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One of the key challenges for transcriptomics-based research is not only the processing
of large data but also modeling the complexity of features that are sources of variation
across samples, which is required for an accurate statistical analysis. Therefore, our goal
is to foster access for wet lab researchers to bioinformatics tools, in order to enhance
their ability to explore biological aspects and validate hypotheses with robust analysis.
In this context, user-friendly interfaces can enable researchers to apply computational
biology methods without requiring bioinformatics expertise. Such bespoke platforms
can improve the quality of the findings by allowing the researcher to freely explore the
data and test a new hypothesis with independence. Simplicity DiffExpress is a data-
driven software platform dedicated to enabling non-bioinformaticians to take ownership
of the differential expression analysis (DEA) step in a transcriptomics experiment
while presenting the results in a comprehensible layout, which supports an efficient
results exploration, information storage, and reproducibility. Simplicity DiffExpress’ key
component is the bespoke statistical model validation that guides the user through any
necessary alteration in the dataset or model, tackling the challenges behind complex
data analysis. The software utilizes edgeR, and it is implemented as part of the
SimplicityTM platform, providing a dynamic interface, with well-organized results that are
easy to navigate and are shareable. Computational biologists and bioinformaticians can
also benefit from its use since the data validation is more informative than the usual DEA
resources. Wet-lab collaborators can benefit from receiving their results in an organized
interface. Simplicity DiffExpress is freely available for academic use, and it is cloud-based
(https://simplicity.nsilico.com/dea).

Keywords: differential expression analysis, differential gene expression, statistical modeling, edgeR,
transcriptomics, RNA-seq, data-driven
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INTRODUCTION

OMICs techniques open the doors to researching organisms
from a comprehensive perspective, enabling the exploration of
the intricate network of relationships, as opposed to analyzing
point biological variations. The scaling up of the analysis enabled
the understanding of many of the molecular aspects behind an
organism’s features, while at the same time revealed that the
mechanisms involved in the control of transcription, translation
and the organism physiology, in general, are more complex than
once thought. Therefore, it is no surprise that OMICs research
requires the effort of multi-disciplinary teams and it is quite
common to see a publication with more than ten co-authors.
From this new perspective, many challenges arise, one being the
knowledge transfer and communication between professionals
with different backgrounds. Other challenges are well explored,
such as analysis and storage of complex data, with every
new technique for high-throughput molecular biology research
requiring new methods for data analysis and interpretation
(Finotello and Di Camillo, 2015; Han et al., 2015; Yuryev, 2015;
Byron et al., 2016; Conesa et al., 2016).

Among the OMICs techniques, transcriptomics rapidly
became a popular methodology for profiling gene expression
through RNA-seq (Nagalakshmi et al., 2008). Transcriptomics
can be applied to the analysis of messenger RNAs, non-
coding RNAs (such as long non-coding RNAs, microRNAs, and
transfer RNAs), the investigation of mRNA isoforms and can be
combined with other methods to enhance analysis (Byron et al.,
2016; Conesa et al., 2016). Originally, RNA-seq techniques were
developed for sequences from pooled cells, which is known as
“bulk RNA-seq.” Later on, single-cell RNA-seq methods were
developed, requiring not only new laboratory procedures but also
the development of novel approaches to process and analyze the
data (Tang et al., 2009).

The relative abundance of the set of RNAs found in a
sample reflects the level of expression of the corresponding
genes, indicating the cells’ state and the aspects involved in the
determination of a certain condition (Finotello and Di Camillo,
2015). The objective of DEA is to identify the mRNAs (or
other transcribed sequences) that have changed significantly in
abundance across treatment groups in an experiment. A typical
DEA based workflow firstly requires the mapping of the
sequenced reads of each sample to a reference genome or
a transcriptome (when available). The following step is the
estimation of how many reads matched to different loci or
transcripts, the organization of the retrieved information in the
“read-count table,” and finally the completion of the necessary
corrections such as distribution and coverage normalization.
All of the above steps must be done using quality checkpoints,
and the analysis strategies may vary according to the organism
being studied and the research objective (Oshlack et al., 2010;
Conesa et al., 2016).

