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Abstract
Search	behavior	is	often	used	as	a	proxy	for	foraging	effort	within	studies	of	animal	
movement,	despite	it	being	only	one	part	of	the	foraging	process,	which	also	includes	
prey	capture.	While	methods	for	validating	prey	capture	exist,	many	studies	rely	solely	
on	behavioral	annotation	of	animal	movement	data	to	identify	search	and	infer	prey	
capture	attempts.	However,	the	degree	to	which	search	correlates	with	prey	capture	
is	largely	untested.	This	study	applied	seven	behavioral	annotation	methods	to	identify	
search	behavior	from	GPS	tracks	of	northern	gannets	(Morus bassanus),	and	compared	
outputs	to	the	occurrence	of	dives	recorded	by	simultaneously	deployed	time–depth	
recorders.	We	tested	how	behavioral	annotation	methods	vary	in	their	ability	to	iden-
tify	search	behavior	 leading	to	dive	events.	There	was	considerable	variation	 in	the	
number	of	dives	occurring	within	search	areas	across	methods.	Hidden	Markov	mod-
els	 proved	 to	be	 the	most	 successful,	with	81%	of	 all	 dives	occurring	within	 areas	
identified	as	search.	k-	Means	clustering	and	first	passage	time	had	the	highest	rates	of	
dives	 occurring	 outside	 identified	 search	 behavior.	 First	 passage	 time	 and	 hidden	
Markov	models	had	the	lowest	rates	of	false	positives,	identifying	fewer	search	areas	
with	no	dives.	All	behavioral	annotation	methods	had	advantages	and	drawbacks	 in	
terms	of	 the	complexity	of	analysis	and	ability	 to	 reflect	prey	capture	events	while	
minimizing	the	number	of	false	positives	and	false	negatives.	We	used	these	results,	
with	consideration	of	analytical	difficulty,	to	provide	advice	on	the	most	appropriate	
methods	for	use	where	prey	capture	behavior	is	not	available.	This	study	highlights	a	
need	to	critically	assess	and	carefully	choose	a	behavioral	annotation	method	suitable	
for	the	research	question	being	addressed,	or	resulting	species	management	frame-
works	established.
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1  | INTRODUCTION

Movement	 is	major	 part	 of	 a	 species’	 ecology.	The	 underlying	 pro-
cesses	driving	the	movement	of	individuals	and	populations	are	stud-
ied	widely;	however,	it	is	often	unfeasible	to	directly	observe	animals	
through	constant	effort.	As	a	result,	movement	studies	have	focussed	
on	remote	detection	of	animals	through	technologies	such	as	GPS	and	
satellite	 tracking.	 The	 development,	 miniaturization,	 and	 reduction	
of	cost	in	remote	tracking	technologies	have	enabled	its	widespread	
use	 in	ecological	 studies	 (Cagnacci,	Boitani,	Powell,	&	Boyce,	2010).	
Remote	 tracking	 enables	 behaviors	 to	 be	 inferred	 from	 an	 animals’	
trajectory	 (Buchin,	Driemel,	Kreveld,	&	Sacristán,	2010),	and	has	 led	
to	 rapid	 advances	 in	 the	understanding	of	 species’	 ecology	 (Nathan	
et	al.,	2008).

While	 movement	 patterns	 are	 often	 used	 to	 distinguish	 active	
phases	from	rest,	or	search	behavior	from	traveling	(van	Beest	&	Milner,	
2013;	 Dzialak,	 Olson,	Webb,	 Harju,	 &	Winstead,	 2015),	 identifying	
these	behavioral	states	typically	relies	on	more	complicated	modeling	
procedures	to	detect	potential	underlying	mechanisms	within	behav-
ior	 identification	 (Jonsen,	Myers,	&	James,	 2006;	Kerk	 et	al.,	 2015).	
Considerable	progress	has	been	made	in	developing	methods	that	can	
categorize	 behaviors	 based	 on	 simple	 movement	 metrics	 (Edelhoff,	
Signer,	&	Balkenhol,	 2016).	These	methods	 commonly	 identify	mul-
tiple	states	and	ascribe	these	to	predefined	behaviors	such	as	search,	
rest,	 or	 travel	 (Evans,	 Dall,	 Bolton,	 Owen,	 &	Votier,	 2015;	 Guilford	
et	al.,	 2008;	 Hamer,	 Phillips,	Wanless,	 Harris,	 &	Wood,	 2000;	 King,	
Glahn,	&	Andrews,	1995;	Palmer	&	Woinarski,	1999;	Shepard,	Ross,	
&	Portugal,	2016;	Weimerskirch	et	al.,	2006).	However,	Gurarie	et	al.	
(2016)	 argued	 for	 closer	 and	 more	 detailed	 exploratory	 analysis	 of	
movement	data	 to	prevent	mis-	specification	of	behavior,	 suggesting	
that	 the	 strengths	 of	 particular	methods	 need	 to	 be	more	 carefully	
considered	so	they	are	suitably	attuned	to	the	specific	questions	being	
asked	by	researchers.

Within	conservation	management,	there	is	an	increasing	reliance	
on	 identifying	 space	 use	 by	 species	 of	 conservation	 concern	 (Allen	
&	Singh,	2016).	For	example,	within	 the	marine	environment,	 forag-
ing	areas	could	be	considered	for	the	protection	and	management	of	
seabird	species	 (Lascelles	et	al.,	2016).	The	use	of	 these	approaches	
may	contribute	to	the	establishment	of	conservation	measures	includ-
ing	designation	of	marine	protected	areas	 (Grüss,	Kaplan,	Guénette,	
Roberts,	&	Botsford,	2011).	Foraging	activity	 is	 a	key	component	 in	
an	animal’s	time	and	energy	budget,	and	it	is	well	established	that	an-
imals	 in	environments	with	patchy	 resources	must	engage	 in	 search	
behavior	to	optimize	their	foraging	effort	in	terms	of	maximizing	prey	
encounters	 (MacArthur	&	Pianka,	1966).	Therefore,	 foraging	 can	be	
considered	a	two-	part	system,	containing	both	search	and	prey	cap-
ture	attempts	(Charnov,	1976).	Understanding	the	interaction	between	
search	and	prey	capture	is	a	key	component	in	optimal	foraging	theory	
(Pyke,	1984).	For	example,	while	there	has	been	much	work	identifying	
area-	restricted	search	(Knell	&	Codling,	2012),	there	is	little	informa-
tion	on	the	relationship	between	search	and	prey	capture.	Validation	
of	search	behavior	is	difficult	particularly	in	animals	where	direct	ob-
servation	is	challenging,	such	as	those	in	many	biotelemetry	studies.	

