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Abstract 6 

The energy conversion performance of oscillating water column (OWC) wave energy converters at a 7 

specific site is often studied by means of analytical models. Based on linear theory, these models lose 8 

accuracy when viscous losses and turbulence become significant—more generally, when nonlinear 9 

effects play a role, as they often do in real operating conditions. In this work we apply a novel 10 

methodology based on a combination of numerical modelling and laboratory tests to investigate OWC 11 

performance without these shortcomings. First, high-resolution wave resource characterisation 12 

matrices are obtained by means of numerical modelling. Second, the resource matrices are combined 13 

with the OWC efficiency matrices obtained through laboratory tests and, importantly, including the 14 

effects of turbine-induced damping and air compressibility—usually disregarded in small-scale 15 

laboratory tests, but relevant for full-size (prototype) devices. The combined matrices thus obtained 16 

express, through a wave height-period distribution, the energy captured by the OWC for different 17 

values of the damping coefficient. On this basis, developers can select the most appropriate value of 18 

turbine-induced damping for a given site, based on performance values. The implementation of the 19 

novel methodology is illustrated through a case study in Galicia (NW Spain), in which three 20 

deployment sites are considered. We find that the turbine-induced damping must be matched to the 21 

wave climate of the site for an OWC device to achieve high performance; indeed, changes in damping 22 

cause variations in the total annual energy captured of up to 11%, which increase to 25% for specific 23 

sea states. 24 
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1. Introduction 29 

Nowadays, renewable energies have become a pillar for energy sustainability, and constitute an 30 

essential element in reducing greenhouse gas emissions (Gacitua et al., 2018). In an effort to enhance 31 

the role of renewables in the energy mix, the exploitation of novel renewable energy sources, such as 32 

marine renewable energies, has focused the attention of the scientific community over the last 33 

decades. In this context, wave energy is particularly promising thanks to its high resource availability 34 

(Weiss et al., 2018), low impact (Atan et al., 2019; Özkan-Haller et al., 2017), good predictability 35 

(Carballo and Iglesias, 2012; Veigas et al., 2015) and multiple synergies with other marine renewables 36 

(Astariz, Perez-Collazo et al., 2015; Astariz, Abanades et al., 2015). The exploitation of the wave 37 

resource, however, is challenging given the large variability in waves and, in particular, the large 38 

extreme-average ratios. As a result, the development of efficient, flexible, and reliable wave energy 39 

converter technologies is very much the focus of intense research at the moment. 40 

 Among the variety of wave energy converters under development (e.g., Di Fresco and Traverso, 41 

2014; Oliveira et al., 2016; Rodríguez et al., 2018), oscillating water column (OWC) devices (Falcão 42 

and Henriques, 2016) stand out for their simplicity. The only mechanical element (an air turbine) is 43 

located at the top of an empty chamber, therefore not in direct contact with salt water. The chamber is 44 

connected to the sea through an underwater opening, so it is partially filled with water. Wave action 45 

causes the oscillation of the water column inside the chamber and, consequently, the alternating 46 

compression and decompression of the air trapped above the free surface. The pressure difference 47 

between the interior of the chamber and the atmosphere generates an air flow which drives the 48 

turbine. A specific turbine design is required, capable of maintaining a unidirectional rotation under 49 

the alternating flow. Axial-flow reaction (also known as Wells) turbines and self-rectifying impulse 50 

turbines are the most common alternatives (Falcão et al., 2018).  51 

 The performance of both elements, turbine and chamber, is closely related. In fact, among the 52 

parameters that most influence the performance of an OWC wave energy converter, the damping 53 

exerted by the turbine on the oscillations of the water column was found to be one of the most 54 

important parameters, if not the most important (López, Castro et al., 2015; López, Pereiras et al., 55 

2015). Therefore, it is essential that the influence of the turbine be taken into account from the earlier 56 

stages of the design. The fact that the turbine-induced damping affects the performance of the system 57 

implies that the efficiency of an OWC, even at a hydrodynamic level (before considering the 58 

mechanical efficiency of the turbine), cannot be defined by a single power matrix: there should be a 59 
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different power matrix for each value of the turbine-induced damping (López et al., 2016). Thus, the 60 

structural simplicity of the converter contrasts with the complexity of its operating mode.  61 

 The hydrodynamic modelling of OWC wave energy converters has been mostly carried out by 62 

means of analytical models based on linear potential flow theory  (e.g., Malara, Giovanni and Arena, 63 

2013; Rezanejad et al., 2015; Zheng et al., 2018), resorting to numerical methods for dealing with 64 

complex geometries (Brito-Melo et al., 2001; Malara, G. et al., 2017). These models are inadequate 65 

for non-small waves and non-linear effects such as viscous losses and turbulence, which are important 66 

under real operating conditions. Therefore, the performance analysis of an OWC at a site requires 67 

advanced techniques considering these effects, such as experimental modelling. Over the last few 68 

years, experimental modelling has been used in the hydrodynamic modelling of OWC converters to 69 

evaluate the performance of different geometric parameters of the chamber (Ning et al., 2016; Vyzikas 70 

et al., 2017), to analyse the efficiency of an array of OWC devices integrated into an offshore 71 

detached breakwater (Ashlin et al., 2018), to analyse the enhancement that harbour walls induce on 72 

the performance of the system (Raj et al., 2019), or to measure the wave loads on the front and rear 73 

walls of the OWC for structural design purposes (Pawitan et al., 2019; Viviano et al., 2016). 74 