Summarizing the sequenced data into a read-count table
presents important challenges and, on top of that, only precise

Abbreviations: CPM, counts per million; DEA, differential expression analysis;
GLM, generalized linear model; UI, user interface.

and powerful tests can efficiently detect the differential expression
(Oshlack et al., 2010; Finotello and Di Camillo, 2015; Han et al.,
2015). Regardless of the challenges involved in the read-mapping
step to generate the read-count table, it was shown that most tools
that run this step perform equally (Costa-Silva et al., 2017). On
the other hand, the methods applied to DEA have the greatest
influence on the final results, and no current strategy offers
optimum results (Costa-Silva et al., 2017). Therefore, the real
challenge is to identify which transcripts are affected by the
phenomena targeted by the research (treatment, cell types, etc.),
among all the observed expression changes. Moreover, this is
highly dependent on the accurate modeling of technical and
biological variability (Finotello and Di Camillo, 2015).

It is undeniable that there is a heavy demand on the
bioinformatics skills needed to process the high-throughput
sequencing raw data files and the subsequent statistical skills
to apply the methods that can uncover the relevant features
in the data. A common mistake is to assume that the
transcriptomics analysis ends with the list of genes differentially
expressed, whereas it is more likely to lead to the next stage
of the research. The research team still needs to explore the
biological meaning behind the data analysis results, carry out
gene set enrichment analysis or similar strategies, retrieve
literature to support understanding the biological context and,
ideally, test hypothesis by carrying out new wet-lab experiments
(Han et al., 2015).

Simplicity DiffExpress tackles the statistical analysis steps
that are required after the raw RNA-seq data is summarized in
read-count tables. The main objective is to improve discovery
by facilitating the statistical modeling of the DEA, with no
programming skills required. It also offers an interactive
interface with guided steps and the presentation of the results
in a practical and shareable interface. These features are
critical in the study of complex biological questions where
multiple factors define the observed phenotype. Simplicity
DiffExpress opens the doors to non-bioinformatician researchers
to explore the data, and we believe it improves the discovery
process by enabling the person who knows best about the
biological aspects to be hands-on with the statistical analysis
without an intermediary bioinformatician. Nonetheless,
bioinformaticians benefit from the validation feedback and the
practicality of results reproducibility that can be re-visited in any
time-point and shared.

METHODS

Interface Implementation
The workflow was implemented as part of SimplicityTM, a
cloud-based software designed for supporting bioinformatics
services to non-bioinformaticians (Walsh et al., 2013). Simplicity
workflows’ architecture is built using a combination of JavaScript,
.NET, Java, and Python based components, which implement
the UI, middleware, message queue, and storage (Azure
Blob, Figure 1). Simplicity’s UI is implemented in HTML5,
JavaScript, and CSS. In the case of DiffExpress input, .NET
also submits the data to R scripts in the middleware to run
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FIGURE 1 | Simplicity’s cloud-based structure. Simplicity is available on-line and presents a user interface (UI) that carries out real-time processing through its
middleware storage and scripts. User requests are managed by an asynchronous queue and data is passed to cloud storage. Once a processing node is available,
the backend retrieves the analysis parameters and data from the cloud storage and analyses it, delivering results to the user and compiling reports and interactive
visualizations in the UI.

on-the-fly validations. The communication interface is made
up of the queue system and storage elements. The queue
system was developed in Java and Spring Boot and runs
in a Docker container, controlling which jobs and data are
sent to the backend to be processed. In the backend, an
agent written in Java interacts with the queue, the storage
and the service, which runs in a Docker container on a
Linux server host. The resulting output files, when complete,
are uploaded back to storage. During the processing, a
JSON file containing information on the pipeline progress is
constantly updated into the storage. Once this JSON file signals
that the job was completed, an email is sent to the user.
After he/she securely authenticates his/her login credentials in
Simplicity, the user is granted access to the results interface,
implemented using the same strategy as the input interface. The
communication interface pulls the output results from the storage
and presents them.

Data Validation
The first validation step is to check if the sample names on both
read-count and metadata table match and to remove unwanted
characters from the labels (implemented on .NET). Missing data
(“NA”) is retrieved using R scripts and is with dealt by removing
samples or transcripts. The model fitness test is written in R and
first evaluates if there are enough degrees of freedom, then, it
applies QR decomposition to the statistical model design matrix
to verify if it is full rank (all rows and columns are linearly
independent) and, finally, checks if there are at least two samples
for all the factor combinations generated by an interaction. The
user is always informed of any detected issue and, when possible,
offered an option on how to deal with it.

