
Title Estimating and evaluating the uncertainty of rating predictions
and top-n recommendations in recommender systems

Authors Coscrato, Victor;Bridge, Derek

Publication date 2023-02-16

Original Citation Coscrato, V. and Bridge, D. (2023) 'Estimating and evaluating the
uncertainty of rating predictions and top-n recommendations in
recommender systems', ACM Transactions on Recommender
Systems. doi: 10.1145/3584021

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1145/3584021

Rights © 2023, the Authors. Publication rights licensed to ACM. This
is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of
Record was published in ACM Transactions on Recommender
Systems, https://doi.org/10.1145/3584021

Download date 2024-04-20 05:00:41

Item downloaded
from

https://hdl.handle.net/10468/14296

https://hdl.handle.net/10468/14296

Estimating and Evaluating the Uncertainty of Rating Predictions and

Top-n Recommendations in Recommender Systems

VICTOR COSCRATO and DEREK BRIDGE, University College Cork, Ireland

Uncertainty is a characteristic of every data-driven application, including recommender systems. The quantiication of uncer-

tainty can be key to increasing user trust in recommendations or choosing which recommendations should be accompanied

by an explanation; and uncertainty estimates can be used to accomplish recommender tasks such as active learning and

co-training. Many uncertainty estimators are available but, to date, the literature has lacked a comprehensive survey and

a detailed comparison. In this paper, we fulil these needs. We review the existing methods for uncertainty estimation and

metrics for evaluating uncertainty estimates, while also proposing some estimation methods and evaluation metrics of our

own. Using two datasets, we compare the methods using the evaluation metrics that we describe, and we discuss their

strengths and potential issues. The goal of this work is to provide a foundation to the ield of uncertainty estimation in

recommender systems, on which further research can be built.

CCS Concepts: · Information systems → Recommender systems; Uncertainty; · Computing methodologies →
Uncertainty quantiication; · General and reference → Empirical studies; Evaluation; Estimation; · Mathematics of

computing → Probability and statistics.

Additional Key Words and Phrases: uncertainty, recommender systems

1 INTRODUCTION

Uncertainty is common to every machine learning (ML) task [19, 22]. In particular, model predictions carry a
degree of uncertainty. This uncertainty is often neglected, but it can be beneicial if uncertainty is quantiied and
even exploited. The quantiication of prediction uncertainty has diferent motivations in diferent domains. For
example, in medical decision making, estimating the uncertainty of predictions is key to the management of risk
[4]. In weather forecasting, estimating uncertainty and presenting the estimates to users can increase credibility
[39].
The literature in the area often categorizes uncertainty into two types: aleatoric and epistemic [22]. The irst

refers to the randomness of the data itself, which can not be reduced by additional knowledge. The second
type, which is the focus of this paper, instead refers to the uncertainty caused by lack of knowledge. Therefore,
epistemic uncertainty reduces our ability to know which of several prediction models is the correct one, which
ultimately leads to uncertainty around the chosen model’s predictions. For this reason, we deine uncertainty as
the expected imprecision of a prediction. Some related work in the area uses terminology such as reliability [9]
or conidence [13, 41], which, in the context of our work, we take to be the opposite of uncertainty, that is, the
expected precision of a prediction.

We study uncertainty in Recommender Systems. A Recommender System (RS) exposes items (such as products,
services, news articles or even people) to its users [36]. RSs help their users to discover items that they might not

Authors’ address: Victor Coscrato, victor.coscrato@cs.ucc.ie; Derek Bridge, d.bridge@cs.ucc.ie, University College Cork, College Road, Cork,

Ireland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2770-6699/2023/2-ART $15.00

https://doi.org/10.1145/3584021

ACM Trans. Recomm. Syst.

https://doi.org/10.1145/3584021
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584021&domain=pdf&date_stamp=2023-02-16

2 • Victor Coscrato and Derek Bridge

have found for themselves, and they help users manage the choice of which items to consume. RSs can be found
in many diferent application domains, often employed at scale: for example, we ind them in online shopping
sites, in music and movie streaming services, in social media platforms, and in news story aggregators.

An RS may ilter and rank candidate items in order to recommend a list of the top-n candidate items. Often, the
iltering and ranking are personalized: the top-n on any occasion depends on the user and the context in which the
items are to be consumed. An RS will often use a model that has been learned from knowledge about the users,
knowledge about the items, and records of interactions between users and items (such as purchases, downloads,
clicks and ratings). While there are many diferent types of models, content-based and collaborative-iltering
(CF) recommenders are two major categories. The irst uses descriptions of the items in the catalog allied with
records of the active user’s item consumption history. On the other hand, CF recommenders learn from historical
user-item interactions; in this case, the recommendations to a user are afected by the preferences of other users
in the system.

There can be high uncertainty in the recommendations that an RSmakes to its users. In practical RS applications,
the number of items is very large, meaning that users will have interacted with only a tiny fraction of them.
This is known as sparsity. It means the system must infer a user’s preferences from a relatively small amount of
information, leading sometimes to the generation of unsuccessful but also uncertain recommendations. Moreover,
there are challenges in collecting reliable user-item interaction data. This is particularly true in the case of explicit
ratings, where a user supplies an opinion using, e.g., a 5-point rating scale. Ratings data may be unreliable due
to its high degree of subjectivity [42], which can be explained by variations in user behavior, personality and
mood; change of preferences over time; and also by diferent interpretations of the rating scales by the users
[2, 8]. Furthermore, ratings are usually collected from open systems, being subject to natural noise (e.g. typing
errors) and even malicious noise (e.g. from shilling attacks) [32].

Quantifying the uncertainty of an RS’s predictions and recommendations is important [13, 28, 29]. Ideally, an
uncertainty estimate should help detect which predictions and recommendations are more or less likely to be
wrong [9, 44]. Estimates of uncertainty can improve the operation of the RS in at least the following three ways.

First, estimates of uncertainty can enhance the presentation of recommendations to users. This may make the
RS more credible, increasing the user’s trust and satisfaction. In the simplest case, we can present the degree of
uncertainty alongside each recommendation [13, 29]. But there are other ways that uncertainty estimates could
afect the presentation of a set of recommendations. For example, consider an RS that can ofer explanations
for its recommendations. The user is most likely to need explanations for recommendations where it is least
clear why the item is being recommended. These are likely to be the recommendations about which the RS is
least certain. The RS could use high uncertainty to trigger the ofer of an explanation. This may avert the loss of
credibility that can come from showing recommendations that do not make sense to the user.
Second, uncertainty measures ofer new strategies for selecting the top-n [28, 33]. Conventionally, the rec-

ommended items are those that the model predicts to have highest relevance to the user. But, equipped with
estimates of uncertainty, an RS might discard highly uncertain recommendations, even when their predicted
relevance is high: the user is shown items that the RS is certain are relevant. On the other hand, a RS might
deliberately include some items that it predicts are relevant but where the relevance is uncertain: from a user
point-of-view, this coincides with the idea that RSs are tools for item discovery; from a system point-of-view, this
helps the RS explore user tastes by seeking feedback on uncertain recommendations. An RS might even combine
these strategies: playing-it-safe by selecting some recommendations that are certain even though they may be
obvious to the user; but taking-a-risk by also recommending some of the less certain ones. This is reminiscent of
the exploration/exploitation trade-of that is widely recognized and studied in Reinforcement Learning and even
in the RS literature, e.g. [3, 10].
Third, these estimates may be useful internally to an RS. A concrete example is found in the CoRec system,

which uses co-training [15]. CoRec comprises more than one model and the most certain predictions of one

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 3

model are added to the training set of the other model. More generally, uncertainty measures might help a hybrid
RS decide which of several models to use in a particular circumstance [11]. There are also examples of Active
Learning in Recommender System in which users are prompted to rate items about which the RS is uncertain,
e.g. [25].
In this paper, we examine several ways of estimating uncertainty in RSs. In terms of scope, we conine our

attention to RSs where user-item interactions take the form of explicit, numeric ratings, such as opinions on a
5-point scale. We review, extend and evaluate the work done in this setting. Of course, the case where interactions
are implicit (purchases, downloads, clicks, and so on) is important but it has been largely unexplored from the
point-of-view of uncertainty quantiication. We expect this paper, with its focus on explicit ratings, to be a solid
foundation that we and others can build on when progressing to future work in the implicit feedback setting.

The contributions of this paper are:

• We present an extensive review of methods for estimating the uncertainty of rating predictions. These
methods include information-based, stability-based, error-based, distribution-based and multinomial-based.

• We propose new techniques for estimating the uncertainty of rating predictions. In particular, we propose
a new stability-based method, and also a new error-based method.

• We present an extensive review of the existing work on evaluating estimates of uncertainty for rating
prediction and for top-n recommendation.

• We extend and improve the techniques and metrics for evaluating uncertainty estimates in RS. In particular,
we analyse how uncertainty correlates with dataset statistics, we ix possible issues with existing metrics,
and we propose a new metric to evaluate uncertainty in the top-n recommendation task.

• We introduce the idea of uncertainty-aware ranking, drawing in part on a recommendation strategy
proposed in [33]. In particular, we distinguish uncertainty-based iltering (UBF) and probability-of-relevance
ranking (PRR). We give methods for evaluating these recommendation strategies.

• We conduct a reproducible empirical study on two large datasets and report results of the most extensive
comparison of approaches to uncertainty estimation that we are aware of.

In the next section, we will introduce the basic concepts of rating prediction and top-n recommendation and
the role of uncertainty in each. We will also set-up the notation used for the remainder of the paper. In Section 3,
we will describe several methods for estimating uncertainty in RS. After that, Section 4 will present metrics for
uncertainty evaluation. The remainder of the paper evaluates the uncertainty estimates from Section 3 using
the evaluation metrics from Section 4. In particular, Section 5 describes the experiments, while Section 6 shows
the results. Section 7 discusses the uncertainty estimation methods in the light of the experiments. Section 8
concludes the paper.

2 PREDICTION AND RECOMMENDATION

As already mentioned, in this work, we deal with explicit feedback data Ð speciically, numerical ratings. We will
designate the ordered set of possible ratings by S = {s1, . . . , sm}, wherem is the number of diferent possible rating
values. For example, in the MovieLens dataset and the Netlix dataset that we use in Section 5, S = {1, 1.5, . . . , 5}
and S = {1, 2, . . . , 5} respectively.

We will assume that our data consists of a set of usersU , a set of items I , and a set R of user-item-rating triples,
where triple ⟨u, i, rui ⟩ ∈ R means that user u’s rating of item i is rui ∈ S . A user’s proile Ru · is the set of that
user’s ratings, Ru · = {rui : ⟨u, i, rui ⟩ ∈ R}. Similarly, an item’s support set R ·i is the set of that item’s ratings,
R ·i = {rui : ⟨u, i, rui ⟩ ∈ R}.

ACM Trans. Recomm. Syst.

4 • Victor Coscrato and Derek Bridge

2.1 Rating prediction

Given a user u ∈ U and item i ∈ I , the rating prediction task consists in designing or learning a function
Φ : U × I −→ R that predicts user-item ratings. We will write r̂ui for a particular prediction, i.e. r̂ui = Φ(u, i).

In this work, we want, not only to predict ratings, but also the uncertainty level, ρui , present in a prediction. We
will refer to a pair ⟨r̂ui , ρui ⟩ as an uncertain prediction. In all the work that we report in this paper, uncertainty
levels are real-valued, ρui ∈ R. In some cases, they are probabilistic, which bounds them in [0, 1], but this is not
always the case. The higher the uncertainty level, the more uncertain the prediction.

Many of the methods for estimating uncertainty that we present in this paper assume a rating prediction model,
Φ. Wherever this is the case, we will employ Matrix Factorization (MF) for this underlying model. Speciically, we
will use the form of MF know as FunkSVD [18]. This is known to be a fairly accurate predictor and, by using
it in all cases where we need a separate predictor, we bring a degree of fairness to the comparisons. The idea
is to represent users and items in a low dimension latent space. If the number of latent factors is denoted by d ,
then each user u is represented by a vector pu and each item i by a vector qi , both of dimension d . Then, we can
compute a predicted rating r̂ui by taking a dot product:

r̂ui = p
T
uqi (1)

One way to learn the user and item embeddings, pu and qi , is through gradient descent: the vectors are
initialised with randomly-chosen values; the algorithm proceeds by sampling instances from the training set,
calculating the error between the predicted rating (Eq. 1) and the actual rating for these instances; and updating
pu and qi through gradient descent to minimize these errors. In practice, the loss function to be minimized for
each sampled instance is:

(rui − r̂ui)2 + λU | |pu | | + λI | |qi | | (2)

where λU and λI are regularization hyperparameters and | | · | | denotes the Frobenius norm. To speed up the
training process, batches of instances can be sampled instead. In this case, the parameters are updated according
to the average loss of the batch.

