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Abstract

This thesis provides a comprehensive analysis of the acquisition performance

of the mobile-embedded Global Positioning System (GPS) receiver. Particular

emphasis is given to the analysis of differentially coherent processing techniques

and parallel acquisition strategies. New analytical expressions for the distribution

of the decision variable of differentially coherent detectors are derived. In addi-

tion, new Gaussian approximations are derived and shown to be more accurate

than existing approximations. Using these Gaussian approximations it is demon-

strated that the traditional noncoherent combining detector is the best choice

when the signal to noise ratio is large, but that differentially coherent combining

is a superior choice at low signal to noise ratios.

An analysis of the effects of carrier Doppler, code Doppler and data modula-

tion on detector performance is also conducted. For the noncoherent combining

detector, new expressions are obtained for the mean and worst case power at-

tenuation due to the combined effects of carrier Doppler and data modulation.

Approximate expressions are also derived for the differentially coherent combining

detector.

New expressions are also obtained for the mean and variance of the time to first

hit using a Markov chain model and matrix methods. These models permit the

use of numerical techniques to determine the optimal choice of receiver parameters

for a given performance requirement.

Finally the effect of unknown power levels and multi-access interference (MAI)

are considered. A novel technique for detecting MAI, referred to as the power

level detector, is introduced and its performance analysed.

All results are verified by Monte Carlo computer simulation using a simplified

signal model. The simulations were implemented on a 100 processor computer

cluster.
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Notation

This thesis contains many acronyms, symbols and mathematical functions. There

follows a brief desciption of the most important of these, followed by a reference

to the page on which they are first introduced. Some symbols are re-used, though

it should be clear from the context which meaning is intended.

For both the acronyms and mathematical functions we have endeavoured to

use the standard conventions in the literature. The regularised Gamma functions,

γ̃K (z) and Γ̃K (z)), consititute an exception; the shorthand we introduce here is

not widely used, but we feel it is quite intuitive.

For the symbols used in this thesis we follow some simple conventions. Con-

stant integers are most commonly denoted by capital roman letters, e.g. L = 1023.

Vectors are designated by bold face lower-case roman letters, e.g. v, whilst ma-

trices are written in bold face upper-case, e.g. M .

Some common mathematical conventions used in this thesis include: <{z}
and ={z} denote the real and imaginary parts of the complex number z respec-

tively; a
∆
= b indicates that a is defined by b; bxc denotes the “floor” function,

i.e. the largest integer less than or equal to x; dxe denotes the “ceiling” function,

i.e. the smallest integer greater than or equal to x; nint (x) denotes the “round”

function, which evaluates to the nearest integer to x (note that this definition is

ambiguous for half-integers, a common work-around is to round half-integers to

the nearest even number, thus nint (1.5) = 2, nint (2.5) = 2, etc.); the determi-

nant of the matrixM is denoted either |M | or detM ; |z| denotes the magnitude

of the complex number z, thus the absolute value of a matrix determinant is de-

noted |detM |; z∗ denotes the complex conjugate of z; MT denotes the transpose

of the matrix M ; MH denotes the joint operation of transposition and complex

conjugation of the complex matrixM , sometimes called the Hermitian transpose

of M .
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Chapter 1

Introduction

The worldwide market for mobile-phone technology is expected to reach 3 billion

handsets by 2008 [8]. This surge in mobile phone ownership has placed a heavy

burden on the emergency services. In Europe alone, 40 million mobile emergency

calls are recorded on a yearly basis. It is estimated that in 2.5 million of these

cases emergency services are unable to dispatch rescue teams, due to the lack

of sufficient location information [4]. In the United States, federal law requires

the provision of location information with every mobile initiated emergency call,

the so-called Enhanced 911 (E911) standard [43], and Europe is currently work-

ing towards its own standard, Enhanced 112 (E112) [5]. The provision of this

information has the potential to save many lives every year.

There are currently two approaches to the E911 application that meet the Fed-

eral Communications Commission (FCC) E911 requirements: 1) Network based

techniques; and 2) handset based techniques. Currently the only network-based

technique that meets the requirements is the uplink time difference of arrival (U-

TDOA) measurement technique. This requires measurements to be made at a

number of network base-stations within range of the mobile device. Knowledge

of the location of these base-stations, in addition to knowledge of the time of

arrival of the mobile signal, permits a tri-lateration solution of the location of the

mobile device. This technique requires a significant financial investment from the

network operators for the installation of specialised hardware at the base-station

locations [78]. However, the technique works well in all environments where mo-

bile phones can be expected to work. This technique has been widely adopted

for use in GSM networks in the United States.

The only handset based technique to meet the FCC requirements is the As-
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Chapter 1. Introduction

sisted GPS (A-GPS) technique. This requires the implementation of a GPS

receiver within the mobile handset. GPS is an example of a Global Navigation

Satellite System (GNSS). GNSS receivers use information from signals transmit-

ted by satellites orbiting the earth to determine the mobile location. In contrast

to the U-TDOA technique, the bulk of the cost in this case is contained in the

additional cost of the A-GPS enabled handset (about US$5–10 per handset), and

so is passed to the user. The A-GPS technique has been widely adopted for code

division multi-access (CDMA) mobile networks in the US. However, the integra-

tion of a GPS receiver onto a mobile platform presents serious design challenges.

The mobile phone must operate indoors, in cars, in urban environments, etc.

where the receiver does not have a clear view of the sky. Reception of satellite

signals in these environments is problematic, however, and signal availability is a

major issue facing the A-GPS enabled mobile phone.

Current state-of-the-art, mobile-embedded GPS receivers rely on two enabling

technologies to function in these harsh environments: 1) assistance information is

provided to the handset via the mobile network, which gives initial estimates of

the signal parameters and mobile location; 2) massive parallelism, in which large

swathes of the uncertainty region are searched at once, this may be implemented

in either the time or frequency domains. In addition, recent research suggests

that novel, differentially coherent techniques may work well in situations where

received power levels are low [40, 112, 113].

This thesis provides a performance analysis of parallel architectures for the

acquisition of weak GPS signals. In particular, the performance of the traditional

noncoherent combining architecture is compared with newer differentially coher-

ent techniques. New analyses of these differentially coherent architectures are

derived to aid in this comparison. In addition, the problem of MAI and acquisi-

tion when the power level of the received signal is unknown are also considered. A

new technique for the detection of MAI, which we term the power level detector,

is introduced and modelled.

We begin with a brief overview of the Global Positioning System.

1.1 Global Positioning System Overview

The fundamental principle of operation of the Global Positioning System is well

described by Enge and Misra in [41]:
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1.1. Global Positioning System Overview

GPS is based on an idea that is both very simple and quite ancient:

one’s position . . . can be determined given distances to objects whose

positions are known.

In GPS the “objects” whose positions are known are, in fact, satellites travelling

at speeds in excess of 3 kms−1. The principle of operation is demonstrated in

Figure 1.1, which illustrates a simple two-dimensional model of the positioning

problem. The user is positioned somewhere on the surface of the earth (repre-

R1

R2

Figure 1.1: Principle of Satellite Positioning

sented by a green disk in the figure), while two satellites orbit overhead. The user

is required to have precise knowledge of the location of each of the satellites. To

determine the user’s location, measurements are made to determine the distance

(or range) to each of the satellites, denoted R1 and R2. Knowing both the po-

sition of the satellites and the range to each satellite, the user position is given

by the intersection of two circles, as shown in the figure. Note that this results

in two possible positions for the user: one on the surface of the earth, and the

other far out in space. Determining the location of the user in two dimensions is,

therefore, equivalent to solving the simultaneous equations:

|R1| =
√

(x1 − xu)2 + (y1 − yu)2 (1.1)

|R2| =
√

(x2 − xu)2 + (y2 − yu)2, (1.2)

where (xu, yu) are the user co-ordinates and (xi, yi), i ∈ {1, 2} are the co-ordinates

of satellite i. In three dimensions, a measurement to a third satellite is re-
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Chapter 1. Introduction

quired, which narrows down the possible user locations to the intersection of three

spheres. Again, this leads to two possible locations, one of which can usually be

readily discarded. If greater positional accuracy is required, then measurements

can be made to more satellites.

The principle of operation of GPS is, therefore, quite simple. The complexity

arises in the implementation. Two key requirements must be met:

1. The user must have accurate information regarding the location of all the

satellites.

2. The user must be able to obtain an accurate measure of the range to each

satellite in view (i.e. to each satellite from which a signal is received).

In GPS, both of these criteria are met by broadcasting radio frequency (RF)

electromagnetic signals from the satellites. This data is broadcast using direct-

sequence spread-spectrum (DS/SS) [123] modulation, which consists of two layers.

The first consists of a sequence of bits carrying information describing the satellite

location, which we refer to as the data signal. The second layer consists of a

repeating pseudo-random sequence of bits, referred to as the spreading code.

The data signal from every satellite contains very precise orbital parameters

from which the current position, velocity and acceleration of the satellite can be

determined. This information is called ephemeris information. In addition, each

satellite also transmits coarser (i.e. less accurate) orbital parameters for all satel-

lites currently in orbit. This data is referred to as almanac data. Consequently,

a receiver need only demodulate the data from one satellite to obtain reasonably

accurate information on the location of all the GPS satellites. To obtain pre-

cise location information for a satellite, however, requires demodulating the data

signal from that satellite.

The spreading code is a pseudo-random repeating sequence of bits†, which

is synchronised to the satellite clock. In addition, all the satellite clocks are

synchronised to GPS time‡. Once the signal leaves the transmitter antenna on

board the satellite, it takes a finite amount of time, denoted τ , to reach the

user’s receiver on the surface of the earth. If the receiver is also synchronised

†In spread-spectrum terminology the bits of a pseudo-random sequence are usually referred
to as chips.

‡In reality the satellite clocks will be offset from GPS time, but the satellites transmit clock
error parameters which can be used at the receiver to determine the offset between satellite
time and GPS time.
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to GPS time then the user can determine how much time has elapsed between

transmission and reception by comparing a locally generated copy of the spreading

sequence with the spreading sequence received from the satellite, as illustrated in

Figure 1.2. The user knows the speed at which the signal travels (i.e. the speed

Code Delay

Local Code

Received Code

Figure 1.2: Time Delay Between Local and Received Codes

of light in a vacuum: c ≈ 3× 108 ms−1) and so can determine the distance to the

satellite by the simple equation:

R = τc. (1.3)

Thus, we see that the two requirements for satellite positioning are met by the

transmission of the RF signals described above. At any moment in time the user’s

clock will be in error by an amount referred to as the clock bias tb. This bias affects

the range measurement to each satellite identically, the resulting measurement is

referred to as a pseudo-range, as it is not a true measure of the distance to the

satellite. In effect, this introduces another dimension to the positioning problem.

By taking measurements to at least four satellites the user receiver can obtain a

solution to this four dimensional problem.

The GPS satellite constellation, illustrated in Figure 1.3, has been specifically

designed to ensure that at least four satellites are in view from any point on the

surface of the earth at any moment in time. The constellation nominally consists

of 24 satellites orbiting in six orbital planes equally spaced about the earth, with

four satellites per plane. Each plane is inclined at an angle of 55◦ to the equatorial

plane. The satellites orbit at an altitude of approximately 20, 000 km, resulting

in an orbital period of just under 12 hours. This means that, at any point on

the surface of the earth, the pattern of satellites overhead repeats approximately

5
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Figure 1.3: GPS Satellite Constellation

every 24 hours.

Much more information on GPS can be found in, for example, [1, 70, 93].

1.2 Thesis Outline

The objective of this thesis is to provide a performance analysis of the acquisition

of weak GPS signals. We define any signal received below the stated minimum

open air received power of −160 dBW [2] as a weak signal. In particular, efforts

are focused on the analysis of parallel architectures for fast acquisition.

In Chapter 2, a comprehensive review of the current state of the art in weak

signal acquisition is presented. A detection and estimation theoretic exposition is

given and, returning to the original motivations for traditional receiver designs,

it becomes apparent why these designs are ineffective when signals are weak and

some alternative strategies emerge. In this chapter our model of the acquisition

problem is defined. We divide acquisition into two stages:

1. The detector/estimator, which is a decision making device returning a deci-

sion on whether or not a GPS signal is present at the receiver antenna and,

subsequently, estimating the received signal parameters if signal is deemed

to be present.

6



1.2. Thesis Outline

2. The acquisition process, which controls the detector/estimator, determining

which parameter estimates are to be tested and in what order.

The remainder of the thesis addresses the analysis and modelling of these two

components. Four detector/estimator forms are considered in this thesis:

1. The maximum likelihood (ML) detector, which is the optimal detector in

the absence of unwanted signal effects, such as data modulation and code

Doppler [58].

2. The noncoherent combining detector (NCCD), which is commonly employed

in traditional receiver architectures to counteract the deleterious effects of

data modulation during acquisition.

3. The differentially coherent combining detector (DCCD), which has recently

been examined in the literature due to its seeming superiority over the

NCCD when power levels are low (see [15, 40, 112], for example).

4. The differentially coherent detector (DCD), which is another differentially

coherent technique, substantially different to the DCCD and also the sub-

ject of recent interest [28, 113].

Our treatment begins with an investigation of the detector/estimator. A

thorough treatment of the effect of unwanted signal parameters on the detec-

tor/estimator is given in Chapter 3. A number of new expressions are derived,

particularly in relation to the combined effects of data modulation and Doppler

shift on the NCCD and DCCD. A novel treatment of code Doppler effects is also

given, and it is demonstrated that the apparent power attenuation due to code

Doppler can actually exceed that due to carrier Doppler when dwell times are

sufficiently long. The DCD is demonstrated to be particularly robust in the face

of data modulation and large Doppler offsets (of the order of 20 kHz).

Having considered the effect of signal on the detector/estimator in Chapter 3,

the influence of noise is examined in some detail in Chapter 4. The stochastic

nature of the noise necessitates a statistical analysis of acquisition performance.

The statistics of the NCCD are well known, the most important results are sum-

marised in Section 4.2. The DCCD and DCD are less well studied, however, and

so a novel approach was adopted in the treatment of these differentially coher-

ent techniques under a common framework. The key results include expressions

7



Chapter 1. Introduction

for the probability density function (PDF) and cumulative distribution function

(CDF) of the decision statistic in the absence of signal. It is demonstrated in

Section 4.3.1 that the decision statistic follows a distribution commonly referred

to as the K-distribution [63]. Unfortunately, no equivalent closed form analytic

expression has been found for the signal plus noise case. In this case a new ap-

proximation, based on the central limit theorem, is derived and shown to be more

accurate than an existing Gaussian approximation.

Utilising the results of the preceding sections, a performance comparison of

the various detector/estimator forms is given in Section 4.4.2. It is demonstrated

by numerical simulation, that the NCCD is the best choice of detector/estimator

when signal power is relatively high (C/N0 > 38 dB-Hz), but that the DCCD

displays superior performance in weak signal situations (C/N0 ≤ −38.8 dB-Hz).

A new union bound on the maximum probability of detection for the parallel

form of the NCCD is also derived. In addition, some limitations on the use of

Gaussian approximations when analysing parallel architectures are noted.

The final chapters of the thesis treat the acquisition process. In Chapter 5,

the performance of the search mode is analysed in terms of the time taken to

detect a satellite signal, called the time to first hit, TFH . New expressions for

the mean and variance of this quantity are derived using matrix methods for the

Markov chain model. These expressions are subsequently used in the numerical

optimisation of the receiver parameters. The models developed are quite simple

and equally applicable for all forms of detector/estimator discussed in this thesis.

Finally, in Chapter 6, the effects of unknown power levels and multiple satellites

are considered. A new technique for the detection of MAI, referred to as the

power level detector, is introduced and a Gaussian model is developed to predict

its performance. The acquisition of GPS signals when the received power level

is unknown is considered in Section 6.2. We propose an approach whereby the

power level is treated as a signal parameter to be estimated. The range of possible

values for the power level defines an uncertainty region, which is subsequently

discretised. This adds a third dimension to the signal search process (the first

two being the time delay and Doppler frequency offset), which can be analysed

in the same manner as was applied to the two dimensional search process of

Chapter 5. This approach, used in conjunction with the newly proposed power

level detector, permits the fast, reliable acquisition of GPS signals of unknown

received power levels in the presence of MAI.
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1.2. Thesis Outline

All the results derived in this thesis have been verified by Monte Carlo sim-

ulation. The acquisition of weak signals necessitates the use of extended dwell

times, which in turn leads to longer simulations. To speed up the simulation

process the entire system was modelled on a computer cluster consisting of 100

processors.
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Chapter 2

Acquisition of DS/CDMA

Signals: A Review

The Global Positioning System (GPS) is a direct-sequence code division multi-

access (DS/CDMA) system. In this chapter we present a detailed overview of the

existing work on the topic of DS/CDMA signal acquisition. In this manner we

introduce the concepts, notations and conventions used throughout this thesis.

An excellent overview of CDMA can be found in [123], including a detailed

historical review of the development of the field. For GPS signal processing,

[93] is generally considered to be the standard reference, though it is lacking in

detail on acquisition aspects. More information can be found in [70], particularly

on verification strategies as they apply to the GPS acquisition problem. For a

software-based approach [137] is a good source, though it is primarily procedural

in its descriptions, focusing on the “hows” rather than the “whys” of GPS signal

processing.

The following treatment differs slightly from the more standard introduction

to the problem. Here we focus on an estimation-theoretic exposition: beginning

with a GPS signal model, we describe signal acquisition as a parameter estimation

problem and proceed with the analysis of acquisition strategies using the standard

tools of the theories of estimation and detection.

2.1 Signal Model

The GPS signal model adopted in this thesis is simplified in a number of ways,

thereby permitting a tractable theoretical analysis. The noise is assumed to
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be a zero-mean additive white Gaussian noise (AWGN) process. In reality the

noise will be neither Gaussian nor white, however the Gaussian approximation is

justified by the central limit theorem, and is found to be accurate in practice. In

addition we ignore the effect of the front-end filter. In practice the front-end filter

limits the bandwidth of both the signal and noise components in the receiver. In

addition, the sampled band-limited noise process is not white, as successive noise

samples are correlated. Thus, the white noise assumption is an approximation

only.

Under the above assumptions, the complex baseband signal model at the input

to a GPS receiver can be represented by:

r(t) =
∑

i∈Ssv

√
Pi(t)

2
di

(
ti(t)

)
ci

(
ti(t)

)
exp (j (ω0ti(t) + φi)) + n(t), (2.1)

where Ssv is the set of all satellites in view, Pi(t) is the received instantaneous

signal power from satellite i, di(t) is its data signal, ci(t) is its pseudo-noise (PN)

code signal, φi is its initial carrier phase offset, ω0 is the L1 carrier frequency

(2π × 1575.42 Mrads−1), n(t) is the noise on the received signal and ti(t) is a

function incorporating time delay and Doppler shift on the signal from satellite

i.

In general, ti(t) is an arbitrary function of t, where t denotes GPS time.

However, a simple, first order approximation is given by:

ti(t) = (1 + ηi)t − τi, (2.2)

where ηi is the time dilation coefficient due to the Doppler effect and τi is the

time delay due to the transit time between transmitter and receiver. The Doppler

effect is essentially a time dilation/contraction effect caused by the relative motion

between the transmitter and receiver along the direction of propagation of the

radio wave. The Doppler dilation coefficient is defined by [17, Equation (4)]:

ηi = −u · (vi − vu)
c

, (2.3)

where x · y denotes the dot product of the vectors x and y, vi and vu are the

velocity vectors of the ith satellite and the user respectively, u is the unit vector

along the line of sight between transmitter and receiver and c is the speed of
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2.1. Signal Model

light. Thus, if two events in the transmitted signal are separated by T seconds,

then they will be separated by T × (1 + ηi) seconds when the signal reaches the

receiver. This effect is most commonly associated with a frequency shift on the

carrier signal, given by:

exp (jω0t(1 + ηi)) = exp (j (ω0 + ω0ηi) t) = exp (j (ω0 + ωdi) t) .

The Doppler frequency shift between the receiver and satellite i is, therefore, given

by ωdi = ηi ω0. It is important to remember, however, that the Doppler effect

is not limited to this carrier frequency shift: all transmitted signal components

which are functions of time are also affected. Thus, the signal may be said to

suffer from three Doppler effects; namely carrier Doppler, code Doppler and data

Doppler.

The time delay τi is given by:

τi = NCATCA + ζTchip (2.4)

where NCA is the integer number of code periods occurring during the signal

transit time, TCA is the duration of the Coarse/Acquisition (C/A) code in sec-

onds, Tchip is the C/A code chip period in seconds and ζ is the code phase offset

measured in code chips and is a real number in the range [0, 1023).

For each satellite the PN code is a pseudo-random sequence of ±1 values,

called chips. The purpose of the PN code is two-fold:

1. It is this code that “spreads” the spectrum of the transmitted signal, as

the bandwidth of the PN code signal is much greater than that of the data

signal. This is what makes the GPS signal a DS/SS signal.

2. The code also introduces a form of multi-access communication known as

CDMA.

These codes are carefully chosen to fulfil this dual purpose. Firstly, they must

have very good pseudo-randomness properties. This ensures the codes are suffi-

ciently “noise-like” to spread the signal bandwidth effectively. This property is

reflected in the autocorrelation function of the PN code. A random noise process

has an autocorrelation function that is a delta function. For a PN sequence of a

given length L, the optimal approximation to random noise can be shown [46] to
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have an autocorrelation function, denoted R(τ), that is triangular about the zero-

delay point, and takes on a constant value of −1/L elsewhere (see Figure 2.1).

Such a sequence is called a maximal-length sequence (m-sequence). For the GPS

τ

1

-1/L

R(τ)

Figure 2.1: Autocorrelation Function of an m-sequence

signal, the bandwidth of the data-signal is approximately 100 Hz, whereas the

bandwidth of the spreading code is just over 2 MHz†. The power spectral density

(PSD) of the resulting spread-spectrum signal is well below the noise-floor, as

indicated in Figure 2.2 (note that this figure is not shown to scale).

2 MHz

100 Hz

N0

Despread Signal

Spread Signal

Figure 2.2: GPS Signal Bandwidths, Spread and De-spread

To provide multi-access communications, the PN codes must have very low

cross-correlation values. This allows the receiver to correlate the incoming signal

†We treat both the data signal and the spreading code as random sequences of ±1’s. The
power spectral density in each case is of form sin(x)/x. The bandwidths given above are the
main lobe widths, or null-to-null bandwidths, as indicated in Figure 2.2.
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with a locally-generated copy of the PN code for the satellite of interest: the

received signal component from that satellite will be de-spread when the received

and local codes are aligned, while those components from other satellites will be,

at most, partially de-spread.

For the GPS C/A signal, the codes chosen are length 1023 (= 210 − 1)

Gold Codes [45], which are a family of sequences providing a guaranteed maxi-

mum cross-correlation value at the expense of a slight degradation in the auto-

correlation function (relative to an m-sequence). In fact, for the length 1023 Gold

codes, the autocorrelation side-lobes and the cross-correlation values are limited

to the three values: 63/1023,−1/1023 and −65/1023, as illustrated in Figure 2.3

(not drawn to scale). Finally, the GPS signal is also modulated by a 50 bps data

t

1

R

-1/L

Figure 2.3: Autocorrelation Function for Gold Codes: Note that the cross-
correlation function is nearly identical in form, lacking only the main-lobe.

sequence. The modulation scheme is a simple binary phase shift keying (BPSK)

scheme, with D = 20 code periods per data-bit. The data modulation is syn-

chronous with the spreading code, so data-bit boundaries occur at the start of a

PN code sequence. At each data boundary we assume that there is a probability

of 0.5 of a bit transition occurring. A bit transition leads to a phase shift of π

rad, i.e. a change in sign.

2.2 Acquisition is an Estimation Problem

The purpose of the signal processing block of a GPS receiver is to demodulate the

data signal of interest, establish the signal transit time and Doppler offset from

that satellite and pass all this information to the navigation processing unit where

a navigation solution will be produced. From our signal model of Equation (2.1),
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and using Equation (2.2) to model the difference in timing between transmitter

and receiver, we see that, for a given satellite, the unknown signal parameters

are:

1. The satellite space vehicle number (SVN): i.

2. The code phase offset: ζi.

3. The Doppler frequency offset: ωdi.

4. The instantaneous signal power: Pi.

5. The data signal: di.

6. The initial phase offset: φi.

To obtain a position solution the receiver must be able to track the received

signal from a number of satellites, for a time duration that is sufficient to ensure

that reliable estimates of these parameters can be made. This process requires

synchronisation between the transmitter and receiver. This synchronisation is

usually achieved in two steps. The first step is a coarse synchronisation, which

we call acquisition, and the second step is a fine tuning process, usually called

tracking.

The acquisition problem can be formulated as a parameter estimation prob-

lem. Parameter estimation theory is a well-known and much researched topic in

the field of probability and statistics (see [54, 66, 111, 142], for example) and

defines a number of (goal specific) “optimal” approaches to the solution of the

acquisition problem. The approach is similar in each case: a signal is transmitted

by a source, with a set of parameters which we denote by the vector θt, where the

subscript t indicates that this is the “true” parameter vector, the estimator makes

a number, denoted N , of observations of the received signal from which is formed

the observation vector: r = {r0, r1, . . . , rN−1}. The parameter point θ̂ which

minimises some suitably chosen cost function is selected as the best estimate of

θt given r.

All key estimation techniques rely on knowledge of the PDF of the received

signal conditioned on the true parameters, which is denoted fr|θ(r | θ). This PDF

denotes the a priori probability of observing the vector r given that the signal

parameters are given by θ. Thus, fr|θ(r | θ) can be viewed as a function of r

parameterised by θ. Upon receiving the signal the problem is now inverted: we
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now know r, but do not know θ. In this case, we consider fr|θ(r | θ) to be a

function of θ parameterised by r. We say that fr|θ(r | θ) is a measure of the

likelihood that the true parameter vector is θ given that the observation vector

is r. For this reason, fr|θ(r | θ) is known as the likelihood function.

One form of optimal estimator is the minimum mean square error (MMSE)

estimator. Letting ε = θ̂ − θt denote the error between the estimated and true

signal parameters, then the MMSE estimator is that estimator which minimises

the mean square error, given by E
[
εTε

]
, where E[x] denotes the expected value

[92] of the random variable (rv) x and xT denotes the transpose of the vector x.

This estimator relies on having knowledge of the a posteriori distribution of the

true parameter vector given the observation vector which we denote fθ|r(θ | r).
In fact, it can be shown that the MMSE estimate is given by [111]:

θ̂MMSE = E[θ | r]. (2.5)

The MMSE estimator, therefore, provides, on average, the best estimate in the

mean-square sense.

A related estimator is the maximum a posteriori (MAP) estimator. The MAP

estimate of θ is that estimate θ̂MAP maximising the posterior probability that

the estimate is correct, given that the vector r was received. The MAP estimate

is, therefore, given by the solution to the equation:

θ̂MAP = arg max
θ

fθ|r(θ | r). (2.6)

where max
θ

f(θ) denotes the maximum value of f(θ) as a function of θ and

arg max
θ

f(θ) denotes the argument of the function f(θ) when it takes on its

maximum value. The MAP and MMSE estimates of θt coincide if the expected

value and the peak of the a posteriori PDF coincide. While this will not be

the case in general, it does hold for any symmetric, uni-modal distribution, such

as the Gaussian. Whilst the MMSE and MAP estimates are derived based on

different optimisation criteria, they do coincide for certain types of a posteriori

distributions.

The difficulty with both MMSE and MAP estimation is the reliance on the

availability of fθ|r(θ | r). In practice, we normally have an expression for fr|θ(r | θ),
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and these two distributions are related by Bayes’ theorem [102, p. 20]:

fθ|r(θ | r) =
fr|θ(r | θ)fθ(θ)

fr(r)
. (2.7)

However, often we do not have expressions for fθ(θ) or fr(r), and this is indeed

the case in GPS signal acquisition. In such cases an alternative estimate, the

maximum likelihood (ML) estimate, is commonly used. As we have already seen,

the likelihood function of the parameter point θ is simply the a priori probability

of the received data signal r given θ. The ML estimate is, therefore, given by the

solution to:

θ̂ML = arg max
θ

fr|θ(r | θ). (2.8)

It is interesting to note that, under the condition that fθ(θ) is independent of

θ, the ML and MAP estimates are equivalent. Thus, when all the parameters

are uniformly distributed, the ML and MAP estimates are identical. Assigning

a uniform distribution to θ is, essentially, equivalent to having zero a priori

information about θ.

In certain cases we may not be interested in estimating all of the unknown

parameters. For instance, in GPS signal acquisition, the initial phase offset φ is

unknown, but no attempt is made to estimate it. Such parameters are referred to

as nuisance parameters, and estimators are typically designed to be invariant to

the nuisance parameters. This is achieved by specifying the conditional likelihood

function, which depends on the nuisance parameters, then defining the likelihood

function to be the expectation of the conditional likelihood, with expectation

taken over the distribution of the nuisance parameters. Thus, letting ψ denote

the vector of nuisance parameters [66]:

fr|θ(r | θ) = Eψ
[
fr|θ,ψ(r | θ,ψ)

]
,

where Eψ[f(ψ)] denotes the expected value of f(ψ) with respect to the rv ψ,

and estimation proceeds as normal. We will consider nuisance parameters, and

ways to deal with them, in more detail in Section 2.3.

Having given this brief overview of estimation theory, it is worth pointing out

that the GPS signal acquisition problem differs from the pure estimation problem

in the following important ways:

1. In the acquisition problem we are never totally sure that the signal is actu-
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ally present, hence the problem is generally a combined detection/estimation

problem.

2. The acquisition problem is concerned with obtaining a coarse estimate of

θt. Hence, rather than trying to minimise the mean-square error, it would

usually be more appropriate to try to maximise the probability that the

error is within some predefined bound. This bound is normally determined

by the pull-in range [20] of the tracking loops.

3. Of particular importance in the acquisition problem is the time taken to

acquire the signal, denoted TACQ. In fact, much of the remainder of this

thesis will express the analysis of receiver performance in terms of TACQ.

In the estimation problems discussed earlier no importance was placed on

the time taken to make an estimate. TACQ is, of course, intimately related

to N , the number of samples observed and 1/Ts, the rate at which samples

are taken.

2.2.1 Estimation Theory and GPS

For the GPS acquisition problem the likelihood function is known and so an

ML estimation approach is taken. Considering Equation (2.1); assuming we are

interested in acquiring the signal from satellite k and k ∈ Ssv (i.e. the signal

from satellite k is actually present at the receiver antenna), then we can re-write

Equation (2.1) as:

r(t) =

√
Pk(t)

2
dk(tk(t))ck(tk(t)) exp (j (ω0tk(t) + φk))

+
∑

i∈Ssv
i6=k

√
Pi(t)

2
di(ti(t))ci(ti(t)) exp (j (ω0ti(t) + φi)) + n(t). (2.9)

Since, in practice, the signal power from each satellite is so low (≤ −160 dBW),

and the spectrum so broad (2 MHz null-to-null), then the total signal power

received from all satellites is still well below the noise floor†. Thus, the sum total

contribution from all the satellites that we are not interested in acquiring can be

†With 12 satellites in view, all of which are received with a signal power of −160 dBW,
the total signal power received is still about 4 dB below the total noise power in a 2 MHz
bandwidth, assuming a noise PSD of −203.8 dBW/Hz [140]
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modelled as an additional contribution to the Gaussian noise term n(t), resulting

in the following approximation to Equation (2.9):

r(t) =

√
Pk(t)

2
dk(tk(t))ck(tk(t)) exp (j (ω0tk(t) + φk)) + ñ(t) (2.10)

= sk(t) + ñ(t) (2.11)

where ñ(t) is a zero mean complex AWGN process with single-sided PSD N0

W/Hz. The observation vector r is formed by sampling r(t) at N time intervals

uniformly separated by Ts seconds such that:

r = [r(0), r(Ts), r(2Ts), . . . , r((N − 1)Ts)]
T ,

and so r has an N -dimensional complex Gaussian distribution. The likelihood

function is, therefore, given by† [54, Appendix B]:

fr|θ(r | θ) = π−N |C|−1 exp
(
−(r − µ)HC−1(r − µ)

)
, (2.12)

where xH denotes the combined operation of transposition and complex conju-

gation on the complex vector x (often called the Hermitian transpose), C is the

N × N covariance matrix of the Gaussian noise samples defined by:

C
∆
= Er

[
rrH

]
, (2.13)

|C| denotes the determinant of C and µ is the vector of mean values µ = E[r].

Note that µ is equal to the vector of signal components sk, defined in Equa-

tion (2.11):

sk = [s(0), s(Ts), s(2Ts), . . . , s((N − 1)Ts)]
T .

Note that the variable µ contains all the information relating to the parameter

vector θ: µ = sk(θ).

We assume that the noise samples in the I and Q channels are mutually

independent with variance σ2, so that the covariance matrix is given by C = σ2I,

where I denotes the N×N identity matrix. The likelihood function can, therefore,

†This complex distribution should be viewed as a short-hand representation of the joint
PDF of the in-phase and quadrature components, rather than as a true PDF. For example, one
cannot compute the (meaningless) probability Pr {r < w} by performing a complex integration
of Equation (2.12) over the region of N -dimensional complex space for which r < w.
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be written:

fr|θ(r | θ) = π−Nσ−2N exp

(−1

σ2
(r − sk(θ))

H(r − sk(θ))

)
. (2.14)

Given that σ2 is known, maximising the likelihood function is equivalent to max-

imising (note the presence of the minus sign on the left hand side):

−(r − sk(θ))
H(r − sk(θ)) = − |r|2 − |sk(θ)|2 + 2<{r · sk(θ)} , (2.15)

where <{z} denotes the real part of the complex number z. The term |r|2 is

unaffected by our estimate, and so we can reduce the ML estimation problem to

the determination of that vector θ̂ which maximises the metric†:

Dk(θ) = 2<{r · sk(θ)} − |sk(θ)|2 , (2.16)

which we refer to as the decision statistic for satellite k. In general, we denote by

Dk the decision statistic for satellite k, whatever form that decision statistic may

take. The metric above consists of two components, the first is given by twice the

real part of the correlation between the observation vector and the signal vector,

the second is a measure of the energy in the signal vector, and can be viewed as a

biasing term. The first component is our first encounter with what we will refer

to as a correlative form. We will see that, in general, the optimal estimator or

detector can be expressed through some metric involving the correlation of the

received signal and the known form of the signal to be detected/estimated.

Hurd et al. [58] were perhaps the first to investigate an estimation theoretic

approach to the GPS signal, though this work focused on tracking rather than the

acquisition problem and was applied to the P-code‡ rather than the C/A-code.

As a result, the authors do not consider the effects of data modulation. The

signal parameters are therefore: the code phase offset ζ, the Doppler offset ωd,

the signal power P and the initial carrier phase offset φ. The desired parameter

space is the two-dimensional space with elements θ = [ζ, ωd], while the nuisance

parameter space is the two-dimensional space with elements ψ = [P, φ]. The ML

estimate of the true desired parameter vector, θt, is shown in [58] to be given by

†This metric is essentially equivalent to a discrete form of [58, Equation (2.10)].
‡The P-code is a restricted access military code which is transmitted along with the civilian

C/A-code. The P-code has a chip-rate ten times the C/A-code rate, and a period of one week.
We do not consider it further in this thesis.
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θ̂ =
[
ζ̂ , ω̂d

]
, such that the expression [58, Equation (2.15)]:

∣∣∣∣
∫ NTs

0

r(t)ck(t − ζ̂Tchip) exp (−jω̂dt) dt

∣∣∣∣
2

is maximised. This result corresponds to an analogue receiver, the discrete-time

equivalent is given by the metric:

Dk(θ) = |r · sk(θ)|2 , (2.17)

where, in this case:

sk(θ̂) =
{

ck(nTs − ζ̂Tchip) exp (−jω̂dnTs)
}

n=0,1,...,N−1
.

Note that this metric differs from that in Equation (2.16) above. This differ-

ence arises due to the averaging over the nuisance parameters (P and φ). Note

that the metric of Equation (2.17) is independent of the both the received signal

power |sk|2 and the phase of the received signal, φ. This metric again exhibits

the correlative form, though, in this case, the square magnitude of the correlator

output is taken. The maximum likelihood (ML) estimate of [ζt, ωdt] is obtained

by maximising the metric of Equation (2.17), under the conditions that both the

Doppler offset and the received signal power are constant over the observation

interval. Note that, in the presence of fading or data modulation†, this estimator

is no longer optimal in the maximum likelihood (ML) sense. It is also interesting

to note that the metric is independent of the received signal power, P . The same

receiver can be used to provide the ML estimate θ̂ML, irrespective of the received

signal-to-noise ratio (SNR). Of course, we would expect that the estimator per-

formance, in terms of the mean square error, will degrade for decreasing SNR. As

the SNR decreases the length, N , of the observation vector must be increased to

maintain estimator performance. Thus, the acquisition time, TACQ, will increase

as the received signal strength decreases.

In practice, the authors of [58] implement what they term an approximate

maximum likelihood estimator (AMLE), in which the function Dk(θ) above is

evaluated over a finite grid in the uncertainty space. The AMLE simply chooses

†Sudden phase changes due to data bit transitions can be thought of as impulses in the
Doppler domain.
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that point in the grid for which the metric is a maximum as an approximation

to the ML estimate. This is a common approach in the acquisition of DS/SS

signals, since, as previously mentioned, a high degree of accuracy is generally not

required at this stage.

In [25], Chawla and Sarwate define an optimal estimator of the code-phase

offset, ζ, for a general DS/SS system under the assumption that the Doppler

offset, ωd, equals zero and the signal of interest is free of data modulation. The

desired parameter space is, therefore, one dimensional, θt is a scalar and there

are no nuisance parameters. The Chawla/Sarwate optimal estimator is based

on the MAP estimator above (see Equation (2.6)) but, rather than maximising

the a posteriori probability density, the probability that the estimate is within a

certain range of θt is maximised. In addition, this estimator operates, not directly

on the received signal r, but rather on the correlation of the received signal and

the PN code of the signal of interest. Given that the tracking loop pull-in range

is given by ∆†, the Chawla/Sarwate optimal estimate is given by:

θ̂CS = arg max
bθ

∫ bθ+∆

bθ−∆

fθt|x(u | x)du, (2.18)

where x is the vector of correlator outputs at whole-chip intervals in the code-

phase dimension. It is interesting to note that, whereas the correlative form arose

naturally in the ML estimator of Hurd et al., Chawla and Sarwate assume the

correlative form as a starting point for their estimator.

The Chawla/Sarwate estimator has a number of drawbacks: 1) it is computa-

tionally intensive, involving the determination of the local extrema of a polyno-

mial function, followed by the evaluation of terms involving the Gaussian integral

at these local extrema to determine the global extremum; 2) it is not readily exten-

sible to the case of unknown Doppler offset, as the a posteriori PDF is generally

not available in this case. The authors consider a number of simplifications to

counter these difficulties. Firstly, the search space is discretised, this is exactly

the same approach as taken by Hurd et al. Secondly, the estimate is also discre-

tised, thereby effectively transforming the problem from an estimation problem

to a detection problem. The probability that the signal resides in each cell is

calculated and the cell with the maximum probability is chosen as the true cell.

†If the initial code phase offset error is greater than ∆, the tracking loop will not converge
on the true code phase offset.
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A simplified form of this estimator is implemented by simply choosing that value

of l such that the metric xl+xl+1 is maximised, where xl denotes the lth correlator

output. This last approach is called the locally optimum detector.

This approach was expanded on by Srinivasan and Sarwate [129], where a

simple approximation to the optimal estimation scheme is considered. In this

case the maximum output of the correlator is selected l∗ = arg maxx where,

again, x is the vector of correlator outputs, and an improved estimate of the true

code-phase offset is obtained by the interpolation formula:

ζ̂ = l∗ +
xl∗+1 − xl∗−1

2 (2xl∗ − xl∗−1 − xl∗+1)
.

2.2.2 Practical Considerations

Whilst the DS/SS signal acquisition problem is fundamentally an estimation prob-

lem, this approach was adopted at a comparatively late stage in the topic’s history.

This is primarily due to the excessive hardware and computational requirements

of the estimation theoretic approach. In practice, signal acquisition is usually

implemented as a signal detection problem. We will discuss detection theory and

its application to this problem in the next section. Initially, however, we high-

light some of the practical issues which arise in both the detection and estimation

approaches.

We have seen (Equation (2.16)) that the correlative form arises in the general

problem of ML estimation, and we will see in the next section that this form arises

also in the context of the detection problem. In practice, this can be implemented

in one of two ways:

1. Correlator receiver: the received signal is cross-correlated with all possible

vectors sk(θ) and the argument of the maximum value is chosen as θ̂ML.

2. Matched filter receiver: for each possible θt the received signal is passed

through a filter matched to sk(θt), and again the argument of the maximum

value is chosen as θ̂ML.

From an implementation perspective, the correlator receiver is a very simple ar-

chitecture to implement, requiring very little circuit area. The matched filter

approach is more complex, but has a much faster decision rate. The correlator

architecture makes one decision for every N samples input, whereas the matched
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filter requires N samples to start, but can make a decision at every sample there-

after. Traditionally, matched filtering has not been implemented for GPS re-

ceivers, though interest has been increasing of late, particularly in relation to

the modernised and military signals [33]. Nonetheless, we focus on the active

correlator architecture in the remainder of this thesis.

One major difficulty with the ML receiver architecture is that θt is a continu-

ous variable and, hence, can take on an infinite number of values. The maximum

likelihood estimate is made by evaluating the metric Dk(θ) at all possible values

of θ and choosing that value θ̂ that maximises the metric. If θ is a continuous

variable, this would require evaluating the metric at an infinite number of points.

As we have already seen for both the Hurd/Statman/Vilnrotter and Chawla/

Sarwate estimators, this difficulty is easily overcome using the sampling theorem

[102]. In practice, a discrete number of correlator (or matched filter) outputs are

calculated, usually evenly distributed through the parameter space Θ. By the

sampling theorem, the value of the metric Dk(θ) can be reconstructed from these

correlator outputs provided that, for every dimension in Θ, the frequency of sam-

ples in that dimension is greater than twice the maximum frequency component

of Dk(θ) in that dimension. Thus, the outputs of a finite number of correlators

can be used to determine the maximum likelihood estimate θ̂ML.

This discretisation is demonstrated in Figure 2.4, where a two dimensional

search grid is shown. The true parameter vector is

θt = [ζt = 233chips, ωdt = −879Hz]

and the correlation function has been formed over 2ms of samples with 2048

samples† per ms. There are a total of 2048 points in the code-phase dimension

and 40 points in the Doppler dimension, for a total of 81, 920 correlator outputs.

The ML estimator uses information from all these points to determine the optimal

estimate of θt. Clearly, this represents a significant computational requirement.

A second practical issue is the choice of the spacing of the sample points in

the parameter uncertainty space. To determine the distribution of samples of

Dk(θ) required to make a reasonable estimate of θt, we consider the functional

relationship between the correlator outputs and the received signal in the absence

†The number of samples has been specifically chosen to be a power of 2 to facilitate the
use of the fast Fourier Transform in the computation of the correlation function. This will be
discussed in more detail in Section 2.4.4.
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Figure 2.4: The acquisition grid for a simulated signal with C/N0 = 43.8 dB-Hz
and 2 ms coherent integration. The true code phase is 233 chips and the true
Doppler offset is −879 Hz.

of noise. This relationship is illustrated graphically in Figure 2.5. Again, we

consider the two dimensions [ζ, ωd]. Since we are primarily interested in having

sufficient samples of Dk(θ) in the vicinity of θt, we consider the following two

cases:

1. Given ωd = 0, we look at the metric as a function of ζ: Dk(ζ | ωd = 0)

2. Given ζ = 0, we look at Dk(ωd | ζ = 0).

Initially we consider sampling in the code phase domain. Our metric calculates

the correlation of the received signal with the local code, and we have seen in

Section 2.1 that the auto-correlation function of Gold codes is triangular about

the zero delay point. A sample spacing of 0.5 code chips is often chosen, as

this ensures the correlation peak is not missed. This is illustrated in Figure 2.6.

We denote by δζ the residual code-phase offset at the sample closest to the true

peak. This is a measure of the accuracy of our measurement. The sample spacing

may also be chosen for other reasons, for instance in the example of Figure 2.4

we chose a uniform sample spacing with 2, 048 samples per code period. This

represents a sample spacing of just under 0.5 chips. The reason for choosing this
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Figure 2.5: Normalised Correlator Output vs Code and Doppler Offsets in the
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Figure 2.6: Sampling in the Code-Phase Domain: ∆ζ = 0.5 chips

particular number is that it is an integer power of 2 (2, 048 = 211) and, hence,

the correlation function can be very efficiently calculated using the Fast Fourier

Transform (FFT) (this will be discussed in more detail in Section 2.4.4).

To determine a suitable sampling rate in the Doppler domain we consider the

effect of the residual Doppler offset, defined by δωd = ωd − ω̂d, on the correlator

output under the zero-noise assumption. It can be shown [133] that, in the

presence of a residual Doppler offset of δωd rad/s, the signal power at the output
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of the correlator is multiplied by an attenuation factor, denoted αD(δωd), where:

αD(δωd) =

∣∣∣∣
1

NsM

sin (δωdMNsTs/2)

sin (δωdTs/2)

∣∣∣∣
2

≈ |sinc (δωdMNsTs/2)|2 , (2.19)

M is the integer number of code periods in the correlation interval, Ns is the

number of samples per code period and sinc(x) = sin(x)/x†. This function is

plotted as a function of fd = δωd/(2π) in Figure 2.7. Recalling that the C/A code
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Figure 2.7: Sampling in the Doppler Domain: Samples every ∆fd = ∆ωd

2π
=

1
2MTCA

Hz= 1
2M

kHz.

period is TCA = 1 ms, then suitable choice of ∆ωd is 1
MTCA

Hz, which ensures a

maximum attenuation of about 4dB due to frequency sampling effects. Note that

the sampling is a function of M , and, for example, as the correlation period M

increases, the spacing of correlators in the frequency domain must be decreased to

compensate. Hence, making longer observations will necessitate the use of more

correlators. This relationship is linear; i.e. a K-fold increase in the observation

interval implies a K-fold increase in the number of correlators required to cover

the uncertainty region.

This is a significant problem for weak signal acquisition: to increase the sensi-

tivity of the receiver we increase the number of samples accumulated and, there-

†Note that sinc(x) is often defined as sin(πx)/(πx).
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fore, we must also increase the number of correlators used to cover the same

frequency uncertainty region. Thus, to acquire weak signals requires more time

and more hardware to maintain system performance levels.

2.3 Acquisition is a Detection Problem

Whereas in the previous section we have identified acquisition as an estimation

problem, here we consider acquisition as a detection problem. In other words, the

purpose of the acquisition unit is to detect whether or not a signal from a given

satellite is present at the receiver antenna. In reality, acquisition is a combined

detection/estimation problem. We begin with an overview of the basic concepts

of detection theory.

Binary Hypothesis Testing

The simplest problem in detection theory is called the binary hypothesis test

[54, 66, 111, 142], and is a useful example to illustrate the principle of detection.

Consider an information source which can output one of two possible choices, as

illustrated in Figure 2.8. In the simplest case, the two possibilities are that the

source either produces no signal, or it produces some signal with a known form.

This signal is passed through a channel and the result is the input to the decision

making device, or detector. The purpose of the detector is to determine which of

Source Channel Detector

H1

H0

r

Figure 2.8: Binary Hypothesis Detector Model

the two choices was output by the source. The detector must, therefore, choose

between two hypotheses : the first hypothesis is called the null hypothesis and is

denoted H0, this is usually associated with the hypothesis that the source did

not output any signal. The second hypothesis is termed the alternate hypothesis,

denoted H1, and is usually associated with the hypothesis that the source did, in

fact, output a signal. The detector will, therefore, make one of two decisions :

• D0: The decision that H0 is true,
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• D1: The decision that H1 is true.

Thus, there are four possible outcomes to the simple binary hypothesis test,

as tabulated in Table 2.1.

True Hypothesis
Decision H0 H1

D0 Correct Rejection False Dismissal
D1 False Alarm Correct Detection

Table 2.1: The Four Possible Outcomes of a Binary Hypothesis Test

To determine the “optimal” detector we assume that the detector receives as

input N observations of the received signal which together form the observation

vector r. The set of all possible vectors r forms an “observation space”, denoted

R. The detector divides the observation space into two distinct regions, R0

and R1, and the decision is made as follows: if r ∈ R1 then the decision D1

is made, if r ∈ R0 then the decision D0 is made. The detector performance

is, therefore, entirely dependent on how the regions R0 and R1 are chosen, and

can be measured by four parameters (corresponding to the four outcomes of

Table 2.1):

1. Pd: the probability of correct detection.

2. Pfa: the probability of false alarm.

3. Pm: the probability of a miss (probability of false dismissal).

4. Pr: the probability of correct rejection.

These probabilities are easily seen to be given by:

Pd =

∫

R1

fr|H1(x | H1)dx Pfa =

∫

R1

fr|H0(x | H0)dx

Pm =

∫

R0

fr|H1(x | H1)dx Pr =

∫

R0

fr|H0(x | H0)dx.

Optimisation criteria for the detector problem are determined by the degree of

prior knowledge available. We denote by P0 and P1 the a priori probabilities

that H0 and H1 are true, respectively. In situations where we have knowledge of

P0 and P1 it is common to apply Bayes’ criterion [142, p. 24] to the optimisation

30



2.3. Acquisition is a Detection Problem

of the detection problem. Here we assign “costs” to each of the four receiver

outcomes: denoting by Ci,j the cost of making decision Di given that hypothesis

Hj is true, Bayes’ criterion is to minimise the cost function (also called the Bayes’

risk):

C = C0,0P0Pr + C0,1P1Pm + C1,0P0Pfa + C1,1P1Pd. (2.20)

It can be shown [111] that fulfilling Bayes’ criterion is equivalent to performing

the test:
fr|H1(r | H1)

fr|H0(r | H0)

D1

≷
D0

P0 (C1,0 − C0,0)

P1 (C0,1 − C1,1)
, (2.21)

where this notation means: if the left hand side is greater than the right hand

side, choose D1, if the right hand side is greater than or equal to the left hand

side choose D0. The term fr|H1(r | H1)/fr|H0(r | H0) is called the likelihood ratio

of the vector r, denoted Λ (r), and, hence, the test is known as the likelihood

ratio test (LRT). In general, the LRT can be expressed as:

Λ (r)
D1

≷
D0

η, (2.22)

where η is known as the threshold of the test. Note that, even though r is an

N -dimensional vector of complex numbers, the optimal decision rule is a simple

comparison of two scalar quantities.

In situations where it is not possible to assign meaningful probabilities to

P0 and P1 the criterion used to optimise the decision is the Neyman-Pearson

criterion [142, p. 33]. In this case, the regions R0 and R1 are chosen to maximise

the probability of detection for a given probability of false alarm. Interestingly,

it can be shown that this test can again be expressed as an LRT. In this case,

the decision threshold η is chosen to achieve the design point Pfa. In fact, given

that we require Pfa ≤ α, the Neyman-Pearson threshold, denoted ηNP , is given

by the solution to:

α =

∫ ∞

ηNP

fΛ(r)|H0

(
Λ (r) | H0

)
dΛ (r) . (2.23)

The important thing to note about the Bayes and Neyman-Pearson detectors

is that they both result in the comparison of the likelihood ratio (a scalar) with

a single threshold. Indeed, it is easy to see that the same criteria can be met
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by comparing any monotonic function† of the likelihood ratio with a suitably

modified threshold. Any such scalar quantity is called a sufficient statistic for

the problem.

Both the Bayes and Neyman-Pearson detectors operate on the assumption

that exactly N observations of the received signal are made. This situation arises

frequently, for instance, in bit-decoding where a decision must be made in each

bit-interval. Thus, given that there are N samples in each bit-interval, the de-

tector will make its decision based on N observations of the received signal. This

type of detector is referred to as a fixed sample-size detector (FSSD). In certain

applications the signal observations arrive in a sequential fashion and there is no

limit on the observation interval. In this instance an alternate form of detector

may be used, known as a sequential detector.

The sequential detector makes a decision on the reception of each signal ob-

servation and the decision is based on all observations up to that point in time.

Thus, on reception of the nth observation rn−1, the detector makes a decision

based on the observation vector rn = [r0, r1, . . . , rn−1]. In addition to the two

decisions available in the FSSD, the sequential detector adds the third option:

• D?: The decision that we do not have enough data to be sufficiently sure

whether H0 or H1 is true.

The vector rn is an element of an n-dimensional space, which we denote Rn.

The sequential detector divides Rn into three regions: Rn0 ,Rn1 and Rn? . As

before, the decision is based on which region contains the observed vector. If

the detector makes a D? decision then a new observation sample is taken. This

process continues until either a D0 or a D1 decision is made.

Wald [144, 145] demonstrated that the sequential likelihood ratio test (which

he called the sequential probability ratio test (SPRT)) is optimal in the sense

that it requires the least number of samples, on average, of any possible detector

for a given Pfa and Pd. Despite this advantage, the average number of samples

required by the SPRT can be shown to be very sensitive to the SNR [96]. This

limits its applicability in the acquisition of GPS signals and we therefore consider

it no further here.

†A monotonic function is a function which is either non-increasing or non-decreasing over
its entire range. A monotonic function is most easily identifiable by the property that its first
derivative never changes sign.
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Composite Hypotheses

Thus far, we have assumed that the signal models under both hypotheses are

completely known by the detector. It often happens that the detector may know

the general form of the signal under each hypothesis, but the signal depends on

certain parameters that are unknown to the detector. In this case, the problem

is known as a composite hypothesis test, as the detector must decide whether the

received signal corresponds to one family of possible signals or another.

We denote by ξ the signal parameter vector and by Ξ the total signal param-

eter space. We assume that the received signal component has parameter vector

ξt ∈ Ξ. There are two possible approaches to the composite hypothesis test. The

first is to attempt to design a test which is independent of ξ. This may not always

be possible. The second approach is to make an estimate ξ̂ of ξ and design a test

that operates under the assumption that ξ̂ = ξt.

The first approach is only useful if we have no interest in what the actual

parameters are. We will, therefore, divide the parameter vector into two compo-

nents, as we did for the estimation problem. We denote by θ ∈ Θ the vector of

parameters that we would like to estimate (the desired parameters) and by ψ ∈ Ψ

the vector of nuisance parameters. Further, we assume that Ξ = Θ ∪ Ψ. Thus,

combining the two approaches mentioned above, the detector will implement a

test that relies on an estimate of θ, but is independent of ψ.

Considering firstly the design of a test independent of ψ, there are a number

of possibilities:

• ψ is a rv with a known distribution, fψ(ψ).

• ψ is an rv with an unknown distribution.

• ψ is not an rv.

When ψ is an rv with a known distribution, then the LRT can be used as before,

with [142, Equation (296)]:

Λ (r) =
fr|H1(r | H1)

fr|H0(r | H0)
=

Eψ
[
fr|H1,ψ(r | H1,ψ)

]

Eψ
[
fr|H0,ψ(r | H0,ψ)

] . (2.24)

Unfortunately, it may not be possible to evaluate the expectation operations in

closed form and, even if it is possible, the resulting expression will often not be

easy to implement [66].
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The latter two cases (when ψ is either an rv with unknown distribution or is

not an rv) can be treated together. In this instance, efforts to design a test that

is independent of ψ proceed on a more ad hoc basis. A common approach [111]

is to investigate the likelihood ratio (or any sufficient statistic) as a function of

ψ, and to try to derive a mapping, f(r), of the observation vector such that the

result is invariant to changes in ψ, i.e.:

∇ψΛ (f(r) |ψ) = 0.

From a signal-space perspective this is equivalent to projecting the true parameter

vector ξt onto the subspace Θ. The likelihood ratio test then becomes:

Λ (f(r))
D1

≷
D0

η(ψ).

Note that the left-hand side of this expression is independent of the nuisance

parameters. If the mapping f can be chosen such that the threshold η(ψ) is also

independent of the nuisance parameters, then the test is known as a uniformly

most powerful (UMP) test [142, Section 2.5]. This nomenclature comes from the

original statistical theory of binary hypothesis tests, where the quantity we refer

to as Pfa was known as the size of a test, and Pd was known as the power of a

test. A UMP test is a test of a given size whose power is greater than or equal

to the power of any other test of the same, or lesser, size.

