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Abstract: The objective assessment of physical activity levels through wearable inertial-based
motion detectors for the automatic, continuous and long-term monitoring of people in free-living
environments is a well-known research area in the literature. However, their application to older
adults can present particular constraints. This paper reviews the adoption of wearable devices in
senior citizens by describing various researches for monitoring physical activity indicators, such as
energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and
balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations
regarding acceptability. This review also describes and compares existing commercial products
encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of
the status of commercially available motion tracking systems. Finally, the impact of wearable devices
on life and health insurance companies, with a description of the potential benefits for the industry
and the wearables market, was analyzed as an example of the potential emerging market drivers for
such technology in the future.
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1. Introduction

Population ageing, and the related increase in chronic diseases, is having a major impact on the
healthcare systems of most western countries, and will be having an even more significant effect in
the future. For example, as indicated by the United Nations in 2015 in [1], by 2030 the number of
older persons (defined as those aged 60 years or over) in the world is projected to grow by 56%, from
901 million to more than 1.4 billion. Likewise, the global population aged 80 years or over is projected to
grow from 125 million in 2015 to 202 million in 2030 and to 434 million in 2050. Even though the ageing
process affects virtually all countries, it is particularly significant in Europe and North America where,
by 2030, older persons are expected to account for more than 25% of the population. As reported in [1]
“As populations continue to age during the post—2015 era, it is imperative that Governments design innovative
policies specifically targeted to the needs of older persons, including those addressing housing, employment,
health care, social protection, and other forms of intergenerational support. By anticipating these demographic
shifts, countries can enact policies proactively to adapt to an ageing population”. Together with this ageing
process, it is evident that the burden of chronic diseases on health systems internationally is rapidly
increasing, as indicated by the World Health Organization [2]. In this report it has been calculated that,
in 2001, chronic diseases contributed approximately 60% of the 56.5 million total reported deaths in the
world and approximately 46% of the global burden of disease. Almost half of the total chronic disease
deaths are attributable to cardiovascular diseases. Obesity and diabetes are also showing worrying
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trends, not only because they already affect a large proportion of the population, but also because they
have started to appear earlier in life. It has been projected in [2] that by 2020 chronic diseases will
account for almost three-quarters of all deaths worldwide. The number of people in the developing
world with diabetes will increase from 84 million in 1995 to 228 million in 2025. As for the number
of overweight and obese people, not only has the current prevalence already reached unprecedented
levels, but the rate at which it is annually increasing in most developing regions is substantial.

Chronic diseases could be prevented through healthy diet, avoidance of tobacco products, and
regular physical activity [3]. However, when manifested, chronic diseases result in limitation of
mobility and physical activity of the affected persons [4], with a slow, progressive, and sometimes
unnoticed entry mechanism. Usually, the only observable effects are the reduction of the level of
autonomy and the loss of mobility. Thus, as a consequence, monitoring physical activity is a valuable
parameter in order to define if persons are performing enough physical activity in order to prevent
chronic disease or if they are manifesting early symptoms of those diseases [5].

A reliable and continuous 24 h measurement and recording of the physical activity in daily
life is thus essential and several solutions have been proposed, from video to smart homes, whose
deployment remain intrusive and expensive. Therefore, the use of micro sensors worn by elderly
people to analyse body movements [6] seems an acceptable solution for the individuals and their
caregivers, and such a solution has been investigated by researchers in the last years thanks to
the massive diffusion of micro electromechanical systems, which made those micro sensors highly
available, miniaturized, and low-cost.

The present work is organized as follows: a comprehensive review on the physical activity
indicators is provided in Section 2, while the tools and technologies adopted for assessment are
described in Section 3. Various challenges and the limitations of those methods when applied to senior
citizens are then reviewed in Section 4, with a subsection dedicated to each indicator. Moreover, a specific
subsection is dedicated to the accuracy of general commercial products and also their acceptability by
the senior citizen population. Finally, this paper reviews and compares existing commercial products
in the area to provide an outlook of the current development status (Section 5), considering both
marketed and forthcoming systems, along with a discussion on the role of insurance companies into
the wearables market with the aim of increasing the usage of those technologies (Section 6).

2. Physical Activity Indicators

In this section, several common indicators of activity behaviour are described. Those indicators
continuously measure long-term activities in subjects in free-living environments and can be used to
identify posture and classify daily activities correlated to the subject’s functional status. Moreover,
other useful information can be obtained by the energy expenditure. Gait analysis and balance
evaluation are also widely studied [7] in order to provide information on subject’s mobility and
evaluate the risk of falling. Fall detection is another important aspect to be considered. An example of
the indicators commonly taken into account by clinicians and researchers may include:

Physical activity assessment and sedentary behaviour measurement;
Posture detection with related postural transition times estimation;
Daily activity classification;
Energy expenditure and exercise intensity estimation;
Fatigue detection;
Detection and prediction of falling events;
Gait analysis and related balance/stability evaluation;
Detection of abnormal characteristics (tremor, freezing event, etc. . . . );
Sleep analysis;
Location-awareness information.
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2.1. Sedentary/Activity Monitoring and Activity Classification

Sedentary behaviour, defined as “any waking behaviour in a sitting or reclining posture with
an energy expenditure ≤1.5 metabolic equivalent (MET)” [8], is a dominant behaviour nowadays
which is connected to a high risk of developing chronic disease. Physical activity, instead, is defined
as “any body movement produced by the skeletal muscles that results in a substantial increase over
resting energy expenditure” [9]. Its benefits in preventing chronic disease are currently well-known
and it is generally categorized into light intensity (2 to 3 METs), moderate (3 to 6 METs) and vigorous
(>6 METs). Generally, a parameter provided to indicate the amount of physical activity performed
during the day is the number of steps taken. Step counting on its own, however, does not measure the
intensity, duration or frequency of physical activity, which, additionally, does not allow the evaluation
of physical activity patterns within or across days.

However, it has been also reported that the amount of time spent sedentary may be an important
health risk factor for all-cause mortality, independent of physical activity levels [10].This conclusion
suggests to focus on both the accumulation of moderate-to-vigorous physical activity, the reduction of
sitting times, and the importance of sedentary/physical activity distribution throughout the waking
hours. It is thus essential to estimate accurately the amount of time spent in a sedentary activity,
its classification, and its distribution throughout the day. Typical sedentary activities involve lying,
sitting, and standing, which can be distinguished by observing the different characteristics of the
body segments. Moreover, postural transitions (and, in particular, sit-stand transitions) can be specific
indicators to assess the quality of life of people with mobility problems. On the other side, general
daily activities of interest may encompass walking, running, ascending and descending flights of stairs,
etc. . . . However, greater attention is currently focussed on fine-grained classification by considering
more granular daily movements, such as reading, socializing, watching TV, or playing video games
(as per sedentary behaviour), and brushing teeth, dressing/undressing, taking medication, preparing
breakfast, house-cleaning, plant watering, or clothes folding for what concerns daily activities.

2.2. Energy Expenditure

Energy expenditure is expended as a result of physical activity and is extremely important in the
context of the increasing rates of obesity, type 2 diabetes mellitus, and other diseases. This indicator
can then be estimated by measuring physical activities and can be expressed relative to resting values
where 1 MET at rest equates to 3.5 mL/O2/kg/min−1 or 1 kcal/kg/h. Gross energy expenditure is
quantified on the basis of oxygen consumption and is referenced in kilocalories per minute, kilojoules
per minute, or indices that are expressed relative to body mass [11]. Energy expenditure is usually
indicated indirectly through inference from activity counts per defined period of time (epochs). Activity
counts represent the estimated intensity of measured activities during each time period and can be
translated into estimates of energy expenditure using regression-based models [12]. Intense physical
exercise might lead to fatigue, defined as the temporary physical inability of a muscle to perform
optimally. This condition occurs gradually, and depends upon an individual’s level of physical fitness,
and other factors, such as sleep deprivation and overall health, and has been known to be one of the
factors impacting on the risk of falling events, especially in older adults [13].

2.3. Fall Detection and Gait/Balance Analysis

Fall-related injuries can rapidly deteriorate the health and functional status of elderly people,
leading to loss of independence and higher risk of morbidity and mortality [14], and for older people
represent a serious health problem, with more than 30% of people older than 65 suffering a fall at least
once a year [13]. Detection of falling events have the potential to mitigate the adverse consequences of
a fall and can have a direct impact on the reduction in the fear of falling and the rapid provision of
assistance, thus reducing the time the subject remain lying after falling. This time is one of the key
factors that determine the severity of a fall and is a marker of weakness, illness and social isolation
and is associated with high mortality rates among the elderly [15]. Given the unique patterns and
characteristics that define falling events, wide attention is also currently being paid in predicting these
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events and specifying the probability that a subject may suffer a fall in a particular period of time in
the short future.

Falls can be also caused by other risk factors, such as fear of falling, medication, vision and
sensory problems, ageing, postural stability, and commonly balance control and gait stability. In a
balance test, postural sway (e.g., the horizontal movement of the centre of gravity and the related
trajectory) is one of the main indicators of the potential risk of falling. Gait disorders are also among
the most common causes of falls in older adults and can be an early sign of chronic disease. Gait and
balance disorders are usually multifactorial in origin and the early identification and an appropriate
intervention may prevent dysfunction and loss of independence. It has been reported that, in a sample
of noninstitutionalized older adults, 35% were found to have an abnormal gait. This value increases
with age and is higher in persons in an acute hospital setting and in those living in long-term care
facilities [16]. Significant gait parameters have been shown to provide an indication regarding the
difference between young and elderly subjects; such as a reduction in gait velocity and stride length in
the older population, an increased stance width, increased time spent in the double support phase,
higher variability, reduced movement smoothness and symmetry, and less vigorous force development
at the moment of push off [16]. The appearance of those senile gait patterns may actually represent an
early manifestation of subclinical disease.

Even though determining that a gait is abnormal can be challenging, as there are no clearly
accepted normal gait standards defined for older adults, it is important for clinicians to detect specific
features or abnormalities which may mark the onset of particular conditions. For instance, tremor
in the upper limbs, freezing events in subjects with Parkinson’s disease, wandering in people with
Alzheimer’s disease, and so on, are all useful indications of health which can be detected and studied.