2.2 Top-n recommendation

Of more importance than rating prediction is top-n recommendation [21]. Given a useru ∈ U and a set of candidate
items Cu ⊆ I , the top-n recommendation task consists of retrieving Zn

u ⊆ Cu , which is the set of n items from Cu

that are predicted to be most appealing to u. There are several ways that this can be done.
The conventional way of selecting the top-n is to use the predicted ratings alone (see rating-based ranking,

below). But, given that we are considering models that can estimate prediction uncertainty, then there is an
opportunity to consider other ways of selecting the top-n. These use what we can collectively refer to as
uncertainty-aware ranking. If the estimates of uncertainty are good enough, we may achieve better (or, at least,
usefully diferent) recommendation performance by recommendation strategies that rank the candidates using
some combination of the predicted ratings and their estimated uncertainties. We propose two such strategies:
uncertainty-based iltering and probability-of-relevance ranking.

2.2.1 Rating-based ranking. When feedback data takes the form of explicit, numeric ratings, the top-n recom-
mendation task is conventionally performed by ranking the candidate items Cu in descending order of their
predicted ratings and then forming Zn

u by selecting the top-n items from this ordering. We will refer to this way
of doing top-n recommendation as rating-based ranking (RBR).
RBR makes no use of the uncertainty levels associated with the predictions. Next, we present two kinds of

uncertainty-aware ranking.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 5

2.2.2 Uncertainty-based filtering. In some domains, we may not want to recommend candidate items if we are
uncertain that the user will ind them to be appealing. In this case, we can use uncertainty-based iltering (UBF).
In UBF, we ilter the candidate items, discarding those whose uncertainty is above some threshold τ . After this
iltering step, we rank the remaining candidates in descending order of their predicted ratings and form Zn

u by
selecting the top-n items from this ordering.
If τ is small, it is likely that several of a user’s candidate items items will be iltered-out, which lead to less

uncertain items being recommended. Some of these items may, however, be ones with smaller predicted ratings.
Furthermore, some users might have a very small candidate set after iltering. For this reason, there might be
cases in which the desired amount of recommendations cannot be provided to some users. On the other hand,
larger τ values may mean that, for some users, few or even no items are iltered-out.

There are, of course, variations of these ideas. For example, we could consider ranking the candidate items by
a linear combination of their predicted ratings and their uncertainty estimates.

2.2.3 Probability-of-relevance ranking. Both RBR and UBF rank the candidates item based on their predicted
ratings. But, if predictions are accompanied by uncertainty levels, there may, in certain cases, be an opportunity
to rank candidates based on uncertainty. We call this probability-of-relevance ranking (PRR) and we will present
the exact details in later sections. But, in overview, the approach requires the use of a relevance threshold, θ ∈ S .
When a rating is greater than, or equal to, this threshold, then the item is deemed to be relevant to the user. In
the datasets we use in Section 5, which use a 5-star rating scale, θ might be 4, for example. In PRR, we must
estimate the probability that rui ≥ θ , P(rui ≥ θ) Ð how certain we are that the item is relevant. Then, we rank
the candidates in descending order of the relevance probabilities, so that those whose relevance is most certain
are highest in the ranking. Finally, PRR recommends the top-n from this ranking.
PRR was irst proposed in [33], speciically for their BeMF method, which we will review in Section 3.5.

Nevertheless, it also applies to many other models, as long as they are able to estimate P(rui ≥ θ). Some of the
other methods that we review in Section 3 will be able to compute such probabilities by default, while we show
that some others can also be extended to do so.

Notice that, with PRR, P(rui ≥ θ) is used to rank the items. If one also wishes to associate each recommended
item with a numeric uncertainty estimate (e.g. for display to the user), then the complementary probability
1 − P(rui ≥ θ) can be used.

2.3 Notation

Table 1 summarises the notation that we have introduced in this section. Other notation, which is speciic to
particular models, will be introduced on an as-needed basis in the remainder of the paper.

3 ESTIMATING UNCERTAINTY

There are many ways of estimating the level of uncertainty of a predicted rating in a Recommender System.
Diferent sources of uncertainty can motivate diferent ways of estimating the uncertainty. For the purposes of
surveying the approaches, we classify them into ive broad types, as follows:

Information-based: Uncertainty is estimated from the amount of information that is known about users or
items, or the dispersion of the ratings.

Stability-based: Uncertainty is estimated from the stability of the predictions across perturbations of the
conditions under which we train the prediction model.

Error-based: Uncertainty is estimated from the expected prediction errors of an underlying rating prediction
model.

Distribution-based: The ratings are assumed to follow a statistical distribution, whose dispersion is used to
estimate uncertainty.

ACM Trans. Recomm. Syst.

6 • Victor Coscrato and Derek Bridge

U set of all users
I set of all items
rui user u’s rating for item i

S ordered set ofm possible rating values, S = {s1, . . . , sm}
R set of all user-item-rating-triples
Ru · user u’s proile, i.e. Ru · = {rui : ⟨u, i, rui ⟩ ∈ R}
R ·i item i’s support set, i.e. R ·i = {rui : ⟨u, i, rui ⟩ ∈ R}
r̂ui prediction of user u’s rating of item i

Φ a prediction model, i.e. r̂ui = Φ(u, i)
ρui estimated uncertainty of the prediction of user u’s rating of item i

⟨r̂ui , ρui ⟩ an uncertain prediction
Cu candidate items, Cu ⊆ I , that might be recommended to user u
Zn
u list of n items that are recommended to user u

τ uncertainty threshold; in UBF, candidates for which ρui > τ cannot be recommended to u
θ relevance threshold; item i is considered relevant to user u if rui ≥ θ

Table 1. General notation

Multinomial-based: Multinomial methods also estimate uncertainty from the dispersion of the predicted
ratings but they use models that make discrete predictions for each rating value.

In the following sections, we describe each of these classes in more detail; we review work from the literature
that falls into each class; and we even propose new stability-based and error-based methods.

3.1 Information-based uncertainty

The foremost source of uncertainty in a Recommender System comes from the lack of user-item interaction data.
In practice, item catalogs are often large and therefore users will interact with only a small proportion of the
items in the catalog. In our setting, this means that users will have rated only a small proportion of the items:
in the majority of cases, ⟨u, i, rui ⟩ < R. Models learned from this sparse data may be unreliable. For this reason,
simple statistics such as item support (the number of ratings an item has) can be used to measure the reliability
of the predictions [28]. Hence, its negative can be used as an estimate of uncertainty:

NEG-ITEM-SUPPORT: ρui = −#R ·i
Although item support is indicative of the information available about an item, it might also be misleading.

For instance, two items might have the same number of ratings, but one of them might be rated similarly by
diferent users, whereas the other might have received more divergent ratings. We expect a higher degree of
uncertainty when predicting the ratings of items that have divergent ratings. For this reason, the variance of an
item’s ratings can also be used as an estimate of uncertainty [1, 28]:

ITEM-VARIANCE: ρui = Var (R ·i)
In a similar vein, we can estimate uncertainty from user proile length (the number of ratings a user has) or

the variance of a user’s ratings:

NEG-USER-SUPPORT: ρui = −#Ru ·
USER-VARIANCE: ρui = Var (Ru ·)
Information-based measures of uncertainty can be insightful. Nevertheless, they are quite simple. One weakness

is that they are model-independent, because they are computed strictly from the data, independently of the rating
prediction model. In other words, changing from one prediction model to another does not result in any change

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 7

to the estimates of uncertainty. This is counter-intuitive, because diferent models utilise the data diferently, and
we would expect uncertainty estimates to relect this behaviour. This will not be the case for information-based
measures.
A second weakness is that NEG-ITEM-SUPPORT and ITEM-VARIANCE quantify uncertainty item-wise and

not interaction-wise. That is, their estimated uncertainty for an item i is not personalised: ρui = ρvi ∀ (u,v) ∈ U 2.
Similarly, NEG-USER-SUPPORT and USER-VARIANCE are strictly user-wise measures: ρui = ρuj ∀ (i, j) ∈ I 2.

Used in isolation, item-wise and user-wise measures lack the granularity that Recommender Systems typically
need. This is especially the case for user-wise measures. A user-wise uncertainty estimate cannot help a system
decide which of a set of recommendations need explanations, for example, since all of a user’s recommenda-
tions will have the same uncertainty level. Similarly, user-wise uncertainty estimates cannot be used in top-n
recommendations that are uncertainty-aware, such as UBF and PRR, again because the estimated uncertainty
associated with each of that user’s predicted ratings will be the same. In fact, since top-n recommendation is
a more important task than rating prediction and since top-n recommendation is a user-based task, user-wise
uncertainty estimates are largely useless. For that reason, the literature on information-based uncertainty is
focused on item-wise metrics [28]. In our experiments (Section 5), we do not include user-wise uncertainty
estimates.

Nevertheless, user-wise and item-wise estimates of uncertainty can provide insights into Recommender System
performance. For example, Bernardis et al. [7] show both theoretically and empirically how eigenvalues obtained
from an item-item similarity matrix are strongly related to the model recommendation accuracy. The negatives
of these eigenvalues can also be interpreted as user-wise uncertainty metrics.
Finally, we note that, instead of using these estimates in isolation, some authors have proposed heuristic

combinations of NEG-USER-SUPPORT and NEG-ITEM-SUPPORT (e.g. based on their product) to give interaction-
wise measures (e.g. [15, 43]).

3.2 Stability-based uncertainty

Prediction uncertainty is related to the level of arbitrariness present in the predictions. Hence, a prediction
is uncertain the more it exhibits high variance across small perturbations to the conditions under which the
prediction model is learned.
Mazurowski [28] explores this idea in a multi-modelling strategy. Consider that a model Φ is used to predict

ratings. Then, model stability can be measured by learning several diferent models from perturbations of the
training dataset. A stochastic perturbation function, P, is used to create N diferent versions of the original
ratings training data, i.e. R(k)

= P(R), for k ∈ 1, . . . ,N . A ratings prediction model Φ(k) is learned from each of
the versions of the dataset. Considering the predicted ratings as random variables, their standard deviation is an
estimate of that rating’s uncertainty.

In a strategy called RESAMPLE, Mazurowski [28] uses random sampling as the perturbation function. In this
case, each individual model is trained using a random subset of the ratings available for training. The predicted
rating r̂ui is given by a model Φ trained on the entire training set; the estimated uncertainty of that prediction is
given by the standard deviation of the predictions from the models Φ(k) that are trained on the diferent samplings
of the training set:

r̂ui = Φ(u, i) (3)

ρui =
1

N

√

√

√

N
∑

k=1

(Φ(k)(u, i) − r̂ui)2 (4)

ACM Trans. Recomm. Syst.

8 • Victor Coscrato and Derek Bridge

Mazurowski [28] proposes another such strategy, called INJECT. In this strategy, the perturbed datasets are
obtained by adding noise to the original ratings, i.e. new ratings, r ′ui are obtained as rui + ϵ , where ϵ is random
Gaussian noise. The empirical results in [28] show that RESAMPLE generates better estimates of uncertainty
compared with INJECT, which is why, in our own empirical work (Section 5), we include RESAMPLE and not
INJECT.

Unlike the information-based uncertaintymeasures, which are model-independent, the stability-basedmeasures
do depend on the prediction algorithm itself. Furthermore, the stability-based measures are interaction-wise
measures. On the other hand, in order to obtain good estimates for the predicted rating variance, several diferent
models have to be learned, hence, computing these measures can be slow. In [28], this problem motivates
FAST-RESAMPLE, which approximates RESAMPLE by using in each Φ

(k) some model parameters that have been
computed once on the original ratings.
In this paper, we introduce a perturbation strategy that has not previously been evaluated in the context of

uncertainty estimation. It is model-speciic and, indeed, depends on using models whose parameters require
random initialisation. The strategy, which we designate ENSEMBLE, consists in multi-modelling for diferent
initialisation points. The predicted rating is the mean of the predicted ratings of the individual models, and the
estimated uncertainty is their standard deviation as before:

r̂ui =
1

N

N
∑

k=1

Φ
(k)(u, i) (5)

ρui =
1

N

√

√

√

N
∑

k=1

(Φ(k)(u, i) − r̂ui)2 (6)

Using diferent initialisation points for the perturbations in multi-modelling is interesting since it means that
all of the training ratings are used to learn each model Φ(k); by contrast, RESAMPLE uses only a subset of the
training data for each model. This might lead to better rating estimation, and we see some evidence of this in the
results of our experiments.