 Experimental modelling is based on dimensional analysis techniques that relate the conditions in 75 

a small-scale model (typically between 1:100 and 1:10 scale) to those on a full-size prototype. Thus, 76 

to correctly emulate the real conditions in the model is of paramount importance to avoid substantial 77 

errors in model predictions. An important aspect when experimentally modelling an OWC is the 78 

spring-like effect of the air inside the chamber, which despite it being usually disregarded, is known to 79 

be significant at full-size OWC converters (Falcão and Henriques, 2014; Falcão and Henriques, 80 

2016); in fact, such effects were not taken into account in none of the aforementioned experimental 81 

works. In effect, it has been found that if air compressibility is not considered, significant errors are 82 

introduced in the assessment of the OWC efficiency, resulting in both under- and over-predictions 83 

depending on the wave conditions and the turbine-induced damping (Falcão and Henriques, 2014). 84 

 In this work, the site-specific energy conversion performance of an OWC device was evaluated 85 

following a methodology that involves an accurate assessment of the available wave energy resource 86 

at the locations of interest and the thorough computation of the efficiency of the OWC device. The 87 

latter was determined through an extensive experimental campaign in which non-linear effects—with 88 

special emphasis on the spring-like effect of air compressibility—, together with three different values 89 

of the turbine-induced damping—representative of three turbines of different characteristics—were 90 



4 
 

taken into account. Rather than testing the sea states of the locations of interest, a more general 91 

approach was followed. A comprehensive set of sea states were tested comprising all the possible 92 

combinations of wave period and wave height within the operational limits of the converter. The idea 93 

behind this approach is to fully characterise the OWC for deployment at whatever location. The 94 

performance of the OWC was measured based on: (i) the capture width ratio—the percentage of the 95 

incident wave energy that is captured by the OWC in the form of pneumatic energy per width of 96 

device—and (ii) the total energy captured in a year, which is ultimately the most important factor. The 97 

methodology was illustrated through a case study in Galicia (Spain), considering three study sites. 98 

 The paper is structured as follows. In Section 2, the foundations of the developed methodology 99 

are described. It is subdivided in three parts: (i) characterisation of the wave energy resource through 100 

numerical modelling; (ii) characterisation of the OWC performance though physical model tests; and 101 

(iii) calculation of the energy capture of the device. In Section 3 the results at the three study sites, 102 

expressed in terms of the OWC efficiency matrices and the energy captured matrices, are described. 103 

Finally, conclusions are drawn in Section 4. 104 

2. Materials and methods 105 

2.1. Wave resource characterisation 106 

The wave energy resource at each site of interest is characterised by means of the WEDGE (Wave 107 

Energy Diagram Generator) procedure (Carballo, Sánchez, Ramos, Taveira-Pinto et al., 2014; 108 

Carballo, Sánchez, Ramos and Castro, 2014). This procedure is based on the energy bin concept 109 

(Iglesias and Carballo, 2010), i.e., a trivariate interval of significant wave height (Hm0), energy period 110 

(Te) and mean wave direction (Tm) of a certain size, allowing the reconstruction of high-resolution 111 

characterisation matrices at each site of interest, so that most of the exploitable resource is accounted 112 

for. The first step of the methodology consists in characterising the offshore energy resource along the 113 

Galician coast. For this purpose, three buoys (Silleiro, Vilán Sisargas, and Bares buoys) (Figure 1) 114 

representative of the deepwater wave climate in Galicia are used, covering approx. a 15-year period of 115 

hourly seas states, which leads to an accurate description of its deepwater wave climate. At these 116 

buoys, the most energetic bins, with a resolution of 0.5 m of Hm0 and 0.5 s of Te—the largest 117 

resolution of WECs’ efficiency currently available—and 22.5º of Tm, are determined. With this in 118 

view, each sea state is assigned to its corresponding bin and its wave power per unit with (J) 119 

determined as: 120 
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where ρw is the water density; g is the gravitational acceleration; and Cg is the group velocity obtained 122 

as: 123 
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where k is the wave number and h the water depth. So, the total energy provided by each bin (Ew) is 125 

determined as: 126 

 w bE J O  , (3) 127 

where Ob is the occurrence of the sea states within each energy bin, expressed in hours. 128 

 Then, the most energetic bins contributing to 95% of the total available resource at each buoy are 129 

retained for further analysis, i.e., 720, 787, 693 bins in the case of Silleiro, Vilán-Sisargas and Bares 130 

buoys, respectively, which in turn represent virtually 100% of the exploitable resource. After that, the 131 

selected energy bins are propagated towards the sites of interest through high-resolution spectral 132 

numerical models. This is conducted by implementing three different models, each of them forced 133 

with its corresponding deepwater dataset, and validated against nearshore wave records (Carballo, 134 

