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Skin microbiome before development of atopic
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dermatitis: Early colonization with commensal
staphylococci at 2 months is associated with a
lower risk of atopic dermatitis at 1 year

Elizabeth A. Kennedy, BS,? Jennifer Connolly, MSc,” Jonathan O’B. Hourihane, DM,? Padraic G. Fallon, PhD,%¢
W. H. Irwin McLean, DSc, FRS,® Deirdre Murray, PhD,? Jay-Hyun Jo, PhD,? Julia A. Segre, PhD,

Heidi H. Kong, MD, MHSc,?* and Alan D. Irvine, MD, DSc®%9*

United Kingdom

Background: Disease flares of established atopic dermatitis
(AD) are generally associated with a low-diversity skin
microbiota and Staphylococcus aureus dominance. The
temporal transition of the skin microbiome between early
infancy and the dysbiosis of established AD is unknown.
Methods: We randomly selected 50 children from the Cork Babies
After SCOPE: Evaluating the Longitudinal Impact Using
Neurological and Nutritional Endpoints (BASELINE) longitudinal
birth cohort for microbiome sampling at 3 points in the first

6 months of life at 4 skin sites relevant to AD: the antecubital and
popliteal fossae, nasal tip, and cheek. We identified 10 infants with
AD and compared them with 10 randomly selected control infants
with no AD. We performed bacterial 16S ribosomal RNA
sequencing and analysis directly from clinical samples.
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Bethesda, Md, Cork and Dublin, Ireland, and Dundee,

Results: Bacterial community structures and diversity shifted
over time, suggesting that age strongly affects the skin
microbiome in infants. Unlike established AD, these patients
with infantile AD did not have noticeably dysbiotic communities
before or with disease and were not colonized by S aureus. In
comparing patients and control subjects, infants who had
affected skin at month 12 had statistically significant differences
in bacterial communities on the antecubital fossa at month 2
compared with infants who were unaffected at month 12. In
particular, commensal staphylococci were significantly less
abundant in infants affected at month 12, suggesting that this
genus might protect against the later development of AD.
Conclusions: This study suggests that 12-month-old infants with
AD were not colonized with S aureus before having AD. Additional
studies are needed to confirm whether colonization with
commensal staphylococci modulates skin immunity and attenuates
development of AD. (J Allergy Clin Immunol 2017;139:166-72.)

Key words: Staphylococcus aureus, atopic dermatitis, skin, micro-
biome, longitudinal birth cohort, 16S sequencing

Discuss this article on the JACI Journal Club blog: www.jaci-
online.blogspot.com.

Atopic dermatitis (AD) is a common inflammatory skin con-
dition that begins early in life. Patients with AD with established
disease experience frequent colonization and increased infections
with Staphylococcus aureus, as well as potentially life-
threatening eczema herpeticum with herpes simplex virus. The
hygiene hypothesis relates the development of atopic disorders
(AD, allergic rhinitis, and asthma) to reduced microbial exposure
at a young age.' Epidemiologic studies examining the incidence
of asthma have linked exposure to farming environments to lower
rates of allergic disorders.”™ However, the potential role of
microbe exposure in early childhood to the development of AD
and the subsequent atopic march toward the development of
allergic rhinitis and asthma remains to be elucidated.

There is significant interest in the potential effects of microbes
on the development of skin immunity, as well as disease.”
Recent work in mice has shown that cutaneous exposure to
commensal bacteria early in life can induce tolerance to these
microbes.® Given these epidemiologic associations between envi-
ronmental exposure and development of atopic diseases, we
investigated the skin microbiome in a birth cohort. We analyzed
bacterial 16S rRNA gene sequences from swabs collected from
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Abbreviations used
AD: Atopic dermatitis
Af: Antecubital fossa
AMOVA: Analysis of molecular variance
BASELINE: Babies After SCOPE: Evaluating the Longitudinal
Impact Using Neurological and Nutritional Endpoints
FLG: Filaggrin
Nt: Nasal tip
OTU: Operational taxonomic unit
Pf: Popliteal fossa

4 skin sites in infants in a birth cohort (Babies After SCOPE:
Evaluating the Longitudinal Impact Using Neurological and
Nutritional Endpoints [BASELINE]) at 3 different time points
to determine whether differences in the skin microbiome were
associated with AD development.