For our empirical work (Section 5), the models in the ensemble use matrix factorization (MF) (Section 2). MF is
known to sufer from strong instability, depending on the initialisation of the vectors. This has been shown by
[16] in a recommendation context and also by [5] and [35] for topic modelling. Ensembles of MF models that
have been initialised diferently can result in lower error and greater stability but also enable us to estimate
uncertainty.

3.3 Error-based uncertainty

Uncertainty in rating predictions can be estimated through the expected error in those predictions. The more
certain a prediction is, the more accurate the prediction should be. Zhu et al. [44] give a method for estimating
prediction error, and then use this as the measure of uncertainty.
Zhu et al. [44] use a cross-validation procedure to obtain a set of prediction errors E. First, they partition the

training ratings R into K folds. It follows that each known rating rui ∈ R will appear in exactly one test fold.
Then, they learn K models, Φ(k) for k ∈ 1, . . . ,K , where Φ(k) is learned from all the training ratings except those
in the k-th fold. Now, they can make a prediction r̂ui that corresponds to each known rating rui ∈ R. Speciically,
if rui is in the k-th fold, then Φ

(k) predicts r̂ui . This allows a calculation of training error, eui = rui − r̂ui . At the
end of this cross-validation phase, they have a set of prediction errors eui ∈ E for each rui ∈ R. Finally, they learn
two models. One is a ratings prediction model Φ, learned from the entire ratings training set R. The second is an
error prediction model, E : U × I → R+, that can predict the rating prediction errors, which is learned from E.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 9

At prediction time, we want to compute uncertain predictions, ⟨r̂ui , ρui ⟩. The predicted rating, r̂ui , is given by
the inal rating prediction model, Φ; the uncertainty level, ρui , is the estimated prediction error, given by model
E.
In Zhu et al. [44], FunkSVD was chosen both as Φ and E. That is, one FunkSVD model Φ is responsible for the

rating predictions, while another FunkSVD model E estimates uncertainty (i.e. errors). In Section 5, we designate
this strategy by EB-FunkSVD. More precisely, in EB-FunkSVD, we have:

r̂ui = p
T
uqi (7)

ρui = p
′
u
Tq′i (8)

where pu and qi are embeddings learned from R and p ′u and q′i are embeddings learned from E.
Nevertheless, FunkSVD is only one of many possible uncertainty estimators E. During our empirical study,

we found EB-FunkSVD to perform below our expectations. For some of our evaluation metrics, much simpler
estimates, such as NEG-ITEM-SUPPORT, had better performance. These results raised a concern about possible
over-complexity of FunkSVD for the uncertainty estimator. For this reason, we also experimented with a much
simpler choice of E, which we refer to as EB-Linear.

In EB-Linear, we deine linear weights bu ∈ R for u ∈ U and bi ∈ R for i ∈ I for every user and item. Now, we
propose that the uncertainty for a user-item pair (i.e. the predicted error) to be simply the sum of the user’s and
item’s weights. With this formulation, instead of E having a d-dimensional embedding to model each user and
item, there is only a single scalar parameter for each. More precisely, in EB-Linear, we have:

ρui = bu + bi (9)

The user and item weights, bu and bi , are learned, by gradient descent, to minimize the mean squared error
between the predicted and observed errors.
Finally, we also acknowledge the contribution by Cleger-Tamayo et al. [13], where another uncertainty

estimation approach based on prediction errors was introduced. There, uncertainty estimation is viewed as a
binary classiication task, where the goal is to segregate certain from uncertain predictions. This task is solved by
learning a classiier that predicts whether a user-item interaction is uncertain or not. The classiier is learned based
on both the prediction errors committed by the rating prediction model (in their case, a k-nearest neighbours
model) and the ratings given by similar users to the same item. We will not further explore this approach for two
reasons. First, it is restricted to neighborhood models. Second, the segregation of items into two types (certain
and uncertain) is quite diferent from the formulation used in our work, where we seek to estimate the level of
uncertainty, ρui (Section 2). In any case, EB-FunkSVD and EB-Linear are also based on prediction errors and can
be applied to a wider class of collaborative iltering models.

3.4 Distribution-based uncertainty

The Recommender Systems literature contains several methods that consider each user-item rating to be a random
variable, each having a certain probabilistic distribution F |×⊓⟩ , where Θ is the set of distribution parameters.
Modelling the ratings with a distribution rather than a point estimate allows the recommender to produce a
much richer output, from which it is possible not only to obtain point estimates for the ratings but also to infer
the uncertainty associated with these point estimates.
The Gaussian distribution emerges as a natural choice: its mean, µ, and variance, σ 2, are obvious choices for

the rating point estimates and their uncertainties. In this case, rui ∼ N(µui ,σ 2
ui), and the task of estimating rui is

performed by estimating Θui = ⟨µui ,σ 2
ui ⟩ for every user-item pair.

One notable algorithm to employ a Gaussian model is Probabilistic Matrix Factorization (PMF) [30]. In PMF,
the ratings are assumed to follow a Gaussian distribution, with a ixed variance parameter σ 2

= 1. As before, let

ACM Trans. Recomm. Syst.

10 • Victor Coscrato and Derek Bridge

pu and qi be user and item embeddings, both of dimension d . Then, the likelihood of the training data can be
written as:

P(R) =
∏

i ∈I

∏

u ∈U

[

N(rui |pTuqi , 1)
]δui

(10)

where N(·|µ,σ 2) is the probability density function of the Gaussian distribution with mean µ and variance σ 2,
and δui is an indicator function that is equal to 1 if user u rated item i and 0 otherwise. The latent factors are
assumed, in prior, to follow a zero-mean spherical Gaussian distribution. In this case, maximising the log-posterior
distribution is equivalent to minimising the sum of squared errors subject to L2 regularisation terms:

∑

u ∈U

∑

i ∈I
δui (rui − pTuqi)2 + λU

∑

u ∈U
| |pu | | + λI

∑

i ∈I
| |qi | | (11)

Notice that, although having a diferent motivation, the PMF model optimizes an objective function which is
identical to FunkSVD’s (Equation 2).
PMF assumes every user-item pair to have the same variance. Not only is this a very strong assumption in

general, it also means that PMF is not suitable for uncertainty estimation, since every user-item pair would have
the same estimated uncertainty σ 2. For this reason, Wang et al. [41] extend PMF to Conidence-aware Probabilistic
Matrix Factorization (CPMF). There, each user and item is assumed to have a latent variance parameter, σu and
σi , respectively. The variance of each user-item pair is obtained by some function γ : R × R −→ R+ that composes
these two latent variance parameters. Therefore, the likelihood of the training data is:

rui ∼ N(pTuqi ,γ (σu ,σi)) (12)

The latent factors, pu and qi , and the variance parameters, σu and σi , are estimated through gradient descent on
the negative log-likelihood.
Wang et al. [41] use a simple product for γ . In our experiments (Sections 5), we do the same and this is what

we are referring to when we write CPMF in that later section of this paper.
Wang et al. [41] also propose a Bayesian version of the algorithm, similar to [37]. The idea of the Bayesian

framework is to automatically control model complexity through prior distributions in order to alleviate the
efects of over-itting and to improve model generalisation.

The next section presents further distribution-based methods for the special case where ratings are not treated
as continuous variables.

3.5 Multinomial-based uncertainty

Ratings are typically discrete; for example, the ratings in the Netlix Prize dataset are integers from 1 to 5 [6]. But,
in rating prediction, ratings are often treated as continuous variables. In other words, the model predicts real
values: Φ : U × I −→ R. Then, as we have seen, there are various ways of augmenting each predicted rating with
an estimated uncertainty level.

Multinomial models treat predicted ratings as discrete variables. For each point on the rating scale, they predict
a probability. Hence, the output of a multinomial prediction model is a vector, containing one probability for each
score s on the rating scale S = {s1, . . . , sm }, where P(rui = s) for the probability that user u will assign rating s ∈ S

to item i , and
∑

s ∈S P(rui = s) = 1. For instance, in the Netlix case, themodel will predict P(rui = s)∀s ∈ {1, . . . , 5}.
This idea has motivated several recommendation algorithms, including the User Rating Proile Model (URP) [27],
Bernoulli Matrix Factorization (BeMF) [33] and OrdRec [26]. From a statistical standpoint, this way of formulating
rating prediction consists of assuming rui follows a multinomial distribution. Hence, it is possible to extract not
only point estimates for the ratings, but also dispersion statistics, which can be used as estimates of uncertainty.
The BeMF model is one way to estimate the vector of probabilities [33]. BeMF learnsm diferent Bernoulli

factorization models, one for each point on the rating scale, i.e. it learns a set of models Φ = {Φ1, . . . ,Φm}. To

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 11

learn each individual model Φs , it uses a modiied version of the training set Rs = {(u, i, ruis)}, such that:

ruis =

{

1, rui = s

0, otherwise
∀(u, i, rui) ∈ R (13)

Each Bernoulli factorization model Φs makes predictions in the same way as the FunkSVD method (Equation 1),
but with the diference that the predictions are scaled through a logistic function, which bounds them to the
[0, 1] interval. To learn the latent factors, for each individual model, the cross-entropy loss function is used. The
loss for a single training instance is:

Φs (u, i)ruis (1 − Φs (u, i))1−ruis (14)

The parameters of the model are updated by performing gradient descent on this loss function. Finally, the
probabilities are given by:

P(rui = s) =
Φs (u, i)

∑

s ∈S Φs (u, i)
(15)

With the probabilities estimated, [33] proposes that the predicted rating will be the most probable value in the
rating scale, and the uncertainty estimate will be the probability mass lying outside this most probable rating
value:

r̂ui = args ∈S maxP(rui = s) (16)

ρui = 1 −max
s ∈S
P(rui = s) (17)

A rather diferent multinomial approach, OrdRec, is proposed in [26]. While OrdRec has a very diferent
formulation from BeMF, its ultimate goal is also to predict the vector of probabilities. OrdRec learns a single
rating prediction model, e.g. using FunkSVD, which will be denoted Φ. Then, for every s ∈ {s1, . . . , sm−1}, the
cumulative probability function for the ratings is:

P(rui ≤ s) = 1

1 + eΦ(u,i)−tus
(18)

where tus for each s ∈ S is a user-speciic set of threshold parameters. Notice that P(rui ≤ sm) = 1 as this is a
cumulative distribution. After estimating the cumulative functions, the individual probabilities are obtained by:

P(rui = si) = P(rui ≤ si) − P(rui ≤ si−1) (19)

Now, for every u ∈ U , let tu0 = 0. Then, the gaps between a user’s thresholds are encoded as a set of parameters
βu1, βu2, . . . , βum−1, such that

tusi = tusi−1 + e
βusi , ∀i ∈ {1, . . . ,m − 1} (20)

Therefore, the whole set of parameters to be learned for OrdRec includes the underlying model’s parameters,
as well as {βu1, βu2, . . . , βum−1}∀u ∈ U . The likelihood function for the model is:

∏

i ∈I

∏

u ∈U

∏

s ∈S
(P(rui = s))δ (rui=s) (21)

Learning is performing by stochastic gradient descent on the negative log-likelihood function.
With the rating distribution estimated, there are many ways in which rating predictions and uncertainty

estimates can be extracted. Koren and Sill [26] argue that the distribution’s average and some measure of its
dispersion can be used to predict ratings and uncertainty respectively. Moreover, any distribution dispersion
metric can be employed, such as standard deviation, Gini impurity or entropy. Among these, they empirically

ACM Trans. Recomm. Syst.

12 • Victor Coscrato and Derek Bridge

found that the standard deviation performed best for uncertainty and, therefore, we will use the same when we
estimate uncertainty using OrdRec in this paper:

r̂ui =
∑

s ∈S
s P(rui = s) (22)

ρui =

√

1

m

∑

s ∈S
(s2P(rui = s)) −mr̂ 2ui (23)

Moreover, we highlight one concern regarding the uncertainty estimates given by Equation 23: when r̂ui is
either too small or to big, that is, close to s1 or to sm , then the uncertainty ρui will always be very low. This
happens because, in order to predict one of the distribution’s extremes, the vast majority of the distribution’s
probability have to fall on this extreme rating value, leading to very low standard deviation. Intermediate rating
values do not sufer from the same problem because, in this case, the distribution’s probability can be dispersed
symmetrically around that intermediate rating value.
We have concluded our review of ways of estimating ratings prediction uncertainty. We turn our attention

now to ways of evaluating these estimates.

