3C1(S)−K4C2(S).

The concentrations C1(t) and C2(t) are referred to as C1(S) and C2(S) in Laplace

space.
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We assume that the initial conditions in tissue are zero and solve this set of

equations, which leads to:

C1(S) =
K1

α2 − α1

(
k4 − α1

S + α1

+
α2 − k4

S + α2

)CP (S)

and

C2(S) =
K1k3

α2 − α1

(
1

S + α1

− 1

S + α2

)CP (S),

where α1 =
k2+k3+k4−

√
(k2+k3+k4)2−4k2k4

2
and α2 =

k2+k3+k4+
√

(k2+k3+k4)2−4k2k4

2
.

Taking the inverse Laplace transformation gives:

C1(t) =
K1

α2 − α1

((k4 − α1)e−α1t + (α2 − k4)e−α2t)⊗ CP (t)

and

C2(S) =
K1k3

α2 − α1

(e−α1t − e−α2t)⊗ CP (t).

The concentration in tissue is made up of C1(S) + C2(S), which is

C1(S) +C2(S) = (
K1(k4 − α1 +K1k3)

α2 − α1

e−α1t +
K1(α2 − k4)−K1k3

α2 − α1

e−α2t)⊗CP (t)

which is of the form

(φ1e
−θ1t + φ2e

−θ2t)⊗ CP (t),

which is the mixture of exponentials fitted as the residue in the compartmental

modelling.
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Chapter 3

A Nonparametric Model for the

Tissue Residue Function

In the previous chapter, compartmental models were introduced, applied to PET

data and a discussion on the assumptions underlying compartmental models was

presented. The fact that these assumptions are frequently violated in practice was

highlighted, which lead to a Markov chain formulation for blood tissue exchange.

The link between the Markov and compartmental models was established in the

limiting case. The work in the previous chapter was undertaken in an effort to

better understand the compartmental models from a probabilistic approach and

it is clear from this work that some of the assumptions behind the compartmental

models are not always valid.

This chapter follows on the theme of trying to better understand the intricacies

of compartmental models and also looks for alternative modelling techniques. To

this end, a novel nonparametric method which does not have the underlying

assumptions that compartmental models do will be presented and applied to

data from ongoing PET data from the University of Washington, Seattle’s PET

cancer imaging program. The compartmental model will also be applied to these

data and comparisons made between these models.
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3.1 Outline and Contribution of this Chapter

In Section 3.2, the methodology associated with the nonparametric model will be

discussed. This begins by examining the residue function, which has previously

been introduced in Section 2.2 and this is discussed in the context of survival

analysis in Section 3.2.1. Following this a review of Kaplan and Meier’s work

on survival analysis will be discussed and this leads us to propose a piecewise

constant form for the tissue residue function. This alternative model which has

been proposed in Hawe et al. [28] is a large part of the contribution of this thesis.

Details about inference for this type of nonparametric regression will be pre-

sented in Section 3.2.2. The parameters of interest generated from this model

will briefly be discussed in Section 3.2.3 in the context of how they relate to the

compartmental model estimates. Methods of comparing the models will then

be presented in Section 3.2.4. A second section on methodology for simulation

studies used in understanding these models will appear in Section 3.3 and the

results of this study are presented in Section 3.4. These results have an impact

on the use of methods from ANOVA being used to compare nonparametric and

nonlinear models. An illustration of the model being used will be presented in

Section 3.5. This illustration will look at residuals and examine where the model

does and does not appear to fit the data and illustrate how to decide which model

performs better. We finish this chapter with some discussion and conclusions.

3.2 Nonparametric Model

3.2.1 Residue Functions as Survival Curves

In the last chapter, the tissue residue function was introduced in the context of

the solution of compartmental models. It was mentioned that physiologically, the

residue can be thought of as the amount of radiotracer remaining in a tissue ROI

in response to an idealised bolus, i.e. a Dirac-delta function. Perhaps this can be

described more intuitively as being a function which starts at one and decreases

as the cumulative distribution of transit times of atoms through the ROI over

time is subtracted until there is no tracer left in the ROI or the scan concludes
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[60].

If this is the case then the function must be monotonic starting at unity and

decreasing with right continuity until it either reaches zero, an equilibrium or the

scan concludes. In the case of compartmental models, the residue function is a

mixture of exponentials. This obviously satisfies the above criteria. However this

is based on the compartmental assumptions, which have already been discussed

and are found to be highly questionable. Hence an alternative formulation for the

residue is sought which satisfies the criteria of above without having these ques-

tionable assumptions. In examining assumptions around what a residue function

is, it becomes apparent that these assumptions are the basis for life tables in

survival analysis. We now seek to derive an alternative nonparametric approach

to model the residue using techniques in survival analysis.

Alternatives to compartmental models have been proposed by Cunningham

and Jones [14] and also by Murase [50], who examined spectral analysis, and

O’Sullivan et al. [60], who introduced a nonparametric estimate for the transit

time of tracers through a tissue ROI, and hence the residue, using splines. In all

three papers, the nature of the residue being a survival function is preserved.

In 1958 Kaplan and Meier [38] published a nonparametric method for display-

ing survival analysis data. This is significantly different to alternative methods,

which include fitting exponential curves to data. The Kaplan Meier curve is a

nonparametric piecewise constant graphical representation of survival. At each

time step the proportion of subjects in the study which are still alive is calcu-

lated and this value represents a survival rate at that time bin (the proportion

used excludes those who have just left the study). This proportion is the number

added to the plot to represent the duration of the time-bin. Obviously, the start-

ing value at time zero for this estimator will be unity. This function will hence

be always positive and monotonically decreasing. This curve has nice properties

for survival analysis in that it is not generally influenced by people withdrawing

from a drug trial as it uses the proportion of those remaining in the study to

generate the estimator rather than the proportion of those who started, however

when a subject withdraws (elects to leave), a vertical mark is made on the plot

to highlight a subjects departure from the study.

In the case of PET we are interested in this form as it can represent the
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amount of tracer remaining in tissue. Using a form similar to this we will now

propose a new PET residue function. While the Kaplan-Meier curve is a graphical

representation of survival, there is a clear similarity with the survival problem in

the case of a PET study. The method proposed here is a term in a model rather

than a graphical representation for survival. However both methods quantify

survival or residence in terms of a piecewise constant function. As an aside I

highlight that perhaps Meier himself was inspired by survival analysis problems

when he wrote his seminal paper along with Zierler [47] on indicator dilution

theory already cited earlier in this work, which was the proof of the central

volume theorem.

There are a number of advantages to a piecewise constant residue function

such as the one proposed here. In the case of compartmental models, there are

numerous, sometimes questionable, assumptions behind the modelling. Here all

the assumptions that are being made are that the residue is constantly decreasing

and is piecewise constant. At each time point we are estimating the tracer residue

in tissue. There is no known basis for the form of the residue between time-bins

so as an estimator a straight line is used. Other methods such a basis of cubic

splines or other smoothed curves could have been used instead but as there is no

justification for any type of function, the simplest piecewise constant form seems

appropriate. Also, the nonparametric method can be rapidly implemented in R

[65] using the ic.infer package [25].

Over the observation window [0, Te), let 0 = τ0 < ... < τJ < Te be a collection

of J + 1 points (defined by the time bins of the PET scan) and let I+
j be the

indicator for the set [τj,∞). For α = (α1, ....αJ)T , a vector with non-negative

components satisfying
∑J

j=1 αj ≤ 1, a piecewise constant residue can be defined

over [0, Te) by

Rα(t) = 1−
J∑
j=1

αjI
+
j (t). (3.1)

The residence density corresponding to this residue is discrete with mass αj con-

centrated at τj. This somewhat complicated mathematical formulation can be

described in a simple way. The residue begins at one and at each time point can

drop by any nonnegative amount as long as it does not result in the function

being negative.
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3.2.2 Statistical Inference for the Nonparametric Residue

Using the methods in [25], implemented in R [65], we will fit the nonparametric

model to data. While the methods used here are different to the compartmental

model, a lot of the information we previously introduced is still important. We

still use the Poisson nature of the data in our modelling. That is to say, variance

is approximately proportional to the mean and over homogeneous regions the

total activity tends to scale linearly with the size of the region considered. For

this reason we will use a weighted least squares approach to the problem. There

are a number of reasons for this. One is that we seek a direct comparison to

the compartmental model. If we carry out transformations in the data for the

nonparametric fit this will not be done for the compartmental model and so we

are not comparing like with like. Secondly, the quadratic programming algorithm

used for this nonparametric modelling is set up for the weighted least squares

problem and as it has been tested and validated it makes sense to use it.

The time-bins for a set of N dynamic scans will be denoted (tsk, tek] for k =

1, 2, ..., N . As we have previously outlined in Chapter 2 there maybe biological

and other sources of deviation between the model and the data, the deviation of

the data from the model is considered a sum of measurement and biologic error.

Thus a reasonable statistical model for the data is

zk = CT (tk|θ) + σ̂
1
√
wk
εk, (3.2)

where wk are the same weights used in the previous chapter, which were the

reciprocal of the measured values plus a term to prevent divide by zero errors. In

practice the true variance σ is unknown and so σ̂ is an estimator of the variance.

An appropriate estimator for this would be the median absolute deviation of

the square root of the weighted residuals. The εk’s are modelled as a random

sample from a standard normal distribution. The Poisson nature of the underlying

emissions makes the assumption of independence not unreasonable and when the

expected counts are large (a function of injected dose), a Gaussian approximation

of the Poisson process is also reasonable. Based on Equation 3.2, inference for

parameters is based on the WRSS

WRSS(θ) =
N∑
k=1

wk(θ)[zk − CT (tk|θ)]2.
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For the nonparametric method, we use an R function written by Gromping

[25] called order restricted linear regression orlm(), which allows a linear model

to be written with constraints. In this work we can stop the αi values from being

negative, making sure that the sum of all α’s is less than or equal to unity and

that α1 −
∑N

i=2 αi > 0. This is formulated as an estimation problem for vB and

the αi values be the parameters we seek to estimate in the regression. Apart from

∆, the unknowns in the model enter linearly and so conditional on weights, the

estimation process is as follows:

Initially delay is estimated separately by a line search, then with β = (vB, K,Kα1, Kα2, ..., KαJ)

so θ = (∆, β)

CT (tk|∆, β) = Xk1β1 +Xk2β2 + ...+Xk(J+2)βJ+2

where Xk1 = Cp(tk−∆) , Xk2 =
∫ tk

0
Cp(s−∆)ds and Xk(j+2) =

∫ max(tk−τj ,0)

0
Cp(s−

∆)ds for j = 1, 2, ..., J. The components of β are non-negative and satisfy the lin-

ear constraint
∑

j>2 βj ≤ β2. Thus for any fixed ∆, orlm() can be used to obtain

the unique optimal β -value. The implementation of this in R [25] is highly

efficient. It is important to highlight that the compartmental model residue func-

tion estimates four parameters, two linear type parameters and two exponentials.

In the case of the nonparametric model the number of parameters, which we

can seek to estimate is equal to the number of time-bins. This means that the

nonparametric model has greater degrees of freedom.

Nonparametric estimates of flow, flux, vD and other parameters can be ob-

tained from the nonparametric residue, and sampling variation (standard errors

and biases) derived by simulation. These will be discussed further in the section

on parameters of interest. In terms of inference standard errors for parameters

generated by the nonparametric method are also calculated using the simulations.

Since the acquisition time-bins are contiguous (tsj ≡ te(j−1) for j = 2, .., N),

the nonparametric residue can be readily computed. We take τj = ts(j+1) for j =

1, ..., (N − 1). Under the sampling model in Equation 3.2, the piecewise constant

residue will be shown to be consistent in dose (with parametric convergence) later

in this chapter.
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3.2.3 Functional Parameters of Interest

As was the case in the compartmental model we seek to estimate parameters of

interest. How these are calculated in the nonparametric case is presented here.

Most of this is analogous to the compartmental model estimates. vB is estimated

as the coefficient of the AIF in the model. Flow is again estimated as the start of

the residue function, however, comparing the flow values from the nonparametric

and compartmental model directly may be erroneous as the average value of the

residue over the first time-bin may be a more appropriate comparison as the

nonparametric model cannot vary over time-bins. vD can again be estimated as

the integral of the residue function. The metabolic flux (Kε) is also calculated

by scaling extraction, which is again the last time point of the residue scaled by

flow. A similar argument holds here relating to the nature of the shape of the

nonparametric estimator of flux and extraction as has already been described for

flow.

3.2.4 Model Comparisons

3.2.4.1 Bootstrapping

We have already mentioned ANOVA and the F -statistic used in comparing models

in the context or linear regression [80]. Here the statistic of interest is

Model Comparison =
(WRSS2C −WRSSNP )/(df2 − dfNP )

WRSSNP/(n− dfNP )
,

where 2C represents the two compartmental model and NP is the nonparametric

model. In linear regression with nested models, this has been validated. In non-

linear regression with nested models this result holds approximately. However in

this work, where the models are not nested and one of the models is nonparamet-

ric, its use may not be appropriate. Accordingly, we look for an alternative way of

finding the distribution of this statistic in the case where the null hypotheses that

the compartmental model is appropriate is true. Reflecting on the fact that the

F -distribution used in ANOVA is the distribution under which the null is true.

