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Abstract We study the computational complexity of these two prob-

lems. The results obtained so far concerned only restricted
classes of CP-nets, all requiring that the graph of variable de-
pendencies implied by preference statements in the CP-net be
acyclic Under certain assumptions, the dominance-testing
problem is inNP and, under some additional assumptions,
even inP [Domshlak and Brafman, 2002; Boutiliet al,,
20044. Its complexity in the general case has remained until
now an open problem. We show that it is in f&&SPACE-
complete, even for the propositional case, by exhibiting in
Section 4 @SPACE-hardness proof for dominance testing.
We then turn to consistency testing. While acyclic CP-
nets are guaranteed to be consistent, this is not the case
with general CP-nets (sd®omshlak and Brafman, 2002;
Brafman and Dimopoulos, 20D4or detailed examples and
1 Introduction discussions). In Section 5, we show that consistency testing

The problems of eliciting, representing and reasoning witHS ?_S hard atshdorTlr:jance test;ngf.th It first establish
preferences over a multivariable (or, multiattribute) domain 0 prove the hardness part ot the results, we first establis

arise in many fields such as planning, design, and group deci.he PSPACE-hardness of some problems related to proposi-

sion making. An explicit representation of a preference ordertional STRIPS planning. We then show that these problems
ing of elements (we refer to them astcome}of such mul- can be reduced to CP-net dominance and consistency testing

tivariable domains is exponentially large in the number of at-b.y exploiting connections between actions in STRIPS plan-
ing and preference statements in CP-nets.

tributes. Therefore, Al researchers have developed Ianguag@ We assume some familiarity with the complexity class

for representing preference orderings in a succinct way. Thg A :
; " o : SPACE (we refer to[Papadimitriou, 1994for details). In
formalism of CP-net§Boutilier et al, 1999 is among the articular, we rely later on the equivalendd®SPACE —

most popular ones. A CP-net provides a succinct represe '
tation of preference ordering on outcomes in terms of loca SPACE = COP.SPACE‘ . . .
The complexity results in this paper address cyclic CP-

preference statements of the foym z; > «;, wherex;, «; ts. Most i Kk h trated s i
are values of a variabl& andp is a logical condition. Infor- N€'S. MOSL €arlier work has concentrated on the acyclic
mally, a preference statemept z; > z; means that given quel. However., we argue that acyclic CP-nets are not suf-
p, x; is (strictly) preferred tar; ceteris paribusthat is, all f|C|entIy. expressive to capture human. preferences_on even
other things being equalThe meaning of a CP-net is given some simple domains. Consider, for instance, a diner who
by a certain ordering relatiomiéminancg on the set of out- has to choose either red or white wine, and either fish or meat.
}%iven red wine, they prefer meat, and conversely, given meat

We investigate the computational complexity of
testing dominance and consistency in CP-nets. Up
until now, the complexity of dominance has been
determined only for restricted classes in which the
dependency graph of the CP-net is acyclic. How-
ever, there are preferences of interest that define
cyclic dependency graphs; these are modeled with
general CP-nets. We show here that both domi-
nance and consistency testing for general CP-nets
are PSPACE-complete. The reductions used in the
proofs are from STRIPS planning, and thus estab-
lish strong connections between both areas.

comes, derived from such reading of preference statemen iey prefer red wine. On the other hand, given white wine,

If one outcome dominates another, we say that the domina ) . , .
one is preferred. they prefc_er fl_sh, and conyersely, given fish they prefer vyh|te
Reasoning about the preference ordering (dominance reldin€. This gives a consistent cyclic CP-net, and there is no
acyclic CP-net giving rise to the same preferences on out-

tion) expressed by a CP-net is far from easy. The key pro oy .
lems includedominance testingnd consistency testing In comes. So, such cychmty of preference variables does not
necessarily lead to a cyclic order on outcomes.