4 EVALUATING UNCERTAINTY ESTIMATES

After training a rating prediction model, it is common to evaluate its performance on a test set, this being a set of
known ratings that was held-out during training. The most common rating prediction evaluation metrics, such
as root mean squared error (RMSE), simply compare the predicted ratings to the known ratings in the test set T ,
that is:

RMSE =

√

∑

rui ∈T (r̂ui − rui)2
#T

(24)

In this case, the known ratings give us a ‘ground-truth’ for the evaluation. Similarly, after estimating the
uncertainty of predicted ratings, it is desirable to evaluate the quality of the uncertainty estimates. But, evaluation
of the uncertainty estimates is not as simple as evaluating the predicted ratings because there are no ‘ground-truth’
values that can be compared with the uncertainty estimates.

Our review of ways of evaluating estimates of rating prediction uncertainty starts with a discussion of expected
correlations. Subsequent sections then correspond to the diferent tasks that we laid out in Section 2, namely
rating prediction and top-n recommendation, the latter being split into rating-based ranking, uncertainty-based
iltering and probability-of-relevance ranking.

4.1 Expected correlations

Despite the diferences in the uncertainty estimates that we reviewed in Section 3, there are ‘patterns’ that we
expect to observe, including the following:

Negative correlation with user proile size: The less we know about a user’s tastes, the more uncertain
we expect that user’s predictions ratings to be.

Negative correlation with item support: Similarly, the less that an item has been interacted with, the less
certain we expect that item’s predicted ratings to be.

Positive correlation with user rating variance: The more a user’s ratings vary from each other, the less
certain we expect that user’s predictions to be.

Positive correlation with item rating variance: The more an item’s ratings vary from each other, the less
certain we expect that item’s predictions to be.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 13

To the best of our knowledge, we are the irst to propose checking these correlations. Computing them can
serve as an initial check that a particular way of estimating uncertainty behaves, on the whole, in the way we
might expect. We have chosen to carry out this check using Spearman rank correlation, because the correlations
might not always be linear.
It is important to point out that some of these correlations might not always hold for individual user-item

interactions. For example, in the movie domain, a new movie from a famous director is usually a very safe and
expected recommendation, even though the movie, being newly-released, will have low item support.
We also expect to see some correlations between the uncertainty estimates and prediction error and top-n

recommendations accuracy:

Prediction error: The more wrong a predicted rating is, the less certain we expect the prediction to be.
Recommendation accuracy: Similarly, the more accurate a set of top-n recommendations is, the more

certain we expect the predicted rating for each item in the top-n to be.

The literature ofers several metrics that we can compute to conirm these correlations, and we explore these in
more detail in the following subsections.

4.2 Rating prediction

Uncertainty measures are expected to relect prediction errors. For this reason, the foremost method for evaluating
the quality of estimates of rating prediction uncertainty consists of simply evaluating the correlation between the
prediction errors in a holdout test set and their estimated uncertainty. Diferent correlation coeicients can be
used. For example, Pearson correlation can be used to measure the linear correlation, while Spearman correlation
can be applied if rank correlation is preferred. Later, we refer to these correlations (between rating prediction
errors and uncertainty estimates) as Pearsonρ and Spearmanρ .

Mazurowski [28] proposes a visualization of the correlation between uncertainty and prediction error. In fact,
Mazurowski refers to łreliability estimatesž on predicted ratings, rather than uncertainty estimates. But, as his
concept of reliability is the opposite of uncertainty, his visualisation can be used here, after some adaptations. In
what follows, we ‘translate’ his proposals to our uncertainty framework.

Mazurowski splits the predictions for the test set into B equal-sized bins based on, and ordered by, their
uncertainty levels Ð that is, bin 1 contains the least uncertain predictions and bin B the most uncertain ones. For
each bin b, Mazurowski calculates an error threshold, ϵb . The error threshold for bin b measures how inaccurate
the predicted ratings within the bin are. The thresholds are calculated such that Bayesian conidence intervals of
the form [r̂ui − ϵb , r̂ui + ϵb] contain the real rating rui for at least (1 − α) × 100% of the bin’s predictions, where
α ∈ [0, 1] is a ixed signiicance level. The quality of the conidence intervals are determined by the curve of the
error thresholds against their conidence bin.
One problem with the latter method is that the curves will depend on the choice of α . In fact, the reliance

on α means that each uncertainty estimate will have a family of curves (for each value of α), which makes it
more diicult to compare uncertainty estimates. To solve this issue, and also to adapt Mazurowski’s conidence
intervals to our uncertainty framework, we propose to use uncertainty bins, rather than conidence bins, and to
calculate the average RMSE in each of these uncertainty bins. In this case, given B equal-sized uncertainty bins,
we calculate the following for each bin b:

RMSEb =

√

∑

ρui ∈b (r̂ui − rui)2

#ρui ∈ b
(25)

where the denominator is the number of test instances falling into bin b. Similarly to before, we then plot the
curve of the RMSEb values against their bin index. We refer to these as RMSE-uncertainty curves. Now these

ACM Trans. Recomm. Syst.

14 • Victor Coscrato and Derek Bridge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Uncertainty bin
1

2

3

4

5

6

7

8

RM
SE

Curve 1
Curve 2

Curve 3

Fig. 1. Example RMSE-Uncertainty curves.

curves have no reliance on additional parameters other than the number of reliability bins Ð in particular, there
is no longer the parameter α .
Nevertheless, a problem that remains is how to interpret curves like these. To illustrate, we refer to Figure 1.

The Figure shows three example RMSE-uncertainty curves. Notice that all the curves have very similar RMSE1
and RMSEB values. On the other hand, their behaviours in between these extremes are diferent. In this case,
there is no clear deinition that says which curve is preferred, and hence which of the underlying uncertainty
estimates is better.

To alleviate this problem, some simple metrics can be extracted from the curves. One option, which has been
explored in [28], is to calculate the diference in the values between the irst and last bins. In [28], this metric is
called dw . Here, to avoid confusion due to the fact that we are using RMSE uncertainty curves, we will refer to it
as δRMSE:

δRMSE = RMSEB − RMSE1 (26)

Higher values of δRMSE are indicative that prediction error grows as uncertainty grows.
In a similar vein, Bobadilla et al. [9] argue that an evaluation metric for an uncertainty measure should penalise

predictions where certainty is high but predictive error is also high and should strongly reward predictions where
uncertainty is high and predictive error is high. Table 2 schematically describes the desired behaviour.
Bobadilla et al. [9] propose a metric that matches the criteria in Table 2. Like the work in [28], Bobadilla

et al.’s Reliability Prediction Improvement metric is given in terms of reliability. We adapt it from reliability to
uncertainty and call it Uncertainty Prediction Improvement (UPI).
To deine UPI, we irst compute the absolute errors eui = |r̂ui − rui |,∀(u, i, rui) ∈ T , where T is a holdout test

set. Then, we deine the metric criteria, CU PI , as follows:

CU PI
ui = eui (eui − e)(ρ − ρui) (27)

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 15

Prediction error Uncertainty Uncertainty evaluation metric

High Low Big penalty

Low High Small penalty

High High Big reward

Low Low Small reward

Table 2. Criteria for a good estimate of rating prediction uncertainty

where e and ρ are the means of the absolute errors and the uncertainty estimates for all the test instances in T .
UPI is then deined as:

UPI =

1

σeσρ#T

∑

rui ∈T
CU PI
ui

e
(28)

where σe and σρ are the standard deviations of the absolute errors and uncertainty estimates. The divisor term,
σeσρ#T , standardises the criteria values, while the term e compares the standardised criteria values to the mean
absolute error.

[26] take a rather diferent approach to the evaluation of uncertainty estimates. Instead of using metrics, such
as δRMSE and UPI, they build and evaluate what they call conidence classiiers. These are binary classiiers that
use the uncertainty estimates as predictors (features) to predict whether or not the rating error will be greater
than 1. In practice, given a set of predicted ratings r̂ui and their respective observed ratings rui , a conidence
classiier is a logistic model, where the uncertainty estimate is the predictive feature, and the model predicts
the probability P(|r̂ui − rui | > 1). Once trained, the conidence classiier is evaluated using a holdout set. Its
accuracy on the holdout set is an indicator of the efectiveness of the uncertainty estimate. Koren and Sill use the
classiier’s Area Under the Curve (AUC) for this.
Care must be taken to avoid training and evaluating the conidence classiier on the instances used to train

the rating predictor. In our experiments, we train the rating predictor on the training set, then we use 2-fold
cross-validation on the test set to train and evaluate the conidence classiier. In other words, we train the
conidence classiier on half of the test instances and evaluate its AUC on the other half of the test instances. We
repeat this, after interchanging the two folds. The inal results that we report are the average AUC across the two
folds. In Section 6, we refer to this approach to evaluation as Error-Uncertainty Classiication (EUC).

We highlight that the choice to predict P(|r̂ui − rui | > 1) with this method is arbitrary. The method is general:
we could build conidence classiiers based on thresholds other than 1. In our experiments, however, we follow
[26]’s use of 1.

4.3 Top-n recommendation

In traditional evaluation of recommender models, it has been common to calculate metrics based on prediction
error, such as RMSE. Nevertheless, at recommendation time, a top-n items are shown, typically those with the
highest predicted ratings. Hence, it is also necessary to evaluate the recommendation accuracy at top-n [38].
Many metrics have been deined for evaluating the top-n accuracy. In this paper, where evaluation of uncertainty
estimates is more import than evaluation of top-n accuracy, we use just two top-n accuracy metrics, namely
MAP@n and Recall@n. Let relu be u’s ratings in test set T where rui ≥ θ , where θ is the relevance threshold.
Then,

MAP@n =
1

#U

∑

u ∈U

n
∑

k=1

Precision@ku × δ
(

Zn
u (k) ∈ relu

)

(29)

ACM Trans. Recomm. Syst.

16 • Victor Coscrato and Derek Bridge

where

Precision@ku =
#{Zk

u ∩ relu }
k

(30)

and where δ (Zn
u (k) ∈ relu) = 1 if the k-th item in Zn

u is in relu and 0 otherwise.

Recall@n =
1

#U

∑

u ∈U

#{Zn
u ∩ relu }
#relu

(31)

As we said above, we also want to evaluate the quality of the uncertainty estimates at top-n. Corresponding
with Section 2.2, we divide our discussion of ways of doing this into three.

4.3.1 Rating-based ranking. As previously stated, we expect recommendation accuracy to be greater in cases
where the recommendations are less uncertain. Therefore, one metric to evaluate the uncertainty estimates is the
Spearman correlation between some recommendation accuracy metric, e.g. MAP@n, and the average uncertainty
of the recommended items for the user. We will refer to this as Uncertainty Accuracy Correlation (UAC). Notice
that, for this metric, smaller values denote better performance.

In a similar vein, Bobadilla et al. [9] propose Reliability Recommendation Improvement, a metric that evaluates
reliability estimates in the case of recommendations. Their metric is based on similar criteria to those in Table 2,
this time that hits (top-n recommendations that are correct) should be associated with lower uncertainty levels
than the non-hits. We present Uncertainty Recommendation Improvement (URI), which is our adaptation from
reliability to uncertainty.

Our adaptation starts by deining CURI as follows:

CURI
u =

∑

i ∈Zn
u |rui ≥θ

(ρ − ρui) (32)

Notice that there is a strong relation withCU PI . However, URI is focused on relevant items, i.e. test set ratings for
which rui ≥ θ . Hence, in CURI

u , the mean uncertainty ρ is calculated only over test instances where rui ≥ θ .
In this deinition of CURI , based on [9] and similar to CU PI , ρ is a global average Ð the average of all the

uncertainty values in test set T . In other words, it is not the average of these values just for user u. We believe
that averaging over all T can lead to problems. For example, it is likely that some users will have high overall
uncertainty. In an extreme case, there may even be users u for which ρui < ρ ∀i ∈ I . For such users, if a
recommendation hit occurs, then CURI

u < 0 even if the recommended hit is less uncertain than all of the other
recommended items for that user. Given a set of recommendations for a user, it is desirable for recommendation
hits to have a lower estimated uncertainty than non-hits. For this reason, we propose an alternative deinition of
URI that is based on Zn

u , the top-n items recommended to u. We redeine it as follows:

CURI
u =

∑

i ∈Zn
u |rui ≥θ

(ρu − ρui) (33)

where ρu is the mean uncertainty for the items in Zn
u , i.e. the n items that are recommended to user u.

