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Data analytics and optimisation for assessing a
ride sharing system

Vincent Armant, John Horan, Nahid Mabub, Kenneth N. Brown

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Ireland

Abstract. Ride-sharing schemes attempt to reduce road traffic by match-
ing prospective passengers to drivers with spare seats in their cars. To be
successful, such schemes require a critical mass of drivers and passengers.
In current deployed implementations, the possible matches are based
on heuristics, rather than real route times or distances. In some cases,
the heuristics propose infeasible matches; in others, feasible matches are
omitted. Poor ride matching is likely to deter participants from using the
system. We develop a constraint-based model for acceptable ride matches
which incorporates route plans and time windows. Through data analyt-
ics on a history of advertised schedules and agreed shared trips, we infer
parameters for this model that account for 90% of agreed trips. By ap-
plying the inferred model to the advertised schedules, we demonstrate
that there is an imbalance between riders and passengers. We assess the
potential benefits of persuading existing drivers to switch to becoming
passengers if appropriate matches can be found, by solving the inferred
model with and without switching. We demonstrate that flexible partici-
pation has the potential to reduce the number of unmatched participants
by up to 80%.

1 Introduction

Road traffic is one of the main generators of carbon emissions, and traffic con-
gestion is a significant contributor to pollution around major cities and urban
areas. Partly motivated by these issues, there has been recent strong growth
in ride-sharing schemes (e.g. Blabla car, Carma, BLyft, Sidecar, Uber), where
participants post details of intended trips, and the system then proposes possi-
ble matches between drivers and prospective passengers. As more matches are
agreed, the number of car journeys decreases, and the total driven distance
also decreases, helping to reduce congestion, emissions and energy consumption.
Increasing participation in such schemes is thus considered both a benefit for
society and a commercial objective for the system operators.

Deployed schemes focus on proposing a set of possible matches for each re-
quest, leaving the participants to contact each other, negotiate ride details, and
to agree the match. In order to generate these offers quickly, the ride sharing sys-
tems typically propose matches using heuristics that are fast to compute, based
on Euclidean distance between locations and on fixed time windows. This means
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that the set of proposed matches may include some that are infeasible given
the road network, and may omit some that would be a user’s preferred match.
However, users who receive few offers, or who are given offers that are a poor
match for their travel plans, are unlikely to continue with the system. There is a
need to assess the performance of the current matching schemes, identify ways in
which performance could be improved, and assess the improvements that could
be gained. To do this, we employ data analytics to infer constraints on possible
matches, and to assess current performance. We then use the inferred constraints
to build optimisation models and to evaluate proposed improvements.

Specifically, (i) we use shortest path routing algorithms to determine the
impact of a driver being matched with a passenger; (ii) by mining records of
previously agreed matches, we infer constraints on the departure and arrival
time windows for drivers, and on deviations from the shortest routes, that cap-
ture 90% of agreed matches; (iii) we compare the inferred constraint model with
the heuristic matching algorithm, and assess the discrepancies between the two
approaches; (iv) we analyse histories of proposed trip schedules and show an im-
balance between drivers and passengers that may be hampering participation in
the scheme; and (v) we propose and evaluate the potential of persuading drivers
to be flexible in their roles in the scheme, showing a reduction in unmatched
participants of up to 80

