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Abstract

Maintenance costs of offshore wind power, where fixed monopile sup-

port columns make up the majority of wind turbine types, are up to

three times higher than those associated with onshore wind power. High

costs are exacerbated by difficulties accessing the turbines in their ma-

rine environment. Safe transfer by crew transfer vessel (CTV) requires

prediction of vessel motion whilst in contact with the turbine monopile.

Future vessel motion prediction first requires analysis through analytical

and numerical methods of the local hydrodynamic wave field and wave

loading on the monpile turbine in ocean waves.

A location-dependent unidirectional sea state is represented by super-

position of periodic waves with amplitude components an, obtained from

the spectral distribution of free surface displacement data from a single

wave buoy located at the Teesside Offshore Wind Farm in the south-

ern North Sea. Wave buoy data was obtained for each season during the

2015/2016 time period, providing a record of seasonal changes that occur

in the spectral distribution. Wave loading in the local irregular sea state

was predicted using the Morison equation and the linear diffraction for-

mulation. Numerical predictions were obtained using OpenFOAM and

a modification of the multiphase interFoam solver for generating free

surface waves, where a boundary condition for inputting irregular waves

based on the local wave spectra was developed for the purpose of this

thesis.

For unimodal spectral distributions, which occur in 50% of the data

sets with a third data set displaying a small secondary peak, the ana-

lytical solutions for the diffracted hydrodynamics and wave loading show
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satisfactory agreement with the numerical predictions, provided a slip

boundary condition is applied on the cylinder. Comparisons were made

between analytical solutions and numerical predictions for each of the

four data sets, where the irregular wave field was simulated first in a

numerical wave tank and then interacting with a fixed cylinder represen-

tative of a monopile wind turbine. Simulations were run using both a

slip and non-slip cylinder wall boundary conditions in order to determine

the effects of viscosity.

OpenFOAM can potentially provide better predictions of the diffracted

water particle kinematics resulting from the interaction between the sea

state at Teesside Offshore Wind Farm and the turbine monopiles, but

with a significantly increased computational overhead. The analytical

solutions provide satisfactory and relatively fast solutions, although at

the expense of neglecting higher-order terms. Both methods presented in

this thesis provide practitioners with enhanced knowledge of the season-

specific local hydrodynamics and wave loading based on actual sea state

data, rather than relying on a parametric location-specific representation.

Enhanced knowledge of the hydrodynamic field affecting vessel motion

will give a better prediction of vessel motion under operating conditions,

and eventual determination of the limiting conditions under which the

vessel will remain steady.

vii



Contents

Acknowledgements ii

Dissemination of Research iv

Abstract vi

List of Figures xii

List of Tables xxi

Nomenclature xxiii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Operations & Maintenance Overview . . . . . . . . 2

1.1.2 Offshore Wind Turbine Access Method . . . . . . . 4

1.1.3 Turbine Access: Hydrodynamic limiting Conditions 6

1.2 Research Methods . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Analytical Wave Formulation . . . . . . . . . . . . 9

1.2.2 Numerical Methods . . . . . . . . . . . . . . . . . . 11

1.3 Purpose of Research . . . . . . . . . . . . . . . . . . . . . 13

1.4 Aim and Objective . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



2 Mathematical Theory 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Linear Wave Theory . . . . . . . . . . . . . . . . . . . . . 18

2.3 Ocean Statistics . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Directional Seas . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Wave Loading on a Vertical Cylinder 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Overview of Wave Forces on a Vertical Cylinder . . . . . . 36

3.2.1 Wave Forces on a Small Diameter Cylinder - Mori-

son equation method . . . . . . . . . . . . . . . . . 41

3.2.2 Wave forces on a large diameter cylinder - Diffrac-

tion Method . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Transfer Function Derivation . . . . . . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Numerical Formulation in OpenFOAM 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Numerical Governing Equations . . . . . . . . . . . . . . . 54

4.2.1 Free Surface Treatment - Volume of Fluid Approach 57

4.3 Finite Volume Method for Equation Discretisation . . . . . 59

4.3.1 Gauss’ Theorem for Discretisation . . . . . . . . . . 62

4.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Numerical Boundary Conditions . . . . . . . . . . . 73

4.4.2 Physical Boundary Conditions . . . . . . . . . . . . 74

4.5 Numerical solver for pressure-velocity coupling . . . . . . . 76

4.5.1 Other Numerical Solving Algorithms . . . . . . . . 80

ix



4.6 OpenFOAM Case Set-Up . . . . . . . . . . . . . . . . . . . 80

4.7 High Performance Computing . . . . . . . . . . . . . . . . 86

4.7.1 Domain Decomposition . . . . . . . . . . . . . . . . 87

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Validation of Numerical Model 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Computational Domain and Meshing . . . . . . . . . . . . 93

5.3 Steady current past a cylinder . . . . . . . . . . . . . . . . 96

5.4 Linear Waves in an open wave tank . . . . . . . . . . . . . 100

5.4.1 Wave Absorption . . . . . . . . . . . . . . . . . . . 101

5.4.2 Mesh Convergence . . . . . . . . . . . . . . . . . . 102

5.4.3 Relaxation Zone Length Modification . . . . . . . . 104

5.4.4 Linear waves in a numerical wave tank . . . . . . . 107

5.5 Wave-structure interaction: waves past a surface-piercing

cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . 116

6 Results: Model Validation in OpenFOAM and Discus-

sion 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Numerical Set-Up . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Input of Wave Buoy Data to OpenFOAM . . . . . . . . . 124

6.4 Wave spectral results for Teesside input sea state . . . . . 127

6.5 Teesside Data: Interaction with a monopile . . . . . . . . . 132

6.5.1 Irregular Diffracted Wave Results . . . . . . . . . . 133

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 147

x



7 Conclusions and Recommendations 150

7.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3 Recommendations for future research . . . . . . . . . . . . 159

7.3.1 Wave Directionality . . . . . . . . . . . . . . . . . . 159

7.3.2 Nonlinear and higher order diffraction effects . . . . 160

7.3.3 Extending the results to crew transfer vessel motion 161

7.4 Final Observations . . . . . . . . . . . . . . . . . . . . . . 162

References 164

xi



List of Figures

1.1 Illustration of crew transfer system with CTV abutted

against monopile . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Images taken from a video documenting crew transfer be-

tween vessel and monopile. Video provided by Alexis Bil-

let, Managing Director of Resilience Energy Consulting. . . 8

2.1 Diagram indicating the wave parameters for a linear wave

moving past a cylinder . . . . . . . . . . . . . . . . . . . . 19

3.1 Effect of Reynold’s Number on Unidirectional Flow Past

a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Diagram demonstrating the direction of the hydrostatic

drag force (Fp,D) and lift force (Fp,L) incident on a cylinder

in an ideal potential flow, in which ~u denotes direction of

flow and θ is the angle on the cylinder. . . . . . . . . . . . 40

3.3 Experimental drag coefficient values as a function of Reynold’s

number for a smooth infinitely long cylinder in unidirec-

tional flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Values of Cd versus KC for a range of β values. . . . . . . 44

xii



4.1 The volume fraction function α values within the compu-

tational domain, evaluated using the VOF method. Blue

areas indicate the air, red indicates water and the thin

green line is the interface location. . . . . . . . . . . . . . . 58

4.2 Illustration of node and control volume location during

grid generation with the FV method. . . . . . . . . . . . . 60

4.3 Illustration of typical 3D control volume. . . . . . . . . . . 60

4.4 Illustration of simple quadrilateral 2D control volume, where

midpoint P, outward normal vector n, and surface area∇S

are labelled . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Illustration of distance flow travels per time step, depen-

dent on the Courant number. . . . . . . . . . . . . . . . . 72

4.6 Procedure followed by the PIMPLE solver in OpenFOAM. 79

4.7 The procedure followed by the interFoam solver in Open-

FOAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Case-set up diagram for interFoam simulation. Names in

bold indicate folders that contain the information specified

in the diagram. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Vertex and control volume face numbering convention used

in blockMesh with the direction of ordering indicated by

the arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Mesh with monopile present, transition zone magnified . . 95

5.3 Patch names for simulation with a monopile. Top image

displays entire computational domain and bottom image

shows a close-up of the cylinder. . . . . . . . . . . . . . . . 96

5.4 Streamlines at t = 15.5 s for (a) Re = 40 and (b) Re = 300. 98

xiii



5.5 Streamlines for Re = 3900 at (a) t = 5 s and (b) t = 50 s. 99

5.6 Mesh convergence test results: horizontal velocity time

series at elevation z = 0.4 m under regular waves, at T =

3.5 s and H = 0.084 m, where details of mesh 1, mesh 2,

mesh 3 and mesh 4 are given in Table 5.3. . . . . . . . . . 103

5.7 Computational domain with differing relaxation zone lengths.105

5.8 Water particle velocity profiles obtained for different ζ-

values in (5.3) indicating their effect on the wave absorp-

tion within the damping zone . . . . . . . . . . . . . . . . 106

5.9 Surface elevation profiles along domain length at t∗ = 5 for

different wave absorption conditions and varying values for

ζ in equation (5.3). . . . . . . . . . . . . . . . . . . . . . . 106

5.10 Comparison between numerical predictions and analytical

solutions of linear wave parameters for waves with period

T = 4 s. Figures illustrate time series predictions for (a)

surface elevation, (b) pressure time series, (c) horizontal

velocity component, (d) vertical velocity component. For

each parameter in these figures, the subscript ∞ denotes

the analytical linear wave solution and the subscript N

represents the numerical simulation. . . . . . . . . . . . . . 109

xiv



5.11 Comparison between numerical predictions and analytical

solutions of linear wave parameters for waves with period

T = 6 s. Figures illustrate time series predictions for (a)

surface elevation, (b) pressure time series, (c) horizontal

velocity component, (d) vertical velocity component. For

each parameter in these figures, the subscript ∞ denotes

the analytical linear wave solution and the subscript N

represents the numerical simulation. . . . . . . . . . . . . . 110

5.12 Comparison between numerical predictions and analytical

solutions of linear wave parameters for waves with period

T = 8 s. Figures illustrate time series predictions for (a)

surface elevation, (b) pressure time series, (c) horizontal

velocity component, (d) vertical velocity component. For

each parameter in these figures, the subscript ∞ denotes

the analytical linear wave solution and the subscript N

represents the numerical simulation. . . . . . . . . . . . . . 111

5.13 Comparison between numerical predictions and analytical

solutions of linear wave parameters for waves with period

T = 10 s. Figures illustrate time series predictions for (a)

surface elevation, (b) pressure time series, (c) horizontal

velocity component, (d) vertical velocity component. For

each parameter in these figures, the subscript ∞ denotes

the analytical linear wave solution and the subscript N

represents the numerical simulation. . . . . . . . . . . . . . 112

xv



5.14 Comparison between numerical solutions and analytical

predictions of linear wave parameters for waves of period

T = 4 s. Figure (a) shows the time series for the analytical

solution with no cylinder present η∞, numerical solution

using slip cylinder wall condition ηS and the diffracted sur-

face elevation ηD. Figure (b) is the time series for wave

forces calculated with the Morison equation, FM, numeri-

cally predicted wave forces using a slip wall condition, FM,

and the analytically calculated wave force due to diffrac-

tion, FD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.15 Comparison between numerical solutions and analytical

predictions of linear wave parameters for waves of period

T = 6 s. Figure (a) shows the time series for (a) the

analytical solution with no cylinder present η∞, numeri-

cal solution using slip cylinder wall condition ηS and the

diffracted surface elevation ηD. Figure (b) is the time se-

ries for wave forces calculated with the Morison equation,

FM, numerically predicted wave forces using a slip wall

condition, FM, and the analytically calculated wave force

due to diffraction, FD. . . . . . . . . . . . . . . . . . . . . 115

xvi



5.16 Comparison between numerical solutions and analytical

predictions of linear wave parameters for waves of period

T = 8 s. Figure (a) shows the time series for (a) the

analytical solution with no cylinder present η∞, numeri-

cal solution using slip cylinder wall condition ηS and the

diffracted surface elevation ηD. Figure (b) is the time se-

ries for wave forces calculated with the Morison equation,

FM, numerically predicted wave forces using a slip wall

condition, FM, and the analytically calculated wave force

due to diffraction, FD. . . . . . . . . . . . . . . . . . . . . 115

5.17 Comparison between numerical solutions and analytical

predictions of linear wave parameters for waves of period

T = 10 s. Figure (a) shows the time series for (a) the

analytical solution with no cylinder present η∞, numeri-

cal solution using slip cylinder wall condition ηS and the

diffracted surface elevation ηD. Figure (b) is the time se-

ries for wave forces calculated with the Morison equation,

FM, numerically predicted wave forces using a slip wall

condition, FM, and the analytically calculated wave force

due to diffraction, FD. . . . . . . . . . . . . . . . . . . . . 116

6.1 Location of Teesside Offshore Wind Farm. Image provided

by EDF Energy Renewables. . . . . . . . . . . . . . . . . . 121

6.2 Datawell Waverider Wave Buoy (DWR MkIII). Image

from EDF Energy Renewables. . . . . . . . . . . . . . . . 121

xvii



6.3 Predicted amplitude as a function of wave frequency cal-

culated in OpenFOAM aN compared to the analytical for-

mulation aAN for (a) September 2015, (b) December 2015,

(c) March 2015 and (d) June 2016. . . . . . . . . . . . . . 126

6.4 Autumn time series for (a) free surface elevation and (b)

associated wave spectrum. Subscripts raw, an, N represent

values obtained from the in situ data set, analytical rep-

resentation and numerically simulation respectively. Fig-

ure (b) includes an additional numerical simulation, rep-

resented by the subcaption N2, to demonstrate mesh con-

vergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Winter time series for (a) free surface elevation and (b)

associated wave spectrum. Subscripts raw, an, N repre-

sent values obtained from the in situ data set, analytical

representation and numerically simulation respectively. . . 129

6.6 Spring time series for (a) free surface elevation and (b)

associated wave spectrum. Subscripts raw, an, N repre-

sent values obtained from the in situ data set, analytical

representation and numerically simulation respectively. . . 130

6.7 Summer time series for (a) free surface elevation and (b)

associated wave spectrum. Subscripts raw, an, N repre-

sent values obtained from the in situ data set, analytical

representation and numerically simulation respectively. . . 131

6.8 Location of numerical wave gauges. Results are presented

for data obtained from wg11, located at the rear stagnation

point of the cylinder. . . . . . . . . . . . . . . . . . . . . . 134

xviii



6.9 Paraview visualization of wave diffraction pattern showing

wake formation in the vicinity of a large-diameter surface-

piercing cylinder, representing a turbine monopile. Wave

input is from the March 2016 data set. . . . . . . . . . . . 135

6.10 Surface elevation wave spectral density functions for the

raw surface displacement data, Sη, diffracted wave spec-

trum Sη,D, numerical wave spectrum with a slip boundary

condition, Sη,S, and the numerical wave spectrum using

a no-slip boundary condition, Sη,N . Figures display wave

spectrum data for (a) Autumn, (b) Winter, (c) Spring and

(d) Summer. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.11 Predicted horizontal and vertical velocity component spec-

tra for (a) Autumn, (b) Winter, (c) Spring and (d) Sum-

mer at a site in the southern North Sea. Horizontal compo-

nents are denoted by Su and vertical by Sw. The subscript

∞ refers to the undisturbed velocity spectrum, D is the

diffracted velocity spectrum, S is the numerical spectrum

using the slip condition, and N is the numerical spectrum

using the no-slip condition. . . . . . . . . . . . . . . . . . . 139

6.12 In-line force spectrum of wave during (a) Autumn, (b)

Winter, (c) Spring and (d) Summer at submerged cylinder

height z = -1.5 m . . . . . . . . . . . . . . . . . . . . . . . 140

6.13 Total in-line wave force spectra for waves during (a) Au-

tumn, (b) Winter, (c) Spring and (d) Summer at Teesside

Offshore Wind Farm in the southern North Sea. . . . . . . 142

xix



6.14 Surface elevation wave spectral density functions using in-

creased cell density in the wave direction for the raw sur-

face displacement data, Sη, diffracted wave spectrum Sη,D

and numerical wave spectrum with a slip boundary condi-

tion, Sη,S. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.15 Surface elevation wave spectral density functions with (a)

minimum 8 cells per wave height and (b) minimum 16 cells

per wave height for the raw surface displacement data, Sη,

diffracted wave spectrum Sη,D and numerical wave spec-

trum with a slip boundary condition, Sη,S. . . . . . . . . . 146

xx



List of Tables

4.1 Discretisation schemes used in a typical multiphase simu-

lation using VOF . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Boundary conditions used for constant current past a cylin-

der . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Drag and lift coefficient values for each simulation, speci-

fied by the Reynolds number Re . . . . . . . . . . . . . . . 99

5.3 Mesh Details . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 104

5.5 Mesh details for each linear wave in a NWT case . . . . . 107

5.6 Mesh details for each linear waves past a cylinder . . . . . 113

5.7 Re and KC values for linear waves past a monopile . . . . 114

6.1 Total CPU hours for each simulation of the undisturbed

sea state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Autumn Statistical Values - September 2015 . . . . . . . . 128

6.3 Winter Statistical Values - December 2015 . . . . . . . . . 130

6.4 Spring Statistical Values - March 2016 . . . . . . . . . . . 130

6.5 Summer Statistical Values - June 2016 . . . . . . . . . . . 130

6.6 Significant wave heights for Teesside Farm covering all sea-

sons over the 2015-2016 year . . . . . . . . . . . . . . . . . 136

xxi



6.7 Non-dimensional parameter values for Teesside Farm cov-

ering all seasons over the 2015-2016 year . . . . . . . . . . 141

6.8 Peak spectral force values for Teesside Farm covering sea-

sons during the 2015-2016 year. Units are given in GN2/Hz . 141

xxii



Nomenclature

α Scalar field fluid volume fraction

αR Relaxation zone scalar fluid volume fraction

αS,βS Constants required for Pierson-Moskowitz and JONSWAP spec-

trum formulation

x̄ Parameter in JONSWAP spectrum, equal to gx/u

β Frequency parameter in oscillating flow

χR Location within the relaxation zone

∆t Time increment s

∆x Cell element length m

∆z Cell element height m

u̇ Horizontal acceleration component m/s2
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Chapter 1

Introduction

1.1 Introduction

One of the greatest challenges facing society today is how to reduce the

negative environmental impact due to CO2 emissions entering the Earth’s

atmosphere. Global efforts to reduce CO2 emissions necessitate a decline

in energy production by large coal and gas power plants, accompanied

by increasing development of clean energy production methods. By June

2015, 164 countries had adopted some form of renewable energy target

to decrease carbon emissions (Kieffer and Couture, 2015).The European

Union, for example, has set a target that 20% of energy must be obtained

through renewable sources by 2020 (Sawin et al., 2015).

The marine environment provides a promising portfolio of renewable

energy sources for coastal populations, which have an average population

density three times that of the average global density (Small and Nicholls,

2003). The fastest growing is offshore wind power. Not only did offshore

wind power exhibit a 17% increase in the year from 2013 to 2014, up

to ∼433 GW worldwide, but also wind power was found to be a larger

supplier of new power generation than any other technology (Kieffer and



Couture, 2015). As of January 2016, more than 3,000 offshore wind

turbines (3.4 GW) were connected to the European grid (Pineda, 2016),

bringing the global total to 12 GW. Of the available global capacity, 91%

of offshore wind power presently commercially available is in Europe and

the remaining 9% is located mostly in China, Japan, and South Korea

(GWEC, 2016). China has set an ambitious goal to produce 30 GW of

offshore wind energy by 2020 (Hong and Möller, 2012). However, due

to increasing costs and insufficient marine spatial planning, Hong and

Möller (2012) estimate that only 1 GW out of the target of 5 GW wind

turbine capacity has been achieved to date.

Noting that estimates vary widely, offshore wind power nonetheless

has huge potential: Krewitt et al. (2009) assessed the net exploitable po-

tential to be about 16,000 TWh per year by 2050 and Capps and Zender

(2010) calculated the overall global value of offshore wind energy to be

approximately 340,000 Twh per year. Notwithstanding the technical po-

tential for offshore wind power, current cost estimates put the investment

cost per kilowatt hour for offshore wind to be approximately three times

the investment per kilowatt hour for onshore wind (Taylor et al., 2016).

1.1.1 Operations & Maintenance Overview

Safe access to offshore wind turbine monopiles, which may be located

30-50 km from the shore (or onshore base) and in water up to 30 m deep

(Corbetta et al., 2014, Sperstad et al., 2014), is essential to reducing the

total energy cost of offshore wind power. Maintenance difficulties can

occur even for near-shore wind farms; it was estimated recently that, for

a wind farm off the coast of Ireland, the turbines were only accessible for

repairs for 50-75% of the year (Breton and Moe, 2009, van Bussel et al.,
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2001). Additional costs are incurred by hiring repair workers and vessels

to transport the workers to the turbines. Operations and maintenance

(O&M) costs can account for 25-50% of total energy production costs

(Kostecki, 2014, Dalgic et al., 2015a, Maples et al., 2013). It has been

estimated that costs could decrease by as much as 35% (Taylor et al.,

2016) by 2025 with continued technological improvements and improved

turbine access methods.

The rapid development and construction of offshore wind farms has

outpaced research and there is a lack of consensus on the best methods

for access and maintenance (van Bussel et al., 2001, Baagøe-Engels and

Stentoft, 2016, Browell et al., 2016). In the context of global offshore

wind farm capacity, Dalgic et al. (2015a) report that access for repairs is

only possible on average for 200 days of the year, and reduces in areas

with harsher climates. Access is by helicopter, service operations vessel

(SOV), or crew transfer vessel (CTV) (Nielsen and Sorensen, 2011, Scheu

et al., 2012). Helicopters have the advantage that they are not affected

by wave conditions, but cannot be used to transport bulky equipment

and are limited by the number of personnel that can travel aboard. Ad-

ditionally, helicopters have a hire cost that is at least five times greater

than a CTV (Aukcland and Garlick, 2015). SOVs are useful for carrying

heavy equipment and transporting a larger number of repair workers but

again have the disadvantage over other access methods such as CTVs of

increased cost.

The smaller CTVs, such as monohulls, catamarans or Small Water-

plane Area Twin Hull (SWATH) type vessels, are more economical and

account for 41% of the access methods used (Dalgic et al., 2015a). Ac-

cording to the National Renewable Energy Laboratory (NREL) report on
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the development of offshore wind by Maples et al. (2013), the estimated

availability of CTVs is between 61%-95%. The same report advises that

the O&M strategy with the greatest potential to increase availability of

the turbines and decrease costs is to improve the crew transfer system for

the CTVs. By improving this system, total O&M costs can be decreased

by an estimated $24.8M per year while increasing the average availability

to 93% (Maples et al., 2013).

The only limiting sea state factor for CTV access is typically that

Hs ≤ 1.5 m, where Hs is the significant wave height (Dalgic et al.,

2015a, Halvorsen-Weare et al., 2013). In general, the use of the sig-

nificant wave height parameter as the main access criterion introduces

additional uncertainty because Hs depends on in situ wind and wave

conditions and also on the near-wake of the turbine monopile (Sperstad

et al., 2014). Using Hs as the sole limiting factor provides no information

on the modality of the sea state, which is subject to seasonal changes.

These additional variables imply that the significant wave height alone

may not provide sufficient information from which to determine the safety

of the crew members and the stability of the CTV under operational con-

ditions. Moreover, methods of determining Hs vary between wind farms

and no regulation appears to exist whereby Hs can be determined. A

survey conducted by Hoffman (2011) found a total of 49 different models

were used by offshore wind energy companies for maintenance strategies.

1.1.2 Offshore Wind Turbine Access Method

Fixed monopile offshore wind turbines make up 80% of offshore wind

turbine types (IEA, 2013). The remaining 20% are made up of founda-

tion types such as a tripod or floating wind turbines. In order to access
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the turbine for repairs, the CTV is driven towards the turbine monopile

and, under steady thrust from the engine, contact between the turbine

transition piece and the CTV is maintained by frictional forces. Repre-

sentative monopiles have a single turbine transition piece, ideally located

downstream, into which the vessel is driven upwind and illustrated in

figure 1.1. The CTVs in use are approximately 8-25 metres long and are

manoeuvred to allow for the vessel fender to be in direct contact with

the boat landing (Dalgic et al., 2015a). Note that figure 1.1 implies that

the incident waves ~u, are unidirectional, whilst in practice there is a like-

lihood of multi-directional waves (see Section 2.3.1 and Chapter 7 for an

in-depth discussion into wave directionality). The assumption of wave

unidirectionality is made throughout this thesis.

