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EXACT, PURELY AZIMUTHAL STRATIFIED EQUATORIAL
FLOWS IN CYLINDRICAL COORDINATES

D. HENRY AND C. I. MARTIN

Abstract. This paper is concerned with the derivation of an exact solution to
the governing equations for geophysical fluid dynamics expressed in terms of cylin-
drical coordinates. It is demonstrated, by way of a functional analytic approach,
that there is a well-defined relationship between the imposed pressure at the free-
surface and the resulting distortion of the surface, and it is established that this
relationship exhibits the expected monotonicity properties. This exact solution for
stratified fluid flow is then subjected to a short-wavelength perturbation stability
analysis.

1. Introduction

This paper is concerned with the derivation of a new exact solution to the geo-
physical fluid dynamics (GFD) governing equations which are formulated in terms
of cylindrical coordinates in a rotating frame. This solution corresponds to a steady,
purely–azimuthal equatorial flow with an associated free-surface, with stratification
incorporated in the fluid by modelling the density distribution as a linear function
of depth. GFD is the study of fluid motion whereby the effect of the earth’s rotation
plays a significant role, necessitating the inclusion of Coriolis forces in the governing
equations. The dynamics of the ocean near the equator presents some unique and
complex characteristics from a modelling perspective, among these being pronounced
stratification and the presence of non-uniform underlying currents [8,15,32,33,35,39].

Even for the relatively simplified regime of an inviscid, incompressible and laminar
fluid, the GFD equations of motion are highly nonlinear and intractable [13,18,40].
In this context it is remarkable that a number of recent developments have produced
an assortment of exact solutions to the GFD governing equations in various forms,
cf. [3–5, 7–12, 19, 20, 25, 26, 37, 38]; surveys of these results can be found in [21, 34].
Exact solutions are extremely rare in fluid mechanics, in general, and they offer an
invaluable insight into the mathematical structure of a given problem.

In this paper we extend this body of work by constructing a new exact solution
which incorporates the effects of stratification. Employing a cylindrical coordinate
framework has a number of advantages: it offers a more transparent insight into the
properties of the fluid flow compared to spherical coordinates (cf. [24]) while still
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2 STRATIFIED AZIMUTHAL EQUATORIAL FLOWS

retaining an appreciable amount of the mathematical structure of the full problem.
An artefact of the construction of the exact solution below is a Bernoulli-type re-
lation at the free-surface: this provides a constraint on the existence of a solution.
The mathematical formulation of this Bernoulli relation is greatly complicated by
the presence of fluid stratification, as can be seen by comparison with the homoge-
neous fluid setting [8]. This intricate and involved expression provides an implicit
prescription of the relationship between the imposed pressure, and the resulting
distortion, at the free-surface.

We demonstrate, by way of applying a functional analytic approach to the Bernoulli
relation, that there is a well-defined relationship between the imposed pressure at
the free-surface and the resulting distortion of the surface’s shape. Additionally,
we establish that this relationship exhibits physically-expected monotonicity prop-
erties. The presentation is concluded by subjecting this new exact solution for
stratified fluid flow to a short-wavelength stability analysis. The short-wavelength
perturbation method is a particularly elegant analytical approach which has proven
to be highly applicable to a variety of recently derived exact solutions of the GFD
governing equations, as can be seen in [6, 17, 22, 23, 27, 28, 30, 31]. Although the
mathematical implementation of this technique is significantly complicated by the
presence of fluid stratification, we succeed in deriving a physically interesting result.

2. The governing equations

In the following, the geophysical fluid dynamics (GFD) governing equations are
presented in terms of a cylindrical coordinate system which is oriented as follows.
The great circle of the sphere which corresponds to the equator is “straightened out”,
and this line (which is parallel to the z-axis) generates the cylinder. The interior
of the cylinder (which corresponds to the interior of the sphere) is represented by
standard polar coordinates. Thus, in a right handed system, the coordinates are
(r, θ, z), where r is the distance to the centre of the disc (representing the Earth),
θ ∈ (−π/2, π/2) is increasing from North to South and measures the deflection from
the Equator, and the positive z−direction denotes azimuthal flow from West to East.
The line of the Equator is chosen to be associated with θ = 0. The corresponding
unit vectors in the (r, θ, z) system are {er, eθ, ez} and the velocity components with
respect to {er, eθ, ez} are (u, v, w). The GFD governing equations in a coordinate
system with its origin at the centre of the cylinder are the Eulers equation, which
is expressed in terms of cylindrical coordinates as

ut + uur + v
r
uθ + wuz − v2

r
= −1

ρ
pr + Fr

vt + uvr + v
r
vθ + wvz + uv

r
= −1

ρ
1
r
pθ + Fθ

wt + uwr + v
r
wθ + wwz = −1

ρ
pz + Fz,

(2.1)
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and the equation of mass conservation