2.4. Sleep Analysis

Sleep disturbances are also very common in older people. Those sleep disorders decrease the
quality of life and can be linked with premature death. Even though sleep structure and duration can
be significantly altered throughout the aging process [17], there are several factors which can influence
those disorders, such as physical illness or symptoms, medications, changes in activity or social life, etc.
. . . Several indicators can be used to describe those disturbances, including: sleep latency, the number
and duration of nocturnal awakenings, the total sleep time, changes in the number and rhythms
of particular sleep stages (i.e., REM and non-REM states), recurring nights of sleep disruption, and
detection of respiratory and snoring features for apnoea diagnosis [18]. Given that sleep analysis is a
very extensive research topic that should be addressed more thoroughly, a number of reviews in the
area has been included as a reference for the interested readers [19–22].

2.5. Location-Awareness Information

Finally, it has been reported that the availability of contextual information (e.g., location, purpose
of behaviour) can be incorporated with the other indicators to provide researchers with the ability to
assess the indoor and outdoor location of physical activity and sedentary behaviour [23]. For instance,
GPS, wearable cameras, and wireless communication technologies (UWB, RFID, Wi-Fi, etc. . . . ) can be
used for this purpose.

3. Physical Activity Monitoring and Assessment

Several suitable methods of assessing physical activity and sedentary behaviour have been
adopted in the last number of years. In order to define which of those methods should be implemented
for a specific case the following factors should be considered [24]:

1. Purpose of the assessment, such as epidemiological research, specific populations physical
activity monitoring, physical activity correlates and determinants definition, health programs
effectiveness measurements, and so on;

2. Target population, e.g., pre-schoolers, children, teenagers, elderly, people with chronic diseases,
or general adult population;
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3. Components of physical activity being measured, which include the frequency, intensity, amount,
type and setting of activity;

4. Practicality of the measurement tool, referring to the development, administration, scoring, and
administration of an assessment;

5. Participant burden;
6. Reliability and validity of the tool being used, indicating the stability of the tool to measure the

same concept over time and how well the tool assesses what it is intended to assess, respectively.

In adults, a typical method of collecting data on physical activity is by self-administrated
questionnaires, or by some form of direct measurement of movement.

3.1. Self-Report

A simple tool for physical activity assessment is by self-report, through the completion of
questionnaires, interviews and surveys, or, alternatively, physical activity diaries or logs are used where
information on all forms of activity is recorded each day. Those tools require a detailed description of
the activity performed, its’ intensity and duration which might be implemented via a 24 h recall plus
an extrapolation to the previous days to arrive at an impression about the habitual activity levels of
the subject. A diary based method of recording what an individual actually does on a daily basis could
produce useful health related data, but this approach requires considerable dedication by the observer.
The recording of relevant data has to be relatively simple and extended to cover several days in order to
avoid any potential bias to the results. Some well-known examples of those tools are: the Godin Leisure
Time Questionnaire (GLTEQ), the International Physical Activity Questionnaire (IPAQ) in its short and
long form, the Sedentary Behaviour Questionnaire (SBQ), Baecke’s Physical Activity Questionnaire,
Follick’s Diary, the Minnesota Leisure Time Physical Activity Questionnaire, the Physical Activity
Scale for the Elderly (PASE), the Zutphen Physical Activity Questionnaires (ZPAQ), the Stanford Usual
Activity Questionnaire, the Stanford Brief Activity Scale, the Stanford 7-day Physical Activity Recall
(PAR) scale, the Paffenbarger Physical Activity Questionnaire, the Saltin and Grimby Questionnaire,
the Yale Physical Activity Survey, and the Quantification de l’Activité Physique (QUANTAP). Those
tools are all listed in Reference [25]. However, it is evident that those instruments can provide only
qualitative outcomes. In order to overcome those disadvantages and achieve direct, objective and
reliable information on physical activity, several alternative techniques have been studied.

3.2. Video-Recording

Video-recording, adopting static cameras, wearable cameras or low-cost systems (such as the
Microsoft Kinect) is an example of an autonomous data collection methodology [26,27]. Even though
it has a definite role in the assessment of activity patterns with the advantage of direct observation,
this technique is unlikely to be practicable for large groups of individuals requiring a great amount of
resources to analyse and quantify the video-recordings.

3.3. Smart Home and Ambient Assisted Living (SHAAL)

Smart Home and Ambient Assisted Living (SHAAL) systems utilize advanced and ubiquitous
technologies including sensors and other devices (infrared, pressure mats, automatic bedroom lights,
biosensors for vital signs, temperature monitors, etc. . . . ) integrated in to the residential infrastructure,
to capture data describing activities of daily living and health-related events [28]. SHAAL systems
can increase access to information for older adults and their families, and capture information about
activities of daily living, well-being and social interactions in actual residential settings. These data
sets can expand the knowledge base of researchers beyond clinical or strictly physiological variables
assessed within clinical settings, thus providing more meaningful and representative knowledge basis
for shared decision-making. However, it is evident that those systems are expensive and can be solely
adopted for a small cohort of subjects.
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3.4. Doubly Labeled Water (DLW), Indirect Calorimetry, and Heart-Rate Recording

The classic gold-standard techniques for measuring energy expenditure are based on the doubly
labeled water method (DLW) or indirect calorimetry measuring oxygen uptake, carbon dioxide
production and cardiopulmonary parameters. Though accurate, indirect calorimetry is expensive and
requires specialized training, and likewise the DLW method is costly and not suitable for large-scale
studies [14]. On the other side, heart-rate monitors are low-cost and can provide information on
heart-rate. However, while heart-rate can be a good general indicator of activity, it is not a precise
indicator of energy expenditure, unless a proper individual calibration is performed [29]. Moreover,
analysing heart-rate records often requires some expert decision-making and is a tedious procedure.

3.5. Polysomnography (PSG)

Polysomnography (PSG) is the criterion for objective sleep monitoring and is usually performed
in specialized centres or hospitals [30]. PSG typically records multiple electrophysiological parameters,
such as EEG, EOG, EMG, and ECG, which are analysed by experts. Even though PSG provides an
accurate assessment of the sleep structure, its high cost makes the PSG impractical to be used as a
long-term monitor or in large-studies. In addition, the use of several electrical wires attached to the
body may, in turn, disturb sleep, thus affecting the measured sleep behaviour of subjects.

3.6. Motion Detectors

In order to avoid the issues typical of gold-standard technology and guarantee low-cost, accurate
and reliable data, wearable motion detectors have been commonly used in clinical and research settings
for objective physical activity measurement. Pedometers are step counter devices designed to measure
vertical movement. They have been in use for many years, but pedometers are not accurate when used
for activities that do not involve footfalls (such as swimming or upper body movements). Moreover,
accuracy may be poor among specific populations, and among different models [31]. Accelerometers
are technically more advanced than pedometers and being multi-axial can measure horizontal, lateral,
and vertical movements. The reliability and validity of accelerometer data is generally high, and it
has been proven that those devices can be used to measure steps, activity counts, energy expenditure,
posture, walking, and different intensities of movement. Moreover, accelerometers can be worn by
the subjects for days at a time without issues. However, interpreting data from accelerometers can be
challenging and varies according to age, gender, functional levels, and health status of the subjects [12].
Indeed, the cut-points for intensity of activities vary according to age, gender, functional levels and the
type of accelerometer being worn. Additionally, performance of the motion sensor can vary according
to the location chosen for the device placement, such as trunk, lower back, hip, waist, thigh, shank, or
foot [32,33].

Recently, significant attention has been paid to wrist-worn accelerometers as they are convenient
and comfortable to wear, as well as improve compliance in studies where there is prolonged wear time.
At the same time these systems provide a high level of accuracy.

Furthermore, the integration of additional motion sensors is taken into account to increase
the overall performance. Such integrated sensors may include gyroscopes, and magnetometers,
but also barometers, GPS and physiological sensors (e.g., heart rate) devised to improve the
assessment/detection of specific indicators [34–36]. The interested readers may also refer to
Reference [37–39] for an in-depth analysis of the working principles of the mentioned sensors.

A number of reviews studying the adoption of wearable motion sensors for physical activity
monitoring and assessment are currently available in literature [12,14,40–44], however, little to no
consideration is given to wearables for older adults. A selected literature review, which satisfies this
requirement, will be described in Section 4.
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4. Wearables for Senior Citizens: Related Works and Limitations

Researchers’ interest has covered several aspects of the usage of motion detectors in the older
population. The main research topics can be differentiated into:

• Realization of prototypical activity trackers and the implementation of remote
monitoring infrastructures;

• Definition of advanced algorithms for physical activity monitoring, posture transitions analysis,
fall detection, gait and balance analysis, etc. . . . with the related validation on geriatric samples;

• Investigation on smartphones-based monitoring systems;
• Adoption of consumers’ fitness trackers on older subjects, accuracy of those systems, and study

of the attitude towards those devices.

Those areas will be described in detail in the following subparagraphs.

4.1. Remote Monitoring Systems

Earlier published works studied the realization of specific “ambulatory activity recorders” for
older adult subjects to be worn for physical monitoring. Examples include the works published by
Noury et al. [45,46] for the ACTIDOM project, combining 3D accelerometers and 3D magnetometers,
and the CAALYX project, which aimed to develop an electronic device (or “smart garment”) able to
detect falls of older subjects in the domestic environment and outside [47].

Researchers also investigated the development of a body wireless network infrastructure
requested to connect motion detectors, and potentially additional sensing technologies, to a base
station or beacon (such as a PC, or a smartphone) which, after processing the data, can consequently
send alerts to caregivers, assessing a tele-medicine approach. Initial examples in the previous decade
of similar infrastructures were:

• Reference [48], where an Intelligent Accelerometer Unit (IAU), fixed to the patients back, at the
height of the sacrum, transmits signals to a WPAN server (PSE) for online processing, supported
by a wireless personal area network WAN, for full 24 h supervision;

• Reference [49], where a dual-axis accelerometer measures body movements produced by
respiration, posture changing, falling, and activities, and if the person’s respiration is paused for
3 min, or if they are in an inactive state for 1 min after falling, or for 64 min without previously
falling, then the system automatically sends the person’s location to the family by e-mail or phone;

• Reference [50], where a wearable device including accelerometer, gyroscope, and heart rate, worn
on the patient’s chest transmits signals via ZigBee to a wireless receiver connected to a laptop, on
which a fall detector algorithm is implemented. The software on the laptop is able to send alarms
to caregivers/relatives via Internet in case of necessity.