Figure 1.1: Illustration of crew transfer system with CTV abutted against
monopile

This benchmark problem has attracted previous interest in the con-

text of fatigue-induced damage to the support column under wave loading

(see e.g. Chen et al. (2014), Agarwal and Manuel (2011), Finnegan and

Goggins (2012)). Only very limited research has considered the influ-

ence of local hydrodynamics on CTV motion. No known experimental

data exist concerning typical vessel motions during crew transfer; there

are few research studies having considered the hydrodynamic forces on a

floating body located within the wake of a fixed body, where frictional
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forces instead of mooring lines are used to maintain contact.

Josse et al. (2011) presented a system in which hydrodynamic forces

were ignored and the angle of the vessel against the turbine monopile was

assumed to be the only parameter affecting the frictional contact. Al-

though this approach was not validated, Josse et al. (2011) nevertheless

found that wave frequency was a critical factor affecting motion and com-

mented on the need for an improved hydrodynamic analysis of the effect

of incident wave frequencies on vessel loading. König et al. (2017) also

emphasised the necessity of calculating the hydrodynamic forces incident

on the vessel and presented the results for two wave frequencies. This

study found, as expected, that the influence of the monopile on the flow

field decreases as the wave period increases. However, König et al. (2017)

did not determine a limiting wave period for which the CTV could no

longer operate. Moreover, this work focused primarily on the influence of

the monopile in monochromatic wave fields in an experimental setting.

1.1.3 Turbine Access: Hydrodynamic limiting Con-

ditions

Changes in the near-wake flow field where the CTV lies can result in a

weakening of the frictional force and CTV “slippage”, wherein the ves-

sel becomes dislodged from the turbine monopile. When the CTV slips

away from the monopile, crew members in transition are potentially en-

dangered or there is a risk of incomplete maintenance leading to large

economic losses. Eventually, it becomes necessary to predict the CTV

motion under operating conditions, which requires detailed knowledge of

the hydrodynamics and water particle kinematics within the vicinity of

a turbine monopile. The hydrodynamic forces in the region, which are a
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function of the incident wave period and monopile diameter, aid in iden-

tifying the limiting conditions under which the vessel remains in contact

with the monopile turbine. The limiting condition occurs when the total

vertical hydrodynamic forces on the vessel overcome the frictional contact

force between the vessel fender and the transition piece on the monopile

turbine (König et al., 2017). When the frictional contact is overcome,

the vessel is prone to slipping away from the turbine monopile.

Figure 1.2 presents screen shots from a video filmed from the vessel

during crew transfer. The time stamp shows that figure 1.2a and figure

1.2f are only 30 seconds apart, but during this period the vessel is seen to

slip away from the turbine and the repair worker is unable to move onto

the vessel. Sea conditions in the video appear to show small-amplitude

waves with no evidence of nonlinearity or large breaking waves. This

implies that vessel slippage is due to the unobservable local hydrodynamic

force incident on the vessel. Thus, an improvement here would be the

determination of the local hydrodynamic force in an irregular sea state

representing the conditions at an operational offshore wind farm.

1.2 Research Methods

The focus herein is on constructing an accurate representation of a spe-

cific local sea state measured at an offshore wind farm and analysing

the hydrodynamic response of the sea state interacting with a turbine

monopile support column.

Predictions for the local hydrodynamic wave field are useful for engi-

neers and vessel operators and common techniques for determining the

wave field include both analytical and numerical methods. Analytical
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Images taken from a video documenting crew transfer between
vessel and monopile. Video provided by Alexis Billet, Managing Director
of Resilience Energy Consulting.
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methods can be fast to solve and require minimal computational effort,

but often neglect important hydrodynamic features such as nonlinearity

or viscous effects. Numerical methods using computational fluid dynam-

ics (CFD) are capable of resolving nonlinearities for more accurate flow

field representations, but at a high computational overhead. Hence, this

project aims to formulate both numerical and analytical methods capable

of approximating the local wave field at a turbine monopile.

1.2.1 Analytical Wave Formulation

Wave motion, using linear wave theory, is first described for time-dependent

monochromatic waves. Assuming that the principle of superposition ap-

plies, waves in the open ocean are then represented as the sum of many

periodic waves, each component with its own amplitude, frequency and

phase. The wave amplitudes are acquired from a statistical analysis of the

wave field in the frequency domain. Raw in situ data refers throughout

to the time series of sea surface displacement, provided by EDF Energy

Renewables from a single wave buoy located at Teesside Offshore Wind

Farm. The in situ data is analysed and the local undisturbed sea state

is formulated analytically.

Analytical methods are also applied to determine the total incident

wave force on the monopile, in which the geometry is simplified by ne-

glecting the transition piece. The monopile is modelled herein as a

surface-piercing bottom-fixed circular cylinder in a regular, long-crested,

small-amplitude wave field where the ratio of wave height to water depth

is small and the waves are non-breaking. Hydrodynamic force loading

is calculated typically depending on the wavelength-to-diameter ratio.

Force calculation methods for both small- and large-diameter cylinders
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are examined and the forces computed. For small-diameter cylinders, the

Morison Equation (Morison et al., 1950) provides a good approximation

for the wave loading in a viscous-dominant flow regime. The total linear

diffraction force, derived by MacCamy and Fuchs (1954), provides a solu-

tion for large-diameter cylinders when diffraction effects occur and inertia

forces are large. Wave force calculation methods are first presented for

a monochromatic wave field, and then the formulation is extended to a

unidirectional polychromatic wave field. In an irregular sea state, the

wave force spectrum can be used to compare the forces in the frequency

domain.

The wave field around the turbine monopile can also be determined

analytically using the linear diffraction solution, again making the as-

sumption that superposition applies in an irregular wave field. The

time-dependent solution for the linear diffracted surface elevation val-

ues is converted to the frequency domain for analysis, from which the

diffracted wave amplitudes are obtained. As with the undisturbed sea

state, the diffracted wave particle velocity components are derived from

the diffracted amplitude spectrum. Once formulated, this solution is fast

to compute and provides values of the local sea state at an offshore wind

farm; conversion to the frequency domain can also give information on

the modality of the wave field. In addition to providing values for an

undisturbed sea state, the analytical method also provides satisfactory

approximations of the interaction of the local sea state with a turbine

monopile, and the wave kinematics within this region that would influ-

ence vessel motion.
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1.2.2 Numerical Methods

Numerical predictions are generated using the open-source CFD C++

library of solvers, OpenFOAM (version 2.4.0). OpenFOAM has been de-

veloped by the CFD community to simulate many types of fluid flow,

including multi-phase. OpenFOAM is employed here to simulate nu-

merically the interaction between a cylinder representing the monopile

support column and the local wave field.

The numerical model is validated for an undisturbed linear wave field,

where waves are simulated with four different wave period values and a

single wave height in a numerical wave tank. Following Feuchtwang and

Infield (2012) and Dalgic et al. (2015b), the representative operating

wave conditions are equivalent to Hs ≤ 1.5 m in the vicinity of a support

column of diameter ∼ 5 m. These values are chosen in order to model the

type of conditions that prevail at a specific offshore wind site, Teesside

Offshore Wind Farm off the east coast of the United Kingdom, where the

key wave periods are in the range 4 s ≤ T ≤ 10 s and the mean water

depth h ≈ 15 m.

The analytically calculated wave force incident on the cylinder for a

regular wave field, where well-documented solutions for the force loading

exist, allows the numerical model to be verified in a regular wave field.

Altering the wave period also means that the wavelength-to-diameter ra-

tio changes and the effect on the flow due to the presence of the monopile

becomes more apparent with decreasing wavelength. Diffraction and

viscous solutions for the force calculation are employed and compared

to numerical solutions, through application of no-slip and slip cylinder

wall boundary conditions that coincide with viscous- or inertia-dominant
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regimes.

Finally, following verification of the numerical model against the an-

alytical solutions for regular waves, the model is extended to incorporate

an irregular wave field using statistical analysis of in situ data tracking

the ocean surface. To accomplish this, the in situ displacement data

must be converted to the frequency domain, from which important sta-

tistical parameters, such as the significant wave height and modal wave

period, can be determined from the spectrum. Additionally, although

the assumption is made throughout that the wave field is unidirectional,

a statistical representation of the displacement data can provide infor-

mation on the modality of the wave spectra.

To simulate the irregular wave field numerically, a boundary condition

is developed for the purpose of this research for use with OpenFOAM.

The boundary condition is capable of generating a specific sea state, de-

pendent on the spectral values (see Section 2.3). Simulating the exact

sea state at an offshore wind farm provides a method with which the

interaction of a specific sea state with a turbine monopile may be de-

termined numerically. OpenFOAM is a fully nonlinear model and can

resolve higher-order effects neglected by the linear methods.

The work undertaken for this thesis has produced two methods for de-

termining the detailed linear wave kinematics found locally at an offshore

wind farm, based on data obtained from the location. With knowledge

of the wake kinematics within this region and the measured sea state

found at an offshore wind farm, practitioners can decide whether to at-

tempt turbine access with much greater detail of the hydrodynamics, in

addition to knowledge of the significant wave height.
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1.3 Purpose of Research

The purpose of this thesis is to provide operators of companies employing

offshore wind turbine repair workers, and engineers tasked with improv-

ing the O&M process, a method of resolving the sea state at specific

offshore wind farms. Current repair vessel access limits rely solely on the

significant wave height, an observable parameter which provides no infor-

mation on the directionality of a sea state. Access methods, in which the

vessel operator manoeuvres the vessel into the turbine and continuously

runs the vessel motor, thereby driving the vessel into the turbine and

relying on frictional contact, cannot account for hydrodynamics within

the wave field or non-negligible wave diffraction.

By computing both numerical and analytical solutions to the wave-

monopile interaction, it can be shown that the analytical linear diffraction

solution for irregular waves provides a good approximation to the wave

field in the vicinity of a turbine monopile, when compared to the fully

nonlinear numerical solution. Analytical solutions are beneficial to engi-

neers or consultants who do not have access to large supercomputers or

significant computational resources.

The results provided by the current analytical method can give prac-

titioners a good initial approximation of the wave field that a CTV will

enter. When available, improved results for the wave field can be pro-

vided through numerical methods capable of resolving nonlinearities. The

open-source numerical method used here is freely available, making it an

affordable option for engineers or consultants without access to powerful

computers with multi-core processors. By developing the boundary con-

dition for generating any unidirectional wave field from a given spectral
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data set, many additional numerical simulations of the interaction of an

actual sea state with offshore structures can be examined.

Both analytical and numerical calculation methods are employed to

present two sets of solutions for the local hydrodynamic wave field. Each

solution method has advantages and disadvantages. The analytical so-

lution has the advantage that it can produce approximate results of the

wave kinematics around a monopile quickly, but is restricted to linear so-

lutions of an inviscid flow. The numerical solution has the advantage that

it can resolve nonlinearities and other complicating flow factors, with the

obvious drawback of a large computational overhead. Nevertheless, both

methods utilise field information obtained as wave buoy data and lead to

sensible approximations of the local wave field.

1.4 Aim and Objective

The aim of this thesis is to provide offshore wind farm practitioners with

a method for determining the sea state at an offshore wind farm, the

wave loading on a turbine monopile and the accompanying local hydro-

dynamics. This thesis describes the following steps:

1. A statistical analysis of the spectral distribution of the surface el-

evation from data obtained from an in situ wave buoy measuring

surface displacement at Teesside Offshore Wind Farm in the south-

ern North Sea.

2. Utilisation of the verified spectral distribution values as input, to

formulate the undisturbed surface elevation and wave particle kine-

matics analytically.
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3. Reproduction of the sea state numerically through application of

a boundary condition developed for this project. This boundary

condition, developed for use with OpenFOAM, allows for the cal-

culation of in-line and horizontal velocity values on the boundary

of the computational domain from spectral values.

4. Formulation of analytical solutions for the spectrum of wave forces

on the turbine monopile in the irregular sea state represented by

the wave buoy data. The solution methods reflect the influence

that the presence of the monopile has on the passing wave field.

For shorter wave periods, wave diffraction is expected to occur,

thereby affecting the local hydrodynamics.

5. Employ application of linear wave diffraction solutions in an irregu-

lar sea to calculate the diffracted surface elevation and its spectrum.

Obtain the diffracted significant wave height and local diffracted

hydrodynamics relevant to vessel motion, such as velocities, ac-

celerations, and forces, analytically in the vicinity of the turbine

monopile.

6. Examine numerically the interaction between the simulated sea

state and the turbine monopile; compare and contrast wave forces

and diffracted hydrodynamics to solutions obtained analytically.

1.5 Thesis Outline

Chapter 2 describes the analytical formulation of a linear wave field, in

which wave motion in a regular wave field is first discussed, followed

by the statistical formulation used for the sea state in the open ocean.
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Chapter 3 examines wave loading on a cylinder in unidirectional and in

oscillating flow, together with the spectral representation of forces on a

cylinder in irregular waves. Chapter 4 considers the numerical model,

meshing and discretisation methods, and solution algorithms used in

OpenFOAM. Chapter 5 describes the preliminary tests, including the in-

teraction between a steady current and a surface-piercing cylinder; linear

progressive wave loading on a cylinder is also considered. This chapter

also discusses simulation of an undisturbed regular wave field and the

interaction between the regular wave field and surface-piercing cylinder.

Details are given of an investigation into the effect that the wave absorp-

tion zone has on the computational domain length, and whether the ab-

sorption zone length can be reduced through an adjustment of relaxation

zone parameters. Chapter 6 describes an extension of the regular wave

model to represent an irregular wave field based on wave buoy data from

Teesside Offshore Wind Farm during each of the four seasons throughout

2015/2016. From this in situ data, the analytical and numerical methods

outlined in the previous chapters are applied to generate the sea state

at Teesside offshore wind farm and calculate the interaction between the

local sea state and a wind turbine monopile. Chapter 7 summarises the

overall conclusions, challenges and suggestions for future work.
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Chapter 2

Mathematical Theory

Chapter Summary

The mathematical theory presented in this chapter focuses on determin-

ing the water particle kinematics in an undisturbed wave field. Wave

motions are described for regular linear waves and for an irregular wave

field. Statistical methods are outlined for determining the water particle

amplitudes, velocities and accelerations in an irregular wave field. A brief

discussion of wave directionality is also provided.

2.1 Introduction

An analytical approximation to the wave particle kinematics around an

offshore wind turbine support column can provide important information

about the waves incident on a CTV under operating conditions. The

undisturbed wave field far from the monopile is modelled using linear

wave theory for small-amplitude long-crested waves; a brief discussion of

linear wave theory is given in Section 2.2. In the ocean, where waves of

many different frequencies and amplitudes contribute to the wave field,



the undisturbed sea state is often described by the superposition of linear

sinusoidal waves (Faltinsen, 1990). It is usually assumed in linear theory

that the waves are long-crested and of small-amplitude, with the fluid

incompressible and inviscid and the flow is irrotational.

As a consequence of the irregular properties of the ocean sea state, a

statistical spectral representation of the wave elevation in the frequency

domain can also be used to approximate the entire wave field and provide

summary statistics. The undisturbed wave amplitudes and water particle

kinematics incident on the turbine monopile are computed from the wave

elevation spectrum (Sarpkaya, 1986). For engineering applications, it is

usual that wave displacement data is obtained from in situ wave buoys,

which in this case are located at the relevant wind farm. Statistical rep-

resentations of the wave buoy displacement data can be used to model

the sea state and verify that the correct sea state has been produced.

Further details describing sea state representation are given in Section

2.3. Treatment of waves in a multidirectional sea state is briefly consid-

ered in Section 2.3.1, although this thesis will restrict the later analysis

to unidirectional waves.

2.2 Linear Wave Theory

Typically, CTV access to a turbine monopile is limited by the significant

wave height Hs, which for most vessels currently in use must be below

1.5 m for operation (Dalgic et al., 2015a, Halvorsen-Weare et al., 2013).

At the site of interest herein, Teesside Offshore Wind Farm, the average

water depth is 15 m. For the small-amplitude waves required for CTV

access, it can be assumed that for all relevant wave fields, the operating
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wave height-to-depth ratio is ≤ 0.1.

Assuming that the fluid is incompressible and inviscid, with the mo-

tion irrotational, a velocity potential φ may be employed, which satisfies

Laplace’s equation

∇2φ = 0, (2.1)

in which

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (2.2)

where x and y are Cartesian distance components in the horizontal plane

and z the vertical distance measured vertically upward from the still

water level. Figure 2.1 illustrates the wave direction and other parameters

defining the wave field and cylinder properties.

Figure 2.1: Diagram indicating the wave parameters for a linear wave
moving past a cylinder

It is assumed that the waves are regular and long-crested with am-
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plitude a. Boundary conditions on the bottom and at the free surface

must be applied to determine the velocity potential φ that satisfies (2.1).

On the bottom, located at z = −h, where h is the water depth, no flow

should pass through the boundary and the bottom boundary condition

(BBC) is

∂φ

∂z

∣∣∣∣
z=−h

= 0. (2.3)

Bernoulli’s equation for unsteady flow is then used to determine the pres-

sure condition on the free-surface. The unsteady Bernoulli equation pro-

vides the dynamic free-surface boundary condition (DFSBC), given by

1

2
(u2 + v2 + w2) +

p

ρ
+ gz +

∂φ

∂t
= 0, (2.4)

where u, v and w are the velocity components, g is acceleration due to

gravity, p is the dynamic pressure, ρ is the fluid density and t is time.

Assuming that u2, v2 and w2 are small, the linearised form of the DFSBC

is given by

∂φ

∂t
+ gη

∣∣∣∣
z=η

= 0, (2.5)

where η is the free-surface elevation above the still water level. From

the boundary conditions above, the solution of (2.1) is given by (see e.g.

Dean and Dalrymple (1991))

φ = −aω
k

coshk (h+ z)

coshkh
sinΨ (2.6)

where k = (k1, k2, 0) is the wavenumber vector, k = |k| is the wavenum-

ber, ω is the angular wave frequency and Ψ (x, t) is the phase function,
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given as a function of position vector x and time t as

Ψ(x, t) = (k.x− ωt) , (2.7)

where ω is the frequency in radians/sec. The linearised kinematic free

surface boundary condition (KFSBC) ensures that the vertical velocity

component is equal to the rate of displacement of the free surface, such

that

∂φ

∂z

∣∣∣∣
z=0

=
∂η

∂t
. (2.8)

The value for η when no cylinder is present can be given as a sinusoidal

motion of constant amplitude a = H/2, where H is the wave height,

given by

η = acos (k.x− ωt) . (2.9)

From (2.8) and (2.9), k (where the subscript 1 has been dropped for

simplicity) is related to ω by the linear dispersion relation,

ω2 = gktanhkh, (2.10)

in which g is acceleration due to gravity. The linear dispersion rela-

tion describes the change in wave properties with respect to physical

parameters; the wavelengths become shorter and the speed is decreased

with increasing depth and constant wave period (Sarpkaya and Isaacson,

1981). The wave period T and wave length λ are related to ω and k,

respectively, by
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ω =
2π

T
(2.11)

and

k =
2π

λ
. (2.12)

The system is considered to be linear if it satisfies properties of scaling

and superposition. Equation (2.10) is usually solved iteratively using a

standard technique, such as the Newton-Raphson method or bi-section.

The water particle velocity components in the horizontal x and y

directions and vertical z are obtained directly from the velocity potential

as

u =
∂φ

∂x
, v =

∂φ

∂y
, w =

∂φ

∂z
. (2.13)

Similarly, the water particle accelerations are defined as

u̇ =
Du

Dt
, v̇ =

Du

Dt
, ẇ =

Du

Dt
. (2.14)

From (2.6) and (2.13) and by applying the linear dispersion relation

(2.10), the undisturbed in-line and vertical velocity components in a reg-

ular wave field can be written

u =
H

2

gk

ω

cosh k (h+ z)

cosh(kh)
cos ΨcosΘ (2.15)

v =
H

2

gk

ω

cosh k (h+ z)

cosh(kh)
cos ΨsinΘ (2.16)

w =
H

2

gk

ω

sinh k (h+ z)

cosh kh
sin Ψ (2.17)
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and similarly the accelerations can be written as

u̇ =
Du

Dt
= −H

2
gk

cosh k (h+ z)

sinh kh
sin Ψ cos Θ (2.18)

v̇ =
Dv

Dt
= −H

2
gk

cosh k (h+ z)

sinh kh
cos Ψ sin Θ (2.19)

ẇ =
Dw

Dt
=
H

2
gk

sinh k (h+ z)

sinh kh
cos Ψ. (2.20)

By applying the linearised form of the Bernoulli equation from (2.5),

the pressure underneath a progressive wave, written in terms of the po-

tential, is

p = −ρ∂φ
∂t
− ρgz. (2.21)

In (2.21), the first term on the right-hand-side describes the dynamic

pressure component due to the motion of the fluid and the second term

is the hydrostatic component from gravity, acting in the −z direction.

The static pressure is a function of depth only and does not contribute

to the time-dependent loading. Only waves in a regular wave field with

a single wave frequency have been considered thus far. Extension to an

irregular wave field with multiple wave frequencies will be discussed in

Section 2.3. Henceforth, the wave formulation will be given for a 2-D

wave field, where the angle of approach Θ = 0.

2.3 Ocean Statistics

For small-amplitude waves, the unidirectional sea state can be repre-

sented as the linear superposition of waves with a range of frequencies

and amplitudes where the random phasing ψ is between 0 and 2π and
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represents the random distribution of wave phases inherent in an irregu-

lar sea. In the ocean, it is common to define the stationary sea state in

the frequency domain by its spectral function S(f) (Dean and Dalrymple,

1991), where f is frequency in Hz and f = ω/2π.

To compute the wave spectrum, a Fourier analysis of the wave field

is conducted. Fourier analysis permits any continuous or piecewise-

continuous function to be represented in the time domain as the sum of

periodic functions with varying frequencies and Fourier coefficients, cor-

responding to the individual wave amplitudes (Sarpkaya and Isaacson,

1981). For the greatest accuracy, the wave field is ideally extracted from

multiple wave buoys contemporaneously measuring surface displacement

over a prolonged length of time (McAllister et al., 2017). Whilst a Fourier

transform can be computationally demanding and time-consuming to cal-

culate, a Fast Fourier Transform (FFT) is an algorithm that can very

quickly compute a Discrete Fourier Transform (DFT), which converts

a finite sequence of samples of a function into same-length equidistant

discrete samples. The spectral function is then related to the FFT by

S(f) =
1

FsN
|FFT|2, (2.22)

where Fs is the sampling frequency and N is the total number of fre-

quency bins.

It can be difficult to obtain displacement data from a specific location

and it is common to apply established wave spectra when the relevant

data are not available. Wave spectra are depth- and location-dependent

and a number of models have been developed to describe the charac-

teristics of a wave spectrum for key parameters including wave period,
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wind direction and fetch; the fetch determines whether the sea state is

fully developed or not. Spectral equations for wave spectra measured at

a specified point are typically of the form

S(f) =
A

f 5
e

(
− B
f4

)
, (2.23)

where A and B are constants that represent parameters needed for cal-

culating the spectral values.

The key parameters and representative wave spectrum are location-

dependent. Common wave parameters are the significant wave height

Hs, which is an observational measurement of the average of the highest

one-third of all waves, and the mean wave period Tp (Chakrabarti, 1987).

For fully-developed unidirectional seas, the Pierson-Moskowitz Spectrum

is often applied. The single-sided Pierson-Moskowitz spectrum is formu-

lated from either one (spectral wave height or windspeed or peak period)

or two (significant wave height and peak parameter) known parameters

(Pierson and Moskowitz, 1964). The Pierson-Moskowitz Spectrum, de-

fined from zero to infinity, is given by

S(f) =
1

(2π)4
αsg

2f−5e

(
−βs(

fp
f

)4
)
, (2.24)

where αs = 0.0081 and βs = 0.74 are empirically determined numerical

constants controlling the intensity and shape of the spectra, respectively,

and peak frequency fp = 1
2π

0.4
√
g/Hs (Pierson and Moskowitz, 1964).

The Pierson-Moskowitz Spectrum was originally the recommended spec-

tral formation by the International Towing Tank Conference (ITTC), but

due to its dependence on fully developed seas, two-parameter spectra such

as the JONSWAP spectrum was developed for the North Sea, where the
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fetch length is limited by land (Hasselmann et al., 1973). The JONSWAP

spectrum is a fetch-limited variation of the Pierson-Moskowitz spectrum

defined by

S(f) =
1

(2π)4
αsg

2f−5e

[
− 5

4

(
f
fp

)−4
γδ

]
, (2.25)

where γ is the peak enhancement factor with a given value of 3.3 and

δ = exp

[
−(f − fp)2

2σ2f 2
p

]
, (2.26)

αs = 0.076x̄−0.22, (2.27)

x̄ =
gx

U2
, and (2.28)

σ =


0.7 for f ≤ fp

0.9 for f > fp.

