
Title Three-dimensional matching instances are rich in stable
matchings

Authors Escamocher, Guillaume;O'Sullivan, Barry

Publication date 2018-06-09

Original Citation Escamocher G., O’Sullivan B. (2018) Three-Dimensional Matching
Instances Are Rich in Stable Matchings. In: van Hoeve WJ. (eds)
Integration of Constraint Programming, Artificial Intelligence, and
Operations Research. CPAIOR 2018, Delft, Netherlands, 26-29
June, Lecture Notes in Computer Science, vol 10848. Springer,
Cham, pp. 182-197. doi: 10.1007/978-3-319-93031-2_13

Type of publication Conference item

Link to publisher's
version

https://doi.org/10.1007/978-3-319-93031-2_13 -
10.1007/978-3-319-93031-2_13

Rights © Springer International Publishing AG, part of Springer
Nature 2018. This is a post-peer-review, pre-copyedit version
of an article published in Lecture Notes in Computer Science.
The final authenticated version is available online at: http://
dx.doi.org/10.1007/978-3-319-93031-2_13

Download date 2024-04-30 09:21:32

Item downloaded
from

https://hdl.handle.net/10468/6633

https://hdl.handle.net/10468/6633


Three-Dimensional Matching Instances are Rich
in Stable Matchings

Guillaume Escamocher and Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland
{guillaume.escamocher|barry.osullivan}@insight-centre.org

Abstract. Extensive studies have been carried out on the Stable Match-
ing problem, but they mostly consider cases where the agents to match
belong to either one or two sets. Little work has been done on the three-
set extension, despite the many applications in which three-dimensional
stable matching (3DSM) can be used. In this paper we study the Cyclic
3DSM problem, a variant of 3DSM where agents in each set only rank the
agents from one other set, in a cyclical manner. The question of whether
every Cyclic 3DSM instance admits a stable matching has remained open
for many years. We give the exact number of stable matchings for the
class of Cyclic 3DSM instances where all agents in the same set share
the same master preference list. This number is exponential in the size
of the instances. We also show through empirical experiments that this
particular class contains the most constrained Cyclic 3DSM instances,
the ones with the fewest stable matchings. This would suggest that not
only do all Cyclic 3DSM instances have at least one stable matching, but
they each have an exponential number of them.

1 Introduction

1.1 Different Kinds of Stable Matchings Problems

Stable matching is the problem of establishing groups of agents according to
their preferences, such that there is no incentive for the agents to change their
groups. It has a plethora of applications; the two most commonly mentioned are
the assignment of students to universities and of residents to hospitals [11].

Most of the research done on stable matching focuses on the cases where the
agents belong to either one set (the stable roommates problem) or two (the sta-
ble marriage problem). Far fewer studies have looked at the three-dimensional
version, where every agent in each set has a preference order over couples of
agents from the two other sets, even though it is naturally present in many situ-
ations. It can be used for example to build market strategies that link suppliers,
firms and buyers [15], or in computer networking systems to match data sources,
servers and end users [4]. Even some applications like kidney exchange, which
is traditionally associated with the stable roommates problem, can be easily
represented in a three-dimensional form [2].



One of the possible reasons for this lack of interest is that, while it is well-
known that every two-dimensional matching instance admits at least one stable
matching [7], some three-dimensional matching instances do not [1]. In fact,
determining whether a given three-dimensional matching instance has a stable
matching is NP-Complete [12, 16], even when each agent’s preference order is
required to be consistent, or when ties are allowed in the rankings [8].

Due to the hardness of the general problem, other restrictions on the prefer-
ences have been proposed. With lexicographically acyclic preferences, then there
is always a stable matching, which can easily be found in quadratic time [5]. If
the preferences are lexicographically cyclic, then the complexity of determining
whether a given instance admits a stable matching is still open. For the latter
kind of preferences, some instances with no stable matching have been found [3].

Most of the work in this paper is about the cyclic Three-Dimensional Stable
Matching Problem. In this version, agents from the first set only rank agents
from the second set, agents from the second set only rank agents from the third
set, and agents from the third set only rank agents from the first set. Hardness
results are also known for this variant: imposing a stronger form of stability [9],
or allowing incomplete preference lists [2] both make it NP-Complete to de-
termine whether an instance admits a stable matching. However, the standard
problem with complete preference lists is still open. It has actually been around
for decades and is considered “hard and outstanding” [17]. Few results about it
have been found since its formulation. To date, it is only known that there al-
ways exists a stable matching for instances with at most 3 agents in each set [3],
a result that has been subsequently improved to include instances with sets of
size 4 [6].