METHODS

Study subjects

The Cork BASELINE Birth Cohort Study is the pediatric follow-on from
the Cork Centre for the Screening for Pregnancy Endpoints (SCOPE)
study.'®"" The Cork BASELINE Birth Cohort Study recruited within a white
Irish population in Cork, Ireland, from August 2009 to October 2011. These
women were subject to the inclusion criteria of the SCOPE study: low-risk
primigravidous mothers with singleton pregnancies who delivered at or near
term. Maternal consent was obtained at 20 weeks’ gestation and verified at de-
livery. Ethical approval for the Cork BASELINE Birth Cohort Study was
granted by the Clinical Research Ethics Committee of the Cork Teaching Hos-
pitals (ref ECM 5 [9] 01/07/2008). The BASELINE study is registered with the
US National Institutes of Health Clinical Trials Registry (http://www.clinical
trials.gov; ID: NCT(01498965).

Clinical diagnosis of AD

All infants were assessed at birth and 2, 6, 12, and 24 months of age.
Assessment included parental questionnaires and physical examination.
Screening questions specific for AD were included in the questionnaires
administered at 2, 6, and 12 months. AD was diagnosed (at 6, 12, and 24 months)
by experienced health care personnel using the UK Working Party Diagnostic
Criteria.">'* When AD was present, the SCORAD clinical tool was used to assess
severity.'>'° The Nottingham Eczema Severity Score was also used to assess AD
severity at 12 months.'” Demographic data and clinical details are shown in Table
I and Table E1 in this article’s Online Repository at www.jacionline.org.

Filaggrin genotyping

Cord blood samples were collected at birth and stored for analysis.
Filaggrin (FLG) genotyping was carried out on all study subjects with testing
for the 4 most common Irish/European mutations, as previously described.'®
None of the subjects in this study were found to have FLG mutations.

Sampling for microbiome analysis

‘We randomly selected 50 infants from the birth cohort and obtained skin
swabs at day 2, month 2, and month 6. Skin samples and negative controls
were collected with premoistened swabs, as previously described.'” After all
infants had been assessed at 1 year, 10 infants with clinical AD at months 2, 6,
and/or 12 were selected for analysis as patients with AD. Healthy control sub-
jects were 10 infants without AD at any study time points selected at random.
Sample sites were selected based on the presentation of AD at different ages.
Cheeks are a site of AD predilection in infants, and the nasal tip (Nt) is typi-
cally spared. The antecubital fossa (Af) and popliteal fossa (Pf) are typical
sites of AD predilection in children and adolescents.
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TABLE I. Demographic data for study subjects

Healthy control Patients
subjects with AD
Female/male sex 6/4 5/5
Cesarean section/vaginal delivery 1/9 3/7
BF/FF/C 2/3/5 17217
Rural/urban 5/5 4/6
Pet/no pet 5/5 3/7
Emollient use (month 2), yes/no 2/8 6/4
Bathing frequency (month 2), 5/5 6/4
< weekly/> weekly
Antibiotic use (month 2), yes/no 1/9 1/9
Antibiotic use (6 mo), yes/no 5/5 3/7
TEWL
Day 2 9.668 = 0.776 9.749 * 0.618
Month 2 10.402 = 1.619 11.124 = 2.135
Month 6 11.412 = 2.149 10.08 + 1.342

BF, Breast-fed exclusively; C, combination feeding; FF, formula fed exclusively;
TEWL, transepidermal water loss.

Sample processing/sequencing

16S rRNA VI1-V3 sequencing was performed on swab samples, as
previously described.'” Swabs were incubated in Yeast Cell Lysis Solution
(MasterPure Kit, MPY80200; Epicentre, Madison, Wis) and Ready-Lyse So-
lution (R1802M, Epicentre) for 1 hour at 37°C. Two 5-mm stainless steel
beads (Qiagen, Hilden, Germany) were added and processed in a TissueLyser
(Qiagen) for 2 minutes at 30 Hz. The solution was treated with MPC
Protein Precipitation Reagent (MasterPure Kit MPY80200, Epicentre) to
remove cellular debris. Subsequent steps were performed with the PureLink
Genomic DNA Kit (Invitrogen, Carlsbad, Calif). Barcoded primers
flanking V1 (27F, 59-AGAGTTTGATCCTGGCTCAG-39) and V3 (534R,
59-ATTACCGCGGCTGCTGG-39) were used for PCR. PCR products were
purified with the Agencourt AMPure XP Kit (A63880; Beckman Coulter,
Brea, Calif) and quantitated with the Quant-iT dsDNA High-Sensitivity Assay
Kit (Q33120, Invitrogen); equivalent amounts of these PCR products were
pooled, purified with a Qiagen MinElute column (28004, Qiagen) into 30 nL
of TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0), and sequenced at
the National Institutes of Health Intramural Sequencing Center on a 454 GS
FLX (Roche, Mannheim, Germany) platform. Reagents and collection
procedure controls were tested and demonstrated no significant background
contamination.