Sánchez, Ramos, Taveira-Pinto et al., 2014). The model results are Hm0, Te, and Tm at each grid node 135 

along with other spectral information, and the resulting wave power computed as: 136 

 � � � �
2

0 0

,w gJ g S f C f df d
S

U T T
f

 ³ ³  , (4) 137 

where S(f,T) is the spectral energy density. The information made available combined with the 138 

computed occurrence of the propagated conditions (the occurrence is conserved through the 139 

propagation process) can be used to reconstruct site-specific high-resolution characterisation matrices. 140 

As a result, the efficiency matrices of OWC converters can be combined with the resulting resource 141 

information to determine any performance parameter of specific OWC-site combinations. 142 

  143 
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 144 

Figure 1. Locations of the three study sites in Galicia (NW Spain). 145 

2.1.1. Selection of study sites  146 

In order to illustrate the methodology proposed, three sites in the Galician nearshore of interest for 147 

installing an OWC converter were selected (NW Spain). The location of the three selected sites, 148 

Cariño (1), Corme (2) and Panxón (3), is presented in Figure 1 and their UTM coordinates and depth 149 

are included in Table 1. 150 
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Table 1. Easting (X) and northing (Y) coordinates (UTM29N/ETRS89) and water depth (h) of 151 
the three study sites. 152 

Study site X Y h 
Cariño (1) 591770 m 4843092 m 12.7 m 
Corme (2) 502782 m 4789545 m 12.0 m 
Panxón (3) 513645 m 4665291 m 10.1 m 

 The three sites correspond to small to medium ports that are suitable for the installation of a 153 

breakwater-integrated OWC thanks to their characteristics—mainly, bathymetry and wave exposure. 154 

Furthermore, in an attempt to represent different wave energy distributions, the study sites cover 155 

different geographic areas: site 1, the North coast of Galicia; site 2, the so-called Death Coast (Costa 156 

da Morte), extending from Cape Finisterre to Cape San Adrián (Figure 1); and site 3, the Southwest 157 

coast or Rías Baixas. 158 
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 159 

Figure 2. Wave resource characterisation matrices in an average year for the three selected study sites. 160 
The colour scale represents the total energy per metre of wave front (Ew) provided by each energy bin; 161 
the numbers indicate the occurrence of the sea states within each energy bin, expressed in hours; and 162 
the isolines provide the wave power. 163 

 The wave resource characterisation matrices of these three study sites are presented in Figure 2. 164 

The matrices were discretised in bins of 0.5 s (∆Te) × 0.5 m (∆Hm0). The three locations present a 165 

moderate wave climate, with values of the total energy per metre of wave front in an average year of 166 

27.14, 27.06 and 21.49 MWhm−1, for Cariño (1), Corme (2) and Panxón (3), respectively. Despite 167 

these rather similar average values, the wave resource distribution across energy periods is markedly 168 

different at the three sites. At site 1 most of the energy is provided by sea states with energy periods 169 
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between 6 and 8 s; at site 2, the energy is concentrated in energy periods between 8 and 10 s; finally, 170 

at site 3, the bulk of the energy is supplied by sea states with energy periods between 9.5 and 11 s. 171 

This is likely due to the fetch increasing from site 1, which is exposed to the Bay of Biscay, to site 3, 172 

exposed to the North Atlantic Ocean. Regarding the resource distribution across significant wave 173 

heights, the most energetic sea states correspond with wave heights between 1.0 and 2.5 m at the three 174 

study sites, with a slight deviation towards the lower values in the case of site 3. 175 

2.2. OWC performance characterisation 176 

2.2.1. Physical modelling 177 

The physical model represents, at a 1:25 scale ratio, a standard design of breakwater-integrated OWC 178 

wave energy converter (Figure 3a). Taking into account that the construction costs are one of the main 179 

downsides of OWC technology, multi-purpose solutions constitute an interesting and more feasible 180 

approach. With this as background, a breakwater-integrated OWC enables both coastal protection and 181 

energy harnessing by means of a sole structure, thereby maximising the benefits and minimising the 182 

costs. The OWC model tested in this work (Figure 3b) is two-dimensional, its width matching that of 183 

the wave flume. The model and prototype dimensions are presented in Table 2. 184 

 As previously mentioned, the damping exerted by the turbine on the water column oscillation is 185 

one of the most important factors, if not the most important one, affecting the efficiency of an OWC 186 

converter. Therefore, modelling the turbine-induced damping is a prerequisite for obtaining reliable 187 

results. In this work, the turbine-induced damping was modelled through an orifice (e.g., Perez-188 

