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Abstract 

Current first-line antidepressants can take weeks or months to decrease depressive 

symptoms. Low dose ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, 

shows potential for a more rapid antidepressant effect, with efficacy also evident in 

previously treatment-resistant populations. However, a greater understanding of the 

physiological mechanisms underlying such effects is required. We assessed the potential 

impact of ketamine infusion on neurobiological drivers of kynurenine pathway metabolism in 

major depression (HPA axis hyperactivity, inflammation) in patients with treatment-resistant 

depression compared to gender-matched healthy controls. Furthermore, we assessed these 

biomarkers before and after electroconvulsive therapy (ECT), which is currently the gold 

standard for management of treatment-resistant depression. As previously demonstrated, 

treatment with ketamine and ECT was associated with improved depressive symptoms in 

patients. At baseline, waking cortisol output was greater in the ECT cohort, kynurenine was 

greater in the ketamine cohort, and kynurenic acid was less in patients compared to healthy 

controls, although inflammatory markers (IL-6, IL-8, IL-10 or IFN-γ) were similar in patients 

and controls. Furthermore, in patients who responded to ECT, the cortisol awakening 

response was decreased following treatment. Despite a trend towards lesser kynurenine 

concentrations in those who responded to ketamine, ketamine was not associated with 

significant alterations in any of the biomarkers assessed.  

 

Keywords: Depression; ketamine; cortisol; immune; cytokine; kynurenine 
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Introduction 

Major depression is the leading cause of disability in the world (WHO, 2016). Molecular 

biological markers of depression and remission may aid diagnosis, prognosis and prediction 

of which treatment strategies will work best (see Gururajan et al., 2016a, for a review). 

Hypothalamic-pituitary-adrenal (HPA) axis hyperactivity features prominently in the 

neurobiology of depression (Pariante & Lightman, 2008). This dysregulation may be due to 

upregulation of the immune system in depression (e.g. Raison et al., 2006), creating a vicious 

cycle in major depression (Kim et al., 2016). Furthermore, treatment of major depression can 

enhance anti-inflammatory cytokine activity (e.g. Maes et al., 1997; O’Brien et al., 2004; 

Dowlati et al., 2010).   

Altered HPA axis and inflammatory activity may in turn upregulate enzymes which will 

lead to increased metabolism of tryptophan along the kynurenine pathway; indoleamine 2,3-

dioxyegnase (IDO) and tryptophan 2,3-dioxyegnase (TDO) (e.g. Ruddick et al., 2006; 

Badawy, 2017; Cervenka et al., 2017). The kynurenine pathway has been implicated in a 

number of neuropsychiatric as well as neurodegenerative diseases (see O’Farrell & Harkin, 

2017, for a review), and may even play a key role in the etiology of psychiatric disorder 

(Schwarcz & Stone, 2017). In patients with major depression, heightened plasma kynurenine 

levels have been observed (Sublette et al., 2011), and there is also evidence of lowered 

peripheral concentrations of kynurenic acid, a neuroprotective metabolite of kynurenine 

(Myint et al., 2007). The interplay of HPA axis activity, immune system activity and 

tryptophan metabolism provides a unifying neurobiological framework for depression that 

might explain its key symptoms (see Clarke et al., 2017, Kennedy et al., 2017).  

Serotonin has become a major target for treatment of major depression via first-line 

monoaminergic antidepressants such as selective serotonin reuptake inhibitors (e.g. 
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Ramachandraih et al., 2011; cf. Andrews et al., 2015, for an alternative account). However, 

these drugs can take a number of weeks to work, and a substantial proportion of patients do 

not respond (e.g. Trivedi et al., 2006). New pharmacological targets and therapies are thus 

urgently needed (O’Leary et al., 2015). Evidence suggests that ketamine, which affects the 

glutamergic system (see review by Naughton et al., 2014), leads to treatment response in 

treatment-resistant depression (Zarate et al., 2006). However, the side effect profile of 

ketamine, which still requires further research in clinical settings (Short et al., 2017), and 

which necessitates careful patient screening and monitoring (Sanacora et al., 2017), as well as 

the  potential for abuse of the drug (Kalsi et al., 2011), mean that there is a need for safer 

precision therapies. A better understanding of ketamine’s underlying mechanistic effects 

could allow for the development of such treatment options. Furthermore, the antidepressant 

effect of a single ketamine infusion may not persist beyond a week, although repeated 

infusions may maintain these effects for at least 2-3 weeks (Murrough et al., 2013; Singh et 

al., 2016), and so multiple infusions may be given in a clinical context to maintain effects. 