ψ

Ψ

Θ

θ

ξ

Figure 2.9: Projection of ξ onto Θ

It is not always possible to derive a suitable mapping f(r), for instance con-

sider the abstract representation of f depicted in Figure 2.9. In this case, ψ is

orthogonal to θ and, therefore, f is achieved as the projection of ξ onto the plane
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Θ. However, in situations where Ψ and Θ are not orthogonal subspaces† of Ξ,

this projection will not be independent of ψ. In such cases one may still choose a

mapping such that the dependence of the likelihood function on the nuisance pa-

rameters is reduced, rather than completely eliminated. We shall see an example

of this approach in Section 2.4.3.

We have discussed a number of mechanisms for dealing with the nuisance

parameters ψ, but what of the desired parameters θ? This is the point at which

the theories of detection and estimation converge. A standard approach in this

instance is to estimate the desired parameters. If the ML estimator is used then

the resulting test is known as a generalised likelihood ratio test (GLRT) [142,

p. 92], and may be expressed as:

Λg (r)
∆
=

max
θ

fr|H1,θ(r | H1,θ)

max
θ

fr|H0,θ(r | H0,θ)

D1

≷
D0

η, (2.25)

where η, as before, is calculated using either the Bayes’ or Neyman-Pearson cri-

teria and Λg (r) is called the generalised likelihood ratio. This approach and its

variants are those most commonly employed in the acquisition of DS/SS signals.

2.3.1 Detection Theory and GPS

The acquisition of GPS signals can, therefore, be achieved through the formation

of a GLRT, as above. It can usually be assumed that, under H0, the distribution

of the received signal vector is dependent only on the noise parameter N0, which

can be estimated independently of the signal parameter vector. The generalised

likelihood ratio can, therefore, be written as:

Λg (r) = max
θ

fr|H1,θ(r | H1,θ)

fr|H0(r | H0)
(2.26)

= max
θ

Λ (r | θ) . (2.27)

Thus, acquisition consists of two components. Firstly, the likelihood ratio is

calculated for all possible parameter points in Θ, and the argument of the largest

value is chosen as θ̂. Secondly, the largest value of Λ (r) is compared to the

threshold η and, based on the result, a decision is made. The first component is

†Two vector spaces are orthogonal if every constituent vector of one space is orthogonal to
every constituent vector of the other.
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an estimation event and the second is a detection event. We, therefore, refer to

the fundamental operation of the acquisition process as the detector/estimator.

In practice, the search space is discretised which results in a two-dimensional

grid, denoted Θ∗, as shown in Figure 2.10. The total code phase uncertainty is

denoted T and the total Doppler uncertainty is given by Ω. Each element of the

θt ∈ Correct Cell

∆ωd

Ω

T

∆ζ

Figure 2.10: Discretised Two Dimensional Search Space Θ∗ for the Acquisition
Problem.

grid is called a “cell” and there are a total of C cells in the uncertainty region.

The likelihood function is evaluated at one sample point per cell (usually the

centre point of the cell), and the ML estimate, θ̂ML, is obtained by finding the

argument of the maximum of the reconstructed likelihood function. In reality, a

sub-optimal estimate is usually obtained simply by choosing as θ̂ the co-ordinates

of that cell for which the likelihood function is maximum.

To implement the GLRT, therefore, requires one correlator or matched filter

for every cell in the uncertainty region. In general, this is infeasible due to the

excessive hardware requirements of such an architecture. The standard approach

is to approximate the GLRT by serialising the detection process. In this case,

rather than calculating all points of the likelihood ratio function at once, it is only
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calculated for a subset Γ of Θ∗. A decision is then made on whether or not θt is in

Γ and a local approximation to the ML estimate of θt within Γ is returned. The

operation of the detector/estimator within Γ can then be described by Equations

(2.28) and (2.29):

θ̂ = arg max
θ∈Γ

Λ (r | θ) (2.28)

Λ
(
r | θ̂

) D1

≷
D0

η (2.29)

This is represented graphically in Figure 2.11 below, where we see that the detec-

tor/estimator covers a subset of the uncertainty space. We refer to this coverage

as a tile, and denote by CT the number of cells within a tile. The time spent in

each tile is called the dwell time and is denoted τD. The C cells of the uncertainty

∆ζ

T

Ω

∆ωd

Γ

Figure 2.11: The Detector/Estimator covers a subset Γ of the Uncertainty Region

region are thereby subdivided into NT tiles, each containing CT cells. We will

generally assume that the tiles are disjoint, so we have C = CT × NT.

The serialisation of signal acquisition necessitates the design of a “controller”

to guide the detector/estimator through the uncertainty space. We refer to the

37



Chapter 2. Acquisition of DS/CDMA Signals: A Review

operation of this controller as the acquisition process. Whereas the design of

the detector/estimator determines the dwell time and the probabilities of correct

detection, false alarm, etc. within a tile, the acquisition process determines the

order in which tiles are searched. We can consider the detector/estimator to be

in motion through the uncertainty space; the speed of motion is determined by

the detector/estimator dwell time, whilst the direction of motion is determined

by the acquisition process.

In Section 2.4 we will consider various forms for the detector/estimator, be-

ginning with the simplest form (which we call the single cell detector (SCD)), and

extending to various parallel architectures. In Section 2.5 we will look at existing

work on the acquisition process.

2.4 The Detector/Estimator

The optimal form of the detector/estimator (in the absence of data modulation)

was derived by Hurd et al. [58], and is referred to here as the ML detector. The

structure of this detector is illustrated in Figure 2.12. This single cell detector

calculates the metric of Equation (2.17) for satellite k and parameter estimate θ̂ =[
ζ̂ , ω̂d

]
. The parameters of this detector are: 1) the number of samples per code

ck(t − ζ̂Tchip)

| · |2

e−jcωdt

Dk(θ̂)
MNs−1∑

n=0

r(t)
Y

Figure 2.12: The ML Detector

period, which we denote Ns; 2) the number of code-periods coherently combined,

which we denote M and 3) the decision threshold, denoted VTh. We have assumed

that an integer number of code periods are used in the observation vector r, this

guarantees that the auto- and cross-correlation properties of the spreading codes

are maintained. We have also assumed an integer number of samples per code

period. If the detector metric Dk(θ̂) exceeds the decision threshold VTh, then a

“hit” is declared and θ̂ is chosen as the optimal parameter estimate.
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The detector performance is measured by the following three parameters:

• The probability of correct detection Pd. This is the probability that Dk(θ̂) >

VTh given that the estimate is sufficiently “close”† to the true parameter

vector θt.

• The probability of false alarm Pfa. This is the probability that Dk(θ̂) > VTh

given that the estimate is not sufficiently close to θt.

• The dwell time τD. This is the amount of time taken to make a decision

and is given by MTCA.

To determine Pfa and Pd requires knowledge of the statistical distribution of

Dk(θ) under H0 and H1, respectively. Considering initially the distribution under

H0, the input r(t) then consists of AWGN and the PDF of the observation vector

is given by (see Equation (2.12)):

fr|H0(r | H0) =
(
πσ2
)−MNs

exp

(
−|r|2

σ2

)
, (2.30)

where r is a length MNs vector of complex Gaussian random variables with in-

dependent real and imaginary components, σ2 = 0.5N0BIF, N0 is the single sided

noise PSD, and BIF is the two-sided IF filter bandwidth which we will assume

to be approximately equal to the sampling frequency fs = 1/Ts. Multiplying

r by the complex exponential exp (−jω̂dt) causes a rotation in the components

of r but does not affect its PDF‡. The combined effect of multiplying by the

spreading code and accumulating the result is to filter the observation vector, re-

sulting in a single complex sample Yk. This sample is formed as the sum of MNs

zero-mean complex random variables and, hence, is itself a zero-mean complex

random variable with variance σ2
Y where [102]:

σ2
Y = MNsσ

2. (2.31)

The decision statistic is then formed via:

Dk(θ) = <{Yk}2 + ={Yk}2 (2.32)

†The estimate must be within the pull-in range of the tracking loops.
‡The in-phase and quadrature components are assumed to be independent, hence the PDF

of r is circularly symmetric about the origin. Thus, it is invariant to rotation about the origin.
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This is the sum of the squares of two independent, zero-mean Gaussian random

variables. Thus, Dk(θ) has a central χ2 distribution with two degrees of freedom

[92], and its PDF is given by:

fDk(θ)|H0(x | H0) =





1

2σ2
Y

exp

(
− x

2σ2
Y

)
x ≥ 0

0 x < 0.

(2.33)

The probability of false alarm is then given by:

Pfa =

∫ ∞

VTh

fDk(θ)|H0(x | H0)dx

= exp

(
−VTh

2σ2
Y

)
. (2.34)

Under H1, r(t) contains both signal and noise components:

r(t) = sk(t) + n(t).

The complex observation vector r is, therefore, given by r = [r0, r1, . . . , rMNs−1]
T

and:

rn = sk,n + nn,

where, from Equation (2.10), and ignoring the effect of code Doppler, we have:

sk,n =

√
Pk(nTs)

2
dk(nTs)ck(nTs − ζtTchip) exp (j [ωdtnTs + φk]) . (2.35)

The input to the squaring device, Yk, is then a non-zero mean complex Gaussian

random variable whose PDF is given by:

fYk|H1(y | H1) =
1

πσ2
Y

exp

(
−|y − µ|2

σ2
Y

)
, (2.36)

where:

µ =
MNs−1∑

n=0

sk,nck

(
nTs − ζ̂Tchip

)
exp (−jω̂dnTs) . (2.37)

The decision statistic Dk(θ) has a non-central χ2 distribution with two degrees
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of freedom, non-centrality parameter λ:

λ
∆
= |µ|2 (2.38)

and PDF [92]:

fDk(θ)|H1(x | H1) =





1

2σ2
Y

exp

(
−x + λ

2σ2
Y

)
I0

(√
xλ

σ2
Y

)
x ≥ 0

0 x < 0,

(2.39)

where Iν (·) is the νth order modified Bessel function of the first kind defined by

[9, 13]:

Iν (x) =
∞∑

k=0

(
x
2

)ν+2k

k! Γ (k + ν + 1)
, (2.40)

where Γ(K) is the gamma function, defined by [13, Equation (11)]:

Γ (x) =

∫ ∞

0

exp (−t) tx−1dt, (2.41)

which, for x ∈ Z
+, is related to the factorial function by: Γ(x) = (x − 1)!. The

probability of detection, Pd, is given by:

Pd =

∫ ∞

VTh

fDk(θ)|H1(x | H1)dx

= Q1

(√
λ

σY

,

√
VTh

σY

)
, (2.42)

where QK (a, b) is the Kth order Marcum Q-function, defined by [102]:

QK (a, b) =

∫ ∞

b

x
(x

a

)K−1

exp

(
−a2 + x2

2

)
IK−1 (ax) dx, (2.43)

and the positive square roots are taken in Equation (2.42). It is common to

consider a normalised form, D̃k, of the decision statistic:

D̃k(θ̂) =
Dk(θ̂)

σ2
Y

. (2.44)

The probabilities of false alarm and detection can then be written, respectively,
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as:

Pfa = exp

(
−VTh

′

2

)
(2.45)

Pd = Q1

(√
γ,
√

VTh
′
)

, (2.46)

where γ = λ/σ2
Y is the SNR at the input to the squaring device and VTh

′ = VTh/σ
2
Y

is the normalised decision threshold.

Clearly, in this model, the threshold VTh sets Pfa and Pd. Increasing the

threshold causes both Pfa and Pd to decrease. Similarly, decreasing the threshold

causes both probabilities to increase. To increase Pd whilst keeping Pfa constant

requires a longer observation interval, i.e. M must be increased. Similarly, as the

received signal power level decreases, M must be increased to maintain constant

performance (in terms of Pfa and Pd).

The performance of this detector is heavily dependent on γ, the pre-detection

SNR. To examine the effect of the detector parameters on γ we consider the

following cases for the phase of the received signal, under the assumption that

the magnitude is constant:

1. The phase offset is constant and unknown.

2. There is a constant Doppler offset, which is also unknown.

3. The signal is subject to random phase reversals due to data modulation.

Phase offset is constant and unknown

In this case, there is no Doppler offset and the signal component of r is given by:

sk,n =

√
Pk

2
ck(nTs − ζtTchip) exp (jφk) . (2.47)

Assuming the code phase estimate, ζ̂, is correct, the non-centrality parameter, λ,

is then given by:

λ =

∣∣∣∣∣

MNs−1∑

n=0

√
Pk

2
exp (jφk)

∣∣∣∣∣

2

= 0.5(MNs)
2Pk. (2.48)
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The pre-detection SNR is then given by:

γ =
0.5(MNs)

2Pk

σ2
Y

(2.49)

= MNsγ0 (2.50)

where γ0 = Pk

2σ2 is the SNR at the receiver input. Hence, γ is linearly dependent

on the product MNs, for a given input SNR. A reduction of 10dB in the received

signal power requires an increase in MNs of 10dB for the same performance in

terms of Pfa and Pd. This can be achieved by increasing either M , Ns or both.

If there is a residual error in the code phase estimate of δζ chips then the

non-centrality parameter is given by:

λ =

∣∣∣∣∣

MNs−1∑

n=0

√
Pk

2
ck(nTs)ck(nTs − δζTchip)

∣∣∣∣∣

2

= 0.5(MNs)
2Rk(δζ)2Pk, (2.51)

where Rk(δζ) is the auto-correlation function of the spreading code for a code off-

set of δζ chips. This latter parameter can be modelled by the following triangular

function about the origin:

Rk(δζ) ≈





1 − |δζ| |δζ| ≤ 1

0 Otherwise.

The effect of the residual code phase offset can, therefore, be modelled as an

attenuation of the received signal power by a factor αs(δζ), where:

αs (δζ) = (1 − |δζ|)2 (2.52)

Now the maximum value of δζ depends on the sampling rate in the code phase

domain, as discussed earlier. Increasing Ns increases the number of samples per

code period and, hence, leads to a reduction in the maximum code phase offset

possible, denoted δζmax, where:

δζmax =
L

Ns

, (2.53)

where L = 1023 is the length of the GPS C/A code in chips. The effect of
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increasing Ns is three-fold: 1) the pre-detection SNR is increased, leading to an

increase in Pd for a given Pfa; 2) the maximum code phase offset in the H1 cell

is decreased, again increasing the post-detection SNR; 3) the number of cells in

the code phase uncertainty region is increased. This latter effect leads to an

increased computational requirement for acquisition which, in turn, results in

either a longer acquisition time, or greater area/power requirements.

Similarly, increasing M leads to increased receiver sensitivity at the cost of

an increased dwell time. This is illustrated in Figure 2.13, where the distribution

of the normalised decision statistic for the ML detector is shown.
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Figure 2.13: Distribution of the Decision Statistic for the ML Detector. The
decision statistic has been normalised by the noise variance at the input to the
squaring device. A received C/N0 of 43.8 dB-Hz is assumed.

At low received signal power it is common to increase M and to keep Ns

fixed. The increase in acquisition time is, therefore, linearly dependent on the

decrease in signal power. Alternatively, use can be made of adjacent samples of

the correlation function to generate a better approximation to the correlation peak

by interpolation. This approach was suggested, for instance, by Srinivasan and

Sarwate [129] for parallel estimation and by Yoon et al. [155] for serial detection.
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Constant Doppler offset

In the presence of a constant Doppler offset ωdt, the signal component of r is

given by:

sk,n =

√
Pk

2
ck(nTs − ζtTchip) exp (j [(ωdt − ω̂d)nTs + φk]) . (2.54)

Again, assuming that ζ̂ is correct, the non-centrality parameter λ is given by:

λ =

∣∣∣∣∣

MNs−1∑

n=0

√
2Pk exp (j [(ωdt − ω̂d)nTs + φk])

∣∣∣∣∣

2

= 0.5(MNs)
2Pk αD (δωd) , (2.55)

where δωd = ωdt − ω̂d and αD(δωd) is given in Equation (2.19). The important

thing to note about this attenuation factor is that it is primarily dependent

on M . Increasing M increases the detector’s sensitivity to Doppler offsets, as

discussed previously. Increasing M for a fixed Doppler uncertainty increases

the number of Doppler bins that must be searched, thereby increasing the overall

acquisition time. Recall that, from Equation (2.19), we saw that a suitable choice

of frequency domain sampling was one sample every 1
MTCA

Hz 1
M

kHz. Thus, given

a total frequency uncertainty of ∆F , there will be M∆F/1000 Doppler bins to

be searched. Thus, increasing M to increase the receiver sensitivity leads to a

corresponding (linear) increase in the size of the uncertainty region. We have

already seen that, in the absence of Doppler, the best strategy for coping with a

decrease in received signal power is to increase M . We now see that, not only does

this increase the dwell time per cell, it also increases the number of cells in the

uncertainty region. The acquisition time, therefore, increases approximately as

the square of the loss in signal power. In the following sections we will consider

some common techniques that attempt to alleviate this increase in acquisition

time.

In the presence of both code phase and Doppler offsets in the H1 cell a detailed

analysis would require consideration of the effects of code Doppler. The code

Doppler effect leads to a difference in chip rates between the local and received

codes. This can be partially accounted for by modifying the chip rate of the

local code to match the current Doppler frequency estimate ω̂d. Consequently,
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the local code should be generated as:

ck

(
t × (1 + η̂) − ζ̂Tchip

)
,

where η̂ = ω̂d/ω0 is the estimate of the Doppler dilation coefficient defined in

Equation (2.3). A residual code Doppler effect due to error in the estimate of the

Doppler dilation coefficient, denoted δη, where:

δη = ηt − η̂, (2.56)

will remain, however. This effect is usually negligible in comparison to the carrier

Doppler attenuation. For instance, if the Doppler bin width is chosen to be

1/M kHz, then the maximum residual Doppler offset in the H1 bin is 1/(2M) kHz.

The residual Doppler dilation coefficient is then given by δη = 500/M × 1/ω0,

where ω0 = 2π × 1.57542× 109 rad s−1, and so, in MTCA seconds the code phase

will have moved just δηLM = 1023×500/(1.57542×109) ≈ 3×10−4 chips, which

is negligible.

The effect of data modulation

As discussed in Section 2.1, the GPS signal is modulated by a 50 bps BPSK data

sequence. This leads to a data bit boundary every D = 20 ms. At each data

bit boundary there is a probability of 0.5 of a bit transition occurring (assuming

equiprobable binary symbols). A bit transition leads to a phase shift of π rad,

i.e. a change in sign. If a bit transition occurs during the coherent accumulation

period then a reduction in the pre-detection SNR will result. This is illustrated

in Figure 2.14, where we assume the bit boundary occurs a fraction δT of the

way through the observation interval (i.e. at a time δT MTCA seconds after the

accumulation begins). The non-centrality parameter λ is then given by:

++ + − −
− − + +−

δT MTCA (1 − δT )MTCA

Bit Boundary

MTCA s

Figure 2.14: Data Transition in a Coherent Integration Period of MTCA s.
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λ =

∣∣∣∣∣∣
±

dδT MNse−1∑

n=0

√
Pk

2
exp (jφk) ∓

MNs−1∑

n=dδT MNse

√
Pk

2
exp (jφk)

∣∣∣∣∣∣

2

≈ 0.5(MNs)
2 (1 − 2δT )2 Pk, (2.57)

where dxe is the nearest integer greater than or equal to x and the approximation

in the second step is due to the approximation dδT MNse ≈ δT MNs. The effect

of a data bit transition within the coherent integration period can, therefore,

be modelled as an attenuation of the received signal power by a factor αm(δT ),

where:

αm (δT ) = (1 − 2δT )2 . (2.58)

The average data attenuation, denoted αm, can be found by taking the average

probability of a transition occurring within the observation interval (i.e. M/(2D))

and averaging over 0 ≤ δT < 1, yielding the simple expression in Equation (2.59)

below [37, Equation (8-6)]:

αm ≈





1 − M
3D

M < D

D
M

(
1 − D

3M

)
M ≥ D.

(2.59)

From this we see that increasing M causes an increase in the average power

attenuation due to modulation effects. Note also from Equation (2.58) that the

worst case attenuation occurs when δT = 0.5, at which point the signal power is

completely eliminated. In this case, the detector design must be modified, since

signal detection is impossible.

Thus, we must address the following fundamental conundrum for the fast, re-

liable acquisition of weak DS/CDMA signals: to enhance receiver sensitivity we

must increase M , but, in so doing, we suffer the dual effect of both an increase in

the size of the uncertainty region (thereby increasing the acquisition time still fur-

ther) and an increase in the effective power attenuation due to data modulation.

In the following sections we summarise the most common techniques to overcome

these difficulties with weak signal acquisition, perhaps the most common of which

is the use of noncoherent combining.
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2.4.1 Noncoherent Combining

Noncoherent combining is a technique for increasing Pd for a given Pfa in the

presence of a randomly varying phase offset (due, for example, to a carrier Doppler

offset, or data modulation effects) at the receiver antenna. This approach dates

back to the early days of radar detection theory [83] and the detection of unknown

signals in noise [139]. It has found wide application in the acquisition of DS/SS

signals in the presence of Doppler offset and data modulation [24, 26, 27, 37, 105,

115, 134] and is also widely used in the acquisition of GPS signals [70, 137, 140].

Fundamentally, the NCCD is an energy detector. It operates by accumulating

a number, denoted K, of outputs from the ML detector discussed in the previous

section. The detector structure is illustrated in Figure 2.15. The receiver perfor-

| · |2

ck(t − ζ̂Tchip)

r(t)

e−jbωt

Dk(θ̂)
K−1∑

m=0

MNs−1∑

n=0

Ym

Figure 2.15: Noncoherent Combining Detector

mance parameters are, once again, the dwell time, τD, and the probabilities of

detection, Pd, and false alarm, Pfa, and are easily derived from the performance

parameters of the ML detector. The NCCD combines K sequential outputs from

the ML detector and so the dwell time is simply K times the dwell time of that

detector:

τD = KMTCA. (2.60)

Under hypothesis H0, the output of the ML detector was already seen to be a

central χ2 distributed rv with two degrees of freedom. From [92], we know that

the sum of K independent χ2 rvs with n degrees of freedom is itself a central

χ2 rv, with nK degrees of freedom. The distribution of the decision statistic

under H0 is, therefore, the distribution of a χ2 rv with 2K degrees of freedom

and variance of the underlying Gaussian distribution σ2
Y = MNsσ

2, given by:

fDk(θ)|H0(x | H0) =





1

2σ2
Y

1

Γ (K)

(
x

2σ2
Y

)K−1

exp

(
− x

2σ2
Y

)
x ≥ 0

0 x < 0.

(2.61)
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The probability of false alarm, Pfa, is then given by:

Pfa =

∫ ∞

VTh

fDk(θ)|H0(x | H0)dx

=
ΓK

(
VTh

2σ2
Y

)

Γ (K)
, (2.62)

where ΓK (x) is the complementary incomplete Gamma function of order K [13,

Equation (13)]:

ΓK (x) =

∫ ∞

x

exp (−t) tK−1dt. (2.63)

For notational convenience we introduce the function:

Γ̃K (x)
∆
=

ΓK (x)

Γ (K)
, (2.64)

which is sometimes called the regularised incomplete gamma function of order K

[150]. Therefore, we have Pfa = Γ̃K (VTh/(2σ
2
Y )).

Under hypothesis H1, recall that the output of the ML detector is a non-central

χ2 distributed rv with two degrees of freedom and non-centrality parameter λ.

Denoting by λm the non-centrality parameter of the mth output of the ML detec-

tor, then the metric Dk

(
θ̂
)

is a non-central χ2 distributed rv with 2K degrees

of freedom and non-centrality parameter (see Equation (2.38) for a definition of

λm):

λ =
K−1∑

m=0

λm. (2.65)

The distribution of Dk

(
θ̂
)

is then given by:

fDk(θ)|H1(x | H1) =





1

2σ2
Y

(x

λ

)K−1
2

exp

(
−x + λ

2σ2
Y

)
IK−1

(√
xλ

σ2
Y

)
x ≥ 0

0 x < 0,

(2.66)

where IK (·) is the modified Bessel function of the first kind of order K, as defined

by Equation (2.40). The probability of detection is given by:

Pd =

∫ ∞

VTh

fDk(θ)|H1(x | H1)dx
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= QK

(√
λ

σY

,

√
VTh

σY

)
, (2.67)

where QK (a, b) is the Kth order Marcum Q-function, as defined in Equation (2.43).

By increasing K, Pd can be increased for a given Pfa, or, equivalently, a lower

Pfa can be achieved for a given Pd. This comes, of course, at the expense of an

increased dwell time. It is worth pointing out that the increase in Pd that can

be achieved is much less than that achieved by using a longer dwell time in the

ML detector, provided there is no data modulation or residual Doppler offset. To

see the advantage of the NCCD it is necessary to consider its behaviour in the

presence of data modulation and Doppler effects.

Constant Doppler offset

If there is a constant residual Doppler offset δωd present at the input to the

coherent accumulator, then the non-centrality parameter of the NCCD will be

given by summing Equation (2.55):

λ =
K−1∑

m=0

0.5(MNs)
2Pk αD (δωd)

= 0.5K(MNs)
2Pk αD (δωd) . (2.68)

Note that the effective power attenuation induced by this offset is identical to

that induced for the ML detector. This means that, using the NCCD, we can

extend the observation interval without reducing the size of the Doppler bins.

This is the primary advantage of the NCCD.

Consider a simple example to illustrate this point: if the received SNR, γ, is

−26 dB, and a performance of Pfa = 1 × 10−5 and Pd = 0.9 is required, then

either an ML detector with M = 8 or an NCCD with M = 1 and K = 14 is

required†. But, with M = 8 there will be 8 times as many Doppler bins to be

searched, therefore a sweep of the entire uncertainty region would take 64 × TU

seconds, where TU is the time taken to sweep through the uncertainty region

when M = 1. The NCCD detector, on the other hand, can sweep through the

entire uncertainty region in 14 × TU seconds. So the NCCD can cover the entire

†In fact, these parameters will yield Pd = 0.93 for the ML detector, and Pd = 0.91 for the
NCCD so we are not exactly comparing like with like. The example is, however, illustrative of
the advantage of non-coherent combining.
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uncertainty region in less than a quarter of the time taken by the ML detector,

despite the fact that each individual dwell takes nearly twice as long. Note also,

however, that the ML detector will yield a much more accurate estimate of the

Doppler offset due to the narrower bin spacing required.

One point that is often overlooked is the effect of code Doppler. We previously

saw for the ML detector that code Doppler effects are negligible, due to the

inherent limit on the residual Doppler offset as the observation interval increases.

For the NCCD there is no such limit: we can increase the observation interval

by increasing K, which does not affect the maximum residual Doppler offset in

the H1 cell. Let ∆ζ denote the change in code phase offset during the coherent

observation interval due to Doppler effects. We have already seen that ∆ζ ≈
3× 10−4 chips, so the drift in ζ in one coherent subinterval is small. However, in

accumulating K of these coherent sub-intervals the total change in ζ is given by

K × ∆ζ. If K is large, say of the order of 103 (which is common for very weak

signals), then this code Doppler effect becomes significant. Code Doppler effects

are considered in [27].

The effect of data modulation

Within the observation interval there will be B data-bit boundaries, where:

B =

⌊
MK

D

⌋
or

⌈
MK

D

⌉
, (2.69)

depending on where the first boundary occurs†. In general, M < D and so

B < K. Thus, in one observation interval, there will be B coherent sub-intervals

containing bit boundaries and K −B sub-intervals without bit boundaries. Each

sub-interval is of duration MTCA s. Assuming that the ith boundary occurs a

fraction δT,i of the way through a coherent sub-interval, then the effective power

attenuation due to the data modulation is given by [26, Equation 12]‡:

αm = 1 − 1

K

B−1∑

i=0

ti ×
(

1 − (1 − 2δT,i)
2

)
, (2.70)

†If the first bit boundary occurs within the first (MK) mod D coherent sub-intervals there
will be dMK/De boundaries in total. Otherwise there will be bMK/Dc boundaries.

‡[26, Equation 12] is equivalent to Equation (2.70) under the substitutions: αm → G/J ,
K → J , B → Q, ti → ci and δT,i → 1/2 − ξi.
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where ti equals 1 if a bit transition occurs at the ith boundary (either from +1 to

−1 or vice versa), and equals 0 if no transition occurs.

It can also be shown [37] that the mean effective power loss is, once again, given

by Equation (2.59). In other words, the average effective power attenuation due to

data modulation depends only on M and is independent of K. Another interesting

point to note is that the worst case modulation attenuation occurs when: a)

there is a transition at every bit boundary, i.e. ti = 1 ∀ i, and b) each transition

occurs exactly half way through a coherent sub-interval,i.e. δT,i = 0.5 ∀i. From

Equation (2.70), this leads to the simple lower bound:

αm ≥ 1 − B

K
. (2.71)

So, whereas the worst case modulation attenuation for the ML detector resulted

in the complete elimination of the signal from the decision statistic, the NCCD

ensures a certain minimum signal power in the decision statistic, even in the

presence of worst-case data modulation. This is the second major advantage of

the NCCD over the ML detector.

In certain situations, such as weak signal acquisition, even the small modula-

tion loss incurred by the NCCD may by too great a price to pay. In such instances

efforts can be made to eliminate the modulation effects entirely. One approach is

to use multiple matched filter correlators, each matched to the PN code modu-

lated by a different data pattern [100]. This leads to a significant increase in the

hardware requirements of the detector when the observation interval is long. Psi-

aki [103] considered a similar approach for the GPS acquisition problem, which

he called the “Full-Bits Method”. In this case twenty detectors are implemented,

offset from one another by one code period. The maximum correlator output is

chosen as the test statistic. If this corresponds to the true parameter estimate

then it will also yield an estimate of the data bit transition time.

Another approach, also suggested in [103], is called the “Half-Bits Method”.

In this case only two correlators are implemented, offset from one another by ten

code periods. Each correlator, in effect, operates as an NCCD with M = 10,

operating on alternate 10 ms intervals. While this requires twice the amount of

time for the same performance as a standard NCCD detector, it has the advantage

that one of the correlators is guaranteed not to see any data transitions. The effect

of data modulation is, therefore, completely eliminated, at the cost of increased
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hardware and increased dwell times. Note also that M is fixed at ten, so the

frequency uncertainty region will contain ten times as many cells as for an M = 1

detector.

Another approach to the elimination of data modulation effects is to provide

information on the data through an alternate communications link. For mobile

telephony, a number of standards [3, 7] have been created to enable the provision

of assistance information from the base station to the mobile terminal.

2.4.2 Differentially Coherent Combining

The noncoherent combining detector works by ignoring the phase information

at the output of the coherent correlator. Thus, signal degradation due to phase

errors, such as Doppler offset and data modulation, is reduced. The DCCD oper-

ates by maintaining differential phase information between successive correlator

outputs. The basic principle is that there will be a high degree of correlation

between the phases of successive correlator outputs when the signal is present,

but they will be essentially independent under the influence of noise alone. De-

noting by Yr the rth output of the coherent correlator, the differentially coherent

product is formed as:

Zr = YrY
∗
r−1, (2.72)

where Y ∗ denotes the complex conjugate of Y . The DCCD forms a decision statis-

tic by accumulating a number (say R) of these differentially coherent products.

This is illustrated in Figure 2.16, where the decision statistic has been formed by

taking the square magnitude of the accumulator output.

MNs−1∑

n=0

*

e−jbωt ck(t − ζ̂Tchip)

∣∣∣∣∣

R∑

r=1

∣∣∣∣∣

2

Dk(θ̂)

z−MTCA

r(t)
Yr

Yr−1

Zr

Figure 2.16: Differentially Coherent Combining Detector: z−T denotes a delay of
T seconds, ∗ denotes complex conjugation.

This approach was originally suggested by Zarrabizadeh and Sousa [156] for

the acquisition of DS/SS signals. In [156] the authors considered a matched-filter
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receiver and only the simple case R = 1, i.e. only two successive samples are

differentially combined. In addition, the decision statistic was formed by taking

just the real part of Z, rather than the magnitude.

The performance parameters are again given by the dwell time τD and the

probabilities of false alarm Pfa and detection Pd. The dwell time is easily seen

to be 2MTCA. Under H0, the output of the coherent correlator Yr is a zero-mean

complex Gaussian rv with variance σ2
Y = MNsσ

2:

Yr = Yr,I + jYr,Q,

where I and Q denote the in-phase and quadrature components, respectively, and

so the decision statistic is given by:

Dk

(
θ̂
)

= Yr,IYr−1,I + Yr,QYr−1,Q.

The distribution of Dk

(
θ̂
)

is then given by [156, Equation (20)]:

fDk(θ)|H0(x | H0) =
1

2σ2
Y

exp

(
−|x|

σ2
Y

)
. (2.73)

The probability of false alarm is then given by:

Pfa =

∫ ∞

VTh

fDk(θ)|H0(x | H0)dx

=
1

2σ2
Y

exp

(
−|VTh|

σ2
Y

)
. (2.74)

The derivation of the statistics under the hypothesis H1 is more involved, but

the authors show that [156, Equation (33)]:

Pd =

∫ ∞

VTh

fDk(θ)|H1(x | H1)dx

=
1

π

∫ ∞

−∞
K0 (VTh

′ − τ) Ψ (τ) dτ, (2.75)

where Kν (·) is the modified Bessel function of the second kind of order ν, defined
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by [13, Equation (57)]:

Kν (z) = lim
p→ν

π

2

I−p (z) − Ip (z)

sin pπ
, (2.76)

Ip (z) is the modified Bessel function of the first kind, defined in Equation (2.40),

Ψ (τ) is defined by:

Ψ (τ) =
1 + erf

(
m√
2

)

4
− 1√

8π

∫ ∞

0

exp

(
−(y − m)2

2

)
erf

(−m + τ/y√
2

)
dy

and erf (z) is the error function, defined by [13, Equation (23)]:

erf (z) =
2√
π

∫ z

0

exp
(
−t2
)
dt. (2.77)

The authors of [156] demonstrate that, in the absence of data modulation and

Doppler shift, this detector outperforms the ML detector by up to 4–5 dB, in

terms of the mean acquisition time. The greatest improvement in performance is

at low SNR.

This approach was further analysed by Iinatti and Pouttu [59, 60]. In [59]

the authors study Doppler effects on the DCCD as defined by Zarrabizadeh and

Sousa, and also introduce what they term the “differential noncoherent (DNC)

detector”. This is similar to the detector of Figure 2.16, in that the decision

statistic is formed as the square magnitude of the accumulator output. Through

simulations, the authors show that the DCCD outperforms the ML detector in

the presence of Doppler. In [60], the authors extend their analysis to include the

effects of data modulation and jamming. Of particular interest is their approach

for mitigating the effects of data modulation. The differential statistic <{Z}
is compared with a threshold, if it falls below that threshold then Z is negated

before being passed to the accumulator. The purpose of this approach is to detect

data bits after differential processing and to eliminate them prior to accumulation.

The authors note that the presence of data modulation degrades the performance

of the DCCD, but that it still outperforms the ML detector.

Jeong et al. [65] take a more analytical approach, considering the DCCD in

the presence of fading for slot synchronisation in DS/CDMA communications

networks. Of primary interest in [65] is the methodology employed. Modelling
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the observation vector as a multi-dimensional complex Gaussian rv, the authors

use a characteristic function† approach, in conjunction with a result due to Turin

[138], to derive expressions for the distribution of the decision statistic under H0

and H1. The approach used in [65] provides the mechanism by which we obtain

the major result in this thesis in Chapter 4.

Shin and Lee [116] applied the results of [65] to the analysis of a system

incorporating a DCCD as the verification stage in a multi-dwell system with a

matched filter search stage. The authors demonstrate a modest improvement in

mean acquisition time relative to the NCCD detector.

More recently, related approaches have been considered in the context of GPS

signal acquisition [15, 16, 40, 112, 113]. It is interesting to note that the first

two DCCD-related papers for GPS were published within weeks of each other in

autumn 2004.

Elders-Boll and Dettmar [40] consider a parallel architecture for the DCCD

with estimation of the frequency offset, and fine code phase estimation based on

[25]. The authors then demonstrate that the DCCD outperforms the NCCD in

both the presence and absence of data modulation. The performance metric they

use is the probability of detection Pd, but they make no reference to thresholds

or Pfa. It would appear that they only evaluate the performance of the detector

within the H1 Doppler bin, and simply choose the maximum decision statistic as

the code phase estimate.

Schmid and Neubauer [112] presented an essentially identical system that

same month. This paper consisted of a more formal analysis of the DCCD per-

formance. The accumulator output is modelled as a Gaussian rv, in accordance

with the central limit theorem [92]. The decision statistic is then formed as the

square magnitude of this rv and, hence, has a χ2 distribution with two degrees

of freedom. Again the authors use Pd as a performance metric, demonstrating an

improvement in sensitivity over noncoherent combining, averaging about 1.5 dB,

i.e. the DCCD requires about 1.5 dB lower SNR to achieve the same (Pfa, Pd) as

an NCCD using the same dwell time. There is, however, a flaw in the Gaussian

approximation made in this paper. The author’s assume that the real and imagi-

nary components of the accumulator output can be modelled as independent rvs.

In Section 4.3.3 we shall demonstrate that this is not, in fact, the case and derive

a new, more accurate Gaussian approximation based on this result.

†See Appendix C.3 for a discussion of the properties of characteristic functions.
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Ávila-Rodŕıguez et al. [15, 16] have recently proposed a similar scheme. In this

case, the authors consider the accumulation of every second differential product,

and use only the real part as the decision statistic:

Dk

(
θ̂
)

= <





(R−1)/2∑

r=0

Y ∗
2rY2r+1



 . (2.78)

It is shown that the resulting rv can be expressed as the difference of two χ2 rvs.

Under H0 the decision statistic is distributed as the difference of two central χ2

rvs and hence the probability of false alarm is given by†:

Pfa =
1

2
R−1

2
√

πΓ
(

R
2

)
∫ ∞

VTh

|x|
R−1

2 KR−1
2

(|x|) d x. (2.79)

Under H1 the authors model the distribution of the decision statistic as the

difference of a non-central and a central χ2 rv. In Section 4.3.1, however, we shall

demonstrate that the decision statistic is, in fact, distributed as the difference of

two non-central χ2 rvs. It appears that no closed-form solution is currently known

for the distribution of the difference of two non-central χ2 distributions, but the

authors present a numerical technique for calculating Pd based on the Gil-Pelaez

inversion theorem [44]. In addition to the theoretical analysis of their system,

the authors also present a Monte-Carlo analysis. Whilst this system is shown to

outperform the NCCD detector for zero Doppler offset, its performance degrades

rapidly in the presence of Doppler shift. This is primarily due the use of only

the real part of the differential output in the decision statistic. In the presence

of a Doppler frequency offset, some signal power will inevitably move into the

imaginary component and, hence, will be lost to this detector. The authors also

note that the performance of their proposed detector is slightly less than that

predicted by theory, which is interesting in itself (this is due to the error in their

model under H1 discussed above, we will return to this in Section 4.3.1).

In summary, differentially coherent combining is a promising technique which

has been demonstrated to yield a 4–5 dB improvement in terms of the mean

acquisition time for high SNR [156]. To extend the approach for lower SNR,

a large number of coherent correlator outputs can be differentially coherently

†This interesting distribution was also discussed by Marcum [83, Equation (145)] in the
context of radar detection.
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combined. The analysis of such a system is difficult due to the correlation be-

tween successive differentially coherent products. A number of approaches have

been used to overcome this difficulty. Firstly, Jeong et al. [65] developed an

interesting mathematical technique based on some results on quadratic forms in

multi-dimensional complex Gaussian rvs. They did not confirm this analysis with

simulation, however. Secondly, Schmid and Neubauer [112] invoked the central

limit theorem to make a Gaussian approximation to the decision variable. Finally,

Ávila-Rodŕıguez et al. [16] proposed a modified form for which they were able to

derive an exact closed-form expression for Pfa and a simple numerical routine for

the determination of Pd. It is unclear whether this approach may be extended to

the analysis of the original form of the DCCD, although it seems unlikely due to

the difficulties introduced by the inter-dependence of the Zr terms.

An interesting point to note is that we can generalise the DCCD to allow for

different delay times. In Figure 2.16 the output of the accumulator is delayed

by MTCA s, prior to being conjugated and multiplied by the current output. A

generalised DCCD detector would use a delay of JMTCA s, where J is a non-

negative integer. In this way we can consider both the NCCD (J = 0) and DCCD

considered above (J = 1) to be special cases of a more general detector structure,

though we find that there is no benefit (at least in the cases considered in this

thesis) in increasing J above 1.

2.4.3 Differentially Coherent Detection

Differentially coherent detection† is another technique to counteract the effects of

Doppler offset and data-modulation. It is, in many ways, similar to the differen-

tially coherent combining technique discussed above, with the exception that the

differential product is taken prior to correlation. The general form of the DCD

is illustrated in Figure 2.17.

Originally proposed for GPS by Coenen and van Nee in 1992 [29], this ap-

proach takes advantage of the “shift-and-add” property of Gold codes [45] which

ensures that the sum‡ of a Gold code and a shifted version of that same Gold

†Also called differential decoding, pre-correlation differential detection and differential de-
tection.

‡Gold codes are sequences of integers modulo 2 (or, equivalently, sequences of elements of
the Galois Field GF(2) [140, Appendix B]). Prior to transmission each chip is mapped from
the field GF(2) to the field of real numbers R by the mapping {0, 1} → {+1,−1}, such that
addition in GF(2) is equivalent to multiplication in R.
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Xn

ck(t − ζ̂Tchip)
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*

Figure 2.17: Differentially Coherent Detector

code results in another Gold code from the same family. Hence, applying the

differential product to the received signal maps all the incoming Gold codes to

new Gold codes in the same family, provided that the delay is an integer multiple

of the chip period Tchip. To detect the signal from a given satellite the same

differential product must be applied to the locally generated code, as indicated

in Figure 2.17.

The advantage of differentially processing the received signal prior to corre-

lation is that the effects of Doppler offset and data-modulation are effectively

eliminated, whilst the auto- and cross-correlation properties of the signal are

maintained. The major disadvantage is that the noise power is significantly in-

creased prior to correlation.

In [29] the authors suggest the use of coherent accumulation to help mitigate

the loss in SNR due to differential processing. Their approach is very interesting,

relying heavily on the properties of the Gold codes. By storing one complete

code period of received data in a shift register, the authors use the shift-and-add

property to generate multiple (M) copies of the same Gold code, with the same

shift offset relative to the received code, from the same set of received data. These

M codes are coherently combined prior to correlation processing. Unfortunately,

due to the structure of the Gold codes, the choice of a suitable value for M is

limited to the single case M = 4, which provides a limited gain in SNR. However,

by combining this technique with the type of coherent combining demonstrated

in Figure 2.17, the pre-detection SNR can be increased still further. We consider

this approach no further in this thesis.

A form of DCD was also proposed by Chung in 1995 [28] for the acquisition of
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DS/SS signals in Rayleigh fading [102] channels. Chung considered only DS/SS

systems using m-sequences as the spreading codes. The analysis follows a pro-

cedure very similar to that used by Schmid and Neubauer [112] for the DCCD,

though it predates that work by almost a decade. The decision statistic is formed

as the real part of the accumulator output, and is modelled as a Gaussian rv,

again by invoking the central limit theorem. This approximation is shown to

be accurate for low input SNRs. Simulation results indicate that the DCD sig-

nificantly outperforms the NCCD in terms of mean acquisition time and that

the DCD is significantly less sensitive to Doppler offsets than the NCCD. The

system considered by Chung, however, consists of a matched filter (or a bank of

parallel matched filters) whereas active correlation is of greater interest in GPS

acquisition.

This differentially coherent approach was also considered for the GPS acqui-

sition problem by Lin and Tsui [81, 137], who refer to it as the “Delay and

Multiply” approach. The authors appear to have been unaware of the earlier

work by Coenen and van Nee, and Chung. This work was developed with the

aim of providing new acquisition algorithms for a software-based GPS receiver,

and focuses on issues associated with performing the differentially coherent pro-

cessing when the received data is a stream of real, rather than complex, numbers.

In a related work [82] the same authors suggest that, while the delay and mul-

tiply method is the fastest acquisition technique in high SNR environments, it

is incapable of acquiring weak signals. No formal analysis is presented in any of

this work, other than some results from the processing of real data. Also, the

authors use arbitrary time delays whereas, strictly speaking, the time delay must

be a multiple of the chip time to take advantage of the shift-and-add property of

Gold codes.

Finally, in a recent paper by Shanmugam et al. [113], the NCCD, DCCD and

DCD schemes are compared using actual “live” GPS signals. Again, considering

only the performance of the detector within a single cell, the authors demonstrate

that: 1) the DCD is significantly more sensitive to input SNR than either the

DCCD or NCCD; 2) the effects of Doppler shift, Doppler drift and data mod-

ulation on the DCD are negligible; and 3) the DCCD outperforms the NCCD,

though the difference tends to decrease as the coherent accumulation period is

increased. The authors suggest that the DCD scheme may be useful for fast

acquisition in high SNR environments, or for high dynamic environments (i.e.
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environments subject to large Doppler offsets, say ≥ 20 kHz).

While the differentially coherent technique discussed above is essentially an

ad hoc approach to the acquisition problem, it can be thought of as an attempt

at a detector invariant to the received Doppler offset and data modulation. This

invariance was discussed in Section 2.3. In essence, the output of the differentially

coherent product in Figure 2.17 is independent of the Doppler offset and data

modulation affecting the received signal. The DCD treats both of these effects

as nuisance parameters, and provides an estimate of the code phase offset alone.

Thus, the desired parameter is the scalar θ = ζ, and all other signal parameters

are considered to be nuisance parameters. For this reason, comparisons between

this detector and the two forms of combining detector discussed previously are,

in a sense, unfair. Both the noncoherent and differentially coherent combining

detectors produce estimates of both the code phase and Doppler offsets of the

received signal whilst the DCD produces an estimate of the code phase only. It

is also important to note that, if a DCD is to be used in the acquisition stage,

then the tracking will have to be achieved in a differentially coherent fashion also,

since other tracking loops require some knowledge of the frequency of the received

signal to function properly. A differentially coherent code tracking loop has been

considered in [42].

2.4.4 Parallel Detection

The detectors examined thus far have all been single cell detectors, generating a

single test statistic for a single parameter estimate. A practical implementation

might rely on more than one decision statistic prior to making a decision. We

consider a vector of decision statistics, Dk(θ), corresponding to a number of

points in the uncertainty space. We refer to this collection of points as a tile

in the uncertainty space, and denote by CT the number of cells in a tile. This

situation is illustrated in Figure 2.18. Note that a tile could have any shape, it

need not consist of a set of contiguous cells in the uncertainty region, though

this will generally be the case. In addition, all CT decision statistics need not

be gathered at once but may, in fact, be gathered serially [31]. We refer to any

acquisition architecture relying on multiple measurements of the decision statistic

as a parallel architecture. A decision is made based on the parallel consideration

of a number of parameter points, even though the decision statistics were not

necessarily calculated in parallel.
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Figure 2.18: Acquisition Grid with Parallel Search Tile

Within a tile the local approximation to the ML estimate is given by the

parameter point for which Dk(θ) is a maximum. Corazza [31] refers to this as

the MAX criterion. If the decision statistic of the ML parameter estimate crosses

a predetermined threshold VTh then a “hit” is declared and the signal is deemed

to have been detected in that cell. Corazza referred to this as the threshold

crossing, or T/C criterion. Note that both detection and estimation events occur

within each tile.

The performance of the detector/estimator is determined by the dwell time

and the statistics of the decision variable. The dwell time is simply the time taken

to compute the vector Dk, and depends on whether all test statistics within a

tile are calculated at once, or whether they are calculated serially. The parallel

calculation of all the decision statistics within a tile will be much faster, but will

also require more hardware.

The statistics of the detector/estimator are related to the distribution of the

largest of a number of rvs. This a well known quantity in probability the-

ory, known as the extreme value distribution [52]. Given N independent rvs
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X1, X2, . . . XN , with distributions:

fXi
(x) : 1 ≤ i ≤ N

and CDFs:

FXi
(x) : 1 ≤ i ≤ N,

then the probability that all the Xi are less than some value x is given by:

Pr {Xi < x : ∀i 1 ≤ i ≤ N} =
N∏

i=1

FXi
(x).

Letting fYi
(y) denote the probability density of the event: Xi > Xj ∀ j 6= i, at

the point Xi = y, then:

fYi
(y) = fXi

(y)
N∏

j=1

j 6=i

FXj
(y), (2.80)

and so the probability that Xi is both greater than all the other rvs and greater

than the threshold VTh is given by:

1 − FYi
(VTh) =

∫ ∞

VTh

fXi
(y)

N∏

j=1

j 6=i

FXj
(y)d y. (2.81)

During the observation interval there are two possibilities: either the tile under

test contains the true signal parameter point θt, in which case we refer to the tile

as a H1 tile, or it does not, in which case we have a H0 tile. The statistics of the

detector/estimator are, therefore, given by:

1. Pd: the probability of correctly identifying θt in a H1 tile.

2. Pr1 : the probability of rejecting a H1 tile. This occurs when all components

of Dk < VTh in a H1 tile.

3. Pfa1
: the probability of false alarm in a H1 tile. The largest component of

Dk is greater than the threshold, and does not correspond to θt.

4. Pr0 : the probability of correctly rejecting a H0 tile.

5. Pfa0
: the probability of false alarm in a H0 tile.
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The simplest model of the detector/estimator assumes that there is only one

H1 cell, all other cells containing only noise. Thus, assuming that there are CT

cells per tile, and using Equation (2.81) above, we have [31, 134]:

Pd =

∫ ∞

VTh

fDk(θ)|H1(y | H1)
[
FDk(θ)|H0(y | H0)

]CT−1
d y (2.82)

Pr1 = FDk(θ)|H1(VTh | H1)
[
FDk(θ)|H0(VTh | H0)

]CT−1
(2.83)

Pfa1
= 1 − Pd − Pr1 (2.84)

Pr0 =
[
FDk(θ)|H0(VTh | H0)

]CT (2.85)

Pfa0
= 1 − Pr0 . (2.86)

Similar expressions can be derived to model the spread of the influence of θt

amongst multiple cells [26] but this is beyond our scope here. Note that Equations

(2.82) to (2.86) are valid for all forms of detector discussed previously. The form

of the detector determines fDk(θ)|Hi
(y | Hi) i = 0, 1, as seen in Equations (2.33),

(2.39), (2.61), (2.66) and (2.73). The CDF of the decision statistic in each cell is

given by:

FDk(θ)|Hi
(y | Hi) =

∫ y

−∞
fDk(θ)|Hi

(z | Hi)dz i = 0, 1.

When the signal can be assumed to be present, and the search tile covers the

entire uncertainty space, then no detection stage is required: the problem is one

of pure estimation. The threshold can, therefore, be set to minus infinity and a

simple union bound on Pfa1
can be found [25, 85, 108]:

Pfa1
≤

CT∑

j=1

j 6=i

Pr {Dk(θj) > Dk(θi) | θt = θi} . (2.87)

For the ML detector Milstein et al. [85] use a result due to Stein [131] to show

that:

Pr {Dk(θj | H0) > Dk(θi | H1)} =
1

2

[
1 − Q1

(√
b,
√

a
)

+ Q1

(√
a,
√

b
)]

, (2.88)

where a and b are the SNR in the H0 and H1 cells respectively. Equation (2.88)

gives the probability that one χ2 rv with two degrees of freedom is greater than

another. In [122, Equation (8)] Simon and Alouini give a similar expression for

two χ2 rvs with 2K degrees of freedom which can be applied in the case of the
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noncoherent combining detector. Simon and Alouini’s expression is considerably

more involved than Equation (2.88) above. In a forthcoming paper [89] we present

a simplified form of Simon and Alouini’s expression.

The above presentation gives us a means to analyse the parallel form of the

detector/estimator, but does not consider its implementation. In the following

sections we consider two different approaches to the implementation of the par-

allel detector/estimator. The first, most obvious form, is simply a cascading of

multiple single cell detectors. We refer to this approach as time-domain paral-

lelism [26, 33, 85, 107, 108, 125, 127, 134]. An alternative approach is to take

advantage of the redundancy inherent in the calculation of the generalised like-

lihood ratio using transform domain techniques. This approach is referred to as

transform-domain parallelism [10, 11, 29, 30, 34, 141, 153, 154].

Time-Domain Parallelism

The earliest designs for parallel acquisition of DS/CDMA signals focused on ar-

chitectures for the efficient construction of banks of matched filters [85, 126, 127,

134]. A length T analogue matched filter consists of a tapped-delay line which

holds T seconds of the received signal and generates a single output which is a

function of that T -second data set. The delay line requires T seconds to fill but

provides a continuous output thereafter. A digital matched filter stores, say, M

samples of the received input, requires M samples to “fill up” and then generates

an output at every sampling instant thereafter. To speed up the acquisition of

DS/CDMA signals a bank of N matched filters is implemented, each filter is M

samples long, and the total code phase uncertainty is NM samples. Each filter

is matched to a different sub-sequence of the spreading code of the satellite of in-

terest. Once the matched filters are filled then a total of N possible code phases

can be tested every sampling instant. In this architecture there is a fundamental

trade-off between the degree of parallelism and performance. The greater the

number of filters implemented in parallel the shorter the sub-sequence to which

each filter is matched and, hence, the greater the correlation side lobes.

Milstein et al.’s paper [85] appears to be the first on the topic, presenting a

theoretical analysis of the architecture in the absence of Doppler effects. This

was also the first reported use of the union bound and Equation (2.88). This was

followed by Su’s treatment [134], who adapted Milstein’s approach to include

Doppler effects by applying noncoherent combining. Further early work on the
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matched filter parallel architecture was conducted by Sourour and Gupta [126,

127] to account for Rayleigh fading effects.

The first parallel active correlator architecture seems to have been the ML

estimator for the GPS tracking process by Hurd et al. [58], discussed in Sec-

tion 2.3.1. In 1988, the parallel active correlator acquisition architecture was

suggested independently by Cheng [26] for GPS and Davisson and Flikkema [37]

for the Tracking and Data Relay Satellite System (TDRSS). Cheng’s analysis is

interesting, in that he considers the effects of data modulation and the use of

noncoherent combining, but ignores Doppler effects. In a later paper, [27], Cheng

extended the work of Hurd et al. to the acquisition problem. In [27], the author

considers the effects of both Doppler offset and data modulation, showing that

there is an optimum choice for K, the number of subintervals to be noncoherently

combined.

The general form of the active correlator based, time-domain, parallel acqui-

sition architecture is given in Figure 2.19. Alternative parallel schemes for the
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SCD
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C
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Figure 2.19: Active Correlator Architecture for Time Domain Parallelism. SCD
Denotes a Single Cell Detector.

acquisition of DS/CDMA signals in the presence of data modulation have been

suggested in [80] and [152].
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Transform-Domain Parallelism

Possibly the first mention of transform-domain parallelism in the literature was

by Cohn and Lempel in 1977 [30]. In this paper the authors use the fact that

generating the cross-correlation function for all possible code offsets can be viewed

as a matrix multiplication. Now, if the spreading codes are m-sequences then this

matrix is shown to be a permutation of the Walsh-Hadamard matrix [143]. If L

is the length of the spreading code then the multiplication of an L × 1 vector by

an L×L matrix requires L2 operations. However a fast transform method (called

the Walsh Transform [21]) permits the calculation of the product of a vector by

a Walsh-Hadamard matrix in only L log2 L operations. The correlation function

can then be implemented efficiently by applying a permutation to the input vector

(the observation vector for one complete code period), calculating the fast Walsh

transform of this vector and then applying the inverse permutation to the result

to obtain the cross-correlation of the input vector and the spreading code. Whilst

this approach relies on the use of m-sequences, and so is not applicable to the

GPS problem, it does demonstrate the use of efficient parallelism to eliminate

redundancy in the calculation of the correlation function.