1

r

∂

∂r
(ru) +

1

r
vθ + wz = 0. (2.2)

Here p(r, θ, ϕ) is denotes the pressure in the fluid, F = Frer + Fθeθ + Fϕez is
the body-force vector, and ρ denotes the (variable) fluid density. The effect of the
Earth’s rotation is incorporated into the equations of motion through associating
the orthogonal unit vector system {er, eθ, ez} with a point fixed on the surface of
the earth, which is rotating about its polar axis. This results in additional Coriolis
force (2Ω × u) and centripetal acceleration (Ω × (Ω × r)) terms. With r = rer,
u = uer +veθ +weϕ, and Ω = −Ω(sin θer +cos θeθ), where Ω ≈ 7.29×10−5 rad s−1

is the constant rate of rotation of the Earth, the additional rotational terms which
must be added to the left-hand side of (2.1) are given by

2Ω(−w cos θer + w sin θeθ + (u cos θ − v sin θ)ez) + rΩ2(−(cos θ)2er + sin θ cos θeθ).

Assuming that the body-force is due only to gravity, the Euler equation is therefore

ut + uur + v
r
uθ + wuz − v2

r
− 2wΩ cos θ − rΩ2 cos2 θ = −1

ρ
pr − g

vt + uvr + v
r
vθ + wvz + uv

r
+ 2wΩ sin θ + rΩ2 sin θ cos θ = −1

ρ
1
r
pθ

wt + uwr + v
r
wθ + wwz + 2Ω(u cos θ − v sin θ) = −1

ρ
pz.

(2.3)

Complementing the GFD governing equations (2.2) and (2.3) are boundary condi-
tions associated with the free surface and the sea-bed: the free-surface is denoted
r = R + h(θ, ϕ), where R ≈ 6378 km is the radius of the earth and h(θ, ϕ) rep-
resents the deviation of the free-surface from a perfect sphere; the bottom of the
ocean is an impermeable solid boundary denoted by the equation r = d(θ, ϕ). At
the free-surface we have the kinematic boundary condition

u = whz +
1

r
vhθ (2.4)

together with the dynamic boundary condition

p = P (θ). (2.5)

The kinematic boundary condition on the sea-bed is given by

u = wdz +
1

r
vdθ, (2.6)

where we observe that (2.6) holds trivially for flows which are motionless at great
depths.

3. Existence of exact, stratified flows

In this section we derive an exact solution of the GFD governing equations (2.2)–
(2.3) for a stratified fluid, where the fluid density exhibits a vertical variation which
is a linear function of depth. The fluid density is therefore prescribed as ρ = b− ar,
for a, b > 0 any constants such that ρ > 0. The exact solution we present has a
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simplified prescription in the sense that it is a steady flow moving in the azimuthal
direction, with no variations in this direction. Hence, the velocity field (u, v, w)
satisfies

u = v = 0 and w = w(r, θ), (3.1)

with the free–surface described by r = R + h(θ) and the sea–bed represented as
r = d(θ). For equatorial flows the polar angle θ is confined to an interval [−ε, ε],
for some ε > 0 whose choice is motivated by geophysical considerations: setting
ε = 0.016 corresponds to a strip of 100km width about the Equator, cf. [8]. With
this form of velocity field, the system (2.3) becomes

−2wΩ cos θ − rΩ2 cos2 θ = −1
ρ
pr − g

2wΩ sin θ + rΩ2 sin θ cos θ = −1
ρ
1
r
pθ

0 = pz,

(3.2)

and we see immediately that the equation of mass conservation (2.2) as well as the
kinematic boundary conditions (2.4) and (2.6) are automatically satisfied. Differen-
tiating the first equation in (3.2) with respect to θ and the second with respect to r
we obtain

−2Ωwθ cos θ + 2Ωw sin θ + 2rΩ2 cos θ sin θ = −1

ρ
prθ (3.3)

and

2Ωrwr sin θ + rΩ2 sin θ cos θ = −1

ρ
pθr +

1

ρ
· 1

r
pθ +

ρr
ρ2
pθ, (3.4)

which, after inserting the expression for 1
r
pθ from the second equation in (3.2),

becomes

2Ωrwr sin θ + 2Ωw sin θ + 2rΩ2 sin θ cos θ = −1

ρ
pθr +

ρr
ρ2
pθ. (3.5)

Subtracting (3.3) from (3.5) we obtain

2Ωrwr sin θ + 2Ωwθ cos θ =
ρr
ρ2
pθ,

which can be rewritten as

2rwr sin θ + 2wθ cos θ = −rρr sin θ

ρ
(2w +Ωr cos θ).