Now, the URI is deined as:

URI =

∑

u

CURI
u

σρu

∑

u

#{i ∈ Zn
u |ru,i ≥ θ }

(34)

where σρu is the standard deviation of the uncertainty values for Zn
u . The denominator is used to guarantee that

the URI is a valid metric when comparing diferent uncertainty measures.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 17

4.3.2 Uncertainty-based filtering. In Section 2.2.2, we argued that, in some circumstances, it can be useful to
constrain the set of items that might be included in a top-n by discarding candidates whose uncertainty value
exceeds some threshold τ . As initially proposed in [33], we can use this as a way of evaluating uncertainty
estimates. In certain cases, the recommendation accuracy (e.g. its precision) can increase Ð if the candidate items
that are discarded are not only uncertain but also not relevant. In practice, the recommendation accuracy can be
measured for a range of diferent values for τ , with the expectation that accuracy will increase as τ increases.
Nevertheless, restricting the candidate set might also decrease the average predicted rating in the recommended
items. For instance, before iltering, a user might have several candidates that receive high predicted ratings but
also high uncertainty. If these are iltered out, not only will uncertainty be reduced in the iltered recommendation
set, but also the average predicted rating. For this reason, together with the accuracy, it is important to monitor
the Mean Predicted Rating. To do so, we use:

Mean Predicted Rating@n =
1

#U

∑

u ∈U

1

n

∑

i ∈Zn
u

r̂ui (35)

Finally, since we are preventing the RS from recommending highly uncertain items to the user, there may be
users for whom the RS cannot recommend a full set of n items. Hence, the recommendation coverage should also
be measured. Here we measure coverage as:

Coverageu =
#Zu
n

(36)

where #Zu is the number of recommendations made to user u and n is the desired recommendation list size. The
average coverage is then obtained by averaging the individual coverage of each user.

4.3.3 Probability-of-relevance ranking. In RBR, uncertainty estimates are not used for ranking the candidates
and selecting the top-n, and therefore uncertainty in the case of RBR has to be evaluated through speciic metrics,
such as UPI. In PRR, on the other hand, uncertainty estimates are used to rank the candidates and select the top-n;
speciically, we recommend the candidates for which P(rui ≥ θ) is highest. This means that, in the case of PRR,
the uncertainty estimates can be evaluated through recommendation accuracy metrics. That is, the quality of the
recommendation set given by the uncertainty estimates serve as an indirect way to evaluate these estimates.
Furthermore, in the cases where the system is expected to provide uncertainty estimates together with the

uncertainty-based recommendations, then these uncertainty values also have to be evaluated. In Section 2.2.3, we
propose that 1 − P(rui ≥ θ) can be used as the uncertainty estimate. In this case, the uncertainty estimates will
increase as we progress through the item ranking. That is, the uncertainty of the top-ranked item will be the
smallest, followed by the second, and so on. Under this setup, URI is not a feasible evaluation metric anymore,
because the diferences ρ̄u − ρui will always be the largest for the top-ranked items, leading to unrealistically
high URI values. On the other hand, the correlation between the uncertainty estimates and accuracy (UAC) is
still a feasible metric, and we will use it below.

5 EMPIRICAL STUDY

In this section, we report the results of an empirical study that we have conducted. We believe it is the most
extensive study in the ield to this date. Compared with previous studies, it covers more ways of estimating
uncertainty and uses more evaluation methods, as well as making use of two large datasets. Previously, the
most comprehensive study was [28], but it compared only information-based and stability-based uncertainty
estimates. The study in [9] proposed and empirically tested some uncertainty quality measures but, similarly, it
did not consider error-based, distribution-based or multinomial-based uncertainty estimates. Other studies in the
ield, e.g. [26, 41], use few, or no, uncertainty evaluation metrics, and therefore also lack empirical support for

ACM Trans. Recomm. Syst.

18 • Victor Coscrato and Derek Bridge

Dataset MovieLens Netlix

num. users, #U 162,542 53,424
num. items, #I 59,047 480,189
num. ratings, #R 25,000,095 100,480,507

sparsity 99.74% 99.61%
avg. num. ratings per user 154 1881
avg. num. ratings per item 423 209

rating scale {0.5, 1, 1.5, . . . , 5} {1, 2, . . . , 5}
Table 3. Characteristics of the datasets used in our experiments.

their uncertainty estimates. Finally, [33] has two major issues with their experiments: it does not compare BeMF
against OrdRec, which has a similar motivation to it; and it has an unconventional recommendation evaluation,
where candidates for recommendation are taken only from the test set and therefore unrated items are never
recommended.

Our implementation makes considerable use of PyTorch [34] and is partially inspired by the Spotlight Python
libraries.1 For reproducibility, all the code used is available.2

5.1 Models

We compare the followingways of estimating uncertainty, each ofwhichwas described in Section 3: NEG-ITEM-SUPPORT,
ITEM-VARIANCE, RESAMPLE, ENSEMBLE, EB-FunkSVD, EB-Linear, CPMF, BeMF and OrdRec. As explained
previously, we do not include the user-wise estimates, NEG-USER-SUPPORT or USER-VARIANCE: they assign
the same level of uncertainty to all of a user’s candidate items, which is not helpful to a top-n recommender
system.
Most of these techniques rely on a separate rating predictor; only CPMF, BeMF and OrdRec have their own

methods for predicting the ratings. For those that need a separate rating predictor, we use FunkSVD (Equation 1).
Moreover, FunkSVD is also the underlying rating prediction model Φ in the case of OrdRec and BeMF, and has
the same formula as the distribution average in the case of CPMF (Equation 12).
Furthermore, we also use FunkSVD separately as a baseline for recommendation accuracy. We will want

to determine whether the new techniques have similar or better prediction error (RMSE) and top-n accuravy
(MAP@n and Recall@n) than FunkSVD.

5.2 Datasets

We use two large ratings datasets: the MovieLens 25 million ratings dataset [20] and the Netlix prize dataset [6].
Table 3 shows some information about each dataset. We chose these datasets because they are by far the most
popular ones for the rating prediction task.

5.3 Methods

5.3.1 Data spliting. We select a random sample of 10,000 users to be test users. The restriction to 10,000 users is
to reduce the computational cost of running this extensive set of experiments on such large datasets. For these
sampled test users, we chronologically order their ratings and place the last 20% of them in the test set. We use
the remaining ratings (from every user, not just the test users) for training or validation. Speciically, we order

1https://github.com/maciejkula/spotlight
2https://github.com/vcoscrato/uncertain/tree/SnapExplicit

ACM Trans. Recomm. Syst.

https://github.com/maciejkula/spotlight
https://github.com/vcoscrato/uncertain/tree/SnapExplicit

Uncertainty in recommender systems • 19

these remaining ratings chronologically; for each user, we use the irst 80% of these ratings for our training set,
and the rest for our validation set.

5.3.2 Tuning. We have a number of hyperparameters, whose values we need to choose. We tune the models by
training them with diferent hyperparameter values on the training set and evaluating them on the validation set,
choosing values that give the lowest validation set RMSE.
Wherever we are using matrix-factorization, the latent feature vector dimension d and the regularisation

strengths λU and λI are hyperparameters. The latent feature vector dimension is chosen from {50, 100, 200},
while the regularisation strengths are chosen from {0.1, 0.01, 0.001}. The latent feature vectors are initialised
by sampling from a zero-centered Gaussian distribution with a standard deviation of 0.01. We set the learning
rate to 0.0001 in all cases and used the Adam optimiser to account for learning rate adaptations. Furthermore, to
suppress the need to optimise the number of training epochs, we employed early-stopping, monitoring RMSE
after every epoch and stopping training when validation RMSE does not improve for ive consecutive epochs.
This setup is similar to the one used in [16], for example.

For ENSEMBLE and RESAMPLE, which involve multi-modelling (Eqns. 5 and 6), we use N = 5 diferent models.
For RESAMPLE, we use an 80% sample fraction. For the error-based methods, EB-FunkSVD and EB-Linear, we
use 2-way cross-validation to create the error matrix E. We conducted some preliminary experiments with more
multi-modelling runs (10 and 20) and more CV-folds (5 and 10), but we obtained similar results to the ones for
N = 5 and for 2-way cross-validation.
BeMF trains multiple MF models, one per rating value. For fairness, we ensure that BeMF has a similar number

of parameters to all the other models. For example, for the Netlix dataset, where there are 5 possible rating
values, if the other models are using d = 50, then BeMF will learn ive models with dimension 10 each.

5.3.3 Rating prediction evaluation. To evaluate rating predictions, we measure the RMSE between the ratings in
the test set and the predicted ratings. To evaluate the uncertainty estimates, we use the following evaluation
techniques that we presented in Section 4.2: Pearsonρ , Spearmanρ , UPI, RMSE-Uncertainty curves, δRMSE and
EUC .

5.3.4 Top-n recommendation evaluation. We compute recommendations for each of the 10,000 test users. For
each of these usersu, the candidate itemsCu ⊆ I that can be recommended tou are all the items thatu has has not
rated in either the training or validation sets. Then, for each user, we create a top-n, Zn

u ⊆ Cu , |Zn
u | = n. The way

we do this depends on whether we are evaluating RBR, UBF or PRR (Sections 4.3.1, 4.3.2 or 4.3.3, respectively).
We measure the accuracy of a top-n using MAP@n and Recall@n, averaged over all 10,000 users. An item i is
considered relevant to a user u if its test set rating rui ≥ θ where θ = 4. We evaluate the uncertainty estimates
using the evaluation techniques that we presented in Section 4.3, namelyUAC andURI .

6 RESULTS

In this section, we present the results. The subsections correspond to the ones in Section 4.

6.1 Expected correlations

We start by exploring correlations between the uncertainty estimates and each of: the user proile size (#Ru ·),
item support (#R ·i), user rating variance (Var (Ru ·)) and item rating variance (Var (R ·i)).

We compute Spearman correlations on a set of 100,000 randomly sampled user-item pairs. In other words, we
pick a random user and a random item, we estimate the uncertainty ρui and, once we have done this for 100,000
such pairs, we correlate with the statistics mentioned in the previous paragraph. Selecting users and items at
random avoids a bias: if we had instead selected users and items from R (rui ∈ R), then we would bias these
correlations to cases where the user has rated the item.

ACM Trans. Recomm. Syst.

20 • Victor Coscrato and Derek Bridge

RMSE

Model MovieLens Netlix

Baseline 0.8400 0.8618
ENSEMBLE 0.8294 0.8493

CPMF 0.8447 0.8742
BeMF 1.0031 1.0270
OrdRec 0.8832 0.8666

Table 4. Rating prediction: RMSE. (Results for NEG-ITEM-SUPPORT, ITEM-VARIANCE, RESAMPLE, EB-FunkSVD and

EB-Linear will be the same as the Baseline.) The best values (lowest) are highlighted in bold.

Figure 2 gives the results. The correlations betweenNEG-ITEM-SUPPORT and #R ·i and between ITEM-VARIANCE
and Var (R ·i) are trivially perfect and so they are not included.
In the MovieLens dataset, the models’ correlation with user proile size, user variance and item variance are

very low; EB-Linear and BeMF show strong negative correlation with item support, as expected; but there are
counter-intuitive positive correlations with item support for ENSEMBLE, EB-FunkSVD and OrdRec. In the Netlix
dataset, some expected positive correlations with user variance and item variance can be observed, with the most
noticeable values being achieved by EB-Linear; in the case of item support, EB-Linear and BeMF show strong
negative correlation, as expected, while RESAMPLE, ENSEMBLE and EB-FunkSVD show positive correlations to
it, which is counter-intuitive.

Notwithstanding the heuristic nature of these expected correlations, the results are quite concerning. Although
they are all supposed to be estimates of uncertainty, they behave diferently from each other, and there is no
uncertainty estimate that convincingly exhibits all the expected behaviours.We highlight, among these concerning
results, how EB-FunkSVD and EB-Linear have an opposite correlation with item support. This is particularly
odd because both methods are based on the errors of the same baseline, and yet their uncertainty estimates difer
drastically. While some of the forthcoming results in the reminder of this work will show good performance for
these methods, the correlations we have observed raise a lag to the credibility of uncertainty estimates based on
prediction error.
In the remaining subsections, we evaluate the uncertainty estimates using the methods that we reviewed in

Section 4.

6.2 Rating prediction

We begin our evaluation of rating prediction by comparing the prediction error of the diferent models, leaving
uncertainty aside. Results are shown in Table 4. Several methods (NEG-ITEM-SUPPORT, ITEM-VARIANCE and
RESAMPLE) are not explicitly listed in this Table. This is because, for rating prediction itself, they use the baseline
model, and therefore their RMSE is the same as that of the baseline.