Differential Expression Analysis
Implementation
The DEA of DiffExpress is fully implemented on Ubuntu
16.04.4 LTS, R version 3.5.2 (R Core Team, 2017), and based
on edgeR version 3.22.5 (Robinson et al., 2010; McCarthy
et al., 2012). EdgeR and DESeq2 (Love et al., 2014) are among
the best DEA performers (Finotello and Di Camillo, 2015),
enabling multi-group comparisons (Oh et al., 2014), and, in our
experience, edgeR offers the best approach to model complex
data, therefore it was chosen to be the basis of our workflow.
We use the library jsonlite version 1.6 (Ooms, 2014) to recover
the analysis parameters passed as JSON files and pheatmap
version 1.0.12 (Kolde, 2012) to generate heatmaps. The DEA
scripts were initially tested on a dataset investigating changes
in the modulation of rat small non-coding RNA due to exercise
intensity, which required the modeling of a continuous variable
(Oliveira et al., 2018). The environment information with the
updated version of the libraries and programs used are presented
on the results report, allowing the user keep track of upgrades
done in the future.

Input Files
Simplicity DiffExpress requires two tables as input, which can be
a CSV or TXT file. The interface provides options to set the
parameters to read the files and on-the-fly visualization of how
the data is being processed, enabling flexible input format. The
current files’ size is unlimited.

The first table to be uploaded is the read-count table
which presents the raw read counts mapped to each genomic
tag (genes). There are no requirements regarding transcript
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IDs formats, although they must be presented in the first
column of the file. The remaining columns should be numeric
(with the sample name as heading). It is a requirement that
the data is not transformed because edgeR automatically
takes into account the total size (total read number) of
each sample/library in all calculations of fold-changes,
concentration, and statistical significance. In other words,
RPKM, FPKM, and TPM -transformed data are not compatible
(Robinson and Smyth, 2008).

The second table contains the metadata and must have (1) a
row for each sample/library in the count table; (2) a column for
each variable(s) of interest. Simplicity DiffExpress automatically
removes any sample that is not present in both tables (the user
receives a warning). The metadata table may contain any relevant
information to understand the data, such as phenotypic features,
clinical outcomes or experimental information (such as collection
day, batch, institution). Later, the user will inform which of the
information will be used in the statistical design, therefore there
is no issue if the table contains variables beyond the ones that are
intended to be used in the analysis.

Low-Count Filtering
A dataset usually has thousands of genomic features, and not
all of them have enough reads to contribute to the DEA. In
addition, these low counts may interfere with some of the
statistical methods used in the pipeline. Therefore, it is strongly
recommended to filter them out prior to further analysis.
Nonetheless, the user can either opt to not filter out low counts
or to decide what is the minimum CPM that a genomic feature
must have in order to be kept in the analysis.

Normalization
In Simplicity DiffExpress, normalization is a mandatory step.
The dataset is normalized for RNA composition by trimmed
means of M-values (Robinson and Oshlack, 2010), which is the
default methodology implemented on edgeR. The normalization
step adjusts the RNA composition effect, avoiding the issue
that the remaining genes falsely appear to be down-regulated in
that sample/library.

Dispersion
The genomic features dispersion estimation is necessary so that
it is consistent across replicates and in Simplicity DiffExpress
it is based on the weighted likelihood empirical Bayes method
(Robinson and Smyth, 2007). Simplicity DiffExpress uses edgeR’s
Cox-Reid profile-adjusted likelihood method for all genomic
features. It fits a GLM from an informed design matrix, allowing
for all systematic sources of variation to be accounted for in the
estimations (McCarthy et al., 2012; Chen et al., 2014; Oh et al.,
2014). In addition, the user may decide whether the analysis
should be robustified against potential outliers.

GLM Fitting
Once the above steps are completed, a Negative Binomial GLM
is ready to be fitted to the dataset, as described by McCarthy
et al. (2012). It conducts a gene-wise statistical test for a given
coefficient or coefficient contrast of the variable(s) of interest.