Using the specific choice of the density distribution ρ(r) = b−ar, the latter equation
becomes

2rwr sin θ + 2wθ cos θ =
ar sin θ

b− ar
(2w +Ωr cos θ).

This equation may be solved by way of the method of characteristics: defining

r = r(s), θ = θ(s), z(s) = w(r(s), θ(s))
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with
ṙ(s) = 2r(s) sin θ(s), θ̇(s) = 2 cos(θ(s))

we obtain the equation

ż(s) =
ar sin θ(s)

b− ar(s)
(2z(s) +Ωr(s) cos θ(s)). (3.6)

Noticing that
d

ds
(r(s) cos θ(s)) = 0 for all s,

we can recast equation (3.6) as

1

2

d

ds
(ln(2z(s) +Ωr(s) cos θ(s))) = −1

2

d

ds

(
ln(b− ar(s))

)
for all s,

whose general solution is

w(r, θ) = −Ωr cos θ

2
+
F (r cos θ)

2(b− ar)
, (3.7)

for some function F .

Remark 3.1. The impact of stratification on the form of the azimuthal velocity (3.7)
is immediately apparent: the second term is essentially divided by the non-constant
density ρ. This differs quite significantly from the homogeneous fluid regime [8].

Remark 3.2. It is clear from (3.7) that the azimuthal flow velocity is determined by
prescribing it at the equator: if the equatorial flow is given by w(r, 0) = W (r), then
we simply choose F (r) = (b− ar) (2W (r) + Ωr), and the azimuthal flow velocity
w(r, θ) in the neighbouring equatorial region is then prescribed by (3.7). More
precisely, we have the following relation between the above mentioned flow velocities:

w(r, θ) = w(r, 0) cos θ +
1

2(b− ar)
[F (r cos θ)− F (r) cos θ]. (3.8)

This is particularly relevant in the context of adapting (3.7) to provide an elementary
model for equatorial flows; cf. [8] for the homogeneous fluid setting.

Having prescribed the velocity field in the stratified fluid by way of (3.1), (3.7),
attention must now be focused on the associated fluid pressure distribution. Sub-
stituting the expressions (3.1), (3.7) for the velocity field into (3.2), the gradient of
the pressure is expressed as pz = 0,

pr = Ω(cos θ)F (r cos θ)− (b− ar)g,
and

pθ = −Ωr(sin θ)F (r cos θ).

This can be solved directly leading to the following formulation for the pressure
function p:

p(r, θ) = A− gbr +
agr2

2
+Ω

[∫ r cos θ

c cos θ

F (y)dy −
∫ θ

0

c sin θ̃F (c cos θ̃)dθ̃

]
,
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where A and c are real constants. This expression, in combination with the dynamic
boundary condition on the free–surface (2.5), prescribe the relationship between the
imposed pressure at the surface of the ocean and the resulting deformation of that
surface. The associated Bernoulli-type relation at the surface is given by

P (θ) = A−gb[R + h(θ)] +
ga[R + h(θ)]2

2

+Ω

[∫ [R+h(θ] cos θ

c cos θ

F (y)dy −
∫ θ

0

c sin θ̃F (c cos θ̃)dθ̃

]
. (3.9)

4. Functional analysis of the Bernoulli relation

Although the velocity field of the exact solution assumes a relatively simplified
form (whereby two of the components are zero), the corresponding Bernoulli relation
(3.9) is highly convoluted and must be subjected to a careful analysis: this is the
aim of this section. In particular, relation (3.9) prescribes the surface pressure in
terms of the azimuthal velocity w and the free-surface h. We will recast (3.9) in
a form which is amenable to an application of the implicit function theorem [14],
thereby establishing that the distortion of the free surface, implicitly determined
by way of (3.9), is uniquely prescribed by a given pressure distribution P (θ). This
result is achieved through performing a nondimensionalisation procedure that allows
a meaningful comparison of the involved physical quantities, and which will lead to
an expression which characterises the relation between variations of the pressure at
the free surface and variations of the shape of the free surface. This relation will
then be subjected to a theoretical analysis, without resorting to approximation, by
means of the implicit function theorem.

