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Integrated plasmonic circuitry on a vertical-cavity
surface-emitting semiconductor laser platform
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Daniel O’Connor1,w, Gregory A. Wurtz1,w, John Justice2, Brian Corbett2 & Anatoly V. Zayats1

Integrated plasmonic sources and detectors are imperative in the practical development of

plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing,

as well as transducers for high-density optical data storage. Here we show that vertical-cavity

surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source

or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To

this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding,

frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling

efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been

optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform

validated here is a viable solution for practical realizations of plasmonic functionalities for

various applications, such as those requiring sub-wavelength field confinement, refractive

index sensitivity or optical near-field transduction with electrically driven sources, thus

enabling the realization of on-chip optical communication and lab-on-a-chip devices.
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S
urface plasmon polaritons (SPPs) at metal-dielectric
interfaces offer a means of constructing compact nano-
photonic components due to their confined electromagnetic

fields1. Consequently, plasmonic technology has a wide range
of potential applications, in areas as diverse as optical data
processing and storage, information transmission and bio-,
chemical and environmental sensing. In order to develop
functional plasmonic circuitry, a set of components is required
for the active control of signals, including SPP sources,
detectors, switches and modulators that, when combined with
passive waveguides, allow for the full manipulation of
optical signals on the nanoscale2. Due to their compatibility
with Si and other dielectric photonic circuitry, passive plasmonic
components, together with various switches and modulators,
have recently experienced rapid progress. However, despite
their fundamental importance in plasmonic circuitry,
electrically driven plasmonic sources and detectors have not
been developed to the same extent, which prevents the realization
of an integrated, on-chip plasmonic platform.

In this paper, we demonstrate a vertical-cavity surface-emitting
laser (VCSEL) based platform for the on-chip generation,
manipulation and detection of plasmonic signals. VCSELs
hold considerable promise in this regard, as they are compact,
inexpensive, power-efficient and reliable3. In addition, they have
previously been used to illustrate SPP excitation4–6. However, in
order to successfully establish a robust platform for a wide range
of applications, a variety of on-chip components are required that
permit plasmonic signals to be effectively controlled. In this
context, we demonstrate an on-a-VCSEL-chip integrated SPP
platform. The proposed circuitry utilizes laser diodes that are
based on 850 nm wavelength VCSELs directly coupled to a
plasmonic platform that incorporates excitation and waveguiding
structures, including directional couplers, SPP splitters and
Mach–Zehnder interferometers. To further advance this
integrated plasmonic platform, we also demonstrate SPP
frequency conversion in dielectric loaded waveguides and
VCSEL-based plasmonic signal detection. The plasmonic
circuitry developed here facilitates high-integration of
nanophotonic applications, thus presenting immediate
opportunities for sensing, data storage and signal transmission.

Results
Plasmonic VCSEL characteristics. The plasmonic VCSELs
(Fig. 1a,b) were fabricated using a standard process (see Methods
for details), and exhibited threshold currents of B1 mA, similar to
the reference VCSELs (without plasmonic layers). The reference
VCSELs’ power was on the order of milliwatts, with emission in a
fundamental transverse mode that possessed an experimentally
verified Gaussian profile, thus confirming the suitability of these
lasers for direct SPP excitation via one-dimensional nanoslit
gratings, which are widely employed for SPP excitation with
free-space light. The total power emitted into the far field from
the plasmonic VCSELs is B1/200 of the power emitted from the
reference VCSELs, due to the presence of the metallic layers
(Supplementary Fig. 1).

In order to demonstrate plasmonic functionality, the VCSELs
were integrated with an additional Au layer (200 nm thickness) to
provide an SPP supporting surface into which micrometres-wide,
multimode plasmonic stripe waveguides were patterned. A 20 nm
thin layer of chromium was used as both an adhesion layer and to
suppress SPP modes on the lower interface of the Au film.
Moreover, the relatively large thickness of the Au layer, together
with the Cr film, prevents the leakage of SPP modes at the Au–air
interface back into the VCSEL cavity.

To enable on-chip SPP excitation, nanoslit gratings were ion
milled through the top metal layers, directly above the VCSEL

oxide aperture (Fig. 1b), with the long axis orthogonal to the
direction of the plasmonic waveguide. Upon applying a forward
bias, the resulting optical emission is phase matched to SPPs via
scattering from the gratings, thereby launching SPP modes that
propagate at the Au–air interface. The SPP intensity depends on
the coupling efficiency of the grating and increases linearly with
the intensity of the VCSEL emission. In addition, the maximum
intensity emitted by each VCSEL remains well below the damage
threshold for the plasmonic layers.