Many	movement	studies	use	path	segmentation	techniques	to	detect	
search	behavior;	however,	many	of	these	are	unvalidated	estimates	of	
search	due	to	the	 lack	of	a	second	data	stream	for	ground-	truthing.	
Validation	of	prey	capture	attempts	has	been	achieved	using	animal-	
borne	cameras	(Bicknell,	Godley,	Sheehan,	Votier,	&	Witt,	2016;	Moll,	
Millspaugh,	 Beringer,	 Sartwell,	 &	 He,	 2007),	 time–depth	 recorders	
(Dean	et	al.,	2012;	Shoji	et	al.,	2015;	Tinker,	Costa,	Estes,	&	Wieringa,	
2007),	 stomach	 loggers	 (Weimerskirch,	 Gault,	 &	 Cherel,	 2005),	 and	
accelerometers	(Hansen,	Lascelles,	Keene,	Adams,	&	Thomson,	2007;	
Sato	et	al.,	2007)	among	others.	However,	many	of	these	technologies	
are	either	expensive	 resulting	 in	 small	 sample	 sizes	or	 are	 too	 large	
to	 deploy	 on	 animals	 in	 combination	with	 location	 loggers	without	
significant	 adverse	 impacts	 (Barron,	 Brawn,	 &	Weatherhead,	 2010;	
Hammerschlag,	Gallagher,	&	 Lazarre,	 2011;	Vandenabeele,	 Shepard,	
Grogan,	&	Wilson,	 2012).	As	 a	 result,	many	 studies	 still	 rely	 on	 the	
sole	use	of	location	data	and	path	segmentation	approaches	to	iden-
tify	 behavior.	 The	 determination	 of	 behavior	 from	 movement	 data	
is	an	active	area	of	research	and	the	subject	of	many	reviews	(Allen,	
Metaxas,	&	Snelgrove,	2017;	Edelhoff	et	al.,	2016;	Hays	et	al.,	2016;	
Jacoby,	Brooks,	Croft,	&	Sims,	2012).	There	are	several	different	meth-
ods	 for	 undertaking	 behavioral	 annotation	 or	 detecting	 important	
areas	of	high	use	by	animals.	Frequently	used	are	movement	pattern	
description	and	process	identification.	Methods	based	around	move-
ment	pattern	description	are	often	aimed	at	 trying	 to	split	between	
different	behavioral	periods	or	to	locate	changes	in	behavior	(Edelhoff	
et	al.,	2016).	Process	identification	aims	to	take	things	a	step	further	
and	concentrates	on	methods	that	are	focussed	toward	being	able	to	
describe	the	underlying	processes,	whether	extrinsic	or	intrinsic,	and	
describe	how	these	inform	behavior.

Northern	gannets	(Morus bassanus),	hereafter	gannets,	are	a	well-	
studied	species	 that	occur	principally	 in	 the	temperate	shelf	seas	of	
the	 North	 Atlantic	 during	 the	 breeding	 season.	 Gannets	 are	 visual	
predators	 (Cronin,	 2012)	 and	 undertake	 plunge-	diving	 from	 height,	
entering	 the	water	 at	 speeds	 of	 up	 to	 24	m/s	 (Chang	 et	al.,	 2016).	
Prior	 to	diving,	 gannets	 typically	 slow	 their	 flight	 and	 increase	 their	
path	sinuosity	(Wakefield	et	al.,	2013;	Bodey	et	al.,	2014;	Patrick	et	al.,	
2014;	Warwick-	Evans	 et	al.,	 2015).	 The	 relationship	 between	 slow	
speed	during	search	and	prey	capture	attempts	has	been	established	
both	 theoretically	 (Bartoń	 &	 Hovestadt,	 2013;	 Benhamou,	 2004)	
and	empirically	 in	 a	variety	of	mobile	marine	 and	 terrestrial	 species	
(Anderson	 &	 Lindzey,	 2003;	 Byrne	 &	 Chamberlain,	 2012;	 Edwards,	
Quinn,	 Wakefield,	 Miller,	 &	 Thompson,	 2013;	 McCarthy,	 Heppell,	
Royer,	Freitas,	&	Dellinger,	2010;	Towner	et	al.,	2016;	Wakefield	et	al.,	
2013;	Williams	et	al.,	2014).	Such	changes	 in	movement	and	clearly	
identifiable	prey	capture	attempts	in	the	form	of	dives	(Cleasby	et	al.,	
2015;	Garthe,	Benvenuti,	&	Montevecchi,	2000),	as	well	as	their	ability	
to	carry	multiple	devices	and	ease	of	recapture,	make	gannets	a	suit-
able	model	species	to	explore	the	ability	of	movement-	based	analysis	
to	identify	search	behavior	and	prey	capture	attempts.

In	this	study,	we	apply	and	compare	seven	methodologies	covering	
movement	pattern	description	and	process	 identification,	 to	predict	
search	behavior	in	gannets	using	GPS	location	data.	If	search	behavior	
is	a	precursor	to	prey	capture	attempts,	dives	will	occur	primarily	within	
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areas	identified	as	search.	With	consideration	given	to	opportunistic	
foraging,	we	hypothesize	that	more	successful	methods	of	search	clas-
sification	will	contain	more	true	positives	(dive	events	occurring	within	
identified	search),	 fewer	 false	positives	 (search	containing	no	dives),	
and	 fewer	 false	 negatives	 (dives	 occurring	 outside	 identified	 search	
behavior).	Using	 this	 framework,	we	will	 also	 provide	 recommenda-
tions	on	the	appropriate	use	of	methodological	approaches.