Collazo et al., 2018; Vyzikas et al., 2017), i.e., an element introducing a pressure drop which varies 189 

quadratically with the flow rate, and therefore appropriately reproducing the behaviour of a self-190 

rectifying impulse turbine (Falcão and Henriques, 2016). In comparison to Wells turbines, impulse 191 

turbines present a series of characteristics that make them particularly interesting for breakwater-192 

integrated OWC converters: smaller diameter, lower rotational speed and consequently lower levels of 193 

noise. In addition, impulse turbines present a smoother efficiency curve, i.e., a good performance over 194 

a broader range of flow conditions. Three different orifices of diameter D = 28, 31 and 39 mm were 195 

tested, corresponding to opening ratios (ratio of the orifice area to the plan area of the OWC chamber) 196 

of 0.8%, 1.0% and 1.5%, respectively. The three orifices are representative of three impulse turbines 197 

of different diameter—for self-rectifying impulse turbines, the relationship between pressure drop and 198 

flow rate is not significantly affected by changes in rotational speed (Falcão and Henriques, 2014). 199 
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 200 

Figure 3. Sketch of a breakwater-integrated OWC (A) and views of the tested OWC converter (B). 201 

Table 2. Dimensions of the geometrical parameters of the OWC converter. 202 

Geometrical parameter Symbol Model 
dimensions 

Prototype 
dimensions 

Chamber height hc 63.6 cm 15.9 m 
Chamber length (in the wave direction) lc 12.8 cm 3.2 m 
Entrance height he 12.8 cm 3.2 m 
Vertical walls thickness tZ 2.0 cm 0.5 m 
Horizontal walls thickness tX 2.8 cm 0.7 m 
Orifice diameter D Variable — 
Duct height hd 25D — 
Bedding height hb 8.0 cm 2.0 m 
Bedding length lb 20.0 cm 5.0 m 
Bedding slope s 1:2 1:2 

 The scaling of the model was based on Froude’s similitude, i.e., equal ratio of inertia to gravity 203 

forces between model and prototype. This is a mandatory assumption when dealing with free surface 204 

flows (Hughes, 1993). However, in the case of OWC wave energy converters, the spring-like effect of 205 

the air inside the chamber is known to play an important role, which calls for maintaining also an 206 

equal ratio of inertia to air compression forces between model and prototype (Weber, 2007). To this 207 

end the air chamber volume must be scaled according to (Falcão and Henriques, 2014): 208 
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 2 1m m

p p

V n
V n

O G� �  , (5) 209 

where the subscripts m and p refer to model and prototype, respectively; V is the volume of the air 210 

chamber; n is the polytropic exponent of the turbine, which takes the values np = 1.2 and nm = 1.0 for a 211 

full-size turbine and for an orifice, respectively; λ is the scale factor (λ = 25); and δ is the water 212 

density ratio (ρm/ρp), which takes a value of δ = 0.98 for wave flume testing.  213 

 The approach to meeting both aforementioned requirements is to apply the Froude similitude 214 

criterion and perfect geometric similarity in the hydrodynamic domain (wet part of the model) but 215 

considering a distorted aerodynamic domain (upper part of the chamber) that fulfils Eq. (5). The 216 

required volume was achieved by connecting the air chamber to a rigid-walled air reservoir of an 217 

adequate volume (Figure 5). This is the procedure recommended for OWC small-scale modelling as 218 

stated by Falcão and Henriques (2014). By applying Eq. (5), the volume of the air chamber at model 219 

scale should be Vm = 538.4 dm3, which makes it necessary to add to the chamber a volume of 220 

513.2 dm3. 221 

 222 

Figure 4. Experimental set-up of the model OWC. 223 

 Physical model tests were carried out in the wave flume of the University of Santiago de 224 

Compostela (USC), with dimensions of 20 m × 0.65 m in plan view. It is equipped with a piston 225 

paddle wave generation system with active absorption of the reflected waves. The experimental set-up 226 

is presented in Figure 4. A total of nine wave gauges were installed to monitor the wave propagation, 227 

analyse the incident and reflected wave field, and check the absence of transverse waves. 228 

Additionally, two ultrasonic level sensors were placed inside the chamber to measure the oscillations 229 

of the water column. Finally, a differential pressure sensor registered the time-varying pressure drop 230 

between the atmosphere and the interior of the chamber. 231 
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 The experimental campaign comprised 49 irregular wave conditions (Figure 5), representative of 232 

as many omnidirectional energy bins (Carballo, Sánchez, Ramos and Castro, 2014), or bivariate 233 

intervals that discretise the sea states according to their Hm0 and Te. Thus, all the sea states with a 234 

significant wave height and an energy period within the range of an energy bin are assumed to be 235 

represented by a single capture width ratio—corresponding to the wave conditions representative of 236 

the energy bin. The smaller the size of the energy bins, the greater the precision of the performance 237 

matrix. In this work, an interval size of 1.0 m for significant wave height and 1.0 s for energy period 238 

were used. 239 

 240 

Figure 5. Sea states covered in the experimental campaign. The grey axes represent the boundaries of 241 
the sea states and the black axes the representative wave conditions tested. The crosses indicate the 242 
representative wave condition of each energy bin. 243 

 The selection of the representative wave conditions of each energy bin is, therefore, of 244 

paramount importance. As wave energy varies linearly with energy period, the representative energy 245 

period was set to the arithmetic mean of the energy periods at the limits of the bin. However, wave 246 

energy varies quadratically with the significant wave height, so the representative value should 247 

provide the mean wave energy of the bin, satisfying the following equation:  248 

 2

1

2 2R

R

H H

H H
H dH H dH ³ ³  , (6) 249 

where H1 and H2 are the wave height at the limits of each bin; and HR is the representative value of the 250 

wave height of that bin (Carballo, Sánchez, Ramos, Taveira-Pinto et al., 2014). 251 