1.2 Master Preference Lists

Whatever the type of matching problem studied, it is generally assumed that
the preferences of each agent are independent from the preferences of the other
agents in the same set. However, this is often not the case in real-life settings.
Indeed, it is not hard to imagine that in many cases hospitals will have close, if
not identical, preferences over which residents they want to accept, or that firms
will often compete for the same top suppliers. Shared preference lists have also
been used to assign university students to dormitory rooms, where the students
were ranked according to a combination of academic record and socio-economic
characteristics [13].

Imposing a master preference list on all agents within a same set leads to
a much more constrained problem. In most cases, the only stable matching is
obtained by grouping the best ranked agent of each set together, the second
best ones together, and so on. This is true for the two-dimensional matching
problem [10]. As we explain in Section 3.4, this is also true for many versions of
the three-dimensional Stable Matching (3DSM) problem.

We will show in this paper that the cyclic 3DSM problem is singular with
regard to the number of stable matchings for instances with master preference
lists. Not only is this number more than one, but it is extremely large, exponential



in the size of the instances. We will also demonstrate through experiments that
cyclic 3DSM instances with master preference lists are the most constrained
cyclic 3DSM instances, the ones with the fewest stable matchings. Combining
these two results would indicate that it is the natural behavior of all cyclic
3DSM instances to have an exponential number of stable matchings, making
cyclic 3DSM an attractive problem when looking for tractable three-dimensional
matching classes.

We divide the paper in the following manner. In Section 2, we recall the
standard definitions of stability for the cyclic 3DSM problem, as well as the
notion of master preference list. In Section 3, we give the exact number of stable
matchings for instances with master preference lists. The bulk of Section 3 is
about the cyclic 3DSM problem, but we also take a look at instances from
other matching conventions to see how they compare. We empirically show in
Section 4 that in cyclic 3DSM, instances with more balanced preferences have
more stable matchings, while instances with the most unanimous preferences
(master lists) have the fewest stable matchings. We also observe this behavior in
other matching problems. Finally, we reflect on these findings in the conclusion.

2 General Definitions

Definition 1. A cyclic three dimensional stable matching instance, or cyclic
3DSM instance comprises:

– Three agent sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2,
. . . , cn} each containing n agents.

– For each agent a ∈ A, a strict preference order >a over the agents from the
set B. For each agent b ∈ B, a strict preference order >b over the agents
from the set C. For each agent c ∈ C, a strict preference order >c over the
agents from the set A.

The number n of agents in each agent set is the size of the instance.

Definition 2. A master list cyclic 3DSM instance is a cyclic 3DSM instance
where all agents within a same set have the same preference order.

All master list instances of a same size are isomorphic, so from now on we
will assume that every master list cyclic 3DSM instance of size n satisfies the
following condition: for all i and j such that 1 ≤ i < j ≤ n, for all agents a ∈ A,
b ∈ B and c ∈ C, we have bi >a bj , ci >b cj and ai >c aj . In other words, the
agents in each agent set are ranked according to the preferences of the previous
agent set.

Definition 3. Let I be a cyclic 3DSM instance of size n. A matching for I is
a set M = {t1, t2, . . . , tn} of n triples such that each triple contains exactly one
agent from each agent set of I, and each agent of I is represented exactly once
in M .



Definition 4. Let I be a cyclic 3DSM instance and let M be a matching for
I. Let t be a triple containing the three agents a ∈ A, b ∈ B and c ∈ C. Let
aM ∈ A, bM ∈ B and cM ∈ C be three agents such that a and bM are in the
same triple of M , b and cM are in the same triple of M , and c and aM are in
the same triple of M . Then we say that t is a blocking triple for M if b >a bM ,
c >b cM and a >c aM .

Note that, from the definition, no two agents in a blocking triple t can be in
the same triple ti in the matching M .

Definition 5. Let I be a cyclic 3DSM instance and let M be a matching for I.
We say that M is a stable matching for I if there is no blocking triple for M .

We present an example of a master list cyclic 3DSM instance and of a match-
ing in Figure 1. The dots represent the agents and the lines represent the triples
in the matching M = {〈a1, b3, c2〉, 〈a2, b1, c1〉, 〈a3, b4, c4〉, 〈a4, b2, c3〉}. The triple
〈a1, b2, c1〉 is a blocking triple because a1 prefers b2 over the agent it got in M ,
b2 prefers c1 over the agent it got in M , and c1 prefers a1 over the agent it got
in M . Therefore M is not stable.