We seek to manufacture the distribution without using the assumption that the

sampling distribution of the extra sums of squares ESS follows an F -distribution.
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This is accomplished using the bootstrap [18, 28, 60]. We begin by fitting the

compartmental model and nonparametric model to real data. In doing this we can

do two things. Firstly we can calculate the F -statistic, called ESS0, and secondly

we can use the compartmental model fit to the data to generate simulations under

which the compartmental model is correct. We do this as follows: We begin by

simulating data using the compartmental model fit as the basis for this simulation

as defined by:

zsimk = ẑcmk +
1
√
wk
σ̂εk,

where zsimk is the simulated data, ẑcmk is the compartmental model fit to the

real data, wk are the weights used in the modelling, which are proportional to

the reciprocal of the measured data values, σ̂ is an estimate of the variance.

This estimate is the median absolute deviation of the square root of the weighted

residuals, as this means the level of noise in the data will be approximately

the same in the simulated data as in the real data and εk are random numbers

drawn from the normal distribution with zero mean and variance of unity. The

compartmental model is used to simulate data as it is seen as appropriate to

simulate the data from the “smaller model”. Although these are not nested

models, we seek to test the null hypothesis that the compartmental model is the

correct model. Obviously the new model proposed here must be the alternative.

As the null hypothesis is the compartmental model is the correct model, we

seek a reference distribution under which this is true. If the data simulated are

truely compartmental model data then we have this.

Once this data is simulated, the ESS statistic on each simulated dataset is

calculated. This gives a value for ESS in a case where the compartmental model

is an appropriate fit to the data. By repeating this a distribution can be generated

which shows approximately what the shape the reference distribution should be

if the compartmental model is the true model. By counting the number of sim-

ulated ESS values which are greater than ESS0, and dividing by the number of

simulations, we generate a p-value testing the hypothesis that the compartmental

model is appropriate.
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3.2.4.2 Cross Validation

Using the bootstrap as was the case in the previous section has some drawbacks,

one of which is if one was analysing a large dataset, models need to be fitted to

data thousands of times. Also the ESS statistic is generally used in the case of

nested models and so an alternative method of comparing models is added to our

analysis, in the hope that both provide similar results, which would validate our

conclusions further. Accordingly we consider an alternative. One such alternative

is cross validation which will be familiar to those working on linear regression

problems.

Cross validation is based on applying a model to a dataset, on which it has not

been calibrated to see how it performs. Generally the dataset is partitioned into

the training dataset, which the model is calibrated on, and the validation dataset,

on which it is tested. In this work we are interested in a slightly different version

of cross validation called leave out one cross validation [22]. This method involves

using one observation as the validation set and using the remaining observations

as the training set. This is repeated on every data point in the set. In the case

of the PET data, we exclude one point in the time-course at a time and fit the

model to the dataset without using this point. The residual at this point is then

calculated and recorded. This is repeated for every point.

Once this is done we have a set of cross validated residuals of length the

number of time-bins in the scan to compare the two models, but how to do this is

the next question. It may not be the case that the residuals are normal and so we

turn to a nonparametric test. The Wilcoxon signed-rank test is a nonparametric

statistical hypothesis test used when comparing two related samples or a single

sample to assess whether their population mean ranks differ (i.e. it is a paired

difference test). This can test whether the two sets of residuals are of the same

magnitude.

An alternative way to compare these models is by calculating the cross val-

idated RSS and determining which is higher. The model with the larger cross

validated RSS is considered the weaker model in this case. Using cross validation

and bootstrapping will be used to compare models will be illustrated later in this

chapter.
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3.3 Statistical Consistency of Residue Approaches

3.3.1 Background

A simulation study is a numerical technique for conducting experiments. One

example of a simulation study has previously been presented is using simulated

data to estimate the improvement in a fit statistics when comparing models. This

section gives a more general outline of simulation studies carried out to examine

the parameter estimates for the compartmental and the nonparametric models

and also discusses the improvement in fit statistics further. In this section uses

of the bootstrap for generating properties of estimators and testing hypothesis

are discussed. A key reference for bootstrapping studies is found in Efron and

Tibshirani [18].

Simulation studies are undertaken as it is vital that properties of methods

are understood so they can be used with confidence. For linear regression, many

results can be written analytically but in more complicated modelling, this is not

always the case. While it would be ideal to have an analytical solution to every

problem, a simulation study with a large sample may meet most requirements.

Nonparametric methods for analysing PET data have already been proposed

in this chapter and in [14, 28, 50, 60]. This section builds on this work with a

view to better understand when the nonparametric technique is appropriate and

when the compartmental model should be used. To this end, true compartmental

model data is simulated at varying levels of noise and dose, and then analysed.

Our aim is to determine which model fits the data better in the case where the

null hypothesis, that the compartmental model is appropriate, is true.

If it were the case that true compartmental model data was simulated and

the nonparametric model were to be found to be more accurate than the com-

partmental model then it would show that the nonparametric method is more

accurate in general, however this would be an unrealistic expectation. In real-

ity, we seek to examine how the models perform in this when the null is true

and expect the compartmental model will outperform the nonparametric method

here.
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The bias of an estimator is the expectation of the difference between this esti-

mator’s expected value (usually mean but the median can be used) and the true

value of the parameter being estimated [66]. If this value is zero, the estimator

is said to be unbiased. The MSE of estimators has already been discussed in

the context of linear regression. A consistent estimator has the property that as

the number of observations increases, the estimator converges in probability to

the true parameter. A sequence Xn of random variables converges in probability

towards the random variable X if

∀ε > 0, lim
n→∞

Pr
(
|Xn −X| ≥ ε

)
= 0.

Consistency is related to bias in that consistent estimators are convergent and

asymptotically unbiased, though individual estimators in a consistent sequence

may be biased.

It is also worth highlighting that the variance plus the bias squared defines

the mean squared error (MSE). Frequently people refer to the trade off between

bias and variance of an estimator. By calculating the average bias and variance,

at varying levels of noise, a trend can be evaluated, which should show variance

decreasing with noise and may also show a pattern for bias.

It has been shown previously that the values of parameters can vary between

the models [28, 59]. This is generally most evident for flow as will be illustrated

later in this chapter, by conducting a simulation study showing how each param-

eter behaves. The parameter’s true values can be compared to their estimated

values and then both the bias and variance for each parameter can be determined.

An estimator or test statistic has a true sampling distribution under a par-

ticular set of conditions such as errors being normal in linear regression. Ideally,

we would want to know this true sampling distribution in order to do statistical

inference. This is important, as for example, in the case of linear regression, es-

timates for standard errors, confidence intervals and hypothesis tests depend on

the assumption of normality. Deriving the true sampling distribution of statistics

is not always trivial. Earlier in this chapter, the ESS statistic, used to determine

whether the parametric or nonparametric model was appropriate was described.

In the case of a linear model the distribution of this statistic is known but in the

case of more complicated models such as a nonparametric model, it remains to
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be validated. The simulation studies to examine convergence used here are also

used to gain an insight into the distribution of the ESS.

Another advantage of simulation studies is that while testing models, the

data generated is known. This means that the focus of assessing the model’s

performance can be focused on without worrying about the data itself. By this

we mean that the data is known to be truely compartmental or nonparametric.

It is not the case that real data from a PET scanner is being examined and the

true distrubution is not known or needs to be examined.

3.3.2 Simulation

This chapter aims to propose, present and develop a better understanding of how

the compartmental model and nonparametric models work and to analyse the

models performance. In chapter 2 the fundamental equation of dynamic PET

radiotracer imaging was presented, which models the activity in an ROI as

CT (t|θ) = vBCP (t−∆) +K

∫ t

0

R(t− s)CP (t−∆)ds, (3.1)

where CT (t|θ) is measured as activity per unit volume vB and CP (t) is activity

per milliliter of blood, K is flow, R(t) is the tissue residue function and θ is

the vector of parameters we seek to estimate (vB, δ,K, k2, k3, k4), which are the

fractional blood volume, delay and rate constants which define the residue. In

practice the constants themselves are not estimated but instead we estimate a

linear combination of these which are required for generating the residue.

In Chapter the 2 errors in statistical modelling and residuals were presented.

Earlier in this chapter a form for simulating data based on the median absolute

deviation of the square root of the weighted residuals as an estimator for the

variability in the data and the the assumption that these data are quasi-Poisson

was presented. This along with along with an ensemble of random numbers drawn

from the normal distribution could generate appropriate estimates of the errors

in the data. This was readily accomplished using

zk = CT (tk|θ) + σw
− 1

2
k εk,

where zk is the simulated value at the kth time point, CT (tk|θ) is the estimator or

the time activity course (using the compartmental model), sigma is the median

78



absolute deviation of the square root of the weighted residuals from the compart-

mental model fit to the data (a robust estimator of the variance in the data), wk

are the weights and εk ∼ N(0, 1). Due to the Poisson type nature of the data,

the weights are inversely proportional to the measured values. This is because

the variability is proportional to the mean of the data and hence σw
−1/2
k εk is an

appropriate estimator of the noise in the data. In the earlier work this was a

suitable way to generate data as our goal was to approximate the noise generated

by the true data [80] assuming the compartmental model was appropriate.

In this study, the method of simulating data will be slightly different, although

based on the same principle. Firstly, this study will involve varying degrees of

noise not just noise levels estimated a typical FDG glioma study. Taking a wider

variety of noise levels such as those with more noise and less noise than the glioma

set will give a fuller picture of how the models behave. Using the fact that the

data are Poisson and that the mean and variance are proportional, we write:

zk = τCT (tk|θ) +
√
τCT (tk|θ)εk,

where τ can be interpreted as the dose of radiotracer. If τ is varied, the level of

noise is changed and this leads to a realistic case where higher doses result in a

smoother simulated time activity curve. A slightly simpler version of CT (tk|θ) will

be used in this chapter to simulate data. It will be assumed that the simulated

region of interest does not have any blood volume in large arteries, i.e. vB = 0.

This however does not negate the need for an AIF as the tissue term in the model

is made up of a convolution of the AIF and the residue function. For this study,

an AIF from a subject with a glioma, which is derived from [71] is used.

We now have a form for the simulation but must decide whether to use the

compartmental model or the nonparametric model to generate our simulated

data. In the last section, we assumed that the widely used compartmental model

was the appropriate model and assumed it to be the true model under the null

hypothesis. This was appropriate as the compartmental model has been accepted

in the literature as the way the modelling should be done and unless evidence

against it is found, it should remain as the model of choice. In this case we will also

use the compartmental model to simulate the data as we are interested in seeing

how both models perform when the data is truly from the compartmental model
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as again this can be thought of as the null hypothesis. We will also undertake a

similar study where the data is simulated from the nonparametric model. This

helps us gain a far greater understanding as to how each model works.

The simulated data is analysed where the data is ’perfect’, i.e. where no noise

is present. In this case τ =∞ but in practice the zero noise case is accomplished

by letting zk = CT (tk|θ). After this we introduce noise of varying levels by

varying τ and examine how the bias and variance change as noise levels vary.

Hence, perfect data is simulated as

CT (t) = K1

∫ t

0

R(t− s)CP (s)ds,

where R(t) is the residue function. Removing blood volume reduces the number

of parameters in the equation and makes it simpler to gain an understanding of

how the models behave. Also as vB is of the same form in both models i.e. the

only difference between the models is in the residue function and obviously how

the optimisation is conducted. We note however that this does not mean both

models produce the same blood volume estimate on the same dataset as this is

highly unlikely given the very different nature of the models and the likelihood

of having random variability in the system.

The values for flow, k2, k3 and k4 used to generate the data are 0.102, 0.013,

0.062 and 0.0068 respectively, which is roughly what would be seen in a grey

matter region of a PET brain study in a normal subject [71]. In the case of the

nonparametric study, an estimated grey matter residue function is used. This was

generated from the glioma dataset. Various values for τ are considered in this

work. The values utilised here contain the majority of noise levels seen in practice

so as to give a clear picture of how the models behave in different scenarios. In

this case a large number of simulations will be generated at each noise level.

3.3.3 Rates of Convergence

In this section we will discuss how to make use of the simulation study in such a

way as to gain an insight into how both models are performing. We will begin by

looking at perfect data. In this case we know the parameters of interest and the

true residue function. We are not adding noise to the system. We can fit both
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the compartmental model and the nonparametric model to the data. In doing so

we will get estimates for flux, flow and volume from estimating the tissue residue

function for both methods as well as the biases in measuring each parameter.

Other measures of quantifying the bias can then be generated such as expressing

the bias for parameters as a percentage of the true value.

We can also try to establish a measure of the error of the residue function.

One such measure is the integrated squared error (ISE). This is defined as:

ISE =

∫ T

0

(R(t)− R̂(t))2.

Similarly ratios of the ISE expressed as a percentage of the area under the true

residue but this is of little practical value as both residues are on the same scale.

In the case where there is no noise, if we repeat the same analysis again,

we will get identical results. However, in the case where there is noise present

in the data, the data changes every time simulations are conducted and so the

results will not be identical. Accordingly at each noise level a lot of simulations

are generated. This gives a distribution of the values at each noise level for flux,

flow, vD and the ISE. As these data are skewed we choose to use the median

instead of the mean as our measure of centrality.

A useful way to estimate convergence would be to calculate the MSE for the

parameters of interest at each noise level. In doing this a simple plot of dose

against MSE can be generated to see if the parameters are converging to the true

value such as those shown in Figure 3.9. It is also of interest to break the error

into bias and variance.