 The 49 selected bins cover energy periods from 4 to 15 s and wave heights from 0 to 5 m (limit 252 

established based on the characteristics of the OWC). For the selected study sites the 49 bins cover 253 

more than 99% of the energy and time of the wave resource matrices presented in Figure 2 for the 254 

three study sites. 255 
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 In order to experimentally test the representative wave conditions, it is necessary to assign to 256 

each of them a wave energy frequency distribution, i.e., a frequency spectral density function or wave 257 

spectrum. The wave spectrum better representing the wave conditions at the region of interest is the 258 

JONSWAP spectrum (Carballo et al., 2015), that is given by the form (Hasselmann et al., 1973): 259 

 � � � �

2114 exp
22 4 5 52 exp
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 ,  (7) 260 

where α is a scaling parameter, fp is the peak frequency (the reciprocal of the peak period), γ is the 261 

peak enhancement factor and σ is a spectral shape parameter that takes the following values: 262 

 
0.07

0.09
p

p
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�­° ® t°̄
  . (8) 263 

 The scaling parameter α was adjusted in order to obtain, through numerical integration of the 264 

spectrum, the desired value of the significant wave height for each wave condition. For the peak 265 

enhancement factor, based on previous works at the same location (Arean et al., 2017), a value of 266 

γ = 3.3 was selected. The peak period of each wave condition was calculated from the energy periods 267 

defined in Figure 5, using the ratio:  268 

 0.90e

p

T
T

  , (9) 269 

which corresponds to JONSWAP-type spectra with a peak enhancement factor of 3.3 (Goda, 2010). 270 

 Each of the 49 irregular wave conditions was tested for the three orifice diameters—in total, 147 271 

irregular wave tests were conducted. Testing times vary depending on the period of each wave 272 

condition in order to ensure that, at least, 200 waves were generated, a number large enough to 273 

decrease the sampling variation of the wave statistics (Goda, 2010).  274 

2.2.2. Calculation of the efficiency matrices 275 

The performance of the OWC under the wave conditions representative of each energy bin was 276 

characterised based on the capture width ratio (also known as relative capture width), which reflects 277 

the fraction of the wave power flowing through the device that is absorbed by the device (Babarit, 278 

2015), defined by 279 

 p
WR

w

P
C

P w
  , (10) 280 
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where Pp is the mean pneumatic power absorbed by the OWC; Pw is the mean available wave power 281 

per unit width of wave front; and w is the width of the OWC chamber (transverse to wave direction). 282 

The mean pneumatic power is defined as 283 

 
0

1 maxt

p
max

P pQdt
t

 '³  , (11) 284 

where tmax is the time duration of each test; ∆p is the pressure drop directly measured by the 285 

differential pressure sensor; and Q is the air flow rate through the orifice calculated as 286 

 � �
1 2

sgn rBQ p
p

§ ·
 ' ¨ ¸¨ ¸'© ¹

 , (12) 287 

being Br a damping parameter which represents the pressure-flowrate relationship for each orifice, 288 

obtained in the present case through numerical and physical modelling following the definition as 289 

provided by López et al. (2015): 290 
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   , (13) 291 

where Ac is the water plane area of the OWC chamber (Ac = lc × w); and ρa is the air density. For the 292 

three orifice diameters, D = 28, 31 and 39 mm, these parameters take the values Br = 5.30 × 106, 293 

3.59 × 106 and 1.48 × 106 kg/m7 (in model dimensions) and B* = 160.49, 132.18 and 84.85, 294 

respectively. 295 

 The mean wave power per unit width of wave front is given by 296 

 � � � �
0w w gP g S f C f dfU
f

 ³  , (14) 297 

where S(f) is the incident spectral energy density; and Cg(f) is the group velocity of each frequency 298 

band. 299 

2.3. Energy capture 300 

Finally, the pneumatic energy captured by the OWC for the three values of the turbine-induced 301 

damping at the three study sites was calculated. First, the pneumatic power captured by each i-th 302 

energy bin (Ep, i) was obtained following: 303 

 , , ,p i WR i w iE C E  . (15) 304 

where CWR, i and Ew, i are the capture width ratio and the available wave energy of each i-th energy bin, 305 

respectively. As there are three efficiency matrices—one for each value of turbine-induced damping—306 
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and three wave resource characterisation matrices—one for each study site—there will be nine 307 

different energy capture matrices.  308 

Second, the total annual available energy and the total annual captured energy was calculated, 309 

respectively, as: 310 

 , ,1

N
w annual w ii

E E
 

 ¦  , (16) 311 
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N
p annual p ii