2 Related work

The dial-a-ride problem has been long studied in the OR community [? ]. Dial-
a-ride typically assumes a single vehicle, picking up and dropping off riders at
specified locations within time windows, although multiple vehicle problems have
also been studied [? ? ]. In [? ], the authors compare different scenarios of
dial-a-ride problems and show that these scenarios can be solved extending the
variable neighborhood search algorithms. The dial-a-ride drivers have no journey
requirements of their own. For ride-sharing schemes [? ], both the drivers and the
riders have their own objectives. Specific schemes vary as to whether the drivers
move to the riders locations or the riders move to and from the driver routes,
and whether or not drivers take single or multiple riders on a trip. One extension
includes participants known as shifters, who may either drive or ride as a rider
[? ]. Armant et al. [? ] also include shifters, but also assume that each pure
rider who is not served in the matching has a probability of driving on their
own, included as a penalty in the objective function. Computing an optimal
matching is hard [? ], and the complexity increases as the number of shifters
increases. Kamar and Horvitz [? ] model the problem as one of collaborative
planning, where agents must balance competing goals. Yousaf et al. [? ] model
the problem as multi source-destination path planning, with a wide range of
competing objectives including privacy and incentives. Schilde et al. [? ] and
Manna and Prestwich [? ] consider stochastic problems, in which trip requests
arrive during the execution of the solution, using scenario-based methods to
minimise expected delays or unserved requests. Simonin and O’Sullivan [? ] focus
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on the matching problem, assuming an input graph of all feasible pairings, and
establishes the complexity of a number of two variations, showing that in some
cases polynomial time solutions are possible. In this study, from the analysis of
agreed rideshare trips advertised by real users, we model the users’ behaviour and
infer a Constraint Programming problem. The last problem allows us to assess
the quality and the potential improvement of the heuristics used in deployed
applications when answering to users’ queries. A comparison of different ride-
sharing problem formulations or algorithms to improve the solving time is beyond
the the scope of the study.

3 Euclidean-distance ride matching

In the basic ride sharing scheme, drivers and riders post their start and end
locations, and an expected start time, and the system proposes possible matches
to the participants. The participants then select from the possible matches and
contact each other to agree the details of the trip, which involves establishing
a pick-up and drop-off location, and a time for the pick up. The agreed values
might differ from the original values posted by the participants. When the actual
ride takes place, both the driver and rider use a smartphone app to inform the
system, with the driver informing the system on first departure and final arrival,
and each rider notifying the system on pick-up and drop-off. The app reports
GPS readings and times, from which payments are computed.

When a driver or rider posts their trip request, the ride sharing system should
return in real-time a list of potential users with which the poster can share their
journey. To ensure a real-time response (< 1s), a Euclidean distance heuristic
is typically used to find the possible matches. First, for each driver, a straight
line path is drawn from the driver start location to the driver destination. Sec-
ondly, for all possible riders, the euclidean distances between the rider start and
destination and the driver line are computed. Only riders with distances to and
from the driver line below a threshold are considered as potential matches. These
are further filtered by restricting (i) rider start and destination locations to be
within a threshold angle of deviation from the driver line, and (ii) rider start
times to lie within a fixed threshold of the driver’s start time. This simple heuris-
tic is fast to compute, and can be more or less accurate in large cities having
a road network similar to a grid. Without this particular road network config-
uration the heuristics frequently return infeasible matches, and also omit some
high quality potential matches. The main cause of inappropriate matches is the
use of straight line paths and distances, since in many circumstances the short-
est or fastest route is significantly different from the straight line path. In the
Figure ??, we show an extreme example. T45 denotes the fixed threshold heuris-
tic that we investigate. It fits to regular grid road maps and is similar to some
heuristics used by deployed applications for fast computation of the matches.
The subfigure on the left shows the standard heuristic, with trips starting and
finishing in the grey zone being offered as potential matches. The subfigure on
the right shows that fastest path for the driver, and of the two passenger request,
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the only feasible match is the one which was not previously offered. Secondly,
the system requires each user to post a preferred start time, and then applies a
fixed time window around start times to match participants. However, individual
users may have different flexibility over their start or arrival times, and these
are also likely to vary with the expected travel time for the journey. Repeated
offering of matches which would require significant deviation from a route, or
which are infeasible because of the length of time required for the journey, are
liable to act as a disincentive for users to continue with the system. Similarly, if
well matched participants are not offered rides, there is a reduced incentive to
continue with the system.