the first problem, given a CP-net and two outcomemd 3,
we want to decide whethgrdominatesy. The second prob- . -
lem asks whether there is a dominance cycle in the dominanc% Generalized propositional CP-nets

ordering defined by an input CP-net, that is, whether there itet V' = {4, ...,z,} be afinite set of/ariables For each
an outcome that dominates (is preferred to) itself. variabler € V', we assume a finitdomainD,, of values An



outcomds ann-tuple(dy,...,d,) of Dy, X --- X D, . Definition 3

In this paper, we focus opropositionalvariables: vari- A GCP-netC overV is locally consistenif for everyz €
ables withbinary domains. LetV’ be a finite set of propo- V, the formulap,.(z) A pg(x) is unsatisfiable. It idocally
sitional variables. For every € V, we setD, = {z,~z}  completef for everyxz € V, the formulap (z) V pf(z) is a
(thus, we overload the notation and writdoth for the vari-  tautology.
able and for one of its values). We referit@nd—zx as liter- I .
als. Given a literal we writeﬂl)to denote the dual literal o~ Definition 4 (Propositional CP-net) A CP-netover the set
The focus on binary variables makes the presentation cleardy Of (Propositional) variables is a locally consistent and lo-
and has no impact on our complexity results. cally complete GCP-net ovef.

A conditional preference ruléor, for short, a [preference] ProblemscP-DOMINANCE andCP-CONSISTENCYare de-
rule) overV is an expressiop : | > —l, wherel is a literal  fined analogously to Definition 2.
of some atonx € V andp is a propositional formula ovér This definition of a CP-net differs from the one given in
that does not involve variable [Boutilier et al,, 20044, which uses explicit conditional pref-

Definition 1 (Generalized CP-net) A generalized CP-ne&t’ erence tables. Qur rep_re;entatjon Is o_ften more compact, but
(for short, aGCP-ne}f overV is a set of conditional prefer- Itis easy to yenfy that it |s.eqU|vaIent in that it gives rise to
ence rules. Forr € V we definep;(z) andpg (), usually the\zlvsr?medd?flmtlon gf dpmlnancgl. it is critical .
written just: p* (z) andp~(z), as follows:p/,(z) is equalto waentoerelznmg a t‘?°'$'°n problem, it is Crlr'ilca to specify
the disjunction of alp such that there exists arute: z > -z Y present its input instances, as the representation

o T ; 2 . : may affect the complexity of the problem. Unless stated oth-
in C; pe(x) is the Q|SJunct|on of'alb such that.there exists erwise, we assume that GCP-nets (and so, also CP-nets) are
arulep : -z > x in C. We define the associated directed

hG.- (the d d rover 1/ t st of all represented as a set of preference rules, as described in Defi-
graph G (the dependency graplover V' to consis o7&l nition 1. Therefore, the size of a GCP-net is given by the total
pairs (y, z) of variables such thag appears in eithep™ (x)

- - +
or p- (). size of the formulag ™~ (x), p* (z), z € V.

In our complexity results we will also need the following 3 Propositional STRIPS planning
representation of GCP-nets: a GCP-@és said to be ircon-

junctive formif C only contains rulep : [ > -l such thap

is a (possibly empty) conjunction of literals. In this case all
formulasp~(z), p*(x) are in disjunctive normal form, that
is, a disjunction of conjunctions of literals (includiig— the
empty conjunction of literals).

GCP-nets determine a transitive relation on outcomes, in
terpreted in terms of preference. A preference puié > —i
ngngr?ésggﬁbﬂgtel?;ﬁmeﬁgﬁ;‘ ;?iﬂﬁ%lilssapg%el{gsgj{ﬂf vieV\_/ as the conjunction of if[s me_mbers). A state is therefore
outcomes3 satisfiesp andi, then 3 is preferred to the out- equivalent to amutcomedefined in a CP-nets context.
comea which differs from only in that it assigns-/ for  Definition 5 (Propositional STRIPS planning) A proposi-
variablez. In this situation we say that thereas improv-  tional STRIPS instancis a tuple(V, ag,v, ACT), where
ing flip from o to 8 sanctioned by the rulg : [ > —I. If