(2.29)

The value x̄ indicates fetch where U is the wind speed taken at 19.5

m above sea level. The JONSWAP spectrum is valid for seas that are

narrow-banded (such as the North Sea) and is often used in the offshore

industry. Other spectral types, such as the modified Pierson-Moskowitz

spectrum (Bretschneider spectrum) (Bretschneider, 1959), have been de-

veloped for seas with different parameters, locations, currents, fetch, etc.

For any wave spectrum, the area under the spectral curve is the zeroth

moment, m0, about the axis (Pierson and Moskowitz, 1964), and gives the

total energy within the spectral function. The value for m0 is equivalent

to the variance of the wave elevation time series σ2
η (Chakrabarti, 1987),

or
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σ2
η = m0 =

∫ ∞
0

S(f)ηdf. (2.30)

From the frequency spectrum, the significant wave height Hs and am-

plitude components an can be found from (Papoulis, 1991, Sumer and

Fredsøe, 2006) to be

Hs = 4
√
m0 (2.31)

and

an =
√

2S(f)η∆f. (2.32)

Under the assumption that superposition applies, the undisturbed

free surface elevation of a two-dimensional random sea state in the (x, z)-

plane is described by linear wave theory and the wave spectrum (2.22)

(Dean and Dalrymple, 1991). For an irregular wave (2.9) becomes

η∞ =
N∑
n=1

ancos(knx− ωnt+ ψn), (2.33)

where the amplitude of the n-th component an is obtained from (2.32)

and ψ is randomly sampled from the phase distribution. Equation (2.33)

is the 2-D representation when y components are small, which is assumed

henceforth. The linear dispersion relation for this frequency component is

given by w2
n = gkntanhknh. Similarly by superposition, the undisturbed

vertical and horizontal velocity components in irregular waves may be

expressed
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u∞ =
N∑
n=1

anωn
cosh kn (z + h)

cosh knh
cos (knx− ωnt+ ψn) cos Θ (2.34)

w∞ =
N∑
n=1

anωn
sinh kn (z + h)

cosh knh
sin (knx− ωnt+ ψn) , (2.35)

and the irregular water particle acceleration components are

u̇∞ =
Du∞
Dt

=
N∑
n=1

angkn
cosh kn (h+ z)

sinhknh
sin(knx− ωnt+ ψn) cos Θ

(2.36)

ẇ∞ =
Dw∞

Dt
=

N∑
n=1

angkn
sinh kn (h+ z)

sinhknh
cos(knx− ωnt+ ψn). (2.37)

The analytically calculated undisturbed surface elevation in (2.33) can

be statistically correlated to the in situ displacement data by evaluating

the wave spectrum S(f)η of both data sets and comparing the m0 values

and spectral shapes. Equation (2.30) can be used to verify that each

wave spectrum correctly corresponds to its respective surface elevation

data.

The average frequency that the signal crosses the x-axis in the upward

direction, or the zero-crossing frequency, can also be obtained from the

wave spectrum,

fz =

√
m2

m0

, (2.38)

where m2 is the second moment, given by

m2 =

∫ ∞
0

f 2S(f)ηdf. (2.39)
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The area under the curve for a continuous wave spectrum can be approx-

imated using a discrete numerical integration method, such as Simpson’s

rule, which uses quadratic interpolation so that the expected error is

bound by (∆f 4), where ∆f is the frequency step size. Therefore, if ∆f is

reasonably small, Simpson’s rule has an appreciable advantage in accu-

racy over linear interpolation methods and gives a good approximation

of the total area.

By applying the method of superposition, a specific unidirectional sea

state and wave spectrum can be constructed when displacement data are

available. When location-specific data is not available, an idealised spec-

trum most suitable to the region of interest, such as Pierson-Moskowitz or

JONSWAP, can be applied. Simulation of the correct sea state is essen-

tial to the design of structures in offshore environments. It has previously

been established that regular waves often over-predict the forces and sur-

face elevations around an offshore structure in comparison to irregular

waves (Goda, 1985).

Spectral Smoothing

When determining the wave spectrum using Fourier analysis, the record

length for the spectrum is finite, implying that the values in the spectrum

are only apparent values rather than the true refined spectral density

values from an infinite time sample. Spectra are therefore smoothed in

order to remove noise when recording the steady state spectral function.

Herein, a Moving Average filter (MA filter) is chosen to filter the data

points and smooth the spectrum. An MA filter is a Low-Pass Finite

Impulse Response (FIR) filter. The MA filter works by taking M input

points from either side of a point in the spectral signal and calculating the
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average over the M points, resulting in a single data point. The larger the

value of M , the more the signal is filtered and smoothed (Chakrabarti,

1987). The algorithm for the smoothed spectrum S̄sm using a MA filter

is

S̄(f)sm =
SM + SM−1 + ...+ SM−(N−1)

N

=
1

N

N−1∑
i=0

SM−i

(2.40)

where M are the chosen number of data points and correspond to one

side of the unfiltered point, N in this case is the total number of points

to average over, and i is the current point. In the present work, a mini-

mum of 8 input points (N) were required to obtain a smoothed, filtered

spectrum.

2.3.1 Directional Seas

In an ocean environment, waves travel from different directions and with

multiple modal frequencies. Without including directionality in the wave

spectrum, the wave particle velocities and free-surface profiles may be

overestimated (Hughes and Thompson, 1986). However, to take the wave

direction into account in the statistical analysis, wave displacement data

taken during identical time intervals at multiple points are required. In

this work, as is commonly the case in offshore analysis, data from only

one point was available. It is difficult to resolve the prevailing wind-wave-

swell directions from single-point observations (McAllister et al., 2017,

Adcock and Taylor, 2009) and so directionality will not be included in

the later application to the site at Teesside. Nevertheless, a method to
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incorporate the directionality of the waves that can be used when data

from multiple points are available is briefly discussed below.

The angular distribution of the wave energy in directional seas is de-

scribed by a directional spreading function, which is based on the spec-

ified sea state and directionality information provided by displacement

data from multiple wave buoys (Venugopal et al., 2005). Estimating the

directionality of the wave components within a sea state typically requires

a minimum of three simultaneous time series measurements (McAllis-

ter et al., 2017). Previously, the spectrum was defined as a function of

frequency only S(f)η, but to account for wave directionality, the wave

spectrum is redefined as S(fn, θm)η, where θ is the wave direction. The

subscript n again denotes the n-th frequency component and m relates

to a given wave direction contained within the wave elevation time series.

The wave spectrum is equivalent to the directional spectrum, such that

S(f)η =

∫ π

−π
S (f, θ)η dθ. (2.41)

From (2.41), the variance of a multi-directional free surface is defined as

σ2
η =

∫ ∞
0

∫ π

−π
S(f, θ)ηdθdf. (2.42)

As in (2.32), the amplitude components are defined as

anm =
√

2S (fn, θm)η dfdθ. (2.43)

The directional surface elevation is determined from (2.33) with ampli-

tudes (2.43).

In practice, measurement of S (f, θ)η is difficult, so parametric repre-

sentations of the directional spectrum are used, whereby
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S (f, θ)η = D (f, θ)S(f)η, (2.44)

and D (f, θ) is a spreading function. Several common spreading functions

exist including the “cosine-squared” type, an example of which is

D(f, θ) = D(θ) =


2
π
cos2θ for

(
−π

2
+ θ
)
< θ <

(
π
2

+ θ
)

0 otherwise.

(2.45)

It is hoped that future developments of this work will use a method

such as that presented by Adcock and Taylor (2009); this would enable

weak nonlinearities within the wave field to contain additional spreading

functions to reproduce multidirectional sea states, including crossing seas,

more accurately. Without the inclusion of directionality, there is a risk of

overestimating the total in-line force in a design wave environment (such

as that outlined in Section 2.3), relative to the wave loading from the real

sea (Sarpkaya, 1986). Future improvements to the methods discussed in

this chapter would take into consideration the wave approach angle but,

as previously discussed, this process can be difficult without data from

multiple points and is beyond the scope of the present analysis.

2.4 Summary

In this chapter, the mathematical formulation has been presented for

equations describing linear waves. Commencing with a brief background

of linear wave theory, an overview of irregular wave fields and ocean

statistical analysis has been given along with descriptions of the wave
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parameters and statistical values that can be inferred from the station-

ary ocean process. A statistical analysis of ocean waves provides valuable

information concerning the water particle kinematics, energy and wave

amplitudes present in an irregular wave field. Wave parameters deter-

mined here will be compared to the numerical results in Chapters 4 and

5 to investigate the validity of the numerical model.
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Chapter 3

Wave Loading on a Vertical

Cylinder

Chapter Summary

This chapter focuses on determining the water particle kinematics in

the near-vicinity of a fixed monopile turbine support structure in waves.

The rationale is that predictions of the water particle kinematics from

an analytical approximation of the wave field in the very-near wake of

a monopile turbine can be used for a 2-D vessel motion analysis based

on local input wave conditions. Methods for computing the in-line wave

forces are presented for small- and large-diameter cylinders located in

regular and irregular wave fields. An analytical method is outlined for

determining the water particle kinematics around a monopile turbine

within the region where a crew transfer vessel (CTV) would lie, for any

incident unidirectional sea state.



3.1 Introduction

Subsequent to the time-dependent and statistical representation of the

undisturbed wave field and the determination of the water particle kine-

matics in Chapter 2, it is desirable to determine the effect that the

monopile has on the passing wave field. The appropriate method for

describing the fluid-structure interaction is dependent on the monopile

diameter-to-wavelength ratio. For a small-diameter monopile, it is as-

sumed that the presence of the monopile has a negligible effect on the

passing flow, although a viscous wake will form, and the Morison Equa-

tion (Morison et al., 1950) provides a suitable approximation for the

in-line wave force. For large-diameter monopiles where the effect of the

monopile on the incident wave field must be taken into account, the lin-

ear diffraction theory presented by MacCamy and Fuchs (1954) provides

a satisfactory approximation to the diffracted surface elevation and the

diffracted wave force. The in-line wave force loading will be discussed

first for waves in a monochromatic wave field, and then for waves in an

irregular undirectional wave field. Both force-loading calculation meth-

ods will be described in Section 3.2.

An expression for the diffracted wave spectrum from an arbitrary

input sea state is presented in Section 3.3, with the derivation of an au-

tocorrelation function using the Wiener-Khinchin theoreom. The trans-

fer function derived is not presently validated by data and therefore the

formulation herein is solely theoretical. However, the formulation could

be of interest for determining the water particle kinematics within the

region of the turbine monopile from any given wave buoy displacement

data. Further work is recommended to validate experimentally the trans-

35



fer function.

An important outcome of this chapter is the development of an ana-

lytical method to determine the linear diffracted wave particle kinematics

and wave force loading for any unidirectional irregular sea state under

operating conditions. Analytical solutions for the water particle kine-

matics and wave forces within this region would provide CTV operators

with fast approximations of the expected wave loading on the vessel.

Improved knowledge of the water particle kinematics within this region

could also greatly enhance the vessel operators’ ability to manoeuvre the

vessel to avoid unwanted wave motion and remain steady to allow safe

crew transfer.

3.2 Overview of Wave Forces on a Vertical

Cylinder

The turbine monopile support column is idealised as a vertical smooth,

surface-piercing, fixed circular cylinder. Close to the cylinder walls, vis-

cous surface effects disturb the local flow and potential theory for de-

scribing undisturbed wave motion (see Section 2.2) no longer applies.

The local hydrodynamic regime depends on the incident wave parame-

ters, water depth and length scale of the cylinder. No method exists that

is universally applicable for predicting the wave loading on a surface-

piercing cylinder under all circumstances; the length scale of the cylin-

der, wave period, viscosity and other factors must be taken into account

to determine the effect (if any) that the presence of the cylinder has on

the passing water flow (Dean and Dalrymple, 1991). The total forces are

dependent on the fluid flow regime, described in terms of the parame-
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ters identified above, and relative size of the cylinder diameter D to the

wavelength λ.

For small-diameter cylinders where the diameter-to-wavelength ratio

D/λ < 0.2, it may be assumed that the presence of the cylinder has a neg-

ligible effect on the pressure field of the passing waves and viscous forces

dominate. As the cylinder diameter-to-wavelength ratio increases, the

presence of the cylinder modifies the local hydrodynamic pressure gradi-

ent and the inertia force, which is the force due to momentum, increases,

related to wave diffraction. In the drag-inertia regime, where both drag

and inertia forces are important, both viscous and diffraction force com-

ponents contribute to wave loading, and the flow can experience addi-

tional effects due to wave nonlinearity in the presence of high-frequency

diffracted waves (Swan and Sheikh, 2014).

The Reynolds number (Re) and the Keulegan-Carpenter number (KC)

are commonly used to describe the ratio of inertia-to-viscous forces and

the ratio of drag-to-inertia forces respectively, for a fluid flow past an

obstacle (Faltinsen, 1990, Sarpkaya and Isaacson, 1981). Re and KC are

given by

Re =
U∞D

ν
, (3.1)

KC =
TU∞
D

, (3.2)

where T is the wave period, ν is the coefficient of fluid kinematic viscosity

and U∞ is the incident velocity magnitude.

Zdravkovich (1997) has classified unidirectional flow past a cylinder

with respect to Re, and gave the flow descriptions listed in figure 3.1.
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With increasing Re, the fluid flow changes from a laminar flow with no

separation at the cylinder surface to a fully turbulent flow, where the

flow motions are rotational and eddy shedding occurs. As the pressure

gradient decreases, the vortices separate from the cylinder and travel

downstream, creating a wake or a vortex pattern (Sumer and Fredsøe,

2006).

At Teesside Offshore Wind Farm, a typical monopile is of diameter

D ≈ 5 m, and the Reynolds number and Keulegan-Carpenter num-

ber ranges, based upon the cylinder diameter and under operational

conditions, are within the ranges 1.2 × 106 < Re < 3.6 × 106 and

0.35 < KC < 1.1. In this case, KC remains small across the entire

range of wave periods, implying that the inertia force is large. Whilst

it might be expected that vortices form in this Reynolds number range

(see figure 3.1), it is known that vortex shedding does not occur when

KC < 3 (Sarpkaya and Isaacson, 1981). At high Re and low KC, a

third parameter, β = Re/KC, is a better indicator than Re alone of the

viscous forces present in the flow (Chaplin, 2000, Johanning et al., 2001,

Sarpkaya, 2006) and is given by

β =
D2

νT
. (3.3)

The total in-line wave force on a vertical surface-piercing fixed cylin-

der in long-crested waves can be attributed to the unsteady pressure field

within the incident wave field (see (2.21)) over the submerged cylinder

length (Dean and Dalrymple, 1991). In an ideal potential flow where it is

assumed that the cylinder has no effect on the flow field, the total in-line

force per unit height can be calculated as the sum of the drag force (Fp,D)
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Figure 3.1: Effect of Reynold’s Number on Unidirectional Flow Past a
Cylinder - Adapted from Zdravkovich (1997)
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component and the lift force (Fp,L) component, found through integration

of the surface pressure distribution:

Fp,D =

2π∫
0

p(R, θ)Rcosθdθ, (3.4)

and

Fp,L =

2π∫
0

p(R, θ)Rsinθdθ. (3.5)

In (3.4) and (3.5), R is the cylinder radius and θ is the angle taken

anticlockwise positive about the x-axis with origin at the centre of the

cylinder, illustrated in figure 3.2.

Figure 3.2: Diagram demonstrating the direction of the hydrostatic drag
force (Fp,D) and lift force (Fp,L) incident on a cylinder in an ideal potential
flow, in which ~u denotes direction of flow and θ is the angle on the
cylinder.

In an idealised potential flow, the lift force component is equal to

zero. However, in a wave field, once the incident wave crest passes and
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the wave trough reaches the turbine, the flow field is reversed and the

wake comes back towards the turbine, resulting in the force loading re-

versing direction. The directional changes and flow separations breach

the prior assumptions of irrotational flow and an inviscid fluid assumed

by potential theory (Dean and Dalrymple, 1991), and the pressure inte-

grations in (3.4) and (3.5) are not equal to zero. This deviation from the

expected result in symmetrical flow is called D’Alembert’s Paradox, which

occurs due to the unreasonable assumption of potential irrotational flow

(Dean and Dalrymple, 1991).

Two more approximate methods are used in practice to calculate the

wave-induced force on a monopile, depending on the cylinder diameter-

to-wavelength ratio: one for small-diameter cylinders and the other for

large-diameter cylinders. In the following sections, the force calculations

are based on assumptions that the wave field is comprised of linear waves

in either a regular wave field with a single modal wave frequency or in

an irregular unidirectional wave field with a range of wave frequencies.

3.2.1 Wave Forces on a Small Diameter Cylinder -

Morison equation method

For small-diameter cylinders, where it is assumed that the fluid flow

close to the cylinder walls is not altered in the incident wave direction,

the Morison equation is commonly used to estimate the total in-line force

(Morison et al., 1950). The Morison equation comprises the linear sum

of drag and inertia force components, and is evaluated using the undis-

turbed water particle velocity and acceleration components calculated in

the absence of the cylinder. By integrating the representation over the

submerged length of a vertical surface-piercing cylinder (that extends
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from the bed to above the free surface), the total in-line horizontal force

exerted on the cylinder is given by

FM =

z=η∫
z=−h

[
1

2
ρCdDu|u|+ ρCm

πD2

4
u̇

]
dz (3.6)

where the in-line horizontal velocity component u and the in-line horizon-

tal acceleration component u̇ can be determined from (2.13) and (2.36),

respectively, for regular wave loading, or from (2.34) and (2.35), respec-

tively, for irregular wave loading. The second term on the right hand side

of (3.6) is the inertia force, a combination of the force produced by the

pressure in an undisturbed wave field (Froude-Krylov force) and the hy-

drodynamic added mass force (Dean and Dalrymple, 1991). The added

mass force results from the force of the fluid acting on the submerged part

of the structure. Viscous effects in the boundary layer on the cylinder

wall induce flow separation leading to the formation of a vortex street

wake at KC > 3 (Faltinsen, 1990).

The drag (Cd) and inertia (Cm) coefficients are usually determined ex-

perimentally. Results from many experimental tests have been compiled

(see e.g. (Roshko, 1961), (Bearman et al., 1985)) and accepted values of

Cd at a range of Re values for a smooth cylinder are presented in figure

3.3, where it is assumed that the drag coefficient remains constant over

the length of the cylinder.

Around Re > 1×105, it can be seen in figure 3.3 that there is a drop in

the Cd value before it increases again, corresponding to the so-called drag

crisis. In oscillatory flow, when KC < 5, the flow regime is considered

to be inertia-dominant and it has been shown, by Wang (1968), that for

high Re values and low KC values (i.e. high β, where β =
Re

KC
, values),
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Figure 3.3: Experimental drag coefficient values as a function of
Reynold’s number for a smooth infinitely long cylinder in unidirectional
flow. Image from Schlichting (1960).

the drag and inertia coefficients can be calculated from

Cd =
3π3

2KC

[
(πβ)−

1/2 + (πβ)−1 − 1

4
(πβ)−

3/2

]
(3.7)

and

Cm = 2 + 4 (πβ)−
1/2 + (πβ)−

3/2 . (3.8)

Figure 3.4 shows the behaviour of the drag coefficient with Keulegan-

Carpenter number for different β values; although it should be noted

that the β-values are below those expected for a monopile in waves at

the Teesside site.

Ishida and Iwagaki (1978) applied an alternative method introduced

by Borgman (1965) to calculate the force spectrum per unit length due to

irregular waves in the frequency domain (Sumer and Fredsøe, 2006). The
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Figure 3.4: Values of Cd versus KC for a range of β values. Adapted
from Sarpkaya (1976)

Borgman method for the first approximation of the wave force spectrum

at a specified height on the cylinder is given by

S(f)FB =
8f 2

dω
2
u

π
S(f)u + f 2

mS(f)u̇, (3.9)

where the drag and inertia force magnitude values fd and fm are related

to the Morison coefficients Cd and Cm by

fd =
1

2
ρCdD and fm = ρCm

πD2

4
, (3.10)

and Su(f) and Su̇(f) are the power spectral densities of the in-line veloc-

ity and acceleration components, respectively, and

ω2
u = 2

∞∫
0

Su(f). (3.11)

Predictions from this method can be compared in the frequency domain

to the total in-line force spectrum computed as the Fourier transform of
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the horizontal force time series for irregular waves, calculated using the

Morison equation.

3.2.2 Wave forces on a large diameter cylinder -

Diffraction Method

Linear diffraction theory applies to inertia-dominated wave flow past a

large-diameter cylinder when the ratio of the diameter-to-wavelength ≥

0.2. In this range, diffracted waves are produced by a combination of

waves reflected from the cylinder and the undisturbed incident wave field.

The initial undisturbed incident wave field potential from (2.6) can be

written in complex notation as

φ = Re

[
−ag
ω

coshk (h+ z)

coshkh
ei(kx−ωt)

]
. (3.12)

Using polar coordinates (r, θ) in the horizontal plane, the incident wave

potential that satisfies the polar form of Laplace’s equation and the kine-

matic and dynamic free surface boundary conditions (MacCamy and

Fuchs, 1954) is given by the standard form

φI = −ga
ω

coshk (h+ z)

coshkh

[
∞∑
m=0

εm(i)mJm(kr)cosmθ

]
e−iωt, (3.13)

where i =
√
−1, Jm is the Bessel function of the first kind of order m and

εm equals 1 when m=0 and 2 for m > 0. As the incident wave impacts

upon the cylinder, a reflected wave is radiated outwards and interacts

with the incident wave. Combining the undisturbed incident potential

φI and a scattered potential φR, MacCamy and Fuchs (1954) obtained

the following analytical solution for the diffracted velocity potential
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φD = φI + φR =

Re

{
ga

ω

coshk(h+ z)

coshkh
e−iωt

{ ∞∑
m=0

ε(i)m·[
Jm(kr)− J ′m(kR)

J ′m(kR)− iY ′m(kR)
(Jm(kr) + iYm(kr))

]}
cosmθ

}
.

(3.14)

where Ym is the Bessel function of the second kind of order m and R

represents the cylinder radius.

On the cylinder wall, the radial distance from the centre of the column

is r = R. By definition, z = rcosθ, where θ refers to the location on the

cylinder as measured anti-clockwise from the centre line in the direction

of flow, as in (3.4) and (3.5). The diffracted surface elevation ηD is found

from the linearised Bernoulli equation (2.5),

ηD = −1

g

∂φD
∂t

, (3.15)

and applying the diffracted potential in (3.14) gives the linear diffracted

surface elevation as

ηD = a

M∑
m=0

εm (i)−m

·

(
Jm(kr)−H(1)

m (kr)
J ′m(kR)

H
(1)′
m (kR)

)
cosmθ. (3.16)

where H
(1)
m is the Hankel function of the first order, defined as

H(1)
m (kr) = Jm(kr) + iYm(kr). (3.17)
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Standard diffraction analysis assumes regular monochromatic waves

and can overestimate wave heights in the vicinity of an obstacle in a given

sea state (Goda, 1985). The diffracted wave height in an irregular wave

field is derived from the superposition of the diffracted wave solution

obtained for each individual wave component, where frequencies of the

radially outward moving diffracted waves correspond to frequencies of

the incident waves (Swan and Sheikh, 2014). Linear superposition allows

the irregular diffracted solution to be expressed as

ηD = Re

{ N∑
n=1

ane
−iωt+ψn ·

[ M∑
m=0

εm(i)m

·

(
Jm(knr)−H(1)

m (knr)
J ′m(knR)

H
(1)′
m (knR)

)
cosmθ

]}
. (3.18)

It should be stressed that (3.18) is only valid for linear diffracted waves,

and so does not hold when nonlinear diffraction becomes significant.

Following the steps outlined in Section 2.3, where the dependency on

frequency f is implied, the diffracted surface elevation spectrum Sη,D =

1
FsN
|FFT(ηD)|2, is evaluated, and from Sη,D, the irregular diffracted wa-

ter particle kinematics, uD and wD, can be determined (where (2.32) is

implemented to calculate the individual diffracted amplitudes from the

diffracted wave spectrum).

The total wave force on a large-diameter cylinder can also be deter-

mined from diffraction theory. As in (3.4), the in-line force can be de-

termined through integration of the surface pressure. The pressure field

can then be obtained from the unsteady Bernoulli equation (2.4), and

the resulting in-line diffracted force per unit length given by MacCamy
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and Fuchs (1954) is

FD =
2ρgH

k

cosh k(h+ z)

cosh kh
G(kR) cos (ωt− χ) , (3.19)

where

G(kR) =
1√

J ′1(kR)2 + Y ′1(kR)2
and tanχ =

J ′1(kR)

Y ′1(kR)
.

where the total diffraction force can be found through integration of

(3.19) vertically along the submerged length of the cylinder.