The mean squared errors can be plotted at varying levels of noise for the

compartmental and nonparametric method and this should show the rate at which

the data is converging to the true value. In this case the rate of change of the

error with respect to dose (τ) is assumed to be a constant. Hence the plot of

mean squared error versus τ should be exponential with the exponent equal to

the rate. Estimating the rate is readily accomplished by transforming the data

to a log scale and fitting a straight line to the data using the model:

E[RMSE|τ = t] = β0 + β1t,

where the errors are assumed to be from a normal distribution with constant
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variance. In estimating β1 we will generate estimates for the rates at which the

errors converge to the true values and also will have standard errors from the

regression which can be used when doing inference.

3.4 Analysis

3.4.1 Data

As mentioned previously in Section 2.1, the basis of the work in the second half

of this chapter is a simulation study. The method of simulation has also been

described. A plot of some simulated time activity curves, generated from both the

two compartmental model and nonparametric models, used in this work (without

noise) are shown in Figure 3.1. These data were generated taking the values,

which are typical values which would be observed in a grey matter region of a

normal subject. The residue function chosen for the nonparametric method was

one which was generated by fitting the nonparametric model to a grey matter

ROI from a glioma study. Blood volume is assumed to be zero but an AIF is still
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Figure 3.1: Simulated time activity curves (TAC) for perfect compart-

mental and nonparametric data.

required to do modelling. The AIF is also shown in Figure 3.2.

Previously, it was stated that one of the first things which will be examined
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Flow Flux vD

True 0.102 0.023 2.88

2C Estimator 0.102 0.023 2.87

Standard Error 0.004 0.00045 0.04

Percentage Error 10−15 10−5 -0.001

True 0.1004 0.023 2.88

NP Estimator 0.1007 0.023 2.88

Standard Error 0.0308 0.003 0.04

Percentage Error 0.012 0.012 -0.0015

Table 3.1: True values along with parameter estimates, standard and per-

centage errors for data simulated from the compartmental model.

are the outputs from both models fitted to perfect data. Figure 3.3 shows the gen-

erated perfect data fitted by both the nonparametric and compartmental models

along with the estimated residues from both methods for data generated.

After fitting the models to the data, it is of interest to compare the estimated

parameters to the true parameters and attempt to understand if there is a bias

in the model. In this case the parameters of interest are flux, flow and vD, as well

as the ISE in estimating the residue function.

A summary of the estimated parameters is presented in Tables 3.1 and 3.2.
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Figure 3.2: AIF used to generate the simulated data.
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Figure 3.3: Perfect data (∗) with compartmental (red) and nonparametric

(green) estimators. Residue estimators are also shown.
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Figure 3.4: Schematic highlighting how the models estimate the values

within time bins in different ways.

Data was generated from the compartmental model with known true values for

flux, flow and vD are 0.102, 0.023 and 2.88 respectively. As the nonparametric

method estimates the value in the first time-bin by a single value, it may be

appropriate to compare the nonparametric estimator to the average value of the

true residue over the first time-bin. These differences between the estimators are

highlighted in Figure 3.4. This leads to the different estimates being compared

to different true values. In this case the true values the nonparametric estimator

for flux, flow and vD are 0.1004, 0.023 and 2.88 respectively In all cases when the
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Flow Flux VD

True 0.102 0.0235 2.949

2C Estimator 0.1021 0.0229 2.954

Standard Error 0.23 0.016 0.24

Percentage Error 0.186 -2.55 0.0017

True 0.102 0.0235 2.949

NP Estimator 0.1026 0.0235 2.949

Standard Error 0.0001 0.00002 0.006

Percentage Error 0.05 10−16 10−16

Table 3.2: True values along with parameter estimates, standard and per-

centage errors for data simulated using nonparametric model.

simulated data is generated from the compartment model the percentage error is

smaller for the compartment model for flux, flow and vD than with the nonpara-

metric estimator. When simulating on the compartment model the percentage

errors for the compartmental estimator are of the order of 10−15, 10−5 and -0.001

percent for flux, flow and vD respectively. For the compartmental model data the

percentage errors for the nonparametric estimator are 0.012, 0.012 and -0.0015

percent for flux, flow and vD respectively.

In the case of the nonparametric data the known true values for flux, flow

and vD of 0.102, 0.0235 and 2.949 respectively. Similar to the compartmental

data, the simulated data generated from the nonparametric model has a smaller

percentage error for the nonparametric estimators for flux, flow and vD than with

the compartmental model estimator. When simulating on the nonparametric data

the percentage errors for the compartmental estimator are 0.186, -0.01255 and

0.0017 percent for flux, flow and vD respectively. For the nonparametric model

data the percentage errors for the nonparametric estimator are 0.05, 10−16 and

10−16 percent for flux, flow and vD respectively. It is also worth highlighting that

these percentage errors can be considered as percentages representing biases as

the data is perfect data with no error term.

Also of interest are the errors in the residue functions for both methods.
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In the case of the compartmental model data, the ISE for the nonparametric

model estimator is 7.04× 10−7 for the compartmental model estimator and 1.5×
10−5 for the nonparametric estimator. In the case of the data simulated on

the nonparametric model then the values for the ISE are 1.5 × 10−21 for the

nonparametric estimator and 0.0001 for the compartmental model estimator. In

both cases the residue is estimated more accurately by the nonparametric model.

This is likely due to the extra flexibility in the nonparametric estimator.

3.4.2 Convergence of Parameters
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Figure 3.5: Simulated time activity curves from the compartmental model

(left) and from the nonparametric model (right) with high, low and no noise

present

We now consider the case where that data is imperfect and consider simula-

tions with varying degrees of noise. Figure 3.5 shows data generated from both

the compartmental and nonparametric models with different levels of noise that

will be used in the simulation studies for both datasets. In analysing vD for ex-

ample, it was necessary to generate a large number of noise levels to visualise the

trends in the data. This means that there is data with quite a lot of noise and

quite a low level of noise and our goal here is to see if the estimates get more

accurate as noise levels decrease. It was decided for consistancy to use the same

large collection of noise levels for flux and flow as well. However taking smaller

ranges of noise has little practical significance on the results of the analysis on
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flux and flow.

At each noise level 250 simulated time-courses were generated. Each of these

were analysed with both models and estimates generated for the parameters of

interest. The bias and variance are of particular interest in this context. Box plots

of the percentage errors for for flow at varying noise levels for both the compart-

mental and nonparametric models are shown in Figure 3.6. Similar illustrations

are presented for flux in Figure 3.7 and vD in Figure 3.8.

We now describe each of these figures individually. In the case of flow, there

is a larger bias for the nonparametric model on compartmental model data and

for the compartmental model on nonparametric data. This is not surprising as

one would expect each model to fit its own data better. There is also more

variability present in the nonparametric estimates regardless of whether the data

are nonparametric or compartmental.

For flux, one can see clearly that there is a larger variance present in the

nonparametric estimator regardless of which model the data are generated from.

Again this is due to the nature of the nonparametric estimator. At higher noise

the nonparametric model has a larger bias than the compartment model for both

types of data, however as the level of noise decreases the nonparametric model

tends towards having smaller bias in estimating flux for nonparametric data and

only slightly more bias than the compartmental model for compartmental data.

On nonparametric data the bias of the nonparametric estimator is very low at

low noise while the compartment model slightly under estimates the true value.

For volume of distribution, there is more bias in the nonparametric method

at very high noise levels but aside from this there is little to distinguish between

the two estimators as noise levels decrease for compartmental data. For the

nonparametric model the same is true for very high noise but as the noise levels

decrease, there is less noise present for the nonparametric model. Both models

seem to have a similar level of variability throughout the varying levels of noise

if the extremely high noise regions are not considered.

While this interpretation of box plots allows us to qualify the bias and variance

in the system, it is perhaps more interesting to study the effect of noise on bias

more rigorously. Looking at the rates the different models are converging to the

true known values can be done using the root mean squared error (RMSE) as
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was discussed earlier in this chapter.

Compartmental Model Data Flow Estimates 
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Nonparametric Model Data Flow Estimates 
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Figure 3.6: Flow percentage errors for the nonparametric model (green)

and the compartmental model (red) on compartmental model data (top) and

nonparametric data (bottom). Also shown is the error line on perfect data.
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Nonparametric Model Data Flux Estimates 
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Figure 3.7: Flux percentage errors for the nonparametric model (green)

and the compartmental model (red) on compartmental model data (top) and

nonparametric data (bottom). Also shown is the error line on perfect data.
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Compartmental Model Data Volume of Distribution Estimates 

                  Noise Decreasing Left to Right 
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Nonparametric Model Data Volume of Distribution Estimates 

                  Noise Decreasing Left to Right 
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Figure 3.8: vD percentage errors for the nonparametric model (green)

and the compartmental model (red) on compartmental model data (top)

and nonparametric data (bottom). Also shown is the error line on perfect

data.
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Compartmental

Data

Flow Flux vD

2C (SE) NP

(SE)

2C (SE) NP

(SE)

2C (SE) NP

(SE)

Ordinary

Regression

-0.96

(0.02)

-0.28

(.03)

-1.01

(0.02)

-0.61

(.02)

-1.00

(0.02)

-0.96

(.01)

Robust

Regression

-0.96

(0.01)

-0.26

(.03)

-1.02

(0.02)

-0.61

(.02)

-1.00

(0.01)

-0.96

(.02)

Nonparametric

Data

Flow Flux vD

2C (SE) NP

(SE)

2C (SE) NP

(SE)

2C (SE) NP

(SE)

Ordinary

Regression

-0.001

(0.004)

-0.47

(.02)

-0.07

(0.01)

-0.75

(.02)

-0.86

(0.02)

-0.97

(.02)

Robust

Regression

-0.0004

(0.004)

-0.47

(.01)

-0.07

(0.02)

-0.76

(.01)

-0.87

(0.02)

-0.97

(.02)

Table 3.3: Robust estimates of convergence rates for Flux Flow and VD

for nonparametric method and compartmental model along with ordinary

least squares estimates for data generated using the compartmental model

(top) and nonparametric model (bottom).

The RMSE at each noise level is plotted against dose (noise) and this is

shown in Figure 3.9 for the three parameters of interest. As we are interested in

the rate of convergence, the figures are shown on a log scale. The slope of the

lines should give the rate of convergence for the parameters of interest for both

nonparametric and compartmental models. The various slopes (standard errors)

are given in Table 3.3. Alternatively one could consider a robust linear regression

to make sure that any outliers are not skewing the line fitted to the data and this

is also shown in the table. In these data little practical difference is found.
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In the case of flow the compartmental model converges faster for compartmen-

tal data and the nonparametric model converges faster for nonparametric data.

In fact the compartmental model does not converge on the nonparametric data.

For flux the rates of convergence for the compartment model on compartmental

model data are approximately 1, while the nonparametric model converges at a

rate of 0.6. In the case of truly nonparametric data these values are 0.1 and

0.7 for the compartmental and nonparametric models respectively. This again

shows the compartmental model does not converge to the estimate on perfect

nonparametric data. There is very little difference between the models for vD

where regardless of the type of data or the model being fitted, convergence of

between 0.8 and 1 is obtained with both models performing slightly better on

data generated from that model.
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RMSE for Flow of Compartmental Model Data 

on Log-Log Scale 
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RMSE for Flow of Noparametric Model Data on 

Log-Log Scale 
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RMSE for Flux of Compartmental Model Data 

on Log-Log Scale 

                  Noise Decreasing Left to Right   
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
 L

o
g

(R
M

S
E

) 

RMSE for Flux of Nonparametric Model Data 

on Log-Log Scale 
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RMSE for Volume of Distribution 

Compartmental Model Data on Log-Log Scale 
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Nonparametric Model Data on Log-Log Scale 
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Figure 3.9: RMSE against dose on a log-log scale using data generated

from both models with the nonparametric estimator represented by green

’N’ and compartmental estimator represented by a red C with Dose (size of

region) on the x-axis.
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Bias and Variance of Flow Estimator for Compartmental Model Data 
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Bias and Variance of Flow Estimator for Nonparametric Model Data 
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Figure 3.10: Bias Squared (B) and variance (V) plots for flow for the

compartmental model (red) and the nonparametric (green)
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Bias and Variance of Flux Estimator for Compartmental Model Data 
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Bias and Variance of Flux Estimator for Nonparametric Model Data 

Figure 3.11: Bias Squared (B) and variance (V) plots for flux for the

compartmental model (red) and the nonparametric (green)
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 Bias and Variance of VD Estimator for Compartmental Model 
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 Bias and Variance of VD Estimator for Nonparametric Model 

Figure 3.12: Bias Squared (B) and variance (V) plots for vD for the

compartmental model (red) and the nonparametric (green)
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Aside from the rates of convergence, there are many other attributes of each

estimator which can be of interest. One of which is what proportion of the MSE

which is bias and what proportion is variance. Bias and variance plots for the

three parameters of interest are presented in Figures 3.10, 3.11 and 3.12. While

the form of the bias as a function of noise is somewhat erratic, the variance seems

to follow an exponential type curve. Transforming this to a log scale is shown

in Figures 3.13, 3.14 and 3.15. From this it should be possible to determine the

rate at which the variability is decreasing as dose increases. Although a similar

analysis is not likely to produce as meaningful a result as in the case of the

variance, the rate at which the bias is decreasing will also be examined. The

slopes of the lines fitted to these plots are presented in Table 3.4
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Bias and Variance of Flow Estimator for Compartmental Model Data 

On Log Log Scale 
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Bias and Variance of Flow Estimator for Nonparametric Model Data 

On Log Log Scale 
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Figure 3.13: Bias Squared and Variance plots for flow on a log scale for

the nonparametric (green) and the compartmental model (red).
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Bias and Variance of Flux Estimator for Compartmental Model Data 