Data analysis

Sequences were preprocessed with mothur version 1.35.1.%° Briefly, 454
flowgram data were trimmed and denoised, and chimera checking was
completed with the mothur implementation of UCHIME.”' Sequences were
classified by using the Ribosomal Database Project naive Bayesian classifier.”
Sequences classified as chloroplast or mitochondria were discarded. Site-
specific definition of operational taxonomic units (OTUs; groups of sequences
that share a specific level of similarity) and downstream analyses was performed
in mothur. Within the samples from each time point or site, pairwise distances
were calculated, and OTUs were defined at 97% nucleotide similarity.
Within-sample (Shannon diversity) and between-sample (theta index) measure-
ments were performed based on these OTU definitions, with subsampling to
1000 sequences per sample.”” Rarefaction curves level off by this value, suggest-
ing adequate sequencing coverage; any samples with fewer than 1000 sequences
after preprocessing were removed from analysis (see Fig El in this article’s
Online Repository at www.jacionline.org). Differentially abundant OTUs
were detected by using the metastats command in mothur.

The sequences classified to the Staphylococcus genus by using the RDP
naive Bayesian classifier were then placed on a phylogenetic reference tree
using “-keep-at-most 1000 max-pitches 1000.” Taxonomy was assigned by
using the guppy program in pplacer,”* with a likelihood cutoff set to 0.65,
as previously described."’
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Statistics

All data analysis was performed in R software; results are presented as
means = SEMs, unless otherwise indicated. Ninety-five percent CIs were
estimated. Post hoc tests (ie, pairwise comparisons in analysis of molecular
variance [AMOVA]) were adjusted by using Bonferroni correction. For detec-
tion of differentially abundant OTUs, Metastats results are filtered for OTUs
with a mean abundance of 0.05% or greater, and P values were calculated
by using a false discovery rate adjustment.

RESULTS
Site-specific bacterial colonization patterns

Because different skin microenvironments and anatomic re-
gions harbor distinct microbial communities in adults and older
children,”*° we initially compared the major bacterial taxa pre-
sent at the 4 sites on infants. Relative abundances of these bacte-
rial taxa showed differences between the 2 facial sites (cheeks and
Nt) and the extremity sites (Af and Pf, see Fig E2 in this article’s
Online Repository at www.jacionline.org). Calculation of differ-
entially abundant species between the site types confirmed that
Staphylococcus species were relatively more abundant on extrem-
ity sites at all time points and Gemella species were relatively
more abundant on facial sites. Other taxa were only differentially
represented at some time points, with facial sites higher in Propio-
nibacterium species at day 2 and Streptococcus species at later
time points (see Table E2 in this article’s Online Repository at
www.jacionline.org).

We validated these findings with biodiversity calculations,
examining samples from each time point. We analyzed how
similar the bacterial community structures were between the
samples using the theta similarity index, which accounts for both
the presence and proportion of bacterial species.”” A theta index
value of 1 indicates that the 2 bacterial communities have iden-
tical structures; a value of 0 indicates maximal dissimilarity. In
principal coordinates analyses based on these theta values, sam-
ples that are more similar to each other cluster more closely
together. At each time point, the facial site samples clustered
together (P >.05, AMOVA) but are distinctly separate from the
extremity site samples (P <.006). The extremity sites clustered
together at day 2 and month 2 but had different centroids at month
6 (P <.006, Fig 1 and see Fig E3 in this article’s Online Repository
at www.jacionline.org).

Changes in bacterial colonization over time

Skin microbiomes differ between children and adults; however,
studies with longitudinal skin sampling in infants are infre-
quent.27‘28 Alterations in skin bacterial abundances at different
sampling time points were apparent in our cohort (see Fig E4 in
this article’s Online Repository at www.jacionline.org). For
each skin site, the bacterial community structures showed striking
shifts based on the sampling time point (Fig 2, A and B, and see
Fig E5 in this article’s Online Repository at www.jacionline.
org). At both extremity sites, the samples clustered separately be-
tween day 2 and month 6 (P = .024 for Af and P = .003 for Pf,
AMOVA). For both facial sites, day 2 and month 6 samples clus-
tered significantly (P <.003 for each), as did those between month
2 and month 6 (P <.003 at the cheeks and P = .06 at Nt).