Similarly, the irregular in-line diffracted force can be expressed as the

sum of each individual diffracted wave force component, or

FD = 2ρg
N∑
n=1

an
kn

cosh kn (h+ z)

cosh knh
·Gn(knR) cos (wnt− αn + ψn) . (3.20)

The diffracted force spectrum can be found by the same method as in-

troduced in Section 2.3, where the diffracted force spectrum can be de-

termined by FFT of the diffracted force,

S(f)FD =
1

FsN
|FFT(FD)|2, (3.21)

where again Fs is the sampling frequency and N are the number of fre-

quency bins.

It must be noted that the diffraction method only resolves the first-

order terms and neglects higher-order terms, the values of which can be

non-negligible. Improvements to the methods above could be made by

attempting to determine higher-order diffraction terms using a method

such as that presented by Chau and Eatock Taylor (1992).
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3.3 Transfer Function Derivation

A method is suggested here to determine an expression for the diffracted

surface elevation from any input sea state containing waves within the lin-

ear regime. Recalling that the significant wave height Hs remains the pri-

mary factor on CTV access, the method proposed will allow the diffracted

significant wave height Hs,D to be calculated from the diffracted surface

elevation spectrum Sη,D. Additional parameters such as the diffracted

water particle, velocities, accelerations and wave pressures can then also

be determined from Sη,D.

The power transfer function HT (f), which relates the autocorrelation

of the input and its spectral density as a Fourier transform pair correlates

the input spectrum S(f)η with the output diffracted spectrum S(f)η,D,

and can be found using the Wiener-Khinchin (WK) theorem (Fuller,

1996), which is given for a general case by

|HT (f)|2 =
S(f)y
S(f)x

(3.22)

where S(f)y represents the diffracted spectral function, S(f)x represents

the inlet spectral function and |HT (f)|2 is known as the transfer func-

tion. With this method, for any input spectral function, the diffracted

surface elevation spectrum can be found from (3.22), and the water parti-

cle kinematics and diffracted significant wave height can be subsequently

found.

It is important to note that the diffracted spectrum and water par-

ticle kinematics computed using the transfer function cannot be verified

because experimental data concerning the surface displacement close to a

monopile turbine are not available. However, if values from the diffracted
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spectrum calculated with (3.22) can be verified in the future, this would

provide another fast method for approximating the diffracted water par-

ticle kinematics based on the sea state. Advances in machine learning

could also aid in expanding the available sea state data.

3.4 Summary

In this chapter, the loading on a fixed structure, represented throughout

as a smooth cylinder, due to waves has been considered. Wave load-

ing is quantified using the Morison equation for viscous flow and the

linear diffraction formulation by MacCamy and Fuchs (1954) for inertia-

dominant flow. Following the process proposed in this chapter, an an-

alytical method has been presented for determining the diffracted wave

field and water particle kinematics within the vicinity of a bottom-fixed

surface-piercing monopile in long-crested waves for any given unidirec-

tional sea state or surface displacement time-series. Predictions obtained

through this technique will be further compared to the predictions of

a numerical model (see Chapter 4) to investigate the suitability of the

analytical method outlined here.
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Chapter 4

Numerical Formulation in

OpenFOAM

Chapter Summary

This chapter discusses those numerical methods utilising computational

fluid dynamics (CFD) for modeling the wave motion in a numerical wave

tank (NWT) containing a surface-piercing vertical cylinder. CFD at-

tempts to solve the governing equations numerically, subject to appro-

priate boundary conditions, without any input from analytic methods.

It is usually based on finite difference (FD), finite element (FE) or finite

volume (FV) discretisations of the spatial and temporal equations gov-

erning fluid flow. The specific CFD package used in the present research

is the open-source C++ library of fluid solvers, OpenFOAM. This chap-

ter will focus on the CFD method relevant to OpenFOAM, although the

methods described here also apply to other open-source and commercial

solvers. The CFD methods and solvers discussed throughout this section

relate to OpenFOAM version 2.4.0, introduced in May 2015.



4.1 Introduction

The analytical solutions presented in Chapters 2 and 3 neglect many fac-

tors that influence fluid flow, such as the influence of viscosity on the

flow in the vicinity of the cylinder and the influence of shallow water

depth on wave propagation. Due to the complexity of fluid flow, exact

solutions for the nonlinear governing equations are usually not available

for engineering purposes. Consequently, numerical simulations are used

to provide approximate solutions. Recent advances in computing power

have made it possible to simulate wave flow and fluid-structure interac-

tions with increasing accuracy. CFD is an analysis method of fluid flow

and associated phenomena, based on mass and momentum conservation

laws. CFD codes are developed through the following process (Versteeg

and Malalasekera, 2007):

1. Define the geometry and computational domain, and then generate

a representative discretised grid or mesh.

2. Determine the physical fluid properties of interest and the governing

equations that model the physics of the system.

3. Specify the appropriate boundary conditions for the system.

4. Adapt the physical governing equations to the entire computational

mesh and discretise the continuous partial differential equations

into an algebraic system of equations. Implement the boundary

conditions.

5. Apply a numerical scheme to solve the discretised algebraic equa-

tions.
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6. Post-process the numerical results using visualisation, or tracking

field values throughout the domain.

At the time of writing, commercial CFD packages are more user-

friendly than OpenFOAM, but incur considerable expense with the user

having little control over the solution method. Open-source CFD pack-

ages are becoming more widespread and their validity has already been

acknowledged in the industry (Jasak, 2009). OpenFOAM is a widely

used open-source CFD package with a growing community of active users

who contribute to the code and provide user support through online fo-

rums. Solvers, pre-processing utilities, and applications in OpenFOAM

are written in C++ such that users have the ability to view and change

the original source code. This freedom allows users to apply the format

used in OpenFOAM scripts to write new solvers specific to the relevant

area of interest. Results from OpenFOAM have been comprehensively

verified (e.g. (Higuera et al., 2013, Lysenko et al., 2013, Davidson et al.,

2015)). Taking the foregoing into account, OpenFOAM was chosen as

the CFD package for this project to allow the greatest amount of user

freedom while avoiding the costs and restrictions that surround use of

commercial software.

OpenFOAM permits the use of a very large number of mesh elements

within the computational domain and can be easily parallelised, which

can significantly reduce the computational time needed for CFD simu-

lations. As open-source software, OpenFOAM is less user-friendly than

commercial CFD software and requires a significant amount of time to be-

come proficient. However, the online support community is large and ac-

tive. All CFD simulations throughout this project were conducted using

OpenFOAM and this chapter will discuss the background and overview
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of CFD implementation in OpenFOAM.

An overview of the mass conservation and Navier-Stokes momentum

equations for fluid motion is presented in Section 4.2. Section 4.3 dis-

cusses the finite volume method for discretising the geometry and partial

differential equations for fluid flow. Finite volume and finite element

methods use an integral formulation of the governing equations, unlike

the finite difference method. The finite difference method uses a Taylor

series expansion to describe the governing equations in terms of difference

terms. The finite element method uses local integration of the govern-

ing equations multiplied by a weight residual term (Ferziger and Peric,

2002). The finite volume method uses local integration over each compu-

tational cell in turn. For simple geometries, all three methods produce

the same or very similar outputs. OpenFOAM uses the finite volume

method for greater flexibility in modelling geometric shapes. Turbulence

models were not included in the present analysis as the area of interest

lay beyond the cylinder wall boundary layer.

The applicable boundary conditions are examined in Section 4.4 and

the numerical solvers are outlined in Section 4.5. An overview of the

OpenFOAM set-up is given in Section 4.6, and Section 4.7 discusses

the use of High Performance Computing (HPC) for CFD applications.

Finally, a summary of the numerical formulation is outlined in Section

4.8.

4.2 Numerical Governing Equations

In the undisturbed flow region far away from the cylinder, the velocity

potential defined in (2.6) satisfies the Laplace equation’s assumption of
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an inviscid fluid executing irrotational flow. Close to the cylinder, these

assumptions become increasingly invalid due to the influence of viscosity.

The near-cylinder fluid motion is described by the unsteady, incom-

pressible continuity and Navier-Stokes momentum equations. Employing

conservation of mass and assuming constant density, the continuity equa-

tion can be written as

∇ · u = 0, (4.1)

where the gradient vector ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

and u is the flow velocity

vector u = iu+ jv+ kw. From Newton’s second law, the rate of increase

in momentum is equal to the sum of incident forces, such as gravitational

acceleration. The incompressible Navier-Stokes equation of momentum

conservation is

∂

∂t
(u)︸ ︷︷ ︸

temporal derivative

+ ∇ · (uuT)︸ ︷︷ ︸
convective term

− ∇ (ν∇u)︸ ︷︷ ︸
diffusive term

= −1

ρ
∇p︸ ︷︷ ︸

source term

− g · x︸︷︷︸
body force

, (4.2)

in which ν is the kinematic viscosity and p represents the total pressure.

The total pressure is a combination of the dynamic and hydrostatic pres-

sure contributions.

The Navier-Stokes equations are typically solved by discretisation in

space and time and then by constructing a system of linear algebraic

equations that can be solved using computational methods (Ferziger and

Peric, 2002). The discretisation and solution process is discussed in more

detail in Section 4.3.

For multiphase environments with two immiscible fluids, such as free
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surface flows, the flow of both the fluids must be accounted for. The

time-averaged Reynolds Averaged Navier-Stokes (RANS) formation for

multiphase flow accounts for the flow of both the air and the water.

RANS is normally used to describe turbulent flow with high Re values.

The compressible version of the RANS equation that is applied in Open-

FOAM is given by Rusche (2002)

∂ρu

∂t
+∇ ·

[
ρuuT

]
= −∇p∗ − g · x∇ρ

+∇ · [µ∇u + ρτ ] + σTκα∇α, (4.3)

where µ is the coefficient of dynamic viscosity, ρ is the fluid density,

the velocity field is given in Cartesian coordinates by u = (u, v, w), p∗ is

pressure in excess of hydrostatic, σT is the surface tension coefficient (0.07

kg/s2 at the air-water interface for 20◦ water), κα is the surface curvature

(see e.g. Ubbink and Issa (1999)), α is a scalar field fluid volume fraction

tracking the location of the fluid at the interface, and τ is the Reynolds

stress tensor given by

τ =
2

ρ
µtS−

2

3
kI, (4.4)

in which µt is the dynamic eddy viscosity, S is the strain rate tensor

(1/2(∇u + (∇u)T )), and k is the turbulent kinetic energy per unit mass

(Jacobsen et al., 2011). For laminar flow, the τ term is assumed to be

zero. Equation (4.3) can be further simplified by assuming that the sur-

face tension term makes negligible contribution to the fluid flow. There-

fore, for laminar, incompressible flow, the convective form of (4.3) is
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∂u

∂t
+∇ ·

[
uuT

]
−∇ · [ν∇u] = −1

ρ
∇p∗ − g · x. (4.5)

The dependence of velocity on pressure inherent in the RANS equations

requires special computational treatment, further discussed in Section

4.5.

4.2.1 Free Surface Treatment - Volume of Fluid Ap-

proach

The volume of fluid (VOF) method is used to determine the location of

the interface by calculating the volume fraction (water-to-air) present in

each cell at the interface (Hirt and Nichols, 1981). The VOF process is a

storage-saving method based on the Marker and Cell (MAC) technique,

where values at several points in each cell are computed and the volume

fraction function α defined. Averaging α over each point then gives one

value per cell and this is calculated with the transient advection equation

∂α

∂t
+∇ · [uα] +∇ · [urα(1− α)] = 0, (4.6)

where

α =


0, air

1, water

0 ≤ α ≤ 1, interface.

The artificial compression term [urα(1−α)] is necessary to restrict smear-

ing of the interface. The MAC method allows only a value of 0 or 1 within

the cell, whilst the allowance of a fraction for α in VOF enables a more
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accurate determination of the numerical interface location. From (4.6), it

is straightforward to determine the spatial variation of any fluid property

based on the fraction of fluid in each cell using the equation

Q = αQwater + (1− α)Qair, (4.7)

where Q represents a specific property, such as viscosity ν, density ρ,

velocity u or pressure p. All gradient and Laplacian terms in (4.3) and

(4.6) are then discretised (see Section 4.3) and applied to the cells in

the computational fluid domain. A visualisation of the initial volume

fraction scalar field values for a sample computational domain following

application of VOF is given in figure 4.1.

Figure 4.1: The volume fraction function α values within the computa-
tional domain, evaluated using the VOF method. Blue areas indicate the
air, red indicates water and the thin green line is the interface location.

The width of the interface, the thin green line in figure 4.1, is dependent
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on the grid resolution at the free surface.

4.3 Finite Volume Method for Equation Dis-

cretisation

The partial differential equations (PDEs) in Section 4.2 are typically

solved by first integrating the continuous Navier-Stokes equations over

both the spatio-temporal and solution domain (Versteeg and Malalasek-

era, 2007). The integrated spatio-temporal and solution domain terms

are next discretised into a finite number of computational elements and

time steps, respectively. The finite volume method (FVM) is applied

to discretise the continuous partial differential equations into arbritrary

polyhedral non-overlapping cells, or control volumes (Weller et al., 1998).

The domain is first divided into discrete nodal points. Cell boundaries

(or faces) of the discrete control volumes are located at the midpoint of

neighbouring nodes, such that each node lies entirely within a control

volume (or mesh element) (Versteeg and Malalasekera, 2007), illustrated

in figure 4.2. Each control volume can then be defined as a 3D element

bounded on all sides by planar faces (see figure 4.3).

In figure 4.3, point P is the centroid of the “owner” cell, S is the face

area vector pointing directly outwards from face f, and N denotes the

centroid of the “neighbouring” cell, which shares one face with the owner

cell. The control volume is designated by CV .

The discretised Navier-Stokes and VOF equations can then be applied to

the centroid point P within each cell (Versteeg and Malalasekera, 2007).

FVM requires that the governing equations be satisfied over the entire

control volume and at point P. The total volume of the control volume
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Figure 4.2: Illustration of node and control volume location during grid
generation with the FV method - Image from Versteeg and Malalasekera
(2007).

Figure 4.3: Illustration of typical 3D control volume. Image reproduced
from Jasak (1996)
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about the centroid is defined in terms of the location of P by

∫
CV

(x− xp) dCV = 0, (4.8)

where the vectors x and xp are locations within the cell and at the

centroid, respectively. Equation (4.8) is equal to zero because P is the

centroid.

The forms of the Navier-Stokes equations given by (4.2), (4.3) and

(4.5) are all specific versions of a fluid transport equation. To discuss

discretisation of transport equations more generally, an incompressible

transport equation of property ζ is first given by

∂ζ

∂t︸︷︷︸
temporal derivative

+ ∇ · (uζ)︸ ︷︷ ︸
convective term

−∇ · (Γζ∇ζ)︸ ︷︷ ︸
diffusive term

=
1

ρ
Sζζ︸ ︷︷ ︸

source term

, (4.9)

where u is the velocity vector, Γζ describes the rate of diffusion of the

field value ζ and the source term Sζζ depends on the physical properties

of the fluid.

To discretise the transport equations with FVM, (4.9) is first written

in integral form:

∫ t+∆t

t

[
∂

∂t

∫
CV

ζdCV +

∫
CV

∇ · (uζ) dCV −
∫
CV

∇ · (Γζ∇ζdCV )

]
dt

= −1

ρ

∫ t+∆t

t

(∫
CV

SζζdCV

)
dt, (4.10)

where ζ in this case represents a field value such as the horizontal velocity

component u, t is time, ∆t is the time increment, and CV is the control
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volume. At the centroid P, ζ can be given in spatial or temporal terms

by

ζ(x, t) = ζP + (x− xp) · (∇ζ)P (4.11)

and

ζ(x, t+ ∆t) = ζt + ∆t

(
∂ζ

∂t

)t
, (4.12)

where ζP = ζ(xp) and ζt = ζ(t). A second-order discretisation method

is required to minimise errors due to the Laplacian in the diffusive term.

Gauss’ Theorem and identities presented in Section 4.3.1 below, are ap-

plied to discretise each of the terms in (4.10) separately.

4.3.1 Gauss’ Theorem for Discretisation

The spatial terms in (4.10) are described using a standard Gaussian finite

volume integration. Gauss’ theorem, which can be applied to any CV

shape, is given by

∫
CV

∇ · adCV =

∫
S

n · adS, (4.13)

where a is an arbitrary vector and S represents the control volume sur-

face. In general, the discretised second-order accurate form of Gauss’

Theorem over all i surfaces is

∫
CV

∇ · ζ =

∮
dCV

dS · ζ =
∑
i

Si · ζi. (4.14)

Equation (4.14) can be used to describe the convective and diffusive terms

as they apply over all surface faces Si. Figure 4.4 shows a simplified 2-
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D element that represents the face bounding the surface of the control

volume (denoted as f in figure 4.3).

Figure 4.4: Illustration of simple quadrilateral 2D control volume, where
midpoint P, outward normal vector n, and surface area ∇S are labelled

To rewrite the terms in the transport equation (4.10), use will be

made of three identities arising from Gauss’ Theorem,

∫
CV

∇ · a dCV =

∮
∂CV

dS · a, (4.15)∫
CV

∇ζ dCV =

∮
∂CV

ζdS, (4.16)

and

∫
CV

∇a dCV =

∮
∂CV

a dS, (4.17)

where ∂CV is the closed surface bounding the control volume CV and dS

represents a surface element with associated outward-pointing normal on

∂CV . From the variation of ζ given in (4.11), the total spatial variation
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over the entire control volume is

∫
CV

ζ(x) ≈
∫
CV

[ζP + (x− xP · ∇ζP] dV

= ζP

∫
CV

dV +

[∫
CV

(x− xp)dV

]
· (∇ζ)P

= ζP CV.

(4.18)

The second integral on the right-hand-side is again equal to zero as P is

the control volume centroid.

The identities in (4.15), (4.16), (4.17) can be used to calculate the

total variation of ζ across the control volume as the sum of the inte-

grals across each face. The face area vector S points outward if face f is

“owned” by P and inward if it is “owned” by N. Hence, S can be described

as the difference between the owner cell value and the neighbouring cell

value, as in

∑
f

S · a =
∑
owner

Sf · af −
∑

neighbour

Sf · af . (4.19)

Throughout this work, S refers to the total direction, inclusive of both P

and N. Gauss’ Theorem will be applied separately to each integral term

in (4.10).

Convective Term

The convective term for a scalar ζ in the transport equation, ∇ · (uζ),

can be expressed over all faces using (4.19)
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∫
CV

∇ · (uξ)dV =
∑
f

S · (uξ)f

=
∑
f

S · (uf ) ξf

=
∑
f

Fξf

(4.20)

where F = S · (uξ)f represents the volume flux through the face. The

variable uξ is described in the middle of the face and S is the outward-

pointing face area vector. The value on the cell face is dependent on both

the owner cell value ξP and the neighbour cell value ξN.

The face value ξf in (4.20) can be interpolated from the centroid values

of cells sharing the face. Interpolation is undertaken using a differencing

scheme. Regardless of the differencing scheme used, the constraint on ξf

is that its value must remain bounded within its original distribution. A

number of differencing schemes are available in OpenFOAM and those

schemes used in this study are outlined below.

Assuming a linear variation of ξ across the face, the following expres-

sion can be used to describe ξf in terms of the centroid values ξP and

ξN,

ξf = fxξP + (1− fx)ξN, (4.21)

where fx is the ratio of the distances fN and PN,

fx =
fN

PN
. (4.22)

This type of second-order differencing is called Central Differencing.

Central differencing is usually more accurate but can cause non-physical

oscillations and violate the criteria for boundedness at or near boundaries.
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To avoid these oscillations, Upwind Differencing can be used (Versteeg

and Malalasekera, 2007). OpenFOAM utilises a simple first-order accu-

rate upwind method where ξf is dependent on the flow direction and cell

orientation, such that

ξf =


ξP for F ≥ 0

ξN for F ≤ 0,

(4.23)

in which F denotes flow direction (≥ 0 denotes flow from cell P and ≤ 0

is flow from cell N). Although the upwind differencing scheme insures

boundedness, it violates the necessity for second-order accuracy (required

by the Laplacian term in the transport equation), potentially causing

instabilities in the model. A mixture of central and upwind differencing

can be used to overcome these issues.

Diffusive Terms

The diffusion term in the transport equation (4.10) can be written as

∫
CV

∇ · (Γξ∇ξ) =
∑
f

S · (Γξ∇ξ) (4.24)

=
∑
f

(Γξ)f S · (∇ξ)f . (4.25)

The quality and alignment of the computational mesh elements affect the

calculation method and accuracy for S · (∇ξ)f . For orthogonal meshes

where the outward pointing normal vector is exactly perpendicular to

the vector connecting the cell centres, the following expression for the

gradient of ξ at the face is valid
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S · (∇ξ)f = |S|ξN − ξP

|d|
, (4.26)

where d represents the vector connecting the cell centres. For non-

orthogonal meshes where S and d are not perpendicular to each other, a

non-orthogonality correction term is needed (see e.g. Ferziger and Peric

(2002)). It is more common for cells to be non-orthogonal than orthogo-

nal and therefore a more general expression for S · (∇ξ)f splits the prod-

ucts into an orthogonal component ∆ and the non-orthogonal correction

component κκκ,

S · (∇ξ)f = ∆ · (∇ξ)f︸ ︷︷ ︸
orthogonal term

+ κκκ · (∇ξ)f︸ ︷︷ ︸
non-orthogonal correction

, (4.27)

where the vectors ∆ and κκκ must satisfy the condition S = ∆ + κκκ, and

∆ is selected to be parallel to vector d.

In OpenFOAM, the mesh quality can be checked with the checkMesh

utility. The checkMesh utility gives information on mesh features such

as non-orthogonality and the mesh aspect ratio (AR), which for a 3D

control volume is calculated from

AR =
1.0

6.0
× |ax|+ |ay|+ |az|

CV 2/3
, (4.28)

where ax, ay and az are the areas of the bounding faces in the x, y and

z directions and CV is the total cell volume. It is desirable that AR

remain as close to unity as possible (Ferziger and Peric, 2002).

Once the non-orthogonal corrector has been incorporated into the

discretisation, the final form of the discretised diffusion is defined. For

the orthogonal component where d and ∆ are parallel,

67



∆ · (∇ξ)f = |∆|ξN − ξP

|d|
, (4.29)

and combining the non-orthogonal term, (4.27) can be written as

S · (∇ξ)f = |∆|ξN − ξP

|d|
+ κκκ · (∇ξ)f . (4.30)

Source Terms

The source terms can be any function of ξ not described by the convec-

tion, diffusion or temporal terms. The discretisation method is depen-

dent on the interaction between source terms and the other terms in the

equation. Typically, the source terms can be discretised directly as a

combination of linear terms, such as

Sξ(ξ) = Su+ Spξ, (4.31)

where both Su and Sp can depend on ξ.

Temporal Discretisation

Incorporating the discretised terms from the previous sections, and as-

suming that the control volume is not altered in time, the semi-discretised

integral form of the transport equation (4.10) can be rewritten

∫ t+δt

t

[(
∂ξ

∂t

)
P

CV +
∑

f

Fξf −
∑

f

(Γξ)fS · (∇ξ)f

]
dt

=

∫ t+δt

t

(Su+ SpCV ξP) dt. (4.32)

The time derivative and integral terms are computed using simple differ-
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encing from

∂ξ

∂t
=
ξnP − ξ0

P

δt
(4.33)

and

∫ t+δt

t

ξ(t)dt =
1

2
(ξ0 + ξn)δt, (4.34)

where

ξn = ξ(t+ δt) (4.35)

and

ξ0 = ξ(t). (4.36)

The Crank-Nicolson discretisation method in (4.33) and (4.34) is second-

order accurate in time. The fully discretised transport equation then

becomes

ξnP − ξ0
P

δt
CV +

1

2

∑
f

Fξnf −
1

2

∑
f

(Γξ)fS · (∇ξ)nf

+
1

2

∑
f

Fξ0
f −

1

2

∑
f

(Γξ)fS · (∇ξ)0
f

= SuCVP +
1

2
SpCVPξ

n
P +

1

2
SpCVPξ

0
P.

(4.37)

The Crank-Nicolson method requires the face values ξf, the gradient

(∇ξ)f , and the centroid value for each present and previous time step.

Face values can be calculated using a differencing scheme such as central

differencing, upwind differencing or a combination of both. To determine

the centroid value ξP, the Crank-Nicolson scheme utilises the algebraic
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formulation of the momentum conservation equation

aPξP +
∑
N

aNξ
n
N = RP, (4.38)

where RP are the source terms. Due to the dependence of ξnP on the values

in neighbouring cells, (4.38) creates an algebraic system of equations,

[A][ξ] = [R], (4.39)

where A is a matrix containing coefficients aP on the diagonal, coefficients

aN in the off-diagonal positions and ξ is the vector for all control volumes.

The solution for this system of equations gives the next time-step value

for ξ.

Although the Crank-Nicolson method is unconditionally stable, there

is no guarantee of boundedness (Ferziger and Peric, 2002, Jasak, 1996).