2  | MATERIALS AND METHODS

2.1 | Data collection

Breeding	adults	 at	 two	 island	colonies,	Great	Saltee,	Co.	Wexford,	
Ireland	(52.11286,	−6.62189)	and	Bass	Rock,	Scotland,	UK	(56.07672,	 
−2.64139),	were	tracked	while	attending	2	to	7-	week-	old	chicks	over	
a	38-	day	period	from	late	June	to	early	August	2011.	Nine	birds	at	
Great	Saltee	and	eight	birds	at	Bass	Rock	were	caught	using	a	metal	
crook	or	wire	noose	fitted	to	a	4		to	6-	m	pole	and	fitted	with	GPS	log-
gers	coupled	with	time–depth	recorders	(TDRs).	GPS	loggers	(i-	gotU	
GT-	200,	Mobile	Action	Technology	Inc.,	Taipei,	Taiwan,	37	g),	sealed	
in	heatshrink	plastic,	recorded	locations	every	2	min.	CEFAS	G5	TDRs	
(CEFAS	Technology,	Lowestoft,	UK,	2.5	g)	were	deployed	using	the	
fast-	log	dive	sensor	at	4	Hz	and	used	to	identify	dive	events	based	
on	a	1	m	depth	threshold	being	exceeded,	hereafter	TDR	dives.	This	
was	 to	 ensure	 dives	 reflected	 prey	 capture	 attempts	 (median	 dive	
depth	of	4.6	m	in	plunge-	diving	gannets	and	8	m	when	pursuit	div-
ing	(Garthe	et	al.,	2000)	rather	than	other	surface-	related	activities	
such	as	resting,	washing,	or	preening.	Devices	were	attached	follow-
ing	 (Grémillet	 et	al.,	 2004),	 and	 involved	 affixing	 loggers	 ventrally	
to	2–4	central	 tail	 feathers	using	strips	of	waterproof	Tesa©	tape.	
Total	instrument	mass	was	≤2%	of	body	mass,	below	the	maximum	
recommended	 for	 seabird	 biologging	 studies	 (Phillips,	 Xavier,	 &	
Croxall,	2003),	and	tag	position	was	considered	to	minimally	impede	
gannets	aerodynamically	or	hydrodynamically	 (Vandenabeele	et	al.,	
2012).	Deployment	and	retrieval	handling	times	were	approximately	 
10	min.

2.2 | Data processing

GPS	tracks	were	processed	using	the	AdehabitatLT	package	(Calenge,	
2011)	in	the	R	statistical	Framework.	Location	data	were	transformed	
into	 Cartesian	 coordinates	 using	 a	 Universal	 Transverse	 Mercator	
(UTM)	30N	projection	before	calculating	step	length	and	turning	an-
gles.	 Although	GPS	 tags	were	 programmed	 to	 take	 locations	 every	
2	min,	 if	 there	was	no	available	GPS	signal	 (because	a	bird	was	div-
ing	 for	example),	 locations	may	not	have	been	exactly	 two	minutes	
apart,	and	so	tracks	were	standardized	through	linear	interpolation	to	
a	two-	minute	interval.	Speed,	step	length,	turning	angle,	and	distance	
from	colony	were	calculated	for	every	point	along	a	bird’s	track.	Points	
within	5	km	of	the	colony	were	removed	to	avoid	potential	locations	
associated	 with	 colony	 rafting	 and	 bathing	 (Carter	 et	al.,	 2016),	 as	
were	those	occurring	at	night	(between	civil	sunset	and	sunrise)	be-
cause	gannets	are	visual	diurnal	 foragers	 (Nelson,	2002).	TDR	dives	
were	split	into	dive	events	and	produced	a	single	timestamp	point	rep-
resenting	the	start	of	any	dive	event	over	1	m	for	appending	to	tracks	
following	behavioral	classification.

We	applied	a	suite	of	methods	commonly	used	to	identify	search-
ing	or	 infer	 foraging	behaviors	 from	movement	data,	 summarized	 in	
Table	1.	The	methods	 are	 not	 considered	 exhaustive,	 but	 represent	
a	 range	 of	 approaches	 covering	movement	 pattern	 description	 and	
process	 identification	 (Edelhoff	 et	al.,	 2016).	Movement	pattern	de-
scription	approaches	include	kernel	density,	first	passage	time	(FPT),	
and	 speed/tortuosity	 thresholds,	 while	 process	 identification	 tech-
niques	applied	covered	k-	means	clustering	and	two	state-	space	mod-
els,	hidden	Markov	models	(HMM)	and	effective	maximization	binary	
clustering	 (EMbC).	The	 two	 forms	of	 state-	space	models	were	used	
to	represent	diverging	classes	of	state-	space	model;	maximum	likeli-
hood	methods	 (EMbC),	 and	Bayesian	Monte	Carlo	methods	 (HMM)	
(Patterson,	 Thomas,	 Wilcox,	 Ovaskainen,	 &	 Matthiopoulos,	 2008).	
While	 not	 predicting/identifying	 search	 behavior	 directly,	 we	 also	
applied	machine	learning	(generalized	boosted	regression	models)	to	
predict	dives	from	track	metrics	rather	than	search	behavior.	We	fol-
lowed	the	standard	methodology	for	each	technique	outlined	 in	the	

TABLE  1 Summary	of	common	
methodological	approaches	to	identifying	
search	and	foraging	behavior	in	movement	
data.	While	all	methods	require	validation	
data	to	assess	how	well	the	method	works,	
it	is	not	necessarily	required	to	implement	
the	method

Method
Analysis 
complexity

Requires 
validation 
data

Suitable for investigating 
relationships with 
environmental variables

Immediately 
applicable to 
other species/
locations

Machine	
learning

High	&	large	data	
requirement

Yes Yes No

k-	Means Low No Yes Yes

Thresholds Medium Yes Yes No

FPT Medium No Yes Yes

HMM Medium Noa Yes Yes

Kernel	
density

Low No Dependent	on	scale Yes

EMbC Low No Yes Yes

aHMM	do	not	require	validation	data	in	this	context,	but	can	employ	if	desired.
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published	literature,	and	provide	references	for	detailed	guidance	on	
applying	each	approach.

Methods	of	predicting	search	behavior	routinely	identify	chains	of	
search	in	successive	locations.	Chains	can	be	a	single	point	in	length	
or	may	 include	multiple	consecutive	points	along	a	movement	 track	
(see	Figure	1).	Given	that	in	gannets,	individual	prey	capture	attempts	
(dives)	occur	at	discrete	locations/times,	we	extracted	metrics	of	dives	
occurring	within	search,	dives	outside	of	search,	and	search	containing	
no	dive.	Data	from	the	two	colonies	were	processed	independently	to	
account	for	potential	differences	in	movement	metrics	associated	with	
differences	in	local	habitat	and	prey	availability.