To examine interpersonal variation, we calculated the mean
similarity between samples at a single site and time point. For
both facial sites, bacterial communities between subjects were
most similar at month 6, converging to a more common bacterial
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FIG 1. Site specificity of bacterial community composition. All samples at
day 2 were clustered by using principal coordinates analysis based on theta
similarity coefficients. At day 2, Af and Pf clustered together (P = 1,
AMOVA), as did cheeks (Ch) and Nt (P = 1), but each clustered distinctly
from the other site pair (P < .006). P values were adjusted with Bonferroni
correction (n = 6).

population across subjects. Extremity sites did not present this
same pattern; instead, the most similar bacterial community
structures were observed at month 2 (Fig 2, C).

We analyzed the bacterial diversity of all samples by using the
Shannon diversity index (a higher value signifies more taxonomic
groups, a more even distribution of these groups, or both). At each
time point, diversity was similar between Af, cheeks, and Nt
(P > .05, Wilcoxon rank sum test; Fig 3 and see Table E3 in this
article’s Online Repository at www.jacionline.org). Pf had a sub-
stantially altered pattern, significantly different from the other
sites at all time points, except Af at day 2. At the facial sites, bac-
terial diversity increased significantly over the time studied
(P <.001 for each site between day 2 and month 6, Wilcoxon
rank sum test; see Table E3). Combined with the increasingly
similar bacterial community structures on the face, this suggests
that over time, the microbial population converges and stabilizes
at facial sites. Samples from the Af also significantly increased in
diversity between the time points (P = .033).

Colonization of Af with commensal staphylococci at
month 2 is associated with decreased incidence of
AD at 1 year

To identify any bacterial differences associated with AD in this
cohort, we compared infants with AD at any time within the first
year of life versus control subjects for each site and sampling
time. At all time points, the bacterial community structures of
infants with AD at any time within the first year of life did not
cluster separately from control infants, and no significant
differences in Shannon diversity were identified between the
groups. Because the patients had clinical disease presenting at
different time points (see Table E1), we also compared samples
based on whether the subjects presented with disease at each
time point. Overall, there was almost no distinction between
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FIG 2. Skin microbial communities in infants undergo site-specific shifts in composition with age. A, Af
samples clustered by using principal coordinates analysis based on theta similarity coefficients. By using
AMOVA, samples clustered distinctly between day 2 and month 6 (P = .024) but not significantly between
month 2 and month 6 (P = .12) or between day 2 and month 2 (P =.21). B, Cheek samples clustered by using
principal coordinates analysis based on theta similarity coefficients. By using AMOVA, samples clustered
significantly between day 2 and month 6 (P < .003) and between month 2 and month 6 (P < .003) but not
between day 2 and month 2 (P = .102). C, Mean theta similarity coefficients of comparisons within samples
of each time point. Higher theta values signify greater similarity. *P < .05 and ***P < .001, Wilcoxon rank
sum test. Post hoc P values were adjusted with the Bonferroni correction (n = 3). Ch, Cheeks; PC, principal

component.
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FIG 3. Changes in bacterial biodiversity with age. Mean Shannon diversity,
calculated based on the richness and evenness of taxa within the
community, at each time point is shown. *P < .05, **P < .01, and
**¥P < .001. Ch, Cheeks; PC, principal component.

affected and unaffected samples in within- or between-sample di-
versity, either before or at the time point when the patients were
affected (see Tables E3 and E4 in this article’s Online Repository
at www.jacionline.org).

Interestingly, the month 2 Af samples demonstrated statisti-
cally significant clustering grouped by those infants who went on
to be affected at month 12 in this study (P = .003, AMOVA).
OTU-based analysis suggested that a single OTU was differen-
tially abundant between the groups; this OTU was classified as

Staphylococcus (Fig 4, A). When considering all sequences clas-
sified to the Staphylococcus genus, the relative abundances were
significantly different between the 2 groups, with subjects who
went on to be affected colonized by significantly less staphylo-
cocci (mean, 0.065; 95% CI, 0.035-0.094) compared with those
who went on to be unaffected (mean, 0.495; 95% CI, 0.458-
0.531; P <.003, Wilcoxon rank sum test; Fig 4, B).