To be sure that the temporal discretisation term is bounded, a first-order

accurate Euler method is used instead. Neglecting the face values of ξ

and ∇ξ, the old and new values of the convection, diffusion and source

terms can be included to give the simplified form of (4.37),

(
ξnP − ξ0

P

δt

)
CV +

∑
f

Fξf −
∑
f

(Γξ) + S · (∇ξ)f = SuCV + SpCV ξP.

(4.40)

The next time-step value of ξ is given by Euler explicit discretisation to

be
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ξnP = ξ0
P+

δt

CV

[∑
f

Fξf
∑

f

(Γξ) · S(∇ξ)f + SuCV + SpCV ξP

]
. (4.41)

The stability of Euler explicit differentiation relies on the Courant cri-

terion to be met (Courant et al., 1967). The Courant criterion is given

by

Co =
∆t | u |

∆x
≤ 1, (4.42)

where ∆x is the cell length and ∆t is the time step. The Courant number

should remain below unity so that the fluid particles travel from one cell

to the next in a maximum of one time step. This criterion ensures that

the time step is not so large that the information inside any cell is skipped.

In figure 4.5a, Co is greater than 1 and the fluid flows through more than

one mesh element in a single time step, losing information from cells that

are skipped. When information is lost, instabilities can cause the solution

to diverge or lose accuracy. Figure 4.5b illustrates the situation when the

Courant criterion is met and Co remains below 1. Information from each

cell is recorded and a numerically stable solution with greater accuracy

is achieved. Conversely, it is also possible that Co can be too small,

in which case the solution takes too long to converge and over-sampling

within one cell can also result in inaccuracies.

To satisfy the Courant criterion and maintain stability, a maximum

value for Co is set at 0.5 and an adjustable time step applied, i.e. the

time step size decreases when the velocity or cell size decreases and the

time step size increases with increasing velocity or larger cell size. For

71



(a) Co > 1 (b) Co ≤ 1

Figure 4.5: Illustration of distance flow travels per time step, dependent
on the Courant number.

two-dimensional or three-dimension flow, the Co value must take into

account the velocities and cell width in each relevant direction. When

simulating multiphase flow with the VOF method, the Courant criterion

must also be satisfied for α, which replaces | u | in (4.42).

4.4 Boundary Conditions

From (4.38), the flow is modelled by the algebraic system of equations,

aPξP +
∑

N

aNξN = RP.

To solve this system of equations for each mesh element, it is necessary

to specify the values on the boundaries and, for transient flow, the initial

values throughout the domain for all flow field parameters. Specifica-

tion of the initial conditions can be straightforward by setting each field

value according to the desired initial conditions, which are defined by the

problem, e.g. fluid flow starts from rest (Ferziger and Peric, 2002). The

governing equations must also satisfy the boundary conditions, which

are either physical or numerical. Physical boundary conditions are walls,

such as the cylinder wall, inlet/outlet conditions, the sea floor and sym-
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metry planes. Numerical boundary conditions are used to prescribe ei-

ther the value on the boundary (Dirichlet), the gradient on the boundary

(von Neumann), or a combination of the two (mixed boundary condition).

(Versteeg and Malalasekera, 2007).

Prior to solving the equations, the numerical boundary conditions

are incorporated into the discretised governing equations. The boundary

conditions can therefore be described separately for the convection and

diffusion terms in the transport equation. Boundary condition imple-

mentation is discussed below.

4.4.1 Numerical Boundary Conditions

Fixed-Value (Dirichlet) Boundary Condition

For a fixed-value boundary condition, the value on the boundary face

is denoted by ξb. The non-orthogonal corrector in the diffusion term in

(4.30) can be neglected because the vector between the cell centre and

the boundary face dn is normal on the boundary, and is given by

dn =
S

|S|
d · S
|S|

. (4.43)

From the discretised form of the diffusion term with solely the orthogonal

component, the face gradient S · (∇ξ)b is found using the known value on

the cell face at the boundary and the cell centre value (Jasak, 1996), or

S · (∇ξ)b = |S|ξb − ξP

|dn|
. (4.44)

The above formulation is valid because the outward pointing normal vec-

tor S and the vector dn pointing from the cell centre to the face are

parallel.
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Fixed-Gradient (von Neumann) Boundary Condition

For a fixed-gradient boundary condition, the boundary value is defined

by the dot product of the gradient of ξ and the vector S as

(
S

|S|
· ∇ξ

)
b

= qb, (4.45)

where qb represents the selected gradient value on the boundary. For

the convection term, the dot product in (4.45) can be used to calculate

the face value of ξ, which is a combination of the centroid value and the

assigned gradient value. Recalling again that S and d are parallel, in the

convection term in the fixed gradient boundary condition gives

ξb = ξP + dn · (∇ξ)b (4.46)

= ξP + |dn|qb. (4.47)

Applying the dot product again, the gradient value in the diffusion term

in the transport equation can be written simply as |S|qb, and the final

discretisation is

(Γξ)|S|qb. (4.48)

4.4.2 Physical Boundary Conditions

In this study, physical boundary conditions are required for the two com-

putational domains of interest: an open numerical wave tank and a nu-

merical wave tank with a monopile. For an open wave field, physical

boundary conditions are required at the inlet, outlet, the bottom of the
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computational domain and the domain walls. For each physical bound-

ary condition, an associated numerical boundary condition must be con-

structed and applied for each of the variables to be computed. Correctly

applied boundary conditions are vital to simulate fluid flow successfully

using CFD. The boundary conditions are not only a geometric descrip-

tion, but also apply to the mesh, discretisation method, computational

processing and solver (Versteeg and Malalasekera, 2007).

At the inlet, the physical boundary condition could be a specification

of the velocity field value and the pressure field can be assigned a gradient

of zero. At the outlet, it is most important to ensure that the overall mass

balance for the entire computational domain is satisfied (Ferziger and

Peric, 2002). One way of achieving this is to specify that the distribution

of the velocity on the outlet boundary is dependent on the inner velocity

conditions. However, this specification can lead to instabilities if, due to

reflection or non-absorption of the fluid, inflow from the outlet boundary

occurs. This problem can be overcome through the use of numerical

absorption zones, covered in greater depth in Chapter 5. To avoid this,

the pressure distribution (instead of the velocity field) is defined as a

fixed-value boundary condition and a zero-gradient boundary condition

applied for the velocity.

To represent an open sea, the computational domain walls should in-

fluence the flow as little as possible. Symmetric boundary conditions on

the walls specify that the flow either side has mirror-symmetry about the

centre-plane, approximating open sea conditions. The symmetric bound-

ary condition is applied by setting the component of the gradient normal

to the boundary to zero and the parallel components to the boundary

are projected onto the boundary face creating the mirror condition.
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Other common boundary types for incompressible flow are no-slip and

slip conditions. The no-slip boundary condition on a wall means that the

velocity close to the walls is equal to the wall velocity, which for a fixed

object is equal to zero. The pressure gradient is also assumed to be zero.

A slip boundary condition allows fluid flow parallel to the wall and the

normal fluid flow is equal to zero. A slip boundary condition implies that

the viscous near-wall forces are negligible, or that the mesh element size

near the wall is wider than the boundary layer, i.e. when the boundary

layer is not important to the calculations.

4.5 Numerical solver for pressure-velocity

coupling

Inherent in the Navier-Stokes equations is the dependency of the velocity

field on the pressure field and vice versa. The OpenFOAM solvers utilise

a segregated method for solving for the velocity and pressure fields in

sequence by a predictor-corrector iterative approach. Pressure-velocity

coupling algorithms are valid for both linear and non-linear systems. For

example, the algebraic system of equations in (4.38) that resulted from

discretisation of the transport equation can be either linear or non-linear,

depending on the partial differential equations from which they are de-

rived.

The iterative methods applied to solve the algebraic system of equa-

tions involves providing an initial solution, linearizing the equations about

the predicted solution, correcting the solution and repeating until a tol-

erance level is reached. OpenFOAM uses the PIMPLE algorithm, which

blends the Pressure Implicit with Splitting Operator (PISO) approach
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introduced by Issa (1985) with the SIMPLE algorithm (Semi-implicit

Method for Pressure Linked Equations) (Patanker, 1980) to correct the

pressure at each step. The pressure-corrector step also enforces mass

conservation for each time step (Ferziger and Peric, 2002).

The pressure equation is derived from the momentum equation, given

in the form of (4.38). Rewriting the system of equations, where the term

RP, which includes all transient and source terms excluding the pressure,

is now given in terms of the matrix operator H(U),

aPuP = H(U)−∇p, (4.49)

where uP is the velocity at centroid point P, and H(U) is a combination

of a transport part and a transient source part,

H(U) = −
∑

aNuN +
u0

∆t
. (4.50)

The value for u0 in (4.50) is either the velocity result from the previous

time step or else the initial guess for the velocity value at the first time

step. From the discretised form of the continuity equation in (4.20),

∇ · u =
∑

f

S · uf = 0, (4.51)

and (4.49) can be applied to denote the centroid velocity value uP in

terms of the matrix operator by

uP =
1

aP

H(U)− 1

aP

∇p. (4.52)

The face velocities expressed through interpolation of (4.52) across the

face are given by

77



uf =

(
1

aP

H(U)

)
f

−
(

1

aP

)
f

(∇p)f . (4.53)

Substituting (4.53) into the discretised form of the continuity equation

in (4.51) gives the final form of the pressure equation,

∇ ·
(

1

aP

∇p
)

= ∇ ·
(

1

aP

H(U)

)
(4.54)

=
∑
f

S ·
(

1

aP

H(U)

)
f

. (4.55)

Discretisation of the Laplacian term on the left-hand-side of (4.54) follows

the same process outlined for the diffusive terms; the final form of the

discretised Navier-Stokes conservation equations for incompressible flow

is given by

aPUP = H(U)−
∑
f

S(p)f, (4.56)

∑
f

S ·
[(

1

aP

)
f

(∇p)f
]

=
∑
f

S ·
(

H(U)

aP

)
f

, (4.57)

where the flux across the face is

F = S ·Uf = S

[(
H(U)

aP

)
f

−
(

1

aP

)
f

(∇p)f

]
. (4.58)

The flux going through the face is guaranteed to be conserved by (4.54).

A visual diagram of the PIMPLE algorithm is given in figure 4.6. Note

that it reduces to the SIMPLE algorithm without the corrector steps and

to PISO for steady-state problems.
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Figure 4.6: Procedure followed by the PIMPLE solver in OpenFOAM.
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4.5.1 Other Numerical Solving Algorithms

For the other governing equations, such as VOF in (4.6), the value for

α must remain bounded regardless of which numerical scheme is cho-

sen or the mesh structure. To ensure boundedness, an algorithm has

been developed in OpenFOAM for solvers that use the VOF method.

The solver, the Multidimensional Universal Limiter for Explicit Solution

(MULES) method, was created by Henry Weller, one of the main Open-

FOAM developers and contributors; the MULES method itself is not

explicitly documented. MULES is an iterative semi-implicit predictor-

corrector scheme similar in process to PIMPLE that works by computing

a corrected flux value between a high and low order scheme solution with

a weighting factor. The weighting factor can be determined based on

the criterion that the value of the net flux within each cell must neither

be greater than the local maximum nor less than the local minimum.

In the MULES section of the interFoam algorithm, the flux value of α

is corrected a specified number of times each time step to ensure the

maximum and minimum values remain bounded between 0 and 1. Thus,

α1 + α2 = 1, where α1 is the volume fraction of water and α2 is the

volume fraction of air. Once this initial value has been attained, it can

be used to determine the initial values of other parameters, such as the

velocity, before beginning the PIMPLE loop.

4.6 OpenFOAM Case Set-Up

The process for running simulations in OpenFOAM follows the same gen-

eral procedure regardless of solver chosen. The solver for incompressible,

isothermal multi-phase flow that uses the PIMPLE algorithm is called
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interFoam. The interFoam solver utilises the VOF approach discussed

in Section 4.2 to locate the interface between two immiscible fluids and

to compute the initial velocity values, dependent on the fluid volume

phase fraction, before entering the PIMPLE loop. Figure 4.7 shows the

algorithm followed by the interFoam solver.

The main directory set-up for each OpenFOAM simulation is laid out

in figure 4.8. Contained within the 0 folder in the main directory are

the initial and boundary conditions for the velocity, pressure in excess

of hydrostatic (called p rgh in OpenFOAM to differentiate from total

pressure), and the fluid volume fraction α. Within each field file, the

type of boundary condition is specified for that field on each boundary

patch or wall and an initial value given where needed, i.e. a fixed-value

Dirichlet boundary condition requires an initial value to be defined.

The constant folder contains all of the mesh information inside the

polyMesh subdirectory. Physical properties such as the value of gravita-

tional acceleration (g = 9.81 m/s2), transport properties, such as viscosity

and density values for the air and fluid domains, and other environmen-

tal properties which act as external source terms are also assigned within

the constant directory. Turbulent or laminar flow is specified in the

RASProperties file. Turbulence models are not used in the present the-

sis and so the flow is set to laminar in the RASProperties file for all

simulations discussed herein.

Within the system folder, the discretisation schemes for each term

in the governing equation are specified in the fvSchemes file. The solver

schemes used for each term (in this case, u, p rgh and α) and PISO

parameters (the number of correctors, non-orthogonal correctors and tol-

erance levels) are set in the fvSolution file. The solvers specified here
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Figure 4.7: The procedure followed by the interFoam solver in Open-
FOAM.
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depend on whether the matrices created by the system of equations for

the field values are symmetric or asymmetric. The setFieldsDict file is

used by interFoam to set the initial fluid parameters within the compu-

tational domain, i.e. the user can specify that the initial α value is equal

to 1 for the fluid part of the domain and is equal to 0 for the part of the

domain representing the air. The solver name, start and end times, initial

time step size and maximum Courant number are set in the controlDict

file. An automatic time step size adjustment ensures that the Courant

criterion is met throughout. The file also contains functions designated

to post-process the results as the simulation progresses.

Table 4.1 shows an example of how the discretisation schemes are

specified for each term in the governing equation. Not all of the dis-

cretisation schemes applied here have been discussed in depth but it can

be assumed that the majority of the schemes rely on the second-order

Gauss method. For example, the limitedLinearV 1 scheme used to dis-

cretise the continuity equation limits the discretisation used towards an

upwind differencing scheme in regions where the gradient changes quickly.

The coefficient value of 1 specifies the strongest limiting value and a co-

efficient value of 0 causes the solution to revert to a Gauss linear scheme.

The “V” value in limitedLinearV specifies that the scheme is applied to

a vector value, such as velocity.

The Gauss Monotonic Upwind Scheme for Conservation Laws (MUSCL)

scheme is a discretisation algorithm that can be used for scalar fields

that are strictly bounded, such as α (van Leer, 1979). For each cell in

the domain, the slope-limited value and the reconstructed left and right

states of the scalar value are determined, and the values used to compute

the fluxes across the cell faces. The specification of “corrected” in the
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Laplacian and snGradSchemes includes explicit non-orthogonal correc-

tion. The Gauss interfaceCompression scheme is used to sharpen the

interface using VOF in multiphase flows. Note that the set-up illustrated

here is valid for the interFoam solver only and each solver requires differ-

ent files to specify fully the problem. For example, a solver for a single

phase fluid would not require the α field to be specified.

Table 4.1: Discretisation schemes used in a typical multiphase simulation
using VOF

Term name: Description of term Discretisation Scheme Used

ddtSchemes temporal terms Euler;
gradSchemes gradient terms default Gauss linear;

divSchemes divergence terms
div(rhoPhi,U) Gauss limitedLinearV 1;
div(phi,alpha) Gauss MUSCL;
div(phirb,alpha) Gauss interfaceCompression;

laplacianSchemes Laplacian terms default Gauss linear corrected;
interpolationSchemes face interpolation default linear;

snGradSchemes
component of gradient
normal to cell face

default corrected;

The user is also responsible for setting consistent units for all values

to ensure accurate results. The geometric units are specified inside the

polyMesh directory in the blockMeshDict file. The meshing utility in-

cluded in OpenFOAM, blockMesh, will be further discussed in Chapter

5. Other units are established in the transportProperties file, such as

units for viscosity and density, and in the g and environmentalProperties

files. It is essential that the user ensures that the units defined for the

geometry in the blockMeshDict file correspond correctly to the units in

the remainder of the physical property files.

Finally, several options for post-processing can be defined in the sys-
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tem folder such as numerical probes, field sampling specifications, or

forces, depending on what data are needed. Files in this folder can be

called to run during the simulation as function objects in the controlDict

file, or else as post-processing steps after the simulation has finished.

As OpenFOAM is an open-source software, the user has many op-

tions for manipulating results, solvers, discretisation schemes, boundary

conditions, etc. For the novice user, the OpenFOAM release includes

tutorials for each of the solvers available; the content of the tutorial

directories can be copied and pasted to a new directory and the parame-

ters adjusted to customise the simulation conditions. Moreover, all of the

source code is available to view and edit, allowing for the addition of any

new schemes, boundary conditions, turbulence models, patch types, etc.

Although writing customised code to be used with OpenFOAM must be

done carefully so as not to break any links to existing libraries or current

codes, the availability of the source code provides templates for the user

to adjust existing code.

4.7 High Performance Computing

CFD simulations can require considerable computational resources. Run-

ning simulations in parallel across several processors can greatly reduce

the computational time, but requires multiple available processors on a

personal computer or access to a supercomputer. Access to a high perfor-

mance computer was made available through the Irish Centre for High-

End Computing (ICHEC), enabling simulations to be run across multiple

processors (up to 24). Simulations were run on a supercomputer as well

as on one or two processors on a personal laptop.
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It is straightforward to run OpenFOAM simulations in parallel across

multiple distributed processors. An additional tool for running Open-

FOAM in parallel was produced through the distribution of a Python

wrapper for OpenFOAM called pyFoam, which was developed by Bern-

hard Gschaider 1 and made available to the public as an open-source code.

The pyFoam command for decomposing the computational domain and

running simulations in parallel automatically follows the process outlined

below and it will be assumed that the steps given in this section can all

be executed using the pyFoamDecompose.py code.

4.7.1 Domain Decomposition

The first step in decomposition is to specify the number of subdomains,

which can be done in an additional dictionary called decomposeParDict

located within the system folder. There are four decomposition methods

available in OpenFOAM: simple, hierarchical, scotch and manual (Weller

et al., 1998). The simple method is self-explanatory: the computational

domain is split into the number of pieces specified by the number of

subdomains in the designated direction, i.e. in the decomposeParDict

file, the user can state that the domain should be split into two direc-

tions in the x direction and 1 in the z direction, etc. The hierarchical

method is the same as simple decomposition except that the user must

also specify the order in which the split is done. Scotch decomposition

is automatically applied when the pyFoamDecompose.py code is run. In

scotch decomposition, no geometric input specification is required from

the user and the decomposition is done automatically by dividing the

domain in the best location to minimise the processor boundaries. If

1https://openfoamwiki.net/index.php/Contrib/PyFoam
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a specific decomposition scheme is not required, scotch is the simplest

method to apply. The final decomposition method available is manual,

where the user must specify directly what proportion of each cell will go

to a particular processor. For all simulations run throughout this work,

the scotch method was used to decompose the domain as it offered the

greatest ease in application for the required geometry.

4.8 Summary

Algorithms and discretisation methods used in the OpenFOAM CFD

software have been presented this chapter. The methods considered can

be extended to CFD simulations in general, although the discussion here

is focused on the OpenFOAM implementation.

Following the overview of the Navier-Stokes equations and VOF equa-

tions that allow for treatment of the interface for multiphase fluids, the

Finite Volume method for discretisation was outlined. This describes the

continuous equations of fluid flow as a discretised system of algebraic

equations to be solved through iterative methods.

The pressure-velocity coupling in the Navier-Stokes equation required

the PIMPLE algorithm to be solved first for the pressure, and then pres-

sure and velocity correctors were applied to improve on the initial com-

puted values. An example of a case set-up using the multiphase solver

interFoam was given with typical discretisation methods emphasized.

Parallelisation for use of OpenFOAM on a high-performance com-

puter was also briefly discussed. The procedure and algorithms described

in this chapter provide the basis for the flow simulations discussed in later

chapters.
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Chapter 5

Validation of Numerical

Model

Chapter Summary

In this chapter, benchmark simulations are presented to validate the

OpenFOAM model for problems to which analytical solutions exist. The

first validation test considers the interaction of a steady current with

a smooth, surface-piercing, bottom-fixed cylinder representing the wind

turbine monopile support structure. The second and third sets of tests

consider linear waves in an open numerical wave tank (NWT) and lin-

ear waves past a surface-piercing cylinder. Analytical solutions for force

coefficients in a steady current and wave particle kinematics, wave pres-

sure, and in-line wave forces in linear regular waves are compared to the

numerical predictions. Meshing with the OpenFOAM utility blockmesh

and the open-source meshing software Gmsh is also briefly examined.

Lastly, effective wave absorption is explored through the use of relax-

ation zones where the focus is specifically in reduction of relaxation zone

length, thereby decreasing computational overhead.
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5.1 Introduction

The evaluation of wave forces on a cylinder is an integral part of offshore

engineering, a typical application being the design of marine structures

to withstand wave damage (Sarpkaya, 2010). The present study con-

siders disturbances to the passing wave field caused by the presence of

the monopile support column, as well as the loads on the column. An

alteration of the undisturbed flow field has a subsequent effect on any

floating object in contact with the structure, such as a CTV abutted

against a monopile support column. The application of the methods for

resolving the forces incident on the structure to problems, where known

experimental or analytical solutions exist, provides a reliable method for

verifying and validating the numerical model.

The analytical solutions were found through application of the equa-

tions for wave motion and the wave force loading methods presented in

Chapters 2 and 3. The numerical methods outlined in Chapter 4 were

applied to simulate the wave numerically. Prior to solving the numerical

problem using CFD, a geometrical mesh was constructed, following the

meshing procedure described in Section 5.2. In Section 5.3, results are

presented from simulation of idealised steady currents past a cylinder

with differing Re values, where Re = U∞D/ν and U∞ is the undisturbed

flow, D is the cylinder diameter, and ν is the coefficient of fluid kine-

matic viscosity. Reynold’s number values of Re = 40, 300, 3900, and

1×105 were utilised. At very low Re values, the flow field should remain

symmetric with no visible vortex shedding (Sumer and Fredsøe, 2006) and

the flow can be considered as a steady state. The flow remains steady

and laminar for Re = 40, and a pair of symmetric rotating vortices may
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form on the cylinder and remain attached (Zdravkovich, 1997) (although

Norberg (1994) did not observe vortices forming for Re < 47.4). At these

very low Re values, the fluid flow should behave almost as an ideal flow,

where the cylinder has little or no effect on the flow field.

As Re increases to 300, the vortices that form begin to detach periodi-

cally from the cylinder as the pressure gradient within the wake decreases.

This vortex shedding creates a wake pattern called a Von Kármán Vortex

Street (Sarpkaya and Isaacson, 1981). At Re = 3900, an unsteady vortex

pattern forms in the wake and the shed vortices travel down the wake

and are transported away from the cylinder. Experimental values for the

drag coefficient at these Re values have been well documented (Sarpkaya

and Isaacson, 1981, Zdravkovich, 1997). At Re = 1× 105, vortices form

and should detach, but the wake narrows due to a decrease in viscous

behaviour (Sumer and Fredsøe, 2006). This decrease in the effect of vis-

cosity is notable in the “drag crisis” portion of the chart illustrated in

figure 3.3.

In Chapter 3, the total wave force on the cylinder over its submerged

length l in an idealised flow was determined through integration of the

surface pressure (see eqns. (3.4) and (3.5)). From the values of the drag

and lift force, Fd and Fl respectively, the drag and lift coefficients, Cd

and Cl, can be calculated directly from the force values by

Cd =
2Fd

ρ|u2
∞|D

(5.1)

and

Cl =
2Fl

ρ|u2
∞|D

, (5.2)
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where ρ is the fluid density, u∞ is the oncoming velocity of the undis-

turbed flow and D is the cylinder diameter.

Previously, Cd was calculated using (3.7); this method is useful for

high values of Re where experimental values do not exist. However,

empirical values of the force coefficients at low Re number values have

been well documented (Sarpkaya and Isaacson, 1981, Sumer and Fredsøe,

2006, Zdravkovich, 1997).

Linear waves in an open NWT are then simulated for several different

flow parameters and the results are presented in Section 5.4. Effective

wave absorption using relaxation zones is explored, where the focus is

on absorbing the wave completely whilst reducing the total length of

the computational domain. The wave parameters used for the NWT are

again applied to simulate free surface waves interacting with a bottom-

fixed surface-piercing smooth cylinder. The waves simulated here (see

Section 5.5) should display characteristics depending on the diameter-to-

wavelength ratio. Analytical solutions exist for linear diffraction from a

large diameter cylinder and the Morison equation provides a good ap-

proximation for the forces on a small-diameter cylinder (see Section 3.2).

