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Abstract 1 

Competition between parasite species or genotypes can play an important role 2 

in the establishment of parasites in new host populations.  Here, we investigate a 3 

mechanism by which a rare parasite is unable to establish itself in a host population if 4 

a common resident parasite is already present (a “priority effect’). We develop a 5 

simple epidemiological model and show that a rare parasite genotype is unable to 6 

invade if coinfecting parasite genotypes inhibit each others transmission more than 7 

expected from simple resource partitioning.  This is because a rare parasite is more 8 

likely to be in multiply-infected hosts than the common genotype, and hence more 9 

likely to pay the cost of reduced transmission.  Experiments competing interfering 10 

clones of bacteriophage infecting a bacterium support the model prediction that the 11 

clones are unable to invade each other from rare.  We briefly discuss the implications 12 

of these results for host-parasite ecology and (co)evolution 13 
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Introduction 1 

An important factor influencing the establishment of parasites in a host population is 2 

the presence of other parasite species or genotypes (Read, 2001; Pedersen and Fenton, 3 

2007).  In some cases, interactions between parasites can be positive, such that the 4 

presence of one species can facilitate the establishment of another (Cox 2001; Lello et 5 

al. 2004; Graham, 2008; Telfer, 2010; Shrestha et al. 2013; Ramiro et al. 2016).  6 

However, in many cases, particularly between-genotypes (Read 2001; Brown et al. 7 

2002; Buckling & Brockhurst 2008), parasites display competitive interactions, such 8 

that a resident parasite population is likely to reduce the likelihood of a focal parasite 9 

becoming established (Onderdonk et al. 1981; Dittmar et al. 1982; Hart and Cloyd, 10 

1990; Cox, 2001; Lello et al. 2004; Mideo, 2009; Telfer, 2010).  11 

 12 

Assuming differences in infection order of the host, competitive interactions between 13 

parasites can result in priority effects (Sutherland, 1974; Connell and Slatyer, 1977), 14 

such that parasites that infect a host first can have a relative advantage (Eswarappa et 15 

al. 2012; Hoverman et al. 2013).  Mechanistically, such priority effects might arise 16 

for a number of reasons, including ecological monopolization of host resources 17 

(Sutherland, 1974), rapid adaptation to the specific host environments in the case of 18 

microparasites (Gomez et al. 2016), and because anti-competitor toxins will increase 19 

in concentration with parasite density (Inglis et al. 2009).  Here, we develop a simple 20 

model and carry out experiments using a bacterium-virus system to investigate the 21 

potential for another type of a priority effect: one that occurs at the level of the host 22 

population rather than the individual host.  Specifically, we consider if such 23 

population level priority effects might arise even when they don't occur at the level of 24 

the individual host. 25 



Why might a rare parasite be unable to invade a host population in the presence of an 1 

endemic parasite, yet is able to outcompete the resident parasite within individual 2 

hosts?  A simple reason is that mixed infections often result in lower levels of 3 

transmission than would be expected from single genotype/species infection based on 4 

host resource partitioning, as a result of parasite anti-competitor mechanisms or host 5 

immunity (Sugita et al. 1981; Dobson 1985; Gupta et al. 1994; Roberts & Dobson 6 

1995; Cox, 2001; Read, 2001; Fenton 2008; Buckling and Brockhurst, 2008; Lello et 7 

al. 2004; Balmer et al. 2009; Telfer, 2010). Assuming a resident parasite has infected 8 

a high frequency of hosts, a rare invading parasite is more likely to find itself in a 9 

mixed infection compared to the resident, and hence is more likely to pay the cost of 10 

lower transmission to new hosts (Fenton 2008).  11 

 12 

The basic building block of most micro-parasitic epidemiological models is the 13 

compartmental SI model (Keeling and Rohani, 2008), and we use its classic 14 

framework to asses the conditions when a parasite of a different type (genotype or 15 

species) can invade from rare when there is lower total transmission from a mixed 16 

infection. We then test the qualitative predictions with an experimental case study 17 

using the bacterium Pseudomonas fluorescens SBW25 and its lytic virus, 18 

bacteriophage φ2 (Buckling and Rainey, 2002).   In a previous study (Leggett et al. 19 

2013), viruses that were propagated over tens of generations under a high multiplicity 20 

of infection (MOI; the ratio of virus to bacteria) evolved greater within-host 21 

competiveness than those propagated under a low MOI.  This increased 22 

competitiveness was caused by a shorter latent period: competing viruses were unable 23 

to fully assemble before host lysis occurred.  This shorter lysis time however came at 24 

the cost of a reduction in the total number of virions produced from a lysed cell.  25 