By far the most common form of transform-domain parallelism is frequency-

domain parallelism. This appears to have been first suggested by van Nee and

Coenen in 1991 [141]. The key observation in this case is that cross correlation

in the time domain is equivalent to multiplication by the appropriate complex

conjugate in the frequency domain:

F
{∫ TCA

0

r(τ)ck(τ − t)dτ

}
⇐⇒ R(jω)C∗

k(jω), (2.89)

where F {·} denotes the Fourier transform and R(jω) and Ck(jω) are the Fourier

transforms of r(t) and ck(t) respectively. The discrete equivalent can be written:

DFT {r · zτck} =

{
N−1∑

l=0

(
N−1∑

n=0

rnck,n−τ

)
exp

(
−j

2πτ

N
l

)}

τ=0,1,...,N−1

⇐⇒ R�C∗
k, (2.90)

where r = [r0, r1, . . . , rN−1] and ck = [ck,0, ck,1, . . . , ck,N1 ] are the received signal

vector and local code vector respectively, z is the unit delay operator, DFT {·}
denotes the Discrete Fourier Transform (DFT), R and C are the DFTs of r and
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c respectively, a � b is the term-by-term product of the vectors a and b and

the indexing ck,n+τ is cyclic, i.e. ck,n+τ = ck,n+τ mod N . Thus, Equation (2.90)

calculates the circular correlation between the vectors r and ck. Note that this is

precisely the correlation function to be determined according to Hurd et al. [58]

for the maximum likelihood estimator (see Equation (2.17)).

The general form of the FFT-based detector/estimator is given in Figure 2.20.

The output metric Dk(θ̂) is a length N vector of real numbers. To implement a

FFT

C∗
k

Dk(θ̂)

e−jbωt

r(t) | · |2IFFT
Ns

Ns

Ns Ns Ns

Figure 2.20: Structure of the FFT Detector/Estimator

local GLRT, the location of the maximum value of Dk is chosen as the optimal

estimate of the code phase offset, and detection occurs if this value exceeds a

threshold. This method covers all possible code phase offsets for a given Doppler

estimate ω̂d using a single observation interval. The detector/estimator tile, there-

fore, occupies one complete Doppler bin, as illustrated in Figure 2.21.

Sampling Schemes

The DFT can be calculated very efficiently using an algorithm known as the Fast

Fourier Transform (FFT) [21]. The FFT relies heavily on the factorisation of N ,

the length of the observation vector. The optimal FFT algorithm occurs when N

is a power of 2, in which case the FFT can be calculated in 2N log2 N operations,

compared with 2N2 operations by direct evaluation of the DFT.

In [141] the received signal is sampled at twice the chip rate, and so there are

N = 2046 samples per code period. To enable the use of an efficient FFT this

vector is then padded with two zeros to obtain a vector of length N = 2048 = 211.

An alternative approach is to sample both the incoming signal and the local code

at a rate which directly yields an observation vector whose length is a power of

two. For example, in [95] the authors used a sample rate of 4.096 MHz to yield

N = 4096 = 212 samples per code period. The problem with these approaches

is that, when resampling or zero-padding, the structure of the spreading codes

is modified and, hence, the auto- and cross-correlation properties are affected.
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Figure 2.21: FFT Detector/Estimator Tile in the Uncertainty Region

In general, this results in an increase in the cross-correlation sidelobes, and a

distortion of the main lobe, which loses its triangular shape. In practice, these

effects are small when the modifications are small. For example, padding a vector

of 2046 samples with just two extra zeros does not lead to a dramatic increase in

cross-correlation values. Various other sampling schemes have been considered in

the literature [12, 34, 81, 130, 137, 153], which we now consider briefly.

Davenport [34] considered the use of the Chirp-Z Transform (CZT), in which

case the received signal is sampled at a rate commensurate with the chip rate, is

then padded with zeros to a length which is a power of two, and then a “chirp”

function is applied prior to taking the FFT. The correlation is performed in

the frequency domain as above, the inverse FFT is taken, and the result is “de-

chirped”. The chirp function is a damped (complex) exponential which effectively

eliminates the distortion caused by the zero padding. Yang [153] considered a

related approach, but the chirp function is effectively pre-calculated and applied

only to the local code. In this instance, an arbitrary sampling rate can be applied

at the front end, yielding M samples per code period. The observation vector is

then extended to a length 2N vector, where N is a power of two, by zero-padding.

69



Chapter 2. Acquisition of DS/CDMA Signals: A Review

The local code vector is also increased to a length 2N but, in this case, the last

M components are simply a repetition of the first M . Although not explicitly

stated by Yang, it would appear that this approach is only valid for N > M , in

which case the modified vector has sufficient “room” for two repetitions of the

length M original vector. The remaining components are set to zero. The circular

correlation property of the local and received signals is restored by this approach,

but it requires a significant increase in the amount of processing required. For

example, if the incoming signal is sampled at a rate of two samples per chip then

M = 2046, which means N ≥ 2048 and so a minimum of a 4096 point FFT is

required. Yang also discusses the advantages of sampling at a rate that is not a

multiple of the chip rate. The difference in rates between the incoming signal and

the local reference allows a greater accuracy in measuring the code phase offset.

Tsui [137] considers the use of the FFT in a software GPS signal processor.

His approach relies on direct-downconversion from intermediate frequency (IF)

to baseband at a sampling rate of 5MHz, yielding 5000 samples per code period.

While the principle of the FFT algorithm can be applied in this case (since 5000

is not a prime number), it is not well suited to hardware implementation. In an

effort to overcome this difficulty, Starzyk et al. [12, 130] propose what they refer

to as the “Averaging Correlation” approach. The 5000 point observation vector

is down-sampled to 5 separate 1024 point vectors, a similar operation is applied

to the local code. The local code is then correlated with each of the candidate

observation vectors by the frequency domain method, and the maximum peak

from amongst the candidate vectors is chosen as the code phase estimate. This

approach permits the use of the highly efficient 1024-point FFT, as the authors

point out, it is much easier in hardware to implement five 1024-point FFTs than

a single 5000-point FFT.

Psiaki [103] also considered Tsui’s 5 MHz sampling scheme. Again, a software-

based receiver was the focus of this paper, but Psiaki considers a re-sampling

scheme whereby the received signal is linearly interpolated up to a sampling rate

of 8.192 MHz. This yields 8192 = 213 points per code period, thereby permitting

the use of a highly efficient FFT.

Apart from the numerical efficiency in calculating the correlation function

for all code phase offsets, the frequency-domain approach has a number of other

advantages [21]:

1. The frequency shift theorem.
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2. The time shift theorem.

3. Linearity.

Each of these is discussed briefly here below.

The Frequency Shift Theorem

The frequency shift theorem states:

F {exp (−jωdt) f(t)} ⇐⇒ F (j(ω + ωd)), (2.91)

where F (jω) = F {f(t)}. Thus, the Fourier Transform of the product of a

function by a complex exponential is simply a shifted version of the transform of

the function. For the DFT the shifting can only be implemented as an integer

number of samples. This corresponds to a frequency shift by a multiple of the

inverse of the observation interval.

The benefit of this theorem is immediately obvious if we consider Figure 2.20.

Note that the received signal is multiplied by exp (−jω̂t) prior to the FFT block.

This achieves down-conversion by the Doppler frequency estimate for a candidate

Doppler bin. By the frequency shift theorem, we see that we can move this down-

conversion to the other side of the FFT, and so we only need to perform one

FFT operation for all Doppler bins. This represents a significant saving when

the frequency uncertainty is large (i.e. when there is a large number of Doppler

bins). Alternatively, we could use a single FFT block to provide the same input

to all search channels. Each channel searches a single Doppler bin for a given

satellite. Frequency down-conversion in each channel is achieved by rotation in

the Doppler domain. Note, however, that the shift must be an integer number of

samples in the transform domain, and so the frequency down-conversion achieved

in this manner will always be a multiple of the inverse of the observation interval.

Thus, the frequency shift will be a multiple of 1
TCA

= 1 kHz, as illustrated in

Figure 2.22.

If the Doppler bin width is less than 1 kHz, such as is the case when coherent

accumulation is performed over M ms, then fine Doppler corrections can be made

either prior to the FFT [103] or after it [10]. Psiaki’s approach in [103] is to

generate M copies of the received signal, each one multiplied by an appropriate

complex sinusoid to achieve down-conversion by a fraction of 1 kHz. Coarse
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1 kHz

Figure 2.22: Tile Coverage in the Uncertainty Region for the FFT Detector/
Estimator using Doppler Rotation

frequency adjustment is then performed by rotation post FFT. This requires a

total of M (N -point) FFT operations for all channels and all Doppler bins. In [10]

Akopian applies the shift theorem, not to the received signal, but rather to the

stored local code (or local replica, as he calls it). This approach takes advantage

of the fact that the carrier frequency down-conversion can also be achieved by

shifting the local replica in the opposite direction to the shift to be applied to

the received signal. Again, this approach leads to a coarse frequency shift of a

multiple of 1 kHz. Fine-frequency compensation is achieved in a similar manner to

Psiaki’s approach, though Akopian considers a two-dimensional FFT, achieving

parallelism in both the code delay and frequency domains. In effect, coherent

accumulation and fine-frequency compensation are achieved by a combination of

an M -point FFT and multiplication by a complex sinusoid.

In summary, the frequency shift theorem can be applied to achieve down

conversion of the carrier frequency. This is achieved by a rotation of the FFT of

either the received signal or the local code. This down-conversion is limited to

multiples of 1 kHz, so a fine-frequency compensation is required if a resolution

better than 1 kHz is desired.
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The Time Shift Theorem

The time-domain analogue of the frequency shift theorem can be represented by

the equation:

F {f(t + τ)} = F (jω) exp (jωτ) . (2.92)

The use of this theorem to counter the effects of code Doppler seems to have been

first reported in [75], and is also applied in [10, 11].

In Section 2.4.1 we saw that, for the traditional single cell detector, the code

Doppler effect is accounted for by modifying the chip rate of the local code to

match the current Doppler estimate. In the FFT-based correlator two approaches

are possible: 1) code Doppler is compensated for by a modification of the local

code [103]; 2) code Doppler is compensated for by modifying the received signal

[75]. The latter approach makes use of the time shift theorem. Both of these

approaches use the noncoherent combining detector of Section 2.4.1.

Within a coherent accumulation period the effect of code Doppler can be

modelled as a degradation in the magnitude of the correlation function. Between

coherent accumulation periods, however, the dominant effect is the “slippage”

of the true code phase offset ζt relative to the estimate ζ̂. This effect can be

accounted for by time-shifting the received signal (or the local code) between

coherent accumulations. The time shift is equal to the amount the local code

would slip, relative to the received code, if the current Doppler frequency estimate

ω̂d was exactly correct. Given η̂ = ω̂d/ω0, then the time shift is given by τ =

η̂MTCA seconds. By Krasner’s technique [75], this time shift is implemented in

the frequency domain by multiplying the FFT of the kth coherent accumulator

output vector by the complex exponential exp (−j2πkτ/TCA). We find, however,

that this technique introduces significant distortion of the local replica whenever

τ is not an integer number of sample periods.

An alternative approach to the treatment of code Doppler effects was given by

Psiaki [103] and, although this approach does not rely on the time shift theorem,

we describe it here for completeness. In this case, the local code is generated

in much the same way as for the serial detector, in that the chip rate is varied

with the Doppler estimate. Psiaki uses linear interpolation of both the received

signal and the local code to ensure that there is exactly one full code period of

each present in the observation interval. This interpolation must be performed

for every Doppler frequency estimate, but can be achieved very efficiently. This
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approach implies that the resolution of ζ̂ is a function of ω̂d. An advantage of

this approach is that it provides code Doppler compensation both within and

between coherent accumulation intervals. It also permits storage of the resam-

pled local codes, thereby saving computations during acquisition. The primary

disadvantages of Psiaki’s approach are the large memory requirements and the

difficulty in calculating a 8192-point FFT. Whilst this approach provides a highly

accurate code Doppler compensation mechanism, we have already seen that the

effect of code Doppler within a coherent observation interval is minimal. Hence

this level of accuracy is not usually required, and code Doppler compensation

between coherent observation intervals is generally sufficient.

Linearity

The Fourier Transform is a linear operation, thus:

F {f(t) + g(t)} = F {f(t)} + F {g(t)} , (2.93)

and, given any linear operator L{·}, then:

F {L{f(t)}} = L{F {f(t)}} . (2.94)

Now, both correlation and coherent accumulation are linear operators, and so

any coherent accumulation carried out after the correlation function can equally

well be performed prior to the FFT.

The advantage this provides is most readily seen by considering an example.

Recall that for low input SNRs it is necessary to increase the coherent integration

time to reliably detect the received signal. This was achieved by coherently com-

bining M consecutive correlator outputs. A transform domain implementation

of this combining is illustrated in Figure 2.23. Now, by the linearity of the FFT,

Ns
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r(t)
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Figure 2.23: FFT Detector with Post-Correlation Coherent Accumulation
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this coherent accumulation can be achieved prior to the FFT, block as illustrated

in Figure 2.24. Thus, the FFT need only be performed once for every M code

Ns
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C∗
k

Dk(θ̂)
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m=0
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Ns Ns Ns
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Figure 2.24: FFT Detector with Pre-Correlation Coherent Accumulation

periods, rather than once for every code period. This represents a significant

saving if M is large. Note that this approach can be applied to the coherent ac-

cumulation of the transform-domain forms of all the correlation-based detectors

discussed in Section 2.4. It would appear that this was first observed by Krasner

in [75], but it is also implicit in Coenen and van Nee’s work on the DCD [29].

It is worth noting, however, that the use of pre-correlation coherent accumu-

lation limits the degree to which code Doppler effects can be mitigated by modi-

fication of the local replica. Note that only one copy of the local replica is used

for every M received code periods. Hence, local replica code Doppler compensa-

tion can at best be achieved between coherent observation intervals (of duration

MTCA s) rather than between code periods (of duration TCA s). A simple scheme

can be implemented whereby the local code replica is time shifted by one half

of the estimated code phase shift over one coherent observation interval. Thus,

a finer degree of code Doppler compensation can be achieved if post-correlation

coherent accumulation is used. In practice, however, we find that the coarse

code Doppler compensation achieved with pre-correlation coherent accumulation

is sufficient.

2.5 The Acquisition Process

As discussed in Section 2.3.1, the movement of the detector/estimator through

the uncertainty region is controlled by the acquisition process. Various forms of

detector/estimator have been considered in the previous section, in this section

we characterise it entirely by:

1. Its cell coverage in the uncertainty region, which we term a “tile”.
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2. The time taken to dwell in one tile, τD.

3. The distribution of the decision statistic under H1 and H0.

Our analysis of the detector/estimator allows us to calculate each of these quan-

tities for a given implementation. However, the quantity of greatest interest to us

is the time, TACQ, taken to acquire the signal. This will be a function, not only

of the form of the detector/estimator, but also of the acquisition process. In this

section we review the analysis and design of the acquisition process.

Note that, for simplicity, we consider the acquisition of a single satellite signal

only. In practice, the receiver must acquire signals from multiple (at least four)

satellites. Typically the most difficult acquisition is that of the first signal since,

once the first signal is acquired, then the search space for the remaining satellites

can be reduced. In practice, therefore, the uncertainty region is not constant

but depends both on the a priori information available to the receiver and the

information obtained from other acquired signals.

2.5.1 Acquisition Modes

The acquisition process is commonly divided into three modes of operation:

1. The search mode.

2. The verification mode.

3. The lock mode.

In the search mode the detector/estimator moves through the uncertainty region

looking for the H1 cell. The acquisition process determines the duration of each

dwell, the decision threshold and the order in which tiles are searched. Once a

hit has been declared in the search mode the acquisition process enters the veri-

fication mode. In this mode, a candidate cell has been chosen and the detector/

estimator will operate as a pure detector. In the verification mode the cell under

test remains fixed and the acquisition process controls the dwell time and deci-

sion threshold of the detector/estimator. If the candidate cell is rejected by the

verification mode the acquisition process returns to the search mode, otherwise

the system enters the lock mode. Once the lock mode is entered the acquisition

process is complete, the signal is deemed to have been acquired and the tracking
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loops are closed. In traditional receiver architectures the detector/estimator cir-

cuitry is now used to determine the lock condition of the tracking loop. Again,

the detector/estimator operates as a pure detector. The parameter estimate θ̂ is

under the control of the tracking circuit. Once the lock detector indicates loss-

of-lock, then control is passed back to the acquisition process which restarts in

the search mode. The acquisition modes are summarised in Figure 2.25.

θ̂

Verification LockSearch

– Variable – Fixed – Tracked

τD, VTh

– Fixed
τD, VTh

– Variable
τD, VTh

– Fixed
Start

Hit

Reject

Hit

Loss of Lock

θ̂ θ̂

Figure 2.25: An Overview of Acquisition Modes

In both search and verification modes the detector/estimator is in “motion”,

under the control of the acquisition unit. In the search mode the motion is

through the uncertainty region (θ̂ moves through Θ∗), in the verification mode

the motion is through the receiver parameter space (τD and VTh). In contrast, in

the lock mode the signal parameters are being tracked and θ̂ is under the control

of the tracking loops (and is now an element of the continuous parameter space

Θ).

The Search Mode

In the search mode the detector/estimator operates on the Neyman-Pearson cri-

terion [142, p. 33], that is, the thresholds are chosen to maximise the probability

of correct detection, for a given probability of false alarm. Movement through the

uncertainty region is governed by a search strategy, which determines the order

in which tiles are to be investigated.

Various types of search strategy have been considered in the literature, the

most common being:

1. Straight serial search [57],

2. Z search [99],
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3. Expanding window search [22],

4. Alternate search [68].

The straight serial search strategy simply orders the tiles in a sequential fash-

ion. Once all NT tiles have been considered, the detector/estimator is returned

to the first tile and the process repeats. This is most commonly implemented

in the case of unknown or uniform a priori distributions on the unknown signal

parameters, since no effort is made to cover the most likely tiles first.

When some a priori information is available regarding the location of the

H1 tile, then either a Z search or an expanding window search strategy may be

implemented. Both of these strategies were developed for the single cell detector,

in which case it is easiest to move from one trial cell to the next, adjacent cell.

Moving from one test cell to another non-adjacent test cell requires “winding”

the local code, either forwards or backwards, to reach the new test point. For the

FFT-based detector discussed in Section 2.4.4 no such code-winding is required.

In this situation the so-called alternate strategies are optimal. In this case the

tiles are considered in order of decreasing a priori probability. In the remainder

of this thesis we assume a uniform a priori distribution on the unknown signal

parameters and, hence, apply straight serial search strategies only. The results

derived are can be readily extended to include other search strategies.

In general, the search mode thresholds are set to yield fast decision making

with relatively high probabilities of detection and false alarm.

The Verification Mode

In the verification mode the estimate cell θ̂ is subject to further testing. Mean-

ingful probabilities can be assigned to the presence or absence of the signal in the

cell under test. Bayes’ criterion can, therefore, be applied to the detector in this

mode [142, p. 24]. In the verification mode longer dwells are made to reduce the

overall probability of false alarm into the lock mode.

Another key difference between the verification mode and the search mode is

that, in the verification mode, we consider only a single cell of the uncertainty

region, whereas in the search mode an entire tile is under investigation.

In the verification mode we have a pure detection problem, so we know that

the optimum verification strategy is the sequential detector. As discussed in

Section 2.3, Wald [145] has shown that the sequential detector takes, on average,
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the minimum amount of time for a given Pfa and Pd. However, the performance

of the sequential detector degrades rapidly when the received SNR is less than

the design point SNR.

For this reason, a number of sub-optimal schemes have been suggested in the

literature, which we refer to as verification strategies, the most common being:

1. Immediate reject verification [39],

2. Up-down counter verification [57] (referred to as the “Tong” detector in

[70]),

3. Coincidence detector verification [100] (referred to as the “M-of-N” detector

in [70]).

In this mode we consider a number (say N) of detectors, each detector is assumed

to have the same form as the detector used in the search mode, but may have

different parameters. In general, each detector will be identical, except for the

dwell time τD and the decision threshold VTh. The ith detector can, therefore,

be characterised by the pair (τDi, VThi). The verification strategy determines the

order in which the detectors are used.

Consider, for instance, the immediate reject strategy. In this case the detectors

are numbered 1 to N , and the tests are run sequentially in numerical order. If all

N detectors declare the signal to be present then the cell under test is accepted

and the acquisition process moves into the lock mode. On the other hand, if any

detector rejects the cell under test then the cell is immediately rejected and the

acquisition process returns to the search mode. Thus, to accept the cell under

test requires exactly
∑

τDi seconds, whereas the time to reject a cell is a random

variable. The probability of entering the lock mode is given by [39]:

PH =
N∏

i=1

Phi, (2.95)

where PH is the overall “Hit” probability of the verification mode, Phi = Pfai in

a H0 cell and Phi = Pdi in a H1 cell. A flow chart for this strategy is shown in

Figure 2.26 a).

The up-down counter strategy, illustrated in Figure 2.26 b), is similar but

differs in the way in which it deals with rejection of the cell under test in a

single detector. Consider the case where the cell has been passed by the first
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Figure 2.26: Verification Mode Flow Charts. a) Immediate Reject Strategy, b)
Up-Down Counter Strategy.

i − 1 detectors, but is rejected by the ith detector. When the up-down counter

strategy is implemented the cell is then passed back to detector i − 1 for re-

consideration, rather than being returned to the search mode. This strategy

need not start with detector 1, but may, more generally, be designed to start in,

say, the M th detector. The cell is rejected when it fails the test in detector 1

and is accepted when it passes the test in detector N . Note that the total dwell

time is, therefore, a random variable, both when the cell is ultimately accepted

and when it is rejected. When all N detectors are identical, the probability of

entering the lock mode is given by [70]:

PH =
1 −

(
1−Ph

Ph

)M

1 −
(

1−Ph

Ph

)M+N
, (2.96)

where Ph = Pfa in a H0 cell and Ph = Pd in a H1 cell. The analysis is more
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involved if the detectors are not all identical. Hopkins [57] models the process as

a discrete Markov process, and demonstrates a matrix based approach to solving

the general problem. We will investigate Markov processes in more detail in

Section 2.5.2.

Finally, the coincidence detector strategy involves performing all N tests se-

quentially. If the threshold is crossed in M or more of these tests then the cell

under test is accepted, otherwise it is rejected. In this case the dwell time is

deterministic in all cases. Assuming that all dwells are statistically independent

and the same detector is used in each dwell, then the probability of entering the

lock mode is given by [100]:

PH =
N∑

n=M

(
N

n

)
Ph

n (1 − Ph)
N−n , (2.97)

where, again, Ph = Pfa in a H0 cell and Ph = Pd in a H1 cell.

A variation on the coincidence detector strategy seems to have been first

introduced by Corazza et al. [32]. This is identical to the strategy described

above except that, once a total of either M detections or N −M rejections occur,

the verification mode stops. This achieves the same probabilities of detection and

false alarm as the original form but will, on average, be faster. It then becomes

clear that this strategy contains the immediate reject strategy as a special case,

with M = N . The authors give the following expressions for the probabilities of

declaring signal absent after the ith dwell, PRi, and of declaring the signal present

after the ith dwell, PHi:

PRi =





Ph1(1 − Phi)
∑

k∈B

i−1∏

j=2

(1 − Phj)
nk,jPh

1−nk,j

j , N − M + 1 < i ≤ N

0 i ≤ N − M + 1

(2.98)

PHi =





Ph1Phi

∑

k∈B′

i−1∏

j=2

(1 − Phj)
nk,jPh

1−nk,j

j , i ≥ M

0 i < M,

(2.99)

where B is the set containing the indices of all binary vectors:

nk = [nk,2, nk,3, . . . , nk,i−1] ,
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with Hamming weight N −M −1† and B′ is the set of indices of all binary vectors

of the same form having Hamming weight i − M .

Much of the early work on the analysis of the acquisition process focused on

the single cell detector. In this case, both search and verification modes investi-

gate a single cell from the uncertainty region. Most analyses, therefore, do not

differentiate between the search and verification modes, but rather consider either

single dwell detectors (search mode only) or multiple dwell detectors (verification

mode only). Either of these cases can be modelled as consisting of both search

and verification modes, however, if we consider a “null” detector which will de-

clare a hit with probability 1 in zero time. Thus, a single dwell detector can be

thought of as having a null verification mode, and a multiple dwell detector can

be thought of as having a null search mode.

The question naturally arises as to what combination of search and verification

strategies is, in some sense, the best (say, yielding the minimum mean acquisition

time for a given probability of correct detection). At the time of writing it appears

this question remains unanswered in the literature.

The Lock Mode

Once the lock mode is entered and the tracking loops are closed, the signal will

be lost within a finite amount of time with probability equal to one. The purpose

of the lock mode is to determine when this loss of lock occurs.

This is a very important task, as once the tracking loops are closed the nav-

igation processor will use the current estimates of the code phase and Doppler

offset in its derivation of a navigation solution. Therefore, we would like to detect

loss of lock as quickly as possible. On the other hand, we want to maintain lock

for as long possible, once the signal has been found. This is the fundamental

trade-off of the lock mode detector.

In the lock mode the detector is again configured according to Bayesian criteria

and the strategies used to detect loss of lock are similar to those used in the

verification mode: immediate reject [90] , up-down counter [57] and coincidence

detector [32] logic have all been suggested in the literature.

A detailed analysis of the performance of the detector in the lock mode would

require analysing the effect of the tracking loops. In practice, the analysis of

the lock mode is achieved in one of two ways. The detection theoretic approach

†For example, letting i = 5 and N − M − 1 = 2, then B = {[0, 1, 1], [1, 0, 1], [1, 1, 0]}.
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ignores the effect of the tracking loops and simply models the acquisition process

in the lock mode in the same way as for the verification mode [57]. Alternatively,

the tracking loops may be considered to be independent of the lock detector

[55]. In this latter approach it is assumed that the code tracking circuit has,

at time t, an error ε(t). It is usually then assumed that when |ε(t)| exceeds

some pre-specified value, the lock detector will declare loss of lock. It would be

of theoretical interest to see how these techniques compare, though we do not

consider this here.

In most analyses of the acquisition process, however, acquisition is considered

to be finished when the lock mode is first entered for a correct (H1) cell. When

the lock mode is entered for a H0 cell it is normally assumed that the search

mode will be re-entered after some penalty time TP , which is often modelled as

a constant number of code chips.

2.5.2 Performance Analysis

The acquisition process, therefore, determines the motion of the detector/estimator

through the uncertainty region. We have seen that a number of strategies for

searching for and verifying the presence of the signal have been suggested in the

literature. To compare these strategies requires some form of analysis of their

relative performance. In CDMA signal acquisition the parameters of primary

importance are:

1. The time taken to acquire the signal TACQ,

2. The probability of correct detection PD,

3. The probability of false alarm PFA = 1 − PD.

Since the acquisition time TACQ is a random variable, the system perfor-

mance is often given in terms of its mean, denoted TACQ, and variance, denoted

Var [TACQ]. As mentioned at the end of the previous section, it is often assumed

that any false alarm will be detected after some penalty time TP , so that PD = 1

and PFA = 0, in which case the statistics of TACQ completely determine system

performance.

Two distinct approaches to analysing the acquisition system performance have

been explored in the literature. The flow-graph approach [38, 39, 56, 57, 98–100]

relies on the observation that the acquisition process, in all of its modes, can
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be identified with a type of random process known as a Markov chain [61]. A

Markov chain can be completely described by its state diagram, which is a form

of flow-graph. By the application of results from flow-graph theory, expressions

for the system performance parameters can be derived. The direct approach

[22, 68, 69, 84, 90, 91, 147], on the other hand, is a combinatorial approach to

the derivation of the system performance parameters.

The Flow-Graph Approach

A Markov chain [61, 92] is a type of discrete-time, discrete-state random process.

Consider a system consisting of a possibly infinite number (say N) of discrete

states. At any given moment in time the system is in one of these states. At

discrete time intervals the process moves between states, in the intervening time

it stays within the current state. The movement from one state to another is

probabilistic. This system is a discrete-time, discrete-state random process. The

process is called a Markov chain if it satisfies the following property:

Property 2.1 (Markov) Let Xn denote the rv giving the state of the process at

time instant n, then:

Pr {Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0} =

Pr {Xn+1 = xn+1 | Xn = xn}

Note that this implies that, knowing the present state of the system, the future

is conditionally independent of the past (i.e. the system contains no memory of

previous states).

Hopkins [57] and Holmes and Chen [56] seem to have been the first to identify

the acquisition process as a Markov chain. Two analysis procedures are associated

with the Markov chain model. The most commonly used approach is based on the

representation of the Markov chain as a flow-graph, which we will describe shortly.

The alternative is a matrix-based approach [57, 61] which we now describe.

We follow the notation of Iosifescu [61] in our treatment of the state transition

matrices of Markov chains. The states in a Markov chain can be divided into two

classes:

Recurrent States (Also known as absorbing states) Once these states are

entered, the process never leaves.
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Transient States All other states.

A Markov chain with at least one recurrent state is called an absorbing Markov

chain since one of the recurrent states will be entered at some time t < ∞ with

probability equal to one. Once an absorbing state is entered the Markov chain

can be considered to have terminated, as no further state transitions are possible.

For any absorbing Markov chain with k absorbing states and N transient

states, the state transition probabilities pi,j can be arranged in the canonical

matrix form P = [pi,j]:

P =


 I 0

R T


 , (2.100)

where P is the (N + k) × (N + k) matrix of state transition probabilities called

the transition matrix, I is the k × k identity matrix, R is the N × k matrix of

transition probabilities from transient to absorbing states, called the “recurrent

matrix”, and T is the N×N matrix of transition probabilities within the transient

states, called the “transient matrix”. Here the state vector has been arranged

such that the first k elements represent the absorbing (or recurrent) states of

the process, the remaining N elements representing the transient states. The

element pi,j represents the transition probability from state i to state j. Recall

that the state transitions occur only at discrete time intervals. Let xi,n denote

the probability that the Markov chain is in state i after the nth state transition

(including transitions from a state back into the same state). Denoting by xn

the vector of such probabilities, we have:

xn+1 = Pxn. (2.101)

To simplify the analysis of Markov chains we introduce the fundamental matrix

N , given by [61]:

N = (I − T )−1 , (2.102)

where, in this case, I is the N × N identity matrix. The element Ni,j gives

the expected value of the number of times the process enters state j given that

it started in state i (note that both i and j are transient states). This matrix

proves very useful in determining the statistics of the Markov chain. For instance,

to determine the probability that the process will terminate in the jth recurrent
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state we define the N × k matrix A by:

A = NR. (2.103)

Given A = [ai,j] then ai,j is the probability that the process will terminate in the

jth recurrent state, given that it started in the ith transient state. To determine

the overall probability of terminating in state j, we simply average over i.

We denote by τDi the dwell time in the ith transient state, and by τD the vector

of dwell times. Similarly, we denote by T FHi the average amount of time taken to

reach any absorbing state given that the process starts in the ith transient state,

and by T FH the vector of such times. Then it can be shown that:

T FH = NτD. (2.104)

Thus, through Equations (2.102) and (2.103), the fundamental matrix can be

used to derive all the performance parameters of the Markov chain.

These results were used in [57] to derive an expression for the mean acquisition

time TACQ:

TACQ =
LτD

2 |ντD + δ|

(
2 − PD

PD

)
, (2.105)

where τD is the average dwell time per cell, ν is a measure of the code Doppler

effect (ν = η/Tchip), δ is the difference between adjacent code phase estimates

in Θ∗ (normally ≈ 1/2 a chip) and PD is the probability of correct detection

in the H1 cell, including the verification mode. In fact, in [57] Hopkins uses a

combinatorial argument to derive Equation (2.105) above, and uses the matrix

method to determine the verification mode parameters τD and PD.

The flow-graph approach to the analysis of the acquisition process as a Markov

chain is more commonly employed in the literature than the matrix approach. It

seems to have been first suggested by Holmes and Chen [56], for a single dwell,

straight serial search system in the absence of Doppler effects. The approach

was soon extended to cater for multiple dwell systems by Di Carlo and Weber

[39], who considered a form of immediate reject strategy in the verification mode.

Polydoros and Weber [99, 100] introduced what they termed the “circular state

diagram” to extend the application of the flow-graph approach to arbitrary veri-

fication strategies. Finally, Polydoros and Simon [98] extended the approach still

further to encompass arbitrary search strategies (as opposed to the simple straight
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serial search) by the introduction of what they call the “equivalent circular state

diagram”. All of the above developments considered only a single cell detector,

operating in the absence of Doppler effects† and modelled the false alarm state

as a transient state with an associated penalty time. The approach, however, is

more generally applicable by simple extension of the results of these papers.

Recall that pi,j denotes the probability that the process moves from state i

to state j in one time interval. For the acquisition problem, each time interval

corresponds to a dwell in a candidate tile in the search mode, or a dwell in a

candidate cell in the verification mode. We can assume, therefore, that each time

interval will be a multiple of the code period TCA. Letting ni,j be the number of

code periods taken to make the transition from state i to state j, then we denote

by pni,j
(n) the probability mass function (PMF) of this discrete rv.

The flow-graph approach relies on the observation that all the information

on the statistics of the Markov chain is contained in the probability generating

function (PGF) [92] of pni,j
(n), for every pair of states (i, j). The PGF of the rv

X is defined by (see Appendix C.3.3):

PX (z) = EX [zn] =
∞∑

n=0

pX (n) zn. (2.106)

Two useful properties of the PGF are:

Pr {i → j} =
∞∑

n=0

pni,j
(n) = Pni,j

(z)
∣∣
z=1

, (2.107)

and

E[nm] =
m∑

i=1

∂i Pni,j
(z)

∂ zi

∣∣∣∣
z=1

1 ≤ m ≤ 2, (2.108)

where Pr {i → j} denotes the probability of making the transition from state i

to state j in any time period.

We denote by Pacq (z) the probability generating function of the number of

code periods elapsing between the start of the search and entry into the acquisition

state. In general, this can be written as the sum of the probabilities of correct

and false acquisition respectively: Pacq (z) = Pacq1
(z) + Pacq0

(z). The system

†In fact, all these papers ignore carrier Doppler, so the uncertainty space is one dimensional.
The effect of code Doppler is taken into account in [56].
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parameters are then given by [96]:

PD = Pacq1
(z)
∣∣
z=1

(2.109)

TACQ =
∂ Pacq (z)

∂ z

∣∣∣∣
z=1

TCA (2.110)

Var [TACQ] =

[
∂2 Pacq (z)

∂ z2
+

∂ Pacq (z)

∂ z
−
(

∂ Pacq (z)

∂ z

)2
]∣∣∣∣∣

z=1

T 2
CA (2.111)

In many ways the flow-graph of a Markov chain is analogous to the block

diagram of a linear system. Each state of the Markov chain is assigned a node in

the flow-graph, and the path from one state to another has an associated transfer

function. In systems theory the transfer function from one node in a network to

another is given by the Fourier transform of the impulse response of the network

between the two nodes. For the Markov chain this transfer function is instead

given by the PGF of the transition time between the two nodes.

The circular state diagram due to Polydoros and Weber [99], illustrated in

Figure 2.27, is a simple, general representation of the acquisition process flow-

graph. It is suitable for arbitrary verification and lock mode strategies, but limited

to the straight serial search strategy. In the figure there are NT + 2 states in the

acquisition Markov chain. These correspond to the NT tiles of the uncertainty

region, plus one state each for the acquisition (ACQ) and false alarm states. The

acquisition process proceeds as follows:

• The state associated with the H1 cell is given the number NT, the remaining

cell-states are numbered sequentially in the search order, starting with 1 for

the cell immediately following the H1 cell.

• The search starts in cell i, with probability πi.

• Once the search enters a H0 cell, say state j < NT, there are two possibili-

ties:

1. The cell is rejected and the search moves onto state j+1. The transfer

function for this path is denoted Hr0(z). This includes the direct path,

plus all paths through the verification mode that ultimately result in

rejecting the cell under test.

2. The cell is accepted and the search moves into the false alarm state.

The transfer function for this path is denoted Hfa(z), and accounts for
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Figure 2.27: Circular State Diagram for the Markov Chain Representation of the
Acquisition Process. Note that this State Diagram Represents a Serial Search
Process.

all possible paths through the verification mode that result in accepting

the cell under test.

• The false alarm state can be modelled either as absorbing or transient. If

it is an absorbing state then the transfer function Hp(z) will be zero: there

is no return from an absorbing state. If it is a transient state then Hp(z)

models the penalty time incurred by false entry into the lock mode.

• Once the search enters the H1 cell (state NT), then the signal will either be

correctly detected, with transfer function Hd(z), or will be falsely dismissed,

with transfer function Hr1(z). Again, both Hd(z) and Hr1(z) include all

possible paths through the verification mode.
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The transfer function from start to acquisition can be derived directly from the

circular state diagram [99, Equation (4)]:

Pacq1
(z) =

Hd(z)

1 − Hr1(z)HNT−1
0 (z)

NT∑

i=1

πiH
NT−i
0 (z), (2.112)

where H0(z) is the complete transfer function from a H0 state to the next cell

state, given by:

H0(z) = Hr0(z) + Hfa(z)Hp(z). (2.113)

The system performance parameters can then be determined by using Equa-

tion (2.112) in Equations (2.109) – (2.111).

The only limitation of the circular state diagram approach is that the search

strategy is limited to the straight serial search. In [98] the authors extend this

approach by introducing the equivalent circular state diagram. This effectively

maps any arbitrary search strategy to a form similar to the circular state diagram

above. The resulting expressions for the system performance parameters are more

involved than the simple expression of Equation (2.112). Since we shall primarily

consider simple serial search strategies in this thesis, we do not reproduce the

expressions of [98] here.

While all of the above analysis deals only with the single cell detector, the

extension to parallel techniques is straightforward. The only modification to be

made to the circular state diagram is to include a path from the H1 state to the

false alarm state, as indicated in [31, Figure 1].

The Direct Approach

The final technique we shall consider is the direct approach. This is a combi-

natorial approach and does not rely on the Markov property of the acquisition

process. It is based on early work by Braun [22] and Weinberg [147], and was

modified by Meyr and Polzer [84]. The approach was generalised and given the

name “direct approach” by Jovanović [68, 69]. Similar combinatorial arguments

were presented by Pan et al. [90, 91].

Letting fTACQ
(t) denote the PDF of the acquisition time, then this approach

is most easily understood by considering the treatment of Braun [22], who gave

90



2.5. The Acquisition Process

the following expression:

fTACQ
(t) =

NT∑

m=1

Pr
{
mth cell is correct

}

×
∞∑

k=1

Pr
{
acq. in kth scan | m

}

×
∞∑

l=1

Pr {l false alarms | m, k}

×fTACQ
(t | m, k, l), (2.114)

where facq(t | m, k, l) denotes the conditional PDF of the acquisition time given

that the mth cell is the H1 cell, detection occurs on the kth time the H1 cell is

tested (i.e. on the kth “scan”) and a total of l false alarms occur during acquisition.

This approach can be described as a combinatorial method as Equation (2.114)

is simply an enumeration of all the possible ways in which acquisition can occur.

From [22] we have:

fTACQ
(t | m, k, l) = ftd(t) ∗ ftr0

(t) ∗i ∗ftfa
(t) ∗l ∗ftr1

(t)∗j, (2.115)

where i is the total number of times a H0 cell was tested and rejected (not

including false alarms), j is the total number of times the H1 cell was tested and

rejected and the acquisition time is dependent on the following four rvs:

1. td: the time taken to correctly detect the signal in the H1 cell,

2. tr1 : the time taken to reject the signal in the H1 cell,

3. tfa: the time to declare a hit in a H0 cell, plus the subsequent false alarm

penalty time, and

4. tr0 : the time taken to correctly reject the signal in a H0 cell,

a∗b denotes the convolution of a and b and fX(t)∗n denotes the n-fold convolution

of fX(t) with itself. Both Braun [22] and Weinberg [147] make use of transform

domain techniques to implement the convolution operations. Note that, given m,

k and l, the values of i and j are completely determined by the search strategy.

Meyr and Polzer [84] applied a similar method, but derived the following

expression for the PMF of the acquisition time as a multiple (n) of the code
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period:

pTACQ
(n) = Pd

∞∑

i=1

(1 − Pd)
i−1

NT∑

j=1

πj pTACQ
(n | i, j) , (2.116)

where i denotes the number of times the H1 tile is tested prior to detection, j is

the location of the H1 tile in the uncertainty space, πj is the a priori probability

that the H1 tile is at location j, and pTACQ
(n | i, j) is the PMF of the acquisition

time given i and j:

pTACQ
(n | i, j) = ftd(n) ⊗ ftr0

(n) ⊗k(i,j) ⊗ftr1
(t)⊗i−1, (2.117)

where a ⊗ b denotes the discrete convolution of a and b. Note that, in this case,

the time to reject a H0 cell, tr0 , is a random variable including all paths through

the verification and lock modes. Thus, whereas Braun used four continuous rvs to

model the various dwell times, Meyr and Polzer describe the same system using

only three (in this case, discrete) rvs.

Jovanović [68] used the work of Meyr and Polzer as a starting point, extending

it to include the case where the dwell times are, again, continuous.

The difficulty with the computation of Equations (2.114) and (2.116) is the

evaluation of the convolutions in the expression for the conditional PDF of the

acquisition time. Transform domain approaches are commonly used in many

branches of engineering to overcome the difficulty associated with the computa-

tion (or even the analytical treatment) of the convolution operation. For contin-

uous variables, the Fourier or Laplace transforms are often applied to this end

whilst, for discrete variables, either the DFT or the Z-transform are more appro-

priate. In Appendix C.3 we summarise some common transform-based functions

used in probability theory.

We consider the characteristic function (CHF) of continuous random variables,

which is, in effect, equivalent to the Fourier Transform† of the PDF. Thus, the

CHF of the convolution of a number of independent rvs is simply the product of

the individual CHFs. For a continuous rv X with PDF fX(x), the CHF of X is

defined by (see Appendix C.3.2):

ΦX (jω) = EX [exp (jωx)] =

∫ ∞

−∞
fX(x) exp (jωx) d x. (2.118)

†The CHF is equivalent to the Fourier Transform except for the sign of the variable ω and
a multiplicative constant.
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Similarly, for discrete random variables, we consider the PGF, which is es-

sentially equivalent to the Z-transform† of the PMF. We previously discussed the

PGF in the context of the flow-graph approach. A summary of some important

properties of the PGF can be found in Appendix C.3.3.

The CHF approach was suggested by Braun [22] and Weinberg [147] for appli-

cation to Equation (2.115), and by Jovanović for application to Equation (2.117),

when the dwell times are modelled as continuous. Jovanović also suggested the

PGF approach for the case of discrete dwell times. Taking CHFs in Equa-

tion (2.115) yields:

ΦTACQ
(jω) = Φtd (jω) Φtr0

(jω)i Φtfa
(jω)l Φtr1

(jω)j , (2.119)

which is much easier to compute than Equation (2.117). This approach immedi-

ately accounts for all possible search, verification and lock strategies. Any a priori

information is also taken into account through the expression Pr
{
mth cell is correct

}

in Equation (2.114) above. The distribution of the acquisition time can be found

by numerical methods from the CHF (Braun suggests a discrete Fourier transform

approximation, whereas Weinberg suggests an approach based on the Gil-Pelaez

inversion theorem [44]).

Jovanović [68], using the technique of Meyr and Polzer, was able to provide

an analytic inversion of the CHF for a single dwell (null verification) system

with arbitrary search strategy. The primary advantage of Jovanović’s approach,

however, arises when we consider all dwells to be discrete rvs. In this case, the

verification and lock modes are modelled entirely by their PGFs, which can be

easily determined using the Markov chain methods discussed above. This general

approach, using a mixture of flow-graph and direct techniques, would appear to

be the most useful in the determination of system performance.

2.6 Discussion

In this chapter we have given an overview of the DS/CDMA acquisition problem,

with emphasis on the GPS application. We have taken an approach based on

detection and estimation theory, introducing standard acquisition architectures

†The Z-transform of the discrete function f(k) is simply the DFT of f(k) with the substi-
tution exp (jω) → z.
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as approximations to the optimal (maximum likelihood) estimator. We identify

two components to acquisition:

• The detector/estimator,

• The acquisition process, which determines the motion of the detector/

estimator through the signal parameter uncertainty space.

We considered a number of forms for the detector/estimator, starting with the

optimal form in AWGN and continuing with various sub-optimal approaches in-

troduced to overcome performance degradation due to data modulation and signal

power attenuation. Of particular importance are the parallel techniques discussed

in Section 2.4.4, which can provide significant performance improvements at the

cost of increased hardware requirements. The acquisition of very weak GPS

signals (with received C/N0 in the range −33.8 to −23.8 dB-Hz) would be impos-

sible in reasonable time frames (less than hours) without some form of receiver

parallelism.

Finally, we discussed existing techniques used in the analysis of the acquisition

process. These techniques are equally applicable for all the detector/estimator

designs discussed in Section 2.4.

In the following two chapters we conduct an analysis of all forms of the de-

tector estimator introduced here. We begin in Chapter 3 with an investigation

of detector/estimator performance in the absence of noise.
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Chapter 3

The Detector/Estimator I: Signal

Effects

The detector/estimator was introduced in the previous chapter as the fundamen-

tal building block of GPS signal acquisition. In this chapter we present some

novel results on the analysis of all four forms of detector/estimator discussed in

Section 2.4:

1. The coherent (or ML) detector,

2. The noncoherent combining detector (NCCD),

3. The differentially coherent combining detector (DCCD), and

4. The differentially coherent detector (DCD).

Of these four forms, the first is a discrete form of the maximum likelihood es-

timator, the following two (NCCD and DCCD) are sub-optimal forms based on

the ML form, and the last is a completely different form making use of the shift

and add property of Gold codes.

Whilst, the relative merits of each of these forms have been discussed in some

detail in Section 2.4, here we will present a formal, comparative performance anal-

ysis. We begin with the performance analysis in the absence of noise, postponing

consideration of noise effects until Chapter 4.

The performance analysis of a receiver in the absence of noise provides a useful

measure of its sensitivity to signal parameters, such as residual code phase and

carrier frequency offsets, and modulation effects. From this analysis we can gain
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Chapter 3. The Detector/Estimator I: Signal Effects

insight into the effect of the various detector parameters on this sensitivity, which

will act as a guide in the design and optimisation of a complete acquisition system.

It is important to note, however, that this type of analysis is not sufficient for

the comparison of different receiver forms, as each form has a unique sensitivity

to noise which must also be accounted for, as discussed in Chapter 4.

We have previously seen (Section 2.1) that the signal parameters of primary

interest to us, i.e. those having the most significant effect on receiver performance,

are:

• The residual code phase offset, δζ, which is a function of the true code

phase offset and the spacing between estimates.

• The residual Doppler dilation coefficient δη which, in turn, leads to an

observed residual carrier Doppler frequency offset δωd and a residual code

frequency offset.

• The data signal d(t), which leads to random 180◦ phase shifts at the (un-

known) data bit boundaries.

These parameters are defined in Table 3.1. For each detector form we consider

Symbol Description Equation

ζ Signal code phase offset ζ = ζ0 − η t
Tchip

ζ0 Initial signal code phase offset —
η Signal Doppler dilation coefficient See Equation (2.3)
ωd Signal Doppler offset ωd = ηω0

ζ̂ Local estimate of ζ ζ̂ = ζ̂0 − η̂ t
Tchip

ζ̂0 Local estimate of ζ0 —
η̂ Local estimate of η Receiver dependent
ω̂d Local estimate of ωd —

δζ Residual ζ estimation error δζ = ζ − ζ̂

δζ0 Residual ζ0 estimation error δζ0 = ζ0 − ζ̂0

δη Residual η estimation error δη = η − η̂
δωd Residual ωd estimation error δωd = ωd − ω̂d

Table 3.1: List of Symbols for the Estimation Process

the effect of offsets in the parameters to be estimated (the desired parameters),

as well as the effect of nuisance parameters. For example, for the NCCD, the

desired parameters are the code phase offset ζ and the Doppler offset ωd, whereas
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3.1. The Maximum Likelihood Form

the data signal can be viewed as a nuisance parameter. The detector is essentially

defined in terms of its decision function, Dk(θ̂). All signal effects will be modelled

based on how they affect this decision function.

For the most part, the analysis of both the ML and NCCD forms in the

absence of noise is well known, though we make some new contributions to the

analysis of modulation and code Doppler effects. We present a brief overview of

all of this analysis here, however, as it illustrates the method used for the other

detector/estimator forms.

In all of the following analysis an infinite bandwidth signal is assumed. Thus,

for the sake of simplicity, the effects of front end filtering are ignored.

3.1 The Maximum Likelihood Form

The ML detector structure is illustrated in Figure 2.12 and is reproduced as

Figure 3.1 for convenience. If we assume that the parameter estimate θ̂ =
[
ζ̂ , ω̂d

]

e−jcωdt

Dk(θ̂)| · |2

ck(t − ζ̂Tchip)

r(t)
MNs−1∑

n=0

YXn

Figure 3.1: The ML Detector

is correct and ignoring, for the moment, the effect of data modulation, then the

input to the coherent accumulator will be a (complex) constant:

Xn =

√
Pk

2
exp (jφk) , (3.1)

where Xn is the input to the coherent accumulator at time t = nTs, Pk is the

received signal power from the satellite of interest (satellite k) and φk is the initial

carrier phase offset. Thus, in the absence of any extraneous signal effects, the

output of the coherent accumulator is:

Y =
MN−1∑

n=0

Xn = MN

√
Pk

2
exp (jφk) . (3.2)
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The decision statistic Dk(θ̂) is then given by the square magnitude of Y :

Dk(θ̂) = 0.5(MN)2Pk . (3.3)

Thus, when all signal effects have been eliminated, the ML detector yields a

decision statistic which is a scaled measure of the signal power.

3.1.1 The Effect of a Residual Carrier Frequency Offset

If we now introduce a carrier Doppler offset ωd and assume all other effects remain

unchanged†, then, at the input to the coherent accumulator, we have:

Xn =

√
Pk

2
exp (j (φk + δωdnTs)) . (3.4)

The output of the coherent accumulator can now be found as follows:

Y =
MN−1∑

n=0

Xn

=
MN−1∑

n=0

√
Pk

2
exp (j (φk + δωdnTs))

=

√
Pk

2
exp (jφk)

MN−1∑

n=0

(exp (jδωdTs))
n

=

√
Pk

2
exp (jφk)

1 − exp (jδωdTsMN)

1 − exp (jδωdTs)

where we have used Equation (A.4) in Appendix A. Rearranging yields:

Y =

√
Pk

2
exp

(
j

(
φk +

δωdTs

2
[MN − 1]

))
sin
(

δωdTsMN
2

)

sin
(

δωdTs

2

) . (3.5)

Finally, taking the square magnitude, we obtain:

Dk(θ̂) = 0.5Pk

∣∣∣∣∣
sin
(

δωdTsMN
2

)

sin
(

δωdTs

2

)
∣∣∣∣∣

2

. (3.6)

†For the moment we ignore code Doppler effects, though the presence of carrier Doppler
implies the presence of code Doppler. Carrier Doppler tends to dominate, however, so this
simplification is sufficient for present purposes.
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3.1. The Maximum Likelihood Form

Comparing Equations (3.6) and (3.3) we see that the effect of the carrier Doppler

offset is to introduce an effective power attenuation αD(δωd) given by:

αD(δωd) =

∣∣∣∣∣
sin
(

δωdTsMN
2

)

MN sin
(

δωdTs

2

)
∣∣∣∣∣

2

. (3.7)

This is a well known expression, previously introduced in Equation (2.19). The

derivation above is due to Ashe [14].

3.1.2 The Effect of Data Modulation

We now introduce an unknown data modulation onto the signal. Initially we

assume that there is a single data bit boundary within the observation interval,

i.e. M ≤ D. We assume that the bit boundary occurs a fraction δT of the way

through the observation interval, as illustrated in Figure 3.2. Let µ = dδT MNe

++ + − −
− − + +−

δT MTCA (1 − δT )MTCA

Bit Boundary

MTCA s

Figure 3.2: Data Transition in a Coherent Integration Period

be the index of the first sample in the second data bit in the observation interval,

such that samples µ − 1 and µ are on either side of the bit boundary. Then we

can write:

Y =

√
Pk

2
exp (jφk)

(
d0

µ−1∑

n=0

exp (jδωdnTs) + d1

MN−1∑

n=µ

exp (jδωdnTs)

)
, (3.8)

where d0, d1 = ±1 are the first and second data bits within the observation

interval, respectively. Defining Sr as follows:

Sr =
r−1∑

n=0

exp (jδωdnTs) , (3.9)
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then we have:

Y =
√

0.5Pk exp (jφk) (d1SMN − (d1 − d0)Sµ) (3.10)

=
√

0.5PkSMN exp (jφk)

(
d1 − (d1 − d0)

Sµ

SMN

)
. (3.11)

Taking the square magnitude we obtain:

Dk(θ̂) = 0.5Pk |SMN |2




1 d1 = d0∣∣∣1 − 2 Sµ

SMN

∣∣∣
2

otherwise
(3.12)

= 0.5(MN)2PkαD(δωd)αm(δωd,d), (3.13)

where αD(δωd) is the power attenuation due to carrier Doppler effects (defined

in Equation (3.7)) and αm(δωd,d) is the power attenuation due to the unknown

data signal d. From the derivation of Equation (3.5) we have:

Sr = exp

(
j
δωdTs

2
(r − 1)

)
sin
(

δωdrTs

2

)

sin
(

δωdTs

2

) , (3.14)

and so we have:

αm(δωd,d) =





1 d1 = d0∣∣∣∣1 − 2 exp
(
−j δωdTcoh

2
(1 − δT )

) sin
“

δωdTcohδT
2

”

sin
“

δωdTcoh
2

”

∣∣∣∣
2

otherwise

(3.15)

where Tcoh = MTCA is the duration of the coherent observation interval. This

result would appear to be new† and is illustrated in Figure 3.3. It is important

to note that, as observed by Davisson and Flikkema [37], the power attenuation

due to data modulation is not independent of the Doppler offset.

Consider the following two simple special cases. In the absence of any residual

†All novel results will be indicated by a surrounding box, as in Equation (3.15).
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Figure 3.3: Power Attenuation Due to Data Modulation in the ML Detector: fd

is the residual Doppler offset, normalised by the coherent accumulation length
M , δT is the fraction of the way through the coherent observation at which the
bit transition occurs.

carrier Doppler Equation (3.15) reduces to:

αm(0,d) =





1 d1 = d0

|1 − 2δT |2 otherwise.
(3.16)

The worst case attenuation occurs when δT = 1/2 at which point αm = 0 and the

signal is completely eliminated from the decision statistic. The mean attenuation

is given by Equation (2.59).

At the other extreme, the Doppler error is at a maximum when the true

Doppler offset is right on a boundary between two Doppler bins. In this case, we

have δωd = π/Tcoh (see page 28) and:

αm(π/Tcoh,d) = 1. (3.17)

This is a very interesting fact that doesn’t seem to have been explicitly pointed

out in the literature to date: at the edge of a Doppler bin, data modulation has

absolutely no effect on the decision statistic. This, again, is clearly visible in
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Figure 3.3.

We can use Equation (3.15) above to derive useful expressions for the mean

and worst case power attenuation due to data modulation. After some algebraic

manipulation of Equation (3.15) we have:

αm (δωd, δT ) = 1 + 2t

[
cot2 β − cot β (sin 2βδT + cot β cos 2βδT )

]
, (3.18)

where we have introduced the random variable t which is equal to one if a tran-

sition occurs at the boundary, and equal to zero otherwise, and, for notational

convenience, we have introduced:

β
∆
=

δωdTcoh

2
. (3.19)

Note that β is one half of the total phase shift due to carrier Doppler over the

coherent observation interval.