<

(a) matches returned by the heuristic (b) feasible matches

Fig. 1: Example of feasible and infeasible ride matches

4 Ride sharing optimisation model

To describe the trip schedules and the users’ constraints we introduce the follow-
ing notation. D denotes the set of possible drivers, R is the set of possible riders,
and U = D∪R represents the set of all users. To generate the time and geograph-
ical constraints, we use Open Street Map data to deduce minimal path distances
and times between two locations. L = {l1, . . . , ln} denotes the set of road node
locations identified by their GPS coordinates. A path π = (li, . . . , lj) is an or-
dered list of locations, and time(π) (resp. dist(π)) returns the driving path time
(resp distance) for π. The path π∗li,lj (resp. π�li,lj ) denotes a minimal time (resp.

distance) path from li to lj . A trip schedule is a tuple tsu = (tstartd , lstartd , ldestd )
describing user u’s intended start time tstartu , start location lstartu , and destina-
tion ldestu . TS = {tsu1

, . . . , tsun} denotes the set of user trip schedules sent to the
system. To simplify the notation we consider one trip schedule per user, but the
approach remains valid for multiple schedules per user. For a trip schedule tsu,
the inferred time window twu = (etstartu , ltdestu ) describes an earliest start time
etstartu and a latest arrival time ltdestu . Intuitively, the driver trip time window
twd is consistent with a rider trip time window twr when there exists a time
interval intersecting both twr and twd in which the rider can be picked-up and
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dropped-off by the driver. For a driver trip schedule tsd, π
∗
lstartd ,ldestd

denotes the

inferred minimal time path from lstartd to ldestd . For a rider trip schedule tsr,
mpick
r denotes the inferred maximal path distance r is willing to walk from his

intended start lstartr to a pick-up location lpickr on the driver path π∗
lstartd ,ldestd

.

Similarly mdrop
r denotes the inferred maximal path distance the rider is willing

to walk from a drop-off location ldropr to his destination ldestr .
Given the above we define the feasible matches relaying both on the users’

inferred path constraints and the users’ inferred time constraints.

Definition 1 (inferred feasible ride match). A driver trip schedule and a
rider trip schedule, tsd and tsr, represent a likely feasible ride match if:

1. their inferred time windows twd, twr are consistent with the rider pick-up
and drop-off time:
(a) ltdestd − etstartr > π∗lpick,ldrop , the interval between the driver latest arrival

and the rider earliest start is greater than the fastest path from the rider’s
inferred pick-up to his inferred drop-off, or,

(b) ltdestr −etstartd > π∗lpick�,ldrop� , the interval between the earliest driver start
and the latest rider arrival is greater than the fastest path from the rider
inferred pick-up to the inferred drop-off.

2. The expected driving path intersects the rider’s possible pick-up and drop-off
points.
(a) dist(π�lstartr ,πd

) < mpick
r , the shortest path distance between the rider in-

tended start and the expected driver path is lower than the maximal dis-
tance for the rider’s pick-up.

(b) dist(π�lstartr ,πd
) < mdrop

r , the shortest path distance between the rider in-
tended destination and the expected driver path is lower than the maximal
distance for the rider’s drop-off.

Given a set of trip schedules, by iteratively checking if each pair of trip sched-
ules are likely feasible, we incrementally discover a bipartite graph of feasible ride
matches G = (TSD, TSR,E) s.t. TSD ⊆ TS is the set of drivers’ trip sched-
ules, TSR ⊆ TS is the set of riders’ trip schedules, and every edge (tsd, tsr) ∈ E
is a feasible ride match. G is the input parameter of the constraint program-
ming model we build to assess the potential of a ride-sharing scheme. For each
feasible match between a rider trip schedule tsr and a driver trip schedule tsd
in G = (TSD, TSR,E) is associated to a ride share trip ytsd,tsr encoded as a
collection of decision variables s.t.:

ytsd,tsr .start represents the pick-up time of r,
ytsd,tsr .end denotes a the drop-off time of r,
ytsd,tsr .duration is the time duration of the rideshare trip,
ytsd,tsr .presence denotes presence of the ride share trip in the optimal solution.