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

Fig. 1. A matching M for a master list cyclic 3DSM instance of size 4.

3 Stable Matchings for Master List Instances

3.1 Preliminary Notions

In this section we present the main theoretical result of the paper: a function f
such that f(n) is the exact number of stable matchings for a master list cyclic
3DSM instance of size n. In the proof, we will consider two kinds of matchings:
divisible and indivisible.

Definition 6. Let I be a master list cyclic 3DSM instance of size n with three
agent sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn},
and let M be a matching for I. We say that M is divisible if there exists some
p such that 0 < p < n and:



– for all i, j such that ai and bj are in the same triple of M , we have i ≤ p⇔
j ≤ p.

– for all i, j such that ai and cj are in the same triple of M , we have i ≤ p⇔
j ≤ p.

We also say that p is a divider of M .

We say that a matching that is not divisible is indivisible. Note that a same
divisible matching can have several dividers. To illustrate the notion of divisible
matching, we present in Figure 2 two examples of divisible matchings for a master
list cyclic 3DSM instance of size 5. The first matching has two dividers, 1 and 4,
while the second matching has one divider, 3. The matching from Figure 1 was
an example of an indivisible matching.

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

Fig. 2. Two divisible matchings.

3.2 Indivisible Matchings

Before presenting the function f that counts the number of total matchings for
a given size n, we look at the function g that counts the number of indivisible
matchings. It turns out that this function is very simple: g(n) = 1 if n = 1 and
g(n) = 3 otherwise.

Proposition 1. Let n ≥ 2 be an integer and let I be a master list cyclic 3DSM
instance of size n. Then there are exactly 3 indivisible stable matchings for I.

To prove the proposition, we are going to define a matching IndMatn for each
size n, then show that IndMatn is stable, and finally show that any indivisible
stable matching for a master list cyclic 3DSM instance of size n is either IndMatn
or one of the two matchings that are isomorphic to IndMatn by rotation of the
agent sets.



Definition 7. Let I be a master list cyclic 3DSM instance with three agent sets
A = {a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cn} of size n > 0. We call
IndMatn the matching {t1, t2, . . . , tn} for I defined in the following way:

1. If n = 1, IndMatn = {〈a1, b1, c1〉}. If n = 2, IndMatn = {〈a1, b2, c1〉, 〈a2, b1, c2〉}.
If n = 3, IndMatn = {〈a1, b2, c1〉, 〈a2, b3, c3〉, 〈a3, b1, c2〉}.

2. If n > 3: t1 = 〈a1, b2, c1〉, t2 = 〈a2, b3, c4〉 and t3 = 〈a3, b1, c2〉.
3. If n > 3 and n ≡ 1 mod 3: tn = 〈an, bn, cn−1〉.
4. If n > 3 and n ≡ 2 mod 3: tn−1 = 〈an−1, bn, cn−2〉 and tn = 〈an, bn−1, cn〉.
5. If n > 3 and n ≡ 0 mod 3: tn−2 = 〈an−2, bn−1, cn−3〉, tn−1 = 〈an−1, bn, cn〉

and tn = 〈an, bn−2, cn−1〉.
6. If i ≡ 1 mod 3, i > 3 and i ≤ n−3: ti = 〈ai, bi+1, ci−1〉, ti+1 = 〈ai+1, bi+2, ci+3〉

and ti+2 = 〈ai+2, bi, ci+1〉.

IndMat11:

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a6 b6 c6

a7 b7 c7

a8 b8 c8

a9 b9 c9

a10 b10 c10

a11 b11 c11

IndMat12:

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a6 b6 c6

a7 b7 c7

a8 b8 c8

a9 b9 c9

a10 b10 c10

a11 b11 c11

a12 b12 c12

Fig. 3. The matchings IndMat11 and IndMat12.



IndMatn can be seen as a set of n/3 gadgets Gi, with each Gi composed of
the three triples ti, ti+1 and ti+2 for each i such that i ≡ 1 mod 3. All these
gadgets are isomorphic by translation, apart from the first one and the last one.
Figure 3 shows two examples of IndMatn matchings, one with n = 11 and the
other with n = 12. Both matchings are almost identical, but they each illustrate
a different type of final gadget. To help the reader clearly visualize the structure
of the matchings, we alternated the colors and line styles of the gadgets.

Lemma 1. Let I be a master list cyclic 3DSM instance of size n. Then IndMatn
is a stable matching for I.