The worst case attenuation, denoted αmwc, occurs when t = 1 and δT = 1/2†

and is given by:

αmwc(δωd) = 1 − 4
cos β sin2 β

2

sin2 β
. (3.20)

To determine the mean of αm we assume a uniform distribution on δT
‡:

αm(δωd | t) ≈
∫ 1

0

fδT
(x)αm(δωd, x)d x

=

∫ 1

0

1 + 2t

[
cot2 β − cot β (sin 2βx + cot β cos 2βx)

]
d x

= 1 + 2t

(
cot2 β − cot β

β

)
. (3.21)

There is a bit boundary, on average, every M/D observation intervals and,

assuming random data, a bit transition will occur at any given boundary with a

probability of 1/2. Therefore, the expected value of t is M/(2D) and the overall

†This can be easily seen by minimising Equation (3.18) with respect to δT .
‡The integral in Equation (3.21) is an approximation, the true average is found by summing

over all possible µ. An expression for this true average is derived in Appendix B.1.1, experience
has shown that this is a very good approximation when the number of samples is large.
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average value of the power attenuation due to modulation effects is given by:

αm(δωd) = Et

[
1 + 2t

(
cot2 β − cot β

β

)]
M ≤ D

≈ 1 − M

D

(
cot β

β
− cot2 β

)
. (3.22)

Note that taking the limit as δωd → 0 gives us:

lim
δωd→0

αm(δωd) = 1 − M

3D
, (3.23)

which is exactly the expression given in Equation (2.59) for the case M < D.

It is instructive to consider the combined effects of data modulation and carrier

frequency offset. Consider first of all the combination of carrier Doppler and

average data modulation:

αD(δωd)αm(δωd) =

∣∣∣∣∣
sin β

MN sin β
MN

∣∣∣∣∣

2 [
1 − M

D

(
cot β

β
− cot2 β

)]
. (3.24)

This is plotted against the normalised Doppler offset in Figure 3.4. Two inter-

esting observations can be made from this figure. Considering the portion of the

curve within the Doppler bin (i.e. fd < 1
2MTCA

= 0.5/M kHz) it is clear that

increasing M increases the receiver’s sensitivity to data modulation effects. Sec-

ondly, considering the portion outside of the Doppler bin, we see that the presence

of data modulation tends to increase the average amount of signal power seen

in this region. Increasing M , therefore, tends to increase the amount of signal

power that is “spread” into adjacent Doppler bins, thereby degrading receiver

performance.

As discussed above, data modulation exerts its most extreme influence when

δT = 1/2, in which case αm is given by Equation (3.20). This gives us the

following expression:

αD(δωd)αmwc(δωd) =

∣∣∣∣∣
sin β

MN sin β
MN

∣∣∣∣∣

2 [
1 − 4

cos β sin2 β
2

sin2 β

]
. (3.25)

This is illustrated in Figure 3.5. From the diagram, we see that, when the data
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Figure 3.4: Power Attenuation Due to Combined Carrier Doppler and Aver-
age Case Data Modulation for the ML Detector: The vertical line indicates the
Doppler bin boundary.

modulation is at its most extreme case, the effect is to modulate the energy of

the main lobe of the received signal into two side lobes. This introduces a bias in

our estimator: the maximum value of the decision statistic no longer corresponds

to the true parameters.

So far we have treated only the case M ≤ D. We can extend the above results

to M > D by an approach similar to that of Davisson and Flikkema [37]. The

following result is derived in Appendix B.1.2:

αm(δωd) =

∣∣∣∣∣
sin βD

M

sin β

∣∣∣∣∣

2(
M

D
− M cot

(
β D

M

)

βD
+ cot2 βD

M

)
M ≥ D. (3.26)

From this we note that, within a Doppler bin, the mean modulation attenuation

is a monotonically decreasing function of M . Likewise, the average amount of

signal power spread into the side-lobes is a monotonically increasing function of

M . In addition, it is interesting to note that the Doppler bin boundary is no

longer a fixed point when M > D. The bin width is, therefore, also affected by
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Figure 3.5: Power Attenuation Due to Combined Carrier Doppler and Worst Case
Data Modulation for the ML Detector: The vertical lines indicate the Doppler
bin boundaries.

modulation effects in this case. For these reasons it is usually desirable to choose

M ≤ 10 to limit the impact of data modulation.

The analysis of the combined effect of carrier Doppler and data modulation

presented above is new. Davisson and Flikkema [37] did present results similar to

Equations (3.24) and (3.26) above, though there is an error in their expression†.

In addition, the approach taken here differs significantly from their approach.

3.1.3 The Effect of Code Doppler

Reverting back to the case δωd = 0, if we introduce a residual code phase offset

δζ then we have seen in Equation (2.52) that the decision statistic is given by:

Dk(θ̂) = 0.5(MN)2Pkαs(δζ), (3.27)

where:

αs(δζ) = (1 − |δζ|)2. (3.28)

†In Equation (8-5b) the term (1+RsTb) multiplying the cosine terms should be replaced by
(1 − RsTb) in both cases.
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Again, this is a well known result.

Now, let us assume that there is also a residual frequency offset. This fre-

quency offset has previously been modelled simply as a shift in the carrier fre-

quency, leading to a rotation in X at every sample. However, a frequency differ-

ence between the received and locally generated signals will also manifest itself

as a difference in the chipping rate (or code phase rate) between the local and

received codes. We have previously modelled the frequency error through the

Doppler dilation coefficient η, defined in Equation (2.3). Thus, the received sig-

nal can be modelled, in the absence of data modulation and noise, by:

rk(t) =
√

0.5Pkck ([1 + η]t − ζ0Tchip) exp (j [(1 + η)ω0t + φk]) , (3.29)

where ζ0 is the initial code phase offset. The Doppler frequency offset is, therefore,

given by ωd = ηω0, and the code phase offset is in motion:

ζ = ζ(t) = ζ0 − ηt/Tchip. (3.30)

The local code can be modelled as follows (see Table 3.1 on page 96 for a list

of the symbols used here):

ck

(
[1 + η̂] t − ζ̂0Tchip

)
. (3.31)

Therefore, we see that the residual code phase error is a function of time, given

by:

δζ(t) =
(
ζ0 − ζ̂0

)
− (η − η̂)

t

Tchip

(3.32)

= δζ0 − δη
t

Tchip

. (3.33)

Different receiver implementations differ in the estimation of η. We consider three

common implementations:

1. The typical hardware implementation [140, Figure 26]: here the local code

clock rate is updated by the current carrier frequency estimate. Thus, we

have:

η̂ =
ω̂d

ω0

. (3.34)

2. The typical software implementation [137, Section 7.7]: in this case the re-
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ceived signal is sampled, buffered and stored in memory. Doppler compen-

sation is achieved simply by multiplying the received signal by exp (−jω̂dt),

which can be achieved either by direct multiplication, or by rotation in the

frequency domain (see Section 2.4.4). In either case, we have:

η̂ = 0. (3.35)

3. The η-estimating implementation [27]: the receiver estimates both the

Doppler dilation coefficient and the Doppler frequency offset. As pointed

out by Cheng [27], the carrier Doppler effect dominates the code Doppler

effect, so a less accurate estimate of the code Doppler rate is tolerable.

De-coupling these two estimates can result in a simpler implementation.

While we have identified the first two implementations with hardware and soft-

ware respectively, it is important to note that one can also have hardware im-

plementations for which Equation (3.35) holds, and software implementations for

which Equation (3.34) holds (see [10, 75, 103] for instance).

How can we model the effect of a drift in ζ̂ relative to ζ? Perhaps the most

obvious effect is that the code phase offset at the end of the coherent accumulation

period will be different to that at the beginning. In fact, denoting by ∆ζ the total

change in residual code phase error over one coherent accumulation period, we

have:

∆ζ
∆
= δζ(Tcoh) − δζ(0)

= −LMδη, (3.36)

where we recall that L = 1023 is the C/A code length in chips. This poses two

problems:

1. The amplitude of Y is affected: either increasing or decreasing, depending

on whether δζ moves toward or away from the origin, respectively.

2. The peak of Y no longer corresponds to the true code phase offset. It can be

shown that the value of ζ̂0 at which Y is a maximum is given by ζ0 +∆ζ/2.

Thus, the residual code phase error at the start of the observation interval

is δζ0 = ζ0 − ζ̂0 = −∆ζ/2. At the end of the observation interval, the code

phase error is given by δζ0 + ∆ζ = ∆ζ/2. The presence of code Doppler,

therefore, introduces a bias of ∆ζ/2 code chips to our estimate ζ̂.
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For the moment we make a simple approximation of the first effect, under the

assumption that ∆ζ � 1. In this case the start point and the end point are close

to each other and a simple midpoint approximation suffices:

αs (δζ, δη) ≈
(

1 −
∣∣∣∣δζ − LMδη

2

∣∣∣∣
2
)

. (3.37)

To characterise the magnitude of this effect we look at bounds on |∆ζ|, i.e.

we ask: what is the maximum shift in the code phase error in one coherent

accumulation period?

Consider initially the typical hardware receiver above, with η̂ given by Equa-

tion (3.34). Recall that, by our choice of Doppler bins, we have limited the

residual Doppler error to |δωd| ≤ π/Tcoh. Thus, inserting Equation (3.34) into

Equation (3.36) gives us:

|∆ζ| ≤ LM
1

2MLTchipf0

(3.38)

=
2

Tchipf0

(3.39)

=
1

3080
chips. (3.40)

So, the effect of code Doppler is essentially negligible in comparison to the effect

of carrier Doppler.

For the typical software receiver, we have η̂ = 0 and so δη = δωd/ω0. In this

case the code and carrier Doppler effects are completely de-coupled. Therefore, it

is possible for the code Doppler effect to dominate over the carrier Doppler effect.

Consider, for example, the extreme case where the received signal has a Doppler

offset ωd = 20 × π k rad s−1, and the receiver makes the estimate ω̂d = 20 × π k

rad s−1, then we have δωd = 0, but δη = 10/1.57542 × 106 = 6.35 × 10−6 which

leads to a relative code phase drift of:

∆ζ = −M6.5 × 10−3 chips. (3.41)

A coherent integration period of M = 77 will, therefore, result in a code phase

shift of 1/2 a chip. Note that both the frequency offset and coherent accumulation

period are extreme in this case. Typically, however, carrier Doppler will dominate

over code Doppler, even when code Doppler is not accounted for in the receiver.
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The simple analysis above does suggest that it is advisable to incorporate code

Doppler compensation in receivers subject to both high dynamics (large frequency

offsets) and weak signals (large M).

For the η-estimating receiver the designer would like to be able to choose

the receiver parameters to meet the design specifications. To do so requires a

better understanding of the relationship between the receiver parameters and

the maximum allowable residual Doppler dilation coefficient. To gain a better

insight into the effect of code Doppler in this situation, we now derive a useful

approximate model of code Doppler effects when M is large and carrier Doppler

has been accounted for. Consider an arbitrary code chip boundary as illustrated

in Figure 3.6. We see that a residual code phase offset of δζ chips at this boundary

−1

Local code: c

Received code: r

Product: r × c

|δζ|Tchip s

+1

+1

+1

−1

−1

Figure 3.6: Effect of a Residual Code Phase Offset at a Chip Transition.

leads to a negation in the correlation of duration |δζ|Tchip seconds. Thus, given

a sample time of Ts, an average of |δζ|Tchip/Ts samples of the accumulator input

will be negated. Now, within the C/A codes there are (L− 1)/2 chip transitions,

therefore, over one code period the accumulator output will be:

Y =
√

0.5PkMN exp (jφk)

(
1 − [L − 1]

|δζ|Tchip

NTs

)

≈
√

0.5PkMN exp (jφk) (1 − |δζ|) . (3.42)

We now introduce a code frequency offset leading to a total change in δζ of ∆ζ

chips. Consider now the partial accumulator sum over one code chip, say the ith,
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which we denote yi. Then we have:

yi =
√

0.5Pk exp (jφk)
N

L
(1 − 2 |δζi| ti) , (3.43)

where δζi is the residual code phase offset at the ith chip boundary and ti is 1 if a

chip transition occurs at the ith chip boundary and 0 if it does not. The average

value of ti is, therefore, 1/2 and so we can approximate the coherent accumulator

output by:

Y ≈
√

0.5PkMN exp (jφk)

(
1 − 1

ML

ML−1∑

i=0

|δζi|
)

. (3.44)

A first order approximation to the code phase offset at the ith boundary is given

by δζi = δζ0 + i ∆ζ
ML

, and so we have:

Y ≈
√

0.5PkMN exp (jφk)

(
1 − 1

ML

ML−1∑

i=0

∣∣∣∣δζ0 + i
∆ζ

ML

∣∣∣∣

)
. (3.45)

A general, closed form solution to the above expression is difficult to obtain due

to the presence of the absolute value in the summand. We can make a simple,

piece-wise linear approximation, however, on making the following observations

on the expression:

1. The peak value occurs at the point δζ0 = −∆ζ
2

.

2. It is symmetrical about this peak.

3. Y is approximately zero for
∣∣δζ0 + ∆ζ

2

∣∣ > 1 +
∣∣∆ζ

2

∣∣.

Taking δζ0 = −∆ζ
2

in Equation (3.45) then, after some manipulation, we have:

Ymax ≈
√

0.5PkMN exp (jφk)

(
1 − |∆ζ|

4

)
. (3.46)

Thus, a simple, piece-wise linear approximation to the output of the coherent

accumulator in the presence of code Doppler effects is given by:

Y ≈





√
0.5PkMN exp (jφk)

(
1 − |∆ζ|

4

)(
1 − |δζ0+∆ζ

2 |
1+

|∆ζ|
2

) ∣∣δζ0 + ∆ζ
2

∣∣ ≤ 1 +
∣∣∆ζ

2

∣∣

0 otherwise.

(3.47)
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Comparing Equations (3.3) and (3.47) we see that we can approximate the com-

bined effects of residual code phase and frequency offsets as a power attenuation

factor αs
†:

αs (δζ0, δη) ≈





(
1 − |∆ζ|

4

)2
(

1 − |δζ0+∆ζ
2 |

1+
|∆ζ|

2

)2 ∣∣δζ0 + ∆ζ
2

∣∣ ≤ 1 +
∣∣∆ζ

2

∣∣

0 otherwise,

(3.48)

where ∆ζ is related to δη through Equation (3.36).

This approximation is shown in Figure 3.7. In the figure there is a frequency

offset of 10 kHz, it has been assumed that the carrier frequency has been correctly

estimated but no code Doppler compensation has been employed. The accuracy of

the approximation can be seen to degrade as M is increased. This approximation

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulated

Approximation

δζ (chips)

α
s

M = 100 M = 20

Figure 3.7: Power Attenuation Due to Code Doppler in the ML Detector and an
Approximation. Here ωd = 20π krad s−1.

gives us an appreciation of the three primary effects of code Doppler:

†Recall that we assume that the total code phase drift due to Doppler effects is less than
one chip.
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1. There is an effective power attenuation αs,

2. A bias of ∆ζ
2

chips is introduced,

3. The auto-correlation main lobe is spread from a width of one chip to a

width of 1 +
∣∣∆ζ

2

∣∣ chips.

Typically M ≤ 10 is selected to limit the effect of data modulation. In

addition, the carrier Doppler estimate is divided into 500/M Hzbins. To limit

the effects of code Doppler we can also divide the code Doppler estimate (or,

rather, the estimate of the Doppler dilation coefficient) into bins. The power loss

due to carrier Doppler offset is significantly larger than the power loss due to code

Doppler effects for the same frequency offset, and so a much coarser division of

the frequency domain can be chosen for the purposes of code Doppler correction

in the ML detector. This observation was also made by Cheng et al., though they

considered a form of noncoherent detector [27] and did not take into account the

power attenuation effect.

The advantage of Equation (3.48) above is that it allows the designer to

choose appropriate receiver parameters for a specified level of performance. For

instance, if it is decided to limit the power attenuation due to code Doppler to

at most 0.5 dB then, from Equation (3.48), we have |∆ζ| ≤ 0.2. We can then

relate this to the maximum allowable frequency offset through Equation (3.36):

fd ≤ 308
MTCA

= 308
M

kHz. Clearly the effect of code Doppler is essentially negligible,

even in the absence of any correction, except when either M or the frequency

uncertainty are very large.

It is important to note that all of the preceding development is based on the

assumption of an ideal, triangular correlation peak. In reality, the front-end filter

will affect this peak, smoothing its triangular shape. This can be approximately

modelled as an appropriate reduction in SNR at the detector input. Note also

that, whilst the effect of code Doppler on the acquisition process has been con-

sidered in the past (see, for example, [19, 57]), the above analysis, treating the

effects of code Doppler on the decision statistic alone, is new.

3.2 The Noncoherent Combining Form

The noncoherent combining detector is illustrated in Figure 2.15, reproduced in

Figure 3.8 below for convenience. In essence, this detector consists of an ML
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Dk(θ̂)

ck(t − ζ̂Tchip)

r(t)

e−jbωt

| · |2
K−1∑

r=0

MN−1∑

n=0

Yr

Figure 3.8: Noncoherent Combining Detector

detector followed by a noncoherent accumulator over K successive outputs. The

decision statistic is generated as follows:

Dk(θ̂) =
K−1∑

r=0

|Yr|2 . (3.49)

The analysis of this receiver, therefore, follows directly from the analysis of the

ML detector.

Consider first of all the case of unknown phase offset in the absence of other

signal degradation effects. Inserting the expression for Y from Equation (3.2)

into Equation (3.49) gives the following expression for the decision statistic:

Dk(θ̂) = 0.5K(MN)2Pk. (3.50)

Once again we see that Dk is a scaled measure of the signal power at the receiver

antenna.

3.2.1 The Effect of a Residual Carrier Frequency Offset

Introducing an unknown residual carrier frequency offset δωd, and again ignor-

ing code Doppler effects for the moment, then the rth output of the coherent

accumulator is given by:

|Yr|2 = 0.5Pk

∣∣∣∣∣
sin δωdTsMN

2

sin δωdTs

2

∣∣∣∣∣

2

. (3.51)

Thus, the decision statistic is given by:

Dk(θ̂) = 0.5K(MN)2PkαD(δωd), (3.52)
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where αD(δωd) is given in Equation (3.7). Again, this is a well known result.

As discussed in Section 2.4.1, this represents one of the major advantages of

noncoherent combining. The attenuation due to residual carrier Doppler offset

is independent of K. Therefore, to acquire weaker signals, we can increase the

noncoherent accumulation period without suffering extra signal degradation due

to carrier Doppler.

3.2.2 The Effect of Data Modulation

We now introduce an unknown data signal, which modulates the received signal

at a rate of 50 bps. Thus, there is a possibility of a bit transition every D = 20

ms. Denoting by B the number of data bit boundaries occurring within the

observation interval, then we have:

B =





⌊
MK
D

⌋
or

⌈
MK
D

⌉
,

(3.53)

depending on where the first boundary occurs within the observation interval.

We assume that M ≤ D, so that there is at most one data bit boundary within a

coherent sub-interval. Thus, within the KM ms observation interval, there are B

coherent sub intervals containing data bit boundaries and K − B containing no

data bit boundaries, as illustrated in Figure 3.9. In our investigation of the ML

form above we have investigated the effect of data modulation within a coherent

sub-interval. We apply a similar technique here.

d1

KMTCA s

Bit Boundaries
MTCA s

d0 d2

Figure 3.9: Model of Data Effects in the Noncoherent Combining Detector

Let d denote the length B + 1 vector of data bits present in the observation

interval: d = [d0, d1, . . . , dB]. Similarly, we denote by δT,i the fraction of the way
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through a coherent sub-interval at which the ith data bit boundary occurs (see

Figure 3.2). Letting ri denote the index of the coherent sub-interval in which the

ith boundary occurs, then from Equation (3.13) we have:

|Yri
|2 = 0.5(MN)2PkαD(δωd)αmi(δωd, di, di+1, δT,i), (3.54)

where αmi denotes the modulation attenuation due to the ith bit boundary and

is defined in Equation (3.15). Substituting Equation (3.54) into Equation (3.49)

yields:

Dk(θ̂) = 0.5(MN)2PkαD(δωd)

[
K − B +

B−1∑

i=0

αmi

]
, (3.55)

where the dependence of αmi on the signal parameters is implicit. Comparing

Equations (3.52) and (3.55) we see that the modulation can be modelled as an

attenuation of the received signal power:

Dk(θ̂) = 0.5K(MN)2PkαD(δωd)αm(δωd, B,d), (3.56)

where:

αm(δωd, B,d) = 1 − 1

K

(
B −

B−1∑

i=0

αmi

)
. (3.57)

Note that αmi is a function of: 1) the two data bits within the coherent sub-

interval; 2) the point at which the boundary occurs, δT,i; and 3) the residual

Doppler offset δωd. We can assume that the data bits are statistically indepen-

dent. The relationships between the δT,i require a little more effort. We consider

two receiver types:

1. Synchronous receiver: In this case, the local code epoch is synchronised to

the start of the coherent observation interval, see Figure 3.10 a). Therefore,

when the local code estimate is correct, data bit edges are also synchro-

nised to the local code epoch. This is typically the case in serial hardware

receivers.

2. Asynchronous receiver: The local code epochs are not synchronised to the

start of the coherent observation interval, see Figure 3.10 b). In this case,

a data bit boundary can occur anywhere within a coherent sub-interval.

Software and FFT-based receivers are typically asynchronous.
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Received Code

Observation Interval Observation Interval

ζ̂ = 0 ζ̂ = 0

ζ = 0 ζ = 0

a) b)

Local Code

Figure 3.10: a) Synchronous Receiver. b) Asynchronous Receiver.

Synchronous receiver In this case, bit boundaries can only occur at local C/A

code epochs. Thus, given that there are M code periods in a coherent observation

interval, there are only M discrete points at which a data bit boundary can occur,

given by:

δT,i ∈
{ n

M
: 0 ≤ n ≤ M − 1

}
. (3.58)

If we define n0 such that δT,0 = n0

M
, then we can write:

δT,i =
(n0 + iD) mod M

M
(3.59)

=

(
δT,0 +

ir

M

)
mod 1, (3.60)

where:

r
∆
= D mod M. (3.61)

It is interesting to note that the bit boundary location returns to δT,i whenever
ir
M

is an integer. Denoting by T the smallest value of i such that δT,i = δT,0, then:

T =
M

gcd(r,M)
, (3.62)

where gcd(r,M) denotes the greatest common divisor of the integers r and M .

Therefore, of the M possible values of δT,i, a maximum of T will be “visited”

during any one KMTCA ms observation interval. This is illustrated in Figure 3.11,

where we have M = 6 and T = 3. Note that we introduce the variable δT,0 to

denote the location of that data bit boundary which occurs closest to the start
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of a coherent observation interval.

Bit Boundaries

δT,0 = 1
M

δT,0 = 0

MTCA seconds

TCA seconds

Figure 3.11: All Possible Bit Boundary Locations for the Synchronous Receiver:
M = 6, r = 2 and T = 3.

Asynchronous receiver In this case, bit boundaries can occur anywhere within

the coherent observation interval. Again, we denote by δT,0 the fractional offset

of the first boundary. The only difference between the synchronous and asyn-

chronous receivers is the set of possible values that can be assumed by δT,0. In

each case we have:

δT,i = δT,0 +
ir

M
mod 1, (3.63)

where r is defined in Equation (3.61) above and, again, there are T possible values

of δT,i at which boundaries can occur in any one observation interval, where T is

defined in Equation (3.62).

We are particularly interested in weak signal applications, in which case we

have K � M , so that all possible δT,i are visited during the observation interval.

We can use this to derive simple approximations to the mean and worst case

modulation attenuation. We assume that, in a long observation interval, all the

δT,i occur B/T times. Thus, from Equation (3.57), we have:

αm ≈ 1 − B

K

(
1 − 1

T

T−1∑

i=0

αmi

(
δωd, δT,i

)
)

, (3.64)

where: δT,i = δT,0 + i/T and we denote by δT,0 the smallest δT occurring in the

observation interval and αmi is the modulation attenuation factor for the ML
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form, given in Equation (3.18). After some algebraic manipulation we find:

max
t

(
1

T

T−1∑

i=0

αmi

)
= 1 + 2 cot2 β − 2 cot β

T sin β
T

cos

(
β

[
1

T
− 2δT,0

])
(3.65)

Et

[
1

T

T−1∑

i=0

αmi

]
= 1 + cot2 β − cot β

T sin β
T

cos

(
β

[
1

T
− 2δT,0

])
. (3.66)

where we recall that t denotes the random variable which is equal to one if a

data bit transition occurs at a data bit boundary and equal to zero otherwise.

These expressions can now be used to determine the mean and worst case mod-

ulation attenuation for both the synchronous and asynchronous receivers. The

only difference between these receivers is in the range of possible values for δT,0:

δT,0 ∈





{
i

M
: i ∈ 0, 1, . . . , gcd(r,M) − 1

}
Synchronous

[
0, 1

T

)
Asynchronous .

(3.67)

Referring to the example illustrated in Figure 3.11 we see that, for the syn-

chronous receiver, δT,0 is restricted to the two cases 0 or 1/M whereas, for the

asynchronous receiver, δT,0 can occur anywhere in the first two code periods.

Consider initially the mean attenuation. Inserting Equation (3.66) into Equa-

tion (3.64), and taking expectation over δT,0 yields:

αm ≈ EδT,0

[
1 − M

D

{
− cot2 β +

cot β

T sin β
T

cos

(
β

[
1

T
− 2δT,0

])}]
. (3.68)

Assuming δT,0 is uniformly distributed, we find for the asynchronous receiver:

αm ≈ 1 − M

D

{
cot β

β
− cot2 β

}
, (3.69)

which is identical to the average attenuation in the ML form (Equation (3.22)).
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For the synchronous receiver we have:

αm ≈ 1 − M

D

{
1

M
cot β cot

(
β

M

)
− cot2 β

}
. (3.70)

Both of these expressions are new, though Equation (3.69) is equivalent to [37,

Equation (8-5b)] with the correction mentioned in the footnote on page 105. It

is interesting to note that:

1

M
cot

(
β

M

)
≤ 1

β
for − π

2
≤ β ≤ π

2
,

so that, on average, the synchronous receiver has better performance in the pres-

ence of data modulation. In particular, note that when M = 1 data modulation

has no effect on the synchronous receiver. The mean power attenuation due to

modulation effects for the synchronous and asynchronous receivers are compared

in Figure 3.12. The superiority of the synchronous form is clearly visible, though

0 0.05/M 0.1/M 0.15/M 0.2/M 0.25/M 0.3/M 0.35/M 0.4/M 0.45/M 0.5/M
0.9

0.92

0.94

0.96

0.98

1

M = 1

M = 3

M = 6

fd (kHz)

α
m

Figure 3.12: Comparison of Mean Power Attenuation Due to Data Modulation
for Synchronous and Asynchronous Forms of the NCD Detector: Empty markers
represent the asynchronous receiver, filled markers the synchronous.

it is worth noting that the difference between the two forms diminishes rapidly
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as M increases.

The worst case attenuation occurs when there is a bit transition at every bit

boundary. To minimise αm with respect to δT,0 requires maximising:

cos

(
β

[
1

T
− 2δT,0

])
.

We consider only the effects within one Doppler bin, so |δωd| ≤ πTcoh/2, which

implies that −π/2 ≤ β ≤ π/2. Hence, the cosine term above is maximised when

δT,0 is as close as possible to 1/(2T ). Therefore, for the asynchronous receiver,

we have δT,0 = 1/(2T ), which yields:

αmwc ≈ 1 − 2M

D

{
− cot2 β +

cot β

T sin β
T

}
. (3.71)

For the synchronous receiver we have δT,0 = 2/M × nint (gcd(r,M)/2), where

nint (x) denotes the nearest integer to x (for example, referring to Figure 3.11,

we can see that the worst case attenuation occurs when δT,0 = 1/M). This yields

an approximate worst case attenuation:

αmwc ≈ 1−2M

D

{
− cot2 β +

cot β

T sin β
T

cos

(
β

[
1

T
− 2

M
nint

(
gcd(r,M)

2

)])}
.

(3.72)

Note that these expressions are approximations to the worst case attenuation,

the key approximation being that all T possible bit boundary locations occur an

equal number of times. This approximation is asymptotically exact as K → ∞.

A simple lower bound can be found by assuming that the worst case atten-

uation occurs at each boundary. Thus, substituting Equation (3.20) into Equa-

tion (3.57) yields:

αm(δωd) ≥ 1 − 4
B

K
cos (β)

sin2 β
2

sin2 β
. (3.73)

Of particular interest is the disparity between Equations (3.71) and (3.73). These

expressions are identical when T = 1, i.e. when M |D. However, when T is large,
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the worst case attenuation of Equation (3.71) is significantly better than that

predicted by the lower bound of Equation (3.73). The reason for this is that,

for T > 1, the location of the data bit boundary moves for each bit. Therefore,

even if a bit transition occurs exactly half way through one coherent sub-interval,

the subsequent bit boundary will, of necessity, not occur at the midpoint. This

apparent motion of the data bit boundaries within the coherent accumulation

interval produces an averaging effect, limiting the worst case attenuation due to

data modulation as K increases.

Thus, while the average attenuation due to data modulation is identical to that

for the ML detector, the worst case attenuation can be greatly improved upon,

for large values of K, through a suitable choice of M , the coherent accumulation

interval. This is illustrated for various values of M in Figure 3.13 (note that, at

fd = 0.5/M kHz, the attenuation is identical for all M since the data modulation

has no effect). The most striking difference is between the cases M = 19 and M =

20, where we see that a significant improvement in worst case data modulation

effects can be achieved by a subtle change in parameters. This is an observation

that does not appear to have been made in the literature before.
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Figure 3.13: Power Attenuation Due to Combined Carrier Doppler and Worst
Case Data Modulation for the NCCD Detector as K → ∞.

Another interesting observation is the dependence of αm on the true code
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phase offset ζ in the asynchronous receiver. Though we have not made it explicit

to date, we can relate ζ to δT,0 through the expression:

δT,0 =
ζ

LM
+

i

M
, (3.74)

for some integer i : 0 ≤ i < gcd(r,M). We can, therefore, write αm as a function

of ζ:

αm(ζ) ≈ 1 − 2B

K

{
− cot2 β +

cot β

T sin β
T

cos

(
β

[
1

T
− 2

M

(
ζ

L
+ i

)])}
. (3.75)

We can determine the average modulation attenuation as a function of ζ by

again assuming only half of the boundaries result in transitions and taking the

expectation over i, which we assume to be uniformly distributed. After some

algebraic manipulation we obtain:

αm(ζ) ≈ 1 − M

D

{
− cot2 β +

cot β

M sin β
M

cos

(
β

M

[
1 − 2ζ

L

])}
. (3.76)

This is illustrated in Figure 3.14. Clearly, this variation with ζ does not have a

significant affect of receiver performance, introducing only a slight bias in favour

of offsets close to the local code epoch. The effect diminishes as M increases.

Note that we have assumed M ≤ 20. It is possible to extend the results derived

here to the case M > 20 using the technique of Davisson and Flikkema [37], but

this is beyond the scope of this work.

3.2.3 The Effect of Code Doppler

Consider now the effect of a residual code Doppler offset. We follow the same

procedure as for the ML form: beginning with an initial residual code phase

offset δζ0 and a frequency error δη, we determine the peak power attenuation,

from which a piece-wise linear approximation to the power attenuation is derived

as a function of δζ0 and δη.
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Figure 3.14: Power Attenuation Due to Mean Data Modulation vs Code Phase
Offset for the NCCD Detector, δωd = 0.

From Equation (3.27) we have:

|Yr|2 = 0.5(MN)2PkαD(δωd)αs (δζr, δη) , (3.77)

where αs (δζ, δη) is given by Equation (3.48), and δζr is the residual code phase

offset at the start of the rth coherent sub-interval and is given by:

δζr = δζ0 + r∆ζ. (3.78)

In the following analysis we assume that the effect of code Doppler within a

coherent sub-interval is negligible. However, the residual code phase offset moves

with time, as indicated in Equation (3.78). Note that this assumption is quite

accurate for small values of M (M < 20), even for reasonably large Doppler

offsets, as discussed in Section 3.1.3.

The power attenuation factor within a coherent sub-interval can, therefore,

be modelled by αs(δζ), as defined in Equation (3.28). Recall that
√

αs(δζ) is

triangular about the point δζ = 0, as illustrated in Figure 3.15. Summing over
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Figure 3.15: Power Attenuation due To Residual Code Phase Offset

r, we have:

Dk(θ̂) ≈ 2(MN)2PkαD(δωd)
K−1∑

r=0

(1 − |δζr|)2 . (3.79)

Of particular interest is the peak value of the decision statistic. A little

thought shows that this peak occurs when the zero code phase offset point is

crossed precisely halfway through the observation interval. This is illustrated

in Figure 3.16, if the initial code phase offset is to the left or right of the point

illustrated in the diagram then the total sum will be smaller. Thus, the maximum

−1

√
αs

δζ
10

K|∆ζ|
2

Figure 3.16: The Maximum Decision Statistic Occurs when the Code Phase Offset
is Zero at the Midpoint of the Observation Interval

value occurs when δζ0 = −K∆ζ
2

. The sum in Equation (3.79) is then evenly
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divided on either side of the point δζ = 0, so we have†:

Dk(θ̂) = 0.5(MN)2PkαD(δωd)2

K
2
−1∑

r=0

(1 − r |∆ζ|)2

= 0.5(MN)2PkαD(δωd)K

{
1 − |∆ζ| K − 2

2

(
1 − |∆ζ| (K − 1)

6

)}
.

(3.80)

Using a similar technique to that used for the ML form, the following approxima-

tion to the power attenuation due to code phase and frequency offsets can then

be derived (note that we again assume that the total code phase drift is less than

one chip):

αs (δζ0, δη) ≈





(
1 − |∆ζ| (K − 2)

2

[
1 − |∆ζ| (K − 1)

6

])

×
(

1 −
∣∣δζ0 + K∆ζ

2

∣∣
1 + |K∆ζ|

2

)2

∣∣∣∣δζ0 +
K∆ζ

2

∣∣∣∣

≤ 1 +

∣∣∣∣
K∆ζ

2

∣∣∣∣

0 otherwise,

(3.81)

This approximation is illustrated in Figure 3.17, where it is compared with

simulated results. For the simulation we have taken a simple case with M = 1

and a carrier Doppler offset of 500 Hz, which is precisely on the border between

two Doppler bins. Two cases are shown in the figure, in the first K = 300 whilst,

in the second, K = 1000. These values of K are both realistic for the detection

of weak GPS signals. As observed for the ML detector, the three effects of code

Doppler offsets can be clearly seen: 1) peak-power attenuation; 2) bias in ζ̂; 3)

broadening of the auto-correlation main-lobe.

3.3 The Differentially Coherent Combining Form

The differentially coherent combining detector was introduced in Section 2.4.2,

and is illustrated in Figure 3.18 below. This form of detector is very similar to the

†In the following we assume that the total code phase drift due to Doppler effects is less
than one code chip, thus K∆ζ < 1.
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Figure 3.17: Power Attenuation Due to Code Doppler in the NCCD and an
Approximation. Here ωd = π krad s−1 and M = 1.

noncoherent combining form, with the notable difference in the manner in which

the decision statistic is generated. Similar to the NCCD, we assume the receiver

MNs−1∑

n=0

e−jbωt

z−JMTCA

r(t)

∣∣∣∣∣

K−1∑

r=J

∣∣∣∣∣

2

Dk(θ̂)

ck(t − ζ̂Tchip)

*

Yr Zr

Yr−J

Figure 3.18: Differentially Coherent Combining Detector: z−T denotes a delay
of T seconds, ∗ denotes complex conjugation, complex quantities are denoted by
heavier lines.

takes K observations of the output of the coherent accumulator. This receiver

utilises what we will refer to as the “differentially coherent product”; this is the

product of the sample Yr and the complex conjugate of the observation Yr−J , for

which we write:

Zr = YrY
∗
r−J . (3.82)
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We refer to the Zr as the summands, since R = K − J of these are summed, and

we denote by W the sum:

W =
K−1∑

r=J

Zr. (3.83)

The square magnitude of the result is computed to give the decision statistic:

Dk(θ̂) = |W |2 =

∣∣∣∣∣

K−1∑

r=J

YrY
∗
r−J

∣∣∣∣∣

2

. (3.84)

As mentioned in Section 2.4.2, the noncoherent form may be considered to be

a special case of the differentially coherent form presented above, with J = 0.

An alternative form of differentially coherent combining detector was sug-

gested recently by Ávila-Rodŕıguez et al. [16] which is restricted to the case J = 1

and requires K to be even. The key to this technique is to take the observations

of Y in pairs (Yr, Yr−1), and form the sum:

W =

K
2
−1∑

r=0

Y2r+1Y
∗
2r, (3.85)

from which we obtain the decision statistic:

Dk(θ̂) = |W |2 =

∣∣∣∣∣∣

K
2
−1∑

r=0

Y2r+1Y
∗
2r

∣∣∣∣∣∣

2

. (3.86)

We refer to this detector as the pair-wise form of the DCCD and to the detector

of Equation (3.84) as the standard form.

It is worth noting at this point that the structure of the DCCD described

here differs in two important ways from that typically discussed in the literature

(and from that which we have already discussed in Section 2.4.2). Firstly, we

have simply extended the original definition from J = 1 to arbitrary (positive

integer) values of J . The second difference is in the form of Dk(θ̂): typically the

decision statistic has been formed as the real part of W , whilst, in this case, we

choose to follow the structure described by Schmid and Neubauer [112] and take

the square magnitude of W as the decision statistic. This form of the decision

statistic performs significantly better in the presence of residual carrier Doppler

offset, as demonstrated below.
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3.3.1 The Effect of a Residual Carrier Frequency Offset

We begin our analysis of the performance of the DCCD in the absence of noise

with the standard form. We begin, in this instance, with the case where the signal

is subject to both an unknown initial phase offset φk and a constant residual

carrier frequency offset δωd. Adapting Equation (3.5) for the rth output of the

coherent accumulator yields†:

Yr =
√

0.5Pk exp

(
j

(
φk +

δωdTs

2
[(2r + 1)MN − 1]

))
sin δωdTsMN

2

sin δωdTs

2

, (3.87)

from which we have:

|Yr| =
√

0.5Pk

∣∣∣∣∣
sin δωdTsMN

2

sin δωdTs

2

∣∣∣∣∣ (3.88)

∠Yr = φk +
δωdTs

2
[(2r + 1)MN − 1] , (3.89)

where we have ignored, for the moment, the phase component due to the sign of

the ratio of sines. Now, from Equation (3.83), we have:

W =
K−1∑

r=J

YrY
∗
r−J

=
K−1∑

r=J

|Yr| |Yr−J | exp (j (∠Yr − ∠Yr−J))

= 0.5(K − J)(MN)2PkαD(δωd) exp (j2βJ) . (3.90)

Note that the sign of the ratio sines is the same for both Yr and Yr−J , so we

are justified in omitting it from Equation (3.89). It is immediately apparent

from Equation (3.90) that a decision statistic based on the real part of W alone

will suffer additional losses due to residual Doppler offset when compared to a

magnitude (or square magnitude) statistic:

<{W} = 0.5(K − J)Pk

∣∣∣∣∣
sin δωdTsMN

2

sin δωdTs

2

∣∣∣∣∣

2

cos(2βJ) (3.91)

†Note that, after r − 1 coherent accumulations, the phase of the incoming signal will have
advanced by rδωdMNTs radians, so Equation (3.87) is obtained from Equation (3.5) with
φk → φk + rδωdMNTs.
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|W | = 0.5(K − J)Pk

∣∣∣∣∣
sin δωdTsMN

2

sin δωdTs

2

∣∣∣∣∣

2

. (3.92)

The loss of the real part relative to the magnitude is given by cos(2βJ), and

is a function of the Doppler frequency offset. Recall from Section 2.4 that the

maximum value of δωd is chosen to ensure a certain maximum attenuation at

the output of the coherent accumulator. Recall also that a frequency spacing of

1/M kHz is a common choice, resulting in a maximum residual Doppler offset of

δωdmax = π/(MNTs). Note, however, that the argument of the cosine function is

then Jπ. Thus, for some δωd < δωdmax, we have δωdTsMNJ = π/2 and so all the

signal power is in the imaginary component. Therefore, if we are to use the real

part of W as the decision statistic, we will have to shrink the Doppler bin width

considerably. For instance, to ensure a phase shift of no more than π/4 radians

would require a maximum frequency offset of 1/(8MNJTs) or 1/(4J) times the

bin width set by the coherent accumulator. This is illustrated in Figure 3.19,

which shows a normalised Argand diagram of the complex number W . The

variation with carrier Doppler is clearly seen as a spiral, beginning at W = 1+0j

when fd = 0 Hz and reaching the origin at fd = 1 kHz.
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Figure 3.19: The Effect of Carrier Frequency Offset on the DCCD. M = 1, J = 1
and the carrier Doppler frequency fd varies from 0 Hz to 1 kHz.
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We choose, therefore, to use the square magnitude of W as decision statistic,

thereby eliminating this excess frequency-induced loss:

Dk(θ̂) =

[
0.5(K − J)(MN)2PkαD(δωd)

]2

. (3.93)

We can apply a similar procedure to determine the performance of the pair-

wise form of the DCCD. Again, we start with the case of unknown, but constant,

residual Doppler offset. The coherent accumulator output is again given by Equa-

tion (3.87) and so, from Equation (3.85), we have:

W =

K
2
−1∑

r=0

Y2r+1Y
∗
2r

=

K
2
−1∑

r=0

|Y2r+1| |Y2r| exp (j (∠Y2r+1 − ∠Y2r)) (3.94)

=
KPk

4

∣∣∣∣∣
sin δωdTsMN

2

sin δωdTs

2

∣∣∣∣∣

2

exp (j2β) . (3.95)

Again, as we saw for the standard form, the Doppler offset induces a constant

phase shift on W , in addition to the attenuation factor at the coherent accu-

mulator output. Hence, for the reasons outlined previously, we choose a square

magnitude decision statistic in preference to one formed from just the real part

of W . This gives us:

Dk(θ̂) =

[
KPk

4
(MN)2αD(δωd)

]2

. (3.96)

3.3.2 The Effect of Data Modulation

Introducing a random data sequence to the signal, we proceed in much the same

fashion as for the noncoherent form. The observation interval is divided into

K coherent sub-intervals, of which B contain data bit boundaries and K − B

do not. This situation is illustrated in Figure 3.20. Here we have illustrated a

data bit boundary in the coherent interval Yν . For the moment we assume that

(J +1)M < D so that, given that a bit boundary occurs in Yν , there are no other

boundaries between Yν−J and Yν+J . The effect of a data transition within Yν is

twofold:
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Figure 3.20: Model of Data Effects in the Differentially Coherent Combining
Detector

1. The coherent output Yν is affected by an attenuation factor αm defined in

Equation (3.15), this affects the two summands Zν and Zν+J .

2. The sign change affects the summands Zν+1, Zν+2, . . . , Zν+J−1.

Considering initially the effect on the coherent accumulator output, we have, from

Equation (3.8):

Yν =
√

0.5PkSMN exp (jφk,ν)

[
d1,ν − (d1,ν − d0,ν)

Sµν

SMN

]
, (3.97)

where Sr is defined in Equation (3.14), φk,ν is the carrier phase offset at the

start of the νth coherent sub-interval, µν is the index of the first sample on the

other side of the bit boundary in Yν and d0,ν and d1,ν are the data bits at the

start and end of the sub-interval, respectively. For the moment, we assume that

J ≤ ν < K − J . Then we have:

Yr =





d0

√
0.5PkSMN exp (jφk,r) ν − J ≤ r < ν

d1

√
0.5PkSMN exp (jφk,r) ν < r ≤ ν + J .

(3.98)

Inserting Equations (3.97) and (3.98) into Equation (3.82) we obtain:

Zr = 0.5Pk |SMN |2 exp (j2βJ) ×





(−1)tν
(
1 − 2tν

Sµν

SMN

)
r = ν

(−1)tν ν < r < ν + J(
1 − 2tν

Sµν

SMN

)∗
r = ν + J ,

(3.99)
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where tν is equal to 1 if there is a bit transition in Yν and is zero otherwise. Now

|SMN |2 = αD(δωd), so inserting Equation (3.99) into Equation (3.83), we find

that, given that a bit transition occurs in Yν , then the component of W affected

by the transition is given by:

ν+J∑

r=ν

Zr = 0.5PkαD(δωd) exp (j2βJ)

{
(−1)tν (J + 1) + 2tν

(
1 + 2=

{
Sµν

SMN

})}
.

(3.100)

From Equation (3.14) we find:

=
{

Sµν

SMN

}
= −sin (β [1 − δT,i]) sin βδT,i

sin β
, (3.101)

where β is defined in Equation (3.19) and δT is defined in Figure 3.2. Therefore,

given that B boundaries occur in the observation interval, and assuming that

none of these boundaries occur in the first J or last J coherent sub-intervals

(which we refer to as the “end zones”), then W is given by:

W = 0.5PkαD(δωd) exp (j2βJ)

{
K − J − B(J + 1) +

B−1∑

i=0

[
(−1)tνi (J + 1)

+ 2tνi

(
1 + 2=

{
Sµνi

SMN

})]}
, (3.102)

where the ith boundary occurs in the coherent interval Yνi
at the sample point

µνi
(recall that µνi

denotes the first sample of the second data bit within the

ith coherent observation interval). By comparison with Equation (3.84) we see

that data modulation can be modelled as an attenuation factor Am, such that,

denoting by W0 the sum of the Zr in the absence of data modulation:

W = AmW0, (3.103)

where:

Am = 1 − 1

K − J

{
B(J + 1) −

B−1∑

i=0

[
(−1)tνi (J + 1) + 2tνi

(
1 + 2=

{
Sµνi

SMN

})]}
.

(3.104)

The average attenuation can be found by taking expectation over the number of

transitions B, and the location of the transitions δT,i. The average value of B is
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given by:

B =
MK

D
, (3.105)

and averaging Equation (3.101) over δT we obtain:

EδT

[
=
{

Sµ

SMN

}]
=

1

2

(
cot β − 1

β

)
. (3.106)

Therefore, the average modulation attenuation, given that no transitions occur

within the first J or last J coherent sub-intervals, is given by:

Am = 1 − KM

D(K − J)

[
J − cot β +

1

β

]
(3.107)

≈ 1 − M

D

[
J − cot β +

1

β

]
, (3.108)

where the approximation in the last line is valid for K � J , which is generally

the case in weak signal acquisition. Note that, in the above derivation, we have

ignored the effect of data transitions in what we have referred to as the “end

zones” of the observation interval. These are the first J and last J coherent

sub-intervals. We consider briefly the effect of transitions in these zones.

If ν < J then the first summand making a contribution to the decision statistic

is ZJ and the component of W affected by the bit transition is given by:

ν+J∑

r=J

Zr = 0.5PkαD(δωd) exp (j2βJ)

{
(−1)tνν +

(
1 − 2tν

Sµν

SMN

)∗}
. (3.109)

Similarly, if ν ≥ K − J , then the component of W affected is given by:

K−1∑

r=ν

Zr = 0.5PkαD(δωd) exp (j2βJ) (−1)tν

{
K − ν − 2tν

Sµν

SMN

}
. (3.110)

Now, from Equation (3.14), we have:

Sµν

SMN

= exp (−jβ(1 − δT,ν))
sin βδT,ν

sin β
. (3.111)

133



Chapter 3. The Detector/Estimator I: Signal Effects

After some manipulation we find:

Am = 1 − KM

D(K − J)

[
J

K + 1

K
− K − J

K

(
cot β − 1

β

)]
, (3.112)

which, for K � J , is again approximately given by Equation (3.108).

Note Am is the mean attenuation of W due to modulation effects. If the

decision statistic is formed as the real part of W , then Equation (3.108) above

can be used as a good approximation to the mean attenuation in the decision

statistic. However, as we have discussed previously, in the presence of carrier

frequency offset it is more desirable to use the square magnitude of W as the

decision statistic. The average attenuation due to modulation effects in this case

is found from:

αm = E
[
A2

m

]
, (3.113)

where Am is given in Equation (3.104). The evaluation of the expectation op-

eration above is greatly complicated by the interdependence of the rvs νi, the

location of the data bit boundaries. However, a simple loose lower bound can be

easily determined, as follows:

αm = E
[
A2

m

]

≤ (E[Am])2

≈
∣∣∣∣1 − M

D

[
J − cot β +

1

β

]∣∣∣∣
2

. (3.114)

We can apply a similar technique to the analysis of the worst case modulation

effects. Following the same procedure we used in Section 3.2.2, the worst case at-

tenuation occurs when tνi
= 1 at all bit boundaries and so, from Equation (3.104),

we have:

Amwc ≈ 1 − 1

K − J

[
B(J + 1) −

B−1∑

i=0

(
−(J − 1) + 2=

{
Sµνi

SMN

})]
, (3.115)

where we have ignored the possibility of bit transitions in the end zones. We

again take a limiting form for this expression as K → ∞ by approximating the

sum over all B bit boundaries by a, suitably scaled, sum over all T possible bit
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boundary locations:

Amwc ≈ 1 − B

K − J

[
J − 2

T

T−1∑

i=0

=
{

Sµi

SMN

}]
, (3.116)

where the summand is given in Equation (3.101) and δT,i = δT,0+i/T . Performing

the summation in Equation (3.116), we have:

1

T

T−1∑

i=0

=
{

Sµi

SMN

}
=

1

2

(
cot β − cos β

[
1
T
− 2δT,0

]

T sin β
T

)
. (3.117)

The worst case can be seen to occur when δT,0 = 1/(2T ), leading to the following

approximation for the worst case attenuation due to data modulation in the limit

as K → ∞:

Amwc ≈ 1 − M

D

[
J − cot β +

1

T sin β
T

]
. (3.118)

We can also derive a simple lower bound on Am,wc, as we did for the NCCD.

The worst possible attenuation occurs when δT,i = 1/2 at all bit boundaries in

the observation interval. In this case, we have:

Amwc ≥ 1 − M

D

[
J + 2

sin2 β
2

sin β

]
. (3.119)

If the decision statistic is generated from the square magnitude of W , then

we have:

αmwc ≈
∣∣∣∣∣1 − M

D

[
J − cot β +

1

T sin β
T

]∣∣∣∣∣

2

(3.120)

αmwc ≥
∣∣∣∣∣1 − M

D

[
J + 2

sin2 β
2

sin β

]∣∣∣∣∣

2

. (3.121)

Note that these bounds on performance are quite loose. In general, the deter-

mination of modulation effects on the DCCD is significantly more difficult than

for the NCCD or ML detectors. This is due to the spreading of the influence

of a single bit transition over multiple summands of the differentially coherent

accumulator. What is evident, however, is that the DCCD (the standard form in

particular) has poorer performance in the presence of data modulation than the
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NCCD.

3.3.3 The Effect of Code Doppler

To analyse the effect of code Doppler on the DCCD we follow the same procedure

as for the NCCD (see Section 3.2.3). Again, we assume that the effect of code

Doppler within a coherent sub-interval is negligible, but that we must account for

code phase drift between sub-intervals. Also, we again assume that the correlation

function has an ideal, triangular shape.

Consider first of all the effect of a residual code phase offset, δζ, in the absence

of code Doppler. The decision statistic is then given by:

Dk(θ̂) =

[
0.5(K − J)(MN)2Pkαs(δζ)

]2

, (3.122)

where αs is as defined in Equation (3.28).

If we now introduce a residual Doppler dilation coefficient offset δη, then there

will be a code phase drift between Yr−J and Yr, as illustrated in Figure 3.21. Note

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δζ (chips)

α
s

Yr Yr−J

Zr

Figure 3.21: Code Doppler Effect on Summand of the DCCD.

that the problem has been greatly exaggerated in the diagram. The actual code

phase shift between Yr−J and Yr is given by J∆ζ, where ∆ζ is the code phase drift,
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3.3. The Differentially Coherent Combining Form

in chips, over one coherent observation interval and is defined in Equation (3.36).

In general, J will be small, since we have seen from Section 3.3.2 that increasing J

increases sensitivity to modulation effects. In addition, ∆ζ is usually very small,

except in the presence of extremely large Doppler offsets, as we have already

discussed in Section 3.1.3. Thus, in reality, the two triangles of Figure 3.21 will

be almost co-incident. In this case, we can model the code Doppler effect on

the DCCD as being identical to the effect on the NCCD. The power attenuation

factor due to the combined effect of an initial residual code phase offset of δζ0

and a residual Doppler dilation coefficient of δη is thus approximately given by

Equation (3.81).

This approximation is illustrated in Figure 3.22, where a coherent observation

interval of 1 ms, a Doppler offset of 500 Hz and a differential delay of J = 5 have

been used. Again, we include the two cases K = 300 and K = 1000, as we did
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Figure 3.22: Power Attenuation Due to Code Doppler in the DCCD and the
Approximation of Equation (3.81). Here ωd = π krad s−1, J = 5 and M = 1.

for the NCCD. The accuracy of this approximation can be seen to be about the

same as it was for the NCCD: very accurate for low to moderate values of K,

with increasing error as K increases.
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Chapter 3. The Detector/Estimator I: Signal Effects

3.4 The Differentially Coherent Detector

The differentially coherent detector is significantly different to the detector forms

we have analysed to date, though it is similar in structure to the differentially

coherent combining detector. The DCD structure is illustrated in Figure 3.23.

This detector was discussed in Section 2.4.3, here we present a brief overview of

Xn

ck(t − ζ̂Tchip)

z−JTs

<{·}r(t) Dk(θ̂)
MNs−1∑

n=J

z−JTs

*

Figure 3.23: Differentially Coherent Detector

its operation in the absence of noise.

We denote by Xn the input to the coherent accumulator at time instant t =

nTs:

Xn = rnr∗n−Jck

(
nTs − ζ̂Tchip

)
ck

(
(n − J)Ts − ζ̂Tchip

)
, (3.123)

where rn = rk(nTs) and rk(t) is given in Equation (2.10). We denote by Y the

output of the coherent accumulator:

Y =
MNs−1∑

n=J

Xn. (3.124)

Note that we again assume that the observation interval consists of an integer

number M of C/A code periods (remember that Ns is the number of samples in

one code period).

As discussed in Section 2.4.3, this detector relies on the shift-and-add property

of Gold codes, i.e. the sum of a Gold code and a cyclically shifted version of itself

is again a Gold code from the same family. Note, however, that we are not

processing actual Gold sequences in this receiver, but rather re-sampled Gold

sequences. Strictly speaking, for the shift-and-add property to hold, we must

shift both the local and received signals by an integer number of code chips. In
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3.4. The Differentially Coherent Detector

the diagram above we represent the shift as an integer number of samples, but

the signal is not sampled at the code rate. In fact, for the shift-and-add property

to hold, we require the sample rate to be an exact multiple of the chip rate so

that a shift by an integer number of chips can be achieved as a shift by an integer

number of samples. We find in practice, however, that as long as:

JTs ≈ JcTchip (3.125)

where J is an integer, then the new sequence generated by the differential product

is not significantly different from a Gold sequence, so that we can assume the auto-

and cross-correlation properties of the Gold sequences hold for this new sequence.

3.4.1 The Effect of a Residual Carrier Frequency Offset

Assuming, therefore, that the condition of Equation (3.125) holds, we can proceed

with the performance analysis of the DCD in the absence of noise. We begin, as

we did for the DCCD, under the assumption that the received signal is subject to

an unknown and constant carrier frequency offset ωd and an initial carrier phase

offset of φk radians. Again, for the moment, we ignore code Doppler and code

phase offset effects. The received signal rn is then given by:

rn =
√

0.5Pkck (nTs − ζTchip) exp (j (φk + ωdnTs)) , (3.126)

and so the input to the coherent accumulator is given by:

Xn = 0.5Pkc
2
k,n−dc

2
k,n−J−d exp (jωdTsJ) , (3.127)

where ck,n−d is the re-sampled Gold sequence and d = ζTchip/Ts. Now ck,n ∈
{−1, +1} and so we have:

Xn = 0.5Pk exp (jωdTsJ) . (3.128)

Inserting Equation (3.128) into Equation (3.124) yields:

Y = 0.5(MNs − J)Pk exp (jωdTsJ) . (3.129)

139



Chapter 3. The Detector/Estimator I: Signal Effects

Clearly, the larger the value of J the greater the imaginary component of Y for

a given Doppler offset. It is instructive here to explore the range of values taken

on by the phase of Y . For any land user the maximum Doppler frequency offset

will be less than 10 kHz [128], thus:

|∠Y | = |2πfdJTs| ≤ 2π
10Jc

L
, (3.130)

where Jc is the number of code chips shifted and recall that L = 1023 is the

length of the GPS C/A code in chips. Choosing the minimum value Jc = 1 we

find:

cos ∠Y ≥ 0.99811. (3.131)

This is the reason that we generate the decision statistic from the real part of

Y : the loss incurred is essentially negligible. For high dynamic platforms the

maximum frequency offset can be potentially much larger than 10 kHz, in which

case it may be advisable to use the magnitude, or square magnitude, of Y as the

decision statistic. However, for typical hand-held receiver applications, the DCD

decision statistic is essentially independent of the carrier frequency error.