On Log Log Scale 
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Bias and Variance of Flux Estimator for Nonparametric Model Data 

On Log Log Scale 
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Figure 3.14: Bias Squared and Variance plots for flux on a log scale for

the nonparametric (green) and the compartmental model (red).
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Bias and Variance of Volume of Distribution Estimator for 

Compartmental Model Data On Log Log Scale 

                  Noise Decreasing Left to Right 
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Bias and Variance of Volume of Distribution Estimator for 

Nonparametric Model Data On Log Log Scale 
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Figure 3.15: Bias Squared and Variance plots for vD on a log scale for

the nonparametric (green) and the compartmental model (red).
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Compartmental

Data Bias

Flow Flux vD

2C (SE) NP (SE) 2C (SE) NP (SE) 2C (SE) NP (SE)

Ordinary

Regression

-1.08

(0.2)

-0.23

(0.03)

-0.48

(0.2)

-1.5

(0.15)

-0.01

(0.1)

-0.84

(0.06)

Robust

Regression

-1.06

(0.1)

-0.24

(0.03)

-0.67

(0.19)

-1.56

(0.08)

-0.03

(0.1)

-0.85

(0.05)

Nonparametric

Data Bias

2C (SE) NP (SE) 2C (SE) NP (SE) 2C (SE) NP (SE)

Ordinary

Regression

-0.005

(0.004)

-0.50

(0.02)

-0.004

(0.009)

-0.92

(0.02)

-0.04

(0.05)

-1.04

(0.2)

Robust

Regression

-0.001

(0.002)

-0.50

(0.02)

-0.004

(0.009)

-0.91

(0.02)

-0.07

(0.05)

-0.99

(0.2)

Compartmental

Data Variance

2C (SE) NP (SE) 2C (SE) NP (SE) 2C (SE) NP (SE)

Ordinary

Regression

-0.98

(0.01)

-0.49

(0.03)

-1.007

(0.009)

-0.80

(0.01)

-1.02

(0.008)

-0.96

(0.008)

Robust

Regression

-0.98

(0.01)

-0.48

(0.02)

-1.009

(0.009)

-0.80

(0.01)

-1.02

(0.006)

-0.96

(0.008)

Nonparametric

Data Variance

2C (SE) NP (SE) 2C (SE) NP (SE) 2C (SE) NP (SE)

Ordinary

Regression

-0.97

(0.01)

-0.71

(0.03)

-1.01

(0.009)

-0.85

(0.01)

-1.01

(0.01)

-0.97

(0.01)

Robust

Regression

-0.98

(0.01)

-0.72

(0.03)

-1.01

(0.009)

-0.84

(0.01)

-1.01

(0.01)

-0.97

(0.01)

Table 3.4: Estimates of convergence rates for Flux Flow and VD for non-

parametric method and compartmental model generated using robust and

ordinary least squares data simulated from both models.

As can be seen in Table 3.4, all estimates for variance are negative, which
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means that the bias and variance are decreasing for all parameters as noise de-

creases. This is also the case for some estimates however convergence is close to

zero indicating that the bias decreasing at a very slow rate.

When the data generated is from the compartmental model, the bias decreases

at a faster rate for compartmental model estimator for flow, however the nonpara-

metric estimator for flux and vD has the bias decreasing faster. The variance is

decreasing faster for all three compartmental estimators for compartmental data.

When the data are generated from the nonparametric model, all three pa-

rameters have bias decreasing at a faster rate for the nonparametric model. In

the case of the nonparametric data, the compartmental model variance converges

much faster for all three parameters, however as the compartmental estimators

are very weak and do not come close to convergence in the case of bias, this is

not surprising.

3.4.3 Convergence of the Residue Function

Similar to the analysis just presented for the parameters of interest, it is also of

interest to see the way the residue function converges to the true residue. A box

plot of the integrated squared errors similar to that for the kinetic parameters

which have just been discussed is presented in Figure 3.16. This plot is then

shown on a log log scale in Figure 3.17. This is very similar to the previous

section and again these plots contain the details of when the data was generated

from the compartmental model and the nonparametric model.
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Integrated Squared Error for Residue Functions for Compartmental 

Model Data 
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Integrated Squared Error for Residue Functions for Nonparametric 

Model Data 
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Figure 3.16: Integrated Squared Errors for residue function with compart-

mental model (red) and nonparametric model (green).
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Integrated Squared Error for Compartmental 

Model Residue on Log-Log Scale 
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Figure 3.17: Median Integrated Squared Errors for residue function for

compartmental model (red) and nonparametric model (green) for varying

noise levels on a log scale.

Compartmental Model Data Ordinary Regression Robust Regression

Compartmental Model -0.94 -0.94

Standard Error 0.01 0.01

Nonparametric Model -0.429 -0.41

Standard Error 0.006 0.006

Nonparametric Model Data

Compartmental Model -0.03 -0.02

Standard Error 0.0021 0.002

Nonparametric Model -0.52 -0.52

Standard Error 0.006 0.006

Table 3.5: True values along with parameter estimates, standard and per-

centage errors for data simulated using nonparametric model.

Similar to the parameters, it is possible to quantify the rate at which the

residue is converging to the true residue. If we take the median of the ISE for the

parametric and nonparametric methods at each level of noise, we can evaluate

whether the models get closer to the true residue as dose increases and if so at

what rate. This is shown in Figure 3.17.
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The rates at which the convergence occurs is presented in Table 3.5. Perhaps

as one would expect the compartmental model does best in the case where the

data are compartmental model data and the nonparametric does better on non-

parametric data. However the compartmental model is almost completely failing

here on the nonparametric data and as it has performed poorly in the analysis of

bias and variance of parameter estimates, then it raises questions about its use

in practice.

3.4.4 Extra Sums of Squares Statistic

The extra sums of squares statistic or the F-statistic familiar from ANOVA, is

used when comparing models, which is made up of residual sums of squares(RSS).

Examining this statistic is the next step in comparing the compartmental and

nonparametric models. Although, we focus on the ESS statistic, we will begin

this section by looking at residuals for both methods and their relationship with

a χ2 distribution. After this we will look at the distribution of the ESS. A plot of

the weighted residuals for a simulated region with high noise is shown in Figure

3.19. Box plots of the RSS for both the compartmental and nonparametric models

are shown in Figure 3.20 for a large collection of simulated datasets. Here one

can see that the compartmental model is behaving as one would expect, but the

nonparametric model is improving as noise decreases. This is likely due to the

flexibility of the nonparametric estimator.

As the distribution of the RSS scaled by the variance is χ2 in the case of a linear

model, one would expect that this result will hold approximately in the nonlinear

case i.e. the compartmental model. The box plots of the weighted residuals

seem to suggest that the distribution of the compartmental models is similar at

all noise levels and that the nonparametric model has a smaller WRSS for data

with less noise. We begin by applying the χ2 distribution to these data at each

individual level of noise and estimate the degrees of freedom of the distribution.

An illustration of a χ2 distribution fitted to one of these datasets for both the

nonparametric and compartmental models is shown in Figure 3.21. In this plot,

the fits to the data are generated by using maximum likelihood estimators for the

degrees of freedom.
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Weighted Residuals for Compartmental Data with High Noise 
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Figure 3.19: Residuals for both compartmental and nonparametric models.

These estimated parameters are shown in Figure 3.22. Eyeballing this Figure

suggests the parameters may be constant, for the WRSS for the compartmental

model. Accordingly we carry out a linear regression analyses to confirm this. The

slope of the line fitted to the compartmental model is not statistically different

from zero. In the case of the nonparametric model, however, there is clearly a

slope present and this is far from being insignificant.

It is also worth highlighting at this point in the the linear model, the degrees

of freedom of the WRSS would have degrees of freedom being the difference of

the number of data points and the number of parameters we seek to estimate in

our model. In the case of the compartment model this is 31− 4 = 27 degrees of

freedom. For the nonparametric model this result is more complicated and as is

shown here, the degrees of freedom are certainly not constant.

Whilst it is intuitive to seek a form for the RSS based on the χ2 distribution,

it must be validated and cannot be assumed that it is working without statistical

evidence supporting it. All we have done so far is looked at histograms and

boxplots to estimate the distributions in the data. We now consider QQ-plots
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Figure 3.20: Box plots for residuals sums of squares for both parametric

and nonparametric models with various levels of noise.
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Residual Sums of Squares with χ2 Estimator and P-values from KS 

Test for Highest Levels of Noise for Nonparametric Estimator 
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Figure 3.21: Illustration of the χ2 distribution fitted to both the compart-

mental (red) p-value 0.87 and nonparametric (green) p-value 0.73 models.

comparing the simulated data with the χ2 distribution can be drawn such as that

shown in Figure 3.23.

It is not acceptable however to rely on a graphic such as a QQ-plot for the deci-

sion as to whether the model fits or not. Accordingly we look at the Kolmogorov-

Smirnov test. This test checks to see if a dataset follows a theoretical distribution

by examining the distances between the observed data and theoretical distribu-

tion. The p-values from this test are shown in Figure 3.24. If the null hypotheses

is true then the data are χ2 and the distribution of the p-values will be uniform.

In this case we see no evidence leading us to reject the null.

As it appears that the data follow a χ2 distribution, we can now proceed

to look at the distribution of the ESS, which follows an F -distribution if the

numerator and denominator are not correlated and both χ2. Similar to what was

shown for the ESS we present box plots for RSS for comparing the parametric

and nonparametric models with various levels of noise in Figure 3.25.

An illustration of the F distribution fitted to a dataset is presented in Figure

3.26 along with the QQ plot for how the data matches the distribution.
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Estimated Chi-Squared Parameters for Compartmental 
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Figure 3.22: Estimated degrees of freedom for the χ2 approximation for

the WRSS at varying levels of noise along with estimates of the rate of

change of parameters with noise.
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Figure 3.23: QQ-plots for χ2 approximation of RSS for compartmental

(red) and nonparametric (green) models with 29 and 15 degrees of freedom

respectively.
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As the data do not appear to follow the F -distribution, we now consider if

there is an appropriate transformation which can change the shape of the data and

allow the distribution of the ESS be modelled? We hope to gain an insight into

how the models compare by doing this. We consider taking the square weighted

residuals, log transformations etc. It is found that if the sample size is significantly

reduced (to approximately 20) and hence the power of the Kolmogorov-Smirnov

test is reduced then taking the square root of the data does make it possible to

fit an F-distribution to the data. However this is far from a result which would

allow a statistic like this be used to compare models. Also, as the degrees of

freedom for the nonparametric estimator varies with noise and it is unclear what

should be the choice for real data, we proceed with the use of cross validation

and simulations to compare models.

Figure 3.24: P-values from comparing WRSS to χ2 distribution.
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Figure 3.25: ESS Calculated from for both model.
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Figure 3.26: Fit of F distribution to ESS data and associated QQ plot.
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3.5 An Illustration

3.5.1 Data

Figure 3.27: PET scan and CT attenuation image of subject with resected

glioma region highlighted.

As per the previous chapter, we present kinetic analyses for an FDG-PET

study conducted on a GE Advance scanner at the University of Washington,

Seattle from the glioma dataset [71]. This analysis is also on a whole brain region

in a subject with a glioma as was the case in the previous chapter. Again the

measured arterial time-course is available.

Figure 3.27 displays tracer uptake in our FDG study. A region of interest for

a hypoglycemic tumour region is highlighted but as this analysis is for illustration

purposes, we consider the whole brain as our region of interest. This image was

generated using AMIDE [42]
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Figure 3.28: Time activity curve for a whole brain region with nonpara-

metric (green) and compartmental (red) model estimators, with residues.

3.5.2 Statistical Inference

Figure 3.28 shows the time-course (adjusted for decay). The compartmental

model and nonparametric fits are also shown here along with their residues. One

can clearly see that the nonparametric residue is larger at the start while the

compartmental model residue is restricted to being an exponential curve. The

increased flexibility in the nonparametric estimator allows the curve to start at a

higher value and finish at roughly the same point. This makes one consider two

potential scenarios. Firstly the compartmental model may not have enough flexi-

bility to fit the data. Alternatively the nonparametric method may be overfitting

the data.

It is always useful to examine residuals after doing a regression and even PET

with complicated models, is no exception. These are shown in Figure 3.29. It

appears that both models have variance decreasing over time. The compartmental

model has three points between five and ten minutes which appear to be outliers.

If these were removed the variance would appear almost constant. On the residual

plots the red and green dots are indistinguishable for the first four points and so

only the green dots are visible. It is not possible to make these residuals look

constant by removing a few points. Boxplots of the weighted residuals are also

shown as these provide an insight into the shape of the distribution of the data.
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Figure 3.29: Weighted residuals for the nonparametric (green) and com-

partmental (red) model estimators.

Figure 3.30: Simulated distribution for F-statistic with critical value in

red.

To simply fit both models and then eyeball them and say that one is better is

not sufficient. Two techniques used in comparing models, mentioned previously

in this chapter will now be applied to the data.
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The illustrative kinetic analysis of the time course data indicates that although

the two compartmental model would typically be used for FDG, this model is

found to be inadequate. The first involves bootstrapping and has its roots in

regression. Here a simulated distribution for the familiar F -statistic in ANOVA

is used. Figure 3.30 shows the reference distribution along with the test statistic

(red vertical line). Here the test returns a p-value of 0.02.
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Figure 3.31: Cross validated residuals for compartmental (red) and non-

parametric (green) models.