The measured far-field spectra of both reference and plasmonic
VCSELs display a dominant single emission line (wavelength
845 nm) associated with single transverse and longitudinal mode
behaviour at drive currents of up to 3 mA (Supplementary Fig. 2).
A secondary emission line appears at currents 44 mA, with a
20 dB difference in power compared with the primary emission
wavelength. This behaviour indicates that the devices possess a
single spatial mode profile at low currents with a second spatial
mode emerging at higher currents. As the active region is
protected, laser instability was not observed, and the spectral
properties of both the plasmonic and reference VCSELs
remain the same at similar threshold currents. Thus, the spectral
and modal characteristics of the VCSELs, together with the
threshold currents, are unaffected by the integration of plasmonic
layers with gratings.

SPP excitation and waveguiding. The integrated SPP waveguides
were numerically simulated to determine the profiles of guided
plasmonic modes. Figure 1c,d shows the SPP power flow
for eigenmode calculations of two different stripe widths,
highlighting the fact that most of the mode energy resides on the
flat interface. A large stripe height, h, also ensures the interaction
between the waveguided modes and the lower Au surface is
minimized. While some field localization is observed at the
corners, it does not have a significant role in determining the
mode profile. Furthermore, rounding the edges of the stripes in
the numerical simulation, to more closely resemble the fabricated
structures, reduces this effect.

SPP excitation and waveguiding on the plasmonic VCSELs is
experimentally demonstrated (Fig. 2) using scanning near-field
optical microscopy7,8. The VCSEL emission incident on the
gratings excites SPPs that are visible in the near-field images as
high intensity beams that decay exponentially with distance from
the emission area. These features are absent from the far-field
images obtained when the scanning near-field optical microscope
probe was retracted from the surface, hence confirming the
localization of optical energy in the near field. The propagation of
SPPs away from the emission area and onto the stripe is
reasonably efficient as the stripe width, w, is large, yielding a
complex intensity profile due to the reflection of SPPs at the
boundaries of the metal film (Fig. 2b). Thus, the gold slab
adjacent to the emission area forms a multimode stripe plasmonic
waveguide, with the number of supported modes depending on
its width. Mode formation in these waveguides may be considered
in terms of SPP reflection at the stripe boundaries, together with
edge effects9–11.

Further control over the SPP mode profile and propagation can
be obtained by coupling the plasmonic signal to a single-mode
waveguide. Using focused ion beam milling, 1 mm wide stripes
were created on the metal layer, which only support a single mode
at the SPP wavelength of B835 nm, corresponding to the 850 nm
free-space wavelength of the VCSEL emission (Fig. 2c,d).
As shown in the near-field image of Fig. 2d, the tapering of a
10 mm wide stripe resulted in the effective filtering of the
plasmonic signal as it propagated onto the single-mode
waveguide, after which the mode maintained a constant lateral
profile. A small width also permits a high integration density
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for waveguiding components. The numerically calculated
effective index nSPP of the fundamental plasmonic modes
supported by both 10 and 1 mm wide waveguides (where the
SPP wavevector is directed parallel to the waveguide’s long axis)
approximately equals the index of SPPs on an infinite, smooth
film, nSPP � 1:02þ 0:001ið Þ as determined for a free-space
wavelength of 850 nm.

By employing single-mode waveguides, more complex
structures may also be implemented on plasmonic VCSELs, such

as a Mach–Zehnder interferometer (MZI) (Fig. 3). In this case,
the plasmonic signal splits into the two separate waveguide
branches that extend for a few micrometres before subsequently
merging, allowing the SPP waves to recombine (Fig. 3d).
The output SPP intensity depends upon the phase
difference between the signals in the two MZI branches, which
may be either actively modulated (for example thermally,
electrically or all-optically) or passively, when specific analytes
are adsorbed onto the exposed metal surface2. As a result, the

a b c d

Figure 2 | SPP waveguiding on plasmonic VCSELs. (a,c) Topography and (b,d), near-field intensity distributions for (a,b) multimode waveguide