Likelihood Ratio Test for the Selected Variables
This method is applied to test the ratio of deviances between
nested models with and without the estimation of coefficients
or coefficient contrast of the variable(s) of interest in the
Negative Binomial-GLM model, respectively. It is at this
stage of the analysis that genes differentially expressed
between groups/conditions are actually identified and the
gene-wise p-values are corrected for multiple comparisons
using the Benjamini-Hochberg false discovery rate method
(Hochberg and Benjamini, 1990).

Case-Study
The public dataset GSE680861 for the use case, was originally
published by Best et al. (2015). This dataset consists of RNA-seq
data of 283 blood platelet samples obtained from 228 patients
with six types of malignant tumor and 55 healthy donors. The
large number of samples and the availability of metadata allows
for a great data modeling opportunity. The statistical model
used was “∼ cancer + Metastasis + batch + Gender + Age” for
estimation of cancer and Metastasis effect, respectively. In both
models, batch, Gender, and Age were included as confounders
to minimize sample bias in the estimations of interest associated
with variables cancer and Metastasis (Supplementary Figure S1).

Not all series on GEO are suitable for DiffExpress since there
are assorted types of data that can be available. For GSE68086,
the read-count table was available as Supplementary File and
the metadata was obtained from the “Series Matrix” file. It
was necessary to explore the “Series Matrix” file, select relevant
information, such as the sample IDs that matched the read-count
table, batch dates, cancer type, age, and gender. Some further
formatting was done to remove the field names from the table
cells (e.g., “cancer type: BrCa” became “BrCa”). The current series
publicly available on GEO no longer provides information on
Age, Gender, and Metastasis.

RESULTS

In this section, we do an overview of the features provided by
the interface and present a case study using the public available
dataset retrieved from GEO under the series identification
GSE68086 (see text footnote 2), containing the RNA-seq data
of 283 blood platelet samples obtained from 228 patients with
six types of malignant tumor and 55 healthy donors (Best et al.,
2015). The dataset size and metadata availability offered a great
opportunity to test different statistical models. More information
on the implementation and how to use Simplicity DiffExpress are
provided in the documentation2, tutorial page3, and video4.

Input Interface
Format-Flexible Data Input
The RNA-seq data must be processed and organized in a read-
count table in order to be analyzed in Simplicity DiffExpress.

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68086
2https://simplicity.nsilico.com/Home/Document
3https://simplicity.nsilico.com/Home/Support
4https://www.youtube.com/watch?v=QKZu46c4HfU
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The originally observed expression counts are required, so no
data transformation is necessary prior to analysis, once the
workflow will handle it subsequently (Robinson et al., 2010).
A second table, called “metadata table,” containing the features
that characterize the samples must also be provided since it will
be used to define the samples groups. The file upload buttons are
the first features made available to the user once they access the
platform (Figure 2A).

Simplicity DiffExpress was designed to deal with variable table
formats, and the user can inspect how the software interprets
their files on the go and can change the settings as required
(Figure 2B). One of the key features of this platform is to allow
the user to define the statistical design that best represents the
experiment. Simplicity DiffExpress offers a form where the user

should pick at least one of the features in the metadata table and
fit a statistical model (Figures 2C,D). It is also recommended
that the sources of bias are informed when defining the statistical
model in the input interface. By including all known sources
of undesired bias (e.g., batch effects) in the statistical model,
the data analysis will take into consideration all those factors
which will provide more precise estimations. Supplementary
Figure S1 exemplifies how the statistical model used in this
work was set-up.

On-the-Fly Validation
In order to make the DEA on Simplicity DiffExpress more
accessible, a graphical UI was implemented to provide clear and
immediate feedback for the user. Therefore, the validation steps

FIGURE 2 | DiffExpress input options. (A) The user is initially required to input a project title and upload two text files containing the read counts and metadata.
(B) The upload window displays the table being uploaded in real-time allowing for verification if the interface is reading it correctly. The options on the left side can be
altered to adjust the file-reading. (C) Once the tables are uploaded, a menu to include variables in the statistical model is enabled. The user should inform what is the
baseline between the categories of a factorial variable or mark it as continuous. (D) It is also possible to study the interaction between two or more variables.