It is worth mentioning that, as explained in Section 3, CPMF, BeMF and OrdRec do not directly optimise RMSE,
while the baseline model and the models within the ensemble do. In light of this, CPMF shows good performance
for both datasets, while ENSEMBLE is able to outperform the baseline in both cases (keeping in mind that low
values are better). OrdRec has a slightly worse performance in the MovieLens dataset, while being closer to the
other models in the Netlix dataset. BeMF has the worst performance in both datasets.

To assess the quality of the uncertainty estimates from a prediction error point of view, we employ the methods
described in Section 4.2. The RMSE-uncertainty curves are given in Figure 3. On the whole, we see what we
would expect: as uncertainty grows so does error. In both datasets, EB-Linear seems to be the curve that shows
this most strongly. In the Netlix dataset, OrdRec and EB-FunkSVD also exhibit this behaviour quite strongly.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 21

#R
u #R

i
2 R u 2 R i

NEG-ITEM-SUPPORT

ITEM-VARIANCE

RESAMPLE

ENSEMBLE

EB-FunkSVD

EB-LINEAR

CPMF

BeMF

OrdRec

-0 -0.001 0.048

-0 -0.048 0

0.05 0.2 0.085 0.052

0.26 0.59 0.083 -0.062

0.023 0.88 0.25 0.032

-0.067 -0.69 0.34 0.11

-0.19 0.17 0.24 0.061

-0.13 -0.86 0.022 0.1

0.21 0.82 0.015 -0.026
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) MovieLens dataset.

#R
u #R

i
2 R u 2 R i

NEG-ITEM-SUPPORT

ITEM-VARIANCE

RESAMPLE

ENSEMBLE

EB-FunkSVD

EB-LINEAR

CPMF

BeMF

OrdRec

-0.001 -0.001 0.42

-0 -0.42 0.001

-0.14 0.23 0.28 -0.049

0.49 0.44 0.17 -0.15

0.099 0.76 0.43 -0.18

-0.12 -0.53 0.53 0.43

-0.066 -0.12 0.075 0.39

-0.1 -0.67 0.12 0.39

-0.58 0.066 0.26 0.039
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Netflix dataset.

Fig. 2. Correlations between uncertainty estimates and dataset statistics. We expect negative correlation with #Ru · and #R ·i ;
we expect positive correlation with Var (Ru ·) and Var (R ·i).

ACM Trans. Recomm. Syst.

22 • Victor Coscrato and Derek Bridge

Pearsonρ Spearmanρ δRMSE UPI EUC
NEG-ITEM-SUPPORT 0.0218 0.0391 0.5064 0.1370 0.5353
ITEM-VARIANCE 0.1266 0.0958 0.3034 0.6029 0.5674
RESAMPLE 0.1187 0.1196 0.3243 0.5205 0.5788
ENSEMBLE 0.0327 0.0215 -0.0865 0.0875 0.5051
EB-FunkSVD 0.1788 0.2008 0.0310 0.5500 0.6245
EB-Linear 0.3463 0.2928 0.9675 1.6851 0.6982

CPMF 0.0449 0.0863 0.3009 0.2444 0.5632
BeMF 0.1114 0.1189 0.3022 0.3204 0.5859
OrdRec 0.2260 0.2526 0.5552 0.6924 0.6731

Table 5. Rating prediction uncertainty evaluation: MovieLens dataset. The best values (highest) are highlighted in bold.

Pearsonρ Spearmanρ δRMSE UPI EUC
NEG-ITEM-SUPPORT 0.0111 0.0277 0.1408 0.0233 0.5170
ITEM-VARIANCE 0.1340 0.1089 0.3897 0.5075 0.5742
RESAMPLE 0.0872 0.0753 0.2567 0.3632 0.5483
ENSEMBLE 0.0405 0.0262 0.0527 0.1761 0.5152
EB-FunkSVD 0.2161 0.1884 0.4370 0.8133 0.6218
EB-Linear 0.2832 0.2398 0.7382 1.0839 0.6587
CPMF 0.0752 0.0684 0.2174 0.2362 0.5424
BeMF 0.1585 0.1755 0.5319 0.3726 0.5949
OrdRec 0.2788 0.2674 0.6843 0.7673 0.6669

Table 6. Rating prediction uncertainty evaluation: Netflix dataset. The best values (highest) are highlighted in bold.

However, as stated before, these curves are relatively hard to interpret, and for this reason we refrain from
drawing strong conclusions from them and turn our attention to the various other evaluation metrics that we
presented in Section 4.2. The values for these metrics are shown in Tables 5 and 6.

The best overall results are obtained by EB-Linear and OrdRec, while the worst results come from ENSEMBLE.
In general, the diferent metrics in the Table seem quite correlated. That is, the performances of the models have
nearly the same ordering across all metrics and both datasets. We ind these results to be reassuring, since all the
metrics are designed to measure the strength of the relationship between uncertainty and rating prediction error.
On this, a few observations can be made. EB-Linear’s uncertainty seems to correlate linearly with error since
their Pearson correlation is stronger, while OrdRec’s might correlate non-linearly given the higher Spearman
correlation. Moreover, EB-Linear performed strongest according to UPI, while the results for other metrics, such
as EUC, are closer, with even a slight advantage for OrdRec in the Netlix dataset.

6.3 Top-n recommendation

The results in the previous section evaluate the measures of uncertainty through the prism of prediction error.
But, as we noted in Section 2.2, we care more about the quality of the top-n recommendations than the prediction
error. Hence, using the ideas from Section 4.3, we here compare the uncertainty estimates in a variety of top-n
recommendation scenarios.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Uncertainty bin

0.6

0.8

1.0

1.2

1.4

RM
SE

NEG-ITEM-SUPPORT
ITEM-VARIANCE
RESAMPLE
ENSEMBLE
EB-FunkSVD

EB-LINEAR
CPMF
BeMF
OrdRec

(a) MovieLens dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Uncertainty bin

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

RM
SE

NEG-ITEM-SUPPORT
ITEM-VARIANCE
RESAMPLE
ENSEMBLE
EB-FunkSVD

EB-LINEAR
CPMF
BeMF
OrdRec

(b) Netflix dataset.

Fig. 3. RMSE-uncertainty curves.

ACM Trans. Recomm. Syst.

24 • Victor Coscrato and Derek Bridge

MovieLens Netlix
Model URI UAC URI UAC
NEG-ITEM-SUPPORT 0.5070 0.0135 0.6747 -0.1292
ITEM-VARIANCE -0.0590 0.0316 -0.1561 0.2121
RESAMPLE -0.2371 0.1138 -0.3554 0.1470
ENSEMBLE -0.3399 0.2125 -0.4491 0.4141
FunkSVD-CV -0.0867 -0.0218 -0.2825 0.1733
Bias-CV -0.1548 -0.0489 -0.2983 0.0037
CPMF 0.5196 -0.0242 0.6944 -0.2905

BeMF 0.9527 -0.1619 0.6043 -0.0492
OrdRec 0.2833 -0.0283 0.3808 -0.2143

Table 7. Rating-based ranking uncertainty evaluation: URI and UAC on MovieLens and Netflix datasets. The best values

(highest on URI and lowest on UAC) are highlighted in bold.

6.3.1 Rating-based ranking. In rating-based ranking (RBR), the top-n are the n candidate items with the highest
predicted ratings. We begin our evaluation by comparing the accuracy of the diferent models, leaving uncertainty
aside. Figure 4 shows the MAP@n and Recall@n, averaged over all test users, for diferent values for n ∈
1, 2, . . . , 10.

The most evident result in the Figure is the very low performance of BeMF in these metrics. This is to be
expected. It happens because BeMF is only able to predict rating scale values, that is, r̂ui ∈ S ; unlike the other
models, it cannot predict a rating that lies between two values on the scale. Therefore, many candidates will
receive the same predicted rating ś they ‘tie’. The creation of a top-n from such an ordering involves a lot of
random tie-breaking. This is presumably why BeMF is not evaluated for RBR in [33]. Apart from BeMF, the
remaining models perform similarly, which is reassuring. But there are exceptions: OrdRec has worse MAP for
the MovieLens dataset; CPMF is notably worse for the Netlix dataset; and both OrdRec and CPMF have poor
recall on the Netlix dataset.

Turning our attention now to the evaluation of the uncertainty estimates, in the RBR scenario our evaluation
tools are URI and AUC. The results are shown in Table 7. Remember that higher (positive) URI values denote
better performance, while the opposite is the case for UAC. We irst notice that the two metrics mostly agree. For
both of them, BeMF showed better performance in the MovieLens dataset (although we know that its results are
afected by the random choices in the cases of tied ratings), while CPMF was best in the Netlix dataset. On the
negative side, RESAMPLE and ENSEMBLE showed poor performance, together with EB-FunkSVD and EB-Linear,
which was one of the best performers on the rating prediction task. Therefore, we see a clear disconnect between
the models’ ability to estimate uncertainty on the rating prediction and top-n recommendation tasks.

6.3.2 Uncertainty-based filtering. In uncertainty-based iltering (UBF), we prevent uncertain candidates (ones
whose uncertainty estimate exceeds τ) from being included in the top-n. In the results that we report here, we
progressively exclude bigger fractions of the most uncertain candidates, reducing the overall uncertainty of the
recommendation lists. More speciically, for each uncertainty estimate, we obtain a distribution using 100,000
randomly-selected user-item pairs and we obtain the 20%, 40%, 60% and 80% percentiles of these distributions as
cut-ofs for uncertainty. We have chosen this percentile approach due to the diferent ranges of values that the
uncertainty estimates have. Figure 5 shows the MAP@10 and Mean Predicted Rating@10 of the recommendation
lists for these diferent cut-ofs. The same Figure also shows the recommendation coverage with each cut applied
and a MAP@10 value that considers only users to whom a full 10 recommendations can be given.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 25

1 2 3 4 5 6 7 8 9 10

n
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
AP

@
n

1 2 3 4 5 6 7 8 9 10

n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
ca
ll@

n

Baseline CPMF ENSEMBLE BeMF OrdRec

(a) MovieLens dataset.

1 2 3 4 5 6 7 8 9 10

n
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
AP

@
n

1 2 3 4 5 6 7 8 9 10

n

0.00

0.01

0.02

0.03

0.04

Re
ca
ll@

n
Baseline CPMF ENSEMBLE BeMF OrdRec

(b) Netflix dataset.

Fig. 4. RBR:MAP@n and Recall@n forn ∈ 1, 2, . . . , 10. (Results forNEG-ITEM-SUPPORT, ITEM-VARIANCE and RESAMPLE
will be the same as the Baseline.)

The only uncertainty estimates whose MAP increases as uncertain recommendations are excluded are CPMF,
BeMF and, in the case of the Netlix dataset only, NEG-ITEM-SUPPORT. Many of the other uncertainty estimates
harm precision as uncertain recommendations are excluded. These results are similar to those we observed with
URI in the previous section. An exception is OrdRec, which had high URI but did not perform well here. We also

ACM Trans. Recomm. Syst.

26 • Victor Coscrato and Derek Bridge

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

MA
P@

10

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Me
an

 Pr
ed

ict
ed

 R
ati

ng
@1

0

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Av
er

ag
e c

ov
er

ag
e@

10

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

MA
P@

10
 (C

ov
er

ed
 on

ly)

NEG-ITEM-SUPPORT
ITEM-VARIANCE
RESAMPLE
ENSEMBLE
EB-FunkSVD
EB-LINEAR
CPMF
BeMF
OrdRec

(a) MovieLens dataset.

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

MA
P@

10

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Me
an

 Pr
ed

ict
ed

 R
ati

ng
@1

0

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Av
er

ag
e c

ov
er

ag
e@

10

1.0 0.8 0.6 0.4 0.2

Uncertainty quantile cut

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

MA
P@

10
 (C

ov
er

ed
 on

ly)

NEG-ITEM-SUPPORT
ITEM-VARIANCE
RESAMPLE
ENSEMBLE
EB-FunkSVD
EB-LINEAR
CPMF
BeMF
OrdRec

(b) Netflix dataset.

Fig. 5. UBF: MAP, Mean Predicted Rating, Coverage and the MAP for users for whom a full set of recommendations can be

made. This is for top-10 recommendations with increasing τ to filter diferent quantiles.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 27

see that the decrease in MAP is, in general, related to the decrease in average relevance as stricter thresholds
are applied. That is, the ive models with the largest average relevance decrease (ENSEMBLE, EB-FunkSVD,
RESAMPLE, ITEM-VARIANCE and OrdRec), are the same ones with the largest drops in MAP. On the other
hand, with some uncertainty metrics, such as CPMF and BeMF, it is possible to apply cuts which reduce average
relevance only slightly and increase MAP.

