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Abstract
The dependence of the resistivity with changing diameter of heavily-doped self-seeded germanium nanowires was studied for the

diameter range 40 to 11 nm. The experimental data reveal an initial strong reduction of the resistivity with diameter decrease. At

about 20 nm a region of slowly varying resistivity emerges with a peak feature around 14 nm. For diameters above 20 nm, nano-

wires were found to be describable by classical means. For smaller diameters a quantum-based approach was required where we

employed the 1D Kubo–Greenwood framework and also revealed the dominant charge carriers to be heavy holes. For both regimes

the theoretical results and experimental data agree qualitatively well assuming a spatial spreading of the free holes towards the

nanowire centre upon diameter reduction.
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Findings
Semiconducting nanowires are in the focus of research due to

their potential applications in electronics and optics [1-9].

Germanium nanowires (Ge NWs) are of particular interest as

they provide the prospect for quantum-related phenomena asso-

ciated with one-dimensional (1D) confinement already at diam-

eters of tens of nm [10], or determining their electronic proper-

ties by surface doping [11].

Among different synthetic routes for obtaining Ge NWs

[12,13], the novel self-seeding mechanism is of special interest

[14,15]. The main advantage of this method is the elimination

of dopant incorporation from the metal nanoparticle catalysts

[11-13]. It was demonstrated that by selecting the synthesis

conditions, the degree of surface-doping in the NW can be con-

trolled [11]. Even heavy doping close to or at the degeneracy
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level can be achieved, rendering the semiconducting NW quasi-

metallic [11]. Approaching degenerate doping, therefore,

provides opportunity to produce NWs adequate for both

nanoscaled semiconductor conduction-channel and source- and

drain-components. Ultimately, these two doping states could be

realised within the same NW in different sections. In perspec-

tive of the continued successful miniaturisation of electronic

devices it is therefore essential to elucidate the diameter depen-

dence of the resistivity of heavily/degenerately doped self-

seeded Ge NWs.

For our study we chose heavily doped self-seeded Ge NWs pre-

dominantly having the same crystallographic direction

[11,14,15]. Individual NWs were transferred onto 300 nm ther-

mally grown SiO2 substrates and contacted lithographically in

four-point probe configuration [11]. Electrical characterization

was carried out at ambient conditions. The geometry of each

NW device (diameter size and channel length) was determined

by electron microscopy [11,16]. From this the NW resistivity

was extracted as function of diameter (Figure 1).

Figure 1: Resistivity of nanowires with 40 to 11 nm diameter. The
resistivity decreases by two orders of magnitude with reducing diame-
ter. In the range of 27 to 20 nm an increased scattering of the resis-
tivity values is observed. Below 20 nm the resistivity variation is signifi-
cantly smaller. Inset: Data for NWs with diameter below 25 nm. At
around 14 nm a peak-like feature is found.

Upon NW diameter reduction, first the resistivity revealed a

rapid drop by two orders of magnitude, followed by a region of

weakly varying resistivity below 20 nm diameter. Prior to this

region, an increased scattering of the resistivity values was ob-

served coinciding with the NW diameter reaching the excitonic

Bohr radius (≈24 nm [10]), indicating the approach to the quan-

tum regime. Furthermore, a peak-like feature was found at

around 14 nm diameter (inset Figure 1). In comparison, lightly

doped semiconducting NWs were reported to exhibit a strong

increase of resistivity with decreasing diameter [17].

To describe our findings, we first recall that in self-seeded Ge

NWs the majority charge carriers are free holes whose concen-

tration depends on the number of charge traps at the NW core/

shell interface [11,18]. In particular, for larger diameter NWs

those free holes will be predominantly located in a space-charge

region of width d near the interface [19-21] which extends

towards the NW centre (schematic in Figure 2a). That is, there

will be a central region along the NW axis devoid of free charge

carriers. The width d can be calculated by solving the Poisson

equation in cylindrical coordinates [20,21] and for simplicity

assuming a constant free-hole concentration nh. One finds the

expression [22]

(1)

where Φ0 is the electrostatic potential at the core/shell interface,

ε0 is the vacuum permittivity, εr the dielectric constant of

germanium, and e the elementary charge.

Figure 2: (a) Schematic diagram of the volume in which holes are pre-
dominantly located for (left) a wire with a diameter above ≈20 nm and
(right) for smaller diameters. The yellow region at the outside repre-
sents the nanowire shell. Dark-blue area: region of free holes near to
the core/shell interface. Light-coloured area: region devoid of free
holes. Trapped electrons and free holes are schematically depicted by
(−) and (+), respectively. (b) Comparison between theoretical model
and experimental resistivity values for diameters larger than 22 nm.
The model (blue line) follows qualitatively the observed experimental
data. For smaller diameters a systematic deviation of the data is found
indicating the limit of the validity of the model for these diameters.
Inset: Calculated mobility values after Equation 2.
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The confinement of free holes into the space-charge region

close to the NW surface only, however, cannot remain for all

diameters. The available volume for the free holes and the num-

ber of charge-traps at the core/shell interface scale with NW di-

ameter. Therefore, with decreasing diameter the holes will

extend further towards the NW axis and eventually d will

become comparable to the NW radius R which we find in our

calculation to occur for a diameter of about 18 nm (Supporting

Information File 1).