Frontiers in Genetics | www.frontiersin.org 5 May 2019 | Volume 10 | Article 356

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00356 May 11, 2019 Time: 14:10 # 6

Palu et al. DiffExpress: RNA-seq Cloud-Based Analysis Interface

are key features of the software, to ensure that the data are
adequate before submitting for the full analysis. The software
informs the user if there are any missing value (represented
by “NA”), any mismatch between samples IDs, and checks
if it is possible to fit the model (described in “Methods”).
This is performed by calling specialized validation R routines
(R Core Team, 2017) in the Simplicity DiffExpress software
validation module, implemented in the middleware. If any issue
is identified, the interface presents possible solutions to the user
(Supplementary Figure S2A) and specifies the variables that are
causing it (Supplementary Figure S2B). In other words, the
validation module secures the chances of a successful run of the
DEA prior to submitting data to the server.

Other Features
All features in the input interface have a short user guide
displayed on the bottom of the page, known as the “Step
Wizard” (not shown). This area is designated to provide a brief
overview on which options are available and which actions the
user is expected to take. Moreover, some parameters can be
customized, and they are made available at the “Statistics” tab
(Supplementary Figure S3A).

Furthermore, when the validation procedure detects modeling
issues, Simplicity DiffExpress will offer the option to resolve them
by either removing a variable from the model or by eliminating
some samples. It is important to highlight that the interface
always restores the samples when changes in the statistical model
resolve the issue. To allow the user to keep track of all the
tested models and adjustments made, the interface provides the
“Removed samples” tab (Supplementary Figure S3B), which is
dedicated to specific details of samples that were eliminated
from the current model and a “History” tab (Supplementary
Figure S3C) that enlists all models tested.

Once all information is provided, and the statistical model
has passed the fitness test (“Check model” button on Figure 2A),
the analysis can be submitted. The user may finish the session at
this point or choose to keep using the uploaded data, an option
offered to facilitate the creation of new statistical models for
the same dataset. Meanwhile, once the workflow management
receives the job request, the analysis can take from a couple
of minutes to a few hours, depending on the complexity of
the statistical models and the dataset size. Once it is finished,
the user will receive an email informing that the results are
ready to be accessed.

Results Interface
The Simplicity system presents a list of all pipelines run by the
user, highlighting the completion status and submission date
(Supplementary Figure S4). The users may grant access to a
pipeline to specific researchers of their choice, and this access
can be revoked at any time by the user. Although the results are
sharable, the invitees do not have access to the original input files.
This feature favors collaborative work by enabling the whole team
to explore the results in an organized presentation. Additionally,
it supports reproducibility since all information regarding the
analysis parameters is documented and stored at Simplicity and
permanently linked to the pipeline.

Once a pipeline result is chosen, the user is brought to a new
page enlisting all information regarding the DEA (Figure 3),
including the chosen setting and analysis log. The log describes all
the steps carried on the analysis and summarizes how many genes
were found differentially expressed. It also provides access to
the biological coefficient of variation plot and multidimensional
scaling plots. The later plot presents the leading log-fold-change
between each pair of samples and supports identifying structure
and heterogeneity in the relative expression data (Figure 4). In
the example presented here, it is possible to notice that there is
a data structure due to batch. The buttons on the left (Figure 3)
offer further functionalities, such as exploratory analysis of the
results (“Output Explorer”), download all results, information on
how to cite the Simplicity DiffExpress methods and the possibility
to contact support.

By clicking on the “Output Explorer” button, the users have
access to a window (Figure 5A) containing heatmaps and
providing an overview of the data (Figures 5B,D) and a list with
all comparisons between variables done in the DEA (Figure 5C).
Once a comparison is chosen for further exploration, they are
taken into a page where the results table is displayed (Figure 5E).
In the case where more than two transcripts are differentially
expressed, a specific MA plot (Figure 5F) and heatmaps are made
available to enable an exploratory analysis of the results.

Simplicity DiffExpress will generate multiple tables with the
DEA results. The number of tables depends on (1) the variables
included in the statistical design; (2) the number of levels which
each of the categorical/nominal variables has (e.g., in our case-
study, variable cancer has seven levels: healthy donor and six
cancer types); and, (3) if the user sets the program to carry out
DEA between every level of the categorical/nominal variables
or only contrasts the levels against the baseline. The researcher
should interpret the differential expression significance based on
the chosen false discovery rate; by default, it is set as 0.05.