Empirically, UBF does not harm coverage. For most of the uncertainty estimates, we can still make 10 recom-
mendations, even as iltering is made stricter. The exceptions are EB-Linear and OrdRec (and the latter only for
the MovieLens dataset), and then, even in the worst case (EB-Linear at the 80% quantile cut-of), the model is still
able to provide 80% of the requested recommendations. Therefore, the MAP@10 values for users whose coverage
is unharmed are very similar to the original ones.

6.3.3 Probability-of-relevance ranking. In probability-of-relevance ranking (PRR), we generate recommendations
by ranking items according to the probability that their rating is greater than or equal to the relevance threshold,
θ , which for these datasets is 4. As we discussed in Section 2.2.3, this idea was proposed for BeMF. But it applies
directly also to CPMF and OrdRec. The remaining (non-probabilistic) models, appear to be unsuitable to PRR.
Nevertheless, in order not to exclude all of them from the comparisons, we can use some heuristic extensions.
The ENSEMBLE trains several models, which can be thought of as an N -dimensional sample of the theoretical
population of the rating estimator under all the possible random initialisations. This setup is reminiscent of the
central limit theorem. Then, assuming normality, we can use:

P(rui ≥ θ) = P
(

N
(

1

N

N
∑

k=1

Φ
(k)(u, i), ρui√

N

)

≥ θ

)

(37)

Furthermore, the error-based models predict rating prediction errors, that is ρui = E[|r̂ui − rui |]. Therefore,
ρui is an estimate of the ratings’ standard deviation. Now, assuming rui to follow a Normal distribution with
average Φ(u, i) and standard deviation ρui , it becomes possible to estimate P(rui ≥ θ) as:

P(rui ≥ θ) = P (N (Φ(u, i), ρui) ≥ θ) (38)

With such extensions, we can now compare ENSEMBLE, EB-FunkSVD, EB-Linear, CPMF, BeMF and OrdRec
for the task of PRR. As discussed in Section 4.3.3, we evaluate whether PRR, which uses the uncertainty estimates
for ranking, produces more accurate recommendation lists than RBR, which ignores the uncertainty estimates.
This comparison is shown using MAP@10 in Figure 6.

In the Figure, we see that only CPMF and BeMF have higher MAP@10 when their recommendations are
selected using PRR compared with selection by RBR. OrdRec’s MAP@10 is the same for both. For all the other
uncertainty estimates, MAP@10 is harmed. This may be because the way that we extended PRR (from BeMF) to
these other models is not well-motivated enough, but it also relects the poor performance of these models.

Finally, as discussed in Section 2.2.3, the quantity 1 − P(rui ≥ θ) can be considered as an uncertainty estimate.
To evaluate the usefulness of these estimates, we employ UAC, remembering thatURI is not applicable in this
case due to the correlation between the ranking probabilities and the uncertainties. The results are shown in
Table 8. The best performances are achieved by BeMF in the MovieLens dataset, and OrdRec in the Netlix dataset.
For CPMF, this uncertainty estimate is uncorrelated with MAP. Unfortunately, for ENSEMBLE, EB-FunkSVD and
EB-Linear, the uncertainties are positively correlated with MAP.

This concludes our results. To summarise, we have shown that there is no model that performs better than all
the others across all the metrics that we have explored. Nevertheless, we have shown CPMF to be the best model
for uncertainty-aware ranking (i.e. for uncertainty-based iltering and probability-of-relevance ranking). On the
other hand, our new EB-Linear model had the best uncertainty estimates for most of our rating prediction results,
while performing very poorly on the top-n. This highlights a disconnect between the rating prediction task and

ACM Trans. Recomm. Syst.

28 • Victor Coscrato and Derek Bridge

ENSEMBLE EB-LINEAR EB-FunkSVD CPMF BeMF OrdRec
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
AP

@
10

RBR
PRR

(a) MovieLens dataset.

ENSEMBLE EB-LINEAR EB-FunkSVD CPMF BeMF OrdRec
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
AP

@
10

RBR
PRR

(b) Netflix dataset.

Fig. 6. PRR versus RBR: MAP@10.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 29

Model MovieLens Netlix
ENSEMBLE 0.2979 0.2787
EB-FunkSVD -0.0193 0.2296
EB-Linear 0.0075 0.1180
CPMF -0.0334 -0.0140
BeMF -0.2077 -0.1509
OrdRec -0.0237 -0.2048

Table 8. PRR uncertainty estimates: UAC on MovieLens and Netflix datasets. The best values (lowest) are highlighted in bold.

the top-N recommendation task in the context of uncertainty estimation. Moreover, we saw that the uncertainty
estimates behave very diferently from each other. This, together with the variations in the performance of
the uncertainty estimates across diferent metrics, raises a major concern about the credibility of some of the
uncertainty estimates. Finally, given that top-n recommendations is more important than rating prediction, we
believe CPMF to be the most promising of all the models.

7 DISCUSSION

So far, we described and empirically evaluated several ways of estimating rating prediction uncertainty. The
results show the performance of each uncertainty estimate according to diferent evaluation criteria. Although
we have already raised some general concerns, the results allows us to conduct a further discussion regarding
each uncertainty estimate. Furthermore, there are aspects that may be particular to each estimate that may not
be explicitly demonstrated by the results. This section discusses these issues and critiques each of the uncertainty
estimates.

NEG-ITEM-SUPPORT: Characterising the uncertainty of a rating prediction by the number of ratings of
the target item has a solid foundation. Its high URI conirms that, when recommended, well-supported
items tend to be more relevant. However, its strong performance on this metric might be attributable to
the various biases known to exist in the datasets used for oline RS evaluation [12]. Furthermore, as we
have already noted, one concern about NEG-ITEM-SUPPORT is that this estimate of uncertainty is not
personalised, which does not seem reasonable; we would expect uncertainty to depend on the relationship
between an item and the user proile. Another unreasonable property is its model-independence; we would
expect uncertainty to depend in part on the quality of the rating prediction model. Another potential
issue is that, if used for UBF, NEG-ITEM-SUPPORT will reduce the item candidates to a subset of the most
popular ones, greatly decreasing the system’s ability to recommend novel, yet relevant, items.

ITEM-VARIANCE: Disagreement between users would certainly seem to be a source of uncertainty. In line
with this, the positive results achieved by ITEM-VARIANCE in the rating prediction uncertainty evaluation
show that the predicted ratings for items about which users disagree tend to be less accurate. On the
other hand, we did not ind ITEM-VARIANCE to be useful in the top-n recommendation case. In addition
to this, and similarly to NEG-ITEM-SUPPORT, ITEM-VARIANCE is also model-independent and not a
personalised metric.

RESAMPLE: We found that the variation in predictions that ensues from perturbations during model training
does correlate with the error in the inal predictions, as evidenced by the positive values achieved by
RESAMPLE in the rating prediction uncertainty evaluation metrics. On the other hand, this method
obtained negative URI, meaning that, in the task of top-n recommendation, quantifying uncertainty by this
method is not only inefective but actually harmful. One possible explanation for this is that recommended

ACM Trans. Recomm. Syst.

30 • Victor Coscrato and Derek Bridge

items are the ones with the highest ratings, which means they fall far from the average rating case and are
therefore more likely to get noisy predictions.

ENSEMBLE: We found ENSEMBLE to have similar, or even worse, results than RESAMPLE in regards to
uncertainty evaluation. In fact, given the similar motivation of both, we can conclude that multi-modelling
strategies are not useful for uncertainty quantiication in the case of top-n recommendation. Nevertheless,
we highlight that, in the MovieLens dataset, ENSEMBLE had the best MAP and Recall in the RBR task,
although the improvement relative to the baseline is small.

EB-FunkSVD: We expect uncertainty to be a quantity related to rating prediction error. The cross-validation
methods build on this idea directly: they use regression to predict error, and treat these predicted errors as
estimates of uncertainty. Unsurprisingly then, EB-FunkSVD achieves good results in the rating prediction
uncertainty evaluation. Unfortunately, when it comes to top-n recommendations, it performs poorly. This
may be because EB-FunkSVD minimises the average absolute error, but the recommended items are those
with the highest ratings, which are outliers relative to the average, and therefore, might not receive good
uncertainty predictions.

EB-Linear: Our critique of EB-FunkSVD also applies to EB-Linear. In this case, the results are even more
evident: the rating prediction uncertainty evaluation results are even better than those of EB-FunkSVD,
but its URI results are even worse. Therefore, we conclude that the simple linear model can accurately
recognize the user-item interactions where rating prediction imprecision is most likely to occur, but cannot
recognize which recommendations are more or less likely to be correct. To solve this issue, one possibility
to be explored in future work is to restrict the error estimation learning only to those interactions which
get predicted with the highest ratings.

CPMF: CPMF extends the popular PMF model by incorporating variance parameters. Whereas other ways of
measuring uncertainty are largely heuristic in nature, CPMF has a great theoretical foundation. Not only
that, but our experiments show CPMF to be a successful approach, being the only model able to beneit
from the uncertainty-aware recommendation methods (UBF and PRR). Nevertheless, its performance in
the, admittedly less important, rating prediction uncertainty evaluation was not impressive. Of course,
this may not be a weakness of CPMF; it may, instead, raise a lag about the disconnect between prediction
error experiments and top-n recommendation experiments. Of the two, a good performance at top-n
recommendation is more important than performance in rating prediction.

BeMF: In its original formulation, this model has several particularities that contrast with the others herein.
For instance, the rating prediction function of BeMF difers from those of OrdRec and CPMF by focusing on
the mode of the rating distributions instead of their average and dispersion. We are grateful to the authors
of this method, since their work greatly helped our deinitions of UBF and PRR. Nevertheless, the results
achieved by their model have been largely underwhelming; although the uncertainty evaluation metrics
have been positive in both the rating prediction and the recommendation case, the poor MAP obtained in
both RBR and PRR makes it really hard to justify its use compared, for example, with CPMF, especially
since BeMF has much higher complexity.

OrdRec: OrdRec ofers a collaborative iltering algorithm that is suitable to ordinal feedback data. Although
this was its main goal, its authors recognized that its multinomial formulation allows the model to also
provide uncertainty estimates. In Section 3.5, we raised a concern regarding OrdRec’s uncertainty estimates
at the limits of the rating scale, which may cause issues. In particular, recommended items are usually those
whose predicted ratings fall close to the rating scale upper boundary, and therefore, these items will often
receive very low uncertainty estimates, which might not only not relect reality, but also harms some of
the evaluation metrics employed herein (e.g. URI). Furthermore, we have empirically shown that RBR and
PRR produce similar results with OrdRec. In light of this, we believe that these uncertainty estimates add
small value when compared to other models.

ACM Trans. Recomm. Syst.

Uncertainty in recommender systems • 31

8 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Conclusions. Uncertainty in RS is a very important, and yet quite under-explored, topic. In this paper, we have
shown how it is possible to accurately quantify the uncertainty in rating predictions using several diferent
methods, with EB-Linear being the most precise. This result can motivate the use of uncertainty estimates in
a variety of tasks in the RS ield, e.g. active learning, co-training and reinforcement learning. We have also
shown that it is possible to improve recommendation accuracy by changing the way a RS ranks items, with the
incorporation of uncertainty estimates. In this case, either through iltering (UBF) or probabilistic ranking (PRR),
we showed CPMF to be the best contender. In addition, we showed that other models, e.g. EB-FunkSVD and
EB-Linear, have a poor performance on estimating uncertainty on top-n recommendations, which makes it hard
to defend their use in practical systems despite their success on rating prediction uncertainty estimation.

Limitations. Even though the collection of uncertainty estimators explored in this work is the largest yet and
the empirical analysis is substantial, we recognize the empirical analysis has some limitations.
First, both datasets that we have used come from the same domain (movies). Movie recommendation has

historically been one of the most studied applications of recommender systems, but there are many others, such
as shopping, social media, etc. While we expect the behaviour of the uncertainty estimators to generalize to other
domains, there is clear value in exploring how diferent rating patterns will afect the uncertainty estimates.

Second, our empirical analysis uses only a single train/test split. This is a consequence of our decision to opt
for chronological train/test splits. We chose, in other words, to preserve the temporal nature of the data, which is
intrinsic to recommender systems. This decision does, however, mean that our results lack the kind of statistical
signiicance analysis that could be obtained from using multiple train/test splits. While we expect our results to
be robust, due to the large size of our datasets, there is clear value to exploring this further.