As an alternative method of comparing models, we examine leave one out

cross validation. A plot of the leave one out cross validated residuals is shown in

Figure 3.31. Comparing these residuals using a Wilcox signed-rank sum test gives

a p-value of 0.008. If one wishes to compare the magnitude of the cross validated

RSS, one finds their sums are 0.0647 and 0.00562 for the two compartmental and

nonparametric models respectively. The Wilcox test rejects the hypothesis that

the models are equal and the nonparametric model has the smaller residual sums
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of squares making it the more appropriate model.

3.5.3 Discussion of Illustration

The results of the illustration are summarised in this section. We find that

it is possible to implement the nonparametric method on PET data. In fact

there are significant advantages with the nonparametric form. As it is estimated

using a constrained linear model, convergence to the minimum value of WRSS

is guaranteed. This is not the case for the compartmental model as finding

starting values for the estimation procedure which converge to the true value is

not trivial. Using the tracer function, which is part of the nls() function in R, it

was possible to see where the model was converging to an incorrect minimum. In

this case blood volume was negative. The starting value for delay was adjusted

and this allowed the model to fit the data. The nonparametric regression is

also significantly faster than the compartmental model. The difference in time

is difficult to quantify as it is a function of how close the starting values for the

compartmental model are to the final estimate.

Both the bootstrapping and cross validation methods find in favour of the non-

parametric method over the compartmental model. The nonparametric method

estimates flow as approximately three times the compartmental model estimate.

The values for flux and vD are similar.

While the results here provide evidence in favour of the nonparametric model

in one dataset and also show that there is a significant difference between esti-

mates for flow for the different methods, this is only for one ROI in one subject.

Repeating this work on several datasets gives a more general idea of how the

models are performing and this is done in the next chapter.

3.6 Summary

In this chapter the compartmental models and a nonparametric model for mod-

elling the tissue time activity curve were implemented in R [65]. An analysis of

the fits of the different models to data was conducted. This analysis is similar

to that conducted in linear regression comparing models but cannot rely on the
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form of test statistics distribution so bootstrapping and cross validation is used

to test the hypothesis that the compartmental model is an appropriate fit against

the alternative that the nonparametric model is the true model. In the case of

the data presented here, evidence against the compartmental model is found.

While the nonparametric method shows promise, it remained to compare the

compartmental models and nonparametric methods in terms of examining con-

vergence consistency variance and bias. A simulation study was conducted to

show how the models perform when the data are truly compartmental. Also the

statistic used in comparing the models was examined. In terms of comparing

models, the flux estimate showed significant bias with the levels of noise seen in

practice. Aside from this the nonparametric model converged to the true values.

The test statistic was examined and transformations generated which lead to a

distribution, which appears to follow the F -distribution. However, the results are

not strong enough to merit its use in practice and so a bootstrapping approach

will be used. The nonparametric technique applied to the 15O H2O and FDG

data sets has been published in [28].

To summarise here we note that

• Nonparameric model measurably out performs compartment model.

• has difficulty in convergence.

• has fewer outliers in weighted residuals.

• does not have the questionable assumptions of the compartmental model.

• achieved convergence on compartmental model data for all parameters
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Chapter 4

The Mixture Model and Analysis

of the Complete FDG Glioma

Dataset

4.1 Introduction

In this chapter we review a mixture model for the residue. This model has

previously been published in [59]. The model is similar in some ways to the

models presented previously as it is also used to generate a survival curve to

represent the tissue residue function, however it is different in that it generates

this curve in an alternative way. This model begins by modelling the time-course

of every single voxel in the field of view using the nonparametric method proposed

in Chapter 3. Having a massively large set of time courses is not particularly

useful for modelling. Hence the number of time-courses is reduced to a smaller

set, which capture the variability of the data. These can be used as basis elements

in the modelling of ROI time course data.

This involves an analysis of the entire field of view and so maps of kinetic

parameters are generated, which will be presented in this chapter. It is also worth

highlighting the size of the dataset. Each image is approximately 128×128×35

voxels over 31 time bins, which is approximately 17,776,640 entries, making up

573,440 time-courses, each of which will be modelled individually as part of the

mixture modelling technique.
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In Chapter 2 and Chapter 3 a compartmental model and a nonparametric

model were introduced respectively and were applied to PET ROI time-course

data for illustration purposes. It was highlighted that an analysis of a larger data

set containing many scans could allow stronger conclusions to be drawn on the

performance of each model. Such an analysis is undertaken in this chapter. This

analysis includes the mixture model as well as the compartment and nonpara-

metric models being applied to FDG glioma data and comparisons between all

three models are generated, using cross validation, making this a task involving

a lot of calculations on a large number of data points.

The data used here contains forty two subjects, with four ROIs per subject.

These four regions, which are analysed in each subject are a whole brain region, a

grey matter region, a tumour region and a white matter region. These data have

previously been analysed using compartmental modelling and this was reported

by Spence et al. [71]. The work in this chapter is a secondary analysis on the

dataset. While the original analysis sought to understand the differences between

how FDG and glucose are utilised in cerebral tissue, secondary analyses such as

these allow new techniques such as the nonparametric and mixture models to be

tested and validated.

While much of this thesis to date has discussed models, statistical inference

and other techniques in statistics, a lot of this chapter, particularly its latter half,

discusses the imaging aspects of the problem focusing on the data and results of

the analysis rather than the techniques, that get us to that point.

4.2 Outline and Contribution of this Chapter

Having briefly introduced this chapter, we now describe the structure and con-

tribution of it. The methodology is divided up into two. The mixture model is

presented and reviewed in Section 4.3, which details the nature of the modelling

of the whole image on a voxel level as has been proposed by O’Sullivan et al.

[59]. The difficulties associated with such a large volume of data along with how

to implement this mixture method for PET ROI data are also discussed. The

method analyses each voxel individually applying the nonparametric method and

subsequently applies a backward elimination algorithm to reduce the number of
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time-courses which can represent the variability in the data i.e. segment the en-

tire image. These segments are used as basis elements to generate an estimate

for the true residue using a least squares approach. Similar to the case of the

nonparametric model in Chapter 3 this model will be applied to the data using

Gromping’s ic.infer package [25] in R [65].

Section 4.4 discusses the data used in this chapter. It should be highlighted

that conducting an analysis on a large dataset such as this is a contribution

in itself and if one views papers published in the PET literature such as those

contained in Mankoff et al., Spence et al. and Muzi et al. [46, 71, 51, 52], one

can see similar analyses to that conducted here. Another example of a similar

contribution can be found in O’Sullivan et al. [60], where a secondary analysis

of an FDG dataset in normal human subjects proposing a nonparametric residue

function is presented. This sort of work is also of interest to physicians and other

scientists who are interested in the imaging side of the science instead of the

purely statistical side and this chapter aims to make a contribution of similar

magnitude to the work mentioned above.

An illustration is presented in Section 4.5, which includes comparisons be-

tween the three models. This illustration highlights the value in the work of this

chapter. The goals of this work include showing that the alternative modelling

techniques are feasible in this data set and in PET data generally. This illustra-

tion accomplished this by giving a step by step guide on how to do the modelling

as well as generating useful results on a single dataset. The comparisons between

the models in this section allow us to decide on which model is more appropriate

and hence which model should be used to estimate parameters of interest. Such

a comparison allows one to see where the new model outperforms the previous

model and this helps highlight the contribution that the new models are to the

field.

Kinetic maps are a tool which is gaining a lot of interest in medical imaging

with PET. They allow key functional parameters to be viewed throughout the

entire PET image to gain an insight into the functional properties of the subject

being studied. Generating and presenting these maps is one of the contributions

of this work. These maps are generated using the nonparametric method as part

of the mixture modelling approach. Again these are potentially a very useful tool
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to clinicians in practice and in the future they may be used widely to decide a

course of treatment.

To put the contribution of this work in context, the concept of the nonpara-

metric model presented in the previous chapter has been published in Hawe et al.

[28], which analysed one FDG time activity curve, this work shows its application

to a large dataset. Aside from comparing the models, this paper highlights the

feasibility of a nonparametric model for dynamic PET data. Here we seek to apply

the nonparametric and mixture residues to the data alongside the compartmental

model to determine which is best, which takes this work further.

The results of the analysis on the entire dataset will be presented in Section

4.6. In a sense this is a generalisation of the illustration but it is worth highlighting

that the conclusions which can be drawn from this larger dataset are of much

greater value than one simple study, which helps the goals of this work to be

realised by allowing stronger conclusions be drawn. Trends in parameters can

be found. The relationship between parameters of interest estimates for different

models can be computed and any differences between the models can be observed.

This analysis contributes strength to the conclusions which are drawn later in this

chapter. The chapter finishes with discussion and conclusions in Sections 4.7 and

4.8 respectively.

4.3 Mixture Model

4.3.1 Voxel Level Modelling of Dynamic PET Image Data

A PET scan image as viewed in AMIDE contains coordinates and activity val-

ues. At each coordinate in a dynamic scan there is a value of activity for every

time bin. These values have been discussed in Chapter 1 but in all the work

contained in this thesis and almost all the work on modelling PET data in the

literature, the researchers studying the data usually narrow the field of view down

to an ROI and fit a model to the average of the data in this ROI. The models

are usually compartmental models or alternatives such as spectral analysis or a

nonparametric method like that proposed in Chapter 3.

In this section a mixture approach is proposed. It involves considering each
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voxel as an individual time-course. As every voxel has a value at each time point,

and is a tiny region contained in the field of view, each voxel can be considered as

a separate ROI. For this analysis this is done for every voxel. The nonparametric

model is fitted to each of these time-courses. The nonparametric model is chosen

for many reasons including the fact that convergence is guaranteed and the fact

that it is much faster. However, it should be noted that since we are dealing

with the smallest regions possible then the compartment model would have been

reasonable here as an alternative as the assumptions of homogeneity and instant

mixing within compartments would not be violated. At this time it is worth

highlighting similar work which has been previously been examined by Hernandez

et al. [30] who examined the effect of looking at voxel level modelling with a focus

on biases and variances of estimators.

A large amount of information can be obtained from an analysis at this level

and in the coming sections kinetic maps are discussed. However as we seek to use

all these time-courses to model ROI data, we will seek to reduce the number of

basis elements for this modelling from the number of voxels in the field of view

to a smaller more useful number and this will be discussed first.

4.3.2 Segmentation

The split and merge procedure used to segment the data is described by O’Sullivan

[56] and O’Sullivan et al. [59]. Voxels are grouped together if their shape and

scale are similar. Cluster analysis is used to divide the dataset into a large

number, usually about ten thousand of rectangular regions whose scaled time-

courses appear homogeneous. The merging procedure combines regions to larger

regions with low relative heterogeneity. A constraint is added to ensure regions

which are grouped together are contiguous when combining small regions. For

the analysis in this chapter, ten segments are used. The choice of the number of

segments is discussed in [56] but generally comes down to experimentation to see

what works. By this we mean, as the number of basis residues will be reduced

further it is necessary to have enough for this procedure. If the number is found

to be too low it is increased, but that was not necessary for the FDG dataset.
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4.3.3 Glucose Kinetic Maps

Kinetic maps have already been mentioned but in this section they are now

discussed in greater detail. An example of kinetic maps from will be shown in

the illustration later in this chapter, in Figure 4.5, the estimates for uptake, vD,

flow and flux in a subject with a brain tumour. These images were generated

by analysing each voxel in the field of view individually using a nonparametric

model and gaining an estimate for the parameters of interest at each voxel. These

parameters are then plotted as an image such as that shown here. Similar analyses

for breast cancer studies have been presented by O’Sullivan et al. [59]

4.3.4 Additive Modelling for the Residue

Initially the number of basis residues was set to be ten or twenty as was described

in Section 4.3.2. If, following this segmentation procedure, a set of J basis residues

R̄j(t), j = 1, .., J which are derived from the whole image remain, then the residue

in a region located at x is appropriately estimated as :

R(t, x) = α1(x)R̄1(t) + α2(x)R̄2(t) + ...+ αJ(x)R̄J(t),

for nonnegative αj’s. To simplify the modelling the residue components are nor-

malised to start at unity and end at zero and extraction is included as a separate

component. Using this residue and a similar argument to that put forward for

the compartmental and nonparametric models, we write

CT (t, x) = vBCP (t−∆)+α1(x)C̄1(t−∆(x))+α2(x)C̄2(t−∆(x))+...+αJ(x)C̄J(t−∆(x)),

where

C̄j(t) =

∫ t

0

R̄j(t− s)CP (s)ds for j = 1, .., J.

That is to say the activity in the tissue is modelled as of a combination of the

weighted residue functions convolved with the AIF.

The segmentation generates a mean and sample variance time-course for each

segment. Similar to an ROI drawn in AMIDE each segment will be quasi-Poisson.

If the mean value in the kth segment for the bth time-bin is denoted by ykb, and

E[ykb] = µkb
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then

V ar[ykn] = φkµkb,

where

µkb =

∫ te

ts

Ck(t)e
−λtdt

and

Ck(t) =

∫ t

0

Rk(t− s)CP (s−∆k)ds,

where λ is decay, ∆k is delay and φk is the proportionality constant, which repre-

sents the relationship between the mean and variance of the quasi-Poisson process.

When fitting the linear combination of the segments to data, it is necessary

to estimate the scale of each mean time-course of each segment using the orlm()

function [25] in R [65] for estimation. Once delay is computed by gridsearch,

all parameters can be computed together using weighted least squares with the

constraint that all coefficients are positive. Parameters such as flux, flow and

volume are then estimated similarly to the compartmental and nonparametric

models using the estimated residue for the ROI being studied. An unbiased

risk assessment criterion is then used to obtain an overall assessment of the J-

component basis [59].