2.3 | Kernel density

Time	 in	 space	 is	 considered	 to	 be	 a	 good	proxy	 for	 foraging	 effort	
(Warwick-	Evans	 et	al.,	 2015).	 GPS	 locations	 (excluding	 locations	
within	5	km	of	the	colony	and	locations	at	night)	were	used	to	esti-
mate	kernel	densities	in	ArcMap	10.2,	which	uses	a	kernel	smoothing	
function	based	on	the	quartic	kernel	function	by	Silverman	(1986),	and	
had	a	bandwidth/search	distance	of	10	km.	This	was	used	to	create	a	
kernel	density	square	grid	with	sides	of	10	km.	The	method	produces	
a	10	km2	grid	with	relative	intensity	of	both	TDR	dives	and	GPS	tracks.	
Dutilleul’s	 modified	 spatial	 t	 test	 (Dutilleul,	 Clifford,	 Richardson,	 &	
Hemon,	1993)	was	used	to	determine	the	spatial	correlation	between	
the	 intensity	of	dives	 and	 intensity	of	 tracks,	 accounting	 for	 spatial	
autocorrelation	in	the	data.

2.4 | First passage time

First	passage	time	(FPT)	analysis	was	undertaken	following	Fauchald	
and	 Tveraa	 (2003).	 Although	 tracks	 were	 rediscretized	 in	 time	 for	
all	other	analysis,	FPT	requires	tracks	to	be	redistributed	in	space	to	
account	for	changes	 in	bird	speed,	and	so	tracks	were	redistributed	
using	 linear	 interpolation	 to	 500-	m	 distances.	 Analysis	 was	 under-
taken	using	the	AdehabitatLT	package	in	R	(Calenge,	2011).	Based	on	
the	behavioral	 response	 ranges	 reported	by	Bodey	et	al.	 (2014)	 for	
gannets,	circles	of	radii	ranging	from	50	m	to	12,000	m	were	used	to	
construct	first	passage	time	values.	The	maximum	log-	variance	of	first	
passage	time	values	was	then	used	to	determine	appropriate	search	

radii	for	each	individual	bird.	The	slowest	sextile	of	passage	times	was	
considered	to	be	relatively	higher	 intensity	search	behavior	as	used	
by	Nordstrom,	Battaile,	Cotte,	 and	Trites	 (2013),	 and	also	 indicated	
in	work	by	Hamer	et	al.	(2009)	following	Fauchald	and	Tveraa	(2003).	
Search	radii	were	used	to	create	an	amalgamated	area	of	search	along	
an	individual	bird’s	track,	with	GPS	points	along	this	track	treated	as	
“search”	points.	Although	FPT	can	be	used	to	determine	nested	lev-
els	of	area-	restricted	search	(Hamer	et	al.,	2009),	we	have	considered	
only	the	highest	levels	of	search	behavior	to	maximize	the	number	of	
dives	potentially	occurring	within	search.

2.5 | k- Means clustering

k-	Means	 clustering	 is	 a	method	of	 vector	quantization	 that	 aims	 to	
partition	n	 observations	 into	k	 clusters,	 and	has	been	used	 to	 clus-
ter	 data	 points	 consistent	 with	 different	 behaviors	 (Jain,	 2010).	 k-	
Means	 clustering	 was	 undertaken	 using	 the	 MacQueen	 algorithm	
(MacQueen,	1967)	on	step	length	and	turning	angle	between	succes-
sive	GPS	locations.	The	optimum	number	of	clusters	was	determined	
using	the	“elbow	method”	where	the	percentage	of	variance	explained	
(the	ratio	of	the	between-	group	variance	to	the	total	variance)	is	plot-
ted	as	a	function	of	the	number	of	clusters	and	the	point	where	addi-
tion	of	further	clusters	results	in	only	marginal	increases	in	explained	
variance	(Ketchen	&	Shook,	1996).	This	resulted	in	three	clusters,	and	
these	were	 then	 assigned	behavioral	 states	 based	on	 logical	 differ-
ences	between	the	means	of	variables	in	each	group.	The	cluster	with	
largest	step	length	and	smallest	tortuosity	was	defined	as	travel,	short	
step	 length	and	 intermediate	 tortuosity	were	 considered	consistent	
with	rest,	and	intermediate	step	length	and	high	tortuosity	were	con-
sidered	 consistent	 with	 search	 behavior	 following	 Zhang,	 O’Reilly,	
Perry,	Taylor,	and	Dennis	(2015).

2.6 | Speed–tortuosity thresholds

Speed–tortuosity	 thresholds	 from	Wakefield	 et	al.	 (2013)	 were	 ap-
plied	 to	 the	data.	These	were	developed	based	on	prior	knowledge	
of	 gannet	 foraging	behavior	 and	 an	 iterative	 examination	of	 plausi-
ble	 thresholds	 of	 movement	 indices	 from	 those	 initially	 suggested	
by	Grémillet	 et	al.	 (2004).	 Thresholds	 suggested	by	Wakefield	 et	al.	
(2013)	were	applied	as	they	were	based	on	data	from	tracked	gannets	
from	a	 range	of	 colonies,	 including	 the	 data	 analyzed	 in	 this	 study.	
Successive	GPS	locations	were	considered	to	represent	search	if	they	
met	any	one	of	three	conditions:

1. Tortuosity	 <0.9	 and	 speed	 >1	m/s
2. Speed	>1.5	m/s	and	<9	m/s
3. Tortuosity	≥0.9	and	acceleration	<−4	m/s2

Speed	and	acceleration	were	calculated	between	L−1	and	L0 where L0 
is	the	focal	point,	while	tortuosity	is	the	ratio	of	the	straight	line	to	along	
the	track	distance	between	L−4	and	L4.	Criteria	were	defined	based	on	
GPS	and	TDR	data	from	Bass	Rock	deployments	used	in	this	study	and	
are	therefore	created	from	a	priori	information.