Several wave parameters are tested, first for cases corresponding to ex-

perimental studies, in order to explore relaxation zone length, and then

for cases with a range of linear wave parameters similar to those found

at Teesside Offshore Wind Farm. Conclusions about the success of the

OpenFOAM model are presented in Section 5.6.

Numerical simulations are conducted on the super-computer FIONN,

operated by the Irish Centre for High End Computing (ICHEC). Each

simulation employed several processors of one node of the “thin” compo-

nent of FIONN, comprising 2 x 12 core 2.4 GHz Intel Ivy Bridge proces-
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sors, 64 GiB of RAM and an FDR InfiniBand network adaptor (ICHEC,

2018). Numerical validation cases presented in this chapter were run in

parallel on eight processors.

Comparison between the analytical solutions and numerical predic-

tions of forces on a cylinder in regular linear waves is used to validate

the numerical model and provides an important foundation for determin-

ing the same parameters for a cylinder in irregular waves, which will be

explored in Chapter 6.

5.2 Computational Domain and Meshing

In OpenFOAM, the mesh is called a polyMesh. Arbitrarily aligned con-

tinuous non-overlapping polyhedral cells offer the user considerable free-

dom in meshing complex geometries (Weller et al., 1998). OpenFOAM

has a built-in meshing utility called blockMesh that can be used to create

simple geometries used by the finite volume method (see Section 4.3).

The mesh is constructed where the boundary of the computational do-

main coincides with the faces of the control volumes on the boundary.

Point locations are first defined in the dictionary blockMeshDict and the

mesh element type selected (hex-shaped elements are used throughout

this work). Each block is constructed by connecting the vertices in the

correct order (see figure 5.1 for blockMesh ordering convention).

Each control volume is defined by a physical boundary type, i.e. patch for

a boundary with in- or out-flow, walls for boundaries through which no

fluid flows, symmetry for symmetrical flow patterns, or empty for 1D or

2D simulations, and the mesh is constructed using the blockMesh utility

algorithm included in OpenFOAM.
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Figure 5.1: Vertex and control volume face numbering convention used
in blockMesh with the direction of ordering indicated by the arrows. -
Adapted from Greenshields (2015)

Whilst blockMesh is capable of generating simple geometries, it can

become difficult and time consuming to control the quality of the mesh,

such as reducing non-orthogonality and maintaining suitable aspect ra-

tios, and creating meshes for more complex geometries quickly increases

the effort in using blockMesh. For more complex geometries and better

control over the mesh quality, it is possible to convert the mesh from

another software directly into a format recognised by OpenFOAM.

Initially, blockMesh was used to generate the mesh for applications de-

scribed in this thesis, where variables defined at the start of the blockMesh-

Dict file allowed easy mesh generation and where the dimensions and

cell size were dependent on parameters such as the wavelength or cylin-

der diameter. However, to gain better control over the mesh quality, the

open-source meshing tool Gmsh was used. The results presented here use

meshes created with Gmsh, which likewise creates meshes of the geom-

etry, on which the finite volume method is applied. Gmsh also includes
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a user-friendly GUI to ease mesh construction (Geuzaine and Remacle,

2009). A screen shot of the mesh created in Gmsh using a quadrilat-

eral transition zone around the cylinder is shown in figure 5.2, where the

magnified area demonstrates cell grading applied closer to the cylinder

and within the wake.

Figure 5.2: Mesh with monopile present, transition zone magnified

OpenFOAM includes a renumbering-mesh utility, renumberMesh, which

improves the node numbering for meshes created with different software

to optimise the mesh for OpenFOAM. The bandwidth is greatly increased

when the node numbering is not optimized for the applied solver method.

Renumbering the mesh ensures that the node numbering will be in the

most efficient order and is employed when Gmsh is used.
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5.3 Steady current past a cylinder

A steady unidirectional current past a cylinder is first simulated. For a

cylinder in a steady current, the in-line force on the cylinder is quantified

in order to determine drag and inertia coefficients. Four cases are tested,

for Re = 40, 250, 3900 and 1×105. The computational domain for all

simulations is 6 m long and 2 m wide with a depth of 0.3 m and a cylinder

diameter D = 0.2 m, which gives a blockage ratio of 10%. An additional

0.3 m in the vertical direction represents the atmosphere. Figure 5.3

illustrates the patches on the boundaries in the mesh, the locations at

which the boundary conditions are applied. At each value of Re, the drag

and lift coefficients are determined.

Figure 5.3: Patch names for simulation with a monopile. Top image
displays entire computational domain and bottom image shows a close-
up of the cylinder.

The mesh element length in the flow direction is ∆x = 0.039 m in the
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region away from the cylinder and ∆x = 0.014 m near the cylinder walls.

In the vertical direction, ∆z = 0.014 m. Each simulation is run for 50 s

with an initial time step dt = 0.01 s, and an adjustable time step is used

thereafter to satisfy automatically the Courant criterion, where Co ≤ 0.5.

The interFoam solver is implemented with the boundary conditions given

in Table 5.1.

Table 5.1: Boundary conditions used for constant current past a cylinder

velocity pressure VOF fraction

inletAir
fixedValue

value uniform (0 0 0)
zeroGradient

fixedValue
value uniform 0

inletWater
fixedValue

value uniform (0.5 0 0)
zeroGradient

fixedValue
value uniform 1

outlet zeroGradient zeroGradient zeroGradient
seaFloor zeroGradient zeroGradient zeroGradient
atmosphere pressureInletOutletVelocity totalPressure inletOutlet
frontAndBack symmetry symmetry symmetry
cylinder zeroGradient zeroGradient zeroGradient

The pressureInletOutletVelocity velocity boundary condition at the

atmosphere is applicable when the pressure on the boundary is known -

the pressure difference at the interface is equal to zero. This boundary

condition defines a zero-gradient condition for flow moving outwards,

where the direction is defined by the flux, and the inflow velocity is

acquired from the patch-face normal component of the internal cell value

for the velocity.

Similarly for the VOF fraction, named alpha.water in OpenFOAM,

the boundary condition inletOutlet specifies zero-gradient for the flow

moving outwards and a specified value for flow moving inwards with

respect to the boundary; the inlet flow is equal to zero for all cases

throughout this work. The totalPressure boundary condition specifies
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that the pressure at the boundary is

p =


p0, for outflow

p0 − 1
2
|u|2, for inflow (incompressible).

Using the checkMesh utility supplied with OpenFOAM, the mesh quality

is checked. The maximum aspect ratio for all meshes in this section is

3.94. The images in figure 5.4 are screen shots at t = 15.5 s for Re = 40

and Re = 300.

(a) (b)

Figure 5.4: Streamlines at t = 15.5 s for (a) Re = 40 and (b) Re = 300.

For Re = 40, figure 5.4a, two symmetrical vortices have formed on

the cylinder but do not detach from the cylinder wall. At Re = 300, flow

rotation occurs, evidenced by the two vortices that have formed on the

cylinder wall, shown in figure 5.4b. The vortices have not yet begun to

detach from the cylinder. Figure 5.5 presents screen shots from Re =

3900, where figure 5.5a is taken at t1 = 5 s and figure 5.5b is at t2 = 50 s.

By t2, vortices that could be seen beginning to form at t1 have detached

from the cylinder, creating the unsteady vortex wake pattern that can

be seen downstream of the cylinder.
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(a) (b)

Figure 5.5: Streamlines for Re = 3900 at (a) t = 5 s and (b) t = 50 s.

Table 5.2 lists the values found for Cd where (5.1) is applied to de-

termine the coefficients from the instantaneous drag force. Values for

the drag coefficient vary widely, and information is taken from several

sources to provide empirical values for the drag coefficient.

Table 5.2: Drag and lift coefficient values for each simulation, specified
by the Reynolds number Re

40 300 3900 1 ×105

Numerical results
(this study)

1.9 1.82 1.26 1.00

Braza et al. (1986) 1.6 – – –
Wieselsberger (1922) – 1.3 – –
Beaudan and Moin (1994) – – 1.74 –
Rahman et al. (2007) – – 0.997 –
Schlichting (1960) – – – 0.7

As Re increases, the development of the vortices and separation of

the vortices from the cylinder, forming a vortex shedding pattern within

the wake are apparent in the visualisations. The changing flow regime,

which can be expected at these values and described by Zdravkovich
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(1997) are presented in figures 5.4 and 5.5, The fluid remains within the

laminar regime and achieves a steady-state solution, which agrees with

accepted results at Re = 40 (Apelt, 1958). The wake becomes unsteady

and the length of the vortices increase. The flow appears to be periodic

with the developing vortices having the greatest influence on the flow

structure. This transition to an unsteady wake agrees with experimental

and numerical results Rajani et al. (2009).

The unsteady vortex shedding pattern that develops at Re = 3900

and visible in figure 5.5 shows a subcritical flow regime, seen in category

e) in figure 3.1. The development of a vortex street pattern results from

the increasing influence of viscosity within the boundary layer on the

cylinder wall as Re increases.

OpenFOAM demonstrates capability in capturing viscous effects within

the numerical model of unidirectional flow. The vortex development and

separation pattern that are apparent in the numerical model are in good

agreement with previous results and the resulting drag coefficient values

are within the acceptable range.

5.4 Linear Waves in an open wave tank

The OpenFOAM version used throughout this work, v. 2.4.0, does not

include wave propagation. However, Jacobsen et al. (2011) developed

an extension to the multiphase solver, interFoam, for wave generation as

part of their Waves2Foam package. For incompressible flow, the solver

waveFoam operates similarly to the interFoam solver. The waveFoam

solver generates free surface flows using the RANS formulation (see eqn.

(4.5)) coupled with the VOF method discussed in Section 4.2.1. The
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assumption of linear waves remains valid throughout and the wave steep-

ness H/λ < 1/7 for all validation simulations to ensure small-amplitude

waves required by linear wave theory.

5.4.1 Wave Absorption

For all wave tank simulations, wave absorption is achieved using the

relaxation zone utility included in the Waves2Foam release, which acts

as a sponge layer to eliminate wave reflection at the outlet wall. When

simulating flow around a cylinder, an inlet relaxation zone can also be

used to absorb waves reflecting from the cylinder to avoid interference

with the inlet flow.

Prior to solving the RANS momentum equation, the velocities and

fluid volume fraction α are multiplied by a weighting function within the

relaxation zone. A relaxation zone is defined as inlet if the value is 0

at the start of the domain and 1 at the end and an outlet if the value

is equal to 1 at the start of the relaxation zone and 0 at the end. The

relaxation function is

αR (χR) = 1−
exp

(
χζ
)
− 1

exp(1)− 1
, (5.3)

where the value of χ represents the location within the relaxation zone

and is 0 at the start of the relaxation zone and 1 at the end; the default

value for ζ is 3.5 (see e.g. Mayer et al. (1998)). Adjustment of the

value for ζ changes the behaviour of the relaxation zone and can permit

a shorter computational domain through more rapid absorption of the

wave. Inside the relaxation zone, αR is applied through
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q = αRqcomputed + (1− αR)qtarget, (5.4)

where q is either the velocity u, where utarget = 0, or the fluid volume

fraction α, where αtarget is dependent on the location of the still water

level.

5.4.2 Mesh Convergence

A mesh convergence analysis was first run for an experimental case; table

5.3 lists the mesh parameters and running times for each mesh. The

parameter values used for the mesh convergence tests were chosen to

replicate cases investigated experimentally by Chapalain et al. (1992)

and numerically by Jacobsen et al. (2011). The computational domain

possessed length Lx = 39 m and width Ly = 10 m, with a wave period of

T = 3.5 s (corresponding to wave length λ = 6.8 m) and the wave height

was prescribed as H = 0.084 m. The number of elements and element

size were varied by adjusting the number of cells per wavelength in the

horizontal direction (∆x) and wave height in the vertical direction (∆z).

No relaxation zones were used and the run time for each simulation was

minimized so that reflected waves would not interfere with the incident

waves at the gauge of interest. All simulations were undertaken in parallel

on a supercomputer across 24 processors with 64 GB of RAM. Figure 5.6

depicts the time series for velocity in the x-direction (Ux) at (x, y) =

(15, 0).

It can be seen in figure 5.6 that mesh 3 corresponded well to the

analytical solution and mesh 4 did not improve the results significantly,

so the parameters for mesh 3 (75 cells per wave length and 8 per wave
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Table 5.3: Mesh Details

Mesh
Number

Max. cells per
λ (∆x)

Max. cells
per H (∆z)

Total
Elements

Total
Runtime

1 30 3 377,304 11m 58s
2 50 5 691,886 20m 59s
3 75 8 1,274,130 57m 33s
4 100 8 2,437,596 145m 30s

Figure 5.6: Mesh convergence test results: horizontal velocity time series
at elevation z = 0.4 m under regular waves, at T = 3.5 s and H = 0.084
m, where details of mesh 1, mesh 2, mesh 3 and mesh 4 are given in Table
5.3.
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height) were deemed sufficient. Boundary conditions for each field were

applied in the 0 time directory used by OpenFOAM and are detailed in

table 5.4.

Table 5.4: Boundary Conditions

Boundary alpha.water U prgh

topAndBottom symmetry symmetry symmetry
inlet waveAlpha waveVelocity zeroGradient

outlet zeroGradient fixedValue zeroGradient
seaFloor slip slip slip

atmosphere inletOutlet pressureInletOutletVelocity totalPressure

5.4.3 Relaxation Zone Length Modification

An investigation was undertaken into the influence that varying the ζ-

value in (5.3) has on the wave absorption, in order to reduce the length of

the outlet relaxation zone. Numerical wave gauges, a utility included in

the Waves2Foam package for determining free surface location, extending

from the bottom of the domain to the top were spread out evenly on

the y = 0 plane and vertically interpolated to calculate the free surface

location. Figure 5.7 depicts two possible computational domains; the

upper image comprises a relaxation zone of length 2λ and the lower image

a relaxation zone of length λ. When waves generated in an open channel

are produced, it is assumed that the domain length is sufficiently long,

relative to the wavelength, and the number of wave periods simulated is

small enough that outgoing waves are fully absorbed and do not reflect,

removing the need for an inlet relaxation zone.

In the validation cases considered for the relaxationZone utility, Ja-

cobsen et al. (2011), a relaxation zone length of approximately 2λ was

used. Chen et al. (2014) found that a relaxation zone length of 1.5λ
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Figure 5.7: Computational domain with differing relaxation zone
lengths.

was sufficient. It must be noted that an additional 2λ or 1.5λ increases

the computational cost and CPU time considerably. Reduction of the

computational domain whilst still achieving full wave absorption is thus

explored here. Modification of the value for ζ changes the behaviour

of the relaxation zone and can permit a shorter computational domain

through more rapid absorption of the wave. Figure 5.8 gives a presenta-

tion of the behaviour of the wave within the relaxation zone for different

values of ζ in (5.3).

The free surface should remain at a constant level throughout the

domain outside the relaxation zones, but it can be seen clearly in figure

5.9 that when no relaxation zone is used, wave reflection occurs, which

is evident in the increase in surface elevation. Adjusting the ζ-value and

then the length of the outlet relaxation zone showed no effect on the

incident waves, thereby implying full wave absorption was achieved.
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Figure 5.8: Water particle velocity profiles obtained for different ζ-values
in (5.3) indicating their effect on the wave absorption within the damping
zone

Figure 5.9: Surface elevation profiles along domain length at t∗ = 5 for
different wave absorption conditions and varying values for ζ in equation
(5.3).
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5.4.4 Linear waves in a numerical wave tank

Linear waves in a NWT are simulated where the wave parameters reflect

values comparable to those found at Teesside Offshore Wind Farm. The

wave periods tested are T = 4, 6, 8 and 10 s, corresponding to wave

lengths λ = 25, 53, 82 and 109 m respectively, for depth h = 15 m. The

cylinder diameter D = 5 m, and the wave height H = 1.0 m throughout.

Simulations were run for 40 wave periods. The domain length for each

simulation was set at 4λ in the wave propagation (x) direction and λ in

the transverse (y) direction. The vertical domain z had a depth of 15

m and extended to 10 m above the free surface. For all simulations, 8

cells in the vertical direction were used, giving ∆z = 0.125 m. Table

5.5 lists the wave period, corresponding wave length, mesh element size

in the ∆x direction and maximum aspect ratio (AR), calculated with

(4.28). Figures 5.10-5.13 present results for the simulations of a linear

wave train in a NWT with no cylinder present.

Table 5.5: Mesh details for each linear wave in a NWT case

T (s) λ (m) ∆x (m) Maximum A.R.

4 25 0.33 3.10
6 53 0.71 4.73
8 82 1.09 7.31
10 109 1.45 9.72

A comparison is made between the numerical and analytical values for

the undisturbed wave pressure, horizontal and vertical velocity compo-

nents, and surface elevation. Numerical wave gauges were used to locate

the free surface through interpolation of α in the vertical direction. The

velocity components and wave pressure are extracted from the numerical
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probe utility included in OpenFOAM. Both the wave gauges and numer-

ical probes are placed 20 m from the inlet of the computational domain,

and the analytical properties calculated at the same location.

Comparisons between the numerical prediction of a parameters within

a monochromatic linear wave in a NWT versus the analytical solutions,

shown in figures 5.10-5.13, show that the numerical prediction accurately

simulates the waves for varying wave lengths. Excellent agreement be-

tween the analytical solution and numerical prediction is seen in across all

four wave periods for the wave pressure and vertical velocity components,

i.e. figures 5.10b-5.13b and figures 5.10d-5.13d. A small upwards shift is

seen in both the horizontal velocity component, Ux, and the surface ele-

vation, eta across each simulation. This is likely due to a small increase

in the location of the still water surface, likely related to a lack of mesh

refinement for the simulations of the shorter wave periods. Despite the

increase seen in some parameters within the simulated wave, the stability

of the remainder of the parameters gave satisfactory verification that the

correct wave was produced.

5.5 Wave-structure interaction: waves past

a surface-piercing cylinder

Simulations were also carried out for linear waves past a monopile. The

simulated surface elevation was compared to the diffracted surface el-

evation from (3.16), as well as the undisturbed free surface elevation,

η = a cos(kx− ωt). For small-diameter cylinders, where, for D/L < 0.2,

the undisturbed surface elevation should be comparable to the predic-

tions from the analytical diffracted model and the numerical model. As
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the wavelength decreases, diffraction effects increase. Table 5.6 lists the

mesh details for the simulations involving the monopile, inclusive of the

diameter-to-wavelength ratio. The value for ∆x given here refers to the

minimum cell length in the region around the cylinder.

Table 5.6: Mesh details for each linear waves past a cylinder

T (s) D
L

(m) Min ∆x (m) Max. A.R.

4 0.2 0.175 10.1
6 0.1 0.377 8.73
8 0.06 0.404 9.54
10 0.04 0.565 9.54

The total forces incident on the monopile are calculated from the

Morison Equation (3.6), integration of the numerical surface pressure

and from the diffraction formulation given in (3.19). A slip boundary

condition is applied on the cylinder and all other boundary conditions

remain as listed in Table 5.1.

Numerical wave gauges are again applied near the inlet and at 16

locations around the cylinder at a distance of π/8 from each other and

0.1D away from the cylinder wall. Wave gauges are used to capture both

the inlet surface elevation and the diffracted surface elevation in several

locations. The free surface elevation and wave forces are quantified and

a time series for the four different wave periods given in figures 5.14-

5.17. The surface elevation is measured on the cylinder at θ = 0, where

θ is measured positive anti-clockwise from the y = 0 axis; i.e. measure-

ments are taken at the rear-stagnation point of the cylinder. The Re and

KC values for the analytical solution (subscript ∞) and the numerical

solution (subscript S) are listed in Table 5.7. For waves of longer wave-
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length, the forces calculated using the Morison equation should equate

to the diffraction force calculation.

Table 5.7: Re and KC values for linear waves past a monopile

T (s) KC∞ KCS Re∞ ReS

4 0.48 0.44 3.00×106 2.75×106

6 0.57 0.50 2.37×106 2.08×106

8 0.65 0.54 2.02×106 1.67×106

10 0.72 0.62 1.03×106 1.54×106

(a) (b)

Figure 5.14: Comparison between numerical solutions and analytical pre-
dictions of linear wave parameters for waves of period T = 4 s. Figure
(a) shows the time series for the analytical solution with no cylinder
present η∞, numerical solution using slip cylinder wall condition ηS and
the diffracted surface elevation ηD. Figure (b) is the time series for wave
forces calculated with the Morison equation, FM, numerically predicted
wave forces using a slip wall condition, FM, and the analytically calcu-
lated wave force due to diffraction, FD.

The results from the numerical model agree well, though a reduction

in the velocity is seen across all simulations. For waves where D/λ� 0.2

and diffraction effects are not expected, the wavelength-to-depth ratio

λ/h reduces. Waves are considered to propagate in shallow water if the

ratio λ/h < 0.05, but it is conceivable that bottom friction effects cause a

decrease in wave velocity for T = 8 and 10 s, evidenced by the decreasing

KC and Re values. Whilst it is commonly accepted that diffraction
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(a) (b)

Figure 5.15: Comparison between numerical solutions and analytical pre-
dictions of linear wave parameters for waves of period T = 6 s. Figure
(a) shows the time series for (a) the analytical solution with no cylin-
der present η∞, numerical solution using slip cylinder wall condition ηS

and the diffracted surface elevation ηD. Figure (b) is the time series for
wave forces calculated with the Morison equation, FM, numerically pre-
dicted wave forces using a slip wall condition, FM, and the analytically
calculated wave force due to diffraction, FD.

(a) (b)

Figure 5.16: Comparison between numerical solutions and analytical pre-
dictions of linear wave parameters for waves of period T = 8 s. Figure
(a) shows the time series for (a) the analytical solution with no cylin-
der present η∞, numerical solution using slip cylinder wall condition ηS

and the diffracted surface elevation ηD. Figure (b) is the time series for
wave forces calculated with the Morison equation, FM, numerically pre-
dicted wave forces using a slip wall condition, FM, and the analytically
calculated wave force due to diffraction, FD.

115



(a) (b)

Figure 5.17: Comparison between numerical solutions and analytical pre-
dictions of linear wave parameters for waves of period T = 10 s. Figure
(a) shows the time series for (a) the analytical solution with no cylin-
der present η∞, numerical solution using slip cylinder wall condition ηS

and the diffracted surface elevation ηD. Figure (b) is the time series for
wave forces calculated with the Morison equation, FM, numerically pre-
dicted wave forces using a slip wall condition, FM, and the analytically
calculated wave force due to diffraction, FD.

effects occur when D/λ ≥ 0.2, such effects have also been noted to occur

for ratios as low as 0.1 (Chakrabarti, 1987), and so it can be expected

that some diffraction effects occur at T = 6 s.

5.6 Discussion and Conclusions

OpenFOAM appears to provide accurate predictions for linear wave sim-

ulation both for waves in an open numerical wave tank and for waves

past a cylinder. Although relaxation zones are still necessary to absorb

outgoing and reflected waves, it is found that reducing the ζ value in

the relaxation function (5.3) allowed a reduction in the computational

domain length and no wave reflection was observed when a relaxation

zone of length λ with ζ = 1 was used.

Wave components in the horizontal and vertical directions, pressure
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due to waves, and undisturbed surface elevations were compared for four

different wave parameters, T = 4, 6, 8, and 10 s. While the values match

well, a slight reduction was seen in the horizontal velocity component.

This could be due to the numerical scheme, although no additional tests

were run because the discrepancy is small.

The interaction between waves with the same parameters and a surface-

piercing fixed monopile were then simulated. The monopile diameter

corresponded to turbine support structure diameters found at Teesside

Offshore Wind Farm, and the diameter-to-wavelength ratio effect on the

wave-structure-interaction was explored. The numerical predictions of

the diffracted wave height corresponded well to analytical values found

from linear diffraction theory.

It is also seen that as the wavelength increases, the effects due to

diffraction decrease and the diffracted wave height becomes equivalent to

the undisturbed wave height for the longer wave periods. This result can

be expected from diffraction theory and the influence of the cylinder is

particularly clear in comparing figures 5.10 and 5.14.