Proof. For each i such that i ≡ 1 mod 3 and i ≤ n, let Gi be the gadget
composed of the three triples ti, ti+1 and ti+2. Let t = 〈a, b, c〉 be a blocking
triple for IndMatn.

Suppose first that a, b and c are from the same gadget Gi. From Definition 7,
we have ti = 〈ai, bi+1, cj〉 with either j = i − 1 or j = i, ti+1 = 〈ai+1, bi+2, ck〉
with either k = i + 2 or k = i + 3, and ti+2 = 〈ai+2, bi, ci+1〉. Two agents from
a same triple in a matching cannot be part of a same blocking triple for this
matching, and there are three triples in Gi, therefore at least one agent from
each triple is part of t. bi+1 cannot be part of t because it got assigned ci, which
is the best ranked agent among the agents of C that are in Gi. Likewise, cj
cannot be part of t because it got assigned aj , which is the best ranked agent
among the agents of A that are in Gi. So a = ai. bi+2 cannot be part of t,
because it is not as well ranked as bi+1, the agent from B that got assigned to
ai in IndMatn. So b = bi. So ci+1 cannot be part of t, because it shares a triple
in IndMatn with bi. So c = ck. So either c = ci+2 or c = ci+3. However, neither
ci+2 nor ci+3 is as well ranked as ci+1, the agent from B that got assigned to bi.
So it is not possible to have a blocking triple for IndMatn with all three agents
of the triple in the same gadget Gi.

Suppose now that a, b and c are not all in the same three-triple gadget. Then
there must be i and j with i < j such that a is in Gi and b is in Gj , or b is
in Gi and c is in Gj , or c is in Gi and a is in Gj . From Definition 7 and by
construction of the gadgets, if a is in Gi and b is in Gj then the agent from B
that got assigned to a in IndMatn is better ranked in the preference order of a
than b is, so t cannot be a blocking triple. Similarly, if c is in Gi and a is in Gj

then the agent from A that got assigned to c in IndMatn is better ranked in the
preference order of c than a is, so t cannot be a blocking triple. So b is in Gi and
c is in Gj . The only way for c to be better ranked in the preference order of b
than the agent from C that got assigned to b in IndMatn is if j = i+3, b = bi+2

and c = cj−1 = ci+2. Let r be such that a = ar and let s be such that bs got
assigned to ar in IndMatn. If r ≤ i + 2, then from Definition 7 we have bs ≥a b
and a prefers the agent of B it got assigned in IndMatn over b. If r ≥ i+3, then
from Definition 7 we have ai+1 ≥c a and c prefers the agent of A it got assigned
in IndMatn over a. Either way, t cannot be a blocking triple and we have the
result. ut



Lemma 2. Let I be a master list cyclic 3DSM instance of size n and let M be
a matching for I. If there are some ai (respectively bi, ci) and bj (respectively
cj, aj) in the same triple of M such that j ≥ i + 2, then M is not stable.

Proof. We only do the proof for ai and bj , as the other two cases are exactly the
same after rotation of the agent sets.

Suppose that we have a matching M = {t1, t2, . . . , tn} for I such that ti =
〈ai, bj , ck〉 with j ≥ i + 2. The triples ti′ = 〈ai′ , bj′ , ck′〉 and ti′′ = 〈ai′′ , bj′′ , ck′′〉
will be used in the proof. We distinguish the two cases k ≤ i and k > i.

– k ≤ i: from the pigeonhole principle we know that at least one of the i + 1
agents {c1, c2, . . . , ci+1} got assigned an agent ai′ ∈ A such that i < i′. Let
k′ ≤ i + 1 be such that ck′ is one such agent. There cannot be a bijection in
M among the sets {b1, b2, . . . , bi+1} and {c1, c2, . . . , ci+1} because bj is not
in the former but got assigned an agent from the latter. So we know that at
least one of the agents b1, b2, . . . , bi+1 got assigned an agent ck′′ ∈ C such
that k′′ > i + 1. Let j′′ ≤ i + 1 be such that bj′′ is such an agent. We have
bj′′ >ai bj (because j ≥ i + 2), ck′ >bj′′ ck′′ (because k′ ≤ i + 1 < k′′) and
ai >ck′ ai′ (because i < i′), so 〈ai, bj′′ , ck′〉 is a blocking triple for M and M
is not stable.