Remark 4.1. A special solution can be obtained which determines the pressure re-
quired to maintain the free surface undisturbed, that is, a surface shadowing the
curvature of the Earth away from the Equator. For this purpose we set h ≡ 0 in
(3.9) and obtain the pressure necessary to maintain the unperturbed free surface as

P0(θ) = A− gbR +
gaR2

2
+Ω

[∫ R cos θ

c cos θ

F (y)dy −
∫ θ

0

c sin θ̃ F (c cos θ̃)dθ̃

]
. (4.1)

Consequently, if the pressure at the Equator (described by θ = 0) equals the atmo-
spheric pressure Patm, we obtain the expression

Patm = A− gbR +
gaR2

2
+Ω

∫ R

c

F (y)dy. (4.2)
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The identity (4.2) provides a characterisation of the atmospheric pressure, and it
is this quantity that we divide (3.9) by in order to nondimensionalise it, leading to:

α−β[1 + h(θ)] + γ[1 + h(θ)]2

(4.3)

+
Ω

Patm

[∫ [1+h(θ)]R cos θ

c cos θ

F (y)dy −
∫ θ

0

c sin θ̃ F (c cos θ̃)dθ̃

]
−P(θ) = 0.

Here h and P are nondimensional functions, defined as

h(θ) :=
h(θ)

R
, P(θ) :=

P (θ)

R
,

and the nondimensional constants α, β and γ are

α :=
A

Patm
, β :=

gbR

Patm
, γ :=

gaR2

2Patm
.

Defining the functional

F(h,P) :=α− β[1 + h(θ)] + γ[1 + h(θ)]2

+
Ω

Patm

[∫ [1+h(θ)]R cos θ

c cos θ

F (y)dy −
∫ θ

0

c sin θ̃ F (c cos θ̃)dθ̃

]
−P(θ),

it follows that F defines a continuously differentiable map

F(h,P) : C ([0, ε])→ C ([0, ε]) ,

where C ([0, ε]) denotes the space of continuous functions f : [0, ε] → R endowed
with the (usual) supremum norm, and B denotes the open ball {f ∈ C ([0, ε]) :
||f || < 10−2}. Moreover, the identity (4.3) can be formulated as the functional
equation

F(h,P) = 0, (4.4)

from which it follows immediately that F(0,P0) = 0 where

P0(θ) := α− β + γ

+
Ω

Patm

[∫ R cos θ

c cos θ

F (y)dy −
∫ θ

0

c sin θ̃ F (c cos θ̃)dθ̃

]
is the non-dimensionalised version of relation (4.1), which represents the imposed
surface–pressure distribution required to maintain an undisturbed free–surface. In
order to employ the implicit function theorem we compute the derivative

DhF(0,P0)(h) := lim
s→0

F(sh,P0)−F(0,P0)

s
.
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A straightforward calculation shows that

DhF(0,P0)(h) =

(
−β + 2γ +

ΩR cos θ

Patm
F (R cos θ)

)
h

=
b− aR
Patm

[−gR +ΩR cos θ(2w(R, θ) +ΩR cos θ)] h,

where the last equality is obtained though using formula (3.7) and the definition of
the constants α, β, γ. From a comparison of the physical orders of magnitude, it is
clear that there exists a constant e < 0 such that

−gR +ΩR(cos θ)(2w +ΩR cos θ) ≤ e < 0.

We infer from the latter inequality that

DhF(0,P0) : C ([0, ε])→ C ([0, ε])

is a surjective linear homeomorphism, and hence the implicit function theorem may
be applied. We formulate the result as follows.

Theorem 4.2. For any sufficiently small deviation P from P0, there exists a unique
h ∈ C([0, ε]) such that

α−β[1 + h(θ)] + γ[1 + h(θ)]2

+
Ω

Patm

[∫ [1+h(θ)]R cos θ

c cos θ

F (y)dy −
∫ θ

0

c(sin θ̃)F (c cos θ̃)dθ̃

]
−P(θ) = 0.