E E
 

 ¦  , (17) 312 

where N is the number of energy bins of each matrix. Last, the annual capture width ratio was 313 

calculated as: 314 
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,

,

p annual
WR annual

w annual

E
C

E
  . (18) 315 

3. Results 316 

3.1. OWC efficiency matrices 317 

The efficiency matrices of the OWC wave energy converter, obtained through the experimental 318 

campaign, are presented in Figure 6 for the three values of the turbine-induced damping, i.e., for three 319 

turbines with different diameter. Incidentally, a methodology to dimension the turbine diameter from 320 

the values of the damping coefficient was developed by Pereiras et al. (2015). The efficiency matrices 321 

are expressed in terms of the CWR; this term is preferred over the absorbed power because, as a relative 322 

indicator, it removes the bias that would otherwise result from the fact that wave power is 323 

proportional to the square of the wave height. 324 

 The comparison between the three graphs shows a clear influence of the turbine-induced 325 

damping on the performance of the device: for individual energy bins there are variations in the CWR 326 

of up to 40% depending on the value of the damping coefficient (e.g., 0 m < Hm0 < 1 m, 327 

5 s < Te < 6 s). However, given that the greater differences in the values of the CWR are apparent only 328 

for the less powerful sea states (those with the lower values of wave height and small periods), it is 329 

expected that the overall influence of the turbine-induced damping on the energy captured by the 330 

OWC be lower. 331 

 The optimum value of the damping coefficient varies depending on the wave conditions. Thus, 332 

for sea states with small wave period (Te < 9 s) and low wave height (Hm0 < 3 m), the value of the 333 

damping coefficient that provides the higher values of CWR is B* = 84.85; in the case of sea states with 334 

larger periods (Te > 9 s) the value of the damping coefficient that provides the best efficiency is the 335 
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medium one (B* = 132.18), or the largest one (B* = 160.49) if the wave height is very low 336 

(Hm0 < 1 m). 337 

 338 

Figure 6. Efficiency matrices of the OWC wave energy converter expressed in terms of the capture 339 
width ratio (CWR), given as a percentage, for the three values of the damping coefficient tested (for 340 
further clarification, the numeric value is also included). 341 

 The variation of CWR amongst energy bins presents a similar distribution for the three values of 342 

the damping coefficient: a band of higher efficiency for sea states with energy period between 5 s and 343 

7 s, that decreases as wave height increases. Although the resonant period (that for which the CWR is 344 

maximum) slightly increases when the damping coefficient increases, from 5 s < Te < 6 s for 345 

B* = 84.85 to 6 s < Te < 7 s for B* = 132.18 and 160.49, the change is minimal and, for the studied 346 

range of damping values, does not enable an adjustment of the resonant period of the OWC by 347 

modifying the turbine-induced damping. 348 
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 The efficiency matrices presented in Figure 6 characterise the OWC and, therefore, can be used 349 

to evaluate the pneumatic power production of the device in whatever location (with the limitation of 350 

having a similar water depth). 351 

3.2. Energy captured by the OWC 352 

The captured pneumatic energy matrices of the OWC are presented in Figure 7. These matrices are 353 

obtained by combining (energy bin by energy bin) the efficiency matrices of the OWC (Figure 6) with 354 

the wave resource characterisation matrices at the three study sites (Figure 2). 355 

 356 

Figure 7. Captured energy matrices of the OWC per unit width of converter for the three values of the 357 
damping coefficient (B*), at the three study sites. The colour scale represents the total pneumatic 358 
energy per metre of wave front (Ep) captured by the OWC in each energy bin; the numbers indicate the 359 
occurrence of the sea states in that energy bin, expressed in hours. 360 

 Comparing the results of annual captured energy (for whichever study site and value of the 361 

damping coefficient) with the efficiency matrix of the corresponding damping coefficient (Figure 6), 362 

it can be seen that energy bins with higher values of capture width ratio (those that comprise sea states 363 
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with energy period between 5 s and 7 s and low wave height) do not provide the bulk of captured 364 

energy; in contrast, the variable that determines which energy bins provide the greatest amount of 365 

captured energy is the available wave energy as provided by the site-specific characterisation matrices 366 

(Figure 2). Thus, the energy bins providing the greatest amount of captured energy vary depending on 367 

the study site: at site 1, they correspond to sea states with energy periods between 6 and 7 s; at site 2, 368 

to sea states with periods between 8 and 9 s; and, finally, at site 3, to sea states with periods between 369 

9 and 10 s. In the three cases, the energy bin that provides the largest captured energy comprises sea 370 

states with a significant wave height between 1 and 2 m, which in turn correspond to those providing 371 

the bulk of the wave energy resource (Section 2.1.1). 372 

 The influence of the turbine-induced damping is also noticeable. For example, at study site 1, the 373 

bin providing the greatest amount of captured energy (6 s < Te < 7 s, 1 m < Hm0 < 2 m) with a total of 374 

1.96 MWhm−1 for the lowest damping (B* = 84.85) and 1.47 MWhm−1 for the largest one 375 

(B* = 160.49), which implies a reduction of more than 25% in the captured energy. Notwithstanding, 376 

the energy bin that provides the greatest amount of captured energy is the same (6 s < Te < 7 s, 377 