– k > i: none of the i agents {c1, c2, . . . , ci} got assigned ai, so from the
pigeonhole principle we know that at least one of them got assigned an
agent ai′ ∈ A such that i < i′. Let k′ ≤ i be such that ck′ is one such agent.
Also from the pigeonhole principle, we know that among the i + 1 agents
{b1, b2, . . . , bi+1} at least one of them got assigned an agent ck′′ ∈ C such
that k′′ > i. Let j′′ ≤ i + 1 be such that bj′′ is such an agent. We have
bj′′ >ai bj (because j ≥ i + 2), ck′ >bj′′ ck′′ (because k′ ≤ i < k′′) and
ai >ck′ ai′ (because i < i′), so 〈ai, bj′′ , ck′〉 is a blocking triple for M and M
is not stable. ut

Lemma 3. Let I be a master list cyclic 3DSM instance of size n and let M be
an indivisible stable macthing for I. Then either M is IndMatn, or M is one
of the two matchings that are isomorphic to IndMatn by rotation of the agent
sets.

Proof. Let M = {t1, t2, . . . , tn} be an indivisible matching for I. Without loss of
generality, assume that ai is in ti for every i. We are going to show by induction
that every ti is equal to the ith triple of IndMatn, modulo rotation of the agent
sets.

Case i=1: if a1, b1 and c1 are in three different triples of M , then they form
a blocking triple for M because they each prefer each other over the agent they
got assigned in M . If they are in the same triple of M , then n = 1 because
M is indivisible; since IndMat1 = 〈a1, b1, c1〉 from Definition 7.1, we have the
Lemma. So we can assume from now on that n > 1 and that exactly two agents
among a1, b1 and c1 are in the same triple in M . We will assume that a1 and c1
are the ones in the same triple. All three cases are isomorphic by rotation of the
agent sets; the case we chose will lead to IndMatn, while the other two would



have led to one of the matchings that are isomorphic to IndMatn by rotation
of the agent sets.

We know that t1 = 〈a1, bj , c1〉 with j ≥ 2. From Lemma 2, we know that
j ≤ 2. So t1 = 〈a1, b2, c1〉.

Inductive step: suppose now that the triples t1, t2, . . . , tp are the same as the
first p triples of IndMatn for some p such that 1 ≤ p < n. We are going to prove
that tp+1 is the same triple as the (p + 1)th triple in IndMatn. With plast the
highest p < n such that p ≡ 1 mod 3, there are five possibilities to consider.

– p ≡ 1 mod 3 and p < plast: since plast is also congruent to 1 modulo 3,
we also have p ≤ n − 3. From Definition 7 we know that the agents that
have already been assigned are a1, a2, . . . , ap from A, b1, b2, . . . , bp−1 and
bp+1 from B, and c1, c2, . . . , cp from C. So bp and some ck are in the same
triple, with k ≥ p + 1. From Lemma 2, we know that k ≤ p + 1. So bp
and cp+1 are in the same triple of M . ap+1 cannot be in this triple, because
otherwise either n would be equal to p + 1 or p + 1 would be a divider of
M . So some ai is assigned to cp+1 with i ≥ p + 2. From Lemma 2, we know
that i ≤ p+2. So ap+2 is assigned to cp+1 and tp+2 = 〈ap+2, bp, cp+1〉 (which
proves the next bullet point). So tp+1 = 〈ap+1, bj , ck〉 for some j ≥ p+ 2 and
k ≥ p + 2. From Lemma 2, we have j ≤ p + 2 and therefore bj = bp+2. We
cannot have k = p + 2, because otherwise either n would be equal to p + 2
or p + 2 would be a divider of M . So k ≥ p + 3. From Lemma 2, k ≤ p + 3
and therefore tp+1 = 〈ap+1, bp+2, cp+3〉, which from Definition 7.2 and 7.6 is
the same triple as the (p + 1)th triple of IndMatn.

– p ≡ 2 mod 3 and p < plast: let p′ = p − 1. So p′ ≡ 1 mod 3 and p′ <
plast. So from the proof of the previous bullet point we know that tp′+2 =
〈ap′+2, bp′ , cp′+1〉. So tp+1 = 〈ap+1, bp−1, cp〉, which from Definition 7.2 and 7.6
is the same triple as the (p + 1)th triple of IndMatn.

– p ≡ 0 mod 3 and p < plast: from Definition 7 we know that the agents that
have already been assigned are a1, a2, . . . , ap from A, b1, b2, . . . , bp from B,
and c1, c2, . . . , cp−1 and cp+1 from C. So cp is in the same triple as some
ai with i ≥ p + 1. From Lemma 2, we know that i ≤ p + 1. So i = p + 1
and tp+1 = 〈ap+1, bj , cp〉 for some j ≥ p + 1. From Lemma 2, we know that
j ≤ p + 2 so either bj = bp+1 or bj = bp+2. If n = p + 1, then we have
tp+1 = 〈ap+1, bp+1, cp〉 which from Definition 7.3 is equal to the (p + 1)th

triple of IndMatn. If n > p + 1, then bj = bp+2, because otherwise p + 1
would be a divider of M , and tp+1 = 〈ap+1, bp+2, cp〉. So from Definition 7.5
and 7.6, tp+1 is equal to the (p + 1)th triple of IndMatn.