Consequently, a better understanding of the effects of multiple infusions is required. 

The pro-inflammatory cytokine IL-6 was predictive of treatment response to ketamine in 

one study (Yang et al., 2014), though not in a more recent study (Park et al., 2017). There is 

also evidence that ketamine can increase cortisol output in healthy volunteers (from 30 

minutes before and to three hours after ketamine infusion in the morning; Khalili-Mahani et 

al., 2015). However, there is a lack of research examining the impact of ketamine on the 

cortisol awakening response, a key variable in psychoneuroendocrinological research related 

to depression (Stalder et al., 2016). Similarly, there is a paucity of research examining 

treatment effects on kynurenine levels in patients with major depression, although there is 

preclinical evidence indicating that ketamine prevented the development of 

lipopolysaccharide-induced depressive like behaviour, which occurs via the activation of IDO 
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(O’Connor et al., 2009). Indeed, it has been proposed that the kynurenine pathway might 

represent a common target for ketamine with respect to the inflammatory and glutamate 

hypotheses of depression (Miller, 2013).  

In the current research, we examined the neurobiology of major depression via cortisol 

awakening response, plasma cytokine levels (IL-6, IL-8, IL-10, and IFN-γ), and kynurenine 

pathway metabolites. We compared these measures in patients with treatment-resistant major 

depressive disorder to healthy controls. Furthermore, we examined whether these biological 

factors were altered by three infusions of ketamine, compared to electroconvulsive therapy, a 

highly established and well-validated intervention for treatment-resistant depression (UK 

ECT Review Group, 2003).  
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Material and methods 

Ethical approval for this research was obtained from the Clinical Research Ethics 

Committee of the Cork Teaching Hospitals (EMC 3(nn) 08/11/11), which is nationally 

recognised by the Department of Health & Children, Ireland, and the Irish Medicine Board, 

Ireland (now the Health Products Regulatory Authority; IMB: EudraCT number: 2011-

003654-40). The ECT component of this research was approved by the Research Ethics 

Committee of St. Patrick’s Mental Health Services (Protocol No, 21/12). 

Design 

The impact of treatment-resistant depression (TRD) was examined through cross-sectional 

comparisons between patients with TRD and healthy controls. A repeated measures design 

was used to assess the impact of treatment (ketamine or ECT) on biomarkers of depression 

(cortisol awakening response, cytokines and tryptophan/kynurenine pathway metabolites), 

with biomarkers measured before and after treatment. Depressive symptoms were assessed 

using the 17-item Hamilton Depression Rating Scale (HDRS), and patients who showed a 

reduction in their HDRS scores of greater than 50% were classed as responders. 

Participants  

Patients had a current DSM-IV diagnosis of major depressive disorder at the time of the 

clinical trial. Seventeen patients were recruited for the ketamine arm of the trial, which was 

conducted at South Lee Community Mental Health Service in Cork, Ireland. Twenty patients 

with major depressive disorder, currently depressed who were being assessed for ECT were 

recruited at St Patrick’s University Hospital (see Supplementary Table 1 for participant 

demographics). All patients had failed to respond to at least two adequate trials of 

antidepressant medication, as assessed with a modified version of the Antidepressant 

Treatment History Form (Prudic et al., 1990, 1996; Sackheim et al., 1990, 2001). Participants 
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were excluded in the case of any significant physical illness including acute or chronic 

infections, endocrine, immune or metabolic disorder such as autoimmune disorders, 

inflammatory bowel disease, acquired immunodeficiency syndrome, or if they were greater 

than 10% above ideal body weight. In the ketamine arm of the trial, five participants dropped 

out following the first infusion of ketamine and a further two dropped out after the second 

infusion. Two participants dropped out of the ECT arm of the trial prior to completion of 

post-ECT assessment. 