Lysis time was phenotypically plastic, and was not shortened when high MOI-evolved 1 

phages were propagated under low MOI; as consequence, transmission was lower 2 

from mixed clone infections than single clone infections. We therefore determined if 3 

the high and low MOI-evolved viruses could both be prevented from invading each 4 

other from rare under high but not low MOI, despite the high MOI-evolved viruses 5 

having a clear within-host advantage. 6 

 7 

  8 

Materials and Methods 9 

Theory Methods 10 

We begin with a classic SI model at an endemic equilibrium (Keeling and Rohani, 11 

2008). We then augment the system by introducing a rare mutant, and explore the 12 

conditions under which it can invade. 13 

 14 

Classic SI Model 15 

Consider a population subdivided into individuals susceptible to a particular disease 16 

(S) and individuals infected with that same disease (I). Assuming a freely mixing 17 

population, susceptible individuals (S) that encounter an infected individual (I), them-18 

selves become infected. The rate at which this happens is described by the force of 19 

infection of the wild-type parasite λw (= βIw, where β represents parasite transmission 20 

rate). S refers to numbers of susceptible hosts, and Iw refers to number of hosts 21 

infected with a wild-type pathogen. 22 

 23 

The dynamics can be described by the following set of differential equations: 24 

 25 



          [1] 1 

 2 

Where b= host birth rate, μ= host death rate, v= extra mortality of host caused by 3 

parasite infection, and c= rate of parasite clearance from the host. A stable 4 

coexistence equilibrium containing both susceptible (S) and infected (Iw) hosts will be 5 

established when:  6 

   7        [2] 

 8 

 9 

These conditions are locally asymptotically stable when condition A is satisfied (see 10 

SI for working): 11 

    12   (Condition A) 

 13 

To these stable conditions, we now add a rare mutant parasite  and assess whether or 14 

not it can invade. 15 

 16 

Introducing Rare Mutant 17 

If a mutant is introduced to the population, then a multiply-infected host can occur, 18 

i.e. a host can be simultaneously infected with both a wild-type and mutant parasite. 19 

This creates two new classes of individuals - hosts infected with the mutant, Im, and 20 

hosts infected with both the mutant and the wild-type, Iwm. Note that infection is a 21 

symmetrical process, i.e. a host that is infected with a wild-type parasite can then be 22 

infected with a mutant parasite (and vice versa), creating a multiply-infected host. 23 

Multiply-infected hosts are likely to represent a reduced transmission opportunity for 24 

co-infecting parasites. The reduction in transmission is because of some sort of 25 



competitive interaction that reduces transmission of each individual strain from a 1 

single host to less than 50%, i.e. transmission is lower than expected from simply 2 

passively partitioning host resources. 3 

  4 

This effect can be captured by having a separate transmission term for multiply-5 

infected hosts (βwm). The force of infection of the wild type (λw) and mutant (λm) now 6 

becomes: 7 

 8 

  9    [3] 

 10 

With the full system represented by the following set of differential equations: 11 

 12 

 13 

 14   

 15   [4] 

 16 

 17 

 18 

Further variations and justifications on the model are explored in the supplementary 19 

information. 20 

 21 

Given the classic SI endemic equilibrium conditions (see condition A), we are able to 22 

assess the stability of the augmented system on the introduction of a rare mutant 23 

which transmits as well as the resident; i.e. we ask the question: under what 24 



conditions can the rare mutant invade? See SI for working, and the Results section for 1 

the mutant invasion condition.  2 

  3 

Experimental Materials and Methods 4 

We tested our predictions using two different bacteriophage clones derived from the 5 

lytic dsDNA phage SBW25Φ2and the susceptible bacterium Pseudomonas 6 

fluorescens SBW25 (Buckling and Rainey, 2002). The phage clones were isolated 7 

from populations of SBW25Φ2  that had previously been evolved under conditions of 8 

High multiplicity of infection (MOI; the ratio of phage to bacteria) and Low MOI 9 

(subsequently termed H and L clones, respectively) (Leggett et al. 2013). Both clones 10 

grew equally well under conditions of low MOI, however when H and L are found 11 

together in a mixed infection, the output of both strains is reduced, and the H clone 12 

has a competitive advantage (Leggett et al. 2013). In order to distinguish between the 13 

two phage clones, the H clone was selected to grow on a mutant of Pseudomonas 14 

fluorescens SBW25 that was resistant to ancestral SBW25Φ2 (Scanlan et al. 2011) 15 

and the L clone. The final densities of the H clone was determined by the plaque 16 

forming units (PFU’s) on lawns of resistant host, whilst the final densities of the L 17 

clone was determined by the PFU’s on wild-type host lawns minus the number of 18 

PFU’s on resistant host lawns. 19 

 20 

To determine whether a rare bacteriophage was prevented from invading, we mixed H 21 

and L strains at different starting ratios (H:L) 1000:1, 1:1 and 1:1000 under high (5 x 22 