The wavelength-to-diameter ratio is 0.2, well within the regime where

diffraction substantially influences the flow. The reduction in wave heigh

due to the presence of the cylinder is apparent in the values from both

the analytical diffracted calculation and the numerical prediction. Mesh

refinement required when including the cylinder in the simulation also

appeared to have a stabilising effect on the numerical surface elevation,

pressure and velocity time series, especially for simulations of waves with

period T = 4 s, where the mesh density used in the simulation without

the cylinder was likely too coarse and showed a small increase in the

location of the surface elevation over time.
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Numerical predictions of the wave values with and without a cylin-

der present demonstrate the increasing influence of the cylinder as the

diameter-to-wavelength ratio increases. With the linear wave properties

verified, the model is next extended to include irregular waves. Simula-

tions of specific sea states are presented in the following chapter.
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Chapter 6

Results: Model Validation in

OpenFOAM and Discussion

Summary

The linear wave model presented in Chapter 5 is now extended to sim-

ulate an irregular wave field, governed by the equations presented in

Section 2.3. Numerical and analytical formulations are employed to de-

termine the water particle kinematics, wave force and significant wave

height (Hs) from ocean wave data provided by practitioners. The irreg-

ular sea state is modelled numerically in OpenFOAM with an upstream

boundary condition derived from wave energy spectra obtained by analy-

sis of existing field measurements of free surface wave displacement from

Teesside Offshore Wind Farm located in the Southern North Sea off the

east coast of the United Kingdom. Measured wave conditions are rep-

resented numerically and analytically, and the fluid-structure interaction

with a surface-piercing turbine monopile is computed.
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6.1 Introduction

The principal limiting condition for CTV operation at an offshore wind

farm is that the significant wave height Hs remains below a certain limit.

For most CTVs, the limiting criterion is Hs ≤ 1.5 m (Halvorsen-Weare

et al., 2013, Dalgic et al., 2015b). However, the use of significant wave

height as the main access criterion introduces additional uncertainty be-

cause Hs is dependent on specific in situ wave and wind conditions and

also on the conditions in close proximity to the monopile. In addition, Hs

provides no information about the wave kinematics at the site, including

whether the sea state has a unimodal or bimodal spectral distribution.

Data from a single wave buoy located at Teesside Offshore Wind

Farm in the southern North Sea, shown in figure 6.1 for location and

array set-up, was provided for this project. From the wave buoy data,

the surface displacement is tracked for a 24-hour period in each season

throughout period 2015-2016. Data were provided for September 2015,

December 2015, March 2016 and June 2016, giving a wide range from

which to determine seasonal changes in the sea state. The wave buoy

seen in figure 6.2 tracks the displacement of the free surface in cm at a

sampling frequency Fs = 1.28 Hz. The water depth at Teesside Offshore

Wind Farm, where the turbine monopiles of interest are located, is 15 m

on average.

In this chapter, a statistical analysis of practitioner data was used to

simulate numerically and analytically the unidirectional sea state in an

open wave field and the wave interaction with a surface-piercing turbine

monopile support column. Analytical and numerical methods outlined in

Chapters 2, 3, and 4 are applied to calculate the local water particle kine-

120



Figure 6.1: Location of Teesside Offshore Wind Farm. Image provided
by EDF Energy Renewables.

Figure 6.2: Datawell Waverider Wave Buoy (DWR MkIII). Image from
EDF Energy Renewables.
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matics and wave loading on an individual turbine monopile at Teesside

Offshore Wind Farm.

Section 6.2 summarises the numerical set-up and Section 6.3 intro-

duces the numerical driving boundary condition. The boundary condition

is a modification of the wave types included in the Waves2Foam release,

which are linear waves (Stokes 1st order), nonlinear (Stokes 2nd and 5th

orders, cnoidal waves) and irregular waves from either a JONSWAP or

Pierson-Moskowitz spectrum. The boundary condition developed for this

project, customSpectrum, allows input of verified spectral information de-

rived from the field data directly into OpenFOAM simulations. Section

6.4 presents the results from calibration of the input boundary condition.

The boundary condition was calibrated by simulating the sea state in an

numerical wave tank and using statistical checks to verify that the correct

sea state is produced. In Section 6.5, the interaction between the actual

sea state found at Teesside Offshore Wind Farm and the monopile sup-

port column was computed, where the total in-line wave force and local

hydrodynamic field were determined. Conclusions regarding the ability

of the models in producing the local sea state are given in Section 6.6.

6.2 Numerical Set-Up

The horizontal dimensions of the computational domain were set ac-

cording to the maximum modal wavelength λp, representing the longest

wavelength in the spectral distribution. The computational domain is

of length 4λp in the wave propagation direction x and length λp in the

transverse direction y. The vertical dimension z occupied 15 m of still

water depth, with a further 10 m of air above the water free surface to
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avoid surface diffusion. In cases involving bimodal spectra, two Tp values

were evident, and the larger value was used to set the computational do-

main length, whilst the smaller value was used to ensure that all waves

were sufficiently sampled.

A cut-off frequency was employed to remove the longest wavelengths

in the low-energy part of the spectrum and hence alleviate the computa-

tional domain length, thus enhancing computational performance. The

peak period was limited throughout to T = 13 s, such that the maximum

wavelength was λ ∼ 150 m. The shortest waves considered when bimodal

spectra occur corresponded to a minimum period of T = 1.5 s, with an

associated minimum wavelength λ ∼ 4 m. In Section 5.4.4, it was found

that 75 cells per wavelength in the horizontal direction were sufficient.

A minimum of 7 cells in the vertical direction were used, chosen based

on the validation results of linear monochromatic waves in presented in

Chapter 5. In the present study, such a fine mesh density could not be

achieved for the highest frequency waves (with the shortest wavelengths),

and so a minimum of 6 cells in the horizontal direction was set for the

shortest wavelengths (≈ 4 m) to control the computational overhead.

For all simulations, a relaxation zone of length λp was located at the

outlet where an undisturbed sea state was assumed. When the interaction

with the turbine monopile was considered, an inlet relaxation zone of

length λp was also applied.
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6.3 Input of Wave Buoy Data to Open-

FOAM

In order to utilise data from the offshore wind farm, fixed-value boundary

condition values for velocity were retrieved from the wave spectrum Sη,

obtained from measured wave field data. The boundary condition was

developed based on the source code provided in the Waves2Foam release

for calculation of the sea state from a JONSWAP spectrum.

FFT analysis of the free surface displacement data measured from a

wave buoy was used to produce the wave spectrum for each seasonal data

set, and (2.32) was applied within the source code to calculate the wave

amplitudes from the spectral data. A random phase value 0 ≤ ψ ≤ 2π

was applied within the time-dependent periodic term in (2.33). In-line

and vertical velocity components at all locations within the fluid domain

on the inlet boundary were then calculated within the source code using

(2.34) and (2.35).

The waveFoam solver also uses the PISO algorithm described in Sec-

tion 4.5 to solve the momentum equation from the initial boundary veloc-

ity values and then evaluates the pressure before correcting the flux. The

waveFoam solver finds solutions for the incompressible RANS equation,

given by (4.5) and reproduced here for clarity,

∂u

∂t
+∇ ·

[
uuT

]
−∇ · [ν∇u] = −1

ρ
∇p∗ − g · x, (6.1)

where u is the velocity vector, p∗ is the pressure, ρ is the fluid density,

ν is the coefficient of kinematic viscosity, g is gravitational acceleration

acting vertically downwards, and x is the location vector. The source
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code can be edited directly using templates provided within the Open-

FOAM and Waves2Foam releases. The source code is written in C++ and

both header (.H) and main (.C) files require editing. The mathematical

expression from equation (2.32) is implemented within the customSpec-

trum.C file, which reads directly from the file containing the frequency

and spectral values.

Once the amplitudes have been determined, the fixed-value boundary

condition calculates the value of the in-line and vertical velocity compo-

nents u and w from (2.34) and (2.35) respectively, for all cells on the

boundary; the PISO algorithm is then applied to calculate and correct

the pressure values.

Prior to simulation, the numerical wave amplitudes calculated at the

boundary using customSpectrum were compared to the corresponding

analytical results. This comparison ensured that the sea state produced

contained the correct wave amplitudes; figure 6.3 illustrates the compar-

isons. In figure 6.3, dissimilarities between the values can be seen where

the spectral frequency cut-off values were employed to limit the wave-

lengths and mesh size. Once the initial values calculated by OpenFOAM

were compared against the analytical amplitude values, the customSpec-

trum boundary condition was applied at the inlet for each of the four

seasonal data sets, where the boundary values for each set corresponded

to the seasonal spectral data. Simulations were run first for the local sea

state in an open numerical wave tank with no monopile present.
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6.4 Wave spectral results for Teesside in-

put sea state

Four simulations were completed for the open sea over spring, summer,

autumn and winter conditions. The simulations were run in parallel using

24 processors on a supercomputer operated by ICHEC. Spectral analyses

of the input wave data produces a unimodal spectral distribution for two

of the datasets and a bimodal spectral distribution for the other two,

although the second peak in the June 2016 dataset made only a small

contribution to the total energy. For the bimodal sea states in December

and June, a much greater mesh density was needed to capture the shortest

wavelengths adequately, significantly increasing the computational time.

Table 6.1 shows wave parameters, mesh details and the total CPU time

for a simulation of duration t∗ = 30, where t∗ = t/Tp.

Table 6.1: Total CPU hours for each simulation of the undisturbed sea
state

Season Min/Max λ (m) No. Elements CPU Time

September 2015 12.7/164 786,050 4 h 10 min

December 2015 4.3/290 1,330,550 14 h 50 min

March 2016 7.7/178.6 882,050 5 hr 48 min

June 2016 4.3 /164 1,580,040 17 hr 10 min

The spectral information was verified through a statistical analysis of

the wave buoy data noting that the variance of the surface elevation σ2
η

is equivalent to the total energy within the spectral density curve m0 for

the in situ, analytically calculated and simulated results. The significant

wave height Hs was also determined for each method from (2.31) and the
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modal period Tp identified for each set of data. The statistical values are

included in Tables 6.2-6.5.

A slip-boundary condition was applied at the sea bed, a fixed-value

wave absorption boundary condition at the outlet; an inlet-oulet bound-

ary condition was applied at the atmospheric upper boundary of the

domain, analogous to the verification cases presented in Chapter 5. Sym-

metry boundary conditions were applied on the walls of the domain to

represent open sea conditions.

Using a FFT, the horizontal and vertical water particle velocity com-

ponents were also calculated and comparisons made between the analyt-

ically determined sea state and the numerically simulated sea state. The

subscript raw refers to the spectrum of the in situ data and the subscript

an refers to the spectrum calculated using the analytical formulation of

the surface elevation from (2.33). The subscript N denotes the numerical

results. The spectral result and time-series data for each season are first

presented graphically in Figures 6.4-6.7, and the statistical values for σ2
η,

m0, Hs and Tp are given in Tables 6.2-6.5.

Table 6.2: Autumn Statistical Values - September 2015

Raw data
Analytical
sea state

OpenFOAM
Percentage

error

σ2
η = m0,η 0.018 m2 0.018 m2 0.020 m2 10.8 %

Hs =
√
m0 0.53 m 0.53 m 0.56 m 5.1 %

Tp 8.69 s 8.69 s 8.08 s 7.1 %

The model provides a satisfactory approximation of both peaks in a

bimodal spectrum, although the accuracy is greatly reduced for multi-

directional or crossing seas. Both significant wave height values, analyt-

ical and numerical, are within 5% of each other for three out of the four
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Figure 6.4: Autumn time series for (a) free surface elevation and (b)
associated wave spectrum. Subscripts raw, an, N represent values ob-
tained from the in situ data set, analytical representation and numeri-
cally simulation respectively. Figure (b) includes an additional numerical
simulation, represented by the subcaption N2, to demonstrate mesh con-
vergence.
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Figure 6.5: Winter time series for (a) free surface elevation and (b) asso-
ciated wave spectrum. Subscripts raw, an, N represent values obtained
from the in situ data set, analytical representation and numerically sim-
ulation respectively.
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Table 6.3: Winter Statistical Values - December 2015

Raw data
Analytical
sea state

OpenFOAM
Percentage

Error

σ2
η = m0,η 0.018 m2 0.018 m2 0.017 m2 5.6 %

Hs = 4
√
m0 0.54 m 0.54 m 0.52 m 3.7 %

Tp1 8.11 s 8.11 s 7.25 s 10.6 %
Tp2 2.61 s 2.61 s 2.69 s 3.0 %
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Figure 6.6: Spring time series for (a) free surface elevation and (b) asso-
ciated wave spectrum. Subscripts raw, an, N represent values obtained
from the in situ data set, analytical representation and numerically sim-
ulation respectively.

Table 6.4: Spring Statistical Values - March 2016

Raw data
Analytical
sea state

OpenFOAM
Percentage

Error

σ2
η = m0, η 0.050 m2 0.050 m2 0.047 m2 6.0 %

Hs = 4
√
m0 0.89 m 0.89 m 0.87 m 2.2 %

Tp 7.50 s 7.50 s 6.80 s 9.3 %

Table 6.5: Summer Statistical Values - June 2016

Raw data
Analytical
sea state

OpenFOAM
Percentage

Error

σ2
η = m0,η 0.015 m2 0.015 m2 0.012 m2 20.0 %

Hs = 4
√
m0 0.49 m 0.49 m 0.44 m 10.2 %

Tp 9.30 s 9.30 s 8.35 s 10.2 %
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Figure 6.7: Summer time series for (a) free surface elevation and (b) as-
sociated wave spectrum. Subscripts raw, an, N represent values obtained
from the in situ data set, analytical representation and numerically sim-
ulation respectively.

data sets, but not the June 2016 dataset. A small second peak around

0.5 Hz is visible in the June 2016 data set; although the numerical model

does capture the peak location, the spectral peak has a wider spread than

that seen in the analytical and raw wave buoy spectra. This also occurs

for the December 2015 data set, where both peaks are captured but the

peaks have a wider spread in the numerical model.

The left-hand images in Figures 6.4-6.7 show the time series of the free

surface elevation as calculated analytically (ηan) and numerically (ηN),

and compared to the original displacement data (ηraw). Although phase

information was not conserved for the surface elevation time series, the

results in the frequency domain exhibit good agreement between the raw,

analytical and numerical results. Larger differences were found between

σ2
η and m0 (up to 20% difference for June 2016).

Table 6.1 indicates there is a very significant difference in the total

CPU time required to process the December 2015 and June 2016 datasets
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in comparison to September 2015 and March 2016. This is because of the

bimodal spectra generated from the former two data sets, where shorter

frequency waves contribute significantly to the total energy. Although

the same minimum wavelength (maximum wave frequency) was used for

both June 2016 and December 2015 data, an increase in energy at the

lowest frequencies in the winter spectrum meant that longer wavelengths

were included.

The simulated undisturbed irregular inlet sea state presented in this

section provides a satisfactory estimate of the actual wave conditions

found at Teesside Offshore Wind Farm. The numerically simulated sea

state corresponds well to the in situ data, and therefore can be used to

determine the significant wave height and modal wave periods at the wind

farm. Subsequently, the inlet sea state was henceforth used as the input

condition for determining the diffracted wave kinematics for a turbine

monopile undergoing loading from the specific sea state found at Teesside.

Section 6.5 presents the results obtained for this fluid-structure interac-

tion and the wave particle kinematics in the vicinity of the monopile.

6.5 Teesside Data: Interaction with a monopile

Free surface flow past a turbine monopile is now simulated for the four

seasonal sea states at Teesside Offshore Wind Farm. Table 6.1 lists the

minimum and maximum wave periods and corresponding wavelengths

used. As in Chapter 5, the turbine monopile support structure is mod-

elled as a surface-piercing bottom-fixed smooth cylinder in long-crested

small-amplitude waves. The open-source meshing tool Gmsh was used

to construct the mesh using the structure shown in Figure 5.2. The
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same mesh parameters as used in the previous simulations of the irregu-

lar sea state in an open sea were applied, where a minimum of 75 cells

per modal wavelength were used and the shortest wavelengths in the bi-

modal spectra only used 7 cells per wavelength. Within the transition

zone around the cylinder, the cell length was reduced by half, to capture

rapidly changing gradients within this region. The boundary conditions

applied were again the same as previous simulations and results for both

slip and no-slip boundary conditions on the cylinder walls were examined.

Each simulation was run for t∗ = 40.

Numerical wave gauges for capturing the surface elevation are again

applied near the inlet of the domain, and also at 16 locations around the

cylinder at a distance of 0.1D away from the cylinder wall. Numerical

probes for recording other parameters (velocity, pressure, etc) were placed

at the same locations. Figure 6.8 illustrates the wave gauge and numerical

probe locations. Values for the diffracted waves were taken from wave

gauge 11 (labeled wg11 in the figure), located at the rear stagnation point

of the cylinder.

6.5.1 Irregular Diffracted Wave Results

Figure 6.9 presents a visualization of the wave free surface at time t∗ = 35

for the sea state during March 2016, obtained using the numerical model

with a surface-piercing, circular cylinder representing a turbine support

column. The values of surface Reynolds number and Keulegan-Carpenter

number are 1.22 x 106 and 0.35, respectively. A diffraction pattern is

visible upstream of the cylinder, whereas a laminar wake has developed

downstream. Viscous effects cause a velocity reduction in the wake of

the cylinder. There is evidence of vorticity streaming into the wake but
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Figure 6.8: Location of numerical wave gauges. Results are presented
for data obtained from wg11, located at the rear stagnation point of the
cylinder.

no vortex shedding, which is to be expected at such a low Keulegan-

Carpenter number. Similar diffraction-wake patterns were obtained using

the numerical model for input wave data from each season.

Figure 6.10 presents wave spectra obtained by taking the Fourier

transform of the free surface elevation time series at the rear stagnation

point of the cylinder, where the boat landing would ideally be located,

for each of the four seasons. Each subplot shows: the undisturbed wave

spectrum Sη; the diffracted wave spectrum obtained using linear diffrac-

tion theory Sη,D; the numerical wave spectrum using a slip-boundary

condition on the cylinder Sη,S; the corresponding wave spectrum using

a no-slip condition Sη,N. The undisturbed wave spectral estimates were

previously validated against raw in situ sea state data in Section 6.4.

Overall, the undisturbed, linear diffracted and numerical diffracted pro-
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Figure 6.9: Paraview visualization of wave diffraction pattern showing
wake formation in the vicinity of a large-diameter surface-piercing cylin-
der, representing a turbine monopile. Wave input is from the March 2016
data set.

files and peak frequencies of the horizontal and vertical velocity spectral

functions obtained for the September, March, and June data sets are

quite similar.

For the December data set, the numerical solution does not agree

well with the analytical solutions, which have a second definite peak at

about 0.4 Hz (Tp ∼ 7 s). However, both the analytical and numerical

results present a peak at ∼ 0.15 Hz (Tp ∼ 2.3 s). It was initially hypoth-

esised that the higher-frequency waves were under-sampled in the wave

direction, leading to dissipation of these higher-frequency waves over the

length of the computational domain. A further theory suggested that

135



waves were under-sampled in the vertical direction due to the decrease in

overall energy and wave height within the winter data set in comparison

to the other three data sets.

Table 6.6 lists values of significant wave height Hs determined from

the undisturbed and diffracted wave fields. The analytical and numerical

diffracted wave spectra show a reduction from the incident wave spec-

trum.

Table 6.6: Significant wave heights for Teesside Farm covering all seasons
over the 2015-2016 year

Date Hs,∞ (m) Hs,D (m) Hs,S (m) Hs,N (m)

Sept. 2015 0.53 0.39 0.34 0.32
Dec. 2015 0.54 0.42 0.32 0.30
March 2016 0.89 0.63 0.59 0.56
June 2016 0.49 0.35 0.29 0.22

The agreement between the analytical diffracted significant wave height

value and the numerical value for the diffracted significant wave height

ranges from a difference of 6.3% for the March 2016 data set to 23.8% for

the December 2015 dataset. However, it must be noted that the Hs value

for the bimodal spectrum provides no directionality information and is

therefore less reliable in providing information about the December sea

state.

Analytical values for the water particle velocity components were cal-

culated from the undisturbed wave spectrum Sη, and the diffracted wave

spectrum Sη,D. Numerical estimates of the diffracted water particle veloc-

ities were also obtained from the numerical model. Figure 6.11 presents

the horizontal and vertical water particle velocity component spectra ob-

tained over the four seasons. The subscript ∞ indicates the undisturbed

spectrum, D the diffracted spectrum, and S and N are the numerical
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spectra obtained using the slip and no-slip boundary conditions, respec-

tively.

The forces acting on the idealised column were then considered. Table

6.7 lists the seasonal values for the surface Keulegan-Carpenter number

KC, frequency parameter β, and the drag and inertia coefficients Cd

and Cm. For all data sets, Cd and Cm were calculated using the method

proposed by Wang (1968) (see Section 3.2.1). The method proposed by

Borgman (1965) for calculating the wave force spectrum at a specific

height on a circular cylinder should be equivalent to the Morison force

density spectrum at the equivalent height. Comparisons of the in-line

force spectra at height z = -1.5 m on the cylinder were made.

The force spectrum was first calculated using (3.9) and the Mori-

son equation (Morison et al., 1950) was applied to determine the time-

dependent in-line force at the same height. A FFT was again utilised

to determine the spectral distribution of the Morison equation at z =

-1.5 m. Figure 6.12 compares the force spectrum calculated through

the Borgman method and the force spectrum determined from the time-

dependent Morison equation. The spectral shape using all methods is

very similar to the surface elevation spectral shape; a phenomena first

noted by Wiegel et al. (1959).

Results for the non-dimensional coefficients used in the total in-line

force spectrum over the length of the cylinder are presented in Table 6.7.

Table 6.8 lists the peak spectral force value over the entire submerged

length of the cylinder for each season using the different total force cal-

culation methods outlined in Section 3.2. Values of Cd and Cm listed

in Table 6.7 were utilised in the total in-line force calculation using the
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Morison equation (Morison et al., 1950).

Table 6.7: Non-dimensional parameter values for Teesside Farm covering
all seasons over the 2015-2016 year

Date KC β Cd Cm

Sept. 2015 0.24 2.89 ×106 0.08 2.04
Dec. 2015 0.23 3.28 ×106 0.24 2.00

March 2016 0.35 3.48 ×106 0.05 2.04
June 2016 0.21 2.87 ×106 0.07 2.04

Table 6.8: Peak spectral force values for Teesside Farm covering seasons
during the 2015-2016 year. Units are given in GN2/Hz

Date m0 (FM) m0 (FD) m0 (FS) m0 (FN)

Sept. 2015 5.84 5.29 5.27 4.37
Dec. 2015 1.98 1.03 1.27 1.45

March 2016 6.15 5.29 5.27 4.37
June 2016 0.81 1.20 1.08 0.79

Spectra of the total force over the length of the cylinder are shown in

Figure 6.13. The subscript M relates to the force estimate based on the

Morison equation (3.6), subscript D denotes the estimate based on linear

diffraction theory (3.20), and subscripts S and N refer to forces calculated

through integration of the total surface pressure obtained numerically

using slip and no-slip cylinder wall boundary conditions, respectively.

The Cd and Cm coefficients only changed minimally across the seasons.

The low value of Cd shows that the drag term in the Morison equation

provided a minimal contribution to the total force. This implies that

diffraction theory is acceptable at providing force estimates for a typical

large-diameter monopile in the southern North Sea. However, it should

be noted that linear diffraction theory obviously omits the effects of steep,

large-amplitude waves and high frequency diffracted waves.
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In all the wave, velocity, and force spectra considered, the modal wave

period remained nearly constant throughout the year, with the exception

of the bimodal sea state in December 2015 (and, to a lesser degree, June

2015). The OpenFOAM numerical spectra agree well with their ana-

lytical counterparts for the unidirectional sea states in September 2015,

March 2016, and June 2016, but match less well in December 2015 (where

the higher frequency force components are not apparent in the numer-

ical spectrum, unlike the analytical spectrum). Numerical predictions

obtained using slip and no-slip boundary conditions are generally similar

over the range of cases considered, although the no-slip results show a

small reduction in energy and diffracted wave field values due to viscous

surface effects.

The results for the December 2015 dataset were unsatisfactory in

comparison to the other three data sets, where the spectral shape of

the numerically modelled surface elevation matches well with the mea-

sured wave data. It was hypothesised that complications arising from

the December 2015 data set were due to the significant contribution of

high-frequency waves, leading to a defined high-frequency peak.

As a consequence of efforts described previously to reduce the compu-

tational overhead, it is conceivable that the high-frequency waves within

the regime were under-sampled in the wave direction. When construct-

ing the mesh for the December 2015 data set, a compromise was made

to sample the high-frequency waves with a minimum of 6 cells, far fewer

than the minimum number of cells per wave for the unimodal distribu-

tions. However, it was recognised that simply increasing the number of

cells per wave for the higher-frequency waves would greatly increase the

computational overhead when both modal wave periods were included in
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a single simulation, as the computational domain length must be specified

by the larger modal wave period.

A further difficulty in simulating the December 2015 wave field was

attributed to the small wave height, where values on the y-axis in figure

6.10a are much lower than those for the other three data sets. The

mesh resolution in the vertical direction might therefore require increased

refinement at the free surface.