Integration of multiple sensors into the body sensor network for vital sign monitoring were also
considered in [51–54], including sensors for respiratory rate, skin temperature, surface EMG, ECG,
and plantar pressure. However, despite the advantage given by the multitude of sensors providing an
overall detailed picture related to the physical status of the subjects, such systems may be considered
obtrusive for elderly people. For this reason, [55] described a solution where activity, respiration
rate, heart rate, posture and behaviour were estimated from only one accelerometer worn on the
chest, which then transmits outcomes to a server remotely available by the caregivers. Likewise, [56]
investigated the adoption of a watch-like device, including an accelerometer, which detects the physical
activity and stores data locally and periodically tries to connect to the data gateway which, in turn, try
to send the measurements to a remote database where data is stored and analysed by end-users. In
this study, the compliance and acceptance of the system was greater than that which was described in
other works. Similar conclusions were drawn in [57] with a waist-like device used by older people
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with chronic kidney disease. However, in both studies, the population samples were limited as they
involved only three and five subjects, respectively.

Other examples of network infrastructures or frameworks for behaviour analysis and fall detection
in the elderly are shown in [58–61]. A recent work [62], extended the system architecture by including
mobile cloud computing implemented on an Android device for sending alerts, yet adopting an
easy-to-use and familiar user-interface.

Finally, a real-world application of those remote monitoring systems has been published in [63].
In this case, a necklace tag with an accelerometer is able to process data and discriminate among five
main postures. Results are transmitted to a base station, and then to the caregivers which receive
alarms on a wireless enabled watch. The system has been tested on 20 patients in a nursing home.
A comparison between the listed works is shown in Table 1.

4.2. Physical Activity Assessment and Energy Expenditure

There are several issues concerning physical activity measurement that are unique to the older
adult population. Firstly, older adults present differences in the type and intensity of activities
compared to younger adults and children [64]. Moreover, chronic conditions, typical of old age, can
affect physical activity levels. This section of the document seeks to provide information on studies
conducted using an accelerometer in older adult samples, despite the lack of a standard evaluation
protocol among those investigations [41,65]. Indeed, several aspects should be considered when
designing this type of assessment: the type of accelerometer used, its placement, the number of days
the device was worn, compliance of the subjects, physical characteristics of the population (such as
impaired or unimpaired subjects, economical status, geographical provenience, etc. . . . ), and outcomes
(e.g., activity counts, energy expenditure, . . . ).

Even though custom algorithms can be considered to estimate physical activity in elderly [56],
research-grade accelerometers are usually deployed in clinical studies, which however do not provide
details on the employed algorithm in the particular systems described. Examples of those devices are
the ActiGraph [66], ActiWatch [67], ActivPAL [68], DynaPort [69], and many others. Those studies
have been used in a wide number of investigations, such as

• Definition of the pattern of physical activity and sedentary behavior in older people and the
quantification of moderate-to-vigorous activity, [70,71];

• Evaluation of physical activity in older samples with particular conditions (schizophrenia [72],
multiple sclerosis [73], frailty [74], hospitalized subjects [75,76], severe aortic stenosis [77], acute
and subacute stroke [78]);

• Correlation of physical activity with subclinical vascular disease [79], disabilities [80,81], cognitive
function [82,83], cardio-metabolic risk [84], bone density [85], or lean mass percentage [86];

• Quantification of the effects that specific life events may have on physical activity, such as stressful
events [87], or retirement [88];

• Geographical differences of physical activity, investigated in Norway [89], the UK [90,91],
Iceland [92], China [93], Japan [94], and dissimilarities between subjects in urban and rural
contexts [95,96].

However, a limitation of those research-grade devices is given by the definition of the
cut-points corresponding to the different METs used for discriminating between sedentary, light,
and moderate-to-vigorous activities, which may vary according to the population age. It has been
reported in Reference [97] that selected assumptions on the cut-points used in analyzing accelerometer
counts can produce markedly different results, and using too low or too a high cut-point may obscure
important group or treatment differences. To this purpose, [98] derived specific cut-points for older
people while walking, suggesting that older adults are likely to have higher activity levels than
reported by previous observational studies using younger adult defined cut-points.



Sensors 2017, 17, 1277 9 of 39

Table 1. Remote Monitoring Systems for Senior Citizens.

Reference Sensors Placement Methods Measurement Context Final Report

Noury [45] Accelerometer, Tilt Switch,
Vibration Sensor N/A Activity and Fall Detection Lab (1 subject) Data sent wirelessly to a PC

Noury et al. [46] 3D Accelerometer,
3D Magnetometer

Chest, Dominant Wrist,
Thigh, Ankle

Activity and Transition
Estimation

Lab and Clinical
(5 subjects) N/A

Bourke et al. [47] 3D Accelerometer Trunk Fall Detection Lab (11 subjects) N/A

Prado et al. [48] Accelerometer Sacrum Activity and Fall Detection Lab (N/A) N/A

Miyauchi et al. [49] Accelerometer, Mobile
Phone with GPS Abdomen Fall Detection Lab (1 subject) Fall events are transmitted from the phone to a PC

which sends subject’s location to caregivers

Dinh et al. [50] 3D Accelerometer,
2D Gyro, Heart Rate Chest Vital Sign Monitoring and Fall

Detection N/A Data are sent via remote network to healthcare
personnel

Yazaki et al. [51] 3D Accelerometer,
Temperature, ECG Chest Vital Sign Monitoring and Fall

Detection Lab (8 subjects) Data are sent via remote network to family if
abnormalities are detected

Pioggia et al. [52] 3D Accelerometers, ECG,
Breath Rate, sEMG Arms, Chest, Hip, Thighs Movement Analysis and

Muscle Fatigue Detection Clinical (58 subjects) Data sent wirelessly to a PC

Bourke et al. [53]
3D Accelerometer, Heart
Rate, Respiratory Rate,
Temperature

Trunk Activity Detection, Fall
Detection, Energy Expenditure

Lab (8 subjects), Clinical
(9 subjects)

Data are sent via remote network to
healthcare personnel

Xu et al. [54] 3D Accelerometer, Pulse
Sensor, Pressure Sensors Head, Wrists, Ankles Fall Detection N/A Data sent wirelessly to a PC

Maki et al. [55] 3D Accelerometer Chest Vital Sign Monitoring and
Activity Detection Lab (5 subjects) Data are sent via remote network to caregivers

Carus et al. [56] 3D Accelerometer Wrist Activity Detection Real-Life (3 subjects) Data are sent via remote network to caregivers and
family if abnormalities are detected

John et al. [57] 3D Accelerometer Waist Energy Expenditure Real-Life (5 subjects) N/A

Dong et al. [58] 3D Accelerometer,
3D Gyro, Mobile Phone Wrist Activity Detection N/A Data are sent via remote network to caregivers

Terroso et al. [59] 3D Accelerometer, Mobile
Phone with GPS Chest Fall Detection Lab (N/A) Data are sent via remote network to family if

fall detected

Ghazal et al. [60] 3D Accelerometer,
3D Gyroscope Wrist Fall detection, Health Journal,

Food Recommendation Lab (N/A) Data are sent via remote network to caregivers

Panicker et al. [61] 3D Accelerometer, Mobile
Phone with GPS N/A Fall Detection N/A Data are sent via remote network to caregivers if

fall detected

Srisuphab et al. [62] 3D Accelerometer, Mobile
Phone with GPS Pocket Fall Detection Lab (5 subjects) Data are sent via cloud-based network to caregivers

Sriborrirux et al. [63] 3D Accelerometer Necklace Fall Detection, Activity
Detection, Energy Expenditure Hospital (20 subjects) Alerts are sent wiressly to a watch worn by caregivers
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It is well-known that activity counts can also be correlated with subjects’ energy expenditure
and oxygen uptake. Energy expenditure in a young healthy population has been studied extensively,
however, applying such estimation models to older subject groups needs to be investigated. Examples
on this area consider the adoption of a wrist-based device [99], a waist-attached sensor combined with a
heart rate monitor validated on older adults with multiple sclerosis [100], or lower-limbs accelerometer
measures [101], achieving accurate predictions.

4.3. Activity Recognition and Posture Transitions

4.3.1. Activity Classification

Another important aspect when assessing functional status in older adults concerns the
discrimination of the activities performed, which can provide additional information on the elderly
monitoring. In earlier works, basic body postures (sitting, standing, lying), standard activities
(walking, running), and the related posture transitions (e.g., sit-to-stand, stand-to, sit, etc. . . . ) were
usually considered. For example, Najafi et al. [102] developed a method based on wavelet transform,
in conjunction with a simple kinematics model, to detect postures and transitions using only one
kinematic sensor (consisting of a 1D gyro, and two 2D accelerometers) attached to the chest, while
Reference [103] adopted two 2D accelerometers attached to thigh and sternum to achieve an accuracy
in detecting static postures of 92% via an inclination-based thresholding algorithm. Other approaches
included a Dynamic Time Warping (DTW) method applied in [104] using a 3D accelerometer attached
on the user’s waist and showing 91% accuracy in recognizing the movements, while a binary tree
algorithm was shown in Reference [105] with a similar set-up. An interesting algorithm was described
in Reference [106] where a combination of different neural networks, and linear discriminant analysis
were used to recognize activities in senior citizens with an average accuracy of 94% and without
requesting a firm attachment of the sensing device on the body, which could be regardless worn on the
front/rear trouser pockets, chest pockets and the inner jacket.

Moreover, the classification of different walking patterns, including ascending and descending
stairs in an unconstrained scenario, suitable for real-time applications, has been considered. As an
example, [107] achieved this by applying a wavelet transform to the acceleration signal recorded at the
waist, while Muscillo et al. [108] adopted a naïve 2D-Bayes classifier with a correct classification rate
higher than 92%. It has been proven in [109] that a single sensor with an accelerometer and gyroscope
attached to the lower back is able to perform the classification.