Twenty control participants were recruited from Cork University Hospital staff. Control 

participants were screened for personal or family history (1st degree relative) of mental 

disorder and excluded if positive. All healthy controls were within 10% of ideal body weight. 

Procedure  

Participants received either twice-weekly brief-pulse bitemporal ECT (Semkovska et al., 

2016) or sub-anaesthetic (0.5mg/kg) intravenous infusions of ketamine once a week for up to 

three weeks (see Allen et al., 2015, for detailed information).  

Saliva samples were collected using Salivettes (Sarstedt, Germany); baseline samples were 

collected on the morning prior to study visits, and post-intervention samples were collected 

one week following each ketamine infusion or 4-7 days following the final ECT session. 

Saliva samples were taken upon waking, 30 minutes post waking and 150 minutes post 

waking. Participants were advised to take the first saliva sample as soon as they woke up, and 

not to eat or drink 15 minutes prior to the second or third sample, and not to brush their teeth 

until all samples had been collected. We did not require that participants wake at a specific 

time, but followed their normal routine as closely as possible. Upon receipt of the samples, 

the salivettes or test tubes were immediately centrifuged (3000 rpm for 15 minutes) and the 

saliva collected was transferred to sterile 1.5ml containers and frozen at -80 degrees Celsius. 
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Six millilitre samples of whole blood (fasting) were collected between 8 a.m. and 11 a.m. 

on the morning of ketamine infusion for determination of baseline IL-6, IL-8, IL-10, IFN-γ 

concentrations. Similar samples (non-fasting) were taken two hours after ketamine infusion. 

A fasting sample was taken 24 hours later and one week later in the ketamine cohort. This 

was repeated two hours and one week post ketamine infusion over the second and third 

infusions for participants who received these infusions.  In the ECT cohort, whole blood 

(fasting) was similarly collected between 8 a.m. and 11 a.m. on the morning of ketamine 

infusion for determination of baseline cytokine concentrations. Fasting samples were taken 4-

7 days following the final ECT session. Samples were centrifuged immediately and frozen at 

-80 degrees Centigrade. See Supplementary Figure 1 for timeline of sampling for the 

ketamine and ECT cohort. 

Biochemical analysis 

Cortisol concentrations were measured in saliva using Enzo® enzyme immunoassay 

according to manufacturer's instructions. Assay detection limit was 0.16 nmol/L. Inter and 

intra-assay % C.Vs were 11.24% and 8.2% respectively.  

Measurement of IL-6, IL-8, IL-10, and IFN-γ concentrations were conducted in duplicate 

using MesoScale Discovery custom assays according to manufacturer's instructions. IL-

8: Lower limit of detection = 0.04 pg/ml. Intra-assay CV = 3.6% and inter-assay CV = 7.1%. 

IL-6: Lower limit of detection = 0.06 pg/ml. Intra-assay CV = 4.5% and inter-assay CV = 

7.3%. IL-10: Lower limit of detection = 0.03 pg/ml. Intra-assay CV = 3.7% and inter-assay 

CV = 10.1%. IFN- γ: Lower limit of detection = 0.2 pg/ml. Intra-assay CV = 5% and inter-

assay CV = 9.2%.  

Total tryptophan and kynurenine pathway metabolites were determined as previously 

described (Clarke et al., 2009). Briefly, plasma samples were spiked with internal standard 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(3-Nitro-l-tyrosine) prior to being deproteinised by the addition of 20 µl of 4 M perchloric 

acid to 200 µl of sample. Samples were centrifuged at 21,000g on a Hettich Mikro 22R 

centrifuge (AGB, Dublin, Ireland) for 20 minutes at 4 °C and 100 µl of supernatant 

transferred to a HPLC vial for analysis on the HPLC system (UV and FLD detection). All 

samples were injected onto a reversed phase Luna 3 µm C18 (2) 150 × 2 mm column 

(Phenomenex), which was protected by KrudKatcher disposable pre-column filters 

(Phenomenex) and SecurityGuard cartridges (Phenomenex). The mobile phase consisted of 