F IGURE  1 Conceptual	diagram	of	locations	through	time	
identifying	points	of	search	behavior	within	the	series	that	reveal	
search	chains	of	differing	lengths
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2.7 | Hidden Markov Models

Hidden	Markov	Models	(HMM)	are	an	example	of	state-	space	mod-
eling,	where	models	are	formed	of	two	parts,	an	observable	series	and	
a	nonobservable	state	sequence	(Langrock	et	al.,	2012).	The	observ-
able	series,	in	this	context,	take	the	form	of	GPS	relocations	with	con-
sequential	step	length	and	turning	angle,	while	the	nonobservable	are	
behavioral	states.	HMM	use	a	time	series	to	determine	what	denotes	
the	 underlying	 states	 and	 the	 changes	 between	 them.	 The	 applica-
tion	of	 state-	switching	models	 to	movement	data	allows	behavioral	
modes	to	be	examined,	while	considering	the	high	degree	of	autocor-
relation	present	in	telemetry	data	(Patterson	et	al.,	2008).	When	the	
observational	error	is	low,	hidden	Markov	models	offer	a	more	trac-
table	 approach	 to	 discretize	 behavioral	modes	 from	 telemetry	 data	
than	Bayesian	approaches	(Langrock	et	al.,	2012).	Using	the	R	pack-
age	moveHMM	 (Michelot,	 Langrock,	&	 Patterson,	 2016),	 the	move-
ment	of	each	individual	along	a	foraging	trip	was	classified	into	one	of	
three	underlying	states	by	characterization	of	the	distributions	of	step	
lengths	and	 turning	angles	between	consecutive	 locations.	A	 three-	
state	model	was	a	better	fit	to	the	data	than	a	two-	state	model,	and	
is	consistent	with	previous	work	describing	gannet	movement	(Bodey	
et	al.,	2014)	as	well	as	the	identification	of	three	states	in	EMbC	and	
k-	means	 clustering	 approaches	 within	 this	 study.	 Model	 iterations	
successfully	 converged	 to	 three	 states	 suggesting	 a	 good	 fit	 to	 the	
data.	A	gamma	distribution	was	used	to	describe	the	step	lengths,	a	
von	Mises	distribution	described	the	turning	angles,	and	the	Viterbi	
algorithm	was	used	to	estimate	the	most	likely	sequence	of	movement	
states	 to	have	generated	 the	observations	 (Zucchini,	MacDonald,	&	
Langrock,	2016).

2.8 | Expectation–maximization binary clustering

Expectation–maximization	binary	clustering	(EMbC)	protocols	are	an	
unsupervised,	multivariate	example	of	a	state-	space	modeling	frame-
work	 that	 can	be	used	 for	behavioral	 annotation	of	movement	 tra-
jectories,	 including	 search	 behavior	 (see	Garriga,	 Palmer,	Oltra,	 and	
Bartumeus	(2016)).	EMbC	has	been	designed	to	be	a	simple	method	
of	analyzing	movement	data	based	on	the	geometry	alone,	and	can	
behaviorally	 annotate	 movement	 data	 with	 minimal	 supervision.	
EMbC	is	a	relatively	modern	technique	that	is	gaining	traction	within	
movement	ecology.	It	has	previously	been	used	in	a	variety	of	move-
ment	studies,	including	exploring	behavioral	differences	between	dis-
tinct	populations	of	the	red-	footed	booby	(Mendez	et	al.,	2017)	and	
coupling	energy	budgets	with	behavioral	patterns	under	an	optimal	
foraging	framework	 (Louzao,	Wiegand,	Bartumeus,	&	Weimerskirch,	
2014).	Analysis	was	undertaken	using	the	EMbC	package	in	R	(Garriga	
&	Bartumeus,	2015),	using	calculated	velocities	and	turning	angles	to	
infer	behavioral	classifications.

2.9 | Machine learning

While	 the	methods	outlined	above	all	 identify	search	behavior,	ma-
chine	learning	models	are	trained	to	specifically	identify	prey	capture/

dive	 events	 based	 on	 track	metrics.	 Analysis	was	 undertaken	 using	
the	Caret	package	in	R	(Kuhn,	2008)	using	generalized	boosted	regres-
sion	models	to	account	for	zero-	inflation	(Elith,	Leathwick,	&	Hastie,	
2008).	Models	were	built	using	step	length,	speed,	turning	angle,	hour	
of	day,	and	tortuosity.	Models	were	trained	using	75%	of	the	linked	
GPS/TDR	dive	data,	with	the	remaining	25%	of	data	kept	for	valida-
tion	of	predictions,	and	underwent	cross-	validation	500	times	during	
the	training	procedure.	By	combining	all	individual	animal’s	data	in	this	
manner,	we	ensure	that	any	intra-	individual	variation	is	accounted	for	
in	the	modeling	process.	Receiver	operator	curves	 (ROCs)	were	cal-
culated	(Fielding	&	Bell,	1997)	to	determine	the	model	of	best	fit	at	
each	colony.

2.10 | Comparison of methods using TDR dives

In	order	to	compare	the	predictive	power	of	the	seven	methods	out-
lined	 above	 in	 predicting	 areas	 in	 which	 dives	 occurred,	 TDR	 dive	
events	were	 linked	 to	GPS	 coordinates	 by	matching	 the	 time/date	
stamps	of	both	datasets	for	each	individually	tracked	bird.	To	compare	
how	well	the	methods	capture	dive	events	within	areas	of	search,	the	
proportion	of	dives	within	identified	areas	of	search	(true	positive)	as	
well	as	the	number	of	search	chains	containing	no	dives	(false	posi-
tive)	was	calculated	for	FPT,	k-	means,	thresholds,	HMM,	and	EmbC.	
The	correlation	between	kernel	densities	of	GPS	tracks	and	TDR	dives	
was	assessed	using	a	Dutilleul’s	modified	spatial	t	test	(Dutilleul	et	al.,	
1993).	This	analysis	provides	a	correlation	coefficient	across	the	spa-
tial	extent	of	the	tracked	data	to	determine	how	well	the	two	datasets	
correlate	while	accounting	for	spatial	autocorrelation.	Model	perfor-
mance	for	machine	learning	was	assessed	using	kappa	values,	a	meas-
ure	of	variability	explained	by	the	model	akin	to	R2	values,	where	0	is	
equal	to	no	relationship	and	1	is	equal	to	a	perfect	relationship	as	per	
Landis	and	Koch	(1977).	Further	to	this,	a	confusion	matrix	was	calcu-
lated	by	running	models	on	the	remaining	25%	test	data	to	assess	the	
number	of	correctly	and	incorrectly	identified	dives.