Another important aspect in activity recognition is related to the classification of activities of
daily living (ADL), to be integrated with the ambulatory monitoring described above. ADLs cover
a wide range of activities typically carried out in daily living, and are usually related to activities
such as feeding, watching TV, using a telephone, cooking, etc. For instance, in [110] several features
were extracted from a multitude of sensors (a heart rate monitor worn over the chest, accelerometer,
gyroscope, light, and barometer sensors attached to the dominant wrist, and temperature sensor and
altimeter worn on the other wrist) and given as input to three machine learning methods whose
outcomes were merged by adopting a genetic algorithm defining the fusion weights. The activities
taken into account included brushing teeth, exercising, feeding, ironing, reading, scrubbing, sleeping,
using stairs, sweeping, walking, washing dishes, watching TV, and wiping, and the best combination
of classifiers achieved an accuracy of 98%. Another work [111] adopted a wide range of physiological
sensors (e.g., electrodermal activity and photoplethysmogram) combined with an accelerometer on
the wrist, in a machine learning algorithm to assess cognitive impairment in older people with
dementia. Outcomes were statistically matched with clinical scores in order to improve automatic
recognition. However, the required number of sensors can be obtrusive for the subjects, therefore
adopting only a wrist-based accelerometer (considered more socially-acceptable) has been further
investigated. Sasaki et al. [112] used accelerometer data collected from a wrist-sensor to train random
forest and support vector machine algorithms in order to discriminate household, locomotor, and
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recreational activities. Even though results were not sufficiently accurate, a significant difference in
system performance was observed when the algorithms were trained with free-living data rather than
laboratory data. On the other hand, [113] has proven the feasibility to discriminate between walking
and other daily activities with a wrist-based accelerometer. A schematic comparison between the
mentioned papers is shown in Table 2.

4.3.2. Posture Transitions Estimation

While the continuous observation of activity patterns throughout the whole day is important,
analysing the transitions between those activities is also essential so as to provide useful information
on the functional status of a subject. Indeed, rising from a chair can be one of the most demanding
activities for elderly people. Several studies analysed the dynamic and kinematic variables in the
postural transitions. For example, [114] adopted a fractal dimension of the acceleration-angular
velocity plot with data collected from a trunk movement to quantify the effects of rehabilitative care on
elderly performing sit-to-stand and stand-to-sit transitions. A combination of filters and peak-detection
method were instead adopted in [115]. Zhang et al. [116] proved that a pendant-worn sensor could
be reliably used for assessing chair rise monitoring. Finally, other published works investigated the
possibility to automate the assessment with sensors attached to the lower-back during sit-to-stand [117],
sit-to-walk [118], and 30 s chair test [119].

4.4. Gait and Balance Evaluation, Fall Detection and Risk Prediction

4.4.1. Gait Analysis

Gait analysis is an essential tool for the assessment of a variety of movement disorders supporting
clinical diagnostics and medical treatments, and can thus be especially important to assess the overall
quality of life in older adults. For this reason, several algorithms have been studied to define an
accurate method to assess gait in older adults. For example, Mariani et al. [120] obtained accurate
results with a double integration method of the 3D accelerometer data collected on the shoes of the
subjects, followed by a specific de-drifting approach. Similar results were achieved in [121] adopting
a different de-drifting model. Normative values of the gait parameters, with particular focus on the
foot clearance parameters, were also obtained by more than 1400 able-bodied adults over the age of
65 using those shoe-worn inertial sensors [122]. However, other sensor positionings were proposed
which also achieved good results, such as ankle [123], ear [124], and lower-back [125,126]. Those
latter works did consider gait when ascending and descending stairs, also implementing a method to
discriminate between young and elderly subjects.

Gait-related characteristics were also obtained for older adults population with specific health
conditions, such as bilateral knee osteoarthritis [127] and Parkinson’s disease [128], showing differences
in gait compared to healthy subjects.

Moreover, a number of validity and reliability studies have been performed adopting commercial
systems to senior citizens. For instance, Dynaport [69] has been tested in [129,130] proving that
averaged step data are in excellent agreement with criterion, even though gait variability measures
and individual steps should be viewed with caution. However, [131] reported that gait variability
assessment could be obtained reliably from the inertial data collected on the lower trunk. Moreover, as
shown in [132], RehaGait [133] could be used as a valid and reliable tool for assessing spatio-temporal
gait parameters for treadmill walking at different speeds and slopes, even though stride length at
slow speeds presented a lower reliability. However, most of those tests have been performed by older
subjects in laboratory conditions, which, as it has been noticed in [134] adopting a wearable pendant
device, may present different gait characteristics in daily life, thus suggesting that novel protocols
for testing in free-living environments should be implemented. A schematic comparison between the
mentioned papers is shown in Table 3.
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Table 2. Activity Classification Algorithms for Senior Citizens.

Reference Sensors Placement Methodology Activities Considered Measurement
Context Accuracy (%)

Najafi et al. [102] Two 2D Accelerometers, 1D Gyro Chest Discrete Wavelet
Transform Sitting, Standing, Lying, Walking

Lab (11 subjects),
Clinical (24 subjects),
Real-Life (9 subjects)

Sensitivity: 93.6;
Specificity: 95.1

Culhane et al. [103] Two 2D Accelerometers Thigh, Chest Threshold-based Sitting, Standing, Lying Clinical (5 subjects) 92

Paiyarom et al. [104] 3D Accelerometer Waist Dynamic Time Warping Standing, Sitting, Transitions
Lying, Walking, Running Lab (2 subjects) 91

Kang et al. [105] 3D accelerometer Waist Hierarchical Binary Tree Standing, Sitting, Transitions
Lying, Walking, Running, Falling Lab (5 subjects) 96.1

Khan et al. [106] 3D Accelerometer Chest/Trouser
Pockets

Artificial Neural
Networks + Linear
Discriminant Analysis

Sitting, Standing, Lying, Walking
(up/down), Running, Cycling,
Vacuuming

Real-Life (8 subjects) 94

Sekine et al. [107] 3D Accelerometer Waist Discrete Wavelet
Transform Walking (up/down) Lab (11 subjects) N/A

Muscillo et al. [108] 2D Accelerometer Shin
Artificial Neural
Networks + Kalman
Filters

Walking (up/down) Lab (24 subjects) 92

Weiss et al. [109] 3D Accelerometer, 3D Gyro Lower Back Sensors-Derived
Measures Walking (up/down) Lab (17 subjects) N/A

Chernbumroong et al. [110]

Heart Rate, 3D Accelerometers,
3D Gyro, Light Sensor,

Barometer, Temperature,
Altimeter

Chest, Wrists
Genetic Algorithm +
Neural Networks and
SVM

Household Activities Lab (12 subjects) 98

Ul Alam et al. [111] EDA, PPG, 3D Accelerometer Wrist Machine Learning Household Activities Community
(17 subjects) 92

Sasaki et al. [112] Three 3D Accelerometers Hip, Wrist, Ankle Random Forest + SVM Standing, Sitting, Lying, Walking,
Household/Recreational Activities

Lab/Real-Life
(35 subjects) 55/69

Papadopoulos et al. [113] 3D Accelerometer Wrist Time/Frequency
Measures Walking vs Other Activities Real-Life (30 subjects) 98
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Table 3. Gait Analysis Systems for Senior Citizens.

Reference Sensors Placement Parameters of Interest Measurement
Context/Participants/Age Test/Validation Accuracy and/or Other Details

Mariani et al. [120] 3D Accelerometer,
3D Gyro Foot Stride Length, Foot Clearance,

Turning Angle, Stride Velocity
Lab/10 young subjects,
10 elderly/26.1 and 71.6

U-shaped, 8-shaped
trials and
6MWT/VICON

Mean Error: 1.5 cm, 1.9 cm, 1.6◦,
1.4 cm/s

Rampp et al. [121] 3D Accelerometer,
3D Gyro Foot Stride Length, Stride Time,

Swing Time, Stance Time Clinical/116 subjects/82.1 10 m
walking/GAITRite

6.26 cm on stride length on normal
walking

Dadashi et al. [122] 3D Accelerometer,
3D Gyro Foot Time-Spatial Parameters,

Heel/Toe Clearance Clinical/1400 subjects/>65 20 m walking Significant difference between men
and women

Zhang et al. [123] 3D Accelerometer Ankle Step Frequency, Gait Duration Real-Life/297 subjects/65.7 Unconstrained daily
activities for 7 days ICC between 0.668 and 0.873

Atallah et al. [124] 3D Accelerometer Ear Gait Cycle Time, Step
Asymmetry Lab/64 subjects/60.04

Walking
test/Instrumented
treadmill

Mean difference 10 ms

Takenoshita et al. [125] 3D Accelerometer Lower Back Walking Speed, Centre of
Gravity Clinical/402 subjects/78.2 Walking test for 3

months
Walking speed decreases with time
in clinic

Chan et al. [126] 3D Accelerometer,
3D Gyro Lower Back

Cadence, Stride/Step
Regularity, Symmetry used as
Features

Lab/ 13 young subjects,
12 elderly/27.7 and 70

Walking
up/downstairs

Discriminate between young and
elderly subjects (95.7%)

Clermont et al. [127] 3D Accelerometer Lower Back Speed Time, Step Time, Stride
Time Lab/30 subjects/65.32 200 m walking test Higher stride/step time for subjects

with knee osteoarthritis

Del Din et al. [128] 3D Accelerometer Lower Back Time-Spatial Parameters,
Variability, Asymmetry Lab/60 subjects/66.75 10 m

walking/GAITRite
ICC between 0.913 and 0.983 for
4 gait characteristics

Hartmann et al. [129] 3D Accelerometer Lower Back Time-Spatial Parameters and
Variability Lab/23 subjects/77.2 10 m

walking/GAITRite
High ICCs between 0.99 and 1 for
averaged step data

Hartmann et al. [130] 3D Accelerometer Lower Back Time-Spatial Parameters and
Variability Lab/23 subjects/73.4 Walking test on

different surfaces

ICC for speed, cadence, step time
and step length on different surfaces
and dual-task conditions

Grimpampi et al. [131] 3D Accelerometer,
3D Gyro Lower Trunk Time-Spatial Parameters and