– p = plast: since p < n, either n = p + 1 or n = p + 2. If n = p + 1, then
from Definition 7 only the agents ap+1 ∈ A, bp ∈ B and cp+1 ∈ C have not
been assigned. So tp+1 = 〈ap+1, bp, cp+1〉, which from Definition 7.4 is the
same as the (p + 1)th tuple of IndMatn. If on the other hand n = p + 2,
then from Definition 7 only the agents ap+1 and ap+2 in A, bp and bp+2 in
B, and cp+1 and cp+2 in C remain to be assigned. From Lemma 2, cp+2

cannot be assigned to bp, so cp+1 is assigned to bp. ap+1 cannot be in the
same triple as these two agents, because otherwise p+1 would be a divider of



M . So ap+2 is in the same triple as bp and cp+1 and tp+2 = 〈ap+2, bp, cp+1〉.
Consequently, the three other remaining agents are assigned together in the
triple tp+1 = 〈ap+1, bp+2, cp+2〉. This is from Definition 7.5 the same triple
as the (p + 1)th triple of IndMatn.

– p = plast + 1: since p < n, n = p + 1 and only one agent from each agent
set has not been assigned. From Definition 7, we know that these agents are
ap+1 ∈ A, bp−1 ∈ B and cp ∈ C. So tp+1 = 〈ap+1, bp−1, cp〉, which is from
Definition 7.5 the same triple as the (p + 1)th triple of IndMatn.

We did not consider the case where p = plast + 2, because it cannot happen if
p < n.
We have shown that t1 is equal to the first triple in IndMatn and that if n > 1
and the first p triples of M are equal to the first triples of IndMatn for 1 ≤ p < n,
then tp+1 is equal to the (p+1)th triple of IndMatn. By induction, this completes
the proof. ut

Lemmas 1 and 3 together prove Proposition 1.

3.3 Main Theorem

Before introducing the Theorem, we need one last Lemma.

Lemma 4. Let I be a master list cyclic 3DSM instance of size n and let p be
an integer such that 1 ≤ p < n. Then the number of stable matchings for I that
admit p as their lowest divider is equal to f(n−p) times the number of indivisible
stable matchings for a master list cyclic 3DSM instance of size p.

Proof. Let M = {t1, t2, . . . , tn} be a matching for I such that p is the lowest
divider of M and ai ∈ ti for each i. Let M1 = {t1, t2, . . . , tp} and let M2 =
{tp+1, tp+2, . . . , tn}. Since p is the lowest divider of M , M1 is indivisible. We
show that a triple 〈ai, bj , ck〉 cannot be a blocking triple for M if it is across the
divider p, that is if it fulfills one of the three following conditions: i ≤ p and
j > p, j ≤ p and k > p, k ≤ p and i > p. Let t be such a triple. Without loss of
generality, assume that i ≤ p and j > p. Let bm be the agent of B assigned to ai
in M . Since p is a divider of M , we have m ≤ p < j. So bm >ai

bj . So t cannot be
a blocking triple for M . So any blocking triple for M is either a blocking triple
for M1 or a blocking triple for M2. So M is stable if and only if both M1 and
M2 are stable, and we have the result. ut

We now have all the tools we need to state and prove the Theorem:

Theorem 1. Let f be the function from N to N such that f(1) = 1, f(2) = 4
and for every n such that n > 2 we have f(n) = 2f(n−2)+2f(n−1). Let n > 0
be an integer and let I be a master list cyclic 3DSM instance of size n. Then
there are exactly f(n) stable matchings for I.