(w¼ 10mm, h¼ 100 nm) and (c,d) single-mode waveguide (w¼ 1mm, h¼ 100 nm). Each near-field image is composed of two scans of adjacent regions,

allowing a large area to be mapped. Scale bar, 8mm (a,b); Scale bar, 5.4mm (c,d).
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Figure 1 | Plasmonic VCSEL. (a) Scanning electron microscope image of a plasmonic VCSEL and a schematic of a cross-section across the stripe

waveguide with width w and height h. kSPP is the SPP wavevector, directed parallel to the long axis of the waveguide. Scale bar, 20mm. (b) Cross-section of

a plasmonic VCSEL based on a diode emitting at a wavelength of 850 nm, with an additional gold layer that supports SPP modes. The emission area, and

hence SPP excitation region, is defined by the underlying position of the oxide aperture. (c,d) The SPP mode intensity distributions overlaid on the

waveguide schematics, obtained from the eigenmode simulations for the Au stripe waveguides with (c) w¼ 1mm and (d) w¼ 10mm, where h¼ 100 nm in

both cases. a.u., arbitrary units.
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MZI geometry can be used for both modulation and sensing in
SPP circuitry.

Due to the symmetric in-plane scattering cross-section of
the nanoslits, normal incidence illumination from the VCSEL on
the one-dimensional grating structures launches two symmetric
waveguided SPP modes propagating in opposing directions,
perpendicular to the slits in the grating (Fig. 2b). Such
bidirectional launching of SPPs is advantageous for particular
applications, nonetheless more precise control over the direction
of excitation is often required. In the case of a single waveguide
VCSEL (Fig. 1a), SPPs that are not propagating towards the
waveguide essentially constitute a loss channel. Hence, to excite a
directional SPP signal, a slit-groove structure was employed
(Fig. 4). Asymmetric SPP excitation occurs in this structure due
to the reflection of SPPs by the grooves, which may be understood
in terms of coupling to modes within the groove. Considering a
single slit with an adjacent groove, SPPs launched by the slit may
directly transmit across the groove, or be coupled down into the
groove. These slot modes subsequently re-scatter at the groove
exit, also launching single interface SPPs in the process. As a
result of the phase difference acquired through reflections and
propagation, SPPs excited via the groove may destructively
interfere with SPPs directly transmitted across the groove,
allowing the structure to function as a mirror for selected
SPP frequencies12. Furthermore, periodically repeating this
unit cell increases the total power coupled to SPP modes. In
effect, a groove SPP-reflection grating was integrated with a slit
SPP-excitation grating, ensuring that the coupler dimensions are
minimized. Furthermore, a gradual decrease in groove depth
across the structure effectively decreases the SPP reflectivity and
reduces the undesired reflection and scattering losses experienced
by modes already travelling in the desired direction. To determine
the optimal geometrical parameters, a Monte Carlo optimization
process was employed.

Using optimized geometrical parameters, numerical
calculations show that such gratings allow for up to 90% of the
total SPP power to propagate in a unique direction, towards the
waveguide (Fig. 4b). Experimentally, this value reaches almost
70%, as measured from the near-field image (Fig. 4d,e); the
difference between the experimentally measured and simulated
directionalities may be partially attributed to a deviation from the
designed geometrical parameters.

The laser coupling efficiency to the SPP mode may be
estimated from the power exiting the slit apertures of the grating
divided by the power in the SPP mode at the distance 8mm to the
right of the grating, taking into account SPP propagation loss.
Using this definition, the grating described in Fig. 4a has a
conversion efficiency of almost 50%, as determined from the
simulations. A Cr adhesion layer prevents SPP excitation on the
Au–oxide interface and, while reducing the optical transmission
(B25% reduction in transmission), does not impact upon the
directionality or the conversion efficiency (this Cr layer is
included in the simulation in Fig. 4b). Consequently, on-chip,
asymmetric excitation of SPP modes has been successfully
demonstrated. Alternatively, plasmonic crystal structures may
also be implemented on the VCSEL platform to further control
the excitation, direction and shape of SPP beams13,14.