As a by-product of the identities derived above, we can establish that the rela-
tionship between P and h prescribed by (3.9) exhibits the expected monotonicity
properties. We first observe that the smoothness properties established for P can
be transferred to h via an iterative bootstrapping procedure, cf. [2]. Thus, we can
differentiate with respect to θ in relation (4.3) and obtain that

P′ =
[
− β+2γ(1 + h) +

ΩR cos θ

Patm
F ((1 + h)R cos θ)

]
h′

− ΩR sin θ

Patm
(1 + h)F ((1 + h)R cos θ)

=
ρ(R + h)

Patm

{[
− gR +ΩR cos θ(2w(R + h, θ) +Ω(R + h) cos θ)

]
h′

−Ω(R + h) sin θ(2w(R + h, θ) +Ω(R + h) cos θ)
}

The latter relation allows us to infer that

P′(θ) < 0 if h′(θ) ≥ 0 for some θ ∈ (0, ε), (4.5)
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and

h′(θ) < 0 if P′(θ) ≥ 0 for some θ ∈ (0, ε). (4.6)

The mathematical relations (4.5) and (4.6) establish that P and h possess mono-
tonicity properties which concur with physical expectations.

5. Local stability of perturbations along the azimuthal flow

We conclude the presentation of the exact solution (3.1) and (3.7) by subjecting
it to a short-wavelength stability analysis. The short-wavelength stability approach,
developed independently by Bayly [1], Friedlander and Vishik [16] and Lifschitz
and Hameiri [36], applies for general three-dimensional flows, and it examines the
time growth of the amplitude of perturbations to basic flows having a velocity field
u which obeys the Euler equations (2.1) and the equation of mass conservation
(2.2). More precisely, the basic flow u is called stable with respect to the short-
wavelength perturbation (5.3)-(5.4) if, for any initial data, the amplitude A is
uniformly bounded in time. Recent studies concerning the short-wavelength sta-
bility/instability of geophysical water flows were undertaken in [6, 17, 22, 23, 27, 28,
30,31]; cf. the survey paper [29].

Let U = Uer+V eθ+Wez be a perturbation of the azimuthal flow whose velocity
field is u = uer + veθ + wez with u, v, w given by (3.1) and (3.7). This amounts
to seeking U, V,W and a pressure function P such that U + u, P + p satisfy (2.1),
(2.2). Ignoring quadratic terms, we see that U and P satisfy

∂U

∂t
+ (U · ∇)u + (u · ∇)U + 2(Ω×U) = −∇P

ρ
, (5.1)

∇ · (ρU) = 0, (5.2)

subjected to an initial disturbance U
∣∣
t=0

= U0. We employ the (WKB) Ansatz,
that is, we seek U and P solutions of (5.1) and (5.2) having the specific form

U(t, r, θ, z) = A(t, r, θ, z)e
i
ε
f(t,r,θ,z) +O(ε) (5.3)

P (t, r, θ, z) = εB(t, r, θ, z)e
i
ε
f(t,r,θ,z) +O(ε2), (5.4)

where
A(t, r, θ, z) = A1(t, r, θ, z)er + A2(t, r, θ, z)eθ + A3(t, r, θ, z)eϕ,

and f = f(t, r, θ, z) is a scalar function and ε plays the role of a small parameter.

Remark 5.1. In [24] it is proven that the remainder terms in (5.3) and (5.4) are well
behaved, meaning that their L2 norm is uniformly bounded (with respect to ε) on
any time interval [0, T ], (with T > 0), for given initial data. Hence the stability of
the basic flow is determined by the boundedness of the amplitude A in (5.3), cf. [36].
The time growth of the amplitude A will be analysed in the remaining part of the
paper.
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We note that, given the particular formulation of the flow field uer + veθ + wez
prescribed by (3.1), we can compute

(u · ∇)U =

(
uUr +

v

r
Uθ + wUz −

vV

r

)
er +

(
uVr +

v

r
Vθ + wVz +

vU

r

)
eθ

(5.5)

+
(
uWr +

v

r
Wθ + wWz

)
ez = w (Uzer + Vzeθ +Wzez)

and

(U · ∇)u =

(
Uur +

V

r
uθ +Wuz −

V v

r

)
er +

(
Uvr +

V

r
vθ +Wvz +

V u

r

)
eθ

(5.6)

+

(
Uwr +

V

r
wθ +Wwz

)
ez =

(
Uwr +

V

r
wθ

)
ez.