We model a served rider using x,tsr s.t. x,tsr equal 1 when the rider is allocated
to exactly one of feasible share ride ytsd,tsr . To assess the potential of a ride-
sharing scheme, our objective is to maximize:
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Σ
(tsd,tsr)∈E

x,tsr (1)

subject to:

ytsd,tsr .start ≥ max(tearlyd , tearlyr ), ∀(tsd, tsr) ∈ E (2)

ytsd,tsr .end ≤ min(tlatestd , tlatestr ), ∀(tsd, tsr) ∈ E (3)

ytsd,tsr .duration = ytsd,tsr .end− ytsd,tsr .start, ∀(tsd, tsr) ∈ E (4)

ytsd,tsr .duration ≥ π ∗lstart,ldest , ∀(tsd, tsr) ∈ E (5)

CUMULATIV E({ytsd,tsr}, nbSeatsd,≤), ∀tsd ∈ TSD (6)

ALTERNATIV E(xtsr , {ytsd,tsr |(tsd, tsr) ∈ E}), ∀tsr ∈ TSR (7)

(xtsc .presence⇒ ytrc,tsr .presence), ∀(tsd, tsr) ∈ E (8)

The aim is to maximize the total number of served riders (??). The con-
straints (??) force each rideshare trip to start after the earliest rider start and
the earliest driver start. Similarly, the constraints (??) force each rideshare trip
to end before the latest rider arrival and the latest driver arrival. The duration
of the rideshare trip is the difference between the end and the start (??) and
it is greater than the rider shortest path (??). The cumulative constraints (??)
restrict each driver car occupancy to not exceed the number of available seats
at any moment of the trip. When a rideshare trip is chosen in a solution, i.e.,
ytsd,tsr .presence = 1, it corresponds to one occupied seat in a driver’s car, it
is equal to 0 otherwise. At any time, the driver’s car occupancy corresponds
to the following definition Σ

(tsd,tsr)∈E
ytsd,tsr .presence ≤ nbSeatsd, ∀tsd ∈ TSD.

The alternative constraints (??) enforce that at most one ytsd,tsr rideshare trip
is chosen. In the successful case of the rider rideshare trip xtsr is equal to the
chosen rideshare ytsd,tsr otherwise the rider is not chosen. The constraints (??)
state that a shifter assigned to be a rider does not drive.

5 Inferring constraints from users’ behaviour

The raw data maintained in the ride-sharing scheme is not enough to establish
the parameters of the optimisation model. Participants do not post time windows
for their trips, and their advertised locations may be inaccurate (to protect
privacy). Similarly, details of actual shared rides are subject to errors and missing
data, as they are reliant on participants reporting GPS coordinates at the time
of departure and arrival; in particular, drivers have no need to start the system
until the first pickup. Finally, although we have records of advertised trips, we
only have confirmed data on positive examples of acceptable ride shares; a pair
of schedules which did not result in a trip might not have been feasible, but
equally might not have been proposed to the participants, or might have been
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rejected in preference to another trip for either distance or personal factors. To
assess the potential of the ride-sharing scheme, we need to infer the parameters
of the model from the set of positive examples.

For a trip schedule tsu, inferring the time window twu involves inferring the
earliest start time tearlyu and the latest arrival time tlatestu in which a user expect
the journey to happen. For this purpose, we extract from the trip records three
parameters: the maximal positive start time delay, δ+, the maximal negative
start time delay, δ−, and the estimated travel time f1 and, as explained in
Figure ??, we add them together to infer the earliest start and the latest arrival
time of the inferred time window twu.

time

tearlyu

start time
earliest

tstartu

start time
intended

tlatestu

arrival time
latest

δ−

negative
start delay

δ+

positive
start delay

f1(π∗)

travel time estimation

Fig. 2: Time Window Parameters

The positive and negative start time delay represents the user’s time
flexibility for advancing or delaying the intended start. In Figure ?? we observe
the difference between the riders’ intended start time tstartr and their reported
pick-ups time tpickr while observing the trip duration between the riders’ pick-
ups and drop off. We observe no correlation between the ride share duration
and the user’s delayed times. Riders appear to be willing to change their start
times by an amount greater than the duration of their journey in order to find
a ride. To extract the maximal positive and negative time changes, δ+ and δ−,
we determine the minimal change which encompasses almost all (90%) accepted
ride shares. The horizontal lines show the maximal positive start time (left) and
negative start time delay (right) observed for the riders in region 4. We compute
similarly the maximal positive and negative time delay for the drivers.
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Fig. 3: Positive and negative time delay for riders in region 4
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The estimated travel time represents the approximate time a user can
expect to spend on the road. In Figure ?? (left) we plot the duration of the
riders’ travel time from the reported pick-up tpickr to the reported drop-off tdropr