Given the specific association between S aureus and AD flares,
we classified the Staphylococcus sequences to the species level; in
these samples the most prevalent species were Staphylococcus
epidermidis and Staphylococcus cohnii (Fig 4, C). In contrast
to older patients with AD or patients with more severe AD,”
essentially no S aureus sequences were present in the samples
in our cohort, even at the sites and times that patients were
affected (see Figs E6 and E7 in this article’s Online Repository
at www.jacionline.org). There were no statistically significant
differences within individual Staphylococcus species levels in
the month 2 Af samples between the later-affected and later-
unaffected samples.

Birth method and feeding method have little effect
on skin microbiota

Differences have previously been reported between the skin
microbiota of infants born by means of cesarean section versus
vaginal birth.”* We investigated whether birth method was asso-
ciated with differences in the skin microbiota in our cohort. There
was no clustering of samples at any site or time point based on
birth method, except Af samples at day 2 (see Fig E8, A and B,
in this article’s Online Repository at www.jacionline.org). Shan-
non diversity was similar between the 2 birth methods as well (see
Fig E8, C). Feeding method has been associated with differences
in the intestinal microbiome composition of infants.”**' Howev-
er, feeding method (breast, formula, or combination) and sex did
not affect skin bacterial colonization patterns in this cohort (see
Tables E3 and E4).
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FIG 4. Af microbial community differences predate AD presentation. A, Month 2 Af samples were examined
by using principal coordinates analysis of the theta similarity coefficient. Samples were clustered by those
that went on to be affected at month 12 and those that were unaffected at month 12 (P = .003, AMOVA). B
Relative abundance of major taxa. Subjects who went on to be affected at month 12 had significantly lower
proportions of Staphylococcus species than those who went on to be unaffected (P = .008, Wilcoxon rank
sum test). C, Relative abundance of staphylococcal species. S aureus was essentially absent in these com-

munities. PC, Principal component.

DISCUSSION

Although infections with S aureus and herpes simplex virus can
complicate the course of established AD, the role of microbes in
the cause, genesis, and pathogenesis of AD remains unclear.
Recent murine studies have shown that cutaneous microbes can
influence the development of skin immunity and disease.’®’
Determining whether cutaneous microbes play a role in the initi-
ation of AD could provide an opportunity to reduce the develop-
ment of atopic disorders. To investigate the skin microbiome in
infants before the development of AD, we used 16S rRNA gene
sequencing of skin samples from a birth cohort and determined
that shifts occur in the skin microbiome over the first 6 months
of life, with site-specific bacterial communities changing in
composition and diversity over time. We also identified a differ-
ence in staphylococcal colonization at a site of AD predilection
that predates the presentation of disease, with patients who went
on to be affected at a later date colonized by fewer Staphylococcus
species. Birth method and feeding method did not appear to affect
skin bacterial communities at the sites and time points studied in
this cohort, but other studies are needed to confirm these findings.

Prior studies of human skin have shown that skin microbial
communities are site speciﬁc.3 233 Although there is heterogene-
ity of bacterial communities across the skin surface, specific
skin sites in different subjects often share common patterns of
bacterial composition. This biogeography of the skin microbiome
has been observed in older children and adults.”®** In previous in-
fant skin microbiome studies, site-specific differences were not
evident in the first 3 months of life because infants were studied
at a single time point immediately after delivery or were sampled
at a single time point and analyzed in age cohorts of 1 to 3,4 to 6,
and 6 to 12 months.””*® The present study differed by sampling
the same cohort of infants over a 6-month interval (day 2, month
2, and month 6) and observed site-specific differences as early as
the second day of life, a time point not previously investigated.
The bacterial diversity of 1 skin site, the Pf, shifted at time points
differentially from the 3 other sites studied. Because this specific

skin site has not been examined in a cohort this young, the results
might be related to a unique aspect of infant skin physiology,
exposure, or both or specific to this cohort. Interestingly, the
body site differences in bacterial communities also reflect
observed site differences in immune cell density and composition
from human skin.””** Investigating site-specific differences in
host-microbial interactions can enhance our understanding of
the predilection of certain skin regions for dermatologic diseases.