3  | RESULTS

Nine	GPS	&	TDR	combinations	were	deployed	at	Great	Saltee,	result-
ing	in	31,716	locations	after	standardization	to	a	two-	minute	interval.	
Eight	GPS	&	TDR	combinations	were	deployed	at	Bass	Rock,	resulting	
in	21,208	relocations	when	standardized.	There	were	a	total	of	2,830	
TDR	dives	among	the	tracked	birds	at	Great	Saltee	and	2,172	at	Bass	
Rock.	Examples	of	maps	produced	by	methods	and	showing	the	loca-
tion	of	TDR	dives	can	be	seen	 in	 the	Supplementary	Materials	 (see	
Figs.	S1–10).

FPT,	 k-	means,	 EMbC,	 thresholds,	 and	 HMM	 all	 predict	 search	
rather	than	prey	capture	attempts	per	se.	All	methods	predicted	con-
siderable	search	effort	across	the	tracking	period	(Table	2).	FPT	iden-
tified	the	 longest	contiguous	chains	of	search	behavior	 (mean	24.74	
locations/chain),	 followed	 by	 HMM	 (mean	 8.58	 locations/chain),	
speed	 and	 tortuosity	 thresholds	 (mean	 4.57	 locations/chain),	 and	
EMbC	 (mean	 2.38	 locations/chain).	 k-	Means	 method	 identified	 the	
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most	discrete	search	areas	with	the	shortest	chains	(mean	3.08	loca-
tions/chain).	Using	Kendall’s	tau	correlation,	there	was	a	weak	positive	
correlation	between	 the	 length	of	 search	chains	and	 the	number	of	
dives	occurring	within	them	(Table	3).

The	 performance	 of	 behavioral	 classification	 methods	 was	 as-
sessed	by	comparing	the	occurrence	of	TDR	dives	inside	and	outside	
of	 predicted	 search	 behavior	 (Table	2).	 HMM	 captured	 the	 highest	
proportion	of	TDR	dives	(Figure	2a)	within	search	areas,	and	had	the	
second	 lowest	 false-	positive	 rate	 (Figure	2b).	 FPT	 had	 the	 longest	
identified	search	chains,	but	these	actually	captured	the	lowest	num-
ber	of	dives	across	all	methods	 (Table	2,	Figure	2a).	Despite	the	 low	
true-	positive	rates,	FPT	had	the	lowest	false-	positive	rate	(Figure	2b).	
Thresholds	and	EMbC	were	comparatively	similar	in	both	the	rates	of	
true	and	false	positives,	while	k-	means	clustering	had	the	lowest	true-	
positive	and	highest	false-	positive	rates	of	all	methods	tested.

Kernel	density	of	GPS	 locations	did	not	explicitly	 identify	search	
behavior	but	identified	“hot	spots”	of	foraging	corresponding	to	time	
spent	in	each	10	×	10	km	grid	cell,	with	a	high	proportion	of	time	spent	
in	the	area	surrounding	colonies	(Figure	3).	Dutilleul’s	modified	spatial	
t	test	demonstrated	a	good	correlation	between	the	spatial	distribu-
tion	of	TDR	dives	and	time	in	space	(Table	4),	with	the	better	correla-
tion	(0.86)	at	Bass	Rock.	Machine	learning	models	directly	predicted	
the	 location	of	 prey	 capture	 events.	The	models	 trained	 and	 tested	
on	their	own	colony	 indicated	only	a	 fair	or	slight	agreement	within	
the	data	(following	Landis	and	Koch,	1977)	(Table	5).	Furthermore,	the	
confusion	matrix	 (Table	6)	 showed	 that	 the	 predictive	 power	 of	 the	
models	at	both	colonies	was	poor,	only	successfully	predicting	22%	of	
dives	in	the	test	dataset.	When	models	built	 in	one	colony	were	ap-
plied	to	others,	there	was	a	further	loss	of	predictive	power,	indicating	
that	model	structures	and	movement	patterns	between	colonies	are	
different	(Table	4).

4  | DISCUSSION

Seven	methods	 of	 classifying	 search	 behavior	were	 compared	 to	 a	
validation	dataset	of	TDR	dive	events	 in	northern	gannets	to	deter-
mine	their	ability	to	accurately	capture	the	two	components	of	forag-
ing	activity—searching	and	prey	encounter/capture.	Across	methods,	
the	number	of	prey	capture	attempts	(TDR	dives)	within	search	varied	
considerably,	with	the	highest	being	captured	by	hidden	Markov	mod-
els	(81%)	and	the	lowest	captured	by	first	passage	time	and	k-	means	
clustering	(30%	and	31%,	respectively).	While	HMM	had	the	highest	
rate	of	capture	of	dive	events,	it	also	had	one	of	the	lowest	rates	of	
false	positives,	identifying	fewer	search	chains	where	no	dive	was	re-
corded.	While	this	was	still	relatively	high	(60%),	all	methods	produced	
high	numbers	of	 search	 chains	 that	 contained	no	TDR	dives	 (range	
53%–76%).	There	was	a	weak	correlation	between	chain	length	and	
number	dives	within	a	chain.	While	prey	capture	attempts	will	increase	
with	 trip	 and	 search	 duration	 (Sommerfeld,	 Kato,	 Ropert-	Coudert,	
Garthe,	&	Hindell,	2013),	the	weak	correlation	represents	some	longer	
search	chains	containing	relatively	few	prey	capture	attempts	due	to	
individuals	 searching	 over	 poor-	quality	 areas,	 or	 simply	 that	 search	T
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does	not	always	result	in	prey	capture	attempts.	These	findings	sug-
gests	that	significant	effort	is	spent	in	unsuccessful	search	behavior,	
consistent	with	low	prey	encounter	rates	associated	with	foraging	on	
spatially	and	temporally	patchy	prey	resources	(Weimerskirch,	2007).