SPP frequency conversion. Frequency conversion provides a
route to novel wavelength sources, in addition to being an
important process for many applications related to all-optical
networks and sensing15,16. It has recently been shown that the
SPP-excited lasing in a plasmonic system has a much higher
efficiency than in the case of free-space light excitation17. In this
context, SPP frequency conversion has been achieved on the
VCSEL platform via a dielectric-loaded SPP waveguide approach
by including a layer of emitting quantum dots on top of the

d

a b c

Figure 3 | Mach–Zehnder interferometer integrated on a VCSEL. (a) Scanning electron microscope image of an MZI. (b,c) Topography and near-field

intensity distribution of the coupling and splitting branches of the MZI. (d) Near-field intensity distribution in the MZI showing splitting and recombination

of the SPP modes. The near-field optical microscope scanning range is smaller than the MZI length, therefore; several images were measured in a sequence

and subsequently pasted together. Scale bar, 10mm in (a); Scale bar, 11mm in (b); Scale bar, 11 mm in (c); Scale bar, 1.6mm in (d).
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stripe SPP waveguide. Using spin-coating, a 200 nm thin film of
PMMA, doped with 5 wt% concentration of PbS quantum dots,
was deposited on the chip containing a plasmonic VCSEL. For
this particular demonstration, the quantum dots were specifically
chosen to emit at the telecom-relevant wavelength range around
1,500 nm. The SPP waveguide modes generated by the VCSEL
emission efficiently excite the quantum dots that reside on the
waveguide, which subsequently decay directly into plasmonic
modes, ensuring the excitation of an SPP waveguided mode with
a wavelength determined by the quantum dot emission spectrum.

Frequency conversion was experimentally verified by collecting
the light that originated from scattering of luminescence-driven
SPPs at the end of a gold stripe, after the SPP signal had traversed
the waveguide and interacted with the emitters. The observed
broad spectrum is consistent with the expected quantum dot
emission (Fig. 5a). Moreover, the maximum detected signal
increases linearly with applied current, once the lasing
threshold current has been exceeded, further confirming the
SPP–SPP frequency conversion mechanism (Fig. 5b). Hence,
the experiment illustrates on-chip manipulation of the SPP
wavelength, a key process for plasmonic technology.

SPP detection. SPP detectors are one of the basic components
required to process plasmonic signals, with electrical detection
being particularly advantageous for on-chip circuitry. Typically
this entails the generation of electron-hole pairs directly by SPPs,
or by out-coupled photons, which subsequently gives rise to a

photocurrent18–21. VCSELs, as p-n junction diodes, may function
as photodetectors when operated in reverse bias, thereby serving
dual roles in photonic components. Therefore, VCSELs also have
the capability of detecting SPPs, once these modes have been
coupled into the diode. While the thin active layer of VCSELs
only partially absorbs the incident radiation, the probability of
photocurrent generation is increased due to the recycling of light
within the cavity22,23.

In order to demonstrate SPP detection, two gratings were
fabricated on the plasmonic VCSEL: a slit grating, etched over the
VCSEL emission area, and a groove grating, positioned on
the adjacent waveguide (Fig. 6b). Under external illumination, the
groove grating serves to excite an SPP mode that propagates
towards the slit grating where it couples into the VCSEL cavity.
It is important that the SPP excitation grating on the waveguide
be composed of grooves to prevent direct transmission of
light into the cavity below the Au layer. In order to provide
spatial selectivity, a diffraction-limited laser beam spot from a
conventional laser diode emitting at a wavelength of 850 nm was
raster scanned across the surface of the waveguide of a plasmonic
VCSEL that was operated in reverse bias. The resulting
photocurrent from the VCSEL was then mapped as a function
of the illumination spot position.

For the light polarized perpendicularly to the grooves,
Fig. 6c shows that local illumination of the groove grating,
away from the VCSEL emission area, results in photocurrent
generation in the VCSEL. This is related to SPP mode excitation
and waveguiding towards the slit grating located on top of the
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Figure 4 | Directional SPP excitation on a VCSEL. (a) Schematic of a slit-groove coupler with period d, slit width sw, groove width gw, separation s and

groove depth gd. (b) Simulated intensity distribution of the SPP modes excited under normal illumination from below for the structure with parameters

d¼ 800 nm, sw¼ 100 nm, gw¼ 50 nm and s¼ 150 nm. A linear decrease of groove depth is introduced from left to right, decreasing the SPP reflectivity.