In this section we derive some technical results on proposi-
tional STRIPS planning which form the basis of our complex-
ity results in Sections 4 and 5. We establish the complexity of
plan existence problems for propositional STRIPS planning,
under restrictions on input instances that make the problem of
use in the studies of dominance and consistency in GCP-nets.
Let V be a finite set of variables. stateoverV is a com-
plete and consistent set of literals ovér(which we often

1. Vis afinite set of propositional variables;

ap, . .., 0ny IS a sequence of outcomes with > 1 and each _ o
next outcome in the sequence is obtained from the previous 2. g is a state (ovel), called theinitial statg
one by an improving flip, then we say thag, . .., a,, is an 3. v is a state called thgoat

improving sequence (fronay to «,,) for the GCP-net, and
thato,,, dominatesyy, writtenag < .
Finally, A GCP-net isconsistenif there is no outcomex

4. ACT is a finite set ofactions where each action €
ACT is described by a consistent conjunction of literals

which is strictly preferred to itself, i.e., such that< a. pre(a) (a precondition and a consistent conjunction of

The main objective of the paper is to establish the com- literals post(a) (a postcondition, or effegt
plexity of the following two problems concerning the notion An actiona is executablén a statex if o = pre(a). Theef-
of dominance associated with GCP-nets (sometimes under réectof a in statex is the statex’ containing the same literals
strictions on the class of input GCP-nets). asa for all variables not mentioned ipost(a), and the liter-
Definition 2 als ofpost(a) otherwise. We assume that an action campe

i ) pliedto any state, but that it has no effect if its preconditions
GCP-DOMINANCE: given a GCP-net” and two outcomes do not hold (this assumption has no effect on complexity).
and 3, decide whethetv < 5 in C.

. . ThePROPOSITIONAL STRIPS PLAN EXISTENCProblem, or
E%F;rcl;gtz:qstTENCY given a GCP-net’, decide whetheC STRIPS _PLANfor short,_ is to decide whether for a_given
' propositional STRIPS instancg/, «g, v, ACT) there is a
There are two properties of GCP-nets that are essential isuccessful plan, that is, sequence of actions leading from the
linking them to the original notion of CP-nef8outilier et initial state o to a state satisfying the goal
al., 1999; 2004h A plan isirreducibleif its every action changes the state.



We assume, without loss of generality, that for any actipn We will denote states ovér’ by pairs(a, k), wherea is
no literal in post(a) appears also ipre(a); otherwise we can a state ovel” andk is an integer0 < k < 2" — 1. We
omit the literal frompost(a) without changing the effect of view k as a compact representation of a state over variables

the action; (ifpost(a) then becomes an empty conjunction,

the actiona can be omitted fromd C'T as it has no effect).
We have the following result, proved iBylander, 1994:

Proposition 1 ([Bylander, 199%)
STRIPS PLANiS PSPACE-complete.

z1,...,2p. assuming that the binary representationkas

dy ...d, (with d,, being the least significant digit}; repre-

sents the state which containsf d; = 1 and—z;, otherwise.
PE is acyclic, since executing any action #CT’ incre-

ments the countek and no action can be executed once the

counter has reached the vakie— 1.

Typically, propositional STRIPS instances do not require We claim that there is a plan f®E if and only if there is
that goals be complete. We restrict consideration to coma plan forPE. First, assume that there is a planRE. Let
plete goals. This restriction has no effect on the complex+ be a shortest plan iRE and letm be its length. We have

ity: the plan existence problem remaiRSPACE-complete
under the goal-completeness restrictibang, 2004.

3.1 Acyclic STRIPS

Definition 6 (Acyclic sets of actions)A set of actionsACT
is acyclicif there is no statev such that(V, «, o, ACT) has

a non-empty irreducible plan (informally, if there are no non-

trivial directed cycles in the space of states induced|IoyT’).
We will now consider the following two problems:

1. ACYCLIC STRIPS PLAN given a propositional STRIPS
instance (V, ag,~y, ACT) such that ACT is acyclic
and oy # -+, decide whether there is a plan for
(V,a0,7, ACT).