While	the	spatial	distribution	of	tracked	gannets	will	encompass	a	
variety	of	behaviors	 including	foraging,	travel,	and	rest	periods,	sim-
pler	methodologies	such	as	kernel	density	estimation	of	track	data	cor-
related	well	with	kernel	densities	of	TDR	dive	events.	This	supports	the	
assertion	that	time	in	area	is	a	good	proxy	for	foraging	effort	(Grémillet	
et	al.	2004;	Warwick-	Evans	et	al.,	2015).	However,	this	approach	uti-
lizes	 larger	areas	of	space	beyond	movement	paths,	and	so	 it	 is	not	
capable	of	identifying	foraging	in	association	with	temporally	ephem-
eral	events	or	features	that	may	directly	change	an	animal’s	movement	
trajectory.	Within	more	 process-	driven	 approaches,	 FPT	 is	 arguably	
one	of	the	most	ubiquitous	methods	used	to	identify	foraging	areas	in	
both	terrestrial	and	marine	systems	 (Battaile,	Nordstrom,	Liebsch,	&	
Trites,	2015;	Byrne	&	Chamberlain,	2012;	Evans	et	al.,	2015;	Hamer	
et	al.,	2009;	Le	Corre,	Dussault,	&	Côté,	2014).	FPT	captures	search	
behavior	across	multiple	spatial	scales	and	is	particularly	noted	for	its	
ability	to	detect	nested	scales	of	area-	restricted	search	(Hamer	et	al.,	
2009).	While	we	did	not	investigate	nested	scales	of	search,	FPT,	along	
with	k-	means	clustering,	had	the	lowest	rate	of	dives	occurring	within	
broad	 areas	 of	 identified	 search.	 However,	 in	 contrast	 to	 k-	means,	
FPT	had	the	lowest	rate	of	false	positives	(search	containing	no	dives),	
likely	as	a	result	of	identifying	very	large,	contiguous	areas	of	search.	
k-	Means	clustering	and	FPT	had	high	rates	of	false	negatives,	with	ap-
proximately	70%	of	all	dives	occurring	outside	 identified	search	be-
havior.	A	certain	amount	of	opportunistic	foraging	is	anticipated	in	any	
wide-	ranging	predator	 (Montevecchi,	Benvenuti,	Garthe,	Davoren,	&	
Fifield,	2009),	resulting	in	dive	events	occurring	outside	classical	pat-
terns	of	search	movement.	However,	the	high	rate	of	dives	occurring	
outside	search	as	defined	by	FPT	and	k-	means	suggests	that	either	the	
majority	of	prey	capture	attempts	occur	opportunistically	or	that	the	
scale	of	ARS	changes	spatially,	resulting	in	search	behavior	associated	
with	dives	being	missed.

Speed–tortuosity	thresholds	“captured”	68%	of	TDR	dives	within	
areas	identified	as	search.	There	is	evidence	to	suggest	that	humans	
are	more	capable	 than	machines	at	pattern	 recognition	when	pre-
sented	with	 limited	 data	 (Samal	 &	 Lyengar,	 1992).	 It	 is	 therefore	
unsurprising	 that	 thresholds	performed	well	 considering	 that	 they	
were	 constructed	 based	 on	 prior	 knowledge	 of	 foraging	 behavior	
and	iterative	examination	of	thresholds	against	a	validation	dataset	

in	gannets	(Wakefield	et	al.,	2013).	The	relatively	high	rates	of	false	
positives	(66%	of	search	chains	containing	no	TDR	dive)	were	within	
the	spread	of	values	for	other	methods,	highlighting	significant	ef-
fort	spent	searching	 for	prey	 interspersed	with	 relatively	 few	prey	
encounters.

The	state-	space	modeling	framework	has	been	acknowledged	as	
particularly	useful	 in	movement	ecology	(Patterson	et	al.,	2008),	and	
is	 rapidly	expanding	within	path	 segmentation	 techniques	 (Michelot	
et	al.,	2016;	Roberts	&	Rosenthal,	2004).	Both	the	EMbC	and	HMM	
approaches	 model	 the	 changes	 in	 step	 length	 and	 turning	 angle	
through	time	and	space	to	annotate	the	trajectory	of	an	animal	with	
behavioral	 states	 (Garriga	et	al.,	 2016;	Michelot	 et	al.,	 2016).	 EMbC	
protocols	resulted	in	shorter	search	chains	that	encapsulated	49%	of	
all	dive	events,	while	HMM	identified	longer	chains	of	search	that	cap-
tured	the	highest	number	of	dives	(81%)	of	any	method.	While	HMM	
defined	 the	highest	 number	of	 points	 as	 search	 across	 all	methods,	
it	also	had	one	of	the	 lowest	rates	of	false	positives.	Less	than	20%	
of	dives	occurred	outside	of	 search.	This	would	be	more	 consistent	
with	opportunistic	 foraging	 and	provides	 further	 empirical	 evidence	
of	search	behavior	leading	to	prey	capture	attempts	(Dias,	Granadeiro,	
&	Palmeirim,	2009;	Weimerskirch,	Pinaud,	Pawlowski,	&	Bost,	2007).	
The	high	number	of	shorter	search	chains	identified	by	EMbC,	coupled	
with	the	fact	that	it	is	possible	to	link	state	transitions	to	environmen-
tal	covariates	in	a	HMM	framework,	suggests	that	both	these	meth-
ods	may	also	be	suitable	 for	or	 investigating	behavioral	 response	 to	
ephemeral	environmental	cues.

Regional	 differences	 in	 habitat	 and	 prey,	 as	well	 as	 inter-		 and	
intraspecific	competition	are	 likely	 to	 influence	 the	way	an	animal	
forages	(Huig,	Buijs,	&	Kleyheeg,	2016;	Schultz,	1983;	Zach	&	Falls,	
1979).	To	account	for	this,	the	colonies	were	treated	independently	
during	 analysis.	 Machine	 learning	 did	 highlight	 slight	 differences	
between	 colonies	 in	 the	 movement	 metrics	 considered	 to	 be	 of	
most	 predictive	 power,	 suggesting	 local	 differences	 in	 movement	
associated	with	foraging	and	search.	Machine	learning	was	the	only	
method	 that	 directly	 predicted	 prey	 capture	 events	 rather	 than	
search	 behavior.	While	 the	 explanatory	 power	 of	 the	models	was	
deemed	to	be	satisfactory,	the	predictive	ability	of	models	was	poor,	
only	correctly	identifying	22%	of	dives	in	the	test	dataset.	The	suc-
cess	of	this	method	may	have	been	limited	by	the	available	sample	
size.	As	 a	 powerful	 tool,	 machine	 learning	 approaches	 do	 require	
large	amounts	of	data,	are	computationally	complex,	and	require	a	
priori	knowledge	of	dive	events	 to	 train	 the	model.	However,	ma-
chine	learning	protocols	are	still	being	developed	within	ecological	
research,	 and	 such	 data	 mining	 remains	 a	 challenge	 for	 accurate	
classification	(Hochachka	et	al.,	2007).