50 mM acetic acid and 100 mM zinc acetate with 3 % (v/v) acetonitrile and was filtered 

through Millipore 0.45-µm HV Durapore membrane filters (AGB) and vacuum degassed 

prior to use. Compounds were eluted isocratically over a 30-min runtime at a flow rate of 

0.3 ml/min after a 20-µl injection. The column was maintained at a temperature of 30 °C, and 

samples/standards were kept at 8 °C in the cooled autoinjector prior to injection. The 

fluorescent detector was set at an excitation wavelength of 254 nm and an emission 

wavelength of 404 nm. The UV detector was set to 330 nm. l-Tryptophan and kynurenine 

were identified by their characteristic retention times as determined by standard injections 

which were run at regular intervals during the sample analysis. Analyte: Internal standard 

peak height ratios were measured and compared with standard injections, and results were 

expressed as nanogram per millilitre of plasma.  

Statistical analysis 

Statistics were calculated using SPSS-18. A p-value of 0.05 was selected as the threshold of 

statistical significance. Graph Pad Prism version 5.0 for windows (Graph Pad Software, San 

Diego, CA, USA, (www.graphpad.com) was used for graph design. Where normality was 

violated, square root or natural log transformations were used as necessary. Area under the 

curve with respect to ground (AUCg) and increase (AUCi) were calculated according to 

guidelines of Pruessner et al (2003). Differences at baseline between patients in the ketamine 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

and ECT cohorts and healthy controls were calculated using ANOVA (with LSD post-hoc 

test). The effect of ketamine or ECT was assessed using either repeated measures ANOVA 

(ketamine) or t-tests (ECT). Furthermore, to assess the relationship between clinical 

symptoms and the biological variables examined, we computed bivariate (Pearson) 

correlations between the change in symptom severity (as measured with the HDRS) and the 

corresponding changes in the biological variables at each timepoint.  
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Results 

Participant characteristics 

The characteristics of the participants group are outlined in Supplementary Table 1. The 

three groups were well matched on gender, although the ECT group were somewhat older 

than the ketamine group and the healthy controls, who were similar to each other in age.  

 

Treatment-resistant depression and assessed biomarkers 

There was no significant difference between patients in the ketamine and ECT cohorts and 

controls in terms of IL-6, IL-8, IL-10 or IFN-γ concentrations. However, salivary cortisol 

output differed between groups (AUCg: F(2, 48) = 4.74, p = .013), and was greater at 

baseline in the ECT cohort compared to either the ketamine cohort (p = .006) or healthy 

controls (p = .018); the ketamine cohort and healthy controls did not differ from each other in 

cortisol levels.  

Plasma kynurenine concentrations differed between groups, F(2, 53) = 3.93, p = .026; it was 

significantly greater in the ketamine cohort compared to both healthy controls (p = .045) and 

the ECT cohort (p = .009), who did not differ from each other. There was a marginally 

significant difference between groups in terms of plasma tryptophan concentrations, F(2, 54) 

= 2.91, p = .063; the ketamine cohort had greater tryptophan levels than the ECT cohort (p = 

.02), while the healthy control group did not differ from either cohort. The groups were 

similar in terms of kynurenine:tryptophan ratio. Kynurenic acid also differed between groups, 

F(2, 28) = 4.93, p = .015, and was lower in both the ketamine (p = .006) and ECT cohort (p = 

.013) compared to the healthy controls, although the two cohorts of TRD patients did not 

differ from each other.  Similarly, the kynurenic acid:kynurenine also differed between 
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groups, F(2, 28) = 13.41, p < .001, and was lower in both the ketamine (p < .001) and ECT 

cohort (p = .036) compared to the healthy controls. 

 

***INSERT FIGURE 1 ABOUT HERE*** 

 

Impact of treatment with ketamine and ECT 

A majority of patients indicated a clinical response (a reduction in HDRS of 50% or more) 

to ketamine at all post-baseline timepoints except for one week following the first infusion. 

Of 17 participants receiving the first ketamine infusion, 13 showed a clinical response at 2 

hours and 24 hours post-infusion, and 7 at one week post-infusion. Of 12 participants 

receiving the second infusion, 12 showed a response at 2 hours post-infusion and 8 at one 

week. Of 10 participants receiving the third infusion, 9 showed a response at 2 hours and 6 at 

one week. Of 18 participants who completed the HDRS following ECT, 9 showed a clinical 

response. 