107 colony forming units (CFU’s)/ml) and low (1 x 104 CFU’s/ml) bacterial densities, 23 

whilst fixing the total density of phage at 1 x 105 PFU’s/ml. This enabled conditions 24 

where the multiplicity of infection (MOI) was low (high bacterial densities) and high 25 



(low bacterial densities). High MOI treatments were used to test whether within-host 1 

competition was the mechanism preventing the invasion of rare parasites, with the 2 

low MOI treatment acting as a control where we would not expect to see frequency 3 

dependence. 4 

 5 

After inoculating the bacteria with the starting ratios of phage, they were grown in 6 

wells containing 2ml of King’s media B (KB), incubated at 28°C, static, for 8 hours. 7 

Phage were then extracted from each replicate population by taking samples and 8 

adding 10% v:v chloroform, vortexing and centrifuging at 13 000 g for 3 min. The 9 

final densities of H and L clones were determined by serial plating onto bacterial 10 

lawns of both susceptible and resistant hosts. Ten microlitres of supernatant 11 

containing phage was spot plated onto growing lawns of each bacterial host (that had 12 

been reconditioned from stock by growing for 24 hours in liquid KB at 28 °C) using 13 

KB soft agar overlay plates. Plates were placed in a 28 °C incubator and checked for 14 

phage plaques (zones of lysis that indicate parasite infectivity) after 8, 12, 24, 48 and 15 

72 hours of incubation.  Fitness of the phage was calculated using the estimated 16 

Malthusian parameters (m), where m = ln(Nf/N0) where N0 is the starting density and 17 

Nf is the final density (Lenski et al. 1991). We then determined the selection of 18 

coefficient of L strains in competition with H strains, (mL −mH)/mH, where mL and mH 19 

are the Malthusian parameters of L and H strains respectively (Lenski et al. 1991. 20 

 21 

Results 22 

Theoretical Results 23 



We were able to derive a simple analytical condition for the invasion of a rare mutant 1 

parasite (see Theoretical Methods section), primarily as a function of the cost of 2 

transmission associated with being in a mixed infection: 3 

 4 

  5   (Condition B) 

 6 

 7 

When condition B is satisfied, the mutant can invade. When condition B is not 8 

satisfied, the population remains at the classic SI equilibrium conditions described in 9 

the Theory Methods, above. The βwm/β term in condition B represents the relative 10 

transmission rate from multiply-infected hosts.  Under pure resource competition, 11 

there is no reduction in total transmission of parasites from mixed versus single 12 

infections, i.e. βwm= β/2, and the rare mutant can invade.  As the relative transmission 13 

rate of multiply-infected hosts is reduced, the likelihood of a rare mutant invading the 14 

population decreases. We show the invasion conditions for different ratios of βwm/β as 15 

a function of parasite-imposed host mortality (virulence; v) and rate of parasite 16 

clearance from the host (c) in Figure 1.  Note that this qualitative result is robust to a 17 

range of model variations, including assuming that: all individuals give birth to 18 

susceptible hosts (not just susceptible parents); it is harder for host to clear mixed 19 

infections; and there is density dependent growth of hosts (see SI). 20 

 21 

Experimental Results 22 

We then tested our theoretical prediction that parasites are unable to invade from rare 23 

when there are mixed infections by competing different starting ratios (1:1000, 1:1 24 

and 1000:1) of two bacteriophage strains (H and L) under low and high MOI, on 25 



bacterial hosts of Pseudomonas fluorescens SBW25.  We have previously shown that 1 

the presence of H clones under conditions of high MOI reduces phage population 2 

growth rate, indicating that H clones reduce absolute between host transmission 3 

(Leggett et al. 2013; 2017), as assumed in our model.  4 

 5 

Crucially, we found a significant interaction between MOI and starting frequency 6 