4.3.5 Voxel Level Optimisation of Delay and α Coeffi-

cients

Voxel level data is similar to larger regions of data i.e.

E(yib) = µib,

V ar(yib) = φkbµib

and µib, where φkb is similar to φk but on a voxel level. We can now write as a

linear combination of the basis residues

µib = αi1µ̄1b(∆i) + αi2µ̄2b(∆i) + ..+ αiJ µ̄Jb(∆i) = (̄µb)(∆i)
Tαi

where αij = αi(xj), C̄j(t) =
∫ t

0
R̄j(t − s)CP (s)ds and hence, µ̄jb =

∫ teb
tsb

C̄j(t −
∆i)e

−λtdt. Weighted least squares is used to fit this model to the data, with
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weights similar to those used for the two compartmental model and the nonpara-

metric model, however they are based on the reciprocal of the fit at each iteration

not the data and at each iteration of the modelling they are updated to the new

fit. This is a sensible choice to make as there will be a large amount of noise in

the system. This optimisation is implemented using orlm().

4.4 The FDG Glioma Dataset

4.4.1 Gliomas and FDG

Gliomas are a form of tumour, which develops in glial cells in the brain and

spinal cord, which are generally quite aggressive and subjects diagnosed with this

ailment generally do not have a good prognosis [41]. FDG is used to grade the

severity, plan biopsies and to distinguish recurrence from radio-necrosis (death of

cells due to radiation) in gliomas [71].

The use of FDG as a glucose analog has previously been discussed in this

thesis. FDG has the advantage that it crosses the blood brain barrier similarly

to glucose and then accumulates in brain tissue at a rate proportional to glucose.

This dataset used here was generated when the relationship between glucose and

FDG was being examined. Accordingly all subjects were imaged with 11C glucose

and subsequently with FDG. In this work only the FDG data is considered for

analysis.

4.4.2 Subjects

Forty-two subjects, all with malignant gliomas were studied by Spence et al [71].

These included multicentric (tumours with more than one center) and bilateral

(cancer which occurs on both sides of the brain) tumours. The study included

both men and women with glioblastoma multiform and anaplastic astrocytoma,

which are the two main types of glioma. The type and location of the tumour and

time of detection, dictated the times that the subjects were imaged. This means

that some of the subjects were imaged between surgery to resect the tumour and

treatment. Others were studied after recurrence following treatment. Subjects

were subsequently imaged at three month intervals following their initial scan
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until death. This means the data includes a number of subjects who were imaged

twice or three times.

4.4.3 Equipment and the Imaging Procedure

FDG was generated by bombarding the glucose particles in a medical cyclotron.

The purity and activity in the sample was measured and recorded to calculate

the dose of radiotracer given to the subjects. The imaging data used in this work

was generated on the General Electric Advance whole body PET scanner which

generated images made up of 128 × 128 voxels over thirty-five slices. The scanner

contains eighteen rings of detectors with 672 scintillator crystals per ring [71].

Subjects fasted for at least nine hours before the procedure. All subjects un-

derwent CT and MR scans as well as the PET procedure. From these scans,

the planes which contained the largest tumour areas were identified. After the

patients were secured in the scanner, the scanner was aligned so that the region

containing the tumour was contained within the region being imaged. An at-

tenuation image was generated using a source of 68Ge (Germanium) with known

activity and rotating it around the subject.

Following this an intravenous line was inserted into the subject to allow the

tracer to be injected and a catheter was inserted into a radial artery at the wrist

to allow the activity in the arterial blood to be examined and the AIF generated.

Once this was set up the scanner began generating images one minute before

injection of the tracer. After the 1 minute scan the 11C glucose was injected over

1 minute or 2 minutes in 10ml or 20ml of saline respectively. Images were then

generated as follows: four 20 second bins, four 40 second bins, four 60 second

bins, four 180 second bins, fourteen 300 second bins. Arterial blood was sampled

at similar intervals to the imaging procedure. The FDG study followed the 11C

glucose scan. For FDG the tracer was injected in approximately 10ml of saline

over 1 to 2 minutes. The same protocol for the image duration and arterial

sampling was used for the FDG image generation as was used for the glucose

image generation.
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4.5 An Illustration

Figure 4.1: Brain region for analysis in this section highlighted in thick

yellow line and thin black line along with time-course from this region.

Figure 4.2: Grey matter region for analysis in this section.

As was the case in the previous two chapters, an illustration will now be

provided which goes through the modelling in detail. We begin by considering

the data being analysed. The data in this illustration relates to four ROIs from

one subject in the glioma dataset. These four ROIs are a whole brain region, a

grey matter region, a white matter region and a region containing the site where
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a tumour has been resected from. These regions were used by Spence et al. [71]

in their paper exploring the relationship between glucose and FDG and were

made available for this analysis. All PET images previously displayed in this

thesis were generated using AMIDE, but Spence et al. used an alternative viewer

called Alice to generate the ROIs. The regions shown here have been redrawn in

AMIDE as the images appear clearer and it is easier to remove noise from the

image in AMIDE than Alice.

These ROIs were drawn using coregistered CT or MR images, which were

generated on every subject who was part of the study. The whole brain region

is roughly made up of the front right quarter of the brain on the twenty-seventh

and twenty-eight slice and is highlighted in yellow in Figure 4.1. The grey mat-

ter region is also spread over the twenty-seventh and twenty-eight slices and is

highlighted in grey in Figure 4.2. The white matter region is again on the twenty-

seventh and twenty-eight slices and is highlighted in white in Figure 4.3.

The tumour region is spread over a larger collection of slices. This is for a

number of reasons. Firstly as the whole brain, grey and white matter regions

occur throughout the brain a large volume can be obtained on just one or two

slices, while the tumour occupies a small volume on each slice. Secondly, as the

brain tumour is not part of the anatomy of the brain and is by its nature made

up of aggressive tissue, it can spread out in all directions and so is found on many

Figure 4.3: White matter region for analysis in this section.
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Figure 4.4: Tumour region for analysis in this section.

slices. For these reasons the brain tumour region, which is highlighted in red in

Figure 4.4 is drawn across four slices from slice seventeen to slice twenty. It is

also worth highlighting that there are far more voxels in the whole brain, grey

matter and white matter regions than the tumour region, which explains why the

tumour time-course has the most noise.

Illustrations of the compartmental and nonparametric models applied to data

have been presented in Chapter 2 and Chapter 3 respectively and so this illus-

tration will discuss the mixture model in greater detail than the compartmental

and nonparametric models. As the compartmental model only takes approxi-

mately one minute to fit to the data once correct starting values are found and

the nonparametric is even faster, this is not computationally difficult. As was

outlined previously the modelling begins by fitting the nonparametric model to

every voxel and then grouping these time courses using cluster analysis accord-

ing to their shape and behavior, taking into account the proximity of voxels to

each other. This is achieved using fortran codes and takes approximately thirty

minutes per region of interest to produce ten segments within the image. This

work generates a kinetic map of the entire dataset as the nonparametric model

is applied to the data at every voxel. Examples of four of these kinetic maps are

shown in Figure 4.5.

These kinetic maps show how the flux, flow, volume of distribution and uptake
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vary spatially. The site of a tumour is in the cross hairs for each of these kinetic

maps and the difference in flux and uptake is visible on these maps. A colour bar

is also present on the image which allows the maximum and minimum values in

the field of view for each kinetic parameter to be observed.

We are seeking basis elements to use in a similar way to how predictor variables

are used in a linear model to apply to our data so the thousands of time-courses

needed to generate the kinetic maps need to be reduced. The dendrogram used

in the cluster analysis which achieves this along with the nonparametric residues

generated by this cluster analysis are shown in Figure 4.6. It is worth noting

that at this time it was decided to reduce the number of basis elements to ten,

which was chosen as in all data examined, less than ten elements were required

for subsequent steps in the process. These ten basis residues are then smoothed

as has been described in the previous section. They have the extraction fraction

subtracted off and are normalised to have height one. These smoothed residues

are shown in Figure 4.7. These residues have been smoothed using cubic B-

splines and have had retention removed so that they all end at zero. They are

also rescaled so they all begin at unity. This is done using splines and this takes

approximately 2 minutes.
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Figure 4.5: Kinetic maps for flux, flow, volume and uptake from a glioma

dataset. The site of the tumour is highlighted by cross-hairs.
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Figure 4.6: Piecewise constant residues representing segments (left). A

dendrogram used in the cluster analysis (right) [59]

.

Figure 4.7: Smooth residues representing segments from Figure 4.6.
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Figure 4.8: Reduced set of residues and components representing segments

in the data along with AIF (red) and extraction (green).

It can also be seen in Figure 4.7 some of these residue functions seem quite

similar and perhaps are explaining the same variability in the data. For this

reason the number of components is reduced further to a smaller subset which

can still represents the ROI data. This has been described in the last section

with regard to the risk values C(J) and is based on a principal component type

study which looks at the variability each of the segments explains in the data.

In this case the value which minimises this function is four and so there are four

residues remaining. These residues are shown in Figure 4.8. This is why we

initially chose ten basis residues using the segmentation procedure. As long as

the number chosen earlier was bigger than four then the modelling will perform

as needed. This takes approximately twenty minutes to run.

It is not the case that these residues are fitted directly to the data. Instead

the convolution of these residues with the AIF are the components which are

fitted to the data using constrained weighted least squares. These are shown in

Figure 4.8.

Before discussing the fitting of these residues to the data, we consider what

these represent. The components which the data are broken into are obviously

different, but the way they are different is interesting. Huang and O’Sullivan [33]
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Figure 4.9: High and low vascular regions used in mixture modelling and

time activity curves. The regions are shown here without the surrounding

tissue and with the attenuation image for clarity.

used this segmentation procedure to find areas of tissue which consist of arterial

blood and regions with lower levels of vascularity to generate an AIF from the

image without blood sampling.

In the case of the FDG dataset, two examples of segments are shown. Figure

4.9 shows a segment with high vascularity and a segment with low vascularity.

The time activity curves for these segments are also shown here. One can clearly

see an AIF and an FDG time-course like curve with the largely vascular and

largely extra vascular regions respectively. Also shown are the residues for these

regions and the proportion of tissue and extra vascular space. However in the

case of the work in this chapter, we are concerned not with the vascularity of
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the regions but how they can be used as basis functions. However knowing this

information helps us understand the variability being captured by the different

components. We now return to consider the ROI time-course data in the glioma

studies.

So far this chapter has discussed the mixture model but now the analysis

will include the nonparametric and compartmental models and comparisons be-

tween all three models. Although previous illustrations have involved analysing

one ROI, this illustration involves four ROIs from one subject and gives a more

detailed picture of how the models work. In a sense this can be thought of as a

more extensive illustration from the perspective of the imaging side of this work.

This model as well as the compartmental and nonparametric models are fitted

to the whole brain, grey matter, tumour and white matter regions in Figure 4.10.

In this picture one can see that the three models appear very similar for all four

regions.

One can also observe the shapes of the time-courses of different regions. The

grey matter regions time-course is increasing at a very fast rate, while the white

matter regions maximum is approximately two thirds the maximum of the grey

matter region. It is hardly surprising that the whole brain region time-course

which contains both grey and white matter has more activity than the white

matter region and less than the grey matter region. It is also evident in the fit

that the tumour region behaves differently in terms of glucose uptake than the

other regions as the data is almost linear after twenty minutes. This is because

the tumour region, is actually from a region where tumour has been resected

and so the region has previously been hypoglycemic, however the tumour has

began to reoccur and this is why there is more activity present than in the white

matter region. If the tumour was still hypoglycemic, it would be the case that

the tumour’s time-course would be decreasing at later times. From these pictures

it is difficult to say that one model is fitting the data better than the others.

Even if there appeared to be a difference between the fits, it is not simply

enough to look at the fits with one’s eye and say one is better than the others.

This is open to ambiguity. As a large goal in this work is determining which model

is appropriate, then we look at the fits in more detail. In doing so we consider

the review of linear regression, presented in Chapter 2 and consider looking at
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Time Courses for FDG Glioma Data with Three Estimators 

Whole Brain Grey Matter 

Tumour Region White Matter 

Figure 4.10: Time activity curve fitted by compartmental model (red),

nonparametric model (green) and mixture model (blue).

residual plots of the fits. It has been mentioned that if the model is appropriate

then the residuals will be a random scatter or null plot about the x-axis. The

plots of the weighted residuals are shown in Figure 4.11. On this plot the x-axis

is not time but simply an index as there would be too many points at early times

making it difficult to gain an understanding of the differences between the data

and the estimators and to examine if there are any patterns in the residuals. At

a first glance these plots do not appear to be a null plot about the x-axis.

At early times, specifically between the fifth and tenth time points, there

appears to be some significant increase in the residuals for the compartmental

model and to a lesser extent the other models. These points correspond to the

maximum value in the AIF and is visible for all four regions. This is not as
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Figure 4.11: Weighted Residuals for compartmental model (red), non-

parametric model (green) and mixture model (blue) fits shown in Figure

4.10. Note these are on different scales but this is due to the shape of the

residuals rather than their scale being of interest.

noticeable for the white matter and tumour regions but is still present.

It is also worth noting that all three models appear to have the variance of

the residuals decreasing over time. The fact that the variance is decreasing is not

a positive for any model. While questions can be asked about the weights being

used in the analysis, it appears that the variance is decreasing at a very slow rate

or not at all for the last fifteen time points and that the earlier larger variance,

when the AIF is at its maximum makes this appear far more drastic than it really

is.