For the ketamine cohort as a whole, treatment did not affect kynurenine pathway 

metabolism. However, there was a trend towards a decrease in kynurenine concentration in 

ketamine responders at two hours after the first infusion, t(12) = 2.01, p = .067, and a trend 

for a reduced kynurenine/tryptophan ratio at 24 hours following the first infusion, t(11) = 

2.15, p = .054. ECT did not significantly normalise kynurenine pathway metabolism, for the 

ECT cohort as a whole or for responders to ECT intervention. Reduction in depressive 

severity following ketamine/ECT was correlated with increased kynurenic acid at 2 hours 

following the second infusion (r = -1, p = .013), and at one week after the third infusion (r = -

1, p = .005), but there was no consistent pattern of correlation between level of treatment 

response and changes in the kynurenine pathway. 
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***INSERT FIGURES 2 AND 3 ABOUT HERE*** 

 

Ketamine treatment was not associated with a change in the cortisol awakening response. 

Ketamine responders did not have significantly altered cortisol awakening response post-

treatment. ECT treatment did not affect cortisol in the ECT cohort overall, nor was there was 

an impact of ECT treatment on overall salivary cortisol profile. However, the area under the 

curve with respect to increase was significantly lesser following ECT in patients who 

responded to ECT, t(5) = 2.68, p = .044; this is likely due to a highly significant attenuation 

in the cortisol increase between waking and 30 minutes post-waking,  t(5) = 4.41, p = .007. 

Change in depressive severity following ketamine/ECT was not correlated with any change in 

cortisol awakening response. 

 

***INSERT FIGURES 4 AND 5 ABOUT HERE*** 

 

There was no significant change in the immune markers following ketamine treatment or 

ECT treatment for these cohorts as a whole. ECT responders did not show significantly 

altered cytokine levels post-ECT; nor did ketamine responders have any significant 

alterations in any of the cytokines examined. Reduction in depressive severity following 

ketamine/ECT was correlated with higher IL-6 at 24 hours following the first infusion (r = -

0.66, p = .007), and higher IL-8 at two hours after the third infusion (r = -0.64, p = .048), but 
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there was no consistent pattern of correlation between level of treatment response and 

changes in immune markers. 

 

***INSERT FIGURE 6 AND 7 ABOUT HERE*** 
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Discussion 

To the best of our knowledge, this is the first research in patients to examine whether the 

antidepressant effects of ketamine are associated with changes in kynurenine pathway 

metabolism. The cohort of patients receiving ketamine had greater plasma kynurenine 

concentrations at baseline compared to healthy controls, consistent with previous research 

(e.g. Sublette et al., 2011). There was also a trend towards lesser kynurenine concentrations 

two hours after a first ketamine infusion in those patients who responded to ketamine at this 

time, although this was not was not statistically significant; nor was it sustained following 

later infusions. Concentrations of the neuroprotective metabolite kynurenic acid were also 

lower in both cohorts of patients with treatment-resistant depression (consistent with 

Schwieler et al., 2016), although this was not affected by treatment with either ECT or 

ketamine, despite previous evidence suggesting broad changes in the kynurenine pathway 

during ECT (Guloksuz et al., 2015). Other studies have not shown differences between 

depressed patients and controls in tryptophan, kynurenine, or tryptophan: kynurenine ratio 

(Sorgdrager et al, 2017). As ketamine nonetheless reduced depressive severity, the current 

results suggest that resolution of kynurenine pathway activation may not be necessary for 

symptomatic improvement.  However, it will be important in future studies to conduct a more 

comprehensive assessment of kynurenine pathway metabolites that will allow more definitive 

conclusions regarding their role in the pathophysiology and treatment of depression. This 

includes an assessment of the neurotoxic arm of the kynurenine pathway, where the use of 

liquid chromatography or gas chromatography/mass spectrometry may be of particular utility. 