against the minimal path time computed between these locations. There is a
clear correlation, with linear regression indicating a factor of approximately 1.5
for the increase in travel time over the minimal path. This increase may be
due to many factors, including traffic congestion and the presence of multiple
passengers in a single trip, and will be the subject of further study. Moreover,
one can notice few points below the diagonal (fastest path time = recorded path
time). These represent cases where the driver was faster than the faster path
time respecting to the speed limit indicated in OSM map.
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Fig. 4: Observed trip time compared to minimal path time, for region 4

The riders’ maximal meeting path distances represent the maximal pick-
up path distance, mpick, from the rider intended start to the driver path, and
the maximal drop off path distance, mdrop from the driver path to the rider
intended destination. In Figure ?? (right) we plot the path distance between
the riders intended destination and reported drop-off against the minimal path
distance between the destination and drop-off. Here there exists no clear correla-
tion between the observed and minimal drop off path distances. Again, our aim
is to find the minimal threshold on the meeting path distance within which 90%
of the users accepted a ride. Based on the inferred path times (which would be
used in deciding whether or not to accept a ride), a limit of 4.5km (black line)
includes 90% of all accepted rides. For comparison, we show (blue line) a similar
derived threshold of 5.8km on the observed times.
We summarize the optimisation model parameters extracted from the trip
records in the following table. Times are described in minutes and the dis-
tances in kilometers. We recall that given a trip scheduletsu, we infer its time-
window parameter using the following formulae: the infered earliest start time
tearlyu = tstartu − δ− while the latest arrival time tlatestu = tstartu + δ− + f1(x). We
notice that in all the regions studied, riders are more flexible than drivers, but
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both are willing to start early. The estimated travel time varies from 1.4 to twice
the minimal path time computed using OSM Street Map, and varies depending
on the region.

drivers δ+ drivers δ− riders δ+ riders δ− f1(x) riders mpick riders mdrop

region 1 63 56 74 94 2x+11.2 2.2 1.7
region 2 31 60 57 46 1.15x+13.2 2.0 1.0
region 3 45 45 56 60 1.4x+9.7 11.3 14.3
region 4 45 54 70 56 1.4x+7.5 2.4 4.5

6 Assessing the ride-match models

We now use the inferred model described in previous section to assess the quality
of the existing matching heuristics for the 4 regions in the study.
The basic Euclidean heuristic is augmented with a 45 degree sweep angle, and
allows up to 2 hours variation in the start times. In the following table we evalu-
ate the precision and the recall of this heuristic with respect to inferred feasible
ride match model represented as the graph G. The recall rate (the percentage
of feasible matches from G returned by the heuristic) is relatively high, ranging
between 90% and 95%, although this still indicates that between 5 and 10%
of feasible matches are not being considered. The precision rate (percentage of
matches returned by the heuristic that are feasible in G) however varies from
58% to 90%, indicating that many infeasible matches are being proposed. The
heuristic is most effective on region 3, with poor performance on region 1 and
region 2. The appears to be a consequence of the geography of the regions -
region 3 is a large urban area with a regular road network, while region 2 has a
mix of urban and rural roads, and an irregular road network around harbours
and coastal areas. Relatively low precision and recall (regions 1 and 2) indicate
many inappropriate match suggestions and missing proposal, which are believe
to act as a disincentive for potential users.