The illuminating light is polarized perpendicularly to the grooves. (c) Scanning electron microscope image of the slit-groove coupler milled into a plasmonic

VCSEL. (d) Near-field intensity distribution measured above the coupler and the SPP waveguide with the cross-sections shown in e. (e) The

cross-sections of the SPP intensity profile to the right (solid blue line) and left (dashed blue line) from the coupler, measured from the scanning

near-field optical microscopy image in d, and the directionality parameter (red line). Directionality is defined as the ratio of the SPP power flowing to the

right divided by the total SPP power. Scale bars, 2.5mm in (c,d). a.u., arbitrary units.
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emission area, where the plasmonic mode is scattered into the
VCSEL cavity, creating a photocurrent. Moreover, when the slit
grating is illuminated, direct transmission into the cavity

occurred, producing a spot comparable in size to the VCSEL
oxide aperture. In contrast, no photocurrent is detected under
illumination with light polarized along the grooves, which cannot
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excite SPP modes (Fig. 6e). Also, the photocurrent map for the
device with only a slit grating milled into the VCSEL’s plasmonic
layer displays only one hotspot, as expected, since the
conventional illumination of the waveguide away from the slit
grating is unable to efficiently excite SPPs (Fig. 6d). As the signal
must couple to the VCSEL cavity in order to be detected, the
proposed approach allows for high wavelength selectivity.
Additionally, the responsivity of the on-chip plasmonic detector
may be controlled by altering the reverse bias.

Discussion
We have successfully developed a plasmonic VCSEL platform for
on-chip nanophotonic circuitry, supporting SPP waveguiding,
manipulation, frequency conversion and detection. The
design was fabricated by effectively adding a few technologically
straightforward steps to a typical VCSEL manufacturing
process, making this platform completely compatible with current
industrial fabrication methods24. Furthermore, the plasmonic
VCSELs we have designed may be easily expanded upon—for
instance dielectric-loaded2,25 and slot waveguides26 can be
conveniently incorporated with gain media to offset SPP
attentuation27. The modulation of SPP signals is also naturally
possible with VCSELs by directly controlling the injection
current, offering speeds in the gigahertz range3.

With regards to possible applications, plasmonic VCSELs
provide an immediate opportunity for realizing on-chip sensing.
For instance, two plasmonic VCSELs connected together with an
MZI metal waveguide may be envisioned as a simple sensor. In
this case, a first diode generates SPPs, with a second diode
detecting the plasmonic signal following propagation on the
interferometric waveguide. The presence of analyte molecules
may thus be inferred from variations in the output VCSEL
photocurrent due to changes in the SPP path length. This system
effectively constitutes a fully integrated, on-chip circuit, and its
fabrication is well within current industrial standards. Other
compatible applications include surface-enhanced Raman spec-
troscopy28 and heat-assisted magnetic recording29–32, which may
take advantage of the significant local fields sustained by
plasmonic excitations, and thus may prove to be major
technologies for the proposed VCSEL platform.

Methods
VCSEL manufacture. The diode structure was composed of p- and n-doped
distributed Bragg reflectors, containing 35.5 and 22 pairs of graded index
Al0.12Ga0.88As–Al0.9Ga0.1As, respectively. An Al0.98Ga0.02As layer replaced an
Al0.9Ga0.1As layer in the upper half of the structure, next to the p-type reflectors,
for selective oxidation to form an aperture. Sandwiched between the distributed
Bragg reflectors was the active region, made up of three 6 nm thick GaAs quantum
wells. Mesas of 46mm in diameter, together with an extended platform that formed
the base of the plasmonic waveguide, were lithographically patterned and dry
etched. Selective oxidation resulted in 4 mm apertures, thereby determining the area
that contributed to light generation, with the platform entirely oxidized such as to
prevent any current flow in this region. Once the SiO2 layer was opened, the
p- and n-type metal contacts (Ti-Pt-Au and Au-Ge-Ni, respectively) were
deposited. A lift-off process was then employed to form the Au-Cr-SiO2 trilayer.
Chromium served as the adhesion layer and also inhibited any substrate SPP
propagation that would otherwise occur at an Au–SiO2 interface. Moreover,
the thickness of the SiO2 layer was approximately equal to half of the wavelength in
the material, ensuring that an electric field antinode occurred at the boundary with
the Cr film.

Scanning near-field optical microscopy. A custom-built set-up with tapping
mode distance regulation was employed using a probe based on a pulled, metallized
optical fibre with a nanoaperture. The probe served to scatter near fields with the
resulting light also collected by the same probe. The output of this fibre was
coupled to a photomultiplier tube, and thus the spatially resolved near-field signal
was recorded as the probe was scanned across the sample’s surface. This produced
a topographic map together with the optical field distribution, allowing correlation
between the two. Further details are available in refs 7,8.

Numerical modelling. A finite element method (COMSOL Multiphysics 4.3a) was
employed to model the stripe waveguides and SPP coupling via the slit-groove
grating.

Data availability. All data supporting this research are available within the article
and its Supplementary Information File.
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