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Stokes drift in Equatorial water waves, and

wave–current interactions

David Henry

Abstract

In this paper we review recent developments which enable the math-
ematical determination of various drift properties induced by water
waves, and wave–current interactions, in the equatorial region. In par-
ticular, we describe results pertaining to a recently constructed exact
solution of the geophysical fluid dynamic governing equations in the
β−plane approximation at the Equator. The formulation of this ex-
act solution renders it amenable to deriving an analytical expression
for the Stokes’ drift velocity, which is characterised in terms of the
mean Eulerian flow velocity and the mean Lagrangian flow velocity.
Additionally, an analysis of the associated mass transport is discussed.
Notwithstanding the fact that the exact solution we discuss is in some
sense a mathematical idealisation, from a physical perspective it may
be regarded as a robust and reliable foundation on which to generate,
and thereby model, more complex and intricate oceanographical flows.

Keywords: Equatorial flows; Stokes drift; mean flows; Eulerian velocity;
Lagrangian velocity; water waves; depth-invariant current.

1 Introduction

Determining the underlying fluid motion generated by water waves propa-
gating on a free-surface is an intriguing and challenging area of oceanograph-
ical research which has important implications in the field (Constantin, 2011;
Gill, 1982; Marshall and Plumb, 2016; Vallis, 2017). From a theoretical per-
spective, it is a subject of immense difficulty and complexity, with a paucity
of fundamental research due to the intractability of the governing equa-
tions to mathematical analysis (Andrews and McIntyre, 1978; Bühler, 2009;
Henry and Sastre-Gomez, 2016; Longuet-Higgins, 1953, 1969; van den Bre-
mer and Breivik, 2018; Vallis, 2017). Accordingly, many investigations are
pursued by way of observations from experiments and field data, although
these approaches are themselves often perilous, cf. Monismith et al. 2007;
Smith, 2006; van den Bremer and Breivik, 2018; Weber, 2011.

The origins of this area of oceanographical research may be traced to
the observation of Stokes (1847) that fluid particles experience a mean net
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drift velocity, in the direction of wave motion, when an average is taken
over the wave period. Using purely formal mathematical considerations,
Stokes illustrated that this fluid drift is an inherently nonlinear phenomenon
which occurs at order ε2, where ε relates to the wave steepness. At lin-
ear level, it had been classically assumed that particles undertake closed
orbits. This presumption was founded on two main pillars, the first be-
ing a succession of mathematical approximations, whereby solutions of the
linearised governing equations are themselves linearised, leading to appar-
ently closed particle trajectories. The supposed closure of fluid particle
orbits was then seemingly borne–out experimentally by extrapolating from
highly-inconclusive photographs of fluid motion, such as those in van Dyke
(1982). This tenet of classical fluid mechanics has been comprehensively de-
bunked (Constantin, 2006,2011,2012a; Constantin et al., 2008; Constantin
and Villari, 2008; Henry, 2006,2008b; Ionescu-Kruse, 2008; Lyons, 2014) us-
ing techniques from mathematical analysis which have proven that, both in
the approximate linear regime, and for exact solutions of the fully nonlinear
governing equations, particle paths throughout the fluid domain are uni-
formly non-closed. This is a striking, and recent, example of how a careful
theoretical treatment can definitively, and conclusively, elucidate delicate
physical processes which evade other, more applied, research approaches.

Furthermore, bearing in mind the overwhelming trend in physical oceanog-
raphy of being guided primarily by numerical evidence and ad-hoc modelling,
this example illustrates the relevance of pursuing theoretical investigations
in oceanographical studies insofar as it is possible (Constantin and John-
son, 2016b; Johnson, 2018). In this review paper we describe developments,
first presented in Henry and Sastre-Gomez (2016), which enable the math-
ematical determination of various drift properties induced by water waves,
and wave–current interactions, in the equatorial region. In particular we
describe results pertaining to the mean flow velocities, and related mass
transport, induced by an exact solution to the geophysical fluid dynamics
(GFD) governing equations in the β−plane approximation at the Equator.
Geophysical processes which occur in the equatorial region are particularly
fascinating from an oceanographical point of view (Constantin and Johnson,
2015; Cushman-Roisin and Beckers, 2011; Fedorov and Brown, 2009; Gill,
1982; Izumo, 2005; Johnson et al., 2001; Moum et al., 2011; Vallis, 2017).
Physically, the equator acts as a natural wave guide whereby equatorially
trapped zonal waves decay exponentially away from the equator.

From a general point