Variability Lab/29 subjects/84 6MWT High ICCs between 0.93 and 0.95 for
all parameters

Donath et al. [132]
3D Accelerometer,

3D Gyro, 3D
Magnetometer

Foot Time-Spatial Parameters Lab/24 subjects/75.3
Walking
test/Instrumented
treadmill

ICCs between 0.99 and 1 for time
variables, except for stride length at
low speed

Brodie et al. [134] 3D Accelerometer,
Barometer Pendant Cadence, Speed, Stride length,

Step Time Variability
Real-Life and Lab/51

subjects/83

Unconstrained daily
activities/Video and
walkway

Step time variability is higher and
uncorrelated with lab-assessed
results
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4.4.2. Balance Analysis

Balance is another important aspect which affects quality of life, and it is especially important
in older people for assessing their functional independence. Validated clinical tools for balance
assessment include the Berg Balance Scale (BBS) and the Timed Up and Go test (TUG). However, while
the former tends to be subjective and dependent on the experience of the evaluator, the latter quantifies
the functional impairment but requiring further subjective evaluation. It has been determined that
accelerometry in older people shows a high correlation with those clinical tools [135]. Moreover, [136]
defined a set of accelerometer-based parameters for measuring the postural sway and discriminate
between young and elderly subjects. The TUG test assessed with a wrist-based accelerometer has been
also linked to the prediction of disability levels in community-dwellers older adults [137], while the
inertial-based assessment reliability of the TUG via testing measures of variability over 5 continuous
days during single-task and dual-tasks was analysed in Reference [138]. Sheehan et al. [139] adopted
the same approach with an accelerometer attached to each shank to investigate the monitoring of
functioning decline by testing older subjects one year apart. Finally, the possibility to adopt hip
and ankle-based sensors to distinguish five different dynamic balance exercises and evaluate their
performance via machine learning techniques has been considered in [140].

4.4.3. Fall Detection and Prediction

Gait and balance instability are among the most diffused causes of falls. Falling events may have
catastrophic consequences, especially in older people. Indeed, falls are the leading cause of disability,
injury-related deaths, and emergency hospital admissions for adults over the age of 65. An extensive
amount of studies have been published in the literature [141,142] involving several methods, such
as thresholding on the accelerometer signal, trunk inclination evaluation, machine learning, velocity
profile evaluation, and so on, using sensors on different locations. However, most of those methods
have been tested on simulated falls performed by young subjects. Even though simulated falls have
been useful for developing analytical models, it has been shown that the algorithms realized with
those events may lack the necessary accuracy requirements for real-world fall detection as they may
not mimic real-world falls sufficiently [143,144]. Despite several works deploying wearable sensors on
older adults with the aim of capturing real-world falls [145,146], only a few studies [143,144,147,148]
managed to record them. In particular, Palmerini et al. [147] developed a wavelet-based approach
based on a dataset of real-world falls collected during the algorithm development phase with a
sensitivity of 90%, while [148], as part of the FARSEEING project aiming to record the largest database
of real-world falls to date using inertial sensors, analysed 100 real-world falls and employed a machine
learning approach to discriminate them from usual daily living activity with a sensitivity of 88%. The
sensors were attached to the lower back to enable the development of fall detection algorithms tailored
to older adults.

Furthermore, significant attention has been paid to the investigation of falls prediction and fall
risk evaluation. Despite extensive research, falls are still difficult to predict because of the multiplicity
of risk factors involved. Several parameters have been considered for distinguishing fallers and
non-fallers behaviour in elderly people. Some of them involve:

Gait rhythmicity [149];
Spectral analysis on accelerometry data during specific exercises [150];
Temporal gait parameters [151];
Gait stability and symmetry [152];
Time and mediolateral acceleration and spectral analysis in a sit-to-stand test [153];
Sway range, sway length and sway velocity while standing [154];
Angle, velocity and acceleration of pelvis movement during walking [155];
Stride dynamics and gait variability [156];
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Harmonic ratio, index of harmonicity, multiscale entropy and recurrence quantification analysis
of acceleration during gait [157];
Lateral harmonic stability on gait [158];
Wavelet-transform during sit-to-stand [159];
Refined composite multiscale entropy and refined multiscale permutation entropy during
walking [160];
Combinations of the previous variables [161–163].

However, the populations taken into account in those studies may be biased towards relatively
healthy older people. Therefore, additional analyses are required to further establish the predictive
ability of those methods also for specific populations.

4.5. Smartphone-Based Monitoring Systems

The opportunity to reduce the infrastructure cost of monitoring the elderly by adopting inertial
sensors already embedded into nowadays massively diffused smartphones has been investigated
previously in relevant literature. Most of the aspects described in Sections 4.2–4.4 have been reproduced
on a mobile phone and validated on older people. For example, physical activity monitoring has been
considered in [164,165], while activity recognition has been investigated in [166–168]. Quantification
of sit-to-stand transitions have been instead studied in [169,170] and gait and balance test analysed
in [165,171]. Finally, it has been considered in [172] the possibility to use such a tool to encourage
and support older people in staying active by promoting awareness about their physical activity and
enhancing motivation.

4.6. Consumer Fitness Trackers and Acceptability

4.6.1. Literature Review

There are a number of studies investigating the impact of commercial fitness trackers in older
adults. For example, it was reported that trackers were able to positively impact health by increasing
physical activity and motivating older obese adults [173] and helping them reduce blood pressure and
lose weight [174,175].

An extensively investigated aspect, recently studied, considers older subjects’ attitude and
acceptability towards activity trackers and daily activity. As current wearable devices are mainly
designed to attract a young, sporty and technical affine group of people, their usability with older
users has been questioned.

In particular, in [176], specifications and requirements (in terms of usefulness, attractiveness,
usability, comfort and acceptance) for a wrist activity tracker customized for elderly people have been
established, as part of the EMERGE project, while several other studies investigated the acceptance of
consumer trackers. In some of these papers [177,178], wearables have been substantially accepted by
older users showing a motivating effect for engagement in self-monitoring, but a variety of drawbacks
were highlighted, such as concerns on the handling of the data provided by the devices and the
consequences this feedback has for future behaviour. In addition, the lack of support, and the fact that
many of the fitness tracker’s functions were not used while other additional functions were requested,
lead to the conclusion that fitness trackers in their current form are not suited for older adults.

Similarly, Preuss et al. in [179,180] acknowledged the positive attitude of older adults towards
the adoption of new technologies, however a series of barriers related to human factors and usability
were described. These barriers include Consistency and Standards, Visibility of System Status, and
Error Prevention and perceived sacrifices because they pose potential costs (financial, time, effort) to
users. Several acceptance-promoting strategies have been also suggested with the aim of explaining
benefits and minimizing cost, including communicating personal benefits to the older adult population
specifically, creating tutorial videos, adding navigation and accuracy hints to initial start-up guides,
and allowing for trial-use periods.
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Other research papers have shown a significant variability in the users’ acceptance of results.
Trackers were seen as beneficial for helping older participants in keeping an active lifestyle in
community-dwellers subjects or people with chronic disease [181–183], while [184] showed that
the acceptability could decrease in the long-term and being limited in subjects older than 80 years.
This is also confirmed in [185] where older people with an average age between 86 and 90 years
rejected the wearable technology in favour of classical health providers/caregivers, while [186,187]
described a series of challenges experienced by senior citizens when using fitness trackers, such as
not perceiving the utility of the device, inaccurate results especially regarding step-counting and
sleep analysis, the set-up of the device and data interpretation, discomfort, requiring the use of PC
or smartphones to sync the data to the website, high mental efforts to install the app and to put the
activity tracker into operation, yet recognizing the potential of the technology. To avoid such issues
and make user-experience more engaging for older people a novel gamification-based approach has
been successfully adopted in [188].

The comparison in acceptance of fitness trackers in rural and suburban older subjects has been
instead studied in [189,190]. In both cases wearables were accepted, however, only in suburban subjects
the adoption of a fitness tracker on its own involved an improvement of the daily exercise, while this
was not evident in rural older people suggesting a need to include a human component in order to
obtain a behavioural change in this high-risk population. Moreover, the study showed a preference by
seniors for activity trackers worn on the wrist compared to other locations, as well as a high level of
inaccuracy in the results when comparing different trackers with each other.

The accuracy level of fitness trackers in elderly people has been tested in a number of papers.
For example, [191] shows that a Fitbit® attached to the hip accurately tracks step-counting among
healthy community-dwelling older adults, and it was reported in [192] that the Fitbit® may be more
accurate for step-counting at slow walking speed when attached on the ankle rather than on the waist.
A similar comparison among three trackers has been carried out in [193] taking into account a waist
and wrist positioning, resulting in high accuracy at slow speed with a sensor attached at the waist.
Moreover, [194] suggested that the Fitbit® may be considered a viable instrument for measuring daily
caloric expenditure among older adults, while [195] showed that the StepWatch™, Omron HJ-112,
Fitbit®, and Jawbone appeared accurate at measuring steps in older adults with non-impaired and
impaired ambulation during a self-paced walking test. However, it has been suggested in [196] that
the ActivPAL™ attached to the thigh may underestimate in older people with impaired function,
especially at slow walking speed, despite an accurate activity detection, while a significantly high error
(>60%) can be observed when testing older people with reduced mobility with a Fitbit® Ultra and
a Samsung GT-I9300 mobile phone with a pedometer application installed both attached to hip and
wrist [197]. Gait disorders, slow walking, or the usage of rollators increased error in step estimation,
suggesting that the tested trackers are better suited for adults and healthy older subjects.