Finally, in our empirical analysis, for those uncertainty estimation methods that need a separate rating predictor,
we used FunkSVD (Eq. 1) with mean-squared rating prediction error as its loss function (Eq. 2). There may be
value in exploring other loss functions (e.g. ranking-based losses). We believe our choice was appropriate because
it gave a reasonably fair comparison across the systems; the exploration of uncertainty does not rely on inding
recommenders with the very highest accuracy; and, in any case, ranking-based loss becomes more relevant when
dealing with implicit feedback data, which is out of the scope of this paper and the main focus of future work
(see below).

Future work. One avenue for future work is, of course, to address the limitations described above. But, there
are at least two further additional avenues for exploration.

First, this work is deliberately limited to the case of explicit feedback; more speciically, we focus on uncertainty
estimation for rating prediction. An obvious avenue for future work is to investigate uncertainty estimation
for RSs that use implicit feedback (based on user behaviour). We are aware of only a few papers that explore
uncertainty estimation in RS that use implicit feedback, e.g. [17, 23, 31, 40]. We are already developing our own
models for this case, e.g. [14], building on the foundation that this paper provides.
Second, while our results give strong support to the usefulness of uncertainty estimates in RS, we believe

that uncertainty quantiication might also be the key to improving beyond-accuracy recommendation goals,
e.g. novelty, diversity and serendipity [24]. For example, a serendipitous recommendation can be one with high
relevance yet high uncertainty. Nevertheless, the diiculties of measuring serendipity impose great challenges to
our ability to test this hypothesis. For this reason, one avenue for future research is to conduct user trials, in
which users would provide feedback not only on their item preferences, but also on their surprise regarding
recommendations that have diferent levels of uncertainty.

ACM Trans. Recomm. Syst.

32 • Victor Coscrato and Derek Bridge

ACKNOWLEDGMENTS

This publication has emanated from research conducted with the inancial support of Science Foundation Ireland
under Grant No. 18/CRT/6223, which is co-funded under the European Regional Development Fund. We are
grateful to Diego Carraro for his assistance with the preparation of this paper.

ACKNOWLEDGMENTS

This publication has emanated from research conducted with the inancial support of Science Foundation Ireland
under Grant No. 18/CRT/6223, which is co-funded under the European Regional Development Fund. We are
grateful to Diego Carraro for his assistance with the preparation of this paper.

REFERENCES

[1] Gediminas Adomavicius, Sreeharsha Kamireddy, and YoungOk Kwon. 2007. Towards more conident recommendations: Improving
recommender systems using iltering approach based on rating variance. In Procs. of the 17th Workshop on Information Technology and

Systems. 152ś157.
[2] X. Amatriain, J.M. Pujol, and N. Oliver. 2009. I Like It... I Like It Not: Evaluating User Ratings Noise in Recommender Systems. In Procs.

of the Seventeenth Conference on User Modeling, Adaptation, and Personalization. 247ś258.
[3] Andrea Barraza-Urbina. 2017. The Exploration-Exploitation Trade-of in Interactive Recommender Systems. In Procs. of the 11th ACM

Conference on Recommender Systems. 431ś435.
[4] Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. 2019. The need for uncertainty quantiication in machine-assisted medical

decision making. Nature Machine Intelligence 1, 1 (2019), 20ś23.
[5] Mark Belford, Brian Mac Namee, and Derek Greene. 2018. Stability of Topic Modeling via Matrix Factorization. Expert Systems with

Applications 91 (2018), 159ś169.
[6] James Bennett and Stan Lanning. 2007. The Netlix Prize. In Procs. of KDD Cup and Workshop. 3ś6.
[7] Cesare Bernardis, Maurizio Ferrari Dacrema, and Paolo Cremonesi. 2019. Estimating Conidence of Individual User Predictions in

Item-based Recommender Systems. In Procs. of the 27th ACM Conference on User Modeling, Adaptation and Personalization. 149ś156.
[8] David Block. 1998. Exploring interpretations of questionnaire items. System 26, 3 (1998), 403ś425.
[9] Jesus Bobadilla, A. Gutiérrez, F. Ortega, and B. Zhu. 2018. Reliability Quality Measures for Recommender Systems. Information Sciences

442 (2018), 145ś157.
[10] Djallel Bounefouf, Amel Bouzeghoub, and Alda Lopes Ganarski. 2013. Risk-Aware Recommender Systems. In Procs. of the International

Conference on Neural Information Processing. 57ś65.
[11] Robin Burke. 2002. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12, 4 (2002),

331Ð-370.

[12] Allison J. B. Chaney, Brandon M. Stewart, and Barbara E. Engelhardt. 2018. How Algorithmic Confounding in Recommendation Systems

Increases Homogeneity and Decreases Utility. In Procs. of the 12th ACM Conference on Recommender Systems. 224ś232.

[13] Sergio Cleger-Tamayo, Juan M Fernández-Luna, Juan F Huete, and Nava Tintarev. 2013. Being conident about the quality of the

predictions in recommender systems. In European Conference on Information Retrieval. Springer, 411ś422.

[14] Victor Coscrato and Derek Bridge. 2022. Recommendation Uncertainty in Implicit Feedback Recommender Systems. In Procs. of the 30th

Irish Conference on Artiicial Intelligence and Cognitive Science. Springer.

[15] Arthur F. da Costa, Marcelo G. Manzato, and Ricardo J. G. B. Campello. 2018. CoRec: A Co-Training Approach for Recommender

Systems. In Procs. of the 33rd Annual ACM Symposium on Applied Computing. 696ś703.

[16] Edoardo D’Amico, Giovanni Gabbolini, Cesare Bernardis, and Paolo Cremonesi. 2022. Analyzing and improving stability of matrix

factorization for recommender systems. In Journal of Intelligent Information Systems.

[17] Ludovic Dos Santos, Benjamin Piwowarski, and Patrick Gallinari. 2017. Gaussian embeddings for collaborative iltering. In Procs. of the

40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1065ś1068.

[18] Simon Funk. 2006. Netlix Update: Try This at Home. https://sifter.org/simon/journal/20061211.html.

[19] Barbara Hammer and Thomas Villmann. 2007. How to process uncertainty in machine learning?. In European Symposium on Artiicial

Neural Networks. 79ś90.

[20] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent

Systems 5, 4 (2015), 1ś19.

[21] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. 2004. Evaluating collaborative iltering recommender

systems. ACM Transactions on Information Systems (TOIS) 22, 1 (2004), 5ś53.

ACM Trans. Recomm. Syst.

https://sifter.org/simon/journal/20061211.html

Uncertainty in recommender systems • 33

[22] Eyke Hüllermeier and Willem Waegeman. 2021. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts
and methods. Machine Learning 110, 3 (2021), 457ś506.

[23] Junyang Jiang, Deqing Yang, YanghuaXiao, and Chenlu Shen. 2020. Convolutional gaussian embeddings for personalized recommendation
with uncertainty. arXiv preprint arXiv:2006.10932 (2020).

[24] Marius Kaminskas and Derek Bridge. 2016. Diversity, Serendipity, Novelty, and Coverage: A Survey and Empirical Analysis of
Beyond-Accuracy Objectives in Recommender Systems. ACM Trans. Interact. Intell. Syst. 7, 1 (2016).

[25] Arnd Kohrs and Bernard Mérialdo. 2001. Improving collaborative iltering for new-users by smart object selection. In Procs. of the

International Conference on Media Futures (ICME).
[26] Yehuda Koren and Joe Sill. 2011. OrdRec: An Ordinal Model for Predicting Personalized Item Rating Distributions. In Procs. of the 5th

ACM Conference on Recommender Systems. 117ś124.
[27] Benjamin M Marlin. 2003. Modeling User Rating Proiles for Collaborative Filtering. Procs. of the 16th International Conference on Neural

Information Processing Systems (2003), 627ś634.
[28] Maciej A. Mazurowski. 2013. Estimating Conidence of Individual Rating Predictions in Collaborative Filtering Recommender Systems.

Expert Systems with Applications 40, 10 (2013), 3847ś3857.
[29] Sean M. McNee, Shyong K. Lam, Catherine Guetzlaf, Joseph A. Konstan, and John Riedl. 2003. Conidence Displays and Training in

Recommender Systems. In Procs. of IFIP INTERACT03: Human-Computer Interaction, Vol. 3. 176ś183.
[30] Andriy Mnih and Russ R. Salakhutdinov. 2008. Probabilistic Matrix Factorization. In Advances in Neural Information Processing Systems.

1257ś1264.
[31] Krishna Prasad Neupane, Ervine Zheng, and Qi Yu. 2021. MetaEDL: Meta Evidential Learning For Uncertainty-Aware Cold-Start

Recommendations. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 1258ś1263.
[32] Michael P. O’Mahony, Neil J. Hurley, and Guénolé CM Silvestre. 2006. Detecting Noise in Recommender System Databases. In Procs. of

the 11th International Conference on Intelligent User Interfaces. 109ś115.
[33] Fernando Ortega, Raúl Lara-Cabrera, Ángel González-Prieto, and Jesús Bobadilla. 2021. Providing reliability in Recommender Systems

through Bernoulli Matrix Factorization. Information Sciences 553 (2021), 110ś128.
[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca

Antiga, and Adam Lerer. 2017. Automatic diferentiation in PyTorch. In Procs. of the NIPS 2017 Workshop on Autodif.
[35] Francisco J Peña, Diarmuid O’Reilly-Morgan, Elias Z Tragos, Neil Hurley, Erika Duriakova, Barry Smyth, and Aonghus Lawlor. 2020.

Combining Rating and Review Data by Initializing Latent Factor Models with Topic Models for Top-N Recommendation. In Procs. of the

14th ACM Conference on Recommender Systems. 438ś443.
[36] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to the Recommender Systems Handbook. In Recommender Systems

Handbook. Springer, 1ś35.
[37] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo. In Procs. of

the 25th International Conference on Machine Learning. 880ś887.
[38] Guy Shani and Asela Gunawardana. 2011. Evaluating Recommendation Systems. In Recommender Systems Handbook, Francesco Ricci,

Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer, 257ś297.
[39] Bin Wang, Jie Lu, Zheng Yan, Huaishao Luo, Tianrui Li, Yu Zheng, and Guangquan Zhang. 2019. Deep Uncertainty Quantiication: A

Machine Learning Approach for Weather Forecasting. In Procs. of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining. 2087ś2095.
[40] ChenxuWang, Fuli Feng, Yang Zhang, QifanWang, Xunhan Hu, and Xiangnan He. 2022. Rethinking Missing Data: Aleatoric Uncertainty-

Aware Recommendation. arXiv preprint arXiv:2209.11679 (2022).
[41] Chao Wang, Qi Liu, Runze Wu, Enhong Chen, Chuanren Liu, Xunpeng Huang, and Zhenya Huang. 2018. Conidence-Aware Matrix

Factorization for Recommender Systems. In Procs. of the Thirty-Second AAAI Conference on Artiicial Intelligence. 434ś442.
[42] Azene Zenebe and Anthony F. Norcio. 2009. Representation, Similarity Measures and Aggregation Methods Using Fuzzy Sets for

Content-Based Recommender Systems. Fuzzy Sets and Systems 160, 1 (2009), 76ś94.
[43] Mi Zhang, Jie Tang, Xuchen Zhang, and Xiangyang Xue. 2014. Addressing Cold Start in Recommender Systems: A Semi-Supervised

Co-Training Algorithm. In Procs. of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval.
73ś82.

[44] Bo Zhu, Fernando Ortega, Jesús Bobadilla, and Abraham Gutiérrez. 2018. Assigning reliability values to recommendations using matrix
factorization. Journal of Computational Science 26 (2018), 165ś177.

ACM Trans. Recomm. Syst.

	Abstract
	1 Introduction
	2 Prediction and Recommendation
	2.1 Rating prediction
	2.2 Top– recommendation
	2.3 Notation

	3 Estimating Uncertainty
	3.1 Information-based uncertainty
	3.2 Stability-based uncertainty
	3.3 Error-based uncertainty
	3.4 Distribution-based uncertainty
	3.5 Multinomial-based uncertainty

	4 Evaluating Uncertainty Estimates
	4.1 Expected correlations
	4.2 Rating prediction
	4.3 Top– recommendation

	5 Empirical Study
	5.1 Models
	5.2 Datasets
	5.3 Methods

	6 Results
	6.1 Expected correlations
	6.2 Rating prediction
	6.3 Top– recommendation

	7 Discussion
	8 Conclusions, Limitations and Future Work
	Acknowledgments
	References