Proof. For n = 1 and n = 2 there are 1 and 4 matchings respectively, and they
are all trivially stable. Suppose now that n > 2. Let g be the function such that
for each integer q ≤ n, g(q) is the number of indivisible matchings for master
list cyclic 3DSM instances of size q. For each p such that 1 ≤ p < n, let fp be
the function such that fp(n) is the number of stable matchings for a master list
cyclic 3DSM instance of size n that have p as their lowest divider. We have:

f(n) = (

n−1∑
p=1

fp(n)) + g(n)

From Lemma 4 we have:

f(n) = (

n−1∑
p=1

g(p)f(n− p)) + g(n)

From Proposition 1, we know that g(1) = 1 and that g(p) = 3 for every p ≥ 2.
Therefore we have:

f(n) = f(n− 1) + 3f(n− 2) + (

n−1∑
p=3

3f(n− p)) + 3

= 2f(n− 2) + f(n− 1) + f(n− 2) + (

n−2∑
p=2

3f(n− 1− p)) + 3

= 2f(n− 2) + f(n− 1) + (

n−2∑
p=1

g(p)f(n− 1− p)) + g(n− 1)

= 2f(n− 2) + 2f(n− 1)

ut

Note that f(n) > 2f(n − 1) for all n, so master list cyclic 3DSM instances
have a number of stable matchings which is exponential in their size.

3.4 Other Matching Problems

An obvious follow-up to our main theorem would be to determine how the num-
ber of stable matchings for master list cyclic 3DSM instances compares to the
number of stable matchings for master list instances of matching problems with
different rules. We first look at what happens when imposing a stronger form of
stability, which is based on the notion of weakly blocking triple [2].

Definition 8. Let I be a cyclic 3DSM instance and let M be a matching for I.
Let t be a triple containing the three agents a ∈ A, b ∈ B and c ∈ C such that
t does not belong to M . Let aM ∈ A, bM ∈ B and cM ∈ C be three agents such
that a and bM are in the same triple of M , b and cM are in the same triple of
M , and c and aM are in the same triple of M . Then we say that t is a weakly
blocking triple for M if b ≥a bM , c ≥b cM and a ≥c aM .



Informally, a triple t is weakly blocking for some matching M if each agent
of t either prefers t over the triple it got assigned to in M , or is indifferent. Note
that since we explicitly require t not to belong in M , at least one of the three
preferences will be strict.

Definition 9. Let I be a cyclic 3DSM instance and let M be a matching for I.
We say that M is a strongly stable matching for I if there is no weakly blocking
triple for M .

Strong stability is more restrictive than standard stability, therefore we can
expect a lower number of stable matchings. Indeed, the number of strongly stable
matchings is always equal to 1 for master list instances.

Proposition 2. Let I be a master list cyclic 3DSM instance of size n. Then the
number of strong stable matchings for I is equal to 1.

Proof. Let M be a strongly stable matching for I. Let p be the largest integer
such that 0 ≤ p ≤ n and for each 0 < q ≤ p the triple 〈aq, bq, cq〉 belongs to M .
Suppose that p < n. Therefore the triple t = 〈ap+1, bp+1, cp+1〉 does not belong
to M . Let i, j and k be such that ai is assigned to cp+1 in M , bj is assigned to
ap+1 in M and ck is assigned to bp+1 in M . We know that for each q such that
1 ≤ q ≤ p, aq, bq and cq have been assigned to each other in M . So i ≥ p + 1,
j ≥ p + 1 and k ≥ p + 1. So bp+1 ≥a bj , cp+1 ≥b ck and ap+1 ≥c ai. So from
Definition 8, t is a weakly blocking triple for M . Therefore p = n and the only
possible strongly stable matching is the matching M0 which contains the triple
〈ap, bp, cp〉 for each 1 ≤ p ≤ n.

It only remains to prove that M0 is strongly stable. Let t = 〈ai, bj , ck〉 be a
triple. If i > j, then bi <ai bj and ai strictly prefers bi, the agent from B it got
assigned to in M0, over bj , the agent from B it got assigned to in t, which means
that t cannot be a weakly blocking triple for M0. So if t is weakly blocking for
M0, then i ≤ j. By the same reasoning, if t is weakly blocking for M0, then j ≤ k
and k ≤ i. So if t is weakly blocking for M0, then i = j = k. But in this case, t is
in M0 by construction and therefore cannot be a weakly blocking triple for M0.
So there is no weakly blocking triple for M0. Therefore M0 is strongly stable,
which completes the proof. ut

The same very simple proof can be used to show that for at least two more
matching problems, namely lexicographically cyclic 3DSM (defined in [3]) and
lexicographically acyclic 3DSM (defined in [5]), master list instances of size n
have exactly one stable matching, which is also of the form {〈a1, b1, c1〉, 〈a2, b2, c2〉,
. . . , 〈an, bn, cn〉}. This result holds for the extensively studied two-dimensional
stable matching (2DSM) too [10]. This indicates that master list cyclic 3DSM
instances offer many more stable matchings than their master list counterparts
in some others of the most widely used matching problems.