4.6.2. Requirements for New Products

In conclusion, wearable devices can certainly help older individuals to lead healthier and safer
lives, but designers must take into consideration the differences in ability among such users and the
population in general. Similar outcomes have been diffused by the American Association of Retired
Persons (AARP) in the Project Catalyst’s report [198]. Project Catalyst is a collaborative effort between
Georgia Tech, the AARP, MedStar Health, Pfizer, and UnitedHealthcare, whose initiative is to identify
ways to improve wearables devices for 50-plus consumers. Study participants found the trackers
beneficial, especially with regards to learning daily activity and sleep patterns, receiving motivation
by seeing progress made toward a goal, having their current activity levels confirmed, and finding
the device to be easy to use. However, the trackers were also perceived as inaccurate, lacking of
instructions, presenting malfunctions, lost data and difficult sync process, and difficult to wear. Based
on this research, it is envisaged that the ideal tracker for the consumer aged 50-plus would be:
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• Informative, instilling confidence with materials that explain how activity and sleep trackers work
and how they support health and wellness goals;

• Simple, with a straightforward set-up process that includes better indicators for opening the
package and removing the device as well as more detailed, step-by-step instructions for syncing;

• Accessible, with packaging and support materials that are easy to open and product instructions
that are clear and easy to find. Features should accommodate the functional limitations associated
with aging, such as lower visual acuity, lower contrast sensitivity and lower capacity for
sequence-based memorization activities;

• Invisible, unobtrusively monitoring activity and sleep without discomfort or annoyance and with
little intervention needed on the part of the user;

• Instantaneous, giving users a view of progress that is up to date;
• Targeted to consumers aged 50-plus and their activities, with information tailored to their health

and wellness goals of achieving positive health and avoiding ill health;
• Meaningfully engaging, with timely notifications of progress.

To this purpose, the most specific recommendations provided by the participants include:

• Be able to detect more biometric data (such as blood sugar, heart rate and caloric intake);
• Feature a more comfortable band;
• Explain how tracking works, so users could feel confident in the accuracy of the data;
• Include a display;
• Be accompanied by better, more detailed instructions;
• Have a nicer-looking design;
• Leverage data monitoring to provide more alerts, such as progress toward goals and identification

of a health situation;
• Display time like a watch;
• Be waterproof;
• Report non-health functions;

Therefore, it is essential that wearable device specifically customized for consumers aged 50-plus
should be studied so that older people could fully take advantage of the health benefits related to
activity and sleep trackers.

It is worth noting that nearly all of the works referred to in Section 4 have been performed as
part of some specific clinical research studies (e.g., Parkinson’s disease, frailty, fall detection, etc. ...),
clinical epidemiological studies, or research into general lifestyle fitness/performance. There can
be a large difference in terms of parameters of interest and estimation accuracy, user interface and
interpretability of analysis results, monitoring duration/context, between all of these studies and
more so between those that are performed using research-grade sensors and the off-the-shelf activity
trackers, as in Section 4.6. Powerful, bespoke algorithms can be developed to analyse data when it
is easily accessible. This is usually not the case with the commercial products. Section 5, therefore
will review wrist-worn devices available for older adults, some extant and some forthcoming to the
market, which may be able to merge the two fields by developing commercial products—taking into
account the recommendations above—with embedded algorithms that take advantage of multi-modal
sensing for personalised activity monitoring.

5. Review of Current Products

There are many smartwatches, fitness trackers, and other wearable devices available on the
market which are oriented towards active, healthy customers. On the other hand, only a few
developers have seen potential in targeting the needs of people who have particular health concerns by
proposing products that help older customers maintain an independent lifestyle. This section reviews
several commercially available smartwatches/wristbands designed for elderly people to provide a
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comprehensive outlook of current development status. However, most of those products are provided
by start-ups or have been unveiled as prototypes and are still in the development phase, thus are
not available for consumers. While Section 5.1 describes smartwatches/wristbands already available
on the market, with a specific section for geolocation-focused devices, Section 5.2 is dedicated to
forthcoming systems. A list of interesting non wrist-related wearable products for senior citizens is left
at the end of the paragraph (Section 5.3) for in-depth analysis.

It is worth noting this review is related to commercial activity trackers which are specifically
designed for senior citizens. Therefore, “classical” commercial devices, such as ActiGraph, GeneActiv,
MotionWatch, etc., even though used by elderly people in different studies, are not mentioned, as
they target researchers studying several areas of activity monitoring and do not consider the ageing
population as their main customers.

5.1. Marketed Smartwatches

5.1.1. Lively™

Lively™ [199], recently acquired by GreatCall, Inc., combines a safety watch and home sensors
to create a monitoring and emergency response system. The watch has a large time display with
backlighting and an emergency help button which connects the user to a trained operator, available
24/7, who can send emergency help if needed. Additional features include a customizable watch band,
vibrating medication reminders, step counting, waterproof design, easy set-up, and a clip-on accessory
for fall detection. The passive home sensors are attached on movable objects around the home (such
as pillboxes, refrigerator, doors, etc. . . . ) and measure insightful data on daily behaviour pattern.
If abnormalities in the behaviour pattern are observed, an automatic alert is sent to the caregivers.
All the information is gathered from the watch and home sensors into a hub deployed in the home
using a built-in cellular connection (thus not requiring any Internet connection), and are shown on an
online dashboard available on the website or on a smartphone. The battery lifetime is 2–3 months for
the watch and 8–12 months for the home sensors. Lively™ is currently available in the US, the UK,
Australia, and New Zealand and costs $49.95 for the equipment plus a subscription fee for the service
($34.95 monthly or $359.40 annually). The adoption of a wearable smart unit differentiates the Lively™
system from other elderly-oriented home-based remote monitoring systems, such as GrandCare [200],
Healthsense [201], QuietCare [202], or Evermind [203].

5.1.2. Vytality™ by PeakFoqus

PeakFoqus is a company founded in 2014 which produces Vytality™ Apple Watch Edition [204],
an app and mobile package solution for the health and safety of seniors and patients. The system is a
beta version and costs $499 including a Vytality™ watch—Apple Watch Sport (with different size and
bands), an Apple iPhone, two months of Vytality™ Concierge, and the data plan (powered by Verizon,
not included in the overall price). The watch contains an automatic fall detection, activity level and
heart rate monitoring, location tracking, and an emergency beacon. The Concierge program instead
is related to assistance to watch settings and family notifications customization, access to emergency
services, watch set-up videos, and additional health, safety, and social features. The system received
an honourable mention at the Wearscript Workshop held at MIT Media Lab in March 2014 and has
been showcased at Panasonic Lab 1.0 in February 2015.

5.1.3. GPS Locator Watches

There are a number of localisation systems (including wearables and even smartphone apps)
which can be used for monitoring the geo-location of people. Some of those devices include Mindme
Locate [205], GPS SmartSole [206], iTraq [207], Proximity Button [208], PocketFinder [209], Comfort
Zone Check-In Mobile [210], V.ALRT [211], Tweri [212], and Lok8U [213]. They can be attached on
different positions on the body, and rely on a combination of GPS and GSM to localize the wearer
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and remotely transmit the location to the family or caregivers. Those systems can be also used for
geo-fencing, in order to signal if the wearer is crossing a pre-defined perimeter. However, typical
customers are not only limited to older people, but also include people with cognitive impairments,
with dementia or Alzheimer’s disease, subjects with autism, behavioural dysfunctions and learning
difficulties, patients in rehab, or recovering from illness or accident, lone workers, children and
even pets.

Several companies have started producing localisation systems built-in watches and wristbands,
as wrist-based sensors are more socially accepted by older people. Examples of similar products are
PAL from project Lifesaver [214], Safe Link [215], Revolutionary Tracker [216], Bluewater Security [217],
and Vega bracelet from Everon [218]. However, additional features have been also considered.

Limmex Emergency Watch [219] is manufactured in Switzerland and has an elegant wristwatch.
It includes a help button for triggering emergency calls, and a built-in loudspeaker and microphone,
as well as localization capabilities. However, a new generation of watches is under development with
the consequences of stopping the production of the current version.

Similarly, Soteria from mCareWatch [220] is an all-in-one watch, mobile phone, personal
emergency alarm, localization tracker (with GPS, GSM, and Wi-Fi) with geo-fencing, and medical
reminder. In case of an emergency Soteria can be linked to a 24 h emergency personal monitoring
service with auto-dial up to three different pre-set contact numbers. It also has camera and video
capabilities and the possibility to interact with other biometric devices (blood pressure, weight scale, etc.
. . . ) via BLE. Finally, it can also link to the ConnectiveCARE platform and mCareWatch smartphone
app, enabling both wearers and carers to access all the additional information, support and features
the platform offers. However, the system is only available in Australia.

Finally, Clevercare [221] designed a smartwatch able to make and receive phone calls, define
medication and task reminders, implement real-time location and geo-fencing, use a help button with
24/7 emergency response, sturdy, lightweight, with 18–24 h battery lifetime, possibility to visualize
data on a dashboard from smartphone, tablet or computer via Internet connection, and the setting of
inactivity alerts. However, also in this case, this product is available only in New Zealand.

5.1.4. Remarks

It is important to highlight that most of these new devices mentioned in Section 5.1 integrate
multi-modal sensing (motion, physiology, context-awareness, etc. . . . ), and some interesting research
perspectives may encompass the implementation of studies to investigate the accuracy of monitored
data and their reliability especially for senior citizens. Unfortunately, given the relatively young market
for activity trackers targeting this population, those investigations are still not available in literature,
but it is likely that will be more feasible in the next few years. One important aspect for the future
research studies is represented by the access to the raw data, and this is one important requirement
often addressed by researchers to product companies, in order to develop advanced analytical methods
to maximally exploit the amount of available data.

5.2. Forthcoming Watches

CarePredict produces Tempo [222], a wrist-based sensor which comes with interchangeable bands
that monitors the wearer’s daily activities and movements through an accelerometer. Data is sent
wirelessly to a hub installed in the home and then uploaded to cloud-secured servers where they can
be shown to the caregivers on an online dashboard. The device records users’ daily habits, such as
walking speed, visits to the bathroom, time spent sitting, standing or lying down, and position within
the house, over a seven days period building a baseline. A powerful machine learning algorithm is
adopted to track 24/7 even small changes in the patterns of behaviour, which could point toward
early signs of health complications, and send proactive alerts. Medication reminders are also included.
Nevertheless, customer release has not been announced at the time of publication (2017).
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The UnaliWear Kanega Watch [223] is a discreet, stylish, waterproof, voice-controlled device
that will provide on-call or automatic emergency assistance, relying on a fall detection algorithm.
The device does not use buttons, and does not require a smartphone. It also provides medication
reminders and a guard against wandering. This Kickstarter-funded project is currently in product beta
development, and it is expected to reach the consumer market late in 2017.