2. ACTION-SET ACYCLICITY: given a setAC'T of actions,
decide whethed CT is acyclic.

We will show that both problems aRSPACE-complete.

Proposition 2
ACYCLIC STRIPS PLANis PSPACE-complete.

Proof: Membership irPSPACE is evident as the problem is a
restriction ofSTRIPS PLAN To provePSPACE-hardness, we
exhibit a polynomial-time reduction fromTRIPS PLAN Let
PE = (V, ap,~, ACT) be an instance &TRIPS PLAN The
idea behind the reduction is to introduceaunter so that

each time an action is executed, the counter is incremente([‘l0

The counter may count up t&*, wheren |V|, making

use ofn additional variables. The counter is initialized to O.

m < 2™ —1, since no state alongrepeats (otherwise, shorter
plans thanr for PE would exist). Letag, o, ..
~ be the sequence of states obtained by executinget a
be the action used in the transition fram to a41. Since
k < 2" — 1, there is exactly ong¢, 1 < i < n, such that
the actiona® applies at the stat@y, k) overV’. Replacinga
with a* in 7 yields a plan that when started @to, 0) leads
to (am, m) = (v, m). Appending that plan with appropriate
actionsb; to increment the counter & — 1 yields a plan for
PE. Conversely, ifr is a plan forlPE/, the plan obtained from
7 by removing all actions of the forry; and replacing each
actiona’ with a is a plan forPE.

Thus, the claim and the assertion follow.

<y Oy =

Proposition 3
ACTION-SET ACYCLICITY is PSPACE-complete.

Proof: The argument for the membership RSPACE is
standard. To provePSPACE-hardness, we proceed as
follows. LetPE = (V,aq,vy, ACT) be a STRIPS instance
such thatACT is acyclic andhy # . Leta be a new action
defined bypre(a) = v andpost(a) = «p. Itis easy to see
that ACT U {a} is not acyclic if and only if there exists a
plan forPE. Thus, tha®SPACE-hardness of theomplement
of the ACTION-SET ACYCLICITY problem follows from
Proposition 2. Sinc#SPACE = coPSPACE, this suffices
prove the hardness part of the assertion. [ ]

Once it reache8™ — 1 it can no longer be incremented and 3.2  Mapping STRIPS plans to single-effect

no action can be executed. Hence, the set of actions in the

resulting instance dd TRIPS PLANIS acyclic.
To describe the reduction, we writéas{z1, . .
definePE = (V', af, ', ACT') as follows:

o V' ={xy,...,2p,21,...,2n}, Wherez; are new vari-
ables we will use to implement the counter;

S Tn . We

o af=ag Az A Az

Y =YAZN Az

o for each actiom € ACT, we include inACT’ n actions
a’, 1 < i< n,suchthat
pre(a’) = pre(a) A —z; A zig1t A+ A zp
post(a’) = post(a) A z; A=zip1 A= A=zp

e Furthermore, we include id CT’ n actionsb;, 1 < i <
n, such that
pre(bi) =2 NZig1a N N zZp
post(b;) = zi AN —zig1 Ao Az

STRIPS plans

Versions of thesTRIPS PLANand ACYCLIC STRIPS PLAN
problems that are important for us allow only single-effect ac-
tions (actions with exactly one literal in their postconditions)
in input propositionakTRIPSinstances. We refer to these re-
strictions asSE STRIPS PLANGBNDACYCLIC SE STRIPS PLAN

To prove PSPACE-hardness of both problems, we de-
scribe a mapping fronsTRIPS instances to single-effect
STRIPSIinstances.