1 m < Hm0 < 2 m) for the three values of the damping coefficient. At study site 2, the energy bin 378 

providing the largest amount of captured energy (in this case 8 s < Te < 9 s, 1 m < Hm0 < 2 m) is again 379 

the same for the three values of the damping coefficient. However, at study site 3 the bin allowing the 380 

greatest energy production differs depending on the turbine-induced damping considered: in the case 381 

of B* = 132.18 and 160.49 it corresponds to the interval delimited by 9 s < Te < 10 s and 382 

1 m < Hm0 < 2 m, and for B* = 84.85 to the interval delimited by 7 s < Te < 8 s and 0 m < Hm0 < 1 m. 383 

 The results of the total annual available energy (Ew, annual) and the total annual captured energy 384 

(Ep, annual), together with the annual capture width ratio (CWR, annual), are presented in Figure 8. The 385 

study site that provides the greatest amount of captured energy is Cariño (study site 1) with 386 

8.7 MWhm−1 and an annual capture width ratio of 32.1%. At this location, the value of that damping 387 

coefficient that performs best is the lowest (B* = 84.85). Although site 1 presents a level of total 388 

annual available energy equivalent to site 2 (27.14 vs 27.06 MWhm−1, respectively), the total annual 389 

captured energy in the former is greater. This is due to the fact that site 1 corresponds to the location 390 

in which sea states of shorter energy periods (Te < 8 s) provide more energy (Figure 2), which in turn 391 

are those with the largest efficiency (Figure 6). Therefore, an accurate wave resource characterisation 392 

in the form of highly discretised wave-height-vs-energy-period matrix is of paramount importance for 393 

assessing the energy production of an OWC wave energy converter. 394 
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 395 

Figure 8. Comparison of the annual energy conversion performance of the OWC per unit width of 396 
converter for the three values of the damping coefficient (B*), at the three study sites, expressed in 397 
terms of the total annual captured pneumatic energy (top graph, left axis) and of the annual capture 398 
width ratio (bottom graph). For reference, the total annual available wave energy is also represented in 399 
the top graph (right axis). 400 

 A wrong selection of the damping coefficient would reduce the total annual captured energy by 401 

5% and 11% for the medium and largest values of the damping coefficient, respectively, which would 402 

have repercussions for the profitability of a wave farm. Furthermore, in this work in particular, there 403 

are two aspects that contribute to decrease the impact of the turbine-induced damping on the total 404 

annual captured energy: (i) the three values of the damping coefficient were chosen based on previous 405 

works (e.g., López et al., 2016), so they present similar values, close to the overall optimum turbine-406 

induced damping of the chamber; and (ii) as indicated above, the greater differences in the values of 407 

the CWR correspond to sea states with short periods (Figure 6) which, for the study sites considered, do 408 

not provide the bulk of energy (Figure 2). This situation, though, may be different in other locations.  409 

 Interestingly, the value of the damping coefficient that provides the greater performance in the 410 

study site 3 is the medium one (B* = 132.18). The lowest damping, which provides the largest amount 411 

of energy production at study sites 1 and 2, descends to the second position in study site 3. 412 

Additionally, in the case of analysing the most appropriate location for a given turbine, it is found that 413 

for a turbine with damping coefficient B* = 84.85 or B* = 132.18 the best location corresponds to 414 
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study site 1, and for a turbine with a value of damping coefficient B* = 160.49, study site 2 emerges 415 

as the most appropriate one. This great variability points out the importance of correctly matching the 416 

turbine-induced damping and the wave conditions that affect the OWC. It follows that an accurate 417 

site-specific wave resource characterisation in the form of high-resolution characterisation matrices is 418 

the first step towards a meaningful performance evaluation of an OWC wave energy converter. 419 

 Finally, the similarity between the annual captured width ratio at the three study sites (Figure 8 – 420 

bottom) does not lead to similar values in the total annual captured energy (in particular, comparing 421 

study site 3 with 1 and 2). This difference in the total annual captured energy is mainly connected to 422 

the occurrence of the sea states in an energy bin, that varies substantially from one study site to 423 

another (Figure 7) and emphasises, again, the importance of an accurate characterisation of the 424 

available wave energy resource. 425 

4. Conclusions 426 

In this work, a comprehensive methodology to accurately evaluate the site-specific performance of an 427 

OWC wave energy converter considering the turbine-induced damping together with usually 428 

disregarded non-linear effects—in particular, the spring-like effect of air compressibility—is 429 

presented. Thus, the novelty of this work lies not only in the results achieved but also in the 430 

methodology presented, which constitutes an outcome on its own. The methodology is illustrated 431 

through a case study in Galicia (NW Spain) in which three locations of interest are considered for 432 

installing OWC technology. 433 

 The methodology is based on a combination of physical and numerical modelling. First, high-434 

resolution characterisation matrices considering virtually 100% of the exploitable resource are 435 

computed at each site by implementing novel procedures based on the energy bin concept. Second, 436 

small-scale physical model tests, in which air compressibility is appropriately considered, are carried 437 

out to determine the efficiency matrices of the OWC for three different values of the turbine-induced 438 

damping (i.e., three impulse turbines of different diameter); irregular wave conditions representative 439 

of each energy bin were simulated, covering the virtual totality (> 99%) of the wave energy resource 440 

in the characterisation matrices. Finally, resource and efficiency matrices were combined to obtain the 441 

captured energy matrices that express, through a bivariate discretisation, the pneumatic energy that the 442 