Another point of note is that instead of being a random scatter about the
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x-axis, the residuals seem to make a zigzag pattern on the axis particularly for

the whole brain and grey matter region. This might indicate some correlation

between the residuals. This has been mentioned in the context of linear regression

in Chapter 2 and it is worth restating that even if the errors are independent,

residuals need not be. However in this case there does appear to be a pattern

beyond this in the residuals.

The real question to ask when examining residuals is ’What do we take from

this plot’? In answering this there are many questions asked of the compartmental

models ability to take the arterial blood component into account. While similar

questions are asked of the other models, they are not to the same extent. The

fact that a pattern is present in the residuals does ask questions of each of the

models. It will be necessary to generate a metric to compare these models. This

will be discussed shortly.

Before this we consider this metric, we note that while residuals are one

method in comparing the models, it is important not to lose sight of how the

models are different and explore this. Examining these differences is key in un-

derstanding which model performs best. The three models have different residue

functions and we will now look at these individually to try to gain an insight into

each of the models.

In the case of the compartmental model, the residue is forced to be a mixture

of two exponentials. This will be a smooth curve. The nonparametric is a step

function and has more parameters than the compartmental model. Finally the

mixture model residue will have flexibility similar to the nonparametric model,

but will be smooth unlike the nonparametric model as it is is made up of com-

ponents which have been smoothed using splines. A plot of all three residue

functions for each of the fits in Figure 4.10 is shown in Figure 4.12.

The start, end and area under the curve are of interest as they are the flux, flow

and volume values. These three pieces of information provide the vast majority

of the detail of the residue function as well as being key parameters of interest

to physicians and scientists studying cancer and other aliments. The flux value,

being the final value of the residue appears to be very close for all three models.

This is encouraging as if all three models are arriving at roughly the same answer

then it leads one to conclude that these estimates are appropriate for the data.
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Residue Functions for Three Estimators 

Whole Brain Grey Matter 

Tumour Region White Matter 

Figure 4.12: Residue functions for compartmental model (red), nonpara-

metric model (green) and mixture model (blue) fits shown in Figure 4.10.

Again these are of different scales as they have been scaled by flow and the

shape of these functions is our main concern.

The area under the curve vD are also similar for all three models with the

early time points being notably different relative to the end points. As the early

time bins are short the impact of this on the volume estimate is not as drastic as

it would appear from the picture.

This results in very different estimates for flow being generated. This could

be due to the fact that the compartmental model does not have sufficient degrees

of freedom to capture the variability at early times in the data. By this we

mean that the compartmental model may not have the flexibility to generate an

appropriate flow value. Spectral analysis is a method which could be used here
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which is based on a large number of compartments [14, 50]. Discounting this

difference at early times then the residue functions are found to be very similar.
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Figure 4.13: Residue functions for compartmental model (red), nonpara-

metric model (green) and mixture model (blue) fits shown in Figure 4.10.

To simply stop here after just examining the residuals and residues would not

be appropriate, when generating a statistical comparison between the models is

clearly useful. The method which will be used here was presented in the last

chapter and that is examining cross validated residuals. These cross validated

residuals are shown in Figure 4.13.

At early times specifically between the fifth and tenth time point there appears

to be some significant increase in the residuals for the compartmental model and

again this is likely to be related to the AIF. This is particularly noticeable for the

whole brain and grey matter regions but not as noticeable for the white matter

and tumour regions. Similar increases in the residuals are present for the other

models at these time points except in the case for the grey matter region but they

are not as drastic. This is remarkably similar to the residuals on the data.
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Model Brain Grey Tumour White

Compartmental 0.023 0.058 0.039 0.035

Nonparametric 0.008 0.009 0.040 0.014

Mixture 0.006 0.010 0.044 0.010

Table 4.1: Cross validation residual sums of squares for the three models

on the four regions. The lowest residual sums of squares for each region is

highlighted in bold font.

If one examines the box plots, the cross validated residuals appear quite similar

for the tumour region and white matter region for all three models while the

compartmental model has the most variability for the whole brain and grey matter

regions.

It is also worth noting that all three models appear to have the variance of

the cross validated residuals decreasing over time, aside from the larger variances

at earlier time points, when the AIF is at its largest. Again this is very similar

to the weighted residuals on the data. It is also the case that it is harder to see

which model is performing better from the plot in the case of the white matter

region as was the case for the residuals on the data.

The real question to ask when examining residuals is ’What do we do with

these plots’? We seek to use these residuals to generate a metric to compare

these models. This metric is simply the cross validated residuals sum of squares

(CVRSS).

For the compartmental model, the nonparametric model and the mixture

model the CVRSS for the whole brain, grey matter region, tumour region and

white matter region are presented in Table 4.1. From this table, one sees that the

nonparametric model performs best in two out of the four regions being studied.

In the other two regions the mixture model does best. The compartmental model

does worst in all regions except the tumour region where the mixture model does

particularly badly in comparison to the other models.

As it is the case that in two of the regions the whole brain region, the white

matter region the mixture model has the lowest CVRSS and in the grey matter

and tumour regions, the nonparametric model has the lowest CVRSS, we have
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an indication that we may find evidence against the compartmental model when

analysing the larger dataset.

w

Another technique which was mentioned as a method in comparing models is

the bootstrap and this has been discussed in Chapter 3. Here the compartmental

model is assumed to be an appropriate fit to the data as it is the model which is

widely used an accepted in the literature and a reference distribution for the im-

provement in fit statistic is generated by simulations. The test statistic derived on

the real data compared to this distribution. An illustration of this was presented

in the last chapter, which shows comparisons between the compartmental and

nonparametric models. This analysis has been conducted to compare the com-

partmental and mixture models on a large subset of the data. Using this method

p-values generated by this method for the whole brain, grey matter, tumour and

white matter regions for this method are 0.11, 0.008, 0.58 and 0.2 respectively,

which lead to the similar conclusions as the cross validation results. However as

this method takes significant computer time (3 months on a high spec computer.)

and it is not expected to produce any different results, it is omitted in the final

analysis in this chapter.

Flow Flux Volume of Distribution 

Brain      Grey   Tumour   White Brain      Grey   Tumour   White Brain      Grey   Tumour   White 

Figure 4.14: Parameter estimates for flow, flux and volume in whole

brain, grey, tumour and white matter regions using the two compartmental

(2), nonparametric (N) and mixture models (M).

A final comparison is drawn between the parameters estimated. This has been

left until last as it is important to know which models are performing better before

deciding which parameter estimates are appropriate. The difference between
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parameters have already been mentioned in the context of studying the residues

but knowing which models perform better due to having the cross validation

results allows us to have a look at these parameters from a different perspective.

The estimates for flow, flux and volume for the four regions being studied are

presented in Figure 4.14.

As expected flux and volume values are very similar for all three models.

However as the starting value in the residue is quite different for the whole brain

and grey matter regions, then the flow estimates are very different. As these

regions had the compartmental model having CVRSS an order of magnitude

larger than the nonparametric and mixture models, this is not surprising. It

would lead one to chose the nonparametric or mixture model estimate as the

estimator of flow in this case. We now proceed to report the summary of results

from analysing the large glioma dataset with the methods illustrated here.

4.6 Results

The previous section went into detail on analysing a dataset in the FDG glioma

collection. It is now the case that we report the results of similar analyses being

conducted on the whole dataset. The dataset is extremely large consisting of

forty-two subjects. It seems even larger when you consider that every voxel in

every subject was individually analysed as part of the mixture model approach,

which is 128×128×35 voxels ×31 time points × 42 subjects. However the volume

of work that this involves is worthwhile as interesting conclusions will be drawn

from the dataset, which could not be drawn from one image alone. The larger

data set will allow the trends in the parameters of interest for example be viewed

and understood in ways not possible with a single dataset.

It is also worth highlighting that although they are not presented here kinetic

maps for every subject have been generated and may prove valuable in the future.

As was the case in the previous section flux, flow and volume of distribution

were calculated for each of the four regions being studied. These are compared

in Figure 4.16, Figure 4.17 and Figure 4.18 for the compartmental model and the

nonparametric model, for the compartmental model and the mixture model and

for the mixture and nonparametric models respectively. The black line shown is
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R2=0.24 R2=0.82 R2=0.98 

Figure 4.16: Parameter estimates for flow, flux and volume in whole brain

(black), grey (red), tumour (green) and white matter (blue) regions using

both compartmental and nonparametric models and r-squared values.

R2=0.19 R2=0.83 R2=0.86 

Figure 4.17: Parameter estimates for flow, flux and volume in whole brain

(black), grey (red), tumour (green) and white matter (blue) regions using

the two compartmental and the mixture model and r-squared values.

the line y = x and the grey line is the linear regression line estimated by least

squares. If the estimators were equal then these two lines would be identically

equal. The R2 values for the fit are also shown on this plot.

As in the case of the illustration, there is little difference in the case of flux

and volume estimators for the two compartmental and nonparametric models. In

fact the flux and volume estimates match the line so well that the line is almost

invisible. However there is more variation between flow estimates and it does seem
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that the nonparametric estimates for flow are higher than the compartmental

model estimates. These results are consistent with the analysis of healthy subjects

in [59]. It was seen in the illustration that the compartmental model estimator

does not have as much flexibility as the nonparametric and mixture models, and

tended to have a smaller estimate of flow. This is why the R2 value for flow is so

low. It is also worth highlighting that the estimated line appears almost parallel

to the line y = x although for flow the intercept appears greater than zero and

the hypothesis that the slope is one is not rejected using the t test.

R2=0.84 

R2=0.17 R2=0.96 

Figure 4.18: Parameter estimates for flow, flux and volume in whole brain

(black), grey (red), tumour (green) and white matter (blue) regions using

the mixture model and nonparametric and r-squared values.

Similarly, when examining the compartmental model and the mixture model.

There is little difference in the case of flux and volume but there is more variation

between flow estimates. In fact the stories are almost identical. Volume and flux

estimates are very similar while flow has the mixture model generating larger

estimates for flow as was the case with the nonparametric method. Similar to the

nonparametric method the R2 for flow is low and close to one for the flux and

volume. The estimated lines tell a similar story to the previous case also.

Finally, when comparing the nonparametric and mixture models a similar

picture is found for flux and volume, however in the case of flow there is again

more variability. Here we look back at the illustration and Figure 4.12 and it is

clear that although the flow values are closer together for two of the four regions,

there are still clear differences between them in two of the four regions. It is also
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the case here that the line fitted to the flow values is not parallel to the forty-five

degree line and has a much smaller slope.

Using cross validation, residual sums of squares are calculated to compare the

three models. These are presented in Figure 4.19. This figure shows the difference

between the different models CVRSS for each individual ROI.

Figure 4.19: Box plots comparing cross validation residual sums of squares

for all three models. Blue represents the whole brain region, grey represents

the grey matter region, red represents the tumour region, white represents

the white matter region.

In the case of comparing the nonparametric and compartmental models, the

nonparametric model has a smaller CVRSS in forty-one, forty, thirty-one and

twenty-seven of the forty-two regions for the brain, grey matter, tumour and white

matter regions respectively. This totals to the nonparametric model outperform-

ing the compartmental model in one hundred and thirty-nine of one hundred

and sixty-eight regions. In the case of comparing the mixture and compartmen-

tal models, the mixture model has a smaller CVRSS in thirty-nine, thirty-nine,

thirty-two and twenty-six of the forty-two regions for the brain, grey matter, tu-

mour and white matter regions respectively. This totals to the mixture model

outperforming the compartmental model in one hundred and thirty-six of one

hundred and sixty-eight regions. In the case of comparing the mixture and non-

parametric models, the nonparametric model has a smaller CVRSS in thirty-one,
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Region C-NP C-M M-NP

Brain 1 (<0.001) 3 (<0.001) 11 (0.003)

Grey 2 (<0.001) 3 (<0.001) 13 (0.019)

Tumour 11 (0.003) 10 (0.009) 21 (>0.01)

White 15 (0.088) 16 (0.160) 24 (0.441)

Table 4.2: Number of regions where difference in the cross validation resid-

ual sums of squares for the models is smaller for the compartment model

compared with the nonparametric model (first column), is smaller for the

compartment model compared with the mixture model (second column) and

is smaller for the mixture model compared with the nonparametric model

(third column), P-values (two tailed) comparing these models to the bino-

mial distribution with p = 0.5 are presented in brackets.

twenty-nine, twenty-one and eighteen of the forty-two regions for the brain, grey

matter, tumour and white matter regions respectively. This totals to the non-

parametric model outperforming the nonparametric model in ninety-nine of one

hundred and sixty-eight regions. This is summarised in the Table 4.2.

4.7 Discussion

This work has helped to demonstrate that the nonparametric and mixture models

are viable alternatives to the compartmental model. It is also worth highlighting

that this work was implemented using open source software tools such as AMIDE

and R. Kinetic maps have been generated using the nonparametric method and

an in depth analysis which has never previously been conducted on this dataset

has been presented.

In carrying out kinetic analysis, the main goal is to separate flow and retention

of tracer in tissue. One way that this is quantified is by estimating parameters

which have some significance to flow and retention. Three key parameters are

flow, flux and volume of distribution. It is clear from Figures 4.16, 4.17 and 4.18

that flow estimates are significantly different between the different models while

the flux and volume of distribution estimates are quite similar. It is also worth
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noting the comparison of the nonparametric models and the mixture models

estimates for flow are also quite different. When differences occur it is necessary

to decide on which model to chose for analysis.