It will also be of interest to determine whether different ketamine protocols have different 

effects on the tryptophan-metabolic pathway, and to what extent this is mediated by the 

immune system or the HPA axis. 
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Both cohort of patients, as well as the healthy volunteers, displayed an increase in cortisol 

following waking. However, it is notable that only the group that received ECT had either of 

the posited biological conditions leading to increased kynurenine pathway metabolism 

(increased cortisol), but it was the group that received ketamine (who did not differ from 

healthy controls in inflammatory markers or cortisol) that had increased kynurenine. 

Furthermore, both groups of TRD patients had a modest reduction in the kynurenine 

acid:kynurenine ratio, despite their different inflammatory/cortisol profiles. Patients were not 

randomised to the ketamine or ECT arm of the study, and it was not possible to match 

participants on all relevant characteristics; it is possible that the differences in baseline levels 

of cortisol may have influenced treatment responses. Nonetheless, our results suggest that the 

neurobiological abnormality in kynurenine pathway metabolism can be an ongoing effect of 

depression, despite resolution of the biology thought to drive it, and furthermore that the 

inflammatory and HPA axis abnormality can resolve without symptomatic improvement. The 

observed lack of altered cytokine levels is inconsistent with previous evidence of heightened 

pro-inflammatory activity in depressed patients (e.g. Maes et al., 1997; Dowlati et al., 2010). 

The current results may be due to the fact that, due to ethical and recruitment considerations, 

the patients assessed in this study were not treatment-naïve. Antidepressant treatments may 

have already normalised inflammation levels in patients (Köhler et al., 2017) and HPA axis 

activity in the ketamine cohort (Schüle, 2017) when the patients were assessed for the first 

time in the current study. In future research, it would also be of interest to assess the more 

short-term effects of ECT, as a review has suggested that there may be differential short- and 

long-term effects of ECT on immune activity, with a single session leading to immune 

activation, whereas repetitive ECT leads to downregulation (Guloksuz et al., 2014). 

Patients in the ECT cohort had heightened cortisol at awakening, and this was attenuated 

following ECT treatment in those who responded to ECT. However, there was a lack of HPA 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

axis alteration in the ketamine cohort of TRD patients compared to healthy controls. Careful 

adherence to sample timing is important when assessing waking cortisol (see consensus 

guidelines, Stalder et al., 2016). As the ECT cohort were inpatients at the time of salivary 

sampling, sampling could be monitored more closely; it is thus possible that differences in 

the process of sampling may account for some of the observed differences in cortisol output 

in this cohort. Despite the rapid improvement in depressive symptoms in a majority of TRD 

patients following ketamine treatment, symptom improvement following ketamine treatment 

was not associated with changes in waking cortisol or cytokines. Again, we cannot rule out 

that ketamine infusion in treatment-naïve patients may have shown changes in these 

biomarkers, which may have been normalised due to antidepressant treatment.    

Of course, other biomarkers of depression may interact with the effects observed in the 

current work; consistent with other research (e.g. Haile et al., 2014), our group has previously 

demonstrated that treatment-resistant depression is associated with lower peripheral 

concentrations of the neurotrophin brain-derived neurotrophic factor (BDNF), and BDNF 

levels were heightened following a single infusion of ketamine in patients who responded to 

ketamine treatment (Allen et al., 2015). Patients with treatment-resistant depression also had 

altered levels of microRNAs associated with the PI3k-AKt-mTOR signalling pathway 

(microRNAs are small nucleotide sequences that can regulate gene expression at the 

transcriptomic level; see review by O’Connor et al., 2012), although these microRNAs were 

not altered by treatment (Gururajan et al., 2016b). Future work could establish if differences 

in pre-treatment kynurenine levels could help in optimising treatments for patients with 

depression. There is evidence that acute tryptophan depletion can reduce kynurenine as well 

as tryptophan levels (Kennedy et al., 2015), but is also associated with a transient relapse in 

depressive symptoms in people with remitted depression (Booij et al., 2005). The relationship 

between tryptophan metabolism and depressive symptomatology is therefore complex, and 
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the impact of tryptophan metabolites (including serotonin) may differ depending on the 

timeframe over which it is studied (e.g. Andrews et al., 2015). 