An	 interesting	consideration	throughout	the	methods	presented,	
here,	 is	 the	 ability	 to	 identify	 multiple	 behavioral	 states.	 HMM,	 k-	
means,	and	EMbC	are	capable	of	identifying	behavior	consistent	with	
rest	within	the	tracking	period	(typically	very	low	speed	and	a	medium-	
to-	high	tortuosity	values).	In	this	context,	kernel	density,	FPT,	speed–
tortuosity	 thresholds,	 and	machine	 learning	did	not	 identify	periods	
of	rest.	The	majority	of	behavioral	annotation	relies	on	the	principle	
of	 animals	 slowing	 down	 and	 paths	 becoming	more	 tortuous	when	

TABLE  3 Kendall’s	tau	correlation	between	search	chain	length	
and	number	of	dives	contained	within	each	chain

Method
Correlation 
(tau) p Value Z statistic

FPT 0.43 <.01 12.67

k-	Means	clustering 0.30 <.01 21.76

Thresholds 0.45 <.01 33.72

HMM 0.47 <.01 23.79

EMbC 0.39 <.01 31.29



20  |     BENNISON Et al.

searching	 (Bartoń	 &	Hovestadt,	 2013;	 Benhamou,	 2004).	 However,	
slowing	 down	 and	 turning	more	 could	 also	 be	 an	 indication	 of	 rest	
behavior,	 especially	 when	 considering	 potential	 error	 from	 closely	
positioned	GPS	relocations	 (Hurford,	2009;	Jerde	&	Visscher,	2005).	
The	ability	to	exclude	a	period	that	closely	resembles	search	patterns	
could	 have	 the	 potential	 to	 reduce	 false-	positive	 periods	 of	 search,	
and	we	accounted	for	this	as	much	as	possible	by	removing	locations	
in	proximity	to	the	colony	as	well	as	locations	occurring	at	night	before	
comparing	methods.	While	 not	 directly	 assigning	 a	 rest	 period,	 it	 is	

F IGURE  2 Proportion	of	(a)	TDR	dives	
occurring	within	‘search”	behavior	(true	
positives)	and	(b)	search	chains	containing	
no	TDR	dives	(false	positives)	using	EMbC,	
FPT,	HMM,	k-	means,	and	speed–tortuosity	
thresholds

F IGURE  3 Kernel	densities	of	gannet	
tracks	at	both	Great	Saltee	and	Bass	Rock	
for	(a)	dive	locations	and	(b)	individual	bird	
tracks.	Scale	is	of	relative	time	in	space	
across	the	spatial	boundary	of	10	km	
throughout	the	tracking	area

(a) (b)

TABLE  4 Dutilleul’s	correlation	between	kernel	densities	of	all	
GPS	locations	and	confirmed	dive	locations

Colony Correlation p Value F statistic
Degrees of 
freedom

Great	Saltee 0.79 <.01 123.37 69.57

Bass	Rock 0.87 <.01 991.88 329.90

TABLE  5 Kappa	values	for	machine	learning	models	where	
models	developed	using	colony-	specific	data	are	applied	at	the	
colony	from	which	training	data	were	taken	and	at	a	different	colony.	
Low	values	for	models	trained	at	one	colony	applied	to	the	other	
colony	suggest	very	poor	model	fit

Model trained

Model applied

Great Saltee Bass Rock

Great	Saltee 0.2456 −0.0006757

Bass	Rock 0.02792 0.1885

TABLE  6 Confusion	matrix	table	totals	of	predictions	made	
across	machine	learning	models	at	both	Great	Saltee	and	Bass	Rock

Predicted result

Reference (true value) in test 
data set

Dive No dive

Dive 222 258

No dive 779 5,332
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important	to	note	that	speed–tortuosity	thresholds	could	be	adapted	
to	include	the	annotation	of	rest	and	travel,	as	well	as	specific	search	
behavior.	In	a	similar	fashion,	machine	learning	protocols	could	also	be	
applied	to	predict	behaviors	other	than	diving.

Careful	choices	must	be	made	 in	 the	selection	and	application	
of	behavioral	classification	methods	when	inferring	foraging.	While	
all	methods	tested	generally	supported	the	hypothesis	that	search	
behavior	 leads	to	prey	encounter	and	subsequent	prey	capture	at-
tempts	 in	a	wide-	ranging	pelagic	predator,	 there	was	considerable	
variation	in	the	degree	to	which	this	was	noted.	The	HMM	method	
produced	estimates	of	 foraging	behavior	 that	most	effectively	en-
capsulated	both	 search	and	prey	capture	components	of	 foraging.	
As	 such,	 it	would	 seem	a	 sensible	 recommendation	 that	HMM	be	
used	 when	 identifying	 foraging	 (including	 both	 search	 and	 prey	
capture)	areas	is	a	priority.	Across	methods,	rates	of	false	negatives	
(dives	 occurring	 outside	 of	 search	 behavior)	 ranged	 from	 19%	 to	
70%.	While	some	of	this	may	be	attributed	to	opportunistic	feeding	
outside	of	search	behavior,	methods	with	high	rates	of	false	nega-
tives	suggest	that	care	should	be	taken	when	using	behavioral	clas-
sification	methods.	That	 animals	 spend	 considerable	 time	 actively	
searching	for	prey,	while	prey	capture	occurs	largely	outside	of	this	
activity	seems	improbable,	and	poor	classification	of	behaviors	can	
have	implications	when	considering	time–energy	budgets	and	sub-
sequent	 reproductive	success	or	survival.	Methods	such	as	HMM,	
EMbC,	and	thresholds	had	the	lowest	rates	of	dives	occurring	out-
side	of	 search.	These	methods	may	be	more	attuned	 to	 capturing	
dive	events	and	therefore	 represent	a	more	 inclusive	definition	of	
foraging,	while	FPT	and	k-	means	clustering	may	be	more	general	in	
their	identification	of	search.	Investigating	the	differences	between	
methods	may	lead	to	increased	understanding	of	the	environmental	
cues	used	by	predators	to	initiate	search	and	prey	capture	as	well	as	
the	scales	at	which	these	cues	occur.	Nevertheless,	we	reiterate	the	
need	for	detailed	exploratory	analysis	of	movement	data	to	prevent	
mis-	specification	 of	 behavior	 (Gurarie	 et	al.	 (2016))	 and	 argue	 for	
methods	 to	be	used	based	on	 suitability,	 and	 the	questions	being	
asked	by	researchers.
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