In addition to the biogeography of the skin microbiome, skin
bacterial communities can shift significantly during different
periods of the lifecycle, such as puberty.”® The physiology of in-
fant skin changes over the first year of life, with alterations in stra-
tum corneum hydration, skin pH, and sebum production.3 ? In this
study the shifts in skin bacterial communities in the first months of
life were the inverse of skin microbiome alterations that have been
observed later in childhood. The increasing Shannon diversity
observed in the first year of life in this infant cohort supports pre-
vious work that showed increased evenness or similar numbers in
each taxa in bacterial communities from 3 skin sites in a cross-
sectional study.”’ During puberty, significant shifts in skin bacte-
rial communities likely reflect the changes in skin physiology and
systemic hormones.”® Changes in the skin microbiome observed
in these infants potentially reflect the influences of waning
maternal hormones, as well as the continued development of in-
fant skin. For example, lipophilic Propionibacterium species
are relatively abundant on the facial sites at neonatal day 2 but
decrease substantially at later time points. This corresponds to
the high sebaceous activity triggered by maternal hormones in
the first days of life, which wane significantly in the weeks after
birth.*” These findings lead to additional questions, including
whether neonatal skin disorders, such as cephalic pustulosis
(also known as neonatal acne), attributed to maternal hormones
potentially might also be affected by alterations in skin bacteria.

A previous study in mice reported that having antigen-specific
tolerance to commensals depends on early colonization, suggest-
ing that there is a “critical window” for inducing regulatory
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T cells, which prevent a later inflammatory response to these
bacteria.® Scharschmidt et al® showed that application of a
commensal species of Staphylococcus on neonatal skin induced
these immunomodulatory effects. The relatively low abundance
of pathogenic staphylococcal species on the Af of 2-month-old in-
fants who later had AD at 12 months of age is intriguing in the
context of this prior work in mice. Whether cutaneous exposure
to commensal staphylococci during early infancy can have a
similar effect remains unknown, and further investigation is
needed to understand whether this might influence the develop-
ment of AD. The absence of S aureus in AD lesions of this cohort
was somewhat surprising, given that this species is associated
with AD.”>*""*% A culture-based analysis of infant skin demon-
strated S aureus colonization in approximately 21% of AD lesions
among infants in their first year of life.** The differences might be
related to inherent differences in the study populations and/or the
severity of sampled skin lesions between the study groups.

Differences in birth method have been studied in relation to the
incidence of atopy and the neonatal skin microbiome.”®*> An
earlier study showed skin microbiome differences based on birth
method in neonates sampled a few minutes after delivery. The
small sample size and rare number of cesarean deliveries in the
current study potentially contribute to the lack of statistically sig-
nificant differences between the skin microbiota of infants born
vaginally or by means of cesarean section at the earliest time point
in this study, day 2 of life. Although this study analyzed different
sites over a longer timeframe than the previous work, a larger
study would be needed to address this question. Birth method
might determine skin colonization very early in life; however,
environmental exposures and skin physiology might predominate
in shaping bacterial communities after this initial delivery. The
skin barrier and FLG mutations are additional aspects of skin
physiology that have been studied in relation to atopy. Although
approximately 10% of subjects in BASELINE publications and
the Irish population have FLG mutations, the current cohort had
fewer FLG mutations than expected because of sampling effects.
Because a large proportion of patients with AD do not carry FLG-
null alleles, the results in the current cohort avoid the potential ef-
fects of FLG mutations and remain relevant to AD. With interest
in the potential immunologic effects of neonatal exposures to skin
microbes,®*° characterizing the early skin microbiome in neo-
nates with and without FLG mutations and the timeframe for
possible development of immune tolerance would be of signifi-
cant clinical importance.

There are increasing efforts to understand the potential relation-
ship between the skin microbial landscape and the development of
skin immunity and human disease. Early studies of the skin
microbiome will identify possible associations between specific
microbes and human health and disease, but extensive further
research will be required to unravel the pathophysiology and key
mechanisms involved. Longitudinal sampling of the same subjects
as internal controls and the initiation of sampling soon after birth
were features of this study that improve the ability to identify
distinct microbial patterns that could provide insight into the skin
microbial milieu before the development of skin disease. As a
result, we were able to define the site specificity and longitudinal
shifts of the skin microbiome in the first 6 months of life, as well as
the difference in relative abundances of commensal staphylococci
before the development of AD. Additional investigations are
needed to test whether site-specific differences in skin microbes
influence the development of AD.
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Clinical implications: S aureus colonization was absent in in-

fants with AD. Colonization by commensal staphylococcal spe-
cies might protect against eczema.
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