We first address the data in the region with the largest resis-

tivity variation (diameters ≥ 20 nm). Here we presume d << R

and a classical description to be sufficient. Assuming that the

number of holes is the same as the number of charge traps, we

get for the free-hole concentration nh = 2ηctR·(2Rd – d2)−1 with

ηct being the charge trap density per cm2. The NW resistivity

can be therefore written as (Supporting Information File 1)

(2)

where µ is the free hole mobility. Taking Φ0 = 0.3 eV [22],

εr = 16 [23] and ηct = 1013 cm−2 [11] we can calculate from

Equation 2 the corresponding mobility values (inset Figure 2b)

which range from 10 to 120 × 10−3 cm2 V−1 s−1. Interestingly,

the mobility increases with reducing diameter, in contrast to

lightly doped semiconductor NWs [17].

Fitting the mobility data by a linear function and inserting it

into Equation 2 we find resistivity values which are in good

agreement with our data for NWs down to 22 nm diameter

(Figure 2b) (showing consistency with our assumption d << R

for nanowires ≥ 18 nm diameter; Supporting Information

File 1). Below 22 nm, however, the resistivity values systemati-

cally stay well beneath our theoretical curve indicating that a

classical description is insufficient. This is further corroborated

by the observation of an increased scattering of the resistivity

values around 22 nm (cf. Figure 1). Both findings point towards

a crossover from a classical to a quantum-determined behav-

iour of the charge-carriers in this diameter range. Therefore, for

NW diameters below 20 nm we now employ a quantum

formalism taking into account that the free holes are distributed

across the entire NW diameter (d = R). We consider the simple

model of a NW being represented by a cylindrical well with

infinite potential walls. It is shown below that despite this

simplification we find qualitative correspondence with our ex-

perimental findings.

Within this approach using the parameters of bulk germanium

we determined the positions of the heavy and light hole sub-

band minima along with the corresponding density of states

(Supporting Information File 1). The density of states for heavy

holes was found to dominate and therefore these can be consid-

ered as the main carrier type. The average sub-band bottom

spacing compares to the thermal energy at room temperature

(Supporting Information File 1) suggesting that a description

within the 1D Kubo–Greenwood framework is valid [24]. These

findings also demonstrate that indeed at diameters ≤ 20 nm the

confinement is not negligible and therefore the quantum regime

is entered.

As dominating resistivity contributions, we considered phonon

and (remote) Coulomb scattering from the charge traps at

the core/shell interface (Supporting Information File 1). Sur-

face roughness scattering was neglected within our diameter

range, as previous reports on Si NWs suggest that only at

diameters below 10 nm a sizable contribution is expected

[24,25]. We further assumed the density of surface states to be

constant.

For diameters between 11 and 22 nm, the NW resistivity and

mobility values were calculated (Figure 3). A peak feature in

resistivity at around 14 nm was found, in similarity to the exper-

imental data (inset Figure 3a). The calculated mobility values

decrease monotonically, developing a plateau between 12 and

15 nm diameter. This can be related to the fact that the Fermi

level rises rapidly with these diameters as it is pinned by the

large density of states at the bottom of sub-bands involved

(Supporting Information File 1) and thus is responsible for the

peak feature: The carrier concentration increases with diameter

reduction (acting to lower the resistivity), in opposition to the

decreasing mobility. That is, when the mobility is constant, the

concentration increase dominates and the resistivity reduces as

the diameter is lowered. For other diameters the mobility reduc-

tion counterbalances the concentration increase leading to a

resistivity augmentation with decreasing diameter. Therefore

the change from mobility- to carrier-concentration-dominated

resistivity leads to the peak-feature observed. Also, the appear-

ance of such a peak is only expected in thin nanowires (suffi-

ciently confined electronic system) with significant interface/

surface state doping.

Although the position of the peak-like feature at 14 nm is well

qualitatively reproduced, there is less quantitative agreement:

For the lowest value of 9 × 10−3 Ω cm for a 19 nm diameter

NW, the estimated 3.4 × 10−3 Ω cm differs only by a factor of

three. However, for the top of the peak feature, the calculated

4.2 × 10−3 Ω cm is underestimated by more than two orders of

magnitude. We attribute this discrepancy to the simplifications

used. The infinite potential well approximation (rather than a

self-consistent solution to the Schrödinger and Poisson equa-
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Figure 3: (a) Calculated nanowire resistivity from 22 to 11 nm diame-
ter. Around 14 nm a peak-feature is found in agreement with the ex-
perimental data. At 11 nm diameter, the sharp increase of the resis-
tivity is due to the shift of the Fermi-energy below the third heavy-hole
sub-band (Supporting Information File 1). (b) Nanowire mobility calcu-
lated for the same diameter range as in (a). After an initial decrease,
the mobility reveals a plateau-like region from about 12 to 15 nm.

tions) requires the carrier wavefunctions to be strictly zero at

the cylinder surface which in turn results in an underestimate of

the charge carrier density within the NW surface region. This

influences the actual Coulomb-scattering contribution to the

resistivity as the Coulomb-scattering amplitude between any

two sub-bands is strongly dependent on the NW diameter (Sup-

porting Information File 1). While for all diameters the scat-

tering amplitude principally increases when approaching the

core/shell interface, within larger diameter NWs the difference

for carriers in the centre and close to the surface augments sig-

nificantly. More specifically, this increase is predominantly due

to the rapid change of the scattering amplitude in the NW

centre, while close to the surface the amplitude varies much less

for different diameters. For example, the scattering amplitude

within the centre region of a 12 nm diameter nanowire is more

than an order of magnitude higher compared to a NW of 17 nm

diameter. In contrast, the amplitudes close to the NW surfaces

differ only by a few ten % (Supporting Information File 1).

Supporting Information
Supporting Information File 1
Details on theoretical calculations.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-7-119-S1.pdf]
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