The cross validation residuals lead us to significant evidence against the com-

partmental model in the case of both the mixture and nonparametric models.

Similarly we find significant evidence against the mixture model in favour of the

nonparametric model. However this is not as strong. This naturally leads to

the question which model should be used for estimating parameters particularly

in the case of flow. From the results in the previous section, the nonparametric

model had the lowest cross validation residual sums of squares the majority of the

time so it could be argued that this would be the best model to chose. However

there are biases present in the model that were found in Chapter 3. An argument

can be made that although these are statistically significant, they may be of little

practical significance and therefore one can argue the nonparametric model works

best on an ROI basis. In the case of FDG studies the most important parameter

is often thought to be the flux and so an argument can be made that the choice of

model is not important, however it is the authors opinion that the most correct

model should always be used.

4.8 Conclusion

It is interesting that the flow parameter varies widely between models. One can

assume that as the residue function is estimated by fitting a curve to data, then

the entire time series has an effect on the curve. While the nonparametric and

mixture models have a lot of flexibility, the compartmental model tend to have

lower values at the start of the residue as the curve has only four parameters

which can vary. The differences between the nonparametric and mixture models

can probably be explained by a similar argument. The nonparametric has massive

flexibility in estimating flow, while the mixture is constrained to be a linear

combination of a relatively small number of basis elements. This perhaps leads

to a question of whether the nonparametric method is overfitting the data due to

the large number of parameters it has.

The flux values are quite similar. This was the case in the illustration earlier
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in the chapter. The residue functions tend to level out towards the end of the scan

and this is like a steady state solution in mathematics. As the model towards the

end is the blood volume times the AIF plus the convolution of a curve which is

flattening out and the AIF which is less spiked at later times, it stands to reason

that the estimators will be similar here.

The volume of distribution is similar for all three estimators as well. Although

the early time points for the compartmental model tends to be lower than the

mixture and nonparametric models, this does not remain for long. Generally, the

three models residues appear similar after just a few time points. As the opening

time-bins have the smallest time duration, they do not have a massive impact on

the area under the curve.

The compartmental model is outperformed by the nonparametric model. The

mixture model also outperforms the compartmental model. It is not surprising

that the compartmental model fares poorly in this work. If we rexamine the

assumptions of the compartmental model, homogeneity, instant mixing and mass

action, are clearly violated in the case of this dataset.

In the case of this study it does appear that the nonparametric model is out-

performing the mixture model. This is not as clear cut as is the case with the

compartmental model and the other two models but warrants some further in-

vestigations. It may be the case that since the nonparametric model is has more

degrees of freedom, that it will always fit the data better. However the nonpara-

metric model does outperform the other two models in the cross validation test

and so one is lead to conclude that the nonparametric model is the appropriate

model. It is highlighted that the nonparametric model did not outperform the

mixture model by a massively large margin and to carry out more of this work

on more data is left as future work.

In O’Sullivan et al. [59] an analysis similar to this is presented. Similar results

for the parameter estimates were found in this case for healthy cerebral tissue.

The results reported here also found evidence against the compartmental model.

It is encouraging that both studies show similar results.

It is probably appropriate to mention that there are some downsides to the use

of alternative methods such as the nonparametric and mixture models. Firstly,

direct comparisson to historic studies completed with compartmental models is
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not possible unless the historic data is analysed again. Secondly, although the

new methods outperform the compartmental model in many ways, it does involve

nonparametric regression, which many in the field of medical imaging will not be

familiar with.
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Chapter 5

Discussion, Conclusions and

Future Work

5.1 Discussion and Conclusions

The work in this thesis is based on the analysis of dynamic PET region of interest

time-course data. This has been studied by a variety of researchers over the

years. Many different points of view have been taken. While many advocate for

the compartmental models, their use in practice is questionable if not completely

improper. However, this is seen frequently in the literature. Tests in vitro have

shown these compartmental models to be appropriate but the case of tissue in

a well stirred test tube and in a live subject (in vivo) are very different. This

has largely motivated the efforts of this author, and those who published work in

[14, 50, 59, 60].

In this work a Markov chain formulation was proposed to gain an insight into

how PET radiotracers distribute throughout the body. In this formulation it

was shown that in a limiting case where the number of tracer atoms was large

the discrete Markov formulation approached the solution of the compartmental

model differential equation compartmental models. The insights gained by this

work and the work in [14, 50, 59, 60] lead us to consider alternative residues. This

however in itself did not lead to any results which were particularly tangible.

We briefly mentioned the work of Cunningham and Jones [14] and Murase

[50] which describe spectral analysis for residue estimation. Spectral analysis is
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modelling the PET residue function by a large number of exponential functions.

This can be thought of as a nonparametric exponential model or a many compart-

mental model. In their work, Murase and Cunningham and Jones show that it is

possible to fit such a model to the data and suggest that this model has advan-

tages over the compartmental model. These models have some nice properties.

As the model is effectively a multi compartmental model, it has a residue function

which is a survival curve, due to its components consisting of a mixture of expo-

nentials. In the setup described in [14], there can be over two hundred variables

to estimate. As a result of this, the optimisation is not simple. Cunningham and

Jones propose using the simplex method for this as weighted least squares would

likely be difficult to implement and not guarantee convergence. To put this in

context the nonlinear least squares estimation for the two compartmental model

consists of estimating six parameters and this is not trivial. Spectral analysis

was in part the inspiration for the work contained in this thesis. Due to time

constraints, this was never achieved in this project. Perhaps a limitation of this

work is that this comparison has not been made.

In 2009, the case of examining alternative residue functions was rexamined

by O’Sullivan et al. [60]. In this work, the authors proposed to estimate the

probability density function for the transit time of the tracer in tissue instead

of estimating the residue function directly. From this the residue was generated.

This was implemented in a nonparametric form using cubic B splines to estimate

the density. As the residue estimate is effectively one minus a cumulative density

function it must be monotonic and start at one, the life table nature of the residue

was preserved. A bootstrapping approach was used to compare the models, which

was also used in this work to compare the compartmental and nonparametric

models in Chapter 3. This work found strong evidence against the compartmental

model in a dataset of ten distinct tissue regions of cerebral tissue in twelve normal

subjects. Again the work in this thesis would be strengthened with this larger

comparisson.

In 2012 an alternative nonparametric method was presented in Hawe et al.

[28], which presented an analysis on a single PET dataset for the FDG and the

15O water tracers. This analysis for FDG was the basis of Chapter 3 of this

thesis. Firstly, this chapter shows that a nonparametric method for PET region
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of interest time-course data is feasible and practical and in some ways is easier to

implement than the compartmental model as the model is applied to data using

the orlm() function in R, rather than an iterative least squares method, which can

have issues with convergence. Secondly, Chapter 3 shows that the nonparametric

model does not have the questionable assumptions underlying the compartmental

model. In the example illustrated here, the nonparametric model outperformed

the compartmental model. Another contribution of this chapter is the methods

generated in comparing different non nested models using cross validation and

the bootstrap.

A simulation study examining the efficacy and performance of the models was

undertaken. It showed the convergence rates of both models to true parameters

and the true residue. Convergence at a slower rate occurs for the nonparametric

model. Small biases and estimates of variances for the parameters and the residue

are found in perfect data.

Chapter 3 continues to examine the performance of the models in a simula-

tion study. This study finds on perfect data that biases are small for parameter

estimates for both models. The largest bias is one and a quarter percent for the

nonparametric models estimate for flux. Rates of parameter convergence and

convergence for the residue are also discussed. In almost all cases the compart-

mental model converges faster. This is hardly surprising as the simulated data

is compartmental model data. It is worth noting that for volume of distribution,

the convergence rates are very similar. A similar study which is based on the

nonparametric residue was conducted and it was found that the nonparametric

method outperforms the compartmental model here.

This model is new and has only been tested in brain tissues to date. The model

cannot be said to be the correct model for the entire body until it has been tested

in other regions. Also, the model is more complicated (more parameters) than

the compartmental model so getting others in the medical imaging community

to use it could be difficult. Also, previous analyses would all have to be redone

with the nonparametric model to allow comparisons to historic data.

In the case of the examination of the extra sums of squares statistic, the

traditional ESS statistic used in ANOVA does not follow the F-distribution. It

was shown however that using the square root transformation, that the ESS
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distribution looks similar to the F-distribution. For small numbers of simulations

the p-values appear uniform. For the larger sample presented in Chapter 3, the

p-values do not appear to follow a uniform distribution. This is due in part to the

power of the Kolmogorov-Smirnov test. This result is interesting as it does show

that the form of the statistic may not be the traditional one but there appears to

be a relationship between these data and the F-distribution. However, to critique

this work, it is necessary to highlight that this is of little practical use. In the

absence of a rigorous closed form for the reference distribution, bootstrapping

will be used to generate the reference distribution.

In 2014, O’Sullivan et al. [59] proposed a mixture model for the residue func-

tion and this was reviewed in Chapter 4. The basis of this was the nonparametric

method proposed previously and a segmentation of the PET dataset. Again this

model follows the rules associated with life table data. It also has the advantage

of using the dataset itself to generate the residue function. It does have a draw-

back however, the modelling is more complicated than any of the other models

presented in this thesis. It would also be a harder sell to the medical imaging

community as splines are often not studied by those outside the field of statistics

The analysis of the large FDG dataset using these methods were applied to

the glioma dataset. These data are analysed with the compartmental model, the

nonparametric model and the mixture model. All three models are compared

using cross validation. Strong evidence against the compartment model is found.

In the case of O’Sullivan et al. [59], who conducted a similar analysis in normal

subjects evidence against the compartmental model is found in favour of the other

models. This is hardly surprising as these models do not have the assumptions

of the compartmental model. The results suggest the nonparametric model is

the best performing model, however comparing the nonparametric and mixture

models is not so straightforward as the cross validated residuals are closer than

in the case of the compartmental model. While the results here suggest the non-

parametric model outperforms the mixture model it is not as strong a difference

as was present when comparing the compartmental model and the other models

so further study should be conducted to confirm this.

Finally, it seems appropriate to highlight that all the analyses in this work

have been conducted using open source software. This is excellent as it means
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that PET image analysis has been shown to be a field, which is accessible to any

scientist who can source data to analyse with very little expense.

5.2 Future Work

The work in this thesis tells a story of a number of models, how they work, how

they are implemented and applies them to data. There are however a few avenues

which were not explored in this work.

Outside of the modelling perspective, there are other avenues open following

this thesis. While this work was done exclusively with the FDG tracer, there

are others of interest to the PET community. In Hawe et al. [28], a similar

analysis adapted for the 15O water tracer was illustrated. These methods could

also be extended to other tracers which image receptor ligand interactions such

as verapamil, dopamine or serotonin.

Another area that was mentioned on a few occasions in this thesis was spectral

analysis. This was not implemented in this work. It would be interesting to add

this model to the others used to estimate the PET residues and generate com-

parisons between this model and the compartmental, nonparametric and mixture

models. An analysis such as this could be of interest to the PET literature in

the context of reviewing the various models and highlighting which model works

best. Similarly, the nonparametric model described in [60] should be analysed in

a similar way.

Comparisons could be made between the mixture and compartmental and

nonparametric models using the bootstrap. This was not done here as cross

validation takes less time. Although it has not been presented in this volume,

the bootstrapping comparison has been completed for all data comparing the

compartmental and nonparametric methods. These results were very much in

line with the cross validation comparison results. It remains as future work

to carry out comparisons comparing the mixture model and the nonparametric

model and the mixture model and the compartmental model using the bootstrap.

In Chapter 3 a simulation study on the nonparametric method is proposed. A

study on the mixture model examining bias, variance and convergence of param-

eters could be of value to the medical imaging community. The study of all three
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models convergence could result in a publication. Also of interest to the statistics

community would be the software used to conduct these analyses, which could

also be made available as part of an R package for modelling.

It is natural to consider the applications of this work outside of PET FDG

studies. Their use could be extended to other applications such as MR and CT

modelling where the flow of contrast agents and paramagnetics between blood

and tissue are of interest. Dynamic MR scans frequently have an AIF present

and much of the work here would be transferable to such analyses.

The work here can also be extended to other areas such as chemical reaction

networks. I highlight that the work of Anderson and Kurtz [5] was directly ap-

plicable to PET data. The rate chemical reactions occur in systems where one

chemical is introduced as a bolus would be particularly relevant. Also to other

applications involving in pharmaceuticals such as chemical synthesis where first

order ODEs are common. Additionally there are other applications of compart-

mental modelling such as epidemiology, where these techniques may be applicable.
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Nomenclature

∆ Delay

vD Volume of Distribution

2C Two Compartmental Model

AIF Arterial Input Function

AMIDE A Medical Imaging Data Examiner

ANOVA Analysis of Variance

CVRSS Cross Validated Residuals Sums of Squares

EEG Electroencephalogram

EKG Electrocardiogram

ESS Extra Sums of Squares

FDG Fluorodeoxyglucose

FDG-6-P Fluorodeoxyglucose 6 Phosphate

GE General Electric

ic.infer R package

K Flow

Kε Flux

LOR Line of Response

MM Mixture Model

MR Magnetic Resonance

MSE Mean Squared Error

nls() Nonlinear Regression Package in R

NP Nonparametric

PET Positron Emission Tomography

QQ Quantile Quantile

R Statistical Software

R(t) Residue Function

ROI Region of Interest

RSS Residual Sums of Squares

SPECT Single Photon Emission Computer Tomography

SSReg Sum of Squares for Regression

TSS Total Sums of Squares
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UCC University College Cork

UW University of Washington
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