3.4.2 The Effect of Data Modulation

Consider now the effect of data modulation. Again we assume that the code phase

estimate, ζ, is correct and ignore code Doppler effects. We start with the simple

case of a single data transition within the observation interval. We assume that

the transition occurs some time in the range ((µ − 1)Ts, µTs). The observation

interval can be divided into three sub-intervals as follows:

J ≤ n ≤ µ − 1 dn = dn−J

µ ≤ n ≤ µ + J − 1 dn = −dn−J

µ + J ≤ n ≤ MN − 1 dn = dn−J .

(3.132)

Using Equation (3.132) in Equations (3.123) and (3.124) yields:

Y = 0.5Pk exp (jωdTsJ)

(
MNs−1∑

n=J

1 − 2

µ+J−1∑

n=µ

1

)

= 0.5Pk(MNs − J) exp (jωdTsJ)

(
1 − 2J

MNs − J

)
. (3.133)
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3.4. The Differentially Coherent Detector

Comparing this with Equation (3.129) we see that the presence of a single bit

transition results in an attenuation of
∣∣∣1 − 2J

MNs−J

∣∣∣ in the decision statistic. It

is also interesting to note that this attenuation is independent of the location of

the bit transition within the observation interval†. Therefore, given a total of B

bit transitions within the observation interval, we can model the effect of data

modulation as a power attenuation factor:

αm =

∣∣∣∣1 − 2BJ

MNs − J

∣∣∣∣
2

. (3.134)

Now, in MNs code periods there will be at most B = dM/De data bit transitions,

leading to a worst case power attenuation due to data modulation of:

αmwc =

∣∣∣∣1 −
⌈

M

D

⌉
2J

MNs − J

∣∣∣∣
2

, (3.135)

which, for small values of J , is approximately unity.

Therefore, we find that the decision statistic:

Dk(ζ̂) = <{W} , (3.136)

is, essentially, independent of data and carrier Doppler effects. This is the major

advantage of the DCD.

3.4.3 The Effect of Code Doppler

The final signal effect to consider for the DCD is code Doppler. In this case we

must take into account, not only the effect of code phase drift during the obser-

vation interval, but also the effect of code Doppler on the differential product. If

there is a large code phase shift between the samples Xn and Xn+J , what will be

the effect on the new code sequence formed from their product?

We denote by fk the differential product of two re-sampled Gold codes:

fk(nTs) = ck (nTs [1 + η] − ζ0Tchip) ck ([n − J ] Ts [1 + η] − ζ0Tchip) . (3.137)

†We ignore the possibility of a bit transition within the first J samples.
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Now, by the shift and add property of Gold codes, we have:

ck (nTs − ζTchip) ck (nTs − [τ + ζ] Tchip) = c′k (nTs − ζ ′Tchip) , (3.138)

where τ is an integer, c′k is another Gold code from the same family as ck, ζ ′ =

∆τ + ζ and ∆τ is the delay introduced by the shift and add procedure.

From our previous discussion we want to choose J such that the number of

chips shifted, defined in Equation (3.125), is as close to an integer as possible.

We need to ensure that code Doppler does not cause excessive drift in Jc.

From Equation (3.137) we have:

fk(nTs) = ck

(
nTs − ζnTchip

)
ck

(
nTs − [ζn + Jc,n] Tchip

)
, (3.139)

where Jc,n = Jc,0 (1 + η). Note that Jc,n is, in fact, independent of n, depending

only on the Doppler dilation coefficient η. So, to maintain the correlation prop-

erties of the Gold codes, we require Jc,n to be close to an integer value. But Jc,0

has already been chosen with this property. Therefore, we require 1 + η ≈ 1.

Recall from Section 3.1.3 that, for a maximum Doppler offset of 10 kHz, the

maximum value of η is approximately 6.3 × 10−6. So, except in high dynamic

environments, code Doppler will have a negligible effect on the form of the new

Gold code generated by the differential product.

We can, therefore, assume that the input to the coherent accumulator in

Figure 3.23 is the product of two Gold codes. The effect of code Doppler in this

case is identical to that analysed in Section 3.1.3, except that the real part of the

accumulator output is chosen as the decision statistic, rather than the magnitude.

From Equation (3.48) the sampling attenuation can, therefore, be approximated

by (again the total code phase drift is assumed to be less than one chip):

αs (δζ0, δη) ≈





(
1 − |∆ζ|

4

)(
1 − |δζ0+∆ζ

2 |
1+

|∆ζ|
2

) ∣∣δζ0 + ∆ζ
2

∣∣ ≤ 1 +
∣∣∆ζ

2

∣∣

0 otherwise.

(3.140)

This approximation is shown in Figure 3.24, where it is compared with simulated

results. In the figure we have M = 100 and Jc,0 = 2. Two cases for the Doppler
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Figure 3.24: Power Attenuation Due to Code Doppler in the DCD and the Ap-
proximation of Equation (3.140). Here Jc,0 = 2 and M = 100.

offset are shown: fd = 1 kHz and fd = 10 kHz. The linear approximation can be

seen to be less accurate for larger Doppler offsets, though it is exact at fd = 0.

3.5 Discussion

Our intention in this chapter has been to provide a quantitative assessment of

signal effects on the performance of the detector/estimator. We have focused on

three primary effects:

1. Carrier frequency offset,

2. Data modulation, and

3. Code phase and frequency offsets.

We have taken a systematic approach, dealing with each of the four main detec-

tor/estimator forms in turn. Each effect has been modelled as a distortion of the

decision function Dk(θ̂), consisting primarily of a power attenuation factor and

a bias offset term.
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Chapter 3. The Detector/Estimator I: Signal Effects

The effect of a carrier frequency offset on both the ML and noncoherent

combining forms is well known, though, for completeness, we have provided an

overview of the derivation here. In Section 3.3.1 we demonstrate that the sensi-

tivity of the DCCD (in both the standard and pair-wise forms) to carrier Doppler

is identical to that of the NCCD. A similar result can be found in [112], though

it is not stated explicitly.

The GPS L1 C/A signal is continuously modulated by a 50 bps BPSK signal.

In many other forms of DS/CDMA a pilot (data-free) signal is transmitted to

assist in acquisition. For this reason, much of the literature on DS/CDMA sig-

nal acquisition ignores the effect of data modulation, though some notable early

exceptions include [26, 37, 119]. Our approach, based on the approach taken in

the analysis of carrier Doppler offset, is new, however. In Section 3.1.2 we derive

a new expression for the effective power attenuation introduced by data modula-

tion to the ML form (Equation (3.18). This result can be shown to be similar to

an expression due to Davisson and Flikkema [37, Equation (8-5b)], though there

would appear to be a typographical error in their equation. In Section 3.2.2,

this new result is expanded upon in the context of the noncoherent combining

detector. We have derived new expressions for the mean and worst-case modu-

lation attenuation for various forms of receiver. In particular, an observation on

the motion of the bit boundary location within the coherent sub-interval is new.

This motion is shown to limit worst case modulation effects when the number of

coherent sub-intervals is large. In other words, given a fixed coherent sub-interval

length, the worst case data modulation attenuation is less severe for larger values

of K. The average attenuation is unaffected by K. A similar observation was

made by Cheng [26], though he did not quantify the effect.

The analysis of the effect of data modulation on DCCD-based acquisition has

not previously been considered in the literature. In Section 3.3.2 we provide

such an analysis for the case when the decision statistic is formed from the real

part of the differentially coherent accumulator. This was subsequently used to

provide a loose bound on the average modulation effect on the magnitude-squared

decision statistic. The technique used is a modification of the methods developed

in Section 3.2.2. A more exact analysis of modulation effects should be possible

using a similar technique to that used in Appendix B.1.2.

Finally, we have given an analysis of the effect of code Doppler on each of the

four detectors considered in this chapter. Our results provide a simple mechanism
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for calculating, not only the estimation error induced by code-phase drift during

the observation interval, but also the effective power attenuation introduced by

code Doppler. Interestingly, one can observe that code Doppler can actually

dominate over carrier Doppler in the combining detectors (NCCD and DCCD)

when the number of coherent correlator outputs combined (K) is large relative

to the number of code periods coherently correlated (M). This latter condition

is not uncommon in the acquisition of very weak signals (C/N0 < 24 dB-Hz).

Our analysis in this chapter provides us with insight into how each of the

detectors considered processes the signal at its input. In the next chapter we

turn our attention to noise performance.
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Chapter 4

The Detector/Estimator II:

Statistical Analysis

In the previous chapter we considered the effects of various signal parameters on

the detector/estimator performance. In the present chapter we consider receiver

performance in the presence of noise. We assume the signal is received through an

AWGN channel which, upon down-conversion to base-band, can be represented

as a complex Gaussian random process. Thus, whereas in Chapter 3 the decision

statistic was modelled as a non-random variable, whose value could be determined

exactly, in the following it is modelled as an rv and we must, therefore, apply a

statistical analysis.

The objectives of this chapter are, therefore, to:

1. Obtain analytical expressions for the PDF of the decision statistic for each

of the detector/estimator forms considered in the previous chapter,

2. Develop routines for the numerical evaluation of these PDFs (and the as-

sociated CDFs), either exactly or through approximation or bounding,

3. Compare the performance of each detector/estimator form to determine the

optimal choice for a given set of design constraints.

We consider initially single cell detector forms, expanding the analysis to include

parallel forms in Section 4.5. We begin, however, with an overview of the statis-

tical noise model used throughout this chapter.
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4.1 Noise Model

Consider the received signal at the output of the RF front end:

r′(t) = s′(t) + n′(t) (4.1)

where the superscript denotes real signals in the IF passband, s′(t) is the signal

of interest, f(t), modulated by some IF carrier frequency ωIF:

s′(t) = f(t) cos (ωIFt + φ0) , (4.2)

φ0 is the initial carrier phase offset of the received signal at IF and n′(t) is a zero

mean AWGN noise process with power (assuming a 1Ω reference resistor):

σ2
0 = N0BIF , (4.3)

where N0 is the single sided noise PSD and BIF is the two-sided IF front-end filter

bandwidth (note that we assume an ideal “brick-wall” front-end filter). This is

illustrated in Figure 4.1. N0, measured in W/Hz, can be calculated from:

N0

2

-fIF fIF

BIF

f (Hz)

PSD (W/Hz)

BIF

Figure 4.1: Noise Power Spectral Density

N0 = kBTsys , (4.4)

where kB is Boltzmann’s constant (≈ 1.381 × 10−23 WK−1Hz−1) and Tsys is the

effective noise temperature of the receiver (in Kelvin), which can be calculated

using Friis’ formula [140].
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4.1. Noise Model

To express the fact that n(t) has a Gaussian (or Normal) distribution with a

mean of zero and variance σ2
0 we write:

n(t) ∼ N(µ = 0, σ2
0) . (4.5)

Following Proakis [102], we use a complex base-band signal representation,

which is valid provided the bandwidth of f(t) is small relative to the carrier

frequency. The signal r′(t) is decomposed into its complex representation through

multiplication by a complex exponential:

r(t) = r′(t) exp (−jωIFt) (4.6)

= 0.5f(t) exp (jφ0) + n(t) , (4.7)

where n(t) is a complex noise process, defined by:

n(t) = n′(t) exp (jωIFt) (4.8)

= n′(t) cos ωIFt − jn′(t) sin ωIFt (4.9)

= nI(t) + jnQ(t) (4.10)

and we have ignored double frequency terms. Note that nI(t) and nQ(t) are

zero-mean, independent, AWGN processes with variance:

σ2
I = σ2

Q =
σ2

0

2
, (4.11)

i.e.:

nI,Q ∼ N

(
0,

σ2
0

2

)
. (4.12)

The random process r(t) is then said to have a complex Gaussian distribution,

with (complex) mean µ(t) = 0.5f(t) exp (jφ0) and variance:

Var [r(t)]
∆
= En(t)[(r(t) − µ(t)) (r(t) − µ(t))∗] (4.13)

= σ2
0 . (4.14)

We represent this as follows:

r(t) ∼ Ñ
(
µ, σ2

0

)
. (4.15)
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In this thesis we consider only all-digital receivers in which N equally spaced

observations of the random process r(t) are made, resulting in the observation

vector r:

r = [r(0), r(Ts), . . . , r([N − 1]Ts)]
T . (4.16)

We denote by Y the multi-dimensional complex Gaussian rv of which r is a

sample. The distribution of this rv was first defined by Wooding in 1956 for the

zero-mean case [151]. Turin [138] gives the following expression for the distribu-

tion for arbitrary (complex) mean µ:

fY (y) = π−N |C|−1 exp
(
− (y − µ)H

C−1 (y − µ)
)

, (4.17)

where C is the covariance matrix of Y defined by:

C
∆
= EY

[
(y − µ) (y − µ)H

]
, (4.18)

|C| denotes the determinant of C and xH denotes the combined operations of

transposition and complex conjugation of the vector x, known as the Hermitian

transpose, or simply the Hermitian. To indicate that Y has an N-dimensional

complex normal distribution we write:

Y ∼ ÑN (µ,C) . (4.19)

Thus, returning to our signal observation vector r, we find:

µ = s (4.20)

C = σ2
0I , (4.21)

where s is given by:

s
∆
= 0.5 exp (jφ0) [f(0), f(Ts), . . . , f([N − 1]Ts)]

T , (4.22)

and I is the N × N identity matrix. The signal at the input to the detector/

estimator is, therefore, completely characterised by Equations (4.17), (4.20) and

(4.21).
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4.2. The Noncoherent Combining Detector

4.2 The Noncoherent Combining Detector

It is well known that the output of the noncoherent combining detector follows a

χ2 distribution with K degrees of freedom and non-centrality parameter λ = µHµ

[140]. Thus, given:

Dk =
K−1∑

i=0

|Yi|2 , (4.23)

where Yi is the ith output of the coherent accumulator, then the distribution of

Dk is given by [102]:

fDk|H0(x | H0) =
1

2σ2
Y

1

Γ (K)

(
x

2σ2
Y

)K−1

exp

(
− x

2σ2
Y

)
(4.24)

fDk|H1(x | H1) =
1

2σ2
Y

(x

λ

)K−1
2

exp

(
−x + λ

2σ2
Y

)
IK−1

(√
xλ

σ2
Y

)
, (4.25)

where σ2
Y is the noise power in the quadrature components at the output of

the coherent accumulator and is defined in Equation (2.31). Similarly, the tail

probabilities are given by [102]:

Pfa = Γ̃K

(
VTh

2σ2
Y

)
(4.26)

Pd = QK

(√
λ

σY

,

√
VTh

σY

)
, (4.27)

where Γ̃K (x) is the regularised upper incomplete Gamma function, defined in

Equation (2.64) and QK (a, b) is the generalised Marcum Q-function, defined in

Equation (2.43). Note that the dependence of Pd on the signal component is

entirely contained in the quantity λ, for which we can write:

λ = µHµ, (4.28)

which is exactly the form of the decision statistic in the absence of noise. Thus, our

treatment of signal effects on the decision statistic from Chapter 3 can be applied

directly to Equation (4.27). For instance, to determine the effect of Doppler offset

on Pd, we can substitute the expression for Dk(θ̂) of Equation (3.52) for λ.
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The complement of Γ̃K (x), defined by:

γ̃K (x)
∆
= 1 − Γ̃K (x) , (4.29)

and known as the regularised lower incomplete Gamma function, is implemented

in most common computer numerical software systems (for example, in MatlabTM

it is implemented as gammainc(x,K)). Similarly, Γ̃K (x) is implemented in

MathematicaTM as GammaRegularized[K,x]. The Marcum Q-function has greater

computational complexity than the incomplete Gamma functions (particularly for

large K) and is less commonly implemented. The MatlabTM add-on “Communi-

cations Toolbox” [136] does include an implementation, marcumq(a,b,K), based

on the series expansions of Cantrell and Ojha [23] and Shnidman [117]. These

approaches suffer from lack of accuracy and slow convergence for large values of

K. In the following we use a saddle-point integration technique developed by

Helstrom [53], which is accurate even for large values of K, and is particularly

efficient in the tails of the distribution (i.e. away from the mean).

4.2.1 Approximations and Bounds

Due, in particular, to the computational complexity of the Marcum Q-function,

much research has been conducted into approximations and bounds on the per-

formance of the NCCD. The simplest approach is to approximate the distribution

of the χ2 rv with a Gaussian distribution whose mean and variance are given by

the mean and variance of the χ2 rv. This approach is common in statistics, and

can be applied in a wide variety of circumstances due to the central limit theorem

[92]:

Theorem 4.1 (Central Limit Theorem) The distribution of the sum of n

statistically independent random variables with finite mean and variance approaches

a Gaussian distribution as n → ∞.

Thus, as K increases, the Gaussian approximation to the non-central χ2 distri-

bution becomes more accurate. This Gaussian approximation can be thought of

as a curve-fitting approach, with two free parameters: the mean and variance of

the distribution. The resulting approximation is quite accurate near the mean of

the distribution, but loses accuracy in the tails. Unfortunately, in signal detec-

tion problems, we are more interested in operating in the tails of the distribution
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rather than near the mean (in practice, a value of Pd in the region of 0.9 is

considerably more desirable than one in the region of 0.5).

Various other Gaussian (and non-Gaussian, though we don’t consider them

here) approximations, which are more accurate in the tails of the distribution,

have been developed in the literature [64, 67, 94, 110]. Patnaik [94] showed that

the square root of the χ2 rv approaches normality at a faster rate than the χ2

rv itself. He used this to derive the following approximation to the Marcum

Q-function:

QK (a, b) ≈ 1

2
erfc


 1√

2



√

b2 (2K + a2)

K + a2
−

√
(2K + a2)2

K + a2
− 1




 , (4.30)

where erfc (x) = 1 − erf (x) is the complementary error function and erf (x) was

defined in Equation (2.77). This approximation is more accurate at small values

of K than the standard (moment matching) Gaussian approximation. In [67]

Johnson derived an interesting Gaussian approximation based on the observation

that the CDF of a non-central χ2 distributed rv is equivalent to the CDF of the

difference of two Poisson distributed rvs. This leads to the following approxima-

tion:

QK (a, b) ≈ 1

2
erf

(
2K − 1 − b2 + a2

2
√

a2 + b2

)
, (4.31)

which, according to Johnson, appears to be more accurate than Patnaik’s approx-

imation. Finally, Sankaran [110] (and, later, Jensen and Solomon [64]) applied a

technique known as a “Wilson–Hilferty transform” [72] to transform the χ2 rv to

a new rv which is more closely Gaussian. Given the non-central χ2 distributed

rv, X, with N degrees of freedom and non-centrality parameter λ, for which we

write†:

X ∼ χ′2(N, λ),

this approach is to generate a new rv, Y , as:

Y =

(
X

N + λ

)h

,

†We use the symbol χ′2 to denote the non-central χ2 distribution, this notation is in keeping
with the statistical literature.
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where h is a free parameter, chosen to make Y as close to a Gaussian rv as

possible. Sankaran showed that the best choice of h is given by:

h = 1 − 2

3

(N + λ)(N + 3λ)

(N + 2λ)2
. (4.32)

Letting N = 2K leads to the following approximation to the Marcum Q-function:

QK (a, b) ≈ 1

2
erfc




(
b2

2K+a2

)h

− µY

√
2 Var [Y ]


 , (4.33)

where µY and Var [Y ] are approximations to the mean and variance of Y , respec-

tively, given by:

µY = 1 + h(h − 1)
κ2

2κ2
1

− h(h − 1)(2 − h)(1 − 3h)
κ2

2

8κ4
1

(4.34)

Var [Y ] =
h2κ2

κ2
1

(
1 − (1 − h)(1 − 3h)κ2

4κ2
1

)2

(4.35)

κn = 2n−1(n − 1)!(2K + nλ) (4.36)

and κn is called the nth cumulant of X.

Sankaran’s approximation is the most accurate of the above, but is also the

most complicated. Thirteen years after Sankaran’s paper, Jensen and Solomon

[64] derived the same result, though they included only the first two terms of

Equation (4.34) and only the first term of Equation (4.35), leading to a less

accurate, but simpler, Gaussian approximation.

Bounds

The Chernoff bound is a tight, exponential bound on the tail probability of an rv

[102, Section 2.1.5]. The Chernoff bound on the non-central χ2 distribution seems

to have been first derived by Rappaport in 1971 [104], and can be expressed as

follows:

QK (a, b)




≤ (1 − 2λ)−K exp (−λb2) exp

(
λKa2

1−2λ

)
b2 > K(a2 + 2)

≥ 1 − (1 − 2λ)−K exp (−λb2) exp
(

λKa2

1−2λ

)
b2 < K(a2 + 2),

(4.37)
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where λ is the Chernoff parameter†, given by [121, Equation (15)]:

λ =
1

2

(
1 − K

b2
− K

b2

√
1 +

a2b2

K

)
. (4.38)

A tighter “exponential-type” upper bound, derived by Simon and Alouini

[121], is given by:

QK (a, b) ≤ exp

(
−(b − a)2

2

)
+

1

π

[
exp

(
−(b − a)2

2

)
− exp

(
−(b + a)2

2

)]

×
(

b

a

)K−1
(

1 −
(

a
b

)K−1

1 − a
b

)
b > a. (4.39)

4.3 Differentially Coherent Signal Processing

In Chapter 2 we introduced two commonly used differentially coherent receivers:

1) the differentially coherent combining detector (DCCD); and 2) the differentially

coherent detector (DCD). In each case, the decision statistic is formed from the

accumulation of what we have termed “differential products” of complex Gaussian

rvs. In this section we develop a new analysis of this differentially coherent

processing, based on the work of Jeong et al. [65] which is, in turn, based on a

result due to Turin [138]. Note, however, that Jeong et al. used Barrett’s [18]

expression for the PDF of the multi-variate complex Gaussian distribution, which

we have shown to be incorrect when µ 6= 0.

We are interested in the statistics of the random variable Z = ZI +jZQ formed

as follows (we consider initially the case J = 1):

Z =
N−1∑

i=1

YiY
∗
i−1 , (4.40)

where Y = [Y0, Y1, . . . , YN−1] is the N -dimensional complex Gaussian rv discussed

in Section 4.1. The technique that we use is based on that of Jeong et al. [65]

who made the observation that we can define the Hermitian matrices‡ QI and

†Although not used further here, it is important to note that the Chernoff parameter λ is
not the same as the non-centrality parameter λ.

‡A matrix A is Hermitian if it satisfies the property AH = A.

155



Chapter 4. The Detector/Estimator II: Statistical Analysis

QQ such that:

Z = Y HQIY + jY HQQY (4.41)

= ZI + jZQ, (4.42)

where:

QI =
1

2




0 1 0 · · · 0

1 0 1
. . .

...

0 1 0
. . . 0

...
. . . . . . . . . 1

0 · · · 0 1 0




(4.43)

QQ =
j

2




0 −1 0 · · · 0

1 0 −1
. . .

...

0 1 0
. . . 0

...
. . . . . . . . . −1

0 · · · 0 1 0




. (4.44)

We then consider the joint distribution of the pair of real rvs: ZI and ZQ. From

[138] we have the following expression for the joint characteristic function:

ΦZI ,ZQ
(jω, jν) = EY [exp (jωzI + jνzQ)] (4.45)

= EY
[
exp

(
jyH [ωQI + νQQ]y

)]
. (4.46)

Using Turin’s technique, it can then be shown that:

ΦZI ,ZQ
(jω, jν) = |P |−1 exp

(
−µHC−1

[
I − P−1

]
µ
)
, (4.47)

where, for notational convenience, we have introduced the matrix P (note that

P is independent of µ):

P = I − jC [ωQI + νQQ] . (4.48)
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Thus, we have an expression for the joint characteristic function of the vari-

ables ZI and ZQ. To determine the joint PDF we can use the Fourier inversion

formula:

fZI ,ZQ
(zI , zQ) =

(
1

2π

)2
∞∫

−∞

∞∫

−∞

ΦZI ,ZQ
(jω, jν) exp (−jωzI − jνzQ) dω d ν.

(4.49)

In the following we will be interested in generating a decision statistic D from

the observation of the complex rv Z. The three most common forms of D are

given by:

D = <{Z} (4.50)

D = |Z| (4.51)

D = |Z|2 . (4.52)

The first form is the marginal PDF of ZI and can be found by averaging Equa-

tion (4.49) over zQ [92]. To determine the other two forms we define two new rvs,

R and Θ, by the relationships:

ZI = R cos Θ (4.53)

ZQ = R sin Θ. (4.54)

From [92] we have the relationship:

fZI ,ZQ
(zI , zQ) =

fR,Θ(r, θ)

|J | , (4.55)

where J is the Jacobian matrix of the change of variables, given by:

J
∆
=




∂ ZI

∂ R
∂ ZI

∂ Θ

∂ ZQ

∂ R

∂ ZQ

∂ Θ


 . (4.56)

From this we see that |J | = R, and so we have:

fR,Θ(r, θ) = r fZI ,ZQ
(r cos θ, r sin θ). (4.57)

Now, R is the magnitude of the complex rv Z, which is exactly the form of the
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decision statistic required in Equation (4.51). To determine the PDF of R alone

we average Equation (4.57) over Θ:

fR(r) =

∫ π

−π

fR,Θ(r, θ)d θ (4.58)

=
r

(2π)2

∞∫

−∞

∞∫

−∞

ΦZI ,ZQ
(jω, jν)

π∫

−π

e−jr(ω cos θ+ν sin θ)d θ d ω d ν. (4.59)

The technique used by Jeong et al. [65] is essentially to transform the two-

dimensional Fourier transform represented above, to a Hankel transform. To

achieve this the variables ρ and φ are introduced by the relationships:

ω = ρ cos φ (4.60)

ν = ρ sin φ, (4.61)

from which we get dωdν = ρdρdφ. Then we have:

fR(r) =
r

(2π)2

∞∫

0

π∫

−π

ρΦZI ,ZQ
(jρ cos φ, jρ sin φ)

π∫

−π

e−jrρ cos(θ−φ)d θ d φd ρ. (4.62)

Now, the integral over θ evaluates to 2πJ0 (rρ), where Jν (z) is the Bessel function

of the first kind of order ν, defined by [13]:

Jν (z)
∆
=

∞∑

k=0

(−1)k

Γ (k + ν + 1) k!

(z

2

)2k+ν

. (4.63)

Thus, we have [65, Equation (29)]:

fR(r) =
r

2π

∞∫

0

π∫

−π

ρJ0 (rρ) ΦZI ,ZQ
(jρ cos φ, jρ sin φ) d φ d ρ. (4.64)

Note that this expression is quite general, and valid for any characteristic function

ΦZI ,ZQ
(jρ cos φ, jρ sin φ). We are particularly interested in determining fR(r)

when the characteristic function is given by Equation (4.47). The most common

case, and the only one that we consider, is the case of independent and identically

distributed samples. This gives us a particularly simple form for the covariance
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matrix:

C = σ2
0I. (4.65)

To simplify the notation we define:

σ2 ∆
=

σ2
0

2
, (4.66)

which can be seen, on comparison with Equation (4.11), to be equal to the noise

variance of the in-phase or quadrature component of Y .

As in previous chapters, we consider two forms of differentially coherent pro-

cessing:

The standard form This is a generalisation of the most common form found in

the literature. Typically, the differentially coherent product is taken using

successive samples. A more general form can be considered, in which the

variable Z is generated as follows:

Z =
N−1∑

i=J

YiY
∗
i−J ,

where J is the integer number of samples separating the components of the

differentially coherent product. Note that we require N ≥ J so that all

samples in the observation vector are used in Z. The statistics of Z are

difficult to evaluate due to the fact that each sample is used twice (except

for the first J and last J).

The pair-wise form This form was recently suggested by Ávila-Rodŕıguez et

al. [16]. Samples are considered in pairs, and no sample is used more than

once. This considerably simplifies the analysis. In this case, Z is generated

as follows:

Z =

N
2
−1∑

i=0

Y2i+1Y
∗
2i.

Note that N must always be even.

Due to its relative simplicity, we consider the pair-wise form first.
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4.3.1 The Pair-wise Form

Using the same approach as Jeong et al. [65], we define the matrices QI and QQ.

Denoting by 2QI the matrix QI of Equation (4.43) with N = 2, then it can be

shown that, for the pair-wise case, we have:

QI =




2QI 02×2 · · · 02×2

02×2 2QI
. . .

...
...

. . . . . . 02×2

02×2 · · · 02×2 2QI




, (4.67)

where 0i×j is the i × j matrix of zeros. Similarly, denoting by 2P the matrix P

defined in Equation (4.48) with N = 2, then we have:

P =




2P 02×2 · · · 02×2

02×2 2P
. . .

...
...

. . . . . . 02×2

02×2 · · · 02×2 2P




. (4.68)

The determinant of the matrix P , which we denote PN(ρ, φ), is of particular

interest, as it entirely defines the characteristic function in the absence of signal.

From the diagonal structure of P we have:

|P | ∆
= PN(ρ, φ) = |2P |

N
2 .

Now, the matrix 2P is given by:

2P =


 1 −jρσ2e−jφ

−jρσ2ejφ 1


 , (4.69)

so that |2P | = 1 + (ρσ2)
2
. From this we can immediately find the determinant of

P :

PN(ρ, φ) =
(
1 +

(
ρσ2
)2)N

2
. (4.70)
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Noting that this is, in fact, independent of φ, we shall henceforth simply write

PN(ρ). The inverse of P is also easily determined:

P−1 =




2P
−1 02×2 · · · 02×2

02×2 2P
−1 . . .

...
...

. . . . . . 02×2

02×2 · · · 02×2 2P
−1




, (4.71)

and 2P
−1 is given by:

2P
−1 =

1

1 + (ρσ2)2


 1 jρσ2e−jφ

jρσ2ejφ 1


 . (4.72)

The Noise Alone Case

In this case, the mean value vector is identically zero: µ = 0. The joint charac-

teristic function of ZI and ZQ in terms of ρ and φ is then given by:

ΦZI ,ZQ
(jρ cos φ, jρ sin φ) =

1

[1 + (ρσ2)2]
N
2

. (4.73)

We begin with the determination of the statistics of ZI , the real part of the differ-

entially coherent sum. This was the decision statistic chosen by Ávila-Rodŕıguez

et al. in their original introduction of the pair wise form [15, 16]. The CHF of ZI

is given by substituting ν = 0 in Equation (4.45), which is equivalent to setting

φ = 0 in Equation (4.73) above:

ΦZI
(jω) =

1

[1 + (ωσ2)2]
N
2

. (4.74)

This is identical to the expression given in (for example) [16, Equation (17)].

The PDF is subsequently obtained by applying the Fourier inversion formula to

Equation (4.74) to yield [16, Equation (18)]:

fZI
(zI) =

1

σ2

( |zI |
2σ2

)N−1
2 KN−1

2

(
|zI |
σ2

)

√
πΓ
(

N
2

) , (4.75)
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where we recall that KN (x) denotes the modified Bessel function of the second

kind of order N .

Turning our attention now to the distribution of the magnitude, R, of Z, we

insert Equation (4.73) into Equation (4.64). There is no dependence on φ, so the

integral over φ evaluates to 2π, resulting in the following expression:

fR(r) = r

∞∫

0

ρJ0 (rρ)

[1 + (ρσ2)2]
N
2

d ρ. (4.76)

Now, the above form may be identified as the zeroth order Hankel transform of

the denominator term. From tables of Hankel transforms we obtain [87, Entry

(4.23)]:

fR(r) =
2

σ2

( r

2σ2

)N
2

KN
2
−1

(
r
σ2

)

Γ
(

N
2

) . (4.77)

Integrating Equation (4.76) over r and interchanging the order of integration, a

similar methodology can be employed to obtain the following expression for the

CDF:

FR(r) = 1 − 2
( r

2σ2

)N
2

KN
2

(
r
σ2

)

Γ
(

N
2

) . (4.78)

It is interesting to note that this distribution, known as the K-distribution, arises

frequently in the field of radar and sonar scattering from the ocean surface [63].

The functional forms above are difficult to calculate for large values of N due to

the presence of the modified Bessel function. Gordon and Ritcey [47] present a

saddle-point integration method which is easy to implement and accurate (par-

ticularly in the tails of the distribution) for all values of N .

Thus, we have expressions for the PDF and CDF of the magnitude form of the

decision statistic for the pair-wise form in the absence of signal. In practice, it is

often preferable to compute the square magnitude form, due to the presence of

the square root operation in the magnitude form. The statistics of R2 are easily
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derived from Equations (4.77) and (4.78), to yield:

fR2(x) =
1

2σ4

( x

4σ4

)N−2
4

KN
2
−1

(√
x

σ2

)

Γ
(

N
2

) (4.79)

FR2(x) = 1 − 2
( x

4σ4

)N
4

KN
2

(√
x

σ2

)

Γ
(

N
2

) . (4.80)

It is interesting to note that the following expression for the CHF of the K-

distribution was recently derived by Iskander [62]:

ΦR (jω) =
1

N + 1

(
2

1 − jωσ2

)N

2F1

(
N,

N − 1

2
;
N + 3

2
;−1 + jωσ2

1 − jωσ2

)
, (4.81)

where 2F1 (a, b; c; z) is Gauss’ hypergeometric function, defined by [13]:

2F1 (a, b; c; z)
∆
=

∞∑

i=0

( a )i ( b )i

( c )i

zi

i!
(4.82)

and ( x )k is the Pochhammer symbol (also known as the rising factorial [49]),

given by [13]:

( x )k

∆
=

Γ (x + k)

Γ (x)
. (4.83)

The moment generating function (MGF) of R (assuming it exists) can be found

simply by making the substitution jω → s in Equation (4.81). We see, therefore,

that the MGF has a singularity at the point s = 1/σ2 and, hence, is convergent

in the strip of the s-plane for which −1/σ2 < <{s} < 1/σ2. The existence of

this MGF allows us to develop a Chernoff bound on FR(r), though this does not

appear to result in a simple closed form expression, as was possible for the χ2

distribution.

Jakeman and Pusey give the following expression for the moments of R2 [63,

Equation (23)]:

ER2 [xn] =
(
2σ2
)n n!

Γ
(

N
2

)Γ
(

N

2
+ n

)
. (4.84)
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We would, therefore, expect the MGF of R2 to be given by (see Equation (C.12)):

ΨR2 (s) =
∞∑

n=0

ER2 [xn]
sn

n!
(4.85)

=
∞∑

n=0

(
N

2

)

n

(2σ2s)n , (4.86)

but this series is divergent for all real s 6= 0 and, consequently, the MGF of R2

does not, in fact, exist. It is not possible, therefore, to derive a Chernoff bound on

FR2(x). However, the non-existence of ΨR2 (s) does provide us with some insight

into the behaviour of this distribution. Recall that the MGF is defined by:

ΨR2 (s) = ER2 [exp (xs)] =

∞∫

0

exp (xs) fR2(x)dx. (4.87)

The non-existence of the MGF implies that the integral above is divergent for

real s > 0†, which in turn implies that the rate at which the PDF decays towards

zero as x → ∞ is sub-exponential. Thus, the distribution of R2 may be described

as “heavy-tailed”.

The Signal plus Noise Case

We now remove the assumption that µ = 0. Note, from Equation (4.47), that

the characteristic function is no longer completely defined by the determinant

of the matrix P . To account for the effect of non-zero µ it is necessary to

consider the exponent in Equation (4.47). Using Equations (4.71) and (4.72) in

Equation (4.47), and multiplying through, we obtain:

µHC−1
(
I − P−1

)
µ =

ρ

1 + (ρσ2)2

[
λ

2
ρσ2 − j (<{κ} cos φ + ={κ} sin φ)

]
,

(4.88)

where we have introduced:

λ
∆
=

N−1∑

i=0

|µi|2 = µHµ (4.89)

†Its existence at s = 0 is assured by the convergence of the integral of the PDF.
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κ
∆
=

N
2
−1∑

i=0

µ2i+1µ
∗
2i = µHQIµ+ jµHQQµ . (4.90)

Note that κ is identically the decision statistic in the absence of noise. The joint

characteristic function of ZI and ZQ is, therefore, given by:

ΦZI ,ZQ
(jρ cos φ, jρ sin φ) =

exp
(
− ρ

1+(ρσ2)2

[
λ
2
ρσ2 − j (<{κ} cos φ + ={κ} sin φ)

])

[
1 + (ρσ2)2]N

2

.

(4.91)

Note in this case that the CHF is dependent on both ρ and φ, so the integral over

φ remains.

Starting again with the distribution of ZI , we find, upon setting φ = 0 in

Equation (4.91):

ΦZI
(jω) =

exp
(
− ω

1+ω2σ4

[
λ
2
ωσ2 − j<{κ}

])

[1 + ω2σ4]
N
2

. (4.92)

It can be shown that this expression corresponds to the CHF of the difference of

two non-central χ2 variates (see Appendix B.2.1):

ZI = X1 − X2, (4.93)

where:

X1 ∼ χ′2
(

N,
1

2
µH (I +QI)µ,

σ2

2

)
(4.94)

X2 ∼ χ′2
(

N,
1

2
µH (I −QI)µ,

σ2

2

)
. (4.95)

This result is similar to the one obtained by Ávila-Rodŕıguez et al., with the

exception that they modelled X2 as a central χ2 variate. This would appear to

account for the discrepancy between predicted and simulated results reported in

[15]†.

As reported in [15], there does not appear to be any simple closed-form ex-

pression for the difference of two χ2 rvs and so one must resort to numerical

techniques to determine the PDF and CDF of ZI under H1. A number of such

†The error in [15] arises in Equation (8): the authors assume that the means of the rvs XI

and YI are identical, which is only the case in the absence of Doppler and data modulation.
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techniques have been reported in the literature [35, 36, 44, 54, 114], the approach

that we have taken is that of saddle-point integration to calculate the Laplace

inversion of the MGF [54]. It is a well-known fact that the CDF of any Hermitian

quadratic form in complex Gaussian variates can be written as a weighted sum

of CDFs of χ2 variates [73, 74], so this result should come as no surprise.

To determine the statistics of R we apply a technique similar to that used in

the noise alone case. Substituting Equation (4.91) into Equation (4.64) yields:

fR(r) =
r

2π

∞∫

0

ρJ0 (rρ) e
− λσ2ρ2

2[1+(ρσ2)2]

[
1 + (ρσ2)2]N

2

π∫

−π

e
j ρ

1+(ρσ2)2
(<{κ} cos φ+={κ} sin φ)

d φ d ρ . (4.96)

The integral over φ in this case evaluates to a Bessel function of the first kind of

order zero (see Appendix B.2.2), yielding:

fR(r) = r

∞∫

0

ρJ0 (rρ) e
− 1

2
λσ2ρ2

1+(ρσ2)2

[
1 + (ρσ2)2]N

2

J0

(
ρ |κ|

1 + (ρσ2)2

)
d ρ . (4.97)

Making the substitution u = ρσ2 and letting γ = λ/σ2 and τ = |κ| /σ2 gives:

fR(r) =
r

σ4

∞∫

0

uJ0

(
r
σ2 u
)

[1 + u2]
N
2

exp

(
−γ

2

u2

1 + u2

)
J0

(
uτ

1 + u2

)
d u . (4.98)

It is interesting to note that λ is a measure of the total signal energy in the

observation vector and |κ| is the value of R in the absence of noise. Note that

the distribution of R depends on the signal component only through λ and |κ|.
We have already investigated the effect of Doppler and data modulation on these

quantities in Chapter 3, and so can apply that analysis directly to the determi-

nation of the influence of these effects on receiver performance in the presence of

noise.
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4.3.2 The Standard Form

In the standard form differentially coherent combining detector the variable Z is

generated as follows:

Z =
N−1∑

i=J

YiY
∗
i−J . (4.99)

In general, J can be any positive integer. We consider initially the (simplest)

case J = 1. The matrix P , defined in Equation (4.48), is then given by:

P = I − jσ2




0 ω − jν 0 · · · 0

ω + jν 0 ω − jν
. . .

...

0 ω + jν 0
. . . 0

...
. . . . . . . . . ω − jν

0 · · · 0 ω + jν 0




(4.100)

=




1 −jρσ2e−jφ 0 · · · 0

−jρσ2e+jφ 1 −jρσ2e−jφ . . .
...

0 −jρσ2e+jφ 1
. . . 0

...
. . . . . . . . . −jρσ2e−jφ

0 · · · 0 −jρσ2e+jφ 1




.

(4.101)

Denoting by PN(ρ, φ) the determinant of P given that there are N samples in

the observation vector, then it can be shown that (see Appendix B.2.3):

PN(ρ, φ) =





1 N = 1

1 + (ρσ2)2 N = 2

PN−1(ρ, φ) + (ρσ2)2PN−2(ρ, φ) N > 2.

(4.102)

In fact, if we define P0(ρ, φ) = 1 then the recursion holds for all N ≥ 2. The

interesting thing to note here is that all the PN(ρ, φ) are, in fact, independent

of φ, so we will replace P0(ρ, φ) by PN(ρ). Indeed, it can be shown that (see
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Appendix B.2.4):

PN(ρ) =

bN
2 c∑

i=0

(
N − i

i

)(
ρσ2
)2i

. (4.103)

These polynomials are related to the Fibonacci polynomials (see [124, Sequence

A011973] and [148]) and, by comparison, it can be shown that the roots of PN(ρ),

denoted λk,+ and λk,−, are given by:

λk,± =
±j

2σ2 cos kπ
N+1

k = 1, 2, . . . ,

⌊
N

2

⌋
. (4.104)

Note that the roots occur as complex conjugate pairs.

When J > 1 we denote by PJ,N(ρ) the determinant of the matrix P . A

simple technique involving Gaussian elimination can then be applied to derive

the following useful result (see Appendix B.2.5):

PJ,N(ρ) = P J−b
1,a (ρ)P b

1,a+1(ρ), (4.105)

where a and b are the unique integers for which N = aJ + b such that b < J .

The Noise Alone Case

Again, we consider the case µ = 0 first. In addition, we consider the simple case

J = 1. The CHF is then given by:

ΦZI ,ZQ
(jρ cos φ, jρ sin φ) =

1

PN(ρ)
. (4.106)

Recall that the roots of the polynomial PN(ρ) are given by Equation (4.104), and

that they occur in complex conjugate pairs λk,±. We can, therefore, write:

PN(ρ) = KN

bN
2 c∏

k=1

(ρ − λk,+) (ρ − λk,−)

= KN

bN
2 c∏

k=1

(
ρ2 + γk

)
(4.107)
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where KN is the coefficient of the leading term of PN(ρ) which is given by (see

Equation (4.103)):

KN =

(
N −

⌊
N
2

⌋
⌊

N
2

⌋
)

= σ4bN
2 c ×





N+1
2

N odd

1 N even,
(4.108)

and the γk are given by the product of the complex conjugate pairs of roots of

PN(ρ). Hence, from Equation (4.104), the γk’s are given by:

γk =
1

4σ4 cos2 kπ
N+1

1 ≤ k ≤
⌊

N

2

⌋
. (4.109)

We can, therefore, apply a partial fraction expansion [97, p. 63] to Equation (4.106)

yielding:

ΦZI ,ZQ
(jρ cos φ, jρ sin φ) =

bN
2 c∑

k=1

AN,k

ρ2 + γk

, (4.110)

where:

AN,k = lim
ρ2→−γk

ρ2 + γk

PN(ρ)
. (4.111)

Applying L’Hôpital’s rule [132] to Equation (4.111), we obtain:

AN,k =
1

bN
2 c∑

i=0

(
N − i

i

)
iσ4i (−γk)

i−1

. (4.112)

Considering now the distribution of ZI , recall that this can be represented as

a quadratic form in complex Gaussian variates, and so the CDF can be expressed

as a weighted sum of χ2 variates. This is easily seen by applying the partial

fraction expansion of Equation (4.110) and setting ρ = ω and φ = 0:

ΦZI
(jω) =

bN
2 c∑

k=1

AN,k

ω2 + γk

. (4.113)
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Applying the Fourier inversion formula yields:

fZI
(zI) =

bN
2 c∑

k=1

AN,k

2
√

γk

exp (−√
γk |zI |) . (4.114)

The CDF of ZI is easily found by integrating Equation (4.114):

FZI
(zI) =





bN
2 c∑

k=1

AN,k

2γk

exp (−√
γkzI) zI < 0

1 −
bN

2 c∑

k=1

AN,k

2γk

exp (
√

γkzI) zI ≥ 0.

(4.115)

The distribution of the magnitude, R, is given by:

fR(r) = r

∞∫

0

ρJ0 (rρ)

PN(ρ)
d ρ. (4.116)

Applying the partial fraction expansion of Equation (4.110) to the integrand in

Equation (4.116) yields:

fR(r) = r

∞∫

0

bN
2 c∑

k=1

AN,k
ρJ0 (rρ)

(ρ2 + γk)
d ρ

=

bN
2 c∑

k=1

AN,k rK0 (r
√

γk) , (4.117)

where again we have used the Hankel transform [87, Entry (4.23)].

Employing the same methodology, the following expression for the CDF of R
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can be obtained (see Appendix B.2.6):

FR(r) = 1 −
bN

2 c∑

k=1

AN,k√
γk

rK1 (r
√

γk) . (4.118)

Whilst the expressions of Equations (4.114), (4.115), (4.117) and (4.118) are

exact, they are not generally useful forms for computation. As N increases, the

AN,k terms become large and oscillatory, resulting in a loss of accuracy even

at moderate values of N (in MatlabTM this loss of accuracy becomes apparent

for N as low as 26, particularly for small values of r). Numerical results can be

obtained using MathematicaTM to arbitrary required precision†, but computation

times increase dramatically with N .

A similar partial fraction expansion can be applied for the case J 6= 1, though

this results in more complicated forms.

The Signal plus Noise Case

We have not been able to determine any simple closed form expression for P−1

for the standard form. Thus, we have no analogue to Equation (4.88). The PDF

of ZI is, again, a quadratic form in complex Gaussian variates and so can be

expressed as a weighted sum of χ2 variates [16]. The PDF of R, however, is given

by the double integral:

fR(r) =
r exp

(
−µHC−1µ

)

2π

∞∫

0

π∫

−π

ρJ0 (rρ)

PN(ρ)
exp

(
µHC−1P−1µ

)
d φ d ρ , (4.119)

which does not appear to lead to a simple form for numerical evaluation. In

particular, for large N the inversion of P poses a significant challenge. We,

therefore, wish to determine an approximation to the distribution of the decision

statistic which is suitable for numerical evaluation.

It is also interesting to note that, in this case, we cannot state with certainty

that our analysis of signal effects in Chapter 3 can be applied directly to the

†We found that this required setting the internal MathematicaTM variable
$MaxExtraPrecision to a suitably large value (for N = 200, $MaxExtraPrecision must be
of the order of 300).
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performance analysis in the presence of noise. Consider the term P−1 in the

exponent of the integrand of Equation (4.119). From Equation (4.48) we can

write this as:

P−1 =

(
I − jC [ωQI + νQQ]

)−1

=
∞∑

i=0

(j2σ2)i [ωQI + νQQ]i , (4.120)

which includes all positive powers of QI and QQ. Our analysis of Section 3.3,

however, considered only the decision statistic in the absence of noise, which can

be expressed as:

Dk(θ̂) = µH (QI + jQQ)µµH (QI − jQQ)µ , (4.121)

which, clearly, does not include all positive powers of QI and QQ. It is also inter-

esting to recall that every matrix is a solution to its own characteristic equation

(a result known as the Cayley-Hamilton Theorem [76]). We have seen that the

characteristic polynomial of the matrix P is of degree N for J = 1. Thus, PN can

be expressed as a sum of lower powers of P . This is the major difference between

the pair-wise and standard forms of differentially coherent combining. For the

pair-wise form, the characteristic polynomial can be expressed as a degree two

polynomial raised to the power N/2. Thus, higher powers of P for the pair-wise

form can be expressed in terms of the matrix P itself. Ultimately, the effect of

this result is to limit the influence of a given coherent output to just one sum-

mand of the differentially coherent accumulator in the pair-wise form, whereas,

in the standard form, the influence of each coherent accumulator output spreads

through all subsequent summands of the differentially coherent accumulator.

4.3.3 Gaussian Approximations

In the preceding sections we have used the joint characteristic function of the

real and imaginary parts of the differentially coherent sum to derive expressions

for the distribution of the decision statistic. Unfortunately, this approach does

not always lead to usable results. In fact, the expression for the distribution

of the decision statistic for the pair-wise form under the noise alone condition

(Equation (4.77)) and the expression for the standard form under noise alone

when N ≤ 27 (Equation (4.117)) are the only useful closed-form expressions

obtained in this manner.
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In this section we invoke the central limit theorem to derive a bivariate Gaus-

sian approximation to the distribution of the differentially coherent sum. This

approach has been previously used by Chung [28] in the context of the DCD,

where the real part of the sum was taken as the decision statistic, and by Schmid

and Neubauer [112] in the context of the DCCD, where the decision statistic is

formed as the square magnitude of the sum.

Recall that the (complex) differentially coherent sum can be written as:

Z = ZI + jZQ = Y HQIY + jY HQQY ,

whereQI andQQ are Hermitian matrices (which implies that the variables ZI and

ZQ are real) and Y is an N -dimensional complex Gaussian rv. This representation

is valid for both the DCD and the DCCD in both the pair-wise and standard

forms. If we make the further assumption that the components of Y are mutually

independent, then we can invoke the central limit theorem for both ZI and ZQ

independently. However, we cannot yet make any assertion as to whether or

not ZI and ZQ can be modelled as independent Gaussian variables. For this we

require the following theorem [106]:

Theorem 4.2 (Craig’s Theorem) For real vector y ∼ N (µ,C), then x1 =

yTAy and x2 = yTBy are independently distributed if and only if ACB = 0.

While this theorem is defined for real rvs, the extension to a complex Gaussian

distribution is straightforward.

Thus, if QIQQ = 0 then we can model ZI and ZQ as independent Gaussian

rvs, by invoking the central limit theorem. If this condition is not met, then

the central limit theorem can still be applied to each term separately, but the

resulting rvs are statistically dependent. Thus, by the central limit theorem, as

N → ∞, the joint distribution of ZI and ZQ approaches a bivariate Gaussian

distribution† [102]. We denote by Z̃I and Z̃Q the Gaussian rvs with distribution:

f eZI , eZQ
(z̃I , z̃Q) =

1

2πσIσQ

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

†In fact, whilst we have shown that ZI and ZQ are marginally Gaussian, we have not shown
that they are jointly Gaussian. We do, however, make the assumption that this is the case, and
this appears to be borne out in practice.
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×
[

(z̃I − µI)
2

σ2
1

− 2ρ (z̃I − µI) (z̃Q − µQ)

σIσQ

+
(z̃Q − µQ)2

σ2
Q

])
,

(4.122)

where:

µI = E[ZI ] µQ = E[ZQ] (4.123)

σ2
I = Var [ZI ] σ2

Q = Var [ZQ] (4.124)

ρ =
σIQ

σIσQ

σIQ = E[ZIZQ] − µIµQ. (4.125)

This bivariate Gaussian distribution can be used as an approximation to the joint

distribution of the real and imaginary components of the differentially coherent

sum. We require expressions for the mean, variance and covariance of ZI and ZQ

to complete this Gaussian approximation.

The Moments of ZI and ZQ

We use a characteristic function approach to determine the moments of ZI and

ZQ. From the properties of CHFs we have:

E
[
Zm

I Zn
Q

]
= j−(m+n)

∂m+n ΦZI ,ZQ
(jω, jν)

∂ωm∂νn

∣∣∣∣
ω=0,ν=0

. (4.126)

The generic form of the CHF, valid for all the forms of differentially coherent

processing considered in this thesis, is given in Equation (4.47). Applying the

generalised product rule for multiple derivatives [48] we obtain:

E
[
Zm

I Zn
Q

]
=j−(m+n)e−µ

HC−1µ

×
m∑

i=0

n∑

k=0

(
m

i

)(
n

k

)
∂m+n−(i+k) |P |−1

∂ωm−i∂νn−k

∂i+keµ
HC−1P−1µ

∂ωi∂νk

∣∣∣∣∣ω=0
ν=0

. (4.127)

The evaluation of the above expression is straightforward, but tedious. The

results are summarised below†:

E[ZI ] = µHQIµ E[ZQ] = µHQQµ (4.128)

†In Equations (4.128) to (4.130) we have made use of the fact that the odd order derivatives
of |P | are zero at ω = 0, ν = 0.
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Var [ZI ] =
∂2 |P |
∂ω2

∣∣∣∣ω=0
ν=0

+ 2µHCQ2
Iµ Var [ZQ] =

∂2 |P |
∂ν2

∣∣∣∣ω=0
ν=0

+ 2µHCQ2
Qµ

(4.129)

σIQ = µH (QICQQ +QQCQI)µ ρ =
σIQ

σIσQ

. (4.130)

As would be expected, the means of ZI and ZQ correspond to the real and imag-

inary components of the differentially coherent sum in the absence of noise. Note

also that the covariance component is zero in the absence of signal (i.e., when

µ = 0). We can also see that Craig’s theorem is evident in Equation (4.130),

since σIQ = 0 if QICQQ = 0.

Equations (4.128) to (4.130) are valid for all forms of differentially coherent

processing considered in this thesis. The only differences between one form and

another are: 1) the structure of the matrices QI and QQ; and 2) the determinant

of P . The values of some derivatives of |P | at ω = 0, ν = 0 are tabulated in

Table 4.1.

Pair Wise Form Standard Form
(
J ≤ N

2

)

∂ |P |
∂ω

∣∣∣∣ω=0
ν=0

=
∂ |P |
∂ν

∣∣∣∣ω=0
ν=0

= 0 0

∂2 |P |
∂ω2

∣∣∣∣ω=0
ν=0

=
∂2 |P |
∂ν2

∣∣∣∣ω=0
ν=0

= Nσ4 2σ4(N − J)

∂2 |P |
∂ω∂ν

∣∣∣∣ω=0
ν=0

= 0 0

∂3 |P |
∂ω3

∣∣∣∣ω=0
ν=0

=
∂3 |P |
∂ν3

∣∣∣∣ω=0
ν=0

= 0 0

∂4 |P |
∂ω4

∣∣∣∣ω=0
ν=0

=
∂4 |P |
∂ν4

∣∣∣∣ω=0
ν=0

= 4!
(N

2
2

)
σ8 4!

[(
N−J−1

2

)
+ J − 1

]
σ8

∂4 |P |
∂ω2∂ν2

∣∣∣∣ω=0
ν=0

= 8
(N

2
2

)
σ8 8

[(
N−J−1

2

)
+ J − 1

]
σ8

Table 4.1: Derivatives of the Determinant of the Matrix P at ω = 0, ν = 0.
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Approximations for the Pair Wise Form

The pair wise form leads to a particularly simple approximation. The matrix QI

is given by Equation (4.67), and QQ is similar. Both matrices share the property:

Q2
I = Q2

Q =
1

4
I . (4.131)

In addition, QIQQ 6= 0 and thus, by Craig’s theorem, ZI and ZQ are not statis-

tically independent. However, by Equation (4.129), the variances of ZI and ZQ

are identical and independent of the signal component, µ.

In addition, we have:

QIQQ +QQQI = 0 , (4.132)

so, by Equation (4.130), ZI and ZQ are uncorrelated (assuming C = σ2I). We,

therefore, model ZI and ZQ as independent† Gaussian rvs, with means given by

Equation (4.128) and variances:

Var [ZI ] = Var [ZQ] = Nσ4 + µHµσ2 ∆
= σ2

pw, (4.133)

where σ2 is the variance of YI and YQ and the subscript pw denotes pair-wise.