In an attempt to successfully capture the second peak, significant ef-

forts were made to improve the mesh resolution for the December 2015

data set. In the first effort, the cell length in the wave direction was

divided in half to allow the shortest waves within the spectrum to be

sampled by a minimum of 14 cells per wave in the wave direction. This

mesh resolution also meant that the longest waves now contained approx-

imately 180 cells in the wave direction. The mesh size was increased by

approximately 70%, from 3.5M cells to 5.8M cells, significantly increasing

computational overhead. A negligible improvement was seen in the re-

sults. The increase in computational overhead was not acceptable given

the minimal changes in the results, and it was determined that increasing

the cells in the wave direction did not affect the overall results enough

to update the results. Only the slip boundary condition was tested for

these simulations. Figure 6.15a presents the results from the increased

mesh resolution in the wave direction.

A further two attempts were then made to improve the results by in-

creasing the mesh resolution at the free surface. The first attempt aimed

to apply a minimum of 8 cells per wave height. Again, the major issue

was to increase the mesh resolution whilst maintaining acceptable mesh

non-orthogonality and aspect ratio. An increase in the number of cells
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Figure 6.14: Surface elevation wave spectral density functions using in-
creased cell density in the wave direction for the raw surface displacement
data, Sη, diffracted wave spectrum Sη,D and numerical wave spectrum
with a slip boundary condition, Sη,S.

required a small increase in the wave direction as well to avoid deformed

cells at the free surface. The increase in cell number was again significant

and the mesh size for this simulation was 6.2M, greatly increasing the

computational time.

This simulation did not offer enough improvement to the results and

a final attempt was made to further refine the free surface mesh. The

last attempt employed a minimum of 16 cells at the free surface, again

attempting to increase the resolution in the vertical direction whilst at-

tempting to preserve the mesh quality. Difficulties in maintaining an

acceptable mesh through the quality checks meant that the mesh size

reached approximately 14.4M cells, and the simulation time increased

accordingly.

Results from this attempt were worse than previous attempts and it
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is expected that the mesh density and quality introduced additional nu-

merical errors and the individual frequencies within the lower-frequency

waves were no longer visible. Figure 6.15 presents the results from these

further two attempts to capture the high-frequency peak.
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Figure 6.15: Surface elevation wave spectral density functions with (a)
minimum 8 cells per wave height and (b) minimum 16 cells per wave
height for the raw surface displacement data, Sη, diffracted wave spec-
trum Sη,D and numerical wave spectrum with a slip boundary condition,
Sη,S.

The results were again unsatisfactory and the poorer mesh aspect

ratio likely introduced additional numerical errors. It is recommended

that this is explored further in the future as a final determination on the

suitability of OpenFOAM for capturing bimodal spectra has not been

demonstrated here.

OpenFOAM behaves well for modelling waves with a unimodal dis-

tribution and models the wave field for the Autumn 2015 and Spring

2016 data sets very well, and also models the Summer 2016 data set with

acceptable accuracy, although improvements can be made here as well to

model the waves within the small high-frequency peak. The OpenFOAM

model also captures the low-frequency waves within the December 2015
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wave field.

6.6 Conclusions

OpenFOAM, Waves2Foam, and the input boundary condition custom-

Spectrum were used to simulate the free surface time series for irregular

unidirectional waves, based on in situ data from Teesside Offshore Wind

Farm. Numerical and analytical predictions were compared against the

in situ data through statistical and spectral analyses of the free surface

elevation and velocity component time series. Four data sets, each of

length 24 hours and corresponding to a different season of the year, at

a sampling frequency Fs = 1.28 Hz during 2015/2016, were used to cal-

ibrate the input boundary condition. Following conversion of the wave

buoy displacement time-series data from cm to m, a FFT was applied

over a range of frequencies and the wave spectrum for each relevant value

was calculated and smoothed with an MA filter (see Section 2.3). Total

energy within the spectrum was then found through integration. From

(2.32), the amplitude values for each frequency bin were calculated and

used to determine the sea state at the boundary.

The analytically calculated sea state was compared statistically to the

wave buoy data using (2.30). The sea state and statistical information

has been presented for the following datasets:

1. Raw data set composed of the wave buoy displacement (ηraw time

series and Sη,Raw) spectrum,

2. Analytical data set from equations (2.33)-(2.35) for calculation of

the 2D undisturbed velocity components
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3. Numerical data set from OpenFOAM predictions of the undis-

turbed ηOF time series, and Sη,OF , SUx,OF and SUz,OF ),

4. Comparison of analytical and numerical predictions for the local

hydrodynamic wave field and incident wave force on a turbine

monopile in the southern North Sea at Teesside Offshore Wind

Farm.

It was found that, using customSpectrum, the simulations in Open-

FOAM were capable of capturing the undisturbed significant wave height

to within 10% of the raw displacement data (with the lowest percent-

age difference of 3.20% for the December significant wave height). The

diffracted significant wave height was computed analytically and numer-

ically and the results compared. The diffracted significant wave height

Hs,D showed a reduction from the undisturbed wave height Hs,∞, effect

was similarly seen in the numerical results. This is in broad agreement

with Goda (1985) who found that an irregular wave diffraction solution

should have a lower diffracted wave height than might be expected from a

regular diffraction solution. Both numerical results using slip and no-slip

boundary conditions displayed this reduction in wave height around the

monopile as compared to the undisturbed wave elevation spectrum. The

no-slip boundary condition showed a greater decrease in wave height due

to the effect of viscosity on the cylinder wall.

Comparison tests undertaken using observed sea states for all four

seasons at Teesside Offshore Wind Farm demonstrated satisfactory agree-

ment between the linear diffraction theory and OpenFOAM estimates of

wave, water particle velocity component, and force spectra for three of

the datasets. The results were in relatively poor agreement for the De-
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cember dataset corresponding to a bimodal wave distribution. Although

significant efforts were made to improve the results for this dataset, fur-

ther investigation is required and is beyond the scope of this work.

Despite difficulties modelling the wave field found in December 2015,

OpenFOAM provides a good method for modelling a unimodal distribu-

tion, evidenced by the models of the wave fields from the autumn, spring

and summer data sets. The numerical predictions of the diffracted wave

field agree with the shape of the diffracted wave field formulated analyti-

cally, where energy due to waves at the individual frequencies are visible.

OpenFOAM produces better results for the low-frequency waves in the

vicinity of the cylinder than for the high-frequency waves. It was found

that the results from the numerical model were minimally affected by the

choice of slip or no-slip cylinder wall boundary condition.

The foregoing results confirm that the combination of customSpec-

trum and OpenFOAM provides reasonably accurate simulations of the

sea state found at Teesside Offshore Wind Farm. The use of linear diffrac-

tion theory and CFD has been considered for determining the free surface

elevation η, significant wave height Hs, and water particle velocity com-

ponents u and w close to a surface-piercing vertical cylinder representa-

tive of an offshore wind turbine monopile situated in the southern North

Sea. The total in-line force on the monopile has also been determined.

Linear diffraction theory is fast to implement, but neglects nonlinearity

and viscous effects. The CFD model is based on OpenFOAM and is ex-

pensive in terms of computational resources, but could resolve nonlinear

and viscous effects. It should be noted that OpenFOAM was run using a

constant value of kinematic fluid viscosity, which meant that the model

was essentially laminar.
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Chapter 7

Conclusions and

Recommendations

7.1 Preamble

As one of the fastest growing sources of marine renewable energy, off-

shore wind power has the potential for substantially increased output

from non-emitting sources. However, drawbacks in the development of

offshore wind power lie, to a large extent, in the high costs of operations

and maintenance (O&M). Increased costs are exacerbated by the marine

location of the turbines, with access to the turbines for maintenance be-

ing strongly dependent on weather and sea state conditions. Safe access

to offshore wind turbines for repair workers is a prerequisite for effective

repair and maintenance activities, which is vital in reducing the O&M

costs.

For monopile turbines, the crew transfer vessels used to transport re-

pair workers to offshore wind turbines must remain steady whilst abutted

against the support column for the duration of crew transfer. Unexpected

wave motion in the vicinity of the support column can disrupt the fric-
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tional contact between the vessel fender and the transition piece on the

turbine. If wave hydrodynamics overcome the frictional force, the vessel

can slip away from the monopile, potentially endangering repair workers

in transfer.

Advances in knowledge of the hydrodynamic wave field around an

offshore wind turbine in any unidirectional sea state should allow fore-

casts to be made of vessel motion under operating conditions. Thus, the

scope of this PhD research was to formulate a method for approximat-

ing the local hydrodynamic irregular wave field interacting with turbine

monopiles, and subsequently provide the diffracted wave kinematics and

incident wave force on the monopile, both of which affect vessel motion.

Underlying mathematical equations describing wave motion were pre-

sented, along with a discussion of ocean wave statistics and a method-

ology for obtaining time-dependent wave kinematics from a stationary

sea state in the frequency domain. Methods were introduced for deter-

mining the in-line wave force incident on fixed small-diameter and large-

diameter surface-piercing cylinders in waves; these included the formu-

lation of equations for monochromatic and irregular wave fields. Details

were also given of the numerical model that constituted the CFD package,

OpenFOAM.

The numerical model was first verified through analysis of a steady

current interacting with a surface piercing cylinder. Non-dimensional

drag and inertia force coefficients, Cd and Cm, were determined from the

numerical model for four different Re values and compared to experi-

mental values to validate the numerical model. Simulations were run

for Re = 40, 300, 3900 and 1×105 and the visualisations produced were

compared to previous experimental and numerical results. The vortex
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development and shedding patterns that were expected with increasing

Re values were apparent in the numerical models.

Following verification of the numerical model for a steady unidirec-

tional current interacting with a surface-piercing cylinder, OpenFOAM

was employed to simulate numerically a linear wave field. The simulated

wave parameters and cylinder diameter were chosen to represent expected

wave periods at Teesside Offshore Wind Farm.

Waves2Foam, which includes an extension to the interFoam solver

(included in the OpenFOAM release), called waveFoam, was used to gen-

erate simulated waves. Numerical model predictions were then compared

to the analytical solution of monochromatic, regular waves, and excellent

agreement was achieved regarding the free surface motion. Waves of four

different wave periods (and corresponding wavelengths) were simulated

interacting with a cylinder of constant diameter in order to explore differ-

ent fluid-structure interaction effects and the influence due to diffraction.

Finally, the aforementioned linear wave theory was applied to an irreg-

ular sea state, according to measured in situ data from Teesside Offshore

Wind Farm. The customSpectrum boundary condition developed as part

of the present work allowed wave spectrum values to be input directly into

the OpenFOAM solver, with each individual wave amplitude component

calculated at the boundary.

From the spectral amplitude values, and the assumption of small-

amplitude linear waves, superposition allowed the initial in-line velocity

component u and vertical velocity component w to be directly evaluated

at all control volume faces on the boundary. customSpectrum simulates

the sea state from wave spectra determined for site observations of waves

at the Teesside wind farm location, supplied by the operations team at
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EDF Energy Renewables.

Numerically generated undisturbed waves were validated using ana-

lytical wave solutions for an irregular sea state. Statistical analysis of the

free surface elevation and velocity components provided a reliable com-

parison between the raw in situ data, analytically calculated sea state,

and the numerically generated sea state. Comparing the area under the

spectral curve m0 with the variance of the data σ2 confirmed that sta-

tionary spectra represented the data time-series. The m0 values for all

spectra were found to agree closely with σ2, confirming that customSpec-

trum gave a proper representation of sea states at the Teesside site.

The verified sea state was then used as the input condition for analysis

(numerically and analytically) of ocean wave interaction with a surface-

piercing fixed vertical cylinder, representing a wind turbine monopile

support column. Wave forces incident on the cylinder were calculated

through integration per unit length of the numerically simulated wave

surface pressure and analytically using the diffraction formulation intro-

duced by MacCamy and Fuchs (1954), and the Morison equation (Mori-

son et al., 1950).

The non-dimensional force coefficients Cd and Cm required by the

Morison equation were calculated using the method introduced by Wang

(1968), discussed in Section 3.2.1. This method is appropriate when con-

sidering large Reynolds number values and low Keulegan-Carpenter num-

ber values, for which the fluid-structure interaction lies in the drag-inertia

regime. Within this regime, it is very difficult to determine the force co-

efficient Cd because the flow experiences a “drag crisis”, whereby the

drag coefficient rapidly decreases when the Reynolds number increases

to Re ≈ 1× 105 , before increasing again at Re ≈ 1× 106.
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Table 6.7 showed that the Reynolds number value of interest lies

within or just beyond the drag crisis regime. Values for Cd and Cm

calculated through the method presented by Wang (1968) appeared to

give satisfactory results for the Morison force calculation. Although the

Morison equation resulted in a larger estimate of the total force value in

comparison to the diffraction solution, both calculation methods resulted

in the same spectral shape.

The method introduced by Borgman (1965) for determining the force

spectrum at a specific location on a cylinder provided an additional

method for verifying that the correct spectral force shape was produced.

It was seen that the force spectral shapes correlated closely with the shape

of the surface elevation spectra, in agreement with previous observations

of this phenomenon (see e.g. Wiegel et al. (1959)).

To calculate the irregular sea diffracted hydrodynamics and in-line

wave force, it was assumed that the diffracted wave height in an irregular

small-amplitude wave field could be derived from the superposition of the

diffracted wave solution obtained for each individual wave component.

The frequencies of radially outward-moving diffracted irregular waves

corresponded to frequencies of incident waves, also seen in (Swan and

Sheikh, 2014). By applying superposition, the linear irregular diffracted

surface elevation was calculated analytically, neglecting viscous surface

effects. The diffracted wave spectrum was then derived from the FFT

of the diffracted surface elevation. From the diffracted wave spectrum,

the resulting horizontal and vertical diffracted velocity components were

computed.

Variances of the diffracted analytical values for η, u, w and the wave

force were then compared to their numerically predicted counterparts,
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obtained using OpenFOAM. Numerical values were obtained at selected

positions in the flow domain using utilities such as numerical wave gauges

and probes for measuring the values at specific points within the compu-

tational domain.

Through this method, the diffracted significant wave height Hs,D was

obtained from the diffracted wave spectrum, Sη,D. The linear diffraction

analytical solutions were in good agreement with the numerical results

using the fully nonlinear OpenFOAM model, provided a slip boundary

condition was applied at the cylinder wall.

It was found that the numerical model was capable of generating

a unidirectional wave field with the same frequency distribution found

at Teesside Offshore Wind Farm, and analytical linear diffraction for-

mulations provided satisfactory initial estimates for the diffracted wave

elevation and velocity components, when compared to the numerical re-

sults. The numerical model behaved well for three out of the four data

sets, where the most significant contribution to the total energy was

within the lower-frequency waves. The numerical model behaved less

well when there was a bimodal distribution and both high-frequency and

low-frequency waves contributed considerably to the overall energy within

the system.

7.2 Conclusions

The model showed that the measured sea state could be approximated

satisfactorily using OpenFOAM coupled with the customSpectrum bound-

ary condition implemented in the Waves2Foam package. A statistical

analysis of the spectral distribution of the surface elevation obtained from
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a single wave buoy was performed prior to numerical simulation. The

variance of the data was shown to be equal to the zeroth-moment m0.

The distribution at Teesside Offshore Wind Farm was seen to change from

a unimodal distribution for two data sets (September 2015 and March

2016) to a bimodal distribution for December 2015 and, to a lesser degree,

June 2016.

Through superposition of linear waves with amplitudes an obtained

from the spectral distribution, the sea state was formulated analytically,

providing predictions for the horizontal and vertical velocity components

relevant to wave loading. By comparison of the spectral shape of the

surface elevation and 2-D velocity components, numerically generated

waves using the customSpectrum inlet boundary condition were seen to

show good agreement with the analytically established sea state.

In an open numerical wave tank with no monopile present, the numer-

ically predicted significant wave height was within 5% of the significant

wave height obtained from the wave buoy data spectral distribution for

the September 2015, December 2015 and March 2016 data sets. The

largest discrepancy was seen in the June 2016 data set, where the nu-

merical significant wave height was 10% lower than the significant wave

height from the wave buoy data. The agreement in the shape of the

spectral distribution of the 2-D analytically formulated and numerically

predicted velocity components also demonstrated the success of the nu-

merical model in reproducing the desired sea state.

A slight reduction in the mesh density for the shorter wave periods

present in the December 2015 bimodal distribution was allowed in order

to lessen the computational overhead. However, this produced unsatis-

factory results and three additional attempts were made to improve the
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numerical model by increasing the mesh resolution first in the horizon-

tal direction and then in the vertical direction. The immense increase

in computational overhead did not warrant the trivial improvements in

the results, and more work is required here to determine the suitability

of OpenFOAM for capturing bimodal wave distributions. However, it

can be noted that the OpenFOAM model does behave relatively well for

waves at the low-frequencies within the December 2015 data set.

The numerical prediction and analytical formulation of the irregu-

lar wave field then allowed for several methods for calculating the wave

loading to be employed. The Morison equation, which is the sum of

the time-dependent in-line wave force along the submerged length of the

cylinder, was determined analytically using seasonal irregular horizontal

velocity and acceleration components. The Morison equation is appro-

priate for small-diameter cylinder where viscous forces are present, which

is also modelled by the no-slip wall condition used for comparison in the

numerical predictions. The spectral distribution of the Morison force at

height z = -1.5 m for each season agreed with the spectral force calculated

at the same height presented by Borgman (1965).

The large-diameter analytical diffraction solution, which provided val-

ues for the diffracted surface elevation, horizontal and vertical diffracted

velocity components and wave force due to diffraction, was formulated

for the local sea state at Teesside Offshore Wind Farm. In addition to

the no-slip condition used in some simulations, simulations were also un-

dergone in which a slip condition was applied on the cylinder wall. The

dominating inertial conditions of the slip condition should agree with

those assumed in the linear diffraction formulation. Wave loading com-

parisons were again made in the frequency domain, where the spectral
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distribution was obtained for each wave loading time-series calculation.

It was seen that the spectral distribution of the wave loading was of a

similar shape to the surface elevation spectral distribution. The Morison

equation gave higher estimates of force loading for 75% of the data sets

than what was seen either through the diffraction formulation or the

numerical prediction. Simulations in which a slip wall condition on the

cylinder was used showed better agreement with the linear diffraction

formulation than those where a no-slip wall condition was used. Despite

some variation between the analytically and numerically predicted values

of surface elevation, velocity components and wave force, the analytical

solution appeared to provide a good basis approximation of the wave field

in the vicinity of the turbine monopile. Numerical methods can provide

more accurate predictions of a particular sea state interacting with a

turbine monopile, and can consider nonlinear and viscous terms within

the wave field that are neglected in the analytical solutions.

Analytical solutions, which are fast to implement in comparison to

numerical solutions, provided good approximations to the wave motions

relevant to vessel responses, such as the water particle velocity and ac-

celeration components within the region. Although the model was de-

signed for unidirectional seas, some success was achieved in simulating

seas driven by bimodal wave spectra. However, despite the appearance

of a second peak in the undisturbed numerical wave spectra, it should be

emphasised that the accuracy of the model was, of course, greatly dimin-

ished for multi-directional or crossing seas that can results in a bimodal

spectral distribution.
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7.3 Recommendations for future research

7.3.1 Wave Directionality

The present analysis has assumed that the sea state is unidirectional.

However, historical weather data in the region of interest indicate that

the sea state is most likely to be multi-directional and subject to crossing

seas. The close proximity to the shore (1.5 km) and shallowness of the

offshore wind farm site (15 m) could exacerbate changes in the modal

distribution, when external storm swells interact with the local sea state.

Historical statistical weather data in the southern North Sea near the

Teesside offshore wind farm site indicate a modal wave period in the

range of 4 s . Tp . 14 s, which corresponds to 25 m . λp . 160 m, and

a wind direction predominantly in the southwest direction in March and

September, whereas the June data exhibit a larger spread in the northeast

direction. The December data exhibit a more southerly dominated wind

direction 1, the direction change accounting for the second peak in the

spectrum. Guedes Soares (1984) found that bimodal spectra occur 5-40%

of the time in the North Sea.

A better representation of the local sea state would therefore be to

use a pair of directional spreading functions, one for each modality, to

improve the accuracy of the computational model. However, data for

this thesis were only available for a single wave buoy at one location,

greatly limiting the degree to which directionality could be determined

(McAllister et al., 2017). Whilst inclusion of directionality is beyond the

scope of the present research project, a multidirectional model that can

resolve the prevailing wind-wave-swell directions from single point wave

1see https://www.windfinder.com/windstatistics/Teesside
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observations (see e.g. Adcock and Taylor (2009)) could be developed to

improve the model.

It is thus recommended that future work be conducted to extend the

model so that it can account for multidirectional, crossing sea states by

including additional spreading functions or improving the approach to the

numerical simulation. Inclusion of a spreading function would be best

achieved by gathering in situ data at several locations simultaneously.

Additionally, the values presented here are the results from a single year

of data only; improvements could be made from a longer data sample,

thereby taking into account climate affects that can occur over years

rather than months.

A final suggestion to improve the numerical model in OpenFOAM to

better capture the bimodal distribution could approach the waves within

each peak separately. In this case, two separate simulations with two

computational domains could be run for the same sea state where one

simulation is based on the higher-frequency waves and the second focuses

on the lower-frequency waves. Following the two separate simulations,

the overall results could be combined into a single spectra, which should

demonstrate the bimodal distribution.

7.3.2 Nonlinear and higher order diffraction effects

Other simplifications made in this research arose from the use of linear

theories for calculating the diffraction effects. It is recommended that

a higher-order diffraction method should be pursued in the future to

predict the effect of wave nonlinearity (see e.g. Chau and Eatock Taylor

(1992)), which is obviously important for vessel motions in the vicinity

of the monopile.
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Although the analytical solution and the numerical solution showed

the same patterns of a decrease in diffracted wave height and wave par-

ticle kinematics in the vicinity of the monopile, inclusion of higher order

terms in the diffraction formulation could reveal non-negligible higher

harmonics. It is relevant to note that Stansberg and Kristiansen (2005)

found that even for small-amplitude waves, linear diffraction theory ap-

plied to an irregular wave field gave results that did not agree with ex-

perimental data and a second-order diffraction solution was required to

improve the results.

7.3.3 Extending the results to crew transfer vessel

motion

It is recommended that a future study be carried out to approximate

crew transfer vessel motions based on the diffracted hydrodynamic wave

behaviour in the present models. Crew transfer vessel motion can be

computed using a standard 2D vessel-motion method, such as strip the-

ory, where it is assumed that the vessel displacement varies linearly with

the diffracted wave velocities and accelerations (Journee and Pinkster,

2002). Conducting this work would require additional experimental or in

situ data whereby the actual vessel motion under operating conditions

could be monitored.

Furthermore, the transfer function derivation discussed in Section 3.3

could aid in the application of control theory, where it is assumed that

the output ship motion is directly related to the input hydrodynamics.

The transfer function, based on an input wave spectrum, could be ap-

plied to predict the diffracted wave spectrum, from which wave velocities

and accelerations could be forecast for a larger spread of possible sea
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states in the region. Use of control theory, perhaps coupled to machine

learning for predicting the data for input sea states, could help better

ship manoeuvring to be accomplished.

7.4 Final Observations

The methods presented here for determining the water particle kinemat-

ics close to a wind turbine support monopile from a wave spectrum should

be useful in determining typical wave motions incident on a vessel, which

ultimately helps vessel operators gain better control of the vessel, leading

to safer crew transfer.

The numerical results demonstrated the capabilities of OpenFOAM

in reproducing in situ wave conditions for a unidirectional sea state. The

analytical results, which can be calculated relatively quickly with the

formulation presented herein, also provided an in-depth understanding

of the likely hydrodynamic field expected at the offshore wind farm site

and at the monopile itself.

Engineers can benefit greatly by computing accurate site-specific ac-

tual wave conditions, rather than relying on parametric representations

of the wave conditions. It is also beneficial to note the change between

unimodal and bimodal spectra that occurs at the wind farm location

throughout the year. Furthermore, use of a parametric representation of

the sea state means that the adjustment between unimodal and bimodal

spectra that occurs in the region would remain neglected.

Improved accuracy of significant wave height values at an offshore
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wind farm is crucial to crew transfer vessel operators who rely solely on

such information to determine the feasibility of accessing the turbines

for repairs. Assembling a database of simulated sea states based on ad-

ditional data collected at the offshore wind farm site could improve the

calibration of customSpectrum and thus provide the input for more real-

istic simulation of vessel motion for a wider range of sea states.

With an enhanced knowledge of the hydrodynamics affecting crew

transfer vessel motion and seasonal sea state data specific to an offshore

wind farm location, improvements can be made to vessel motion algo-

rithms. Additional information beyond the statistical significant wave

height value may provide vessel operators with a greater opportunity

to avoid dangerous conditions when approaching the turbine monopile

and reduce economic losses due to incomplete repairs. The methodology

presented here has great potential to help cut the overall O & M costs

associated with offshore wind farms.
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