Furthermore, it is recommended that the user follow the
citation guidelines to ensure all credit is correctly presented; all
information is available at the “Citation and References” button.
Finally, results are restricted to the user and available upon login,
and all images and tables can be saved locally through the button
“Download All Files” (Figure 3).

DISCUSSION

The primary objective of Simplicity DiffExpress is to allow
researchers with or without prior bioinformatics knowledge to
create DEA models in order to study quantitative changes in
gene expression levels between experimental groups. Simplicity
DiffExpress achieves this through a user-friendly, intuitive,
flexible and interactive cloud-based platform (Figure 6). The
platform also provides clarity, real-time answers, and data
validation. Simplicity DiffExpress is available at https://simplicity.
nsilico.com/DEA, and it is free for academic use.

In the context of RNA-seq DEA, there are two major types
of experimental designs: (1) pairwise group comparisons, where
the samples were collected in a single time point and targets
differences across two or more biological groups; and, (2)
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FIGURE 3 | Project’s results overview interface. The blue buttons on the top left allow the user to navigate through the results features, it is also possible to report
issues or request further analysis. The main panel reviews the analysis settings and its log, which lists all the steps done during the pipeline run and generates a
summary of the genes found up and down-regulated. On the right, a dispersion plot showing the data distribution based on the biological coefficient of variation log
CPM average. The biological coefficient of variation represents the coefficient of variation that would remain between biological replicates if sequencing depth could
be increased indefinitely. Finally, the user can explore the generated multidimensional scaling plot clicking on the button on the right.

progression experiments, aiming to characterize the dynamics
of a biological phenomenon (Oh et al., 2014). Time-series are
the most common examples of the progression experiments,
where the samples are collected in different points over a
time window, but they can also relate to analyses of samples
submitted to different intensities of interventions, such as drug
dosages. Ideally, the experimental design should account for

other sources of nuisances, such as different batches, age, sex,
and replicates (Oh et al., 2014; Han et al., 2015). Controlling
the sources of variation when designing and modeling correctly
all these factors reflects directly in the capability of successfully
identifying differentially expressed sequences. Therefore, it is
critical to understand those variables, correctly identifying if
they are continuous or categorical and how they relate to each
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FIGURE 4 | Multidimensional scaling plot with the samples colored according to batch. The x- and y-axes represent the leading log-fold-changes between each pair
of RNA samples, which is given by the root-mean-square of the largest absolute log-fold-changes between each pair of samples. In this example, there is a batch
bias, whereas samples from batches 2, 3, and 4 are separated from 5 and 6.

other (Is there an interaction effect? Are they independent?).
Simplicity DiffExpress tackles this challenge providing support to
modeling both continuous and categorical variables, regardless
of how many levels a category can have, enabling interaction
analysis while providing feedback on issues preventing the
statistical model fitting.

For example, in the work by Oliveira et al. (2018) rats
were submitted to low, moderate and high-intensity treadmill
protocols to investigate the impact of exercise on serum
extracellular vesicles and their small RNAs. If the exercise
intensity was modeled as a factor of four levels (“no exercise,”
“low,” “moderate,” and “high” intensities), the experimental
design would be misrepresented because the intensity levels
would be interpreted as unrelated treatments. What should be
done instead, is to include the average treadmill speed applied
to each group and modeled it as a continuous variable, enabling
to capture potential gradual expression changes in relation to the
speed. Going back to the analysis of the blood platelet samples, in
Figure 3 we can observe that no transcripts related to Metastasis
were found differentially expressed. This is likely because the
metastasis features and onset changes depend on the cancer type,
therefore a better model would include an interaction between
the variables Cancer and Metastasis.

Simplicity DiffExpress core analysis is based on the well-
known and broadly used resources offered by the R (R Core
Team, 2017) package edgeR (Robinson et al., 2010; McCarthy
et al., 2012). Simplicity DiffExpress makes the valuable edgeR

features available to a non-bioinformatician public and augments
the use of edgeR with key validation support, used to identify
issues in the dataset and statistical model prior to running the
analysis. This is a crucial feature since, when running a script
for an edgeR-based analysis, many errors are only identified after
some time is elapsed, therefore a strong validation is a valuable
contribution toward the analysis process. Moreover, the technical
aspects of the analysis (input format, validation issues, statistical
parameters) are presented in clear language in order to make
it accessible to non-specialists. All these features are combined
with detailed documentation, which includes insights into the
statistical aspects of the analysis and a step-by-step tutorial.