Note that the term µHµ is simply the total signal energy in the observation vector

and is equivalent to the noncentrality parameter of the χ2 distribution. Recall

that the three most common forms of decision statistic generated from Z are: 1)

D = <{Z} = ZI ; 2) D = |Z| =
√

Z2
I + Z2

Q; and 3) D = |Z|2 = Z2
I + Z2

Q. From

the above analysis, we see that we can approximate the distribution of ZI with a

Gaussian distribution, |Z| can be approximated by a Rice distribution [102] and

|Z|2 can be approximated by a χ2 distribution with two degrees of freedom [102].

†Jointly Gaussian rv’s which are uncorrelated are also independent. Since ZI and ZQ are
uncorrelated, we model them as independent Gaussian variates, even though they are, in fact,
statistically dependent.
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This leads us to the following approximations:

fZI
(zI) ≈

1√
2πσ2

pw

exp

(
1

2σ2
pw

(zI − µI)
2

)
(4.134)

FZI
(zI) ≈

1

2
erf

(
zI − µI√

2σ2
pw

)
(4.135)

fZQ
(zQ) ≈ 1√

2πσ2
pw

exp

(
1

2σ2
pw

(zQ − µQ)2

)
(4.136)

FZQ
(zQ) ≈ 1

2
erf

(
zQ − µQ√

2σ2
pw

)
(4.137)

fR(r) ≈ r

σ2
pw

exp

(
−

r2 + µ2
I + µ2

Q

2σ2
pw

)
I0




r
√

µ2
I + µ2

Q

σ2
pw


 (4.138)

FR(r) ≈ 1 − Q1




√
µ2

I + µ2
Q

σpw

,
r

σpw


 , (4.139)

where R = |Z| =
√

Z2
I + Z2

Q.

The accuracy of this approximation is demonstrated in Figures 4.2 and 4.3.

We consider a DCCD system with C/N0 = 30 dB-Hz, M = 1, K = 150. Four

cases are shown:

1. Noise alone,

2. Signal plus noise with no Doppler offset,

3. Signal plus noise with 250 Hz constant Doppler offset,

4. Signal plus noise with 450 Hz constant Doppler offset.

Figure 4.2 shows a scatter plot for 100 samples from the joint distribution of ZI

and ZQ. For each case we include a contour of constant probability density based

on the Gaussian approximation (which, for the pair-wise form, is a circle). The

circles are drawn such that probability that the random point (ZI , ZQ) is inside

the circle is p = 0.9. From the figure we can clearly see the effects of Doppler

offset, as we have previously modelled in Section 3.3.1. Firstly, the Doppler

offset introduces a rotation of the centre of mass about the origin; a Doppler
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Figure 4.2: Scatter Plot for the Pair Wise Form of the DCCD. Four cases are
shown: 1) Noise alone; 2) Signal plus noise, with zero Doppler offset; 3) Signal
plus noise fd = 250 Hz; and 4) Signal plus noise fd = 450 Hz. In each case a
circle has been drawn such that the probability that the random point (ZI , ZQ)
is inside that circle is 0.9. One hundred random points are plotted in each case.

offset of 250 Hz moves all of the signal power into the quadrature component ZQ.

Secondly, the effective signal power is reduced. This is manifested as a movement

towards the origin, and is most clearly seen by a comparison of the zero Doppler

and 450 Hz Doppler cases.

In Figure 4.3 the PDF and CDF of both the real component, ZI , and the

magnitude, R, are shown. The accuracy of the Gaussian approximation in this

case is clear from the plots. In addition, we can clearly see that R is a superior

choice of decision statistic, relative to ZI alone, when the signal is subject to

Doppler offset. For instance, in Figure 4.3 c) it can be seen that the CDFs of

the noise alone case and the signal plus noise case with fd = 250 Hz are virtually

indistinguishable.

Approximations for the Standard Form

The Gaussian approximation for the standard form is complicated by the fact that

the covariance terms do not vanish, as they did for the pair wise form. Thus, we
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Figure 4.3: PDFs and CDFs of ZI and R =
√

Z2
I + Z2

Q for the Pair Wise Form

of the DCCD. In each case 100, 000 trial points were generated and the result
compared with the Gaussian approximation.

cannot make a simple χ2 approximation to the distribution of R2. In fact, to the

best of the author’s knowledge, no closed-form analytical expression is known for

the distribution of the sum of the squares of two correlated Gaussian variables.

In the following we use an algorithm due to Sheil and O’Muircheartaigh [114] to

calculate the density and distribution of the sum of the squares of two correlated

Gaussian rvs.

Recall, from Equation (4.130), that the covariance term is proportional to
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QIQQ +QQQI. For the standard form with J = 1 we have:

QIQQ +QQQI =
j

2




0 0 −1 0 · · · 0

0 0 0 −1
. . .

...

1 0 0 0
. . . 0

0 1 0 0
. . . −1

...
. . . . . . . . . . . . 0

0 · · · 0 1 0 0




. (4.140)

More generally, if we denote by QI ,J and QQ,J the QI and QQ matrices for the

standard form with a delay of J samples, then (see Appendix B.2.7):

QI ,JQQ,J +QQ,JQI ,J = QQ,2J . (4.141)

Thus, ZI and ZQ are uncorrelated only when µHQQ,2Jµ = 0. This can easily be

seen to correspond to the case ZQ = 0 (i.e. either in the case of no signal, or in

the presence of signal with zero Doppler shift and no data modulation) for the

DCCD with a delay of 2J samples.

It is also interesting to note, from Equation (4.129), that the variances of ZI

and ZQ are generally different. We, therefore, approximate the joint distribution

of ZI and ZQ as a bivariate normal distribution with mean and covariance matrix

given by:

µZ =


 µHQIµ

µHQQµ


 (4.142)

CZ =


 2σ4(N − J) + 4σ2µHQ2

Iµ 2σ2µHQQ,2Jµ

2σ2µHQQ,2Jµ 2σ4(N − J) + 4σ2µHQ2
Qµ


 ,

(4.143)

respectively. Subsequent to the discussion of Section 4.3.2, it is interesting to

note that this Gaussian approximation essentially limits our consideration of the

effect of P−1 in the exponent of Equation (4.119) to the first three terms of the
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power series expansion of Equation (4.120).

When the signal is subject to a constant residual Doppler frequency offset

δωd, such that:

µi = A exp (jδωdTcohJi) , (4.144)

then we can use the following identities:

µHQIµ = (N − J)A2 cos(δωdTcohJ) (4.145)

µHQQµ = (N − J)A2 sin(δωdTcohJ) (4.146)

µHQ2
Iµ = A2

{
J

2
+ [N − 2J ] cos2 (δωdTcohJ)

}
(4.147)

µHQ2
Qµ = A2

{
J

2
+ [N − 2J ] sin2 (δωdTcohJ)

}
(4.148)

µHQQ,2Jµ = (N − 2J)A2 sin(2δωdTcohJ), (4.149)

to simplify Equations (4.142) and (4.143). Note also that when there is no signal

present (i.e. µ = 0) the model reduces to a central χ2 distribution with two

degrees of freedom, generated from Gaussian rvs with variance 2σ4(N − J).

This model is compared with simulated results in Figures 4.4 and 4.5. We

use the same receiver setup as for the pair-wise form, i.e. a DCCD with: J = 1,

M = 1, K = 150, C/N0 = 30 dB-Hz; and the same test scenarios: 1) noise alone,

2) signal plus noise with no Doppler offset, 3) signal plus noise with 250 Hz

constant Doppler offset and 4) signal plus noise with 450 Hz constant Doppler

offset.

Figure 4.4 illustrates a scatter plot for each of the four test cases. Again,

we include a contour of constant probability density in the (ZI , ZQ) plane, such

that the probability (under the Gaussian model) that a random point is inside

this contour is p = 0.9. In this case, the constant probability contours are ellipses

(due to the fact that the variances are unequal) and not necessarily parallel to the

x− or y−axes (due to the correlation between ZI and ZQ). In [112] the authors

also derived a Gaussian model of Z. However, they assumed that ZI and ZQ are

independent with equal variances. Figure 4.4 clearly illustrates that this is not

the case.

The accuracy of the new model is illustrated in Figure 4.5. Similar to Fig-

ure 4.3, we illustrate simulated and modelled plots of the PDFs and CDFs of ZI

and R =
√

Z2
I + Z2

Q. In addition, in Figure 4.5 b) and d) we also include the
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Figure 4.4: Scatter Plot for the Standard Form of the DCCD. Four cases are
shown: 1) Noise alone; 2) Signal plus noise, with zero Doppler offset; 3) Signal
plus noise fd = 250 Hz; and 4) Signal plus noise fd = 450 Hz. In each case an
ellipse has been drawn such that the probability that the random point (ZI , ZQ)
is inside that ellipse is 0.9. One hundred random points are plotted in each case.

Schmid and Neubauer [112] approximation. The accuracy of our model, and its

superiority to the previous model, is clear from the plots.

4.4 Performance Comparisons

Having obtained expressions for Pd and Pfa for all the detector forms above, we

now endeavour to determine which detector is most suited to any given applica-

tion.

Recall that, for a received signal with a given set of parameters θ, the perfor-

mance of a detector is completely defined by three quantities:

1. The probability of correct detection Pd.

2. The probability of false alarm Pfa.

3. The dwell time τD.
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Figure 4.5: PDFs and CDFs of ZI and R =
√

Z2
I + Z2

Q for the Standard Form

of the DCCD. In each case 100, 000 trial points were generated and the result
compared with the Gaussian approximation.

In addition, we have already seen (in Section 2.3) that, given perfect estimation

of the signal parameters, the ML detector is optimal, in the sense that it yields

the maximum Pd for a given Pfa and τD. However, in practice we cannot achieve

perfect signal parameter estimation, and so must resort to sub-optimal techniques.

The question of interest in this section is: what is the best choice of detector,

for a given set of design constraints, given an imperfect estimate of the signal

parameters?

We consider two criteria for determining the best detector:

1. Minimisation of the dwell time for a given operating point (Pfa, Pd).

2. Maximisation of Pd for a given dwell time and Pfa.
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The second criterion above is essentially the Neyman-Pearson criterion. The first,

however, is of greater interest in the acquisition problem. Recall from Section 2.3

that Wald and Wolfowitz [145] showed that the sequential detector is optimal

according to this criterion. The sequential detector is very sensitive to variation

in SNR, however, and so is not considered in this thesis.

In the following sections, we apply two common techniques of receiver perfor-

mance analysis:

1. Deflection coefficients (also known as detection indices).

2. Receiver operating characteristic (ROC) curves.

4.4.1 Deflection Coefficients

For a given signal parameter vector, θ, the performance of a receiver is described

by a point in the three dimensional space (τD, Pfa, Pd). When determining re-

ceiver performance it is often useful to have a single metric, d, which encapsulates

as much information about this point as possible. This can be thought of as a

form of compression, or a projection from three dimensional space onto a single

dimension.

A commonly used metric is the deflection coefficient, or detection index, de-

fined by [54]:

d2 ∆
=

(E[Dk(θ) | H1] − E[Dk(θ) | H0])
2

Var [Dk(θ) | H0]
, (4.150)

where Dk(θ) is the detector decision statistic for satellite k with signal parameters

θ. The utility of this metric arises from the assumption that the statistics of the

receiver are approximately Gaussian under both H0 and H1. In this case, d

encapsulates all the information regarding receiver performance. In other words,

if:

Dk(θ) ∼ N(µ, σ2) ,

for some µ and σ, then a receiver with larger d will always outperform a receiver

with smaller d in terms of (Pfa, Pd). Note that this makes no assumption about

τD.

It has been clearly demonstrated in Section 4.3 that the distribution of Dk(θ)

for differentially coherent receivers is not Gaussian.
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The deflection coefficient for the NCCD is well known [142] to be given by:

dNCCD =
µHµ

2
√

Kσ2
Y

=
λ

2
√

Kσ2
Y

(4.151)

Applying the results of the previous two sections to Equation (4.150) yields new

expressions for the deflection coefficients of the differentially coherent detector/

estimator forms:

dDCCD =

(
µHQIµ

)2
+
(
µHQQµ

)2
+ 4σ2

Yµ
H
(
Q2
I +Q2

Q

)
µ

σ4
Y

√
48α − 64β

(4.152)

dDCD =
µHQIµ

σ2
√

2(NM − J)
, (4.153)

where:

α =





(K − J)2 standard form
(

K
2

)2
pair-wise form

β =





(
K−J−1

2

)
+ J − 1 standard form

(K
2
2

)
pair-wise form.

(4.154)

Recall that σ2 is the noise variance in either the in-phase or quadrature component

at the output of the RF front-end, whilst σ2
Y is the noise variance in either the

in-phase or quadrature component at the output of the coherent accumulator.

Equations (4.152) and (4.153) are new.

As noted above, the Gaussian assumption made in the derivation of the de-

flection coefficient above is not valid for the DCCD. Another useful metric, based

on Equation (4.150) can be obtained in a heuristic fashion. All of the statistics

we deal with consist of unimodal distributions, by which we mean distributions

consisting of a single peak. The deflection coefficient of Equation (4.150) can be

viewed as a (normalised) measure of the distance between the peak of the deci-

sion statistic under H0 and its peak under H1. In Equation (4.150) the metric is

normalised by the variance of the statistic under H0, which is a measure of the

spread of the distribution about the mean. In Gaussian detection the variance

under H1 is the same as the variance under H0. In non-Gaussian systems the
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following alternative deflection coefficient has been suggested in the literature:

d2 =
(E[Dk(θ) | H1] − E[Dk(θ) | H0])

2

1
2
(Var [Dk(θ) | H1] + Var [Dk(θ) | H0])

. (4.155)

Note that this differs from Equation (4.150) only in the denominator term. In

effect, the normalisation factor Var [Dk(θ) | H0] has been replaced by the average

of the variances under H0 and H1.

We were unable to obtain a simple closed-form expression for Var [R2] for the

standard form of the DCCD. For the pair-wise form, however, the following rela-

tively simple expression can be obtained using the CHF approach of Section 4.3.3:

Var
[
R2
]

= 4σ8

[
3K2 − 16

(
K
2

2

)]
+ 8σ2

(
|κ|2 + σ2λ

) [
(K + 4)σ2 +

λ

2

]
(4.156)

4.4.2 Receiver Operating Characteristic Curves

The receiver operating characteristic (ROC) curve is a plot of Pd vs Pfa for

a given set of receiver and signal parameters [142]. Some useful properties of

receiver operating characteristic (ROC) curves include:

1. The ROC curve of the ML detector is always concave down, i.e. the slope

dPd/dPfa is always positive and the rate of change of slope, i.e. d2Pd/dPfa
2,

is less than or equal to zero.

2. Every ROC curve contains the points (0, 0) and (1, 1).

3. The curve is always above the line Pd = Pfa (called the “chance line”). If

the ROC dipped below this line then random guessing would yield better

performance.

4. The ML detector is optimal and, consequently, the ROC of any detector

must be on or below the ROC of the ML detector.

Note that points 3 and 4 above give (loose) bounds on detector performance.

A sample ROC curve is given in Figure 4.6, which depicts the curves for

the ML detector (upper bound), NCCD detector and DCCD in both pair-wise

and standard forms, for a received signal with C/N0 = 29.8 dB-Hz and system

parameters M = 1, J = 1 and K = 74. There are no residual frequency or code
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Figure 4.6: ROC Curve Comparison for NCCD and the Two Forms of DCCD.
C/N0 = 29.8 dB-Hz, M = 1, J = 1, K = 74. Note that Pfa is shown on a
logarithmic scale, whereas Pd is shown on a linear scale.

phase offsets and the signal is assumed free of data modulation. Note that the

ideal receiver has a curve that is as close as possible to the upper left corner.

The particular set of curves shown in Figure 4.6 is interesting for a number

of reasons. Firstly, for C/N0, M and J given as above, then, according to our

Gaussian model, the choice of K = 74 is the smallest value of K for which the

standard form of the DCCD achieves the performance point (Pfa = 10−3, Pd =

0.9). Secondly, we can clearly see that the curves for the NCCD and the pair-wise

form of the DCCD meet in the region of Pfa = 10−3. Thirdly, we see that the

performances of all detector types are significantly poorer than the optimal, ML

form†.

Whilst from the figure it would appear that both forms of the DCCD signifi-

cantly outperform the NCCD when Pfa < 10−4, it is important to be aware that

this figure is generated using the Gaussian models of the preceding sections. As

previously discussed, these approximations are least accurate in the tails of the

distribution. We have also already remarked, in Section 4.3.1, that the distribu-

tion of the decision statistic of the DCCD is heavy–tailed, and for this reason

†Note that, while the ML receiver appears to yield a Pd of unity this is not, in fact, the case.
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also one should not expect a high degree of accuracy at very low Pfa. Thus, we

cannot be certain, from the models that we have developed, that the performance

gain of the DCCD at low Pfa (in particular in the standard form) is as significant

as it would appear.

This is illustrated in the (extreme) example of Figure 4.7. Again, we consider

a system operating in the absence of data modulation and parameter estimation

error. The receiver parameters in this case are C/N0 = 29.8 dB-Hz, M = 5,

J = 1 and K = 6. From Figure 4.7 a), it would appear that both forms of the
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Figure 4.7: ROC Curve Demonstrating Limitations of the Gaussian Model.
C/N0 = 29.8 dB-Hz, M = 5, J = 1 and K = 6. a) Shows the ROC curve
calculated using the Gaussian model. b) Plots the value of Pfa determined using
Equations (4.78) and (4.118) (y-axis) vs the value of Pfa calculated using the
Gaussian model (x-axis). c) Shows the same ROC curve calculated using the
exact equations for Pfa.

DCCD actually outperform the ML detector at Pfa < 10−5. This is impossible
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by the definition of the ML detector. The reason for this error can be seen in

Figure 4.7 b), where we have used two methods to determine Pfa. In the first case

we have used the set of values for the threshold voltage VTh used in generating

Figure 4.7 a) in the Gaussian model of Equation (4.139) (solid line). In the

second case we have used the same values of VTh in the exact expression for the

CDF of the decision statistic of Equation (4.78) (dashed line). Note that when

the Gaussian model indicates that Pfa = 10−5, the exact model indicates that

it is, in fact, closer to 10−3, a factor of two orders of magnitude. Finally, in

Figure 4.7 c), the same ROC curve is illustrated, with the same values of VTh but

using the exact expressions for the calculation of Pfa
†. It is clear from this figure

that the DCCD does not, in fact, violate the optimality of the ML detector. We

have referred to this an extreme case because, in addition to the sources of error

discussed above, K is small and our Gaussian model is based on the application

of the central limit theorem, which is more accurate as K → ∞.

Two important points should be noted from the above analysis: 1) one should

be skeptical of results obtained using the Gaussian model, particularly in the tails

of the distribution; 2) the exact expression for the distribution of the decision

statistic under H0 in the pair-wise form (Equation (4.78)) provides us with a

very useful tool for detecting false results of this kind.

In the following we use the exact expressions for Pfa when K < 27, otherwise

the Gaussian approximations are used. The effect of Doppler offset on the ROC

curve is illustrated in Figure 4.8, which shows the ROC curves for a receiver with

C/N0 = 43.8 dB-Hz, M = 1, J = 1 and K = 2. In Figure 4.8 a) there is no

Doppler offset and in Figure 4.8 b) there is a Doppler offset of 500 Hz. Note

that, for K = 2, the standard and pair-wise forms of the DCCD are identical.

Due to the small value of K, the exact method is used in the calculation of Pfa.

Note that the NCCD significantly outperforms the DCCD forms in the absence

of Doppler shift. At fd = 500 Hz the performance of the DCCD is very similar

to that of the NCCD.

As we have previously seen in Chapter 3, the presence of a Doppler shift leads

to a degradation in system performance. However, from Figure 4.8 we see that the

NCCD seems to suffer greater degradation than the DCCD, under the conditions

described above. Note that, from our consideration of the signal effects alone in

Chapter 3, it would have been expected that the DCCD would experience greater

†The Gaussian model is used to calculate Pd.
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Figure 4.8: Doppler Effect on ROC Curve. C/N0 = 43.8 dB-Hz, M = 1, J = 1
and K = 2. a) fd = 0 Hz, b) fd = 500 Hz.

losses due to carrier Doppler than the NCCD. In taking noise effects into account,

however, we see that the opposite is true. Nonetheless, the NCCD is a superior

choice of receiver given the signal parameters discussed above.

A comparison of the Gaussian model and the exact approach is given in Fig-

ure 4.9, in which a system with C/N0 = 33.8 dB-Hz, M = 1, J = 1, K = 18 and

fd = 0 is illustrated. In Figure 4.8 a) both Pfa and Pd are calculated using the

Gaussian approximation whereas, in Figure 4.8 b), Pfa is calculated using the

exact equations. While the inaccuracy of the Gaussian model is clear from the
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Figure 4.9: Gaussian Model vs Exact Calculation for ROC Curves. C/N0 =
33.8 dB-Hz, M = 1, J = 1 and K = 18. a) Gaussian model, b) Exact calculation
of Pfa.
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curves, we see that the trend is similar in both figures. In this case, the NCCD

seems to be superior for large values of Pfa, whereas the standard form of DCCD

is superior at very low Pfa.

In Figure 4.10 the ROC curves (left hand column) and the corresponding

plots showing the accuracy of the Gaussian approximation (right hand column)

are shown for various received power levels. In each case, the receiver parameters

have been chosen to yield the operating point (Pfa = 10−3, Pd = 0.9). A number

of observations can be noted from these plots. Firstly, whereas we have previously

seen that the NCCD outperforms the DCCD when the signal level is relatively

high (C/N0 ≥ 35), it is clear from Figure 4.10 that the standard form of the

DCCD is significantly better at lower received power levels (in each case the

NCCD has Pd < 0.7). Secondly, from the right hand column plots, we see that

our Gaussian approximation is increasingly accurate as K increases, as expected.

Thirdly, for each 5 dB decrease in signal power, an approximately eight-fold

increase in dwell time is required to achieve the operating point (Pfa = 10−3, Pd =

0.9). Finally, the pair-wise form of the DCCD is always a poorer choice than

either the NCCD or the standard form of the DCCD for all the cases considered

in Figure 4.10. Therefore, the pair-wise form will not be considered further here.

It is important to note that all these ROC curves have been generated using

the Gaussian approximation and code Doppler, data modulation and Doppler

rate effects have been ignored.
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Figure 4.10: Effect of Received Power Level on ROC Curves. M = 1, J = 1. Left

hand plots: ROC curves. Right hand plots: Gaussian model vs exact calculation

of Pfa. a) and b) C/N0 = 28.8 dB-Hz, K = 110. c) and d) C/N0 = 23.8 dB-Hz,

K = 925. e) and f) C/N0 = 18.8 dB-Hz, K = 8500.
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4.5. Parallel Forms

4.5 Parallel Forms

Thus far in this chapter, we have considered only the analysis of the single cell

detector. We now turn our attention to the analysis of parallel forms of the

detector/estimator.

Recall that the parallel form of the detector/estimator calculates the decision

statistic Dk(θ̂)
† for multiple parameter estimates simultaneously. We denote by

CT the number of such statistics calculated and denote by Dk,i the ith output,

where the dependence on the parameter estimate θ̂i is implicit. We assume that

the set {Dk,i : i = 0, 1, . . . CT − 1} covers an area of CT cells of the uncertainty

region. We call this coverage a tile and denote by Θl the area of the uncertainty

space covered by the lth tile. We assume that the total uncertainty space Θ is

divided into NT disjoint tiles, containing CT cells each (see Figure 2.18). The

advantage of this model is that we can assume that the CT decision statistics

within any given tile are statistically independent. Thus, our analysis of the SCD

can be applied to each component of the parallel form.

Denoting by θt the true vector of signal parameters, then the hypothesis that

θt 6∈ Θl is denoted H0, and the alternate hypothesis, θt ∈ Θl, is denoted H1. A

tile containing θt is referred to as a H1 tile, in general we assume that there is

only on H1 tile in the uncertainty region, though in Section 5.2 we shall consider

the effect of two H1 tiles on the acquisition process. All other tiles are referred

to as H0 tiles.

Denoting by fDk,i
(x) the PDF of Dk,i and by FDk,i

(x) its CDF, then the

probability that all the decision statistics within a tile fall below the decision

threshold is given by (see Section 2.4.4):

Pr
{

max
i

Dk,i < VTh

}
=

CT−1∏

i=0

FDk,i
(VTh) . (4.157)

Thus, under H0, we have:

Pr0 =

CT−1∏

i=0

FDk,i
(VTh) (4.158)

Pfa0
= 1 − Pr0 , , (4.159)

†Remember that the subscript k indicates that the detector is testing for the presence of a
signal from satellite k.
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where Pr0 and Pfa0
denote the probability of rejection and false alarm under H0,

respectively. Under H1 it is assumed that at least one of the Dk,i contains both

signal and noise. Let I denote the set of indices such that ∀i ∈ I, Dk,i contains

signal and noise and ∀i 6∈ I, Dk,i contains noise alone. From Equation (2.81) we

then have:

Pr1 =

CT−1∏

i=0

FDk,i
(VTh) (4.160)

Pd =
∑

n∈I

∫ ∞

VTh

fDk,n
(x)

CT−1∏

i=0
i6=n

FDk,i
(x)d x (4.161)

Pfa1
= 1 − Pr1 − Pd , (4.162)

where Pd denotes the probability of detection and Pr1 and Pfa1
denote the prob-

abilities of rejection and false alarm under H1, respectively. Note that in the

parallel form there is a possibility of a false alarm occurring within a H1 tile,

which was impossible in the SCD. In the following we assume that there is only

one H1 cell within a H1 tile, or I = {n}, where n is the index of the H1 cell

within the H1 tile. Thus, we can re-write Equation (4.161) as:

Pd =

∫ ∞

VTh

fDk,n
(x)

CT−1∏

i=0
i6=n

FDk,i
(x)d x . (4.163)

Note that Equation (4.163) resembles the expression for the complement of the

CDF of an rv representing the maximum (or peak) of CT χ2 rvs, given that the

nth χ2 rv is the largest. This rv is denoted Pk,n and its distribution is given by:

fPk,n
(x) = fDk,n

(x)

CT−1∏

i=0
i6=n

FDk,i
(x) . (4.164)
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Note that fPk,n
(x) is not a true PDF†, since:

∫ ∞

−∞
fPk,n

(x)d x 6= 1. (4.165)

However, we can treat it as the parallel analogue of fDk,n
(x), the PDFof the

decision statistic under H1 for the SCD.

A number of important observations can be made using this model. Firstly:

∫ ∞

VTh

fDk,n
(x)

CT−1∏

i=0
i6=n

FDk,i
(x)d x ≤

∫ ∞

VTh

fDk,n
(x)d x , (4.166)

i.e. the probability of correct detection in a H1 tile in the parallel detector is less

than the probability of correct detection in a H1 cell in the SCD, for the same

VTh. Similarly, the probability of false alarm in a H0 tile in the parallel form is

greater than or equal to the Pfa in a H0 cell in the SCD, again for the same VTh.

Thirdly, at VTh = 0, Pfa0
= 1 but Pd < 1.

These three observations imply that the ROC curve of a parallel detector will

always be inferior to that of the equivalent single cell form. The benefit of the

parallel form, of course, is that the SCD takes CT times as long to cover the same

area of the uncertainty space. To achieve the same performance level in terms

of (Pfa0
, Pd) the parallel form requires a longer dwell time. Provided this dwell

time increase factor is less than CT then the parallel detector can achieve better

performance than the single cell detector.

This is demonstrated in Figure 4.11, which illustrates the same system and

signal parameters as those of Figure 4.6, and also includes the effect of parallelism

with CT = 2048. In each case, we see that the parallel form leads to a significant

shift to the right in the distribution under H0. This, in turn, leads to an erosion

of the main lobe of the distribution under H1. Thus, the effect of parallelism for

a given VTh is two-fold: 1) Pfa0
is increased; 2) Pd is decreased.

Recall that, for the single cell detector, as the threshold tends to zero both Pfa0

and Pd tend to one. In the parallel form, however, there is a non-zero probability

of false alarm in the H1 tile when the threshold is zero and, hence, Pd < 1. Thus

†In fact fPk,n
(x) can be viewed as the conditional PDF of Dk,n given that Dk,n is the

largest decision statistic in the tile, multiplied by the probability that Dk,n is, in fact, the
largest statistic in the tile. Thus Pk,n denotes a normalisation of the value of the peak decision
statistic, given that Dk,n is the peak.
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Figure 4.11: Effect of Parallelism on the Distribution of the Decision Statistic.
C/N0 = 29.8 dB-Hz, M = 1, J = 1, K = 74 and CT = 2048.

there is a maximum possible probability of detection, denoted Pdmax, that can be

achieved by the parallel detector. Similarly, there is a corresponding maximum

value of Pfa1
, denoted Pfa1max

, which occurs when VTh = 0 and is related to Pdmax

by the simple relationship:

Pfa1max
= 1 − Pdmax. (4.167)

Following Milstein et al. [85], a union bound for Pfa1max
can be obtained as

follows:

Pfa1max
≤

CT∑

j=1

j 6=n

Pr {Dk(θj) > Dk(θn) | θt = θn} . (4.168)

Letting Pj,n denote the probability that the jth component of the decision statistic
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vector exceeds the nth, Milstein et al. [85] derived the following expression for the

ML detector:

Pj,n

∣∣∣
ML

=
1

2

[
1 − Q1

(√
b,
√

a
)

+ Q1

(√
a,
√

b
)]

, (4.169)

where a and b are the SNR in the H0 and H1 cells, respectively. This is the

probability that one χ2 distributed rv with two degrees of freedom exceeds an-

other. For the NCCD the equivalent expression involves the probability that one

χ2 distributed rv with 2K degrees of freedom exceeds another. This quantity

has received much attention in the past in the context of the determination of

error probabilities in binary multichannel communications (see [101, 120, 122]

and [102, Appendix B], for example). In Appendix B.2.8 we derive the following

simple analytic expression for the probability that the decision statistic in a H0

cell exceeds that in the H1 cell for the NCCD:

Pj,n

∣∣∣
NCCD

=
1

22K−1

2K−1∑

k=0

(
2K − 1

k

)
QK−k

(√
a,
√

b
)

. (4.170)

Note that this expression involves the Marcum Q-function of negative order, which

has been defined in Appendix B.2.8. Equation (4.170) can easily be re-arranged

to include only Marcum Q-functions with positive order, to yield:

Pj,n

∣∣∣
NCCD

=
1

22K−1

K∑

k=1

(
2K − 1

K − k

){
Qk

(√
a,
√

b
)

+
[
1 − Qk

(√
b,
√

a
)]}

.

(4.171)

Note that Equation (4.171) reduces to Equation (4.169) when K = 1.

For large values of K, Equations (4.170) and (4.171) become difficult to com-

pute, due to the large values of the binomial coefficients and the Marcum Q-

functions of large order. In such cases, we use a saddle point integration technique
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to evaluate the complex contour integral (see [102, 135]):

Pj,n

∣∣∣
NCCD

=
1

22K−1

1

2πj

∮

Γ0

(1 + z)2K−1 f
(√

a,
√

b; z
)

(1 − z)zK
dz, (4.172)

where Γ0 denotes a closed contour in the complex z-plane enclosing the origin in

an anti-clockwise direction, and:

f (a, b; z)
∆
= exp

(
−1

2

[
a2

(
1 − 1

z

)
+ b2 (1 − z)

])
. (4.173)

Note that this is a loose bound when K is large.

4.5.1 Analysis Issues

In Section 4.3 new analytical forms for the distribution of the decision statistic

of differentially coherent forms of detector/estimator were introduced. For long

observation intervals it was also seen that these new expressions are difficult to

evaluate numerically, so a Gaussian approximation was made. This approxima-

tion was shown to be quite accurate for moderate to large observation intervals.

However, as with all Gaussian approximations, this approximation is most accu-

rate near the mean of the distribution and less accurate in the tails.

This poses a significant problem when analysing parallel forms. The decision

statistic of the parallel form detector/estimator is given by the largest of CT single

cell forms, where CT is typically of the order of 103. Additionally, the majority of

those CT cells are typically H0 cells, i.e. they contain noise alone. The statistics

of the parallel form detector/estimator are, therefore, dominated by the tail of

the distribution of the single cell form under H0, which is precisely where the

Gaussian model is least accurate.

This difficulty is illustrated in 4.12, where the PDF and CDF of the decision

statistic of the parallel form of DCCD under H0 are illustrated. In each case the

Gaussian approximation, a simulated result and, where possible, the exact form

are represented. Note that, for K = 20 the Gaussian approximation, which is

quite accurate for the single cell detector, is grossly inaccurate for the parallel

form. Similarly, for K = 50 the Gaussian approximation is still not sufficiently

accurate for use in system analysis or design. However, for K = 500 we see a very

close alignment between the Gaussian approximation and the simulated results.
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Figure 4.12: Error in Gaussian Approximation to the Maximum of Dk under H0

for the standard form DCCD. M = 1, J = 1 and CT = 2048. Note that when

K ≤ 27 we can use the exact model, otherwise we must use the Gaussian model.
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Ideally, to overcome this problem, a numerically stable and efficient method

for computing Equation (4.117) would be devised. This is beyond the scope of

this thesis, but would certainly be of interest. Alternatively, the near arbitrary

precision capabilities of MathematicaTM can be leveraged to evaluate this ex-

pression. As previously mentioned, we have found that this requires increasing

the internal variable $MaxExtraPrecision, and the resulting function evaluation,

while accurate, takes a long time to compute (on the order of hours for K of the

order of 102). Comparisons of the Gaussian approximation and the exact form as

calculated in MathematicaTM are illustrated in Figure 4.13 for the cases K = 200

and K = 350.
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Figure 4.13: Comparison of Gaussian Approximation and Exact Results from
MathematicaTM of the PDF of the Maximum of Dk under H0.

A third manner in which this computational difficulty can be overcome is

simply to run Monte Carlo simulations to determine the system performance.

Whilst this is not an attractive alternative, it may, in some cases, be less time

consuming than using the exact form in MathematicaTM.

4.6 Discussion

In Section 4.1 we demonstrated that a commonly used model for the PDF of the

multi-dimensional complex Gaussian distribution is, in fact, not exact, but that

it may be accurate at low SNR.

In Section 4.2, we briefly reviewed the well-known statistics of the NCCD,

highlighting a useful technique for the calculation of the probability of detection.
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We also summarised some useful approximations and bounds.

In Section 4.3, we derived some new results on the statistics of differentially

coherent techniques. We adopted a characteristic function approach based on that

of Jeong et al. [65] to derive a new, closed form, analytical expression for the dis-

tribution of the magnitude decision statistic of the pair-wise form of the DCCD.

It was also demonstrated that this expression is identical to the K-distribution,

which arises frequently in the (apparently unrelated) context of radar sea-echo.

This result was subsequently extended to model the standard form, but the result-

ing expression is not suitable for numerical evaluation. A new, bivariate Gaussian

approximation, valid for all forms of differentially coherent detector/estimator,

was also derived, and was shown to be more accurate than existing models of the

square magnitude statistic.

In Section 4.4, a brief performance comparison of the various forms of de-

tector/estimator was conducted. This comparison centred around two perfor-

mance metrics: 1) the deflection coefficient, 2) the receiver operating characteris-

tic (ROC). New expressions for the deflection coefficients of each of the detector/

estimator forms were derived, and a new form of deflection coefficient introduced.

The ROC curves, on the other hand, demonstrate that the single deflection coef-

ficient provides insufficient information for a fair comparison of different detector

types. From our Gaussian models it would appear that the NCCD outperforms

the other detector types both in high SNR environments and when a large value

of Pfa (e.g. Pfa > 0.1) can be tolerated. As SNR decreases, however, the standard

form of the DCCD becomes a better choice.

The pair-wise form of differentially coherent combining detector would ap-

pear to have limited utility in practical situations. However, it is a very useful

theoretical tool, as it is much easier to analyse than the standard form. In fact

our analysis of the standard form arises directly from that of the pair-wise form,

without which many of the results derived in this chapter might not have been

so readily obtained.
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Chapter 5

The Acquisition Process

Thus far, we have investigated the performance of the detector/estimator within

a single search tile. In this chapter we begin our investigation of the acquisition

process. Recall that this is the process which controls the detector/estimator,

determining the search order for all tiles in the uncertainty region. Thus, whereas

the detector/estimator determines the probabilities of correct detection, false

alarm, etc. and dwell time within a tile, the acquisition process determines the

search strategy, which has a significant effect on the overall acquisition time,

TACQ.

In Section 2.5 we introduced the three modes of the acquisition process:

1. The search mode.

2. The verification mode.

3. The lock mode.

It has been common practice in the literature to consider a system wherein all

three modes are specified and to provide a complete analysis in terms of the mean

acquisition time TACQ. Our analysis differs from the traditional approach only

in that we consider each of the acquisition modes independently. Our logic in

choosing such an approach is two-fold:

1. In essence, each mode can be viewed as an independent random process,

thus each mode may be optimised independently.

2. In situations where weak signals are prevalent it is common to employ a

positioning technique known as “snap-shot” positioning. In this case, a

203



Chapter 5. The Acquisition Process

position estimate is derived directly from the satellite signal parameter es-

timates obtained from the acquisition process, no tracking mode is employed

and hence, no lock mode is required.

Our analysis in this chapter focuses on the search mode, as this is the most

time-consuming part of the acquisition process. The results of this chapter were

published in part in [88].

5.1 The One H1 Tile Approximation

As discussed in Section 2.5, we model the search mode as a type of process known

as a Markov chain.

5.1.1 The Markov Chain Model

In the search mode we assume the detector/estimator parameters are fixed. The

state of the process is given by the search tile under investigation; the tiles being

numbered in some appropriate manner. Two additional states are included to

denote the possible end states of the search process; namely the detection state

(D) and the false alarm state (FA). Thus, given NT tiles in the uncertainty region,

there are NT + 2 states in the Markov chain model of the search mode.

Following the convention of the circular state diagram method of Polydoros

and Weber [99], the states are numbered according to how far away they are from

the true H1 state. The H1 state itself is labelled state NT − 1.

Since here we consider the search mode only, the false alarm state will be

treated as absorbing. Consequently, the statistics of the search mode will be the

statistics of the first entry into the verification and lock modes, and will sometimes

be called the “first hit statistics” of the receiver.

The circular state diagram is given in Figure 5.1 and is valid for any tile

structure that divides the uncertainty space into NT disjoint tiles. Under this

model we make the assumption that only one tile in the uncertainty region is the

correct, i.e. H1, tile. Thus correct detection can only occur in one tile. We refer to

this model as the “one H1 tile approximation”. In Section 5.2 we will investigate

an improved model which allows for two H1 tiles in the uncertainty region. The

one H1 tile approximation results in simpler, but less accurate, expressions for
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the receiver performance parameters. Each approximation, therefore, has its

advantages.
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Figure 5.1: Circular State Diagram for the Search Mode Under the One H1 Tile

Approximation

Each path through the state space has a corresponding path transfer func-

tion, denoted by H. This transfer function incorporates information about the

probability that the path is followed and the time taken to traverse the path.

Each of the H0 states has two paths associated with it: 1) Hr0 : in which the tile

is rejected and the process moves on to the next state; 2) Hfa0
: in which the tile

is incorrectly identified as a H1 tile and the process moves into the false alarm

state. The H1 state has three paths associated with it since, in addition to the

rejection and false alarm paths, there is also a correct detection path, Hd.

The detection and false alarm probabilities (PD and PFA, respectively), as

well as the mean time to first hit T FH , for this system have been derived by the

author using flow graph techniques [88]. In the following the same quantities are

derived using matrix methods, which are then used to derive an expression for

the variance of the time to first hit, Var [TFH ]†.

We follow the notation of Iosifescu [61] in our treatment of the state transition

matrices of Markov chains. For any absorbing Markov chain with k absorbing

†The matrix approach facilitates the calculation of the second order statistics. This is also
possible using the flow-graph approach, but requires considerably more work.
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states and NT transient states, the state transition probabilities pi,j can be ar-

ranged in the canonical matrix form:

P =


 I 0

R T


 (5.1)

where P is the (NT + k)× (NT + k) matrix of state transition probabilities, I is

the k× k identity matrix, R is the NT × k matrix of transition probabilities from

transient to absorbing states, called the “recurrent matrix”, and T is the NT×NT

matrix of transition probabilities within the transient states, called the “transient

matrix”. Here, the state vector has been arranged such that the first k elements

represent the absorbing (or recurrent) states of the process, the remaining NT

elements represent the transient states. The element pi,j represents the transition

probability from state i to state j.

Thus, given the circular state diagram of Figure 5.1, the state transition ma-

trix is given by:

P =




1 0 0 0 . . . . . . 0

0 1 0 0 . . . . . . 0

0 Pfa0
0 Pr0 0 . . . 0

0 Pfa0
0 0 Pr0 . . . 0

...
...

...
...

. . . . . .
...

0 Pfa0
0 0 . . . 0 Pr0

Pd Pfa1
Pr1 0 0 . . . 0




(5.2)

Since the transient matrix T will be of great importance in the following

analysis, we present it explicitly here:

T =




0 Pr0 0 . . . 0

0 0 Pr0 . . . 0
...

...
. . . . . .

...

0 0 . . . 0 Pr0

Pr1 0 0 . . . 0




(5.3)
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5.1.2 The Fundamental Matrix

Let ν denote the (random) number of state transitions occurring from commence-

ment to absorption in one instantiation of the Markov chain. Assuming all state

transitions take an equal amount of time, given by τD, then the quantities of

interest to us are the first and second order moments of ν. The analysis of these

statistics is facilitated through the use of the fundamental matrix, N , given by

[61]:

N = (I − T )−1 =
∞∑

i=0

T i . (5.4)

Let mn,i denote the nth order moment of ν given the process starts in the ith

transient state, i.e. mn,i = Eν [ν
n | i], where Eν [·] denotes mathematical expec-

tation over the random variable ν. It can then be shown [61] that the vector

m1 = [m1,0,m1,1, . . . ,m1,NT−1]
T is given by:

m1 = Ne (5.5)

where e is the length NT vector of 1’s, e = [1, 1, . . . , 1]T. The mean number of

dwells from start to finish, independent of the starting state, is then given by

taking the expectation over the distribution of the starting state:

m1
∆
= Ei[m1,i | i] (5.6)

=

NT−1∑

i=0

πim1,i (5.7)

= πTNe (5.8)

where πi is the a priori probability that search starts in state i and

π = [π0, π1, . . . , πNT−1]
T .

Similarly, given m2 = [m2,0,m2,1, . . . ,m2,NT−1]
T, it can be shown that [61]:

m2 = (2N − I)Ne. (5.9)

Again, taking expectation over the distribution of the starting state, we have:

m2
∆
= Ei[m2,i | i] (5.10)
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= πTm2 (5.11)

where m2 is the mean square number of dwells from start to finish.

Finally, letting ai,j denote the probability that the Markov chain will terminate

in the jth recurrent state, given that it started in the ith transient state, then the

NT × k matrix A = [ai,j] : 0 ≤ i ≤ NT − 1 , 0 ≤ j ≤ k − 1 is given by:

A = NR. (5.12)

The determination of the fundamental matrix N is, therefore, very important.

The sparsity of the transient matrix T means thatN can be quite easily computed

using the infinite summation formula of Equation (5.4).

Denoting the (i, j) element of T n by (T n)i,j, then we have that (T n)i,j is

non-zero only if j ≡ (i + n) mod NT. In fact, for n < NT we have:

(T n)i,j =





P n
r0

j ≡ (i + n) mod NT i ≤ j

Pr1P
n−1
r0

j ≡ (i + n) mod NT i > j

0 otherwise

(5.13)

or, explicitly:

T n =




0(NT−n)×n P n
r0
INT−n

Pr1P
n−1
r0
In 0n×(NT−n)


 (5.14)

=




0 0 . . . 0 P n
r0

0 . . . 0

0 0 . . . 0 0 P n
r0

. . . 0
...

...
...

...
...

. . . . . .
...

0 0 . . . 0 0 0 . . . P n
r0

Pr1P
n−1
r0

0 . . . 0 0 0 . . . 0

0 Pr1P
n−1
r0

. . . 0 0 0 . . . 0
...

. . . . . . . . .
...

... . . . . . .

0 0 . . . Pr1P
n−1
r0

0 0 . . . 0




(5.15)
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where 0n×m is the n × m matrix of zeros, and In is the n × n identity matrix.

Thus, when n = NT, we have TNT = Pr1P
NT−1
r0

I. The term Pr1P
NT−1
r0

is the

probability of completing one full loop through the uncertainty region without

making a D1 decision, and we term it the loop probability PL. In general, for any

integer n, we have n = lNT + m where l ∈ Z
+ and 0 ≤ m < NT. Therefore, T n

can be decomposed as follows:

T n = T lNT+m = P l
LT

m (5.16)

Thus, we can write:

N =
∞∑

n=0

T n

=
∞∑

l=0

NT−1∑

m=0

T lNT+m

=
∞∑

l=0

(
Pr1P

NT−1
r0

)l NT−1∑

m=0

Tm

=
1

1 − PL

NT−1∑

m=0

Tm (5.17)

where the last step has been achieved using Equation (A.3) from Appendix A†.

Now from Equation (5.13) we see that the matrices given by Tm : 0 ≤ m < NT

have no common non-zero elements. Thus, the fundamental matrix is given by:

(N )i,j =
1

1 − PL





P j−i
r0

i ≤ j

Pr1P
NT−1−(i−j)
r0 i > j

(5.18)

†Note that this requires PL < 1, which will always be the case in practical situations.
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which implies:

N =
1

1 − PL




1 Pr0 P 2
r0

. . . PNT−1
r0

Pr1P
NT−2
r0

1 Pr0 . . . PNT−2
r0

Pr1P
NT−3
r0

Pr1P
NT−2
r0

1 . . . PNT−3
r0

...
...

. . . . . .
...

Pr1 Pr1Pr0 . . . Pr1P
NT−2
r0

1




. (5.19)

A graphical representation of N is given in Figure 5.2. The matrix is shown

divided into two triangular submatrices: the upper triangular matrix including

the main diagonal, and a lower triangular matrix. All the elements within a

submatrix share similar properties.

Pr1
P

NT−1−(i−j)
r0

j

i

P j−i
r0

1

1 − PL

Figure 5.2: Graphical Representation of N under the One H1 Approximation

5.1.3 Probabilities of Detection and False Alarm

Given the definitions above, the calculation of the probabilities of detection (PD)

and false alarm (PFA) proceeds as follows. Using Equation (5.19) in Equa-
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tion (5.12) we get:

A =
1

1 − PL




1 Pr0 . . . PNT−1
r0

Pr1P
NT−2
r0

1 . . . PNT−2
r0

...
...

. . .
...

Pr1 Pr1Pr0 . . . 1







0 Pfa0

0 Pfa0

...
...

Pd Pfa1




. (5.20)

Now, the probability of detection given starting state i, denoted PD,i, is given by

the first column of the ith row of A, ai,0 (since recurrent state 0 is the detection

state). Denoting by A−,0 the first column of A, then we have:

A−,0 =
1

1 − PL




1 Pr0 . . . PNT−1
r0

Pr1P
NT−2
r0

1 . . . PNT−2
r0

...
...

. . .
...

Pr1 Pr1Pr0 . . . 1







0

0
...

Pd




∴ PD,i =
PNT−1−i

r0
Pd

1 − PL

(5.21)

Hence, the overall probability of detection is given by:

PD = Ei[PD,i | i]

=

NT−1∑

i=0

πiPD,i .

Assuming a uniform distribution, πi = 1/NT and we have:

PD =
1

NT

Pd

1 − PL

NT−1∑

i=0

PNT−1−i
r0

=
1

NT

Pd

1 − PL

1 − PNT
r0

1 − Pr0

(5.22)

where we have used Equation (A.4).
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Finally, given that there are only two possible end states, we must have:

PFA = 1 − PD . (5.23)

5.1.4 First Order Statistics

To determine the first order statistics of the time to first hit we use Equation (5.19)

in Equation (5.5) to yield:

m1,i =
1

1 − PL

(
Pr1

i−1∑

j=0

PNT−1−(i−j)
r0

+

NT−1∑

j=i

P j−i
r0

)

=
1

1 − PL

(
Pr1P

NT−1−i
r0

1 − P i
r0

1 − Pr0

+
1 − PNT−i

r0

1 − Pr0

)

=
1

(1 − PL)(1 − Pr0)

(
1 − PL + PNT−1−i

r0
(Pr1 − Pr0)

)

=
1

1 − Pr0

+
Pr1 − Pr0

(1 − PL)(1 − Pr0)
PNT−1−i

r0
. (5.24)

Again, we assume a uniform a priori distribution on the starting cell, i.e. πi =

1/NT. Using Equation (5.8) yields:

m1 =
1

1 − Pr0

+
Pr1 − Pr0

(1 − PL)(1 − Pr0)

1

NT

NT−1∑

i=0

PNT−1−i
r0

=
1

Pfa0

+
1

NT

Pr1 − Pr0

1 − PL

1 − PNT
r0

P 2
fa0

. (5.25)

Equation (5.25) above gives us an expression for the mean number of dwells

occurring between the start of the search process and the first entry into the

verification mode. Given that each dwell takes a fixed amount of time, τD, the

mean time to first hit is simply calculated from:

T FH = m1τD . (5.26)
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5.1.5 Second Order Statistics

Rewriting Equation (5.9) gives:

m2 = 2N 2e−Ne (5.27)

= 2Me−m1 (5.28)

where M
∆
= N 2. Once again, the structure of the fundamental matrix allows

us to calculate M with relative ease. The construction of M is demonstrated

graphically in Figure 5.3 where the matrix N is shown, each element of M is

formed as the dot product of a row times a column of N . The diagram shows

two cases: a) i ≤ j and b) i > j. The structure of N , as illustrated in Figure 5.2,

is clearly visible.

j

i

i

j

a) b)

Figure 5.3: Construction ofM , the dashed lines indicate the row-column product
being taken and the filled square indicates the element of M being calculated.
Two cases are shown: a) i ≤ j, b) i > j.

In the following we use the variable k as an iterator along rows and down

columns of N . For example, for the calculation of Mi,j when i ≤ j, we use

Figure 5.3 a) :

Mi,j =
1

(1 − PL)2

(
i−1∑

k=0

Pr1P
NT−1−(i−k)
r0

P j−k
r0

+

j∑

k=i

P k−i
r0

P j−k
r0

+

NT−1∑

k=j+1

P k−i
r0

Pr1P
NT−1−(k−j)
r0

)

=
1

(1 − PL)2

[
iPr1P

NT−1−(i−j)
r0

+ (j − i + 1)P j−i
r0

+

(NT − 1 − j)Pr1P
NT−1−(i−j)
r0

]
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Mi,j =
P j−i

r0

(1 − PL)2
[(j − i + 1)(1 − PL) + NTPL] i ≤ j. (5.29)

Similarly, using Figure 5.3 b) for i > j, we obtain:

Mi,j =
Pr1P

NT−1−(i−j)
r0

(1 − PL)2
[NT − (i − j − 1)(1 − PL)] i > j. (5.30)

The structure ofM is, therefore, similar to that ofN , consisting of two triangular

submatrices with similar properties. This structure is highlighted in Figure 5.4.

P j−i
r0

[NTPL

[NT − (i − j − 1)(1 − PL)]

+(j − i + 1)(1 − PL)]
1

(1 − PL)2

Pr1
P

NT−1−(i−j)
r0

×

Figure 5.4: Structure of the matrix M under the One H1 Approximation

Inserting Equation (5.11) into Equation (5.28) gives:

m2 = 2πTMe− m1.

Once again, assuming a uniform distribution, we have π = 1
NT
e and simplifying

yields:

eTMe =
NT

(1 − Pr0)
2

+ 2
Pr1 − Pr0

1 − PL

1 − PNT
r0

(1 − Pr0)
3

+ NT

(Pr1 − Pr0)
2PNT−1

r0

(1 − PL)2(1 − Pr0)
2
. (5.31)

Inserting Equation (5.31) and Equation (5.25) into Equation (5.11) and simpli-
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fying gives:

m2 =
1 + Pr0

P 2
fa0

+
2(Pr1 − Pr0)

2PNT−1
r0

(1 − PL)2P 2
fa0

+
(3 + Pr0)(Pr1 − Pr0)(1 − PNT

r0
)

NT(1 − PL)P 3
fa0

.

(5.32)

The quantity of interest here is the variance of the time to first hit, Var [TFH ],

which is obtained from:

Var [TFH ]
∆
= E

[(
TFH − T FH

)2]

= E
[
T 2

FH

]
− T FH

2

=
(
m2 − m2

1

)
τD

2. (5.33)

5.1.6 Numerical Results

To verify these expressions for the performance parameters of the search mode,

we compare them with results obtained by Monte Carlo simulation [109]. For

the purposes of simulation we use simplified models of both the signal and the

receiver. The receiver under test has the following properties:

• Correlation is implemented as a 2048-point FFT.

• Circular correlation is implemented.

• A noise PSD of −203.8 dBW/Hz is assumed (note that this is a pessimistic

assumption, see [140, Equation (12)]).

• Serial search is performed over the frequency uncertainty region.

• A straight serial search strategy is implemented.

• Floating point operations are used throughout (quantisation effects are ig-

nored).

• Local oscillator effects are ignored.

• The detector/estimator uses noncoherent combining: correlation is per-

formed over M ms coherently, with K of these M ms coherent blocks sub-

sequently being non-coherently combined. The dwell time is MKTCA s.
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We choose to implement noncoherent combining, rather than differentially

coherent techniques, due to the superiority of our models of signal effects

on the noncoherent combining detector.

The simplified signal model has the following properties:

• Only one satellite signal is present in the channel.

• The SVN, initial code phase, initial carrier phase and Doppler offset are all

uniformly distributed over the uncertainty regions.

• The Doppler offset is constant (higher order Doppler effects are ignored), a

η-estimating receiver is assumed.

• The data signal is random.

• The signal power is fixed (fading effects are ignored).

Now, the expressions for PD, T FH and Var [TFH ] obtained above (Equations

(5.22), (5.26) and (5.33) respectively) are all functions of the received signal, and

take no account of the signal effects discussed in Chapter 3. The determination

of the search mode performance must be achieved by averaging over these signal

effects. Taking the probability of detection as an example, we have:

PD = Ed,δζ,δωd
[PD]

where: d is the data sequence modulating the received signal, δζ is the residual

code phase offset when correct detection occurs and δωd is the residual Doppler

offset when correct detection occurs. Thus, the calculation of PD requires a triple

integral over the expression of Equation (5.22). Similarly the determination of

T FH and Var [TFH ] also require the evaluation of triple integrals.

Recall that the signal effects can be modelled as an attenuation of the signal

power seen by the receiver:

Peff = αD(δωd)αs(δζ, δωd)αm(d, δωd)P

where: αD(δωd) is the power attenuation due to the Doppler offset, αs(δζ) is

the power attenuation due to the code phase offset (which is a function of the

sampling frequency) and αm(d) is the power attenuation due to the modulation of
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the received signal. To simplify the calculation of the search mode performance

parameters we model both the sampling and modulation attenuation by their

average values and, hence, we have:

Peff = αD(δωd)αsαmP

Thus, assuming a uniform a priori distribution on δωd, we calculate the perfor-

mance parameters as follows:

PD =
1

∆ω

∫ ∆ω
2

−∆ω
2

PD

(
Peff

)
d(δωd) (5.34)

T FH =
MKTCA

∆ω

∫ ∆ω
2

−∆ω
2

m1

(
Peff

)
d(δωd) (5.35)

Var [TFH ] =
(MKTCA)2

∆ω

∫ ∆ω
2

−∆ω
2

[
m2

(
Peff

)
− m1

(
Peff

)2
]
d(δωd) (5.36)

where: PD(P ) is the probability of detection as a function of the received signal

power (Equation (5.22)), m1(P ) is the mean number of dwells as a function of the

received signal power (Equation (5.25)), and m2(P ) is the mean square number

of dwells as a function of the received signal power (Equation (5.32)).