It should be acknowledged that major depression is a heterogeneous disorder, and attempts 

to reconceptualise psychiatric disorders such as depression in neurobiological terms may 

allow for better prediction of treatment response to pharmacological intervention (e.g. Insel, 

2014; Kelly et al., 2017). Recent research in patients with major depression has also 

identified biotypes in central nervous system neurophysiology which were predictive of 

responsiveness to treatment with transcranial magnetic stimulation (Drysdale et al., 2017). 

There are encouraging developments in preclinical evidence of ketamine metabolites that 

may be associated with an improved adverse effect profile, although they may act through a 

mechanism other than NMDA receptor inhibition (Zanos et al., 2016); substantial future 

research will be required into their efficacy in humans. Such research, in combination with 

findings on peripheral markers of depression such as plasma concentrations of kynurenine or 

BDNF, may help to better predict treatment to novel treatments such as ketamine, although in 

identifying key biomarkers, we should bear in mind that more extensive work has been 

conducted on more clinically established, slower-acting antidepressants.  

Furthermore, we cannot ignore the possibility that the antidepressant effects of ketamine 

observed in this cohort may be related to factors outside the mechanistically oriented 

biomarkers observed. There is some evidence that the dissociative side effects of ketamine 

may in fact mediate its antidepressant effects (Luckenbaugh et al., 2014). Consequently, in 

addressing questions concerning the mechanisms of ketamine, psychological and subjective 

properties of the drug should not be ignored. Non-pharmacological approaches such as 

mindfulness meditation may be able to tap into similar psychological mechanisms, for 

example by creating a psychological “distance from the self”. Such approaches, which have 

demonstrated positive effect under conditions of chronic stress (e.g. Allen et al., 2017) as 
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well as in anxiety and depression (e.g. Hofmann et al., 2010) may complement novel 

pharmacological therapies such as ketamine (Pradhan et al., 2015).  
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Figure Captions 

Figure 1: Baseline levels in healthy controls, ketamine cohort and ECT cohort of (A). 

plasma IL-6, (B). IL-8, (C). IL-10, (D). IFN- γ, (E). cortisol awakening response, (F). cortisol 

area under the curve with respect to ground (G). cortisol area under the curve with respect to 

increase, (H). plasma kynurenine, (I). plasma tryptophan, (J). kynurenine:tryptophan ratio, 

(K). plasma kynurenine acid, (L). kynurenic acid:kyurenine. 

Figure 2: Ketamine treatment and kynurenine pathway metabolism: (A). plasma kynurenine 

(B). plasma tryptophan (C). kynurenine:tryptophan ratio (D). kynurenic acid (E). kynurenic 

acid: kynurenine ratio for all participants completing three infusion (A-E). (F). Plasma 

kynurenine at baseline and at 2 hours following first infusion in those who responded at this 

timepoint (G). Kynurenine:tryptophan ratio at baseline and at 24 hours following first 

infusion in those who responded at this timepoint. 

Figure 3: ECT treatment and kynurenine pathway metabolism: (A). plasma kynurenine (B). 

plasma tryptophan (C). kynurenine:tryptophan ratio (D). kynurenic acid (E). kynurenic acid: 

kynurenine ratio. 

Figure 4: Ketamine treatment and waking cortisol-in the ketamine cohort as a whole: (A). 

salivary cortisol at each timepoint, (B). area under the curve with respect to ground, (C). area 

under the curve with respect to increase.  

Figure 5: ECT treatment and waking cortisol: in the ECT cohort as a whole: (A). salivary 

cortisol, (B). cortisol area under the curve with respect to ground, (C). cortisol area under the 

curve with respect to increase. (D). area under the curve with respect to ground in ECT 

responders. 

Figure 6: Ketamine treatment and cytokines for participants completing all three infusions: 

(A). plasma IL-6, (B). IL-8, (C). IL-10, (D). IFN- γ.  
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Figure 7: ECT treatment and cytokines: in the ECT cohort as a whole: (A). plasma IL-6, 

(B). IL-8, (C). IL-10, (D). IFN- γ.  
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Research highlights 

• Plasma kynurenine was not altered following successful ketamine response 

• Kynurenic acid was reduced in patients with treatment-resistant depression 

• In patients who responded to ECT, the cortisol awakening response was decreased 
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