In comparison to other web applications that provide DEA for
the user without programming experience, like DEApp (Li and
Andrade, 2017) and DEBrowser (Kucukural et al., 2019), the key
advantages of Simplicity DiffExpress are related to input files and
complex data modeling. Simplicity DiffExpress has no limit for
file size and offers clearer feedback regarding issues when reading
the files and incompatibilities between count-table and metadata.
To our knowledge, Simplicity DiffExpress is the only platform
of this type that allows the analysis of variables as continuous,
which is very important as explained above, and it offers more
flexible options to define interactions for multi-factorial analysis
because the interactions are not mandatory and can be done
with specific features. Moreover, both DEApp and DEBrowser
require the user to inform manually each paired comparison
to be studied, which can be not practical when dealing with
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FIGURE 5 | Output explorer options. (A) The initial window where (B,D) heatmaps can be accessed and (C) listing all comparisons across variables. It is possible to
filter the comparison list based on the variable category. (E) Results of a selected comparison (in this case BrCa vs. HD – breast cancer versus healthy donor). (F) An
MA plot displaying the log (base 2) fold-change observed for the average log CPM of each group of interest (e.g., BrCa and HD), with genes differentially expressed
highlighted in red.

many variables or categorical variables with many levels. In
summary, Simplicity DiffExpress structure is more robust to deal
with datasets with complex metadata, besides the fact it is able to
store and share the results.

Simplicity DiffExpress can be used on a broad range of data
sources, as long as the RNA-seq data is summarized in the read-
count table, without any transformation. The investigation of
complex biological outcomes will greatly benefit from Simplicity
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FIGURE 6 | Overview of the DiffExpress workflow. The web-interface requires a read-count table and a metadata as input. The users will set-up their analysis which
will undergo a real-time validation prior to submission for analysis. If any issue is encountered, the interface will guide the users through the possible actions. Once
the statistical model is successfully fitted, the pipeline can be submitted. The data will be sent to the cloud and once the analysis is finished, the users can retrieve
and explore the results in a secondary web interface, linked to their accounts.

DiffExpress features. For example, RNA-based measurements
can be applied across diverse areas of human health, including
disease diagnosis, prognosis, and therapeutic decisions. At the
moment, it supports clinical practice for infectious diseases,
cancer, transplant medicine, and fetal monitoring (Byron et al.,
2016). Simplicity DiffExpress features offer useful assistance

for health-care because it provides functionality for guiding
users on modeling multi-factorial and temporal designs. When
dealing with cohort studies there are many bias sources beyond
the obvious genetic variability across individuals. By enabling
investigators with clinical knowledge to run their own DEA, our
software increases the possibilities of discovery because users can
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combine variables, correct for sources of bias and test hypotheses
themselves and at their convenience since they no longer depend
on an intermediary researcher between them and the analysis.
It can also be used as a means to support the communication
between bioinformatician and wet-lab researchers because it
presents the data in a user-friendly set-up.

Differential expression analysis can generate a high number
of outputs depending on the experimental design. Simplicity
DiffExpress also addresses file management issues by saving
the analysis parameters and organizing the output files
systematically. This feature supports research reproducibility
and reporting. Moreover, the sharing feature facilitates
the exchange between collaborators, avoids e-mail clutter
and promotes transparency.

CONCLUDING REMARKS

Simplicity DiffExpress aims to support the research of
differentially expressed sequences by providing an intuitive
interface with guidance through the steps and, on overcoming
data modeling issues. Another critical advance provided by
Simplicity DiffExpress is the data validation: besides checking
the correspondence between samples IDs in the input files, it
tests the statistical model fitness prior to the DEA enabling
the immediate identification of any issues in the design
and indicating solutions for it. This feature advances the
functionalities provided by the R library edgeR (Robinson
et al., 2010; McCarthy et al., 2012). Moreover, the results
interface was designed to present the outputs of the DEA
in an organized and easy to navigate format, addressing an
issue regarding files management that can be critical since,
depending on the experimental design, the output results
can be extensive.
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