The results for two sample signal scenarios are shown in Figure 5.5; scenario

a) C/N0 = 40.8 dB-Hz, the coherent integration time M = 1 ms and there are

NT = 5 Doppler bins in the uncertainty region; scenario b) C/N0 = 33.8 dB-Hz,

M = 3 ms and, again, there are NT = 5 Doppler bins. For each case, the receiver

was configured for a constant false alarm rate Pfa0
= 0.01 and the system was

simulated for various values of K (the number of coherent samples non-coherently

combined). It is interesting to note form the graphs that an “optimum” choice of

K exists in terms of minimum T FH . Figure 5.5 clearly indicates good agreement

between theory and simulation, particularly for PD. For T FH and Var [TFH ] the

theory and simulation results have similar shapes, but the theoretical results are

slightly greater than those obtained by simulation. The discrepancy tends to

increase as K decreases.

This latter effect is to be expected due to the simplifying approximations made

in our calculations. In particular, as K increases our dwell time increases and

there are, therefore, a greater number of data-bit transitions within the dwell.

We should, therefore, expect that as K increases the modulation attenuation will
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Figure 5.5: PD, Mean and Standard Deviation of TFH vs K, for Pfa0
= 0.01: a)

C/N0 = 40.8 dB-Hz, M = 1 ms, NT = 5; b) C/N0 = 33.8 dB-Hz, M = 3 ms,
NT = 5. Note that calculation time is not considered in the calculation of TFH .
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approach its average value. Conversely, for small values of K we would expect

this approximation to degrade, which is indeed the case.

The remaining discrepancy between theory and simulation will be accounted

for by taking into consideration the effect of multiple H1 tiles.

5.2 The Effect of Two H1 Tiles

From the numerical results of the previous section we see that there is a slight

discrepancy between our model and the simulation results, this is particularly

noticeable for the statistics of TFH as the power level decreases. We show now

that this can, at least partly†, be accounted for by the presence of signal power

in tiles adjacent to the H1 tile.

The one H1 tile approximation developed in the previous section models the

signal as an impulse function in the search space. In reality, however, the signal

will have a finite bandwidth in the frequency domain, and a finite main-lobe

width in the code-phase domain. Thus, there may be significant signal power in

two or more adjacent tiles in the search space. Correct detection may, therefore,

occur in more than one tile.

In the remainder of this thesis we focus primarily on the FFT type detector/

estimator in which each search tile covers one full Doppler bin in the search

space. The effect of multiple H1 cells within the search tile must be accounted

for in the detector/estimator model. We now investigate the effect of multiple

H1 tiles ; that is, we investigate the effects of the frequency spread of the received

signal. This effect is modelled by an adjustment to the Markov chain model of

the search mode, leading to new expressions for the probabilities of detection and

false alarm, and the mean and variance of the time to first hit.

5.2.1 The Markov Chain Model

Under the two H1 tile approximation the Markov chain model of the search state

is modified to incorporate a second path to the correct detection state. The two

H1 tiles are denoted H11 and H10, where the majority of the signal power resides in

the H11 tile (except when the true signal parameters lie on the boundary between

two tiles, in which case the H11 and H10 tiles contain an equal portion of the

†At least part of this discrepancy arises due to our approximation in averaging over signal
effects.
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signal power). Assuming a straight serial search strategy there are two possible

state diagrams, as illustrated in Figure 5.6. In case a) the H10 tile is encountered

first during the search process, in case b) the H11 tile is encountered first.
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Figure 5.6: Circular State Diagram for the Search Mode Under the Two H1 Tile

Approximation: a) the H10 tile is encountered before the H11 tile; b) the H11 tile

is encountered first.

As can be seen from the figure, paths associated with the H11 tile are denoted

by the 11 subscript, while those associated with the H10 tile are denoted by the

10 subscript. Note that there are now two paths to correct detection of the signal.

We define the following probabilities to assist in our analysis:

P d1 = 0.5(Pd11 + Pd10) (5.37)

P r1 = 0.5(Pr11 + Pr10) (5.38)

P fa1
= 0.5(Pfa11

+ Pfa10
) (5.39)

PL = Pr11Pr10P
NT−2
r0

(5.40)

Pm = Pr11Pr10 . (5.41)

We follow the same procedure as for the one H1 tile case in the last section,

beginning with the fundamental matrixN , and continuing through to the second

order statistics of the time to first hit. Each of the two cases in Figure 5.6 must
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be accounted for. The following expressions for PD, m1 and m2 are derived in

Appendix B.3.1:

PD =
1

NT(1 − PL)

{(
P d1 + P rd1

) 1 − PNT−1
r0

1 − Pr0

+ P d1 + P rd1P
NT−2
r0

}
(5.42)

m1 =
NT − 1

NTPfa0

+
1

NT(1 − PL)
+

(Pm − Pr0)(1 − PNT−1
r0

)

NT(1 − PL)P 2
fa0

+
(Pr11 + Pr10)(1 − PNT−1

r0
)

NT(1 − PL)Pfa0

(5.43)

m2 =
(NT − 1)(1 + Pr0)

NTP 2
fa0

+
2PL

(1 − PL)2
+

1

NT(1 − PL)
+

2Pm(1 − PNT−1
r0

)2

NT(1 − PL)2P 2
fa0

+
2(NT − 1)(Pm − Pr0)

2PNT−2
r0

NT(1 − PL)2P 2
fa0

+
(3 + Pr0)(Pm − Pr0)(1 − PNT−1

r0
)

NT(1 − PL)P 3
fa0

+
Pr11 + Pr10

(1 − PL)Pfa0
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(5.44)

5.2.2 Numerical Results

We consider again the two scenarios presented in Section 5.1.6. The same simula-

tion results are presented in Figure 5.7, together with the results of the two H1 tile

approximation. Clearly, the two H1 tile approximation provides more accurate

measures of T FH and Var [TFH ], but at considerable extra computational cost.

Once again, we see that the discrepancy between theory and simulation increases

as K decreases, as is to be expected for the reasons given in Section 5.1.6.

5.3 Optimisation

In this section we apply the models derived in the preceding section to the opti-

misation problem. We consider a sample system wherein the signal from a single

satellite is sought. It is assumed that the carrier Doppler frequency is known

to within ±2.5 kHz. A design point PD = 0.9 is also assumed. The problem,

therefore, is to determine the optimum choice of detector/estimator parameters

to achieve the design criterion with minimum T FH . We assume an FFT-based

detector/estimator is to be used, with Ns = 2048 samples per code period.
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Figure 5.7: PD, Mean and Standard Deviation of TFH vs K, for Pfa0
= 0.01: a)

C/N0 = 40.8 dB-Hz, M = 1 ms, NT = 5; b) C/N0 = 33.8 dB-Hz, M = 3 ms,
NT = 5
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Note that we consider only the optimisation of the search mode for a single

satellite. In practice, a multiple satellite optimisation criterion would be con-

sidered, for example, the minimum mean time to acquire four satellites, or the

maximum probability of acquiring four satellites within a specified time period.

Whereas the particular optimum choice of parameters would vary from case to

case, the technique is essentially identical to the one we adopt below.

Ideally, an analytical optimum would be obtained by minimising T FH with

respect to the detector/estimator parameters, subject to the constraint PD ≥ 0.9.

In practice, however, such constrained optimisation is not easy to achieve in

analytical form. For this reason a numerical optimisation procedure is applied to

the problem.

To simplify the procedure we assume a uniform distribution on the Doppler

frequency, and so apply a straight serial search strategy. In addition, we maintain

a fixed Doppler bin width of ∆f = 1
MTCA

Hz. From our analysis of the DCCD

it is clear that J = 1 is the best choice for the differential delay. So for each

detector/estimator there are three parameters to be chosen:

1. M , the duration of the coherent observation interval, in code periods,

2. K, the number of coherent sub-intervals combined,

3. VTh, the decision threshold.

Note that, given M and K the threshold VTh determines the probability of false

alarm in a H0 tile, Pfa0
. In the remainder of this section we consider the three

parameters M , K and Pfa0
.

Five cases for the received signal to noise ratio are considered. Beginning

with C/N0 = 43.8 dBW/Hz, which corresponds to the nominal received signal

strength at the surface of the earth of P = −160 dBW [6], the signal power is then

reduced in steps of 5 dB to a minimum C/N0 = 23.8 dBW/Hz, corresponding to

a received signal power of −180 dBW, which is typical indoors [51]. The optimum

receiver parameters are derived for each of these cases, for both the NCCD and

DCCD detector/estimator forms.

Figures 5.8 to 5.12 show contour plots of T FH vs K and Pfa0
for both the

NCCD and DCCD. In each case the value of M is fixed and, hence, so is the

Doppler bin width. In each figure the contour of constant PD = 0.9 is indicated

by a dashed line. PD is a monotonic function of both Pfa0
and K, thus all points
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“below” this contour (i.e. towards the lower right hand side of the graph) have

PD > 0.9 while all points “above” the contour correspond to PD < 0.9. The point

of minimum T FH is indicated by an asterisk. Note that this point is determined

by numerical interpolation on the contour and may not be realisable (for example

in Figure 5.8 b) the optimum point appears at K = 3.5, which is not physically

possible).
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Figure 5.8: Contour Plot of T FH vs K and Pfa. C/N0 = 43.8 dB-Hz, M = 1.
The dashed line is the contour of constant PD = 0.9.

The results of the numerical optimisation of the receiver parameters are recorded

in Table 5.1. In each case we include the minimum attainable mean time to first

hit, denoted T FHmin. In addition, the maximum possible code phase drift due to

residual code Doppler effects, denoted ∆ζmax, is also recorded. This is calculated

using the formula:

∆ζmax =
KML∆ω

2ω0

, (5.45)

where L = 1023 is the C/A code length in chips, ∆ω is the Doppler bin width

and ω0 is the carrier frequency in radians per second. For each design point SNR

the minimum T FH is indicated in bold face font. It is interesting to note that

whereas this minimum is achieved using NCCD for the case C/N0 = 43.8 dB-Hz,

for all other cases the minimum is achieved using the DCCD.

It is important to note that, as before, the performance of the DCCD has been

calculated using the exact expression for Pfa0
when K ≤ 27, but the Gaussian

approximation has been used when K > 27. Recall that, for the parallel form, we

have previously shown (in Section 4.5) that this Gaussian approximation is highly

inaccurate for K < 500, due to the dependence of the parallel detector/estimator
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5.4. Discussion

NCCD DCCD (J = 1)
C/N0 M K Pfa0

T FHmin ∆ζmax K Pfa0
T FHmin ∆ζmax

(dB-Hz) (s) (chips) (s) (chips)

43.8 1 3 0.0317 0.0113 0.0010 4 0.0442 0.0123 0.0013

38.8 1 16 0.0365 0.05793 0.0052 13 0.0366 0.0454 0.0042

33.8 1 105 0.0345 0.3946 0.0341 50 0.0282 0.2098 0.0162

28.8 1 900 0.0359 3.317 0.2922 550 0.0284 2.087 0.1786
28.8 2 261 0.0158 3.820 0.0847 150 0.0118 2.383 0.0487

23.8 2 2378 0.0167 33.83 0.7721 1895 0.0078 25.92 0.6153
23.8 3 1300 0.0087 38.95 0.4221 900 0.0064 28.26 0.2922

Table 5.1: Parameters for Minimum T FH for NCCD and DCCD.

on the tails of the distribution of the single cell decision statistics. Thus, the

results presented for the case C/N0 = 33.8 dB-Hz for the DCCD in Table 5.1 are

likely to be highly inaccurate.

To verify these theoretical results they are compared with results obtained

by Monte Carlo simulation. The simulation model is identical to that described

in Section 5.1.6, except for the manner in which code Doppler effects are ac-

counted for. In our previous simulations code Doppler was perfectly eliminated

within a bin. In the following, we apply an alternative technique, whereby code

Doppler compensation is achieved by resampling the local code. This effectively

implements a shift of the local replica after every coherent subinterval, and is

similar to Psiaki’s technique [103]. The results are illustrated in Figures 5.13

to 5.17. Note that the simulation results agree well with the predicted receiver

performance, particularly for the NCCD, with the exception of the performance

of the DCCD when 27 < K < 500. This is as expected. Consider, for instance,

Figure 5.15. The predicted and simulated receiver performances for the DCCD

detector/estimator are considerably different. Similarly, in Figure 5.16, the dis-

parity between the predicted and simulated DCCD performances can be seen to

decrease as K increases.

5.4 Discussion

In this chapter a new analysis of the search mode of the acquisition process was

conducted. New expressions for the probability of detection and the mean and
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Figure 5.9: Contour Plot of T FH vs K and Pfa. C/N0 = 38.8 dB-Hz, M = 1.
The dashed line is the contour of constant PD = 0.9.
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Figure 5.10: Contour Plot of T FH vs K and Pfa. C/N0 = 33.8 dB-Hz, M = 1.
The dashed line is the contour of constant PD = 0.9.

variance of the time to first hit were introduced. The effect of multiple H1 tiles in

the uncertainty region was investigated in Section 5.2. It was demonstrated that

more accurate measures of acquisition performance can be obtained by including

this effect.

In Section 5.3 the results of this chapter were applied to the optimisation

problem. A simple test case was considered and the receiver parameters were

numerically optimised to achieve the minimum time to first hit for a design point

probability of detection of PD = 0.9. It was shown that the best choice of detec-

tor/estimator is dependent on the received SNR. For large SNR, the traditional

NCCD outperforms the DCCD. For signal powers lower than −165 dBW (or a

carrier to noise ratio C/N0 ≤ 38.8 dBW/Hz), however, the use of the DCCD can
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Figure 5.11: Contour Plot of T FH vs K and Pfa. C/N0 = 28.8 dB-Hz, M = 1.
The dashed line is the contour of constant PD = 0.9.
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Figure 5.12: Contour Plot of T FH vs K and Pfa. C/N0 = 23.8 dB-Hz, M = 3.
The dashed line is the contour of constant PD = 0.9.

lead to a reduction in T FH of up to 33%. The resulting optimised receiver pa-

rameters are recorded in Table 5.1. All the results presented in this chapter were

verified by Monte Carlo simulation using a simplified signal model as discussed

in Section 5.1.6.

In the following chapter we briefly outline how the results of this chapter can

be extended to the case of the acquisition of signals with unknown power levels

from multiple satellites.
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Figure 5.13: Comparison of PD, T FH and
√

Var [TFH ] along the Contour PD =
0.9. C/N0 = 43.8 dB-Hz, M = 1, NT = 5.

228



5.4. Discussion

8 10 12 14 16 18 20
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2H1 Approx

Simulated

K

P
D

9 10 11 12 13 14 15 16 17 18
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2H1 Approx

Simulated

K

P
D

a) NCCD b) DCCD, standard form.

8 10 12 14 16 18 20
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

2H1 Approx

Simulated

K

T
F

H

9 10 11 12 13 14 15 16 17 18
0.045

0.046

0.047

0.048

0.049

0.05

0.051

0.052

0.053

2H1 Approx

Simulated

K

T
F

H

a) NCCD b) DCCD, standard form.

8 10 12 14 16 18 20
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

2H1 Approx

Simulated

K

√
V

ar
[T

F
H

]

9 10 11 12 13 14 15 16 17 18
0.025

0.03

0.035

0.04

0.045

0.05

0.055

2H1 Approx

Simulated

K

√
V

ar
[T

F
H

]

a) NCCD b) DCCD, standard form.

Figure 5.14: Comparison of PD, T FH and
√

Var [TFH ] along the Contour PD =
0.9. C/N0 = 38.8 dB-Hz, M = 1, NT = 5.
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Var [TFH ] along the Contour PD =
0.9. C/N0 = 33.8 dB-Hz, M = 1, NT = 5.

230



5.4. Discussion

500 600 700 800 900 1000 1100 1200 1300 1400 1500
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2H1 Approx

Simulated

K

P
D

400 450 500 550 600 650 700 750 800
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2H1 Approx

Simulated

K

P
D

a) NCCD b) DCCD, standard form.

500 600 700 800 900 1000 1100 1200 1300 1400 1500
3

3.5

4

4.5

5

5.5

6

2H1 Approx

Simulated

K

T
F

H

400 450 500 550 600 650 700 750 800
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2H1 Approx

Simulated

K

T
F

H

a) NCCD b) DCCD, standard form.

500 600 700 800 900 1000 1100 1200 1300 1400
2

3

4

5

6

7

8

2H1 Approx

Simulated

K

√
V

ar
[T

F
H

]

400 450 500 550 600 650 700 750 800
1.4

1.6

1.8

2

2.2

2.4

2H1 Approx

Simulated

K

√
V

ar
[T

F
H

]

a) NCCD b) DCCD, standard form.

Figure 5.16: Comparison of PD, T FH and
√

Var [TFH ] along the Contour PD =
0.9. C/N0 = 28.8 dB-Hz, M = 1, NT = 5.
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Figure 5.17: Comparison of PD, T FH and
√

Var [TFH ] along the Contour PD =
0.9. C/N0 = 23.8 dB-Hz, M = 3, NT = 15.

232



Chapter 6

Acquisition in the Presence of

Multiple Satellites and Unknown

Power Levels

The major results of this thesis have been presented in the previous three chap-

ters. In this chapter we present an overview of how these new results may be

applied in the implementation of a practical weak signal acquisition system. In

particular, two key factors affecting acquisition performance for weak GPS signals

are considered:

1. Unknown power levels. Thus far we have assumed that the power of the

received signal is known and that a suitable threshold can be chosen.

2. Multiple satellites. In addition, it has been assumed that MAI can be

modelled as part of the AWGN process affecting the signal. At low power

levels, however, MAI can have a significant effect on receiver performance.

In this chapter we address these two issues. We treat the received signal power as

an unknown (random) signal parameter. We treat this parameter as one of the

so-called desired parameters and, therefore, attempt to estimate it. Following the

principle used in estimation of the other desired parameters (i.e. the code-phase

and Doppler offsets), we introduce the signal power for satellite k, Pk, as a third

dimension in the uncertainty region Θ, which is discretised in the acquisition

process.

As discussed in Section 2.1, the GPS spreading codes are members of the fam-

ily of sequences known as Gold codes. They are chosen for their cross-correlation
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properties: for any two members of the GPS spreading codes, the maximum cross-

correlation value is approximately 24 dB down relative to the auto-correlation

main lobe. In open-air environments, where all satellites are received with similar

power levels, this provides sufficient protection against multi-access interference

such that the sum of the signal contributions from all satellites in the sky is below

the noise floor. Note, however, that if the satellite signals are received with widely

varying power levels, then this 24 dB of MAI protection is no longer sufficient,

and MAI can dominate over thermal noise effects. In the following we introduce

a detection theoretic approach to the MAI problem.

6.1 Acquisition in the Presence of MAI

Recall that the SCD generates a single decision statistic for a single parameter

estimate θ̂. The detector operates on the principle that there are two hypotheses

regarding the underlying observation vector:

1. H0: the observation vector contains noise alone.

2. H1: the observation vector contains both signal and noise.

The presence of a strong interferer is not accounted for in either of these hypothe-

ses, which necessitates the introduction of two further hypotheses:

3. H2: the observation vector contains thermal noise and one or more strong

interferers.

4. H3: the observation vector contains signal, thermal noise and one or more

strong interferes.

If the power level of the interferer is unknown, then hypotheses H1, H2 and H3

are indistinguishable for the SCD.

For the parallel detector/estimator, the situation is similar but, significantly,

not identical. We consider, in particular, the case of the FFT-based detector/

estimator, in which case the decision statistic for one full Doppler bin is calcu-

lated. This corresponds to a sampling of the complete correlation function of

the received signal with the spreading sequence of interest. Under H0, therefore,

the decision statistics all consist of thermal noise alone. Under H1, most of the

statistics consist of thermal noise only, whilst a small subset consist of both signal
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and noise, corresponding to the auto-correlation main lobe. Under H2, approx-

imately half of the decision statistics consist of noise only, with the remainder

corresponding to signal power from the strong interferer(s) in the form of cross

correlation side-lobes. Under H3, the decision statistics are similar to those un-

der H1, with the exception that the side-lobes will be of considerably greater

magnitude, possibly even exceeding the main lobe. Each of these hypotheses are

illustrated in Figure 6.1, which shows a simple test case consisting of the signal

being sought at C/N0 = 44 dB-Hz and a strong interferer at C/N0 = 59 dB-Hz†.

The detector/estimator is chosen to yield minimum T FH subject to PD ≥ 0.9

in accordance with Table 5.1. Note that the presence of the strong interferer is

clearly indicated by the elevated values of the decision statistic across the entire

range of ζ. Note also that, in the sample case considered in Figure 6.1, the pres-

ence of the signal is still detectable in the presence of MAI. However, the detector

is very likely to yield a false alarm under H2. Note that, unlike the H0 case, the

side-lobe peak under H2 looks just like the main lobe under H1 and so can be

tracked. Thus, even a 15 dB difference in received power levels can lead to a

significant performance degradation due to MAI.

Denoting by Dk the vector of decision statistics output by the parallel detec-

tor/estimator, we wish to determine whether or not there is a strong interfering

signal present in Dk. Expressing the problem as a detection problem allows us

to use the techniques of detection theory. From Section 2.3 we have seen that the

optimal detector takes on the form of a likelihood ratio test. We denote by Hnmai

the hypothesis that there is no MAI in Dk and by Hmai the hypothesis that MAI

is present in Dk. The likelihood ratio is then given by:

Λ (Dk) =
fDk |Hmai

(Dk | Hmai)

fDk |Hnmai
(Dk | Hnmai)

. (6.1)

The multi-dimensional PDFs in the numerator and the denominator of Equa-

tion (6.1) are difficult to determine, however, so we prefer to generate a sufficient

statistic which is easier to calculate. In the absence of an analytic expression for

the likelihood ratio we resort to an ad hoc approach.

Considering Figure 6.1, one obvious difference in Dk caused by MAI is the

significant increase in power in many components of Dk. We would, therefore,

†To keep simulation times manageable we consider only the presence of strong signals and
stronger interferers. The results are equally applicable when the signal sought is weak and the
interferer is received with normal (line of sight) power levels.
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Figure 6.1: Sample Plots of the Decision Vector Dk in the Presence and Absence
of MAI. a) H0: noise only, b) H1: signal plus noise, c) H2: noise plus interference,
d) H3: signal plus noise plus interference. In all cases, the NCCD detector is
used with M = 1, K = 3 and CT = 2048. The signal being sought (sv 1)
has C/N0 = 44 dB-Hz and ζ = 511 chips, the interfering signal (sv 30) has
C/N0 = 59 dB-Hz and ζ = 255 chips. Both signals have zero Doppler and no
data modulation. The decision threshold VTh is indicated by a horizontal bar
and has been chosen to yield Pfa0

= 0.0317, in accordance with the first row of
Table 5.1.

expect the average value of Dk to be significantly greater in the presence of MAI

than in its absence. We, therefore, suggest the statistic ν, defined by:

ν
∆
=

CT−1∑

i=0

Dk,i , (6.2)
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6.1. Acquisition in the Presence of MAI

as a suitable metric for the detection of MAI. We refer to this statistic as the

power level detector for MAI.

6.1.1 Statistics of the Power Level Detector

To determine the performance of our proposed MAI detector it is necessary to

obtain expressions for the detector statistics. Ideally, we would like to obtain

exact expressions for the PDF and CDF of ν under all hypotheses, though this

will not always be possible. Alternatively, if expressions for the mean and variance

can be obtained, then we can invoke the central limit theorem to derive a Gaussian

approximation.

The distribution of ν depends on the form of detector/estimator used in the

generation of the vector Dk. We now consider each detector/estimator form in

turn.

The ML Form

We now demonstrate that, when the ML detector/estimator is used in the gener-

ation of Dk, then ν can be expressed as an Hermitian quadratic form in complex

Gaussian variables [138].

Consider the parallel (FFT-based) form of the ML detector/estimator illus-

trated in Figure 6.2. The output of the coherent accumulator has been labelled

CT

Corr.
Dk(θ̂)

M−1∑

m=0

Buffer

e−jbωt

r(t)
∣∣∣ ·
∣∣∣
2X Y

CT CT CT CT

ck

FFT

Figure 6.2: Parallel Form of the ML Detector/Estimator.

X, which is a CT-dimensional complex Gaussian random variable with mean µX

and covariance matrix CX . The output of the correlator has been labelled Y

and this, too, is a multi-dimensional complex rv. Denoting by ck the re-sampled

spreading code of the satellite of interest (satellite k), then we can relate Y to

X through the matrix equation:

Y = SkX, (6.3)
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where Sk is the matrix:

Sk =




ck,0 ck,1 · · · ck,CT−1

ck,CT−1 ck,0 · · · ck,CT−2

...
...

. . .
...

ck,1 ck,2 · · · ck,0




. (6.4)

Sk is an example of a circulant matrix [50]. A circulant matrix is a square matrix

in which each row is formed by a cyclic shift of the preceding row. Thus, the

matrix is completely defined once any one row or column is known. In the case

of Sk, the first row is simply the re-sampled spreading code of satellite k.

Since the rv Y is a linear transformation X, it also is a CT-dimensional

complex Gaussian rv, with mean µY and covariance CY , given by:

µY = SkµX (6.5)

CY = SkCXS
H
k . (6.6)

The decision statistic of the ML detector/estimator is formed as follows:

Dk,i = |Yi|2 = Y ∗
i Yi,

and, consequently, the power level detector decision statistic, ν, can be written

as:

ν =

CT−1∑

i=0

Dk,i = Y HY . (6.7)

Thus, ν is an Hermitian quadratic form in complex Gaussian variables.

The advantage of expressing ν in such a form is that it enables us to make

use of many existing results for quadratic forms. In particular, whilst there is no

known closed form expression for the distribution of a general quadratic form, it

has been previously shown that any such form can be written as a weighted sum

of χ2 rvs [73, 74]. In addition, numerical routines for the evaluation of the PDF

and CDF are readily available in the literature (see [114] and [36], for example).

However, in the present application, numerical routines are difficult to implement

due to the large value of CT (of the order of 1000). In this case, we make use of

the central limit theorem to obtain a Gaussian approximation to ν and, hence,
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we require expressions for its mean and variance. Once again, we make use of

Turin’s result on the characteristic function of Hermitian quadratic forms [138]

to derive expressions for the first two central moments of ν.

From [138], we have the following expression for the CHF of ν:

Φν (jω) = |P |−1 exp
(
−µH

YC
−1
Y

[
I − P−1

]
µY
)
, (6.8)

where, by analogy with Equation (4.48), we have introduced the matrix P , de-

fined by:

P
∆
= I − jωCY . (6.9)

Recall that the moments of ν can be obtained from its characteristic function,

Φν (jω), through the formula:

Eν

[
νi
]

=
1

ji

diΦν (jω)

dωi

∣∣∣∣
ω=0

. (6.10)

Using Equation (6.10), in conjunction with a useful result on the eigenvalues of

circulant matrices [50, Section 3.1], we derive the following expressions for the

mean and variance of ν in Appendix B.4.1:

E[ν] = 2σ2
Y CT + µH

YµY (6.11)

Var [ν] =
4σ4

Y

CT

CT−1∑

i=0

|θi|2 + 2µH
YCYµY , (6.12)

where θi is the ith component of the auto-correlation function of the re-sampled

spreading sequence.

The Noncoherent Combining Form

In this case, we assume that the noncoherent combining detector/estimator is

used to generate the decision vector Dk from which the power level detector

decision statistic, ν, is subsequently formed. The decision statistic is simply the

sum of K statistically independent ML form decision statistics and, hence, the

mean and variance are, respectively, given by:

E[ν] = 2Kσ2
Y CT + KµH

YµY (6.13)
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Var [ν] =
4Kσ4

Y

CT

CT−1∑

i=0

|θi|2 + 2KµH
YCYµY . (6.14)

To demonstrate the accuracy of this Gaussian approximation we consider

again the situation presented in Figure 6.1. In this case we run 10, 000 trials for

each hypothesis and generate a simulated PDF of ν, fν(ν), for each. The results

are compared with our Gaussian model for each case H0, H1 and H2. The H3 case

requires more work, and is not essential, in that we would expect ν to be greater

under H3 than H2. Hence, the H2 case forms a lower bound on ν in the presence of

MAI. The results are shown in Figure 6.3. We can clearly see that the power level
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Figure 6.3: Distribution of ν for the Power Level Detector. The signal parameters
are identical to those described in Figure 6.1.

detector has no trouble distinguishing MAI from non-MAI situations in this case.

What is particularly interesting here is that, as the difference in received power

levels decreases, the power level detector is less likely to detect MAI. However,

at the same time, MAI has a less significant impact in this situation.
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Differentially Coherent Forms

Unfortunately we have been unable to derive simple expressions for the mean

and variance of the power level detector decision statistic for the differentially

coherent combining detector. The differentially coherent product introduces an

extra degree of complexity, such that ν is not expressible as a quadratic form.

Consider the parallel DCCD of Figure 6.4, where Xr is the rth output of the

pre-correlation coherent accumulator as in Figure 6.2. We define the K × CT

Dk(θ̂)
FFT

K−1∑

r=J

∣∣∣ ·
∣∣∣
2

ck

*

z−JMTCA

Corr.

Yr−J

ZrYr

Xr

W

Figure 6.4: Parallel Form of the DCCD Detector/Estimator.

dimensional complex Gaussian matrix Γ by:

Γ =




Y T
0

Y T
1

...

Y T
K−1




(6.15)

where Yi denotes the ith coherent accumulator output. The output of the differ-

entially coherent accumulator, denoted W , is then given by:

W = diag(ΓHQΓ), (6.16)

where diag(M ) denotes the vector consisting of the diagonal elements of the

matrix M , Q = QI + jQQ, and QI and QQ are the Hermitian matrices defined

in Equations (4.43) and (4.44). The power level detector decision statistic is then

given by:

ν = W HW . (6.17)

Thus, ν is an Hermitian quadratic form in W , but W is not distributed as a
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complex Gaussian random vector. In fact, W is a vector of (statistically depen-

dent) quadratic forms in complex Gaussian rvs. Thus, we might describe ν as a

quartic form. There does not appear to be any treatment of such forms in the

literature, and we have been unable to obtain even the first order moments.

For this reason, we suggest the use of the noncoherent power level detector

in conjunction with the DCCD. This requires some extra processing (the square

magnitude of all elements of Yr must be taken and added to an accumulator for

each r : 0 ≤ r ≤ K−1), but has the advantage that the analysis of the preceding

sections can be directly applied.

In Figure 6.5, simulated PDFs for ν are shown for all four hypotheses. As

with the NCCD form of the power level detector, we again see that this detector

has no trouble distinguishing Hnmai from Hmai. It would, therefore, be valuable

to have a model of ν for this detector. This would permit a simpler detector

structure when detecting MAI when using the DCCD.
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Figure 6.5: Distribution of ν for the Power Level Detector: DCCD. The signal
parameters are identical to those described in Figure 6.1.
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6.2 Acquisition in the Presence of Unknown Power

Levels

Our treatment of the acquisition process in Chapter 5 operated under the assump-

tion that the signal power level is known. This allows the designer to choose ap-

propriate parameters for the detector/estimator, such as the observation interval

and the decision threshold. In the absence of any a priori information regarding

the signal power level, it becomes increasingly difficult to design for a specified

performance level.

One technique, which we adopt here, is to treat the signal power from satellite

k, Pk, as an extra signal parameter. We treat this as one of the desired parameters

from the signal and, hence, we must modify our system to provide an estimate

of Pk. We follow the same approach as was used for the estimation of the other

desired parameters, ωd and ζ. The presence of this third desired signal parameter

adds a third dimension to the search space, which we discretise. For a given

estimate of the signal power P̂k, the uncertainty region in ωd and ζ has the form

of a plane in parameter space, which we refer to as a “power strip”. The design

problem, therefore, is to choose an optimal discretisation of the uncertainty space.

The Markov chain model of the acquisition process in this three dimensional

uncertainty space is illustrated in Figure 6.6. In each power strip the detector/

estimator and acquisition process are designed as if the power level were known.

Thus, using the results we have obtained in Chapter 4, a noncoherent combining

form would be implemented in the highest power strip, moving to a differentially

coherent combining form in lower power strips. The strips are searched in order of

decreasing power level, to counter the effect of MAI. This increases the probability

that stronger signals are acquired first. Additional MAI protection is achieved

through the implementation of the power level detector discussed in Section 6.1.1.

Using the techniques derived in this thesis we can choose, for each estimated

received signal power level, to implement either a NCCD or a DCCD. The ex-

pressions of Chapters 4 and 5 permit the determination of the optimum signal

parameters for each detector/estimator type in each power strip. The perfor-

mance of such a system can be analysed by an extension of the Markov chain

discussed in Chapter 5.

One of the major advantages accruing from such a system is the similarity in

receiver structures between the NCCD and DCCD forms. In each case the corre-
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Figure 6.6: Three Dimensional Markov Chain Model for Acquisition in the Pres-
ence of Unknown Power Levels. An FFT-based detector/estimator is assumed,
each filled circle in the diagram represents a single Doppler bin, including all
possible code phase offsets.

lator/coherent accumulator forms the basis of the receiver structure. In addition,

each form entails multiplication by complex conjugate and further accumulation.

Thus, the use of a flexible NCCD/DCCD receiver requires very little extra hard-

ware, but, as we have seen can yield significant savings in mean acquisition times.

Whilst the technique outlined in this section is quite straightforward, following

naturally from our detection/estimation theoretic exposition of the acquisition

problem, it is not one that we have seen presented previously in the literature.

6.3 Discussion

In this chapter we have given a brief overview of how the new results obtained

in this thesis may be applied in a practical situation to the acquisition of a GPS

signal of unknown power level in the presence of multiple interfering satellites.
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6.3. Discussion

The problem of multi-access interference (MAI) becomes significant at low

received power levels. We have presented a novel, simple device for the detection

of MAI, which we call the power level detector. We have derived an accurate

Gaussian approximation which can be used to analyse its performance.

Finally, we concluded with a brief overview of a strategy for acquiring signals

of unknown power level. By introducing the power level as an unknown signal

parameter which is to be estimated we can apply the techniques of estimation

theory outlined in Section 2.2.
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Chapter 7

Conclusions and Future Work

This chapter presents a summary of the conclusions reached in each of the pre-

ceding chapters and makes some recommendations for future work on the topic

of weak signal acquisition.

7.1 Conclusions

Recall, from Chapter 1, that the motivation for this work has been the fast,

reliable, parallel acquisition of weak GPS signals. Traditionally, noncoherent

combining has been utilised in this context. In this work we have developed an

analysis technique for a class of alternative acquisition techniques called differen-

tially coherent processing. This analysis was subsequently applied to a simplified

received signal model, for which it was demonstrated that differentially coherent

techniques can yield a significant performance improvement (of the order of 33%

in terms of mean time to first hit) when signals are weak (C/N0 ≤ 38.8 dB-Hz).

The analysis of the acquisition problem presented in this thesis is based on a

detection- and estimation-theoretic treatment. To this end, the dual concepts of

the detector/estimator and the acquisition process were introduced, each being

analysed in turn. Four forms of detector/estimator were considered:

1. The optimal, or maximum likelihood (ML), form.

2. The noncoherent combining detector (NCCD) form.

3. The differentially coherent combining detector (DCCD) form.

4. The differentially coherent detector (DCD) form.
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Chapters 3 and 4 provided a comprehensive analysis of all forms of detector/

estimator considered in this thesis. The analysis was divided into two compo-

nents. Chapter 3 presented an analysis of the effects of unknown signal parame-

ters on the detector/estimator. The unknown signal paramters considered were:

1. Data modulation.

2. Carrier Doppler offset.

3. Code phase offset.

4. Code frequency offset (code Doppler).

Our analysis procedure was to consider the decision variable, denoted Dk, as a

function of the received signal parameters, denoted by the vector θ, in the absence

of noise. The presence of undesired, or incorrectly estimated, signal parameters

results in a distortion of Dk(θ). This distortion is manifested in two ways:

1. The value of θ for which Dk is a peak moves away from the true signal

parameter vector θt. This introduces an estimation error.

2. The magnitude of the peak value of Dk is reduced, which results in a reduced

probability of detection.

Our approach was to derive the results directly for the all-digital receiver, rather

than to use existing results for the analogue receiver. This technique proves

useful in determining some new expressions for the effect of data modulation and

Doppler effects, in particular. Our analysis of the NCCD yields new results for the

combined effects of data modulation and carrier Doppler. In effect, it is shown

that the presence of data modulation causes a spreading of signal power into

adjacent frequency bins. The expressions derived are simple and more accurate

than previously published results.

Chapter 4 provided a comprehensive treatment of the statistics of the de-

tector/estimator, both in single-cell and parallel forms. New results for the

distribution of the decision statistic for the DCCD were derived, including a

demonstration that the magnitude statistic under the pair-wise form follows a

K-distribution and that the magnitude statistic under the standard form can

be represented as a weighted sum of K-distributed rvs. In addition, new Gaus-

sian approximations, based on an application of the central limit theorem, were
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derived for all differentially coherent forms. These approximations were shown

to be more accurate than existing Gaussian approximations for the magnitude

statistics. It was also observed that the designer cannot rely on the accuracy of

Gaussian approximations when considering a parallel acquisition strategy, unless

the observation interval is very long (of the order of 500 ms).

These results were subsequently used in a comparative performance analysis

of all the detector/estimator forms. It was shown that the NCCD demonstrates

superior performance at high SNR, or when a large probability of false alarm

can be tolerated. At lower SNRs, or when a very low Pfa is required, then the

standard form of the DCCD is the optimal choice of detector. In addition, a

new expression for the union bound on the maximum attainable probability of

detection for the parallel form of the NCCD was derived. This expression is based

on our observation on the Marcum Q-function [89].

Armed with the preceding results on the detector/estimator, the focus of the-

sis turned to the acquisition process in Chapters 5 and 6. Beginning in Chapter 5,

under the assumption that there is only one satellite in view and that the received

signal power is a known quantity, new expressions for the mean and variance of the

time to first hit were derived. These results are based on the application of matrix

methods to the Markov chain model of the acquisition process. These expressions

were subsequently used in the numerical optimisation of the receiver parameters.

Both the differentially coherent and noncoherent detector/estimators were opti-

mised independently, for a variety of received SNRs. It was demonstrated that

the differentially coherent techniques outperform noncoherent techniques when

the SNR is as little as 5 dB below nominal. The results of this chapter were

published, in part, in [88].

Finally, in Chapter 6, the acquisition process model was extended to include

the effects of multiple satellites and unknown received power levels. A new tech-

nique for the detection of MAI, referred to as the power level detector, was in-

troduced. A simple Gaussian model for this detector was derived for the NCCD,

though the same technique failed to produce a simple model for the differentially

coherent forms. A new technique for signal acquisition when the received power

level is unknown was also introduced. The method consists of introducing the

signal power as a third parameter to be estimated (in addition to the code phase

offset and the Doppler frequency shift) and applying the same parameter estima-

tion techniques as are applied to the other signal parameters. Thus, the three
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dimensional signal uncertainty space is discretised and the detector/estimator is

optimised for each strip to yield minimum T FH for a given probability of correct

detection.

All the results derived in this thesis have been verified by Monte Carlo sim-

ulation. It is worth noting that these simulations operated under a simplified

signal model. The effects of quantisation, front end filtering and Doppler rate

were all ignored. To provide more realistic figures these effects should be taken

into account. In particular, Doppler rate can have a significant effect on system

performance when dwell times are long [113].

7.2 Future Work

As discussed above, all of the results in this thesis are derived based on a sim-

plified signal model. The use of this simplified model renders a difficult problem

somewhat more tractable. To continue with this work it is necessary first of all to

expand the model to include, for instance, Doppler drift and quantisation effects.

Various results derived in this thesis could be developed further, for instance:

• More accurate models of the effect of data modulation on the DCCD could

be derived.

• A numerically stable technique for the calculation of the distribution of the

magnitude decision statistic of the standard form of the DCCD would be of

particular interest. This would permit a more accurate analysis of DCCD

performance in its parallel form for the range of values 26 < K < 500.

• It may be possible to obtain a closed form expression for the distribution of

the magnitude decision statistic of the pair-wise form of the DCCD by the

application of the integral equation on p. 428 of [146] to Equation (4.97)

in this thesis. We have made some progress using this approach, but were

unable to obtain a closed form expression. This should, in turn, lead to an

equivalent expression for the standard form.

• Perhaps an alternative approach could be applied to obtain a Gaussian (or

other) approximation for the power level detector for the DCCD.

Our treatment of A-GPS was quite rudimentary, it was assumed that the

receiver did not need to perform data demodulation and the Doppler frequency
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shift was assumed to be known to within an accuracy of 5 kHz. In reality,

depending on the mobile network type, much more accurate information may

be provided by the A-GPS supplier. A detailed comparison of the various A-GPS

scenarios would be of considerable interest (see [71, 77], for example).

At a more general level, GNSS is currently undergoing major development. In

addition to the modernisation of the existing GPS, Europe is currently develop-

ing its own system, called Galileo, and Russia has recently decided to re-activate

its GLONASS system. With these new and upgraded systems come many re-

search opportunities. New signals, with new modulation schemes, transmitted at

new frequencies provide new challenges to be overcome and new opportunities

for improved performance. Some obvious future work arising from this thesis is

the application of the techniques developed herein to these new GNSS signals.

Many of these new signals are specifically designed to provide enhanced track-

ing performance and, hence, greater accuracy. However, as previously discussed,

the major emerging market for GPS and, more generally, GNSS receivers is in

mobile-embedded chipsets, where speed of acquisition and reliable operation un-

der weak signal conditions are of greater importance than positioning accuracy.

Determining the relative advantages and disadvantages the new signal structures

bring to the acquisition problem is a very interesting open problem in the field,

and one which may be approached using the techniques developed in this thesis.
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Appendix A

Summation Identities

In the following: 0 ≤ p < 1; N,L ∈ Z
+; and L > N .

L−1∑

i=0

i =
L(L − 1)

2
(A.1)

L−1∑

i=0

i2 =
L(L − 1)(2L − 1)

6
(A.2)

∞∑

i=0

pi =
1

1 − p
(A.3)

L−1∑

i=0

pi =
1 − pL

1 − p
(A.4)

L−1∑

i=N

pi =
pN − pL

1 − p
(A.5)

∞∑

i=0

ipi =
p

(1 − p)2
(A.6)

L−1∑

i=0

ipi =
p(1 − pL)

(1 − p)2
− LpL

1 − p
(A.7)

L−1∑

i=N

ipi =
p(pN − pL)

(1 − p)2
− LpL − NpN

1 − p
(A.8)
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Appendix B

Mathematical Derivations

B.1 Derivations from Chapter 3

B.1.1 Average Modulation Attenuation when M ≤ D

In Equation (3.21) we derived an approximation to the mean value of the mod-

ulation attenuation in the ML detector given that a transition occurs under the

assumption that the bit transition can occur at any point during the observation

interval.

In reality, our signal is discrete, so the bit transition can only occur at discrete

points. Thus, we replace the continous variable δT with the discrete variable

µ = bδT (MNs)c, yielding:

αm(δωd | t) =
1

MNs

MNs−1∑

µ=0

αm(δωd, µ) (B.1)

=
1

MNs

MNs−1∑

µ=0

1 + 2t

[
cot2 β − cot β

{
sin 2β

µ

MNs

+ cot β cos 2β
µ

MNs

}]
.

(B.2)

Now, the summation over µ involves sine and cosine terms. Making note of the

identities:

sin x = ={exp (jx)} cos x = <{exp (jx)} (B.3)

∑

i

={xi} = =
{
∑

i

xi

}
∑

i

<{xi} = <
{
∑

i

xi

}
, (B.4)
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we can use Equation (A.4) to write:

MNs−1∑

µ=0

exp

(
j

β

MNs

µ

)
= exp

(
jβ

[
1 − 1

MNs

])
sin β

sin β
MNs

. (B.5)

Thus, we have:

MNs−1∑

µ=0

{
sin

(
2β

µ

MNs

)
+ cot β cos

(
2β

µ

MNs

)}
(B.6)

=
sin β

sin β
MNs

{
sin

(
β

[
1 − 1

MNs

])
+ cot(β) cos

(
β

[
1 − 1

MNs

])}

(B.7)

= cot
β

MNs

, (B.8)

where we have used some standard trigonometric identities in the last step. Fi-

nally, inserting Equation (B.8) into Equation (B.2) we obtain:

αm(δωd | t) = 1 + 2t

(
cot2 β − 1

MNs

cot β cot
β

MNs

)
. (B.9)

Recall that β is one half of the phase shift due to Doppler offset occurring in

one coherent observation interval. Thus, β/(MNs) is one half of the phase shift

occurring in one sampling interval, and so β/(MNs) � 1. Thus:

cot

(
β

MNs

)
≈ MNs

β
, (B.10)

and so Equation (B.9) is approximately equal to Equation (3.21).

B.1.2 Average Modulation Attenuation when M > D

In Section 3.1.2 we derived an expression for the average power attenuation due

to modulation effects (αm) in the ML detector when the coherent observation

interval is less than or equal to the data bit period, i.e. M ≤ D. The technique

used proves useful in determining similar expressions for the NCCD and DCCD

forms, but is not directly applicable to the determination of αm for the ML form

when M > D. Here we apply the technique of Davisson and Flikkema [37] to

derive the expression of Equation (3.26).
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We start with the following:

Xn =
√

0.5Pkdn exp (jωdTsn) (B.11)

Y =
MNs−1∑

n=0

Xn (B.12)

Dk = |Y |2 = Y Y ∗ (B.13)

= 0.5Pk

MNs−1∑

n=0

MNs−1∑

m=0

dndm exp (jωdTs(n − m)) , (B.14)

where Xn, Y , and Dk are defined in Figure 3.1 and dn is the value data bit at

time nTs. We can view Dk as being the sum over all the elements of the matrix

A defined such that:

An,m = dndm exp (jωdTs(n − m)) , (B.15)

and we have:

Dk = 0.5Pke
TAe , (B.16)

where e is the length MNs vector of ones. Note that the matrix A is Hermitian,

i.e. AH = A, or An,m = A∗
m,n. Thus

An,m +Am,n = 2dndm<{exp (jωdTs(n − m))} . (B.17)

We can, therefore, write Dk as the sum over all the sub-diagonal elements of A:

Dk = 0.5Pk

[
MNs−1∑

m=0

dmdm + 2
MNs−1∑

p=1

<{exp (jωdTsp)}
MNs−1−p∑

m=0

dmdm+p

]
,

(B.18)

where p denotes the index of the sub-diagonal and m is the row index. Now,

the product dmdm+p is an rv which can only take on values {−1, +1}, so we can
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define a probability mass function as follows†:

pdmdm+p
(x) =





1 x = 1 p = 0

0 x = −1 p = 0

1 − p
2DNs

x = 1 0 < p < DNs

P
2DNs

x = −1 0 < p < DNs

1
2

x = 1 p ≥ DNs

1
2

x = −1 p ≥ DNs .

(B.19)

Taking expectation yields:

Edmdm+p
[x] =





1 p = 0

1 − p
DNs

0 < p < DNs

0 p ≥ DNs .

(B.20)

Thus, taking expectation in Equation (B.18) yields:

Ed[Dk] = 0.5Pk


MNs + 2

min(D,M)Ns−1∑

p=1

<{exp (jωdTsp)}
MNs−1−p∑

m=0

(
1 − p

DNs

)


(B.21)

= 0.5Pk


MNs + 2

min(D,M)Ns−1∑

p=1

<{exp (jωdTsp)} (MNs − p)

(
1 − p

DNs

)


(B.22)

= 0.5Pk


MNs +

2

DNs

min(D,M)Ns−1∑

p=1

<{exp (jωdTsp)} (MNs − p) (DNs − p)


 .

(B.23)

Now, although the summation in Equation (B.23) can be evaluated using the

identities in Appendix A, the procedure is quite laborious. We can, instead, use

our knowledge of the result when M ≤ D, in conjunction with the symmetry of

the summands when M and D are interchanged, to arrive at the result with less

effort.

†Note that this expression is essentially identical to [37, Equation (8-4)].
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So, assuming M ≤ D, then Equation (B.22) becomes:

Ed[Dk | M ≤ D] = 0.5Pk

[
MNs + 2

MNs−1∑

p=1

<{exp (jωdTsp)} (MNs − p)

− 2
MNs−1∑

p=1

<{exp (jωdTsp)} p

DNs

(MNs − p)

]
.

(B.24)

Now, in the limit as D → ∞, data modulation will have no effect and, from

Equation (3.6), we have:

lim
D→∞

Ed[Dk | M ≤ D] = 2Pk

∣∣∣∣∣
sin ωdTsMNs

2

sin ωdTs

2

∣∣∣∣∣

2

. (B.25)

Comparing Equation (B.25) and Equation (B.24) we obtain the result:

2
MNs−1∑

p=1

<{exp (jωdTsp)} (MNs − p) =

∣∣∣∣∣
sin ωdTsMNs

2

sin ωdTs

2

∣∣∣∣∣

2

− MNs . (B.26)

We can solve for the second summation in Equation (B.24) in a similar fashion.

From Equation (3.22) we have†:

Ed[Dk | M ≤ D] ≈ 1 − M

D

(
cot β

β
− cot2 β

)
, (B.27)

where β
∆
= MNsTs/2. Finally, inserting Equation (B.26) into Equation (B.24)

and comparing the result with Equation (B.27) we find:

2
MNs−1∑

p=1

<{exp (jωdTsp)} p (MNs − p) ≈MNs

∣∣∣∣∣
sin ωdTsMNs

2

sin ωdTs

2

∣∣∣∣∣

2 [
cot
(

ωdTsMNs

2

)

ωdTsMNs

2

− cot2

(
ωdTsMNs

2

)]
. (B.28)

We are now in a position to solve Equation (B.23) under the assumption that

†This is an approximation, the true expression is found by replacing the factor 1/β with
1

MNs
cot
(

β
MNs

)
.
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M > D. Re-writing Equation (B.23) we obtain:

Ed[Dk | M > D] = 0.5Pk

[
MNs + 2

M

D

DNs−1∑

p=1

<{exp (jωdTsp)} (DNs − p)

− 2

DNs

DNs−1∑

p=1

<{exp (jωdTsp)} p (DNs − p)

]
. (B.29)

Now, the two summation terms above can be identified with Equations (B.26) and

(B.28) respectively, under the substitution M → D. Thus, after some algebraic

manipulation, we obtain:

Ed[Dk | M > D] = 0.5Pk (MNs)
2αD(ωd)

sin2
(

ωdTsDNs

2

)

sin2
(

ωdTsMNs

2

)

×
[

M

D
− cot

(
ωdTsDNs

2

)

ωdTsDNs

2

+ cot2

(
ωdTsDNs

2

)]
,

(B.30)

where αD(ωd) is the effective power attenuation due to carrier Doppler effects only.

Comparing Equations (3.6) and (B.30) above gives us the desired expression for

αm:

αm(δωd) =

∣∣∣∣∣
sin βD

M

sin β

∣∣∣∣∣

2(
M

D
− M cot

(
β D

M

)

βD
+ cot2 βD

M

)
. (B.31)

B.2 Derivations from Chapter 4

B.2.1 ZI is the Difference of Two Non-Central χ2 Variates

for the Pair Wise Form

We wish to show that the real part of the differentially coherent sum, ZI , in

the pair wise form of the DCCD can be expressed as the difference of two non-

central χ2 rvs. An expression for the CHF of ZI has already been specified in

Equation (4.92). We now demonstrate that this is equivalent to the CHF of the

difference of two χ2 rvs.

Letting Xi : i = 1, 2 be independent non-central χ2 distributed rvs:

Xi ∼ χ′2 (N, λi, σ
2
X

)
, (B.32)
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then the CHF of Xi is given by [102]:

ΦXi
(jω) =

exp
(

jωλi

1−2jωσ2
X

)

(1 − 2jωσ2
X)

N
2

. (B.33)

Denoting by Y the rv:

Y = X1 − X2 = X1 + (−X2), (B.34)

then the CHF of Y is given by:

ΦY (jω) = ΦX1 (jω) Φ−X2 (jω) . (B.35)

The CHF of X1 is given directly by Equation (B.33). The CHF of −X2 can be

found as follows:

Φ−X2 (jω)
∆
= EX2 [exp (−jωX2)]

= EX2 [exp (j(−ω)X2)]

= ΦX2 (−jω)

=
exp

(
−jωλ2

1+2jωσ2
X

)

(1 + 2jωσ2
X)

N
2

. (B.36)

Inserting Equations (B.33) and (B.36) into Equation (B.35) and simplifying,

yields:

ΦY (jω) =
exp

(
− ω

1+4ω2σ4
X

[ωσ2
X (λ1 + λ2) − j (λ1 − λ2)]

)

(1 + 4ω2σ4
X)

N
2

. (B.37)

Comparing Equations (B.37) and (4.92) we find that:

ΦZI
(jω) = ΦY (jω) , (B.38)

under the following conditions:

σ2
X =

1

2
σ2 (B.39)

λ1 + λ2 = λ = µHµ (B.40)
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λ1 − λ2 = <{κ} = µHQIµ. (B.41)

Solving for λ1 and λ2 we obtain:

λ1 =
1

2
µH (I +QI)µ (B.42)

λ2 =
1

2
µH (I −QI)µ, (B.43)

which is the desired result.

B.2.2 An Integral Involving the Exponential Function with

Trigonometric Functions in the Exponent

We wish to evaluate the integral:

I =

π∫

−π

exp (jx (a cos φ + b sin φ)) d φ a, b ∈ R. (B.44)

Making the substitutions:

a = p cos θ b = p sin θ, (B.45)

yields:

I =

π∫

−π

exp (jxp (cos θ cos φ + sin θ sin φ)) d φ (B.46)

=

π∫

−π

exp (jxp cos (φ − θ)) d φ (B.47)

=

π∫

−π

exp (jxp cos φ) d φ (B.48)

= 2πJ0 (xp) . (B.49)

where, in the first step we have used a trigonometric identity, in the second step

we make the observation that the value of the integrand is invariant to a phase

shift in the cosine term, and in the third step we have used the well-known identity
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[48, Equation 8.411.1]:

J0 (z) =
1

2π

∫ π

−π

exp (jz cos θ) d θ. (B.50)

Inserting the identity p =
√

a2 + b2, yields:

π∫

−π

exp (jx (a cos φ + b sin φ)) d φ = 2πJ0

(
x
√

a2 + b2
)

a, b ∈ R. (B.51)

B.2.3 Derivation of Equation (4.102)

We wish to prove Equation (4.102). The case N = 1 is trivial. Taking the case

N = 2, then, by Equation (4.101), we have:

PN(ρ, φ) =

∣∣∣∣∣∣
1 −jρσ2e−jφ

−jρσ2ejφ 1

∣∣∣∣∣∣
(B.52)

= 1 + (ρσ2)2. (B.53)

Thus, we have the first two cases. This can be expanded to N > 2 as follows.

Firstly, we denote by PN the matrix P for the case of N observations. Next, we

make the observation that, for N > 2, we can partition the matrix PN as follows:

PN =




1 −jρσ2e−jφ 01,N−2

−jρσ2ejφ

0N−2,1

PN−1


 (B.54)

=




1 −jρσ2e−jφ 01,N−2

−jρσ2ejφ 1 −jρσ2e−jφ 01,N−3

0N−2,1

−jρσ2ejφ

0N−3,1

PN−2




, (B.55)

where 0i,j is the i × j matrix of zeros. Thus, we have:

PN(ρ, φ) = |PN |
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= 1 × |PN−1| − (−jρσ2e−jφ) ×

∣∣∣∣∣∣
−jρσ2ejφ −jρσ2e−jφ 01,N−3

0N−2,1 PN−2

∣∣∣∣∣∣
(B.56)

= PN−1(ρ, φ) + (ρσ2)2PN−2(ρ, φ) , (B.57)

which is the desired result.