OWC captures for each turbine-induced damping at each site. 443 
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 The methodology enables the selection of the most appropriate site and turbine-induced damping 444 

combination based on performance values: of the three study sites considered, Cariño (1), Corme (2) 445 

and Panxón (3), the best performance was attained at study site 1 with a total annual captured energy 446 

of 8.7 MWhm−1 and an annual capture width ratio of 32.1%; the value of the damping coefficient that 447 

performs best at this site was the lowest of those considered (B* = 84.85). Moreover, the selection of 448 

the best turbine for a given location is also possible: the value of the damping coefficient providing 449 

the best performance at site 2 is also the lowest; unlike at site 3, where the medium value 450 

(B* = 132.18) yields the best results. Finally, the best site for a specific turbine can be also selected: 451 

the best site for B* = 84.85 and B* = 132.18 was found to be site 1, and for B* = 160.49, site 2. Going 452 

beyond the methodology itself, the results showed that considering the turbine-induced damping is of 453 

paramount importance in maximising the energy captured by an OWC device: when damping 454 

coefficients changes, variations in the total annual energy captured of up to 11% were found, which 455 

increase to 25% for individual energy bins. Furthermore, there is not a single optimum value of 456 

turbine-induced damping for all sea states; indeed, the optimum depends on both the energy period 457 

and the significant wave height. It follows that an accurate highly-discretised characterisation of the 458 

wave energy resource is necessary. In addition, it was found that it is neither the capture width ratio 459 

nor the power of the incoming sea states but the available wave energy provided by the site-specific 460 

characterisation matrices that determines principally which energy bins provide the greatest amount of 461 

annual captured energy, which highlights again the importance of the resource characterisation stage. 462 

 To sum up, the methodology presented in this work allows the accurate assessment of the 463 

performance of an OWC wave energy converter at a specific coastal site, considering a highly-464 

discretised resource characterisation, non-linear effects, air compressibility effects and several levels 465 

of turbine-induced damping. It constitutes the first step towards a wave-to-wire model in which non-466 

linear effects are thoroughly taken into account, with special emphasis on the influence of air 467 

compressibility. 468 
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Figure captions 593 

Figure 1. Locations of the three study sites in Galicia (NW Spain). 594 

Figure 2. Wave resource characterisation matrices in an average year for the three selected study sites. The 595 
colour scale represents the total energy per metre of wave front (Ew) provided by each energy bin; the 596 
numbers indicate the occurrence of the sea states within each energy bin, expressed in hours; and the 597 
isolines provide the wave power. 598 

Figure 3. Sketch of a breakwater-integrated OWC (A) and views of the tested OWC converter (B). 599 

Figure 4. Experimental set-up of the model OWC. 600 

Figure 5. Sea states covered in the experimental campaign. The grey axes represent the boundaries of the sea 601 
states and the black axes the representative wave conditions tested. The crosses indicate the representative 602 
wave condition of each energy bin. 603 

Figure 6. Efficiency matrices of the OWC wave energy converter expressed in terms of the capture width ratio 604 
(CWR), given as a percentage, for the three values of the damping coefficient tested (for further clarification, 605 
the numeric value is also included). 606 

Figure 7. Captured energy matrices of the OWC per unit width of converter for the three values of the damping 607 
coefficient (B*), at the three study sites. The colour scale represents the total pneumatic energy per metre of 608 
wave front (Ep) captured by the OWC in each energy bin; the numbers indicate the occurrence of the sea 609 
states in that energy bin, expressed in hours. 610 

Figure 8. Comparison of the annual energy conversion performance of the OWC per unit width of converter for 611 
the three values of the damping coefficient (B*), at the three study sites, expressed in terms of the total 612 
annual captured pneumatic energy (top graph, left axis) and of the annual capture width ratio (bottom 613 
graph). For reference, the total annual available wave energy is also represented in the top graph (right 614 
axis). 615 



 

 
 

Table 1. Easting (X) and northing (Y) coordinates (UTM29N/ETRS89) and water depth 
(h) of the three study sites. 

Study site X Y h 
Cariño (1) 591770 m 4843092 m 12.7 m 
Corme (2) 502782 m 4789545 m 12.0 m 
Panxón (3) 513645 m 4665291 m 10.1 m 
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Table 2. Dimensions of the geometrical parameters of the OWC converter. 

Geometrical parameter Symbol Model 
dimensions 

Prototype 
dimensions 

Chamber height hc 63.6 cm 15.9 m 
Chamber length (in the wave direction) lc 12.8 cm 3.2 m 
Entrance height he 12.8 cm 3.2 m 
Vertical walls thickness tZ 2.0 cm 0.5 m 
Horizontal walls thickness tX 2.8 cm 0.7 m 
Orifice diameter D variable — 
Duct height hd 25D — 
Bedding height hb 8.0 cm 2.0 m 
Bedding length lb 20.0 cm 5.0 m 
Bedding slope s 1:2 1:2 

 

Table 2
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