4 Stable Matchings for Instances Without Master
Preference Lists

If master list cyclic 3DSM instances have fewer stable matchings than other
instances from the same problem, then our main Theorem implies that all cyclic
3DSM instances have a number of stable matchings exponential in their size.
This is not a trivial assumption, so we need further study to determine what
happens to the number of stable matchings when considering other instances.

In this section, we empirically investigate the evolution of the number of
stable matchings when going from a master list cyclic 3DSM instance, which
can be seen as an instance with unanimous preferences, to its opposite: a cyclic
3DSM instance with evenly split preferences. We will need a few definitions to
formally describe our procedure.

Definition 10. Let I be a cyclic 3DSM instance of size n. Let g and g′ be two
agents of I, such that strictly more than n/2 agents prefer g over g′. Then we
call adding an ML-step to I the act of switching g and g′ in the preference list
of an agent that prefers g over g′.

Definition 11. We say that a cyclic 3DSM instance is perfectly split if it is
not possible to add an ML-step to I.

Our experiments consist in starting from a master list cyclic 3DSM instance
and randomly adding ML-steps until we reach a perfectly split instance. We
summarize our results in Figures 4 and 5. In Figure 4, we added ML-steps
to 1000 starting master list cyclic 3DSM instances of size 8, until getting a
perfectly split instance. Note that the number of steps required to arrive to a
perfectly split instance is not the same in each of the runs, so the last few data
points represent fewer than 1000 instances. This explains why the “minimum”
and “maximum” plots seem to converge towards the “average” one at the end.
The exact number of instances represented by each data point can be found in
Table 1. The numbers of stable matchings were obtained using Cachet [14], an
exact SAT model counter.

The figure clearly confirms what we suspected: the cyclic 3DSM instances
with the fewest stable matchings are the ones with master preference lists, or
are at least very similar to these instances. More precisely, the number of stable
matchings seems to initially increase steadily when going away from master list
instances, before plateauing when a certain number of ML-steps has been added.

Table 1 contains the exact numbers for Cyclic 3DSM instances. The last
line, not represented in Figure 4, describes the number of stable matchings for
1000 completely random cyclic 3DSM instances, whose construction was not
related in any way to master list instances or ML-steps. This serves as a control
experiment, to make it clear that our results are not dependent on the particular
way that we build our instances.

Figure 5 illustrates the results of the same experiments on two other stable
matching variants: 2DSM and cyclic 3DSM with strong stability, both of size 8.



Fig. 4. Number of Stable Matchings when Adding ML-Steps to Cyclic 3DSM Instances.

Fig. 5. Number of Stable Matchings for 2DSM Instances and of Strongly Stable Match-
ings for Cyclic 3DSM Instances.



Table 1. Number of stable matchings in 3DSM instances.

# ML-steps # instances # SM (Minimum) # SM (Average) # SM (Maximum)

0 1000 1552 1552 1552

1 1000 1552 2009 4544

2 1000 1508 2561 8917

4 1000 1552 3779 17242

8 1000 1552 6669 30831

16 1000 2681 13095 44766

32 1000 4529 20442 79129

64 1000 5201 20599 64234

128 1000 6615 20216 74233

256 1000 6615 21683 71376

512 1000 7716 21965 77204

1024 993 7515 21084 78257

2048 953 6989 21478 88481

4096 760 7085 21235 67604

8192 301 7515 21201 69996

16384 24 11904 20713 40688

Random 1000 4932 20521 105070

Here again, we added ML-steps to 1000 starting master list instances of each
problem. The numbers of (strongly) stable matchings are much lower for these
two problems, yet we can observe the same behavior of a steady increase followed
by a plateau. This empirically shows that instances with master preference lists
are linked with very high constrainedness in many stable matching problems.

5 Conclusion

We have given the exact number of stable matchings for cyclic 3DSM instances
with master preference lists. This number is 1 for many other stable matching
problems, but it is exponential in the case of the Cyclic 3DSM problem.

We have also shown through experiments that despite their high number
of stable matchings, cyclic 3DSM instances with master preference lists are the
most constrained instances of the cyclic 3DSM problem, the ones with the fewest
stable matchings, a behavior that mirrors what can be observed in other standard
matching problems.

Combining these two results, we propose the following conjecture: each cyclic
3DSM instance has a number of stable matchings exponential in its size. If true,
this would make the cyclic 3DSM problem a very interesting object of research
when looking for positive and/or tractable three-dimensional matching results.
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