The Allen Band [224] is a slim wristband which can measure heart rate, inactivity level, body
temperature, falls, and GPS location. All the data is sent to the monitoring cloud at regular intervals via
an Internet connection (Wi-Fi), through a smartphone connected via BLE to the tracker, or via a cellular
connectivity option. Each caregiver can ask the cloud monitoring system to alert them based on their
own levels of concern, thus eliminating all additional independent monitoring costs. Each Allen Band
can send alerts to up to two caregivers at no cost whatsoever by using a help button. The device also
has an OK button to eliminate possible false positive falls detection. The system was partially funded
with Indiegogo, is currently being developed and tested for sale in the US and available on pre-order.

IN LIFE [225] is a 3-year EU-funded project which aims to prolong and support the independent
living of seniors with cognitive impairment, through interoperable, open, personalized and seamless
ICT solutions. The smartwatch system developed for the project is in pre-order and assists
elderly people in their everyday activities and automatically detects alarming situations (e.g., falls)
appropriately sending alerts to caregivers. The smartwatch comes with a pre-installed application, and
it is ready to use out of the box. It is water resistant and includes fall detection, help button, normal
smartphone features (calls, SMS, Internet, camera), reminders, and localization.

WatchRx [226] is a company founded in 2015 and its all-in-one watch is designed to be able
to remind the elderly to take their medications on time, alerting caregivers in case of any missed
medications. The watch also provides reminders for daily activities and daily checks-in, alerting
caregivers upon no response to these check-ins. The built-in phone allows for emergency calling as
well as incoming calls from caregivers, while the embedded GPS helps to track seniors showing their
position to the caregivers. WatchRx system also uses a patent-pending real-time predictive analytics
algorithm to know if a senior is likely to miss a medication and proactively send alerts.

SmartKavach from EasyM2M [227] is an industrially designed, lightweight, rugged, waterproof
device with cellular connectivity, Wi-Fi, and BLE with up to six days battery lifetime. The system
includes location tracking and geo-fencing, medications reminder, fall detection, help button, video
and voice calling directly connected to caregivers, and anti-theft mechanism.

Reemo watch [228] is a remote home controller which is able to operate appliances connected to
sensors with specific gestures. The system collects health and wellness information which provide
a clear understanding of a senior’s activity, risk factors, and behaviour changes. This information is
shown on a dashboard accessible to the caregivers through computer or mobile devices, which are
also alerted in case of fall detection. However, customer release has not been announced yet.

Omate announced the Wherecom S3 [229], an Android-powered smartwatch with GPS, Wi-Fi and
3G cellular connectivity, which can be used as a phone, and includes pedometer, medication reminder,
and help button which sends location to pre-set contacts in case of falls. The watch also includes
interchangeable straps and has up to three days battery lifetime.

Toshiba unveiled the Silmee W20 and W21 [230] both activity monitoring wristbands with skin
temperature sensor, pulse monitor, ultraviolet light sensor, accelerometer and an emergency button in
case of accidents or general distress. The devices also have Bluetooth capability that connects to both
iOS and Android, and the W21 model has a GPS tracking system in case the wearer should become
disoriented and lost. However, no further information has been provided regarding the device release.

Haier [231] unveiled at CES 2016 the senior citizens’ version of their smartwatch which is elegant
and with an authentic leather strap. It shows an OLED screen, and it is waterproof down to 30 m depth
with a battery life of up to two days. The built-in help button can alert up to three contact numbers in
the event of an emergency. The same Android and Apple app is used for GPS localization, geo-fencing,
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multi-day location history storing, and has the option to retrace the wearer’s path. However, currently
only the adult-version of the smartwatch is available.

Finally, the Japanese security service provider Secom [232] announced the launch of their older
people-focused wristband by summer 2017 after conducting field trials. It will include a help button,
fall detection, GPS localization, emergency alerts management and also fitness features (step counting,
calories burned). The wristband is water-resistant and with a battery-life around 10 days.

5.3. Non Wrist-Related Wearables

A number of interesting elderly-oriented wearable products are available on the market. Although
they are not worn on the wrist, it is worth mentioning some of them.

Amulyte [233] is a wearable activity tracker in the form of a pendant. It is lightweight and easy to
use. It uses a single button to connect with caregivers in case of emergency allowing the user to speak
with them through the built-in microphone and speaker. The device also transmits the location on a
portal accessible remotely by the caregivers. Through its on-board accelerometer, the pendant also
keeps track of the user’s activities and provides daily trends and information on the portal.

AdhereTech [234] uses a smart pill bottle with sensors and cellular technology integrated into the
plastic walls of a bottle to measure medication adherence. If a patient misses a dose, the bottle reminds
them with an on-bottle light, then a chime, and finally an automated text message or phone call, which
can also be sent to the caregivers. AdhereTech also collects data on nonadherence, recording and
tracking reasons for nonadherence. The system requires zero set-up and the battery lasts for over
200 days on a single charge.

BodyGuardian [235] is a wearable remote physiological monitoring system produced by
Preventice for easy and comprehensive monitoring of a user’s cardiac activity. The lightweight
sensor is discreet and pocket-size and can performs regular monitoring of ECG and cardiac rhythms.
The data collected by the device can be easily accessed via a portal accessible from smartphones.
In addition, BodyGuardian continuously syncs data with the Preventice CarePlatform, where
healthcare professionals can monitor the wearer’s progress and results and set individualized alerts
for patients, in case of irregularities detected comparing against pre-set parameters.

Regarding fall detection, a couple of products have been designed for the market. Sense4Care [236]
produced Angel4, a stand-alone wearable device conceived from the excellent results achieved by the
European project FATE. The device is worn on the waist and is completely automatic, without buttons
or requiring any user interactions. The sensor, with its powerful algorithm having an effectiveness
higher than 95%, detects any falls and automatically sends an emergency call to pre-set caregivers
which, using a specific smartphone app, can localize the wearer owing to the GPS built-in in the device.
The system costs $150 and has a battery lifetime of three months.

ActiveProtective [237], as an alternative approach have developed a smart clothing based system
using an accelerometer that provides “fall disambiguation” determining falls prior to impact and
including built-in micro-airbags to intervene for protection. Positioned on the hip of the wearer as a
belt, the system protects against the consequences of falls reducing the incidence of hip fractures.

5.4. Wearables Systems as Healthcare Devices

As shown in face-to-face interviews with senior citizens [182], older people see the future of
wearable devices in the healthcare sector by indicating the need, for stakeholders in this area, to get
involved in promoting physical activity trackers to patients as a possible way to improve their health.
Indeed, most of the interviewed subjects wished the devices were available in pharmacies, and that
they could learn about the devices from someone in health care, such as pharmacists, similarly to
what is done with other health-monitoring systems (e.g., blood glucose meters, blood pressure meters).
Moreover, they were interested if doctors or other health care professionals would potentially take
advantage of the data provided from the devices.
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Nowadays, in Canada, activity trackers are not taxed if bought with a prescription [182], and in
2016 the PiezoRx [238], a medical-grade exercise prescription device produced by StepsCount, was
recognized as a Class 1 Medical Device by Health Canada and now prescribed also by the physios’
Sports Care Centre (Ottawa’s leader in injury rehabilitation).

Similarly, in the US, a fitness tracker device is only eligible for reimbursement with a Letter
of Medical Necessity (LMN) from a physician with a flexible spending account (FSA), health
savings account (HSA) or a health reimbursement arrangement (HRA), in order to treat a legitimate
medical condition, such as obesity [239]. The Internal Revenue Service (IRS), indeed, has ruled that
fitness trackers are used to promote one’s “general health” and are only medically necessary under
special circumstances.

Analogous considerations have been analyzed by the Food & Drug Association (FDA) which, in
the guidance published in July 2016 [240], indicates that it does not intend to examine low-risk general
wellness products, which include fitness trackers, as those products do not make a medical claim but
are marketed as improving a person’s general state of health. Thus, it is evident that manufacturers can
produce fitness trackers without being subject to FDA oversight, with the downside of being excluded
by the healthcare service.

Therefore, it is envisaged that the future challenges and evolution for wearables are related to
regulatory hurdles, compliance, and reimbursement. The current pilot programs are aiming to generate
data which can validate the medical relevance of the devices and benchmark them against existing
clinical solutions, so that accuracy and reliability issues would be reduced and FDA clearance can be
obtained. Those medically relevant, clinical-grade datasets can initiate the integration of wearable
devices into medical technologies, thus, persuading insurance companies to cover the cost of the
systems for certain patients. Even though fitness trackers are not typically covered, there are some
examples of wearables systems which are starting to receive some form of reimbursement, such as Body
Guardian [235], Zio Patch by iRhythm [241] for remote arrhythmias detection, or the inertial-based gait
analyser LEGSys by Biosensics [242], while the US Department of Veteran Affairs (VA) [243] will soon
begin reimbursing for monitoring devices (such as the Leaf Patient Monitoring System for pressure
ulcer prevention or the modus StepWatch activity monitoring system) that can deliver continuous and
accurate data on the effectiveness of prosthetic devices.

The following section will describe in details the relationship between insurance companies
and wearables.

6. Insurance Companies and Wearables

The evolution of wearable technology in healthcare is expected to revolutionize the health
insurance industry, according to a new report from Timetric’s Insurance Intelligence Center (IIC) [244].

According to a study conducted in 2014 by Strategy Meets Action (SMA) [245], a Boston-based
research advisory firm for the insurance industry, 3% of insurers were already making use of wearable
devices with nearly 22% of them in the process of developing a strategy to deploy them.

Moreover, in the Wearable Future report written in 2014 by PwC [246] it was reported that 68% of
consumers would wear employer-provided wearables streaming anonymous data to an information
pool in exchange for break on their insurance premiums. Furthermore, consumers were more willing
to try wearable technology provided by their primary care doctor’s office than they are from any other
brand or category.

A survey [247] in Accenture’s Technology Vision Report in 2015 across nine countries has shown
that 63% of the insurer executives believed wearables will be adopted broadly by the insurance industry
within the next two years, while 31% said they were already using wearables to engage customers,
employees or partners, and the 51% of insurers planned to partner with major digital technology and
cloud platform leaders in the next two years.