T45 nb edges # feasible # feasible # unfeas # feasible precision recall

found ible found not found

region 1 802 647 588 214 59 0.733 0.909
region 2 559 364 326 233 38 0.583 0.896
region 3 1678 1691 1616 62 75 0.963 0.956
region 4 4223 3590 3326 897 264 0.788 0.926

To assess the potential of the ride-sharing scheme, we use the inferred CP model
to compute the maximum number of assignments of riders to drivers’ cars. In
next table, we compare the number of matched users found in G, with number of
matched users found among the feasible matches for the typical heuristic T45FM.
Note that T45FM is a filtered version of the typical heuristic, removing those
matches considered infeasible in G, since those matches would be rejected by
the optimisation model. The first thing to note is the percentage of unmatched
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participants is higher in each case for the T45FM filtered heuristic compared to
the inferred model, although the losses are relatively small. However, perhaps
more importantly, the ratio column shows that there is a significant imbalance in
the participants in the scheme; a healthy scheme should have a ratio of at least
1, and ideally should be higher, allowing multiple passengers per car. A low ratio
means many drivers will be unmatched, and thus will drive with empty seats. In
addition, frequent failed attempts to find a match are likely to deter those users
from participating. The current optimisation model prioritises riders, and thus
some drivers may have multiple passengers. Changing the criterion to balance
driver utilisation may encourage drivers to continue with the system, but cannot
increase the total number of matched participants, and thus is likely to reduce the
society benefits of sharing journeys. Therefore, we consider a different approach,
and evaluate the effect of persuading all drivers to become shifters, and to accept
an offer to be a passenger rather than remain exclusively as a driver. The results
of running these flexible models are shown in the rows FMS and T45FMDS.
We note that FMDS is still providing a benefit over the (filtered) heuristic, but
more importantly, the increased flexibility allows us to match significantly more
participants. The number of unmatched participants drops by a factor of 0.33
in the poorest case (region 2) and by a factor of 5 in the best case (region 3).
We conclude that, where there is a participant imbalance, the focus of the ride
sharing scheme operators should be to persuade drivers to be flexible in their
roles, as this appears to offer the biggest potential for continued participation in
the scheme and for removing vehicles from the road network.

region 1 users ratio matched matched % region 2 users ratio matched matched %

R/D riders drivers unmatch R/D riders drivers unmatch

FM
992 0.55

246 133 61.79 FM
658 0.7

142 79 66.41
T45FM 223 124 65.02 T45FM 132 81 67.61

FMDS
992 1.55

488 196 31.05 FMDS
658 1.7

258 99 45.74
T45FMDS 446 176 37.30 T45FMDS 248 98 47.42

region 3 region 4

FM
1871 0.67

656 328 47.41 FM
4784 0.82

1592 758 50.88
T45FM 630 332 48.58 T45FM 1521 774 52.03

FMDS
1871 1.67

1392 321 8.44 FMDS
4784 1.82

2876 864 21.82
T45FMDS 1340 316 11.49 T45FMDS 2741 880 24.31

7 Conclusion

Ride-sharing is a rapidly growing practice for reducing the number of cars on the
road in urban regions. Successful ride sharing schemes require committed users,
and they in turn require the scheme to provide them with feasible ride matches
in real-time. In current systems, the emphasis has been on the real-time require-
ment rather than the feasibility of the matches. We have developed a model
which uses route planning and time windows to describe feasible matches as
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a constraint satisfaction problem, and the ultimate goal of the ride-matching
scheme as constraint optimisation. Through analysis of data sets of advertised
schedules and agreed trips, we infer the parameters of the these constraint mod-
els, chosen to accept 90% of all agreed matches. By applying the model to the
data sets of advertised trips, we identify the errors in the current heuristics, and
find an imbalance among participants in the ride sharing schemes. We consider
the benefits that might be obtained if drivers can be persuade to switch roles and
act as passengers, and by re-running the optimisation model we show that there
is potential to reduce the number of unmatched participants by up to 80%. Such
flexible switching would have a societal benefit, of reducing the number of vehi-
cles on the road and reducing the total driven distance, and would also benefit
the companies concerned, by allowing more matches and encouraging sustained
user participation. Future work will focus on validating the hypothesis through
field trial with user in the scheme, and on developing real-time response to the
users which respects the constraints on feasible matches.

8 Acknowledgements

This work is funded by Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289. Moreover, we would like to acknowledge our industrial partner
Carma, and the reviewers for their fruitful remarks.