Inserting the WKB Ansatz (5.3)-(5.4) in (5.1), and taking into account (5.5) and
(5.6), we obtain, after suitable identifications of the coefficients,

A1,t + wA1,z − 2ΩA3 cos θ = −iB
ρ
fr

A2,t + wA2,z + 2ΩA3 sin θ = −iB
ρ
fθ
r

A3,t + wA3,z + A1wr + A2

r
wθ + 2Ω(A1 cos θ − A2 sin θ) = −iB

ρ
fz

(5.7)

and

A1(ft + wfz) = A2(ft + wfz) = A3(ft + wfz) = 0. (5.8)

Since the vector A is not zero, we have from (5.8) that

ft + wfz = 0. (5.9)

To solve for f in (5.9) we notice that the position vector of a particle is given by

r(t)er + z(t)ez.

Therefore,

u = uer + veθ + wez =
d

dt
(r(t)er + z(t)ez) = ṙer + rėr + żez

= ṙer + rθ̇eθ + żez.

Thus, the equations of a streamline for the azimuthal flow (3.1) and passing through
(r0, θ0, z0) are

dr

dt
= 0,

dθ

dt
= 0,

dz

dt
= w,

r(0) = r0, θ(0) = θ0, z(0) = z0,
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whose general solution is

r(t) ≡ r0, θ(t) ≡ θ0, z(t) =

∫ t

0

w(r(s), θ(s))ds+ z0. (5.10)

Moreover, the equation (5.9) satisfied by the phase f has the general solution

f = F

(
z −

∫ t

0

w(r(s), θ(s))ds

)
. (5.11)

We see now immediately from (5.10)-(5.11) that f is constant along the streamlines
of the azimuthal flow (3.1). The latter renders the system (5.7) satisfied by the
amplitude A of the perturbation U to

A1,t + wA1,z − 2ΩA3 cos θ = 0,

A2,t + wA2,z + 2ΩA3 sin θ = 0,

A3,t + wA3,z + A1wr + A2

r
wθ + 2Ω(A1 cos θ − A2 sin θ) = 0.

Hence, along the streamlines (5.10) of the azimuthal flow (3.1), the amplitude A
satisfies
d
dt
A1(t, r(t), θ(t), z(t)) = 2ΩA3 cos θ0,

d
dt
A2(t, r(t), θ(t), z(t)) = −2ΩA3 sin θ0,

d
dt
A3(t, r(t), θ(t), z(t)) = −A1wr(r0, θ0)− A2

r0
wθ(r0, θ0)− 2Ω(A1 cos θ0 − A2 sin θ0),

and noticing that

d

dt
A1(t, r(t), θ(t), z(t)) = −(cot θ0)

d

dt
A2(t, r(t), θ(t), z(t))

we can rewrite the above system as(
d
dt
A2(t, r(t), θ(t), z(t))

d
dt
A3(t, r(t), θ(t), z(t))

)
=M

(
A2(t, r(t), θ(t), z(t))
A3(t, r(t), θ(t), z(t))

)
+

(
0
d

)
,

where d is a constant depending on the initial data, and

M =


0 −2Ω sin θ0

−wθ(r0,θ0)
r0

+ wr(r0, θ0) cot θ0 + 2Ω
sin θ0

0

 .

While the preceding considerations pertain to a flow with general azimuthal ve-
locity given by (3.7), at this point, in order to analyse the eigenvalues of M, we
particularise to the flow

w(r, θ) = −Ωr cos θ

2
+

cr cos θ

2(b− ar)
,
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for some constant c ∈ R, for which we can compute

−wθ(r0, θ0)
r0

=
sin θ0

2

(
−Ω +

c

b− ar0

)
,

and

wr(r0, θ0) cot θ0 =
cos2 θ0
2 sin θ0

(
−Ω +

bc

(b− ar0)2

)
.

It follows that the eigenvalues λ of M satisfy the equation

λ2 + 3Ω2 +
cΩ(b− ar0 sin2 θ0)

(b− ar0)2
= 0. (5.12)

Since b − ar0 sin2 θ0 > b − ar0, the roots of (5.12) are purely imaginary in the case

c > −3 (b−ar0)2
b−ar0 sin2 θ0

. This leads us to the following result:

Theorem 5.2. The azimuthal flow with

u = v = 0, w(r, θ) =
−Ωr cos θ

2
+

cr cos θ

2(b− ar)
is linearly stable under short-wavelength perturbations for all values c such that

c > −3Ω
(b− ar0)2

b− ar0 sin2 θ0
.

It is (linearly) unstable if

c < −3Ω
(b− ar0)2

b− ar0 sin2 θ0
,

where r0 and θ0 represent the initial values of the streamlines of the azimuthal flow.
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