Consider an instandeE = (V, o, vy, ACT) of theSTRIPS
PLAN problem (whereAC'T is not necessarily acyclic). For
each actioru € ACT we introduce anewvariablez,. We
setX = A,cacr "%q- Thatis, X is the conjunction of
negative literals of all the additional variables. In addition,
foreacha € ACT we setX, = za A \pe acr— 0y ~20- We

now define an instanceE' = (V’,af,~', S(ACT)) of the
SE STRIPS PLANproblem as follows:



Set of variablesV’ =V U {z, :a € ACT};
Initial state:a, = o A X;
Goal statery’ = v A X;;

e Set of actions:S(ACT) = {a' : a € ACT, i =
1,...,2|post(a)| + 1}.
Let @ € ACT and post(a) = 1 A --- A l, For

i=1,...,q, we define:

pre(a’) = pre(a) A X A =l;; post(a) = x,;
pre(a?™?) = X,; post(ad™t) =1,

We also define:

pre(a®rt) = X, Aly A -+ Aly; post(a?itl) = -z,

Let 7w be a sequence of actionsACT. We defineS(r) to
be the sequence of actions$iACT') obtained by replacing
each actioru in 7 by a!, ..., a??*! (whereq = |post(a)|).
Now consider a sequenceof actions fromS(ACT). Re-
move fromr any actiona’ such that # 2|post(a)| + 1, and
replace actions of the fora?Post(@)I+1 py . We denote the
resulting sequence of actions fraACT by S’(r). The fol-
lowing properties are easy to check (details are omitted):

Lemma 1 With the above definitions,
(i) if 7 is a plan for PE therS(n) is a plan for PE;

(ii) if 7 is an irreducible plan for PEthenS’(7) is a plan
for PE;

(i) ACT is acyclic if and only ifS(ACT) is acyclic.

Proposition 4
SE STRIPS PLAN and ACYCLIC SE STRIPS PLAN are
PSPACE-complete.

Proof: SE STRIPS PLANand ACYCLIC SE STRIPS PLAN
problems are restrictions o§TRIPS PLAN from which
membership inPSPACE follows. PSPACE-hardness of

ACYCLIC SE STRIPS PLAN(and so, also of the other prob-

lem) is shown by reduction fromcycCLIC STRIPS PLAN
Consider an instancBE = (V, ap,y, ACT) of AcycLIC
STRIPS PLAN DefinePE = (V' af,~',S(ACT)), which
by Lemma 1(iii) is an instance of thecycLIC SE STRIPS

the GCP-DOMINANCE andGCP-CONSISTENCYproblems by
constructing a reduction in the other direction.

This reduction is much more complex than the one used in
[Boutilier et al,, 1999, due to the fact that CP-nets impose
more restrictions than STRIPS planning. Firstly, STRIPS
planning allows multiple effects, but GCP-nets only allow
flips z > —x or =& > z that change the value of one vari-
able; this is why we constructed the reduction from STRIPS
planning to single-effect STRIPS planning in the last section.
Secondly, CP-nets impose two more restrictions, local con-
sistency and local completeness, which do not have natural
counterparts in the context of STRIPS planning.

For all dominance and consistency problems considered in
the paper, the membershipRSPACE can be demonstrated
by considering nondeterministic algorithms consisting of re-
peatedly guessing appropriate improving flips. Such algo-
rithms work in polynomial space and show the membership
of problems they solve iNPSPACE and consequently in
PSPACE, sinceNPSPACE = PSPACE. Therefore, due to
space restrictions, from now on we only provide arguments
for the PSPACE-hardness of problems we consider.

4.1 Dominance for generalized CP-nets

We will prove that the GCP-DOMINANCE problem is
PSPACE-complete by a reduction from the problese
STRIPS PLAN which we now know to b SPACE-complete.

Mapping single-effect STRIPS problems to GCP-nets
dominance problems

Let (V,ap,7, ACT) be an instance of thee STRIPS PLAN
problem. For every action € ACT we denote by, the
unique literal in the postcondition af that is,post(a) = I,.

We denote byre (a) the conjunction of all literals ipre(a)
different from-i, (we recall that by a convention we adopted
earlier,pre/(a) does not contaif, either). We then define,

to be the conditional preference rnpeg (a) : I, > —l, and
defineM (ACT) to be the GCP-net’ = {c,:a € ACT}.

A sequence of states in a plan corresponds to an improving

PLAN problem. By Lemma 1() and (ii) there exists a plan Sequence fromy to, which leads to the following result.

for PEif and only if there exists a plan f&?E. [

4 Dominance
The goal of this section is to prove that theP-DOMINANCE

Lemma 2 With the above notation,

(i) there is a non-empty irreducible plan for
(V, 0,7, ACT) if and only if v dominatesag in

problem isPSPACE-complete, and that the complexity does (i) ACT is acyclic if and only if\/ (ACT) is consistent.

not go down even when we restrict the class of inputs to CP.
nets. We use the results on propositional STRIPS plannin

from Section 3 to prove that the generatP-DOMINANCE

problem isPSPACE-complete. We then show that the com-
plexity does not change if we impose the requirements of loProof:
cal consistency and local completeness on input GCP-nets.from AcCYcCLIC SE STRIPS PLAN (Proposition 4).

Theorem 1 The GCP-DOMINANCE problem is PSPACE-
gomplete. Moreover, this remains so under the restrictions
that the GCP-net is consistent and is in conjunctive form.

PSPACE-hardness reduction

Let

is shown by

The similarities between dominance testing in CP-nets andV, «g, v, ACT) be an instance of thecycLIC SE STRIPS
propositional STRIPS planning were first noted Boutilier PLAN problem. By Lemma 2(ii)M (ACT) is a consistent
et al, 1999, where a reduction (presented in more detailGCP-net in conjunctive form. Since, # -+, there is a
in [Boutilier et al, 20043) was given from the dominance plan for (V, aq, v, ACT) if and only if there is a non-empty
problem to the plan existence problem for a class of propoireducible plan forV, ag, v, ACT), which, by Lemma 2(i),
sitional STRIPS planning specifications consistinguofry  is if and only ify dominatesy, in C. [ ]
actions (actions with single effects). We prove our results for



4.2 Dominance in CP-nets (i) if s is an improving sequence f@r from « to 3 then

In this section we show thatCP-DOMINANCE remains L(s) is an improving sequence f6¥' fromaa to 55;

PSPACE-complete under the restriction to locally-consistent (ii) if ¢ is an improving sequence froom to 55 then L' (t)

and locally-complete GCP-nets, i.e., CP-nets. We referto this  is an improving sequence fromto 3;

restriction ofGCP-DOMINANCE asCP-DOMINANCE. ; ; ; o ;

We will show PSPACE-hardness focP-DOMINANCE by (i) C'is consistent if and ?Lnly " is consistent o

a reduction fromsCP-DOMINANCE for consistent GCP-nets. Sketch of proofLete = A/, (z; < y;). The definitions

have been arranged to ensure the following for CPcHet

(&) Suppose: holds in an outcome, so the outcome can
be written asaa for someq; then no improving flip
changes any variable;; furthermore, there is an im-
proving flip changing variableg; if and only if there is
an improving flip for the GCP-nef’ from outcomex

Mapping locally-consistent GCP-nets to CP-nets
Let C be a locally-consistent GCP-net. Lét =
{z1,...,z,} be the set of variables @'. We defineV’ =
VU{y,...,yn}, where{yy,...,yo} NV = 0. We define a
GCP-netC’ overV’, which we will show is a CP-net. To this
end, for everyz € V' we will define conditiona! preferer)ce changing variable:;. After applying this flip changing
ru/le3q+(z)_: Z > T2 andq+(z) : 22 > z o be included in variabley;, there is exactly one improving flip possible,
¢’ by specifying formulag ™ (z) andg™ (z). changingz;, after whiche holds again (this follows us-
First, for each variable; < V', we set ing (b), asy; cannot be immediately flipped back again,
g (z:) =y and ¢ (z;) = —;. because&’ is locally consistent).
(b) If e does not hold in an outcome then the only improving
flips possible change the value of some variabledf
;) to makez; « y; hold for some.

Thus, z; depends only ony;.  We also note that the for-
mulasg™ (z;) andq™ (z;) satisfy local-consistency and local-
completeness requirements.

Next, for each variablg;, 1 < i < n, we define _ €)) _im_plies (i_) and (ii). Als_o, (i) impl_ies half of (iii), that
- if C is inconsistent therC’ is inconsistent. Conversely,
e = (1o y) A A(xim1 < Yiz1) suppose thaf” is inconsistent, so there exists an improving

sequence for C’ from some outcome to itself. By (b), any
improving flip applied to an outcome in which does not
fiF=eiApT(z;) and f7 =e; Ap~ (z:). hold increases (by one) the numbericduch thatz; < y;
holds. This implies that must hold in some outcome in
t, because is cyclic. Write this outcome asa. We can

MNTig1 < Yir1) N AT < Yn),

Finally, we define

o ) = fFV (=f7 Aa) cyglically permute’ to fprm an improving sequence_from _
to itself. Part (ii) then implies that there exists an improving
and flipping sequence fo€ from « to itself, showing that' is
q (i) = [V (=f A-wy) inconsistent. n

Thus,y; depends on every variable W but itself.
We note that by the local consistency®fformulasf;”" A Theorem 2 cP-DOMINANCE is PSPACE-complete. This
fi 1 < i < n, are unsatisfiable. Consequently, formulasholds even if we restrict the CP-nets to being consistent.

q"(y:) Ng~ (1), 1 < i < n, are unsatisfiable. Thus;’"is  proof We use a reduction frof®SPACE-hardness of the

\ . L A Treerste . :
IoEaIIy consistent. Finallyy™ (y;) V ¢~ (y:) is ec;u_lvalent 10 Gcr-DOMINANCE problem when the GCP-nets are restricted
fim VoV fi Vo, S0 is a tautology. Thug)” is locally  to peing consistent (Theorem 1). Lét be a consistent

complete and hence a CP-net oVér (and hence locally consistent) GCP-net oVér and leta
Let o and 3 be outcomes over{zi,...,zn} and  andj3 be outcomes ovel’. Consider the CP-nef” over
{y1,-..,yn}, respectively. Bya/3 we denote the outcome yariablesy’’ constructed above. Lemma 3(i) and (ii) imply
over V'’ obtained by concatenatingtuplesa and3. Con-  that 3 dominatesy in C if and only if 33 dominatesha in
versely, every outcome f@” can be written in this way. C’. Moreover,C" is consistent by Lemma 3(iii). Thus, the
Let o be an outcome over. We definex to be the out-  hardness part of the assertion follows. -
come over{y,...,y,} obtained by replacing irx every
component of the form; with y; and every componentz;
with —y;. Then for everyi, 1 <i <n, aa = ¢;. 5 Consistency of GCP-nets
Let s be a sequencey,...,q, Of outcomes over

V. Define L(s) to be the sequence of”’-outcomes: In this section we show that tlecP-CONSISTENCYproblem
Qg T, 01, 0103 o, Further, lett be a se- is PSPACE-complete, using results from Sections 3 and 4.
b b ) PR . 1

qguenceey, €1, . . ., €, of V'-outcomes withey = aa and  Theorem 3

em = (0. Definel’(t) to be the sequence obtained frém Gcr-consiSTENCYis PSPACE-complete. This holds even
by projecting each elementirto I and iteratively removing  under the restriction to GCP-nets in conjunctive form.

elements in the sequence which are the same as their prede-_ .. : .
cessor (until any two consecutive outcomes are different). df(r:OT?gN_SPESTPﬁgE(;T?Cr?TnfSS \'/Sesgg\gl; ?gnéﬁgg%“c;?o:]om

Lemma 3 With the above definitions, Section 3.2 followed byM from Section 4.1. This maps



instances Of ACTION-SET ACYCLICITY to instances of nally, we do not know the complexity of deciding whether the

GCP-CONSISTENCYin conjunctive form. By Lemma 1(iii) preference relation induced by a CP-net is complete.

and Lemma 2 (ii), an instance aCTION-SET ACYCLICITY

is acyclic if and only if the corresponding instance of Acknowledgements
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