(Figure 2; F2,30 = 4.030, P= 0.028):  while the relative growth rates of the two clones 7 

was largely independent of starting frequency under conditions of low MOI, under 8 

higher MOI the rare clone always had a fitness disadvantage.  Note that at 1:1 ratios, 9 

the L clones was fitter under low MOI, presumably as a result of the host range 10 

phenotype that is costly in this system (Poullain et al. 2008; Scanlan et al. 2011) 11 

while the H clone was fitter under high MOI, as reported in previous studies (Leggett 12 

et al. 2013) (1 sample t-tests: P < 0.01 in both cases).  Note that we found that there 13 

was no main effect of starting frequency (Figure 2; F2,30 = 0.417, P= 0.663) on the 14 

relative growth rate of the H and L strains, nor a main effect of whether phages were 15 

cultured at high or low MOI (Figure 2; F1,30 = 1.586, P= 0.218).   16 

 17 

Discussion  18 

Here we investigated whether parasites that display strong anti-competitor 19 

behaviours in coinfected hosts suffer a fitness cost when rare, thus limiting the 20 

conditions under which parasites can become established in new host populations.  21 

Our simple epidemiological model confirmed findings implicit in previous models 22 

(e.g. Fenton 2008) that interference between coinfecting strains reduces total parasite 23 

transmission from hosts, the likelihood of a rare parasite invading an endemic parasite 24 

population is reduced. We subsequently find evidence for this reciprocal invasion 25 



inhibition in competing bacteriophage genotypes (infecting bacteria) that experience 1 

growth inhibition with coinfection.  Crucially, this reciprocal invasion inhibition was 2 

not observed when there was little coinfection, but instead one phage genotype 3 

consistently outcompeted the other, demonstrating that coinfection was the driver of 4 

the observed growth cost of being rare. 5 

How important might this effect be?  While we are not aware of any data from 6 

natural populations that could provide direct evidence for its operation, the 7 

assumptions required for this type of priority effect will frequently be met.  8 

Specifically, mixed genotypes and species infections are common in nature (Read, 9 

2001; Pedersen and Fenton, 2007), and many interactions between parasites are 10 

directly or indirectly, via the host immune system, inhibitory (Sugita et al. 1981; Cox, 11 

2001; Read, 2001; Buckling and Brockhurst, 2008; Lello et al. 2004; Balmer et al. 12 

2009; Mideo, 2009; Telfer, 2010).  13 

In addition to the clear epidemiological implications of the work, the 14 

population level priority effects reported here might have important evolutionary and 15 

coevolutionary implications.  First, it is likely to limit the evolution of generalist 16 

parasites.  On the one hand, if parasites are limited in their interaction with novel host 17 

populations this will limit selection for generalism (Kawecki 1998).  On the other, 18 

generalist parasites may find themselves in mixed infections more frequently than 19 

specialist parasites, hence exposing them to this transmission cost (Leggett et al. 20 

2013); although not in circumstances where generalists have unique access to certain 21 

hosts (Gandon et al. 2002).  This may represent a novel cost of generalism over and 22 

above genetic tradeoffs and costs of using less productive hosts (Futuyma & Moreno 23 

1988; Heineman et al. 2008; Benmayor et al. 2009), helping to explain host 24 

specialization of parasite species and genotypes. Second, limiting the invasion of new 25 



parasite genotypes can have important implications for coevolutionary dynamics.  1 

Specifically, high parasite diversity and density can increase parasite adaptation to 2 

their local hosts and lead to more rapid and arms-race-like coevolution (Morgan et al. 3 

2005; Gomez et al. 2015). 4 

More generally, our results highlight the importance of considering priority 5 

effects (i.e. an advantage of early colonisation) at different scales.  Priority effects are 6 

typically investigated within ecological patches (or hosts), but here we show a meta- 7 

population (or community) - level priority effect, which may also be an important 8 

consideration in a range of ecological systems.  Precisely how priority effects at 9 

different scales interact requires further exploration. 10 
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Figure Legends 1 

 2 

Figure 1: Plotting Condition B – Rare parasite less likely to invade as relative 3 

transmission rate of multiply-infected host (βwm/β) is reduced. Phase plane 4 

diagram showing the value of βwm/β required for the rare parasite to invade, as a 5 

function of virulence (v) and host recovery rate (c). For sensible values of β (<1), the 6 

mechanism preventing invasion of the rare parasite is a form of interference 7 

competition i.e. βwm/β < β/2. Parameters; b=0.3, μ=0.2.  8 

 9 

Figure 2: Positive frequency dependence prevents rare phage from invading. 10 

The relative growth rate (selection coefficient) of L phage strains, compared with H 11 

strains, is plotted for different starting ratios of H:L, under high and low MOI. Error 12 

bars are ± 1 standard error of the mean. 13 
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