Finally, the Insurance Barometer Study [248], produced in 2016 by Life Happens in collaboration
with LIMRA, showed that 51% of Millennials and 30% of people overall were very or extremely
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likely to consider wearing an activity tracker and share those results with a life insurance company in
return for financial rewards for healthy behaviours. The number went up to 65% when considering
consumers who already used an activity tracker. The results revealed that more than a quarter of
Americans (27%) and a third of Millennials (33%) cite the potential to build a long-term relationship
with an insurance company as a reason to share biometric data from a wearable activity tracker.

It is, therefore, not surprising that, according to EY’s 2016 Sensor Data Survey of senior executives
from nearly 400 insurers globally, wearable sensors will be one of the most important data sources for
future competitiveness within their industry [249].

Wearables are now providing holistic and wellness-focused analytics, which can play a crucial
role in several aspects of individual and group insurance plans, given their ability to provide relevant
data and genuine insight in regards to the actual behavioural patterns. More specifically, insurers
can use this information to set targets and incentives for policyholders to live a healthier lifestyle,
encouraging them with the possibility of lower premiums, following a Pay-As-You-Live (PAYL) scheme.
Insurance companies can, thus, greatly benefit by integrating wearable technology into their value
chain. As discussed in Reference [250–252], they can expect potential use in marketing, underwriting,
risk management, product development, compensation and claims management, such as:

• Customer engagement: Support customer health and wellness, encouraging and rewarding healthy
behaviours with financial incentives or lower premiums, while reducing risk for life and health
insurance by decreasing the frequency and size of claims. Notification of customers in the event
of a sudden adverse health condition is also a possibility. Predictive analytics can also be used to
project future potential threat/abnormality in insured customers, warning them in real-time of
the impending risks. Changes in policyholder details are detected and updated according to the
collected data.

• Risk assessment: Help insurers better understand their customers by creating individual biometric
profiles and identifying customer segments that can be used to deliver personalized targeted
products and services.

• Collaboration with healthcare providers: Create growth opportunities by building an ecosystem of
partnerships (such as health and wellness loyalty programs tied to wearable use) to access to new
customers. Partnership between health insurers and healthcare service providers. Monitoring
and managing recuperation time of patients, further helping claims management.

• Customized products and services: Improve retention by leveraging wearable data analytics to
create personalised customer propositions. Launch new product models and flexible options
with bonus/penalty characteristics (in case of overachieving/not meeting set targets) and with
premium pricing to policyholders sharing health reports and personal data, for better management
of insurance float.

• Savings: Reduce the cost of customer on-boarding and identification, and the cost of providing
healthcare. Identify and prevent fraudulent activities, lowering claims expenses and increasing
customer loyalty, and beginning of new real-time claims management by the adjuster.

Nowadays, 60% of European top insurers have launched connected car solutions using
smartphone apps, dongles, or black-box devices, and it is expected that connected health solutions will
experience a similar growth [253], also pushed by employers integrating wearables into employees’
wellness programs [254]. Some examples of the insurance companies proceeding along this pathway
are discussed below.

John Hancock [255], an American-based life insurer, with its Vitality Program offers its
policyholders Fitbits to track wellness goals and receive discounts up to 15% on life insurance annual
premium for hitting targets, up to $600 in annual savings on healthy food purchases, and discounts
and rewards from several companies.
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In September 2014, Oscar Health Insurance [256], a New York insurance company, started
supplying customers with a Misfit Flash and offered users $1 credit per day when they hit their
personalized step goal, with rewards in Amazon vouchers of up to $20 per month.

Prudential’s Vitality Health [257] offers its life insurance customers points that can be spent on
rewards such as cinema tickets, and discounted spa days, alongside reduced premiums. Those points
are earned when specific targets are met. Discounts for purchasing an Apple Watch are also recently
available with this program.

AIA Australia [258], a life insurance company, through its Vitality program offers to members
savings up to 25% off the recommended retail price of several fitness trackers and earn AIA Vitality
Points when using them.

Medibank [259], a private health insurer in Australia, allows members to save 25% on a range of
Fitbit activity trackers.

AXA [260] partnered with Withings to offer to AXA customers a free Withings Pulse as well as
the possibility of getting discounts on medications and future Withings purchases, if they walk 7000+
or 10,000+ steps per day for a period of one month.

MLC in Australia defined a new wellness program, MLC Life Insurance on Track [261], where
members adopt a Garmin Vivosmart HR tracker to receive up to 10% off the life insurance premium if
wellness scores related to steps, sleep time, and heart rate are met. A similar strategy was pursued
by South African health insurer Discovery Health [262] with its Vitality program and savings up to
900 points per week for funding an Apple Watch.

Similarly, Manulife Financial Corp. in Canada [263] provides, as part of its Vitality program, a
Garmin Vivofit 3 to their life insurance members, rewarding policyholders when a certain numbers of
points are accumulated.

Highmark [264] has teamed up with Walkadoo to provide a low-cost activity tracking program
for health plan members. Members receive a Smart Step Pebble and a lifetime online membership in
Walkadoo, earning points according to the amount of activities completed daily.

South African insurer Momentum [265], with its program multiply, rewards members with
discounts and returns on a variety of products when reaching pre-set goals measured by an activity
tracker. An analogous program was recently adopted also by the Chinese health insurer Ping An with
its Vitality [266].

Blue Cross Blue Shield Associated released a Blue365 program [267] to provide discounts for
members to a series of devices promoting health, fitness, and personal care, such as sleep trackers,
Garmin, Sensoria, Lively, etc. . . .

Cigna, with its Silver & Fit program [268], motivate and encourage older adults rewarding them
for being active, tracking the exercises with fitness device or apps.

Finally, also Aetna [269], in September 2016, has declared they will be launching a wellness
program which includes an Apple Watch.

However, many other companies launched products for employers willing to include wearables
in employees’ wellness programs. Some examples include:

• Connecticut-based life insurer Phoenix [270] donated 300 fitness trackers to employees for a
step-tracking competition;

• US-based Appirio [271] negotiated a 5% discount on the health insurance bill by sharing data
collected by employees with Fitbit®;

• Self-insured BP America [272] donated Fitbit® Zips to 14,000 employees with the possibility to
lower insurance premium if meeting the goal of one million steps counted;

• Insurer UnitedHealthcare Motion and Qualcomm [273] partnered to provide complimentary
Fitbits® or Jawbones to Qualcomm employees, who are able to earn up to $1460 when meeting
certain goals;

• Allianz is promoting the use of dorsaVi [274], a leader in motion technology providing
wearable sensors, to reduce injuries to workers, reduce occupational health and safety costs
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for employers, manage fewer claims on insurers, and help employers manage the cost of their
insurance premiums;

• Health insurance provider Humana [275] launched Go365 to provide personalized wellness and
reward program for employees, including diet and nutrition apps, activity trackers and sleep
monitors. In a 3-year impact study, it was reported that this program can lead to lower health
claim costs, less absenteeism, less emergency healthcare consumption, and fewer lifestyle risk
factors for chronic disease.

Despite the number of advantages, the adoption of wearable technologies by the insurance
industry presents some challenges. Privacy is a major issue for most policyholders, who have to decide
which parameters can be shared with the insurance company. Moreover, current benefits are still not
sufficient to motivate people in wearing an activity tracker, causing low opt-in rates. A consequence
of the lack of customer base involves the presence of insufficient customer data useful for building
reliable predictive analytics and new products. Therefore, gamification is another evident trend which
is useful for engaging customers to increase their level of motivation and compliance.

Insurers have to build trust with customers by relying on complex customer engagement strategies.
Insurers also need to build a solid framework to collect unstructured data, securely store them, and
analyse them. Such infrastructures will require high investment for connected information, for
implementing a multi-platform structure covering different wearable models, and also to guarantee a
high level of security against potential breaches.

The lack of standards around user privacy and security issues can be a potential regulatory hurdle
as well as the low integration between public and private healthcare systems.

Additionally, technology providers should increase the reliability of their products, by limiting
technology errors, malfunctioning devices, improving connectivity, and enhancing the analytics for
better healthcare delivery and treatments. Current devices have different specifications, thus providing
inconsistent quality of data precision. Moreover, given the impact that wearables and activity data will
have on insurance premiums, future devices should be able to recognize ‘real’ activities performed by
the policyholders from potentially ‘simulated’ movements performed by third-parties.

Finally, an ethical issue may revolve around the inclusion, in those insurance-defined
wearable-based new products, of people with specific conditions (e.g., subjects on a wheelchair),
which, in programs based solely on physical activity evaluation, may be disadvantaged by earning a
lower amount of points/discounts compared to normal subjects owing to their conditions.

The technology is advancing rapidly and the market for wearable technology will expand
significantly. Despite potential restraints and barriers, such data can cause a dramatic shift in the future
life and health insurance industry.

7. Conclusions

Chronic and ageing-related diseases are affecting a great amount of resources in western countries
healthcare systems. Even though they can be prevented by increasing the level of an individual’s
Physical Activity (PA), an objective and accurate PA assessment is still an issue. Among the several
devices considered to this purpose, it has been reported that wearable motion detectors are the most
promising technology enabling an automatic, continuous and long-term assessment of subjects in
free-living environments. This topic is so current that a search on ‘wearable sensors for elderly people’
on Google Scholar, listed over 1800 results since 2017 including [276–278].

Several approaches aiming to provide posture detection and state transitions estimation, gait
analysis, balance assessment, fall detection and related risk assessment in elderly subjects through
accelerometers-based sensors have been thoroughly described, together with the application of
commercial fitness trackers in the senior citizens population. Their validity and acceptability reported
in a number of studies in clinical literature has been analysed alongside a discussion related to the
features required for the population taken into account.
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Moreover, an in-depth analysis of the current market landscape related to activity trackers
tailored for older adults was described, followed by an outline depiction of the potential future trends
associated to regulatory hurdles and reimbursements.

Finally, the impact of wearables on life and health insurance companies was shown in details
with several examples of the potential benefits for the industry and the wearable market.

In the future, the adoption of wearable inertial-based activity monitors by older people should
be tailored by tracker manufacturers. Obtained physical activity parameters can be shared with
healthcare providers and insurance platforms to better describe behavioural pattern and functional
ability in high-risk subjects, thus providing important feedback regarding the overall health status of
an individual and even prediction of potential adverse health events.
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