B.2.4 Derivation of Equation (4.103)

Letting x = ρσ2, we wish to show that:

PN(x) =

bN
2 c∑

i=0

(
N − i

i

)
x2i. (B.58)

We use an inductive approach. Firstly, it is easy to see that Equation (B.58)

holds for N = 1 and N = 2 (see Section B.2.3). Thus, it remains to be shown

that, given that Equation (B.58) holds for N = n − 2 and N = n − 1, it also

holds for N = n. Thus, we must show:

Pn(x) = Pn−1(x) + x2Pn−2(x) =

bN
2 c∑

i=0

(
N − i

i

)
x2i (B.59)

=

bn−1
2 c∑

i=0

(
n − 1 − i

i

)
x2i +

bn−2
2 c∑

i=0

(
n − 2 − i

i

)
x2(i+1) . (B.60)

Considering initially the case of even n, this becomes:

Pn(x) =

n
2
−1∑

i=0

(
n − 1 − i

i

)
x2i +

n
2∑

i=1

(
n − 1 − i

i − 1

)
x2i (B.61)

=

n
2
−1∑

i=0

x2i

[(
n − 1 − i

i

)
+

(
n − 1 − i

i − 1

)]
+

(
n − 1 − n

2
n
2
− 1

)
xn . (B.62)

Taking the sum of binomials in the first summand of the expression above yields:

(
n − 1 − i

i

)
+

(
n − 1 − i

i − 1

)
=

(n − 1 − i)!

i!(n − 1 − 2i)!
+

(n − 1 − i)!

(i − 1)!(n − 2i)!
(B.63)
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=
(n − 1 − i)!(n − 2i + i)

i!(n − 2i)!
(B.64)

=

(
n − i

i

)
. (B.65)

Taking the xn term in Equation (B.62) we have:

(
n − 1 − n

2
n
2
− 1

)
=

(
n
2
− 1

n
2
− 1

)
(B.66)

= 1 (B.67)

=

(
n − n

2
n
2

)
. (B.68)

Thus, inserting Equations (B.65) and (B.68) into Equation (B.62), yields:

Pn(x) =

n
2∑

i=0

(
n − i

i

)
x2n n even. (B.69)

The case when n is odd is easily shown in a similar manner.

B.2.5 Derivation of PJ,N(ρ) by Gaussian Elimination

A useful mechanism for the determination of matrix determinants is the procedure

known as Gaussian elimination [76, Chapter 6]. This process consists of the

sequential application of row operations to a matrix (sayM ) to yield a triangular

matrix (say D). It can be shown that the determinant of the matrix D is equal

to the determinant ofM . In addition, for any triangular matrix, the determinant

is simply equal to product of its diagonal elements.

Consider first of all the case J = 1, the matrix P is then given by:

P1,N =




1 −jρσ2e−jφ 0 · · · 0

−jρσ2e+jφ 1 −jρσ2e−jφ . . .
...

0 −jρσ2e+jφ 1
. . . 0

...
. . . . . . . . . −jρσ2e−jφ

0 · · · 0 −jρσ2e+jφ 1




(B.70)

We wish to triangularise this matrix in order to enable the calculation of |P |
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with ease. The first step in the triangularisation procedure is to eliminate the

sub-diagonal term on the second row of P . To do this, simply add jρσ2ejφ times

row 1 to row 2, yielding the following matrix:




1 −jρσ2e−jφ 0 · · · 0

0 1 + σ4ρ2 −jρσ2e−jφ . . .
...

0 −jρσ2e+jφ 1
. . . 0

...
. . . . . . . . . −jρσ2e−jφ

0 · · · 0 −jρσ2e+jφ 1




.

To eliminate the third row, we repeat the procedure and add (jρσ2ejφ)/(1+σ4ρ2)

times the second row of the matrix above to yield:




1 −jρσ2e−jφ 0 · · · 0

0 1 + σ4ρ2 −jρσ2e−jφ . . .
...

0 0 1 + σ4ρ2

1+σ4ρ2

. . . 0
...

. . . . . . . . . −jρσ2e−jφ

0 · · · 0 −jρσ2e+jφ 1




. (B.71)

Repeating this procedure for all the rows ofP will finally bring us to the triangular

form. If we denote by dJ,n the diagonal entry on row n, after the first n rows have

been triangularised, then the diagonal term on row n + 1 will be given by:

d1,n+1 = 1 +
σ4ρ2

d1,n

, (B.72)

when J = 1. The determinant of P is then given by:

|P | = P1,N =
N∏

n=1

d1,n. (B.73)

This is equivalent to Equation (4.103) on page 168.

The real advantage of the Gaussian elimination approach is that it allows us

to express the determinant for general J , PJ,N(ρ), in terms of the determinant

for J = 1, for which we already have an expression.

Consider the case J = 2. Now, since we require N > J we initially consider
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N = 3, in which case we have:

P =




1 0 −jρσ2e−jφ

0 1 0

−jρσ2ejφ 0 1


 .

Note that, in this case, the first 2 rows are already in a suitable form. In general,

we will find that the first J rows are already in upper-triangular form, with 1’s in

the diagonal entries. We can eliminate the sub-diagonal entry in row 3 by adding

jρσ2ejφ times row 1, which gives:




1 0 −jρσ2e−jφ

0 1 0

0 0 1 + σ4ρ2


 .

The procedure continues in this manner, and is almost identical to the procedure

for the case J = 1 except that, instead of using the previous row to eliminate the

sub-diagonal elements of the current row, the row before that is used. In general

we will find that, to eliminate the sub-diagonal elements of row n requires the use

of row n−J . Thus, the recursion on the diagonal element dJ,n can be generalised

to:

dJ,n = 1 +
σ4ρ2

dJ,n−J

(B.74)

= d1,bn
J c+1. (B.75)

The determinant can then be found from:

PJ,N(ρ) =
N∏

n=1

dJ,n (B.76)

=
N∏

n=1

d1,bn
J c+1. (B.77)

Making the substitution a = bN/Jc and b = N − aJ yields:

PJ,N(ρ) =

(
a∏

i=1

d1,i

)J−b(a+1∏

i=1

d1,i

)b

(B.78)
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= P J−b
1,a (ρ)P b

1,a+1(ρ), (B.79)

which is the desired result.

B.2.6 Derivation of the CDF of R for the Standard Form

of Differentially Coherent Processing

We wish to derive Equation (4.118). We begin with Equation (4.116):

fR(r) = r

∞∫

0

ρJ0 (rρ)

PN(ρ)
dρ .

Integrating over r and interchanging the order of the integrals gives us:

FR(r) =

∞∫

0

ρ

PN(ρ)

r∫

0

xJ0 (xρ) dρ dx (B.80)

=

∞∫

0

rJ1 (rρ)

PN(ρ)
dρ , (B.81)

where we have applied the identity:

∫
zJ0 (z) dz = zJ1 (z) . (B.82)

Applying the partial fraction expansion of Equation (4.110) to Equation (B.81)

yields:

FR(r) =

bN
2 c∑

k=1

AN,k

∞∫

0

rJ1 (rρ)

ρ2 + γk

dρ (B.83)

=

bN
2 c∑

k=1

AN,k

[
1

γk

− r√
γk

K1 (r
√

γk)

]
, (B.84)
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where K1 (x) is the modified Bessel function of the second kind of order 1, defined

in Equation (2.76). Now, from Equation (4.110) we have:

1

PN(ρ)
=

bN
2 c∑

k=1

AN,k

ρ2 + γk

(B.85)

∴
1

PN(0)
=

bN
2 c∑

k=1

AN,k

γk

. (B.86)

But, from Equation (4.103) we have:

PN(0) = 1. (B.87)

Thus, Equation (B.84) reduces to our desired result:

FR(r) = 1 −
bN

2 c∑

k=1

AN,k√
γk

rK1 (r
√

γk) . (B.88)

B.2.7 Derivation of Equation (4.140)

We wish to prove that:

QI ,JQQ,J +QQ,JQI ,J = QQ,2J , (B.89)

for the standard form of the differentially coherent combining detector. We begin

with the observations:

QI ,J =
1

2




0J,J IJ,J 0J,J · · · 0J,J

IJ,J 0J,J IJ,J
. . .

...

0J,J IJ,J 0J,J
. . . 0J,J

...
. . . . . . . . . IJ,J

0J,J · · · 0J,J IJ,J 0J,J




(B.90)
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QQ,J =
j

2




0J,J −IJ,J 0J,J · · · 0J,J

IJ,J 0J,J −IJ,J
. . .

...

0J,J IJ,J 0J,J
. . . 0J,J

...
. . . . . . . . . −IJ,J

0J,J · · · 0J,J IJ,J 0J,J




. (B.91)

Thus:

QI ,JQQ,J =
j

4




IJ,J 0J,J −IJ,J 0J,J · · · 0J,J

0J,J 0J,J 0J,J −IJ,J
. . .

...

IJ,J 0J,J 0J,J 0J,J
. . . 0J,J

0J,J IJ,J 0J,J 0J,J
. . . −IJ,J

...
. . . . . . . . . . . . 0J,J

0J,J · · · 0J,J IJ,J 0J,J −IJ,J




(B.92)

QQ,JQI ,J =
j

4




−IJ,J 0J,J −IJ,J 0J,J · · · 0J,J

0J,J 0J,J 0J,J −IJ,J
. . .

...

IJ,J 0J,J 0J,J 0J,J
. . . 0J,J

0J,J IJ,J 0J,J 0J,J
. . . −IJ,J

...
. . . . . . . . . . . . 0J,J

0J,J · · · 0J,J IJ,J 0J,J IJ,J




. (B.93)

Therefore, we have:

QI ,JQQ,J +QQ,JQI ,J =
j

2




0J,J 0J,J −IJ,J 0J,J · · · 0J,J

0J,J 0J,J 0J,J −IJ,J
. . .

...

IJ,J 0J,J 0J,J 0J,J
. . . 0J,J

0J,J IJ,J 0J,J 0J,J
. . . −IJ,J

...
. . . . . . . . . . . . 0J,J

0J,J · · · 0J,J IJ,J 0J,J 0J,J




(B.94)
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=
j

2




02J,2J −I2J,2J 02J,2J · · · 02J,2J

I2J,2J 02J,2J −I2J,2J
. . .

...

02J,2J I2J,2J 02J,2J
. . . 02J,2J

...
. . . . . . . . . −I2J,2J

02J,2J · · · 02J,2J I2J,2J 02J,2J




(B.95)

= QQ,2J . (B.96)

B.2.8 An Expression for the Probability that one χ2 Dis-

tributed RV Exceeds Another

The following results have been accepted for publication in the IEEE Transactions

on Communications [89].

Given two χ2 distributed rvs X1 and X2 we wish to derive an expression for

the probability that X2 > X1, denoted Pg:

Pg
∆
= Pr {X2 > X1} , (B.97)

where:

X1 ∼ χ′2(n = 2K,λ1 = a2
1, σ

2 = σ2
1) (B.98)

X2 ∼ χ′2(n = 2K,λ2 = a2
2, σ

2 = σ2
2). (B.99)

Our approach is based on that of Stein [131] and Simon and Alouini [122], but

requires some preliminary results on the Marcum Q-function.

The Marcum Q-function is defined by the integral in Equation (2.43), but it

can also be represented by a contour integral in the complex plane [102, 135]:

QK (a, b) =
exp

(
−a2+b2

2

)

2πj

∮

Γ0

exp
(

1
2

(
a2 1

z
+ b2z

))

(1 − z)zK
dz, (B.100)

where Γ0 is any closed contour in the z-plane enclosing the point z = 0 (in a

counter-clockwise direction), and no other singularities of the integrand.
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For the sake of notational simplicity we define the function f (a, b; z):

f (a, b; z) = exp

(
−1

2

[
a2

(
1 − 1

z

)
+ b2 (1 − z)

])
(B.101)

from which we re-write Equation (B.100) as:

QK (a, b) =
1

2πj

∮

Γ0

f (a, b; z)

zK(1 − z)
dz. (B.102)

The integrand in Equation (B.102) has three singularities, namely: a simple

pole at z = 1 and essential singularities at both the origin and the point at

infinity. For integer K the integrand is a single-valued function of z, and so

its Riemann surface is the Riemann sphere [86]. This structure is illustrated

in Figure B.1. From Equation (B.102), QK (a, b) is given by the residue of the

z = 0

z = ∞

z = 1

Γ0

Figure B.1: The Marcum Q-function as a contour integral on the Riemann sphere,
the arrows represent the three singularities of the integrand. The complex contour
Γ0 is also indicated.

function f (a, b; z) (1 − z)−1z−K at the point z = 0:

QK (a, b) = Res
z=0

{
f (a, b; z)

(1 − z)zK

}
. (B.103)

Cauchy’s theorem [79, eq. (4-10)], in conjunction with the residue theorem [79,

eq. (5-83)], implies that the sum of the residues at all the singular points on the
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Riemann surface of a function is zero. For the integrand of Equation (B.102), the

residue at the point z = 1 is easily seen to be −1, so the residue at the point at

infinity is, therefore, given by 1 − QK (a, b), i.e.:

1 − QK (a, b) =
1

2πj

∮

Γ∞

f (a, b; z)

zK(1 − z)
dz. (B.104)

Making the substitution u = 1/z yields:

1 − QK (a, b) =
1

2πj

∮

Γ0

f (b, a; u) uK−1

1 − u
du. (B.105)

It is easily seen that:

Res
z=0

{
f (a, b; z)

(1 − z)zK

}
=





QK (a, b) K > 0

1 − Q1−K (b, a) K ≤ 0

(B.106)

Res
z=∞

{
f (a, b; z)

(1 − z)zK

}
=





1 − QK (a, b) K > 0

Q1−K (b, a) K ≤ 0

(B.107)

Equations (B.106) and (B.107) lead naturally to the definition of the Marcum

Q-function for K ≤ 0, by the identity:

QK (a, b) = 1 − Q1−K (b, a) . (B.108)

Thus, we can re-write Equation (B.106) and Equation (B.107) as follows:

Res
z=0

{
f (a, b; z)

(1 − z)zK

}
= QK (a, b) = 1 − Q1−K (b, a) (B.109)

Res
z=∞

{
f (a, b; z)

(1 − z)zK

}
= 1 − QK (a, b) = Q1−K (b, a) , (B.110)
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where K ∈ Z.

The Marcum Q-function is related to the CDF of a χ2 distributed rv with

2K degrees of freedom [102], and so the concept of negative order does not make

physical sense. However, there is another interpretation that can be attributed to

this function. In [67], Johnson showed, in effect, that the function QK (a, b) is the

CDF of the difference of two Poisson distributed rvs. Given X1 ∼ Poisson(b2/2)

and X2 ∼ Poisson(a2/2) then:

QK (a, b) = Pr {X1 − X2 < K} . (B.111)

Clearly, in this context, K can take on any integer value. In addition, it is

interesting to note that Siegel [118] also considered the concept of a non-central

χ2 distribution with zero degrees of freedom, in a different context. Both of these

previous observations are consistent with our definition in Equation (B.108).

Returning now to the derivation of an expression for Pg, following Stein’s

technique we can write:

Pr {X2 > X1} =

∫ ∞

0

fX1(x)[1 − FX2(x)]dx, (B.112)

where:

fXi
(x) =

1

2σ2
i

(
x

ai

)Ki−1

2

exp

(
−1

2
{ai + x}

)
IKi−1

(√
xai

σ2
i

)
(B.113)

FXi
(x) = 1 − QK

(√
ai

σi

,

√
x

σi

)
. (B.114)

Inserting Equations (B.113) and (B.114) into Equation (B.112) and making the

change of variable v =
√

r we obtain:

Pg =

∫ ∞

0

v

σ2
1

(
v

a1

)K−1

e−
1
2(a2

1+v2)IK−1

(
a1v

σ2
1

)
QK

(
a2

σ2

,
v

σ2

)
dv. (B.115)

Now, substituting the integral on the right hand side of Equation (B.100) for the

Marcum Q-function and interchanging the order of integration yields:

Pg =
exp

(
−1

2

(
a2
1

σ2
1

+
a2
2

σ2
2

))

2πj

∮

Γ0

exp
(

a2
2

2σ2
2

1
z

)

zK(1 − z)

∫ ∞

0

v

σ2
1

(
v

a1

)K−1
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× exp

(
− v2

2σ2
1

[
1 +

σ2
1

σ2
2

(1 − z)

])
IK−1

(
a1v

σ2
1

)
dv dz . (B.116)

Making the substitutions y = v
[
1 +

σ2
1

σ2
2
(1 − z)

]1/2

and α = a1

[
1 +

σ2
1

σ2
2
(1 − z)

]−1/2

,

the integral over v can be written as:

I =
exp

(
α2

2σ2
1

)

(
1 +

σ2
1

σ2
2
(1 − z)

)K

∫ ∞

0

y

σ2
1

( y

α

)K−1

exp

(
−α2 + y2

2σ2
1

)
IK−1

(
αy

σ2
1

)
dy

(B.117)

where the integral over y is clearly the Marcum Q-function, as defined in Equa-

tion (2.43). Care must be taken regarding the convergence of this integral, as

both y and α are complex quantities. For convergence of this integral we require

<{α2 + y2} ≥ 0 ⇒ <
{

1 +
σ2
1

σ2
2
(1 − z)

}
≥ 0 ⇒ <{z} ≤ 1 +

σ2
2

σ2
1
. But the posi-

tion of the pole at z = 1 implies that, on the contour Γ0, <{z} < 1 and so the

convergence requirement is met on this contour. This gives us:

I =
exp

(
α2

2σ2
1

)

(
1 +

σ2
1

σ2
2
(1 − z)

)K
QK

(
α

σ1

, 0

)
(B.118)

=

exp

(
a2
1

2σ2
1

1

1+
σ2
1

σ2
2
(1−z)

)

(
1 +

σ2
1

σ2
2
(1 − z)

)K
. (B.119)

Inserting Equation (B.119) into Equation (B.116) gives:

Pg =
exp

(
−1

2

(
a2
1

σ2
1

+
a2
2

σ2
2

))

2πj

∮

Γ0

exp
(

a2
2

2σ2
2

1
z

)

zK(1 − z)

exp

(
a2
1

2σ2
1

1

1+
σ2
1

σ2
2
(1−z)

)

(
1 +

σ2
1

σ2
2
(1 − z)

)K
dz. (B.120)

Letting Σ2 = σ2
1 + σ2

2 and making the substitution p =
Σ2−σ2

1z

σ2
2z

gives:

Pg =
exp

(
−a2

1+a2
2

2Σ2

)

2πj

∮

Γ∞

(
σ2

2p + σ2
1

Σ2

)2K−1 exp
(

1
2(Σ2)

[
a2
1

p
+ a2

2p
])

pK(1 − p)
dp (B.121)
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=
1

2πj

∮

Γ∞

(
σ2

2p + σ2
1

Σ2

)2K−1

p−Kf
(a1

Σ
,
a2

Σ
; p
)

dp. (B.122)

Expanding the power term by the binomial theorem we have:

P =

(
1

Σ2

)2K−1 2K−1∑

k=0

(
2K − 1

k

)
(σ2

2)
2K−1−k(σ2

1)
k

1

2πj

∮

Γ∞

pK−k−1f
(a1

Σ
,
a2

Σ
; p
)

dp (B.123)

Noting that the contour integral above is identical to the residue of Equation (B.110)

with K → 1 + k − K , we finally obtain the desired form of Equation (B.124):

Pg =

(
σ2

2

Σ2

)2K−1 2K−1∑

k=0

(
2K − 1

k

)(
σ2

1

σ2
2

)k

QK−k

(a2

Σ
,
a1

Σ

)
(B.124)

B.3 Derivations from Chapter 5

B.3.1 The Fundamental Matrix

Since here we have two possible state diagrams, there are two transition matrices

describing the search process, given by Equation (B.125) and Equation (B.126),

where Equation (B.125) is associated with Figure 5.6 a) and Equation (B.126) is

associated with Figure 5.6 b).

P =




1 0 0 0 . . . . . . 0

0 1 0 0 . . . . . . 0

0 Pfa0
0 Pr0 0 . . . 0

0 Pfa0
0 0 Pr0 . . . 0

...
...

...
...

. . . . . .
...

Pd10 Pfa10
0 0 . . . 0 Pr10

Pd11 Pfa11
Pr11 0 0 . . . 0




(B.125)
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P =




1 0 0 0 . . . . . . 0

0 1 0 0 . . . . . . 0

0 Pfa0
0 Pr0 0 . . . 0

0 Pfa0
0 0 Pr0 . . . 0

...
...

...
...

. . . . . .
...

Pd11 Pfa11
0 0 . . . 0 Pr11

Pd10 Pfa10
Pr10 0 0 . . . 0




(B.126)

The only difference between these two matrices is the interchange of the transition

probabilities associated with the H11 tile (Pd11 , Pr11 and Pfa11
) with those of the

H10 tile (Pd10 , Pr10 and Pfa10
). Assuming both cases occur with equal probability,

we can write the average transition matrix as:

P =




1 0 0 0 . . . . . . 0

0 1 0 0 . . . . . . 0

0 Pfa0
0 Pr0 0 . . . 0

0 Pfa0
0 0 Pr0 . . . 0

...
...

...
...

. . . . . .
...

P d1 P fa1
0 0 . . . 0 P r1

P d1 P fa1
P r1 0 0 . . . 0




(B.127)

where P d1 = 0.5(Pd11 + Pd10), P r1 = 0.5(Pr11 + Pr10) and P fa1
= 0.5(Pfa11

+

Pfa10
). In the sequel we will consider the state diagram of Figure 5.6 a), with the

understanding that we must average over both cases to yield a true representation

of the search process.

Returning to the case a) state diagram of Figure 5.6 and following the same
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procedure as for the one H1 tile approximation we have, for 0 < n < NT:

T n =




0 0 . . . 0 P n
r0

0 . . . 0

0 0 . . . 0 0 P n
r0

. . . 0
...

...
...

...
...

. . . . . .
...

0 0 . . . 0 0 0 . . . Pr10P
n−1
r0

PmP n−2
r0

0 . . . 0 0 0 . . . 0

0 PmP n−2
r0

. . . 0 0 0 . . . 0
...

. . . . . . . . .
...

... . . . . . .

0 0 . . . Pr11P
n−1
r0

0 0 . . . 0




(B.128)

where Pm = Pr11Pr10 is the total probability of missing the signal in both the H11

and H10 tiles. From Equation (5.16) and Equation (5.17) we have the following

expression for the fundamental matrix:

N =
1

1 − PL




1 Pr0 P 2
r0

. . . Pr11P
NT−2
r0

PmPNT−3
r0

1 Pr0 . . . Pr11P
NT−3
r0

PmPNT−4
r0

PmPNT−3
r0

1 . . . Pr11P
NT−4
r0

...
...

. . . . . .
...

Pr11 Pr11Pr0 . . . Pr11P
NT−2
r0

1




(B.129)

where, in this case, PL = PmPNT−2
r0

= Pr11Pr10P
NT−2
r0

. Again, averaging over both

possible state diagrams yields:

N =
1

1 − PL




1 Pr0 P 2
r0

. . . P r1P
NT−2
r0

PmPNT−3
r0

1 Pr0 . . . P r1P
NT−3
r0

PmPNT−4
r0

PmPNT−3
r0

1 . . . P r1P
NT−4
r0

...
...

. . . . . .
...

P r1 P r1Pr0 . . . P r1P
NT−2
r0

1




.

(B.130)

Returning to the form of Equation (B.129), it is useful to divide the fundamental
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matrix into subcomponents as follows:

N =
1

1 − PL


 Ñ c̃

r̃ 1


 (B.131)

where:

Ñi,j =





P j−i
r0

i ≤ j

PmP
NT−2−(i−j)
r0 i > j

(B.132)

c̃i = Pr10P
NT−2−i
r0

(B.133)

r̃j = Pr11P
j
r0

. (B.134)

In this way, the submatrix Ñ is independent of the form of the state diagram,

whereas the row vector r̃ and column vector c̃ incorporate all the information

regarding the order of the H11 and H10 tiles.

Ñ has the same form as the fundamental matrix under the one H1 tile ap-

proximation with NT − 1 tiles in the search space (rather than NT) and rejection

probability Pm (rather than Pr1).

B.3.2 Probabilities of Detection and False Alarm

Substituting the new fundamental matrix of Equation (B.129) into Equation (5.20),

we obtain the following expression for A:

A =
1

1 − PL




1 Pr0 . . . Pr10P
NT−2
r0

PmPNT−3
r0

1 . . . Pr10P
NT−3
r0

...
...

. . .
...

Pr11 Pr11P
2
r0

. . . 1







0 Pfa0

0 Pfa0

...
...

Pd10 Pfa10

Pd11 Pfa11




.

(B.135)
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Now, PD,i, the probability of detection given starting state i, is given by:

PD,i =
1

1 − PL





Pd10P
NT−2−i
r0

+ Pd11Pr10P
NT−2−i
r0

i < NT − 1

Pr11Pd10P
NT−2
r0

+ Pd11 i = NT − 1

Once again averaging over the two possible forms of N we obtain:

PD,i =
1

1 − PL





P d1P
NT−2−i
r0

+ P rd1P
NT−2−i
r0

i < NT − 1

P rd1P
NT−2
r0

+ P d1 i = NT − 1

where P rd1 = 0.5(Pr11Pd10 + Pr10Pd11). Finally, averaging over the starting state

i, yields:

PD =
1

NT(1 − PL)

{(
P d1 + P rd1

) 1 − PNT−1
r0

1 − Pr0

+ P d1 + P rd1P
NT−2
r0

}

(B.136)

and, once again, PFA = 1−PD. Note the term P d1 +P rd1 is the overall probability

of detection in either of the H1 cells.

B.3.3 First Order Statistics

Here, we follow the same procedure as for the one H1 tile approximation to

determine the mean number of dwells. We begin with m1,i:

m1,i =

NT−1∑

j=0

Ni,j (B.137)

=
1

1 − PL





NT−2∑

j=0

Ñi,j + c̃i i < NT − 1

NT−2∑

j=0

r̃j + 1 i = NT − 1

(B.138)
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=





1

1 − Pr0

+
Pm − Pr0

1 − PL

PNT−2−i
r0

1 − Pr0

+
P r1P

NT−2−i
r0

1 − PL

i < NT − 1

P r1

1 − PL

1 − PNT−1
r0

1 − Pr0

+
1

1 − PL

i = NT − 1.

(B.139)

Note that here we have averaged over the two possible forms of r̃ and c̃. Equa-

tion (B.139) is independent of the distribution of the starting state i. Once again,

assuming a uniform a priori distribution on i we obtain:

m1 =
NT − 1

NTPfa0

+
1

NT(1 − PL)
+

(Pm − Pr0)(1 − PNT−1
r0

)

NT(1 − PL)P 2
fa0

+
(Pr11 + Pr10)(1 − PNT−1

r0
)

NT(1 − PL)Pfa0

(B.140)

B.3.4 Second Order Statistics

Following a similar procedure to that of Section 5.1.5 we define the matrix M =

N 2 and inserting Equation (B.131) gives:

M =
1

(1 − PL)2


 Ñ c̃

r̃ 1




 Ñ c̃

r̃ 1


 (B.141)

=
1

(1 − PL)2


 M̃ γ̃

ρ̃ r̃c̃+ 1


 (B.142)

where M̃ = Ñ 2 + c̃r̃, ρ̃ = r̃Ñ + r̃ and γ̃ = Ñ c̃+ c̃.

Now, the matrix Ñ is identical in form to the fundamental matrix in the

one H1 case, but with NT → NT − 1 and Pr1 → Pm. Thus we can re-write

Equation (5.29) and Equation (5.30) directly as:

(
Ñ 2
)

i,j
=





PmPNT−2−(i−j)
r0

[NT − 1 + (j + 1 − i)(1 − PL)] i > j

P j−i
r0

[(NT − 1)PL + (j + 1 − i)(1 − PL)] i ≤ j .

(B.143)
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From Equation (B.133) and Equation (B.134) we have:

(c̃r̃)i,j = PmPNT−2−(i−j)
r0

. (B.144)

Combining these last two equations gives:

M̃i,j =





PmPNT−2−(i−j)
r0

[NT + (j + 1 − i)(1 − PL)] i > j

P j−i
r0

[NTPL + (j + 1 − i)(1 − PL)] i ≤ j .

(B.145)

From Equation (B.132) and Equation (B.134) we obtain:

ρ̃j = P r1P
j
r0

(NTPL + (j + 2)(1 − PL)) . (B.146)

Similarly, using Equation (B.133) we have:

γ̃i = P r1P
NT−2−i
r0

(NT − i(1 − PL)) (B.147)

and, finally:

r̃c̃ = (NT − 1)PL. (B.148)

Now, from Equation (5.28), and assuming a uniform distribution on the starting

state, we have:

m2 = 2πTMe− m1

=
2

NT(1 − PL)2

{
eTM̃e+ eTγ̃ + ρ̃e+ r̃c̃+ 1

}
− m1. (B.149)

where:

eTM̃e

NT(1 − PL)2
=

NT − 1

NTP 2
fa0

+
(NT − 1)(Pm − Pr0)

2PNT−2
r0

NT(1 − PL)2P 2
fa0

+
2(Pm − Pr0)(1 − PNT−1

r0
)

NT(1 − PL)P 3
fa0

+
Pm(1 − PNT−1

r0
)2

NT(1 − PL)2P 2
fa0

(B.150)

eTγ̃ + ρ̃e

NT(1 − PL)2
=

Pr11 + Pr10

(1 − PL)(1 − Pr0)

{
NTPNT−2

r0
(Pm − Pr0)

(1 − PL)

+
(2 − Pr0)(1 − PNT−1

r0
)

NT(1 − Pr0)

}
(B.151)

282



B.4. Derivations from Chapter 6

r̃c̃+ 1

NT(1 − PL)2
=

PL

(1 − PL)2
+

1

NT(1 − PL)
. (B.152)

After simplifying, we obtain the following expression for the mean square number

of dwells under the two H1 tile approximation:

m2 =
(NT − 1)(1 + Pr0)

NTP 2
fa0

+
2PL

(1 − PL)2
+

1

NT(1 − PL)
+

2Pm(1 − PNT−1
r0

)2

NT(1 − PL)2P 2
fa0

+
2(NT − 1)(Pm − Pr0)

2PNT−2
r0

NT(1 − PL)2P 2
fa0

+
(3 + Pr0)(Pm − Pr0)(1 − PNT−1

r0
)

NT(1 − PL)P 3
fa0

+
Pr11 + Pr10

(1 − PL)Pfa0

{
2(Pm − Pr0)P

NT−2
r0

1 − PL

+
(3 − Pr0)

NTPfa0

− PNT−1
r0

NT

}
(B.153)

B.4 Derivations from Chapter 6

B.4.1 Mean and Variance of the Power Level Detector

We wish to derive the mean and variance of the power level detector for the

detection of MAI in the parallel form of the ML detector. We assume that one

full Doppler bin is covered by the detector tile and that this tile contains CT

cells. We also assume a complex signal representation, such that the rv X at

the input to the correlators has a CT-dimensional complex Gaussian distribution

with mean µX and covariance CX given by:

CX = 2σ2
XI. (B.154)

Note that σ2
X is the variance in either the in-phase or quadrature component of

X and that the elements of X are statistically independent. Thus, from Equa-

tion (6.6), we have:

CY = 2σ2
XSkS

H
k . (B.155)

Now, SkS
H
k is the product of two circulant matrices and, hence, is itself a circulant

matrix [50]. In fact, letting:

Θk
∆
= SkS

H
k , (B.156)

then Θk is the circulant matrix formed from the auto-correlation vector θk of the

spreading code from satellite k.
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Our approach is similar that used in the derivation of the Gaussian approx-

imations for the differentially coherent forms of detector/estimator. We begin

with the characteristic function of ν and use Equation (6.10) to obtain its first

two moments. Firstly, however, we require an expression for the determinant of

the matrix P defined in Equation (6.9). For this we require the following useful

property of circulant matrices [50]:

Property B.1 Let A be an N ×N circulant matrix whose first row is the vector

a, then the eigenvalues of A are given by the DFT of a. Thus, letting λi be the

ith eigenvalue of A and λ = [λ0, λ1, . . . , λN−1], then:

λ = DFT {a}

∴ λi =
N−1∑

n=0

aie
− 2πj

N
ni .

Thus, letting λi denote the ith eigenvalue of CY , then the λi’s are the roots of

the characteristic equation of CY :

|sI −CY | = 0. (B.157)

We can use Equation (B.157) to derive an expression for the determinant of P ,

as follows:

|sI −CY | =

CT−1∏

i=0

(s − λi) . (B.158)

Letting s → 1
jω

, yields:

∣∣∣∣
1

jω
I −CY

∣∣∣∣ =

CT−1∏

i=0

(
1

jω
− λi

)
(B.159)

=

(
1

jω

)CT CT−1∏

i=0

(1 − jωλi) (B.160)

∴ (jω)CT |sI −CY | =

CT−1∏

i=0

(1 − jωλi) . (B.161)
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But, for any N × N matrix A, |cA| = cN |A|, so:

|I − jωCY | =

CT−1∏

i=0

(1 − jωλi) (B.162)

= |P | . (B.163)

The Mean of ν

Inserting Equation (6.8) into Equation (6.10) yields:

E[ν] =
1

j

(
e−µ

H
YC

−1
Y [I−P−1]µY

d |P |−1

dω
+ |P |−1 d

dω
e−µ

H
YC

−1
Y [I−P−1]µY

)∣∣∣∣∣
ω=0

.

(B.164)

Taking each component in turn, we find:

e−µ
H
YC

−1
Y [I−P−1]µY

∣∣∣
ω=0

= 1 (B.165)

d |P |−1

dω
= − |P |−2 d |P |

dω
(B.166)

|P ||ω=0 = 1. (B.167)

The derivative of |P | is obtained from Equation (B.162):

d |P |
dω

=

CT−1∑

k=0

(−jλk)

CT−1∏

i=0
i6=k

(1 − jωλi) (B.168)

∴
d |P |
dω

∣∣∣∣
ω=0

= −j

CT−1∑

k=0

λk. (B.169)

But λk is given by the kth component of the DFT of the auto-correlation vector:

∴
d |P |
dω

∣∣∣∣
ω=0

= −j2σ2
X

CT−1∑

k=0

CT−1∑

n=0

e
− 2πj

CT
nk
θn. (B.170)

Now, by the orthogonality of the complex exponentials, we have:

CT−1∑

k=0

e
− 2πj

CT
nk

=





CT n ≡ 0 mod CT

0 otherwise.
(B.171)
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Thus, inserting Equation (B.171) into Equation (B.170) yields:

d |P |
dω

∣∣∣∣
ω=0

= −j2σ2
XCTθ0. (B.172)

But θ0 = CT and hence:

d |P |
dω

∣∣∣∣
ω=0

= −j2CT
2σ2

X . (B.173)

Using the matrix identity:

dA−1

dx
= −A−1dA

dx
A−1, (B.174)

we find:

d

dω
e−µ

H
YC

−1
Y [I−P−1]µY = −e−µ

H
YC

−1
Y [I−P−1]µY µH

YC
−1
Y P−1dP

dω
P−1µY (B.175)

= je−µ
H
YC

−1
Y [I−P−1]µY µH

YC
−1
Y P−1CYP

−1µ (B.176)

Now, P |ω=0 = I and, hence:

d

dω
e−µ

H
YC

−1
Y [I−P−1]µY

∣∣∣∣
ω=0

= jµH
YµY . (B.177)

Finally, inserting Equations (B.165), (B.166) (B.167), (B.173) and (B.177) into

Equation (B.164) and simplifying, yields:

E[ν] = 2CT
2σ2

X + µH
YµY . (B.178)

Letting σ2 denote the noise variance of the in-phase or quadrature component of

the received signal at the input to the coherent accumulator, then:

σ2
X = Mσ2.

Recall, from Equation (2.31), that σ2
Y is given by:

σ2
Y = NsMσ2,
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where Ns is the number of samples per code period. In the FFT-based detector/

estimator Ns = CT (i.e. the number of samples per code period is equal to the

number of cells per tile), and so we have:

E[ν] = 2CTσ2
Y + µH

YµY . (B.179)

The Variance of ν

The variance of ν can be derived using the same approach as was demonstrated

above for the mean. The only difficulty arises in the determination of the second

order derivative of the determinant of P , so we consider this in some detail here.

Taking the derivative of Equation (B.168) yields:

d2 |P |
dω2

=

CT−1∑

k=0

(−jλk)

CT−1∑

l=0
l 6=k

(−jλl)

CT−1∏

i=0

i6∈{k,l}

(1 − jωλi) (B.180)

∴
d2 |P |
dω2

∣∣∣∣
ω=0

= −
CT−1∑

k=0

CT−1∑

l=0
l 6=k

λkλl (B.181)

=

CT−1∑

k=0

λ2
k −

(
CT−1∑

k=0

λk

)2

. (B.182)

The second summation term in Equation (B.182) above can be identified as the

negative of the square of Equation (B.173). The first summand can be simplified

using Parseval’s theorem for the DFT [21]:

Theorem B.1 (Parseval) Given a length N vector x and its DFT X, then

N−1∑

n=0

|xn|2 =
1

N

N−1∑

k=0

|Xk|2 .

Recalling that λi is given by 2σ2
X times the ith coefficient of the DFT of the

auto-correlation vector, θ, then Parseval’s theorem yields:

CT−1∑

k=0

λ2
k = 4σ4

XCT

CT−1∑

k=0

|θk|2 . (B.183)
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Thus, inserting Equations (B.183) and (B.173) into Equation (B.182) yields:

d2 |P |
dω2

∣∣∣∣
ω=0

= 4σ4
XCT

CT−1∑

k=0

|θk|2 − 4σ4
XCT

2 (B.184)

=
4σ4

Y

CT

CT−1∑

k=0

|θk|2 − 4σ4
Y . (B.185)

Again, applying the matrix identity of Equation (B.174), it can be shown that:

d2

dω2
e−µ

H
YC

−1
Y [I−P−1]µY

∣∣∣∣
ω=0

=
(
µH

YµY

)2
+ 2µH

YCYµY . (B.186)

Using Equations (B.184) and (B.186) in conjunction with Equation (6.10) yields

the following expression for the variance of ν:

Var [ν] =
4σ4

Y

CT

CT−1∑

k=0

|θk|2 + 2µH
YCYµY . (B.187)

288



Appendix C

Probability Theory

In this appendix we give a brief overview of probability theory as it applies in this

thesis. It could be used as a quick reference for the notations and conventions

maintained throughout the thesis. An excellent overview of probability theory,

going into much greater detail than we do here, can be found in Papoulis’ book

[92].

C.1 Random Events and Random Variables

Probability theory concerns itself with randomness. We shall assume that the

object of interest is an experiment, E. We denote by S the set of possible outcomes

of E, which we call the sample space of the experiment. An event is defined as

any subset of S, containing any number of points from within S. Assuming the

experiment is random, then any event A is associated with a probability Pr {A},
for which the following two properties hold:

Property C.1

Pr {A} ≥ 0

and

Property C.2

Pr {S} = 1.

Given a sample space S and an event s ∈ S, then a random variable X(s) is

defined as a mapping from S to a subset of the real numbers:

X(s) : S → R.
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In general we will consider only the random variable (rv) X, so that the depen-

dence on s is implicit.

Consider the random event X ≤ x for some x such that −∞ ≤ x ≤ ∞,

then the probability of such an event is denoted FX(x). This probability can be

viewed as a continuous function of the variable x, and is called the cumulative

distribution function (CDF):

FX(x) = Pr {X ≤ x} . (C.1)

The derivative of the CDF with respect to x is called the probability density

function (PDF) denoted fX(x):

fX(x) =
∂ FX(x)

∂ x
. (C.2)

The probability of the random event x1 ≤ X ≤ x2 is then given by:

Pr {x1 ≤ X ≤ x2} = FX(x2) − FX(x1) (C.3)

=

∫ x2

x1

fX(x)d x. (C.4)

If the mapping X(s) maps elements of S to a discrete subset of the real

numbers, then the rv X is called a discrete rv. In general we associate all discrete

rvs with mappings to a subset of the set of integers Z. We define the discrete rv

X(s) as:

X(s) : S → Z.

In place of the probability density function of continuous rvs, we define the

probability mass function (PMF) of discrete rvs. The PMF of the discrete rv X

at the point X = n is given by:

pX (n) = Pr {X = n} . (C.5)

The CDF of X is thus given by:

FX(n) =
n∑

i=−∞
pX (i) . (C.6)
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C.2 Expectation and Moments

The expected value — or mean — of an rv X is defined as:

µ
∆
= EX [x] =

∫ ∞

−∞
xfX(x)d x. (C.7)

Note that if X is a discrete rv taking on values n ∈ Z, then we have:

EX [n] =
∞∑

n=−∞
npX (n) . (C.8)

We define by mn the nth moment of the rv X:

mn
∆
= EX [xn] =

∫ ∞

−∞
xnfX(x)d x. (C.9)

Of more general interest are the central moments :

EX [(x − µ)n] =

∫ ∞

−∞
(x − µ)nfX(x)d x. (C.10)

The first central moment is simply zero. The second central moment is called the

variance and is denoted Var [X]:

Var [X]
∆
= EX

[
(x − µ)2]. (C.11)

C.3 Transform Domain Techniques

Transform domain methods often prove useful in the analysis of random variables,

particularly when dealing the rvs which can be expressed as the sum of many other

rvs.

C.3.1 The Moment Generating Function

The MGF of an rv X is defined by:

ΨX (s)
∆
= EX [exp (sx)], (C.12)
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assuming that the expected value exists for all values of s in some range −h <

s < h. For a continuous rv we therefore have:

ΨX (s) =

∫ ∞

−∞
fX(x) exp (sx) d x. (C.13)

It is interesting to note at this point that Equation (C.13) above is essentially the

equation of the two-sided Laplace transform of fX(x). In fact the only difference

is in the sign of the transform variable, s.

The MGF takes its name from the following:

Property C.3

mn =
∂n ΨX (s)

∂ sn

∣∣∣∣
s=0

.

Thus, given the MGF of the rv X, we can easily determine all the moments of

X. Other useful properties include:

Property C.4 Given two independent rvs X and Y , with MGFs ΨX (s) and

ΨY (s), then the MGF of the rv Z = X + Y is given by:

ΨZ (s) = ΨX (s) ΨY (s) .

Property C.5 Given the rv X with MGF ΨX (s), and another rv Y such that

Y = g(X), then the MGF of Y is given by:

ΨY (s) = EX [exp (sg(X))].

Property C.6 Given that the rv X has MGF ΨX (s) then the PDF of X can be

determined using the Laplace inversion integral (Bromwich integral):

fX(x) =
1

2πj

∫ c+j∞

c−j∞
ΨX (s) exp (−sx) d s.

These last two properties prove useful in determining the PDF of a function of

an rv.

C.3.2 The Characteristic Function

The characteristic function of the rv X is defined by:

ΦX (jω) = EX [exp (jωx)]. (C.14)
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By comparison with Equation (C.12) above, we see that the CHF is simply the

MGF evaluated at s = jω. The properties of the CHF are very similar to the

properties of the MGF.

Property C.7

mn =
1

jn

∂n ΦX (jω)

∂ ωn

∣∣∣∣
s=0

.

Property C.8 Given two independent rvs X and Y , with CHFs ΦX (jω) and

ΦY (jω), then the CHF of the rv Z = X + Y is given by:

ΦZ (jω) = ΦX (jω) ΦY (jω) .

Property C.9 Given the rv X with CHF ΦX (jω), and another rv Y such that

Y = g(X), then the CHF of Y is given by:

ΦY (jω) = EX [exp (jωg(X))].

Property C.10 Given that the rv X has CHF ΦX (jω) then the PDF of X can

be determined using the Fourier inversion integral:

fX(x) =
1

2π

∫ ∞

−∞
ΦX (jω) exp (−jωx) dω.

So, in effect the MGF represents the two-sided Laplace transform of the PDF,

and the CHF represents the Fourier transform of the PDF. It is important to note

that the two functions are directly inter-changeable by the simple substitution

s ↔ jω. Tables of Fourier transforms may be used to determine the CHF from

the PDF and vice versa.

C.3.3 The Probability Generating Function

Whereas the MGF and CHF are useful tools in the analysis of continuous rvs, we

now introduce the probability generating function (PGF), which is the equivalent

function for the analysis of discrete rvs taking on non-negative integer values. The

PGF is essentially a sequence generating function, an excellent introduction to

which can be found in [149].

Given the discrete rv X, the PGF PX (z) is defined by:

PX (z)
∆
= EX

[
zk
]

(C.15)
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=
∞∑

i=0

pX (i) zi. (C.16)

Some useful properties include:

Property C.11

∂n PX (z)

∂ zn

∣∣∣∣
z=1

= EX

[
n−1∏

i=0

(X − i)

]
.

Property C.12 Given two independent discrete rvs X and Y, with PGFs PX (z)

and PY (z), then the PGF of the discrete rv Z = X + Y is given by:

PZ (z) = PX (z) PY (z) .

Property C.13 Given that the discrete rv X has PGF PX (z) then the PMF of

X can be determined using the inversion formula:

pX (n) =
1

2πj

∮

Γ0

PX (z) z−(n+1)d z,

where Γ0 is a complex contour in the z-domain enclosing the origin.
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[16] J. A. Ávila Rodŕıguez, T. Pany and B. Eissfeller. A theoretical analy-

sis of acquisition algorithms for indoor positioning. In Proceedings of the

2nd ESA Workshop on Satellite Navigation User Equipment Technologies

(NAVITEC 2004). Noordwijk, The Netherlands, Dec. 8–10 2004.

[17] P. Axelrad and R. G. Brown. GPS navigation algorithms. In Global Po-

sitioning System: Theory and Applications, vol. 1, chap. 9, pp. 409–433.

American Institute of Aeronautics and Astronautics, 1996.

296

http://www.abiresearch.com/abiprdisplay.jsp?pressid=595


References

[18] M. J. Barrett. Error probability for optimal and suboptimal quadratic

receivers in rapid Rayleigh fading channels. IEEE Journal on Selected Areas

in Communications, vol. SAC-5, no. 2, pp. 302–304, Feb. 1987.

[19] P. Bezucha. Mean acquisition time of serial spread spectrum PN acquisition

system in the presence of code doppler. In Proceedings of the IEEE Seventh

International Symposium on Spread Spectrum Techniques and Applications

(ISSSTA), vol. 3, pp. 751–755. Prague, Czech Republic, 2–5 Sep. 2002.

[20] M. S. Braasch and A. J. Van Dierendonck. GPS receiver architectures and

measurements. Proceedings of the IEEE, vol. 87, no. 1, pp. 48–64, Jan.

1999.

[21] R. N. Bracewell. The Fourier Transform and Its Applications. McGraw-

Hill, 1999. ISBN 0-07-303938-1.

[22] W. R. Braun. Performance analysis for the expanding search PN acquisition

algorithm. IEEE Transactions on Communications, vol. 30, no. 3, pp. 424–

435, Mar. 1982.

[23] P. E. Cantrell and A. K. Ojha. Comparison of generalized Q-function algo-

rithms. IEEE Transactions on Information Theory, vol. IT-33, no. 4, pp.

591–596, Jul. 1987.

[24] D. E. Cartier. Partial correlation properties of pseudonoise (PN) code

in noncoherent synchronization/detection schemes. IEEE Transactions on

Communications, vol. 24, no. 8, pp. 898–903, Aug. 1976.

[25] K. K. Chawla and D. V. Sarwate. Parallel acquisition of PN sequences in

DS/SS systems. IEEE Transactions on Communications, vol. 42, no. 5, pp.

2155–2164, May 1994.

[26] U. Cheng. Performance of a class of parallel spread-spectrum code acqui-

sition schemes in the presence of data modulation. IEEE Transactions on

Communications, vol. 36, no. 5, pp. 596–604, May 1988.

[27] U. Cheng, W. J. Hurd and J. I. Statman. Spread-spectrum code acquisition

in the presence of Doppler shift and data modulation. IEEE Transactions

on Communications, vol. 38, no. 2, pp. 241–250, Feb. 1990.

297



References

[28] C.-D. Chung. Differentially coherent detection technique for direct-sequence

code acquisition in a Rayleigh fading mobile channel. IEEE Transactions on

Communications, vol. 43, no. 2/3/4, pp. 1116–1126, February/March/April

1995.

[29] A. J. R. M. Coenen and D. J. R. van Nee. Novel fast GPS/GLONASS

code-acquisition technique using low update rate FFT. Electronics Letters,

vol. 28, no. 9, pp. 863–865, 1992.

[30] M. Cohn and A. Lempel. On fast m-sequence transforms. IEEE Transac-

tions on Information Theory, vol. 23, no. 1, pp. 135–137, Jan. 1977.

[31] G. E. Corazza. On the MAX/TC criterion for code acquisition and its

applications to DS-SSMA systems. IEEE Transactions on Communications,

vol. 44, no. 9, pp. 1173–1182, Sep. 1996.

[32] G. E. Corazza, C. Caini, A. Vanelli-Coralli et al. DS-CDMA code acquisi-

tion in the presence of correlated fading — part I: Theoretical aspects. IEEE

Transactions on Communications, vol. 52, no. 7, pp. 1160–1168, Jun. 2004.

[33] P. A. Dafesh and J. K. Holmes. Practical and theoretical tradeoffs of active

parallel correlator and passive matched filter acquisition implementations.

In Proceedings of the Institute of Navigation Annual Meeting, ION AM

2000, pp. 352–367. San Diego, CA, Jun. 26–28 2000.

[34] R. G. Davenport. FFT processing of direct sequence spreading codes using

modern DSP microprocessors. In Proceedings of the IEEE 1991 National

Aerospace and Electronics Conference NAECON, pp. 98–105. IEEE, Day-

ton, OH, May 1991.

[35] R. B. Davies. Numerical inversion of a characteristic function. Biometrika,

vol. 60, no. 2, pp. 415–417, Aug. 1973.

[36] R. B. Davies. Algorithm AS 155: The distribution of a linear combination

of χ2 random variables. Applied Statistics, vol. 29, no. 3, pp. 323–333, 1980.

[37] L. D. Davisson and P. G. Flikkema. Fast single-element PN acquisition for

the TDRSS MA system. IEEE Transactions on Communications, vol. 36,

no. 11, pp. 1226–1235, Nov. 1988.

298



References

[38] D. M. DiCarlo and C. L. Weber. Statistical performance of single dwell

serial synchronization systems. IEEE Transactions on Communications,

vol. 28, no. 8, pp. 1382–1388, Aug. 1980.

[39] D. M. DiCarlo and C. L. Weber. Multiple dwell serial search: Performance

and application to direct sequence code acquisition. IEEE Transactions on

Communications, vol. 31, no. 5, pp. 650–659, May 1983.

[40] H. Elders-Boll and U. Dettmar. Efficient differentially coherent

code/Doppler acquisition of weak GPS signals. In Proceedings of the In-

ternational Symposium on Spread Spectrum Techniques and Applications

(ISSSTA), pp. 731–735. Sydney, Australia, 30th Aug. – 2nd Sep. 2004.

[41] P. Enge and P. Misra. Scanning the issue. Proceedings of the IEEE, vol. 87,

no. 1, pp. 3–15, Jan. 1999.

[42] C. C. Fan and Z. Tsai. A differentially coherent delay-locked loop for spread-

spectrum tracking receivers. IEEE Communications Letters, vol. 3, no. 10,

pp. 282–284, Oct. 1999.

[43] FCC. Fact sheet: FCC wireless 911 requirements. Available at:

http://www.fcc.gov/911/enhanced, Jan. 2001.

[44] J. Gil-Pelaez. Note on the inversion theorem. Biometrika, vol. 38, no. 3/4,

pp. 481–482, Dec. 1951.

[45] R. Gold. Optimal binary sequences for spread spectrum multiplexing. IEEE

Transactions on Information Theory, vol. 13, pp. 619–621, Oct. 1967.

[46] S. W. Golomb. Shift Register Sequences. Holden Day Series In Information

Systems. Holden-Day Inc., San Francisco, CA, USA, 1967. ISBN 0-89412-

048-4.

[47] S. D. Gordon and J. A. Ritcey. Calculating the K-distribution by saddle-

point integration. IEE Proceedings – Radar, Sonar and Navigation, vol.

142, no. 4, pp. 162–166, Aug. 1995.

[48] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products.

Academic Press, New York, 4th edn., 1965. ISBN 0-12-294757-6.

299

http://www.fcc.gov/911/enhanced


References

[49] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics.

Addison-Wesley, 1989. ISBN 0-201-55802-5.

[50] R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and

Trends in Communications and Information Theory, vol. 2, no. 3, pp. 155–

239, 2006. URL http://ee.stanford.edu/~gray/toeplitz.pdf.

[51] T. Haddrell and A. R. Pratt. Understanding the indoor GPS signal. In Pro-

ceedings of the 14th International Technical Meeting of the Satellite Division

of the Institute of Navigation ION GPS 2001, pp. 1487–1500. Institute of

Navigation, Salt Lake City, Utah, Sep. 2001.

[52] C. W. Helstrom. Probability and Stochastic Processes for Engineers. Pren-

tice Hall, Englewood Cliffs, NJ, USA, 1991. ISBN 0-02-353571-7.

[53] C. W. Helstrom. Computing the generalized Marcum Q-function. IEEE

Transactions on Information Theory, vol. 38, no. 4, pp. 1422–1428, Jul.

1992.

[54] C. W. Helstrom. Elements of Signal Detection and Estimation. PTR Pren-

tice Hall, Englewood Cliffs, NJ, USA, 1995. ISBN 0-13-808940-X.

[55] J. K. Holmes and L. Biederman. Delay-lock-loop mean time to lose lock.

IEEE Transactions on Communications, vol. 26, no. 11, pp. 1549–1556,

Nov. 1978.

[56] J. K. Holmes and C. C. Chen. Acquisition time performance of PN spread-

spectrum systems. IEEE Transactions on Communications, vol. 25, no. 8,

pp. 778–783, Aug. 1977.

[57] P. M. Hopkins. A unified analysis of pseudonoise synchronization by en-

velope correlation. IEEE Transactions on Communications, vol. 25, no. 8,

pp. 770–778, Aug. 1977.

[58] W. J. Hurd, J. I. Statman and V. A. Vilnrotter. High dynamic GPS re-

ceiver using Maximum-Likelihood estimation and frequency tracking. IEEE

Transactions on Aerospace and Electronics Systems, vol. 23, no. 4, pp. 425–

437, Sep. 1987.

300

http://ee.stanford.edu/~gray/toeplitz.pdf


References

[59] J. Iinatti and A. Pouttu. Differentially coherent code acquisition in Doppler.

In Proceedings of the IEEE Vehicular Technology Conference (VTC Fall

1999), vol. 2, pp. 703–707. Amsterdam, Sept. 19–22 1999.

[60] J. Iinatti and A. Pouttu. Differentially coherent code acquisition in jamming

and data modulation. In Proceedings of the IEEE Military Communications

Conference (MILCOM’99), pp. 579–573. Atlantic City, NJ, Oct. 31 – Nov. 3

1999.

[61] M. Iosifescu. Finite Markov Processes and their Applications. Wiley Series

in Probability and Mathematical Sciences. John Wiley & Sons, 1980. ISBN

0-471-27677-4.

[62] D. R. Iskander. The characteristic function of the K-distributed interfer-

ence. In Proceedings of the 12th European Signal Processing Conference

(EUSIPCO 04), pp. 1429–1432. Vienna, Austria, Sep. 2004.

[63] E. Jakeman and P. N. Pusey. A model for non-Rayleigh sea echo. IEEE

Transactions on Antennas and Propagation, vol. AP-24, no. 6, pp. 806–814,

Nov. 1976.

[64] D. R. Jensen and H. Solomon. A Gaussian approximation to the distri-

bution of a definite quadratic form. Journal of the American Statistical

Association, vol. 67, no. 340, pp. 898–902, Dec. 1972.

[65] Y. K. Jeong, O.-S. Shin and K. B. Lee. Fast slot synchronization for in-

tercell asynchronous DS/CDMA systems. IEEE Transactions on Wireless

Communications, vol. 1, no. 2, pp. 353–360, Apr. 2002.

[66] D. H. Johnson. Notes for ELEC 531: Estimation and detection theory.

http://www.ece.rice.edu/~dhj/courses/elec531/. Accessed 16 Febru-

ary 2006.

[67] N. L. Johnson. On an extension of the connexion between Poisson and χ2

distributions. Biometrika, vol. 46, no. 3/4, pp. 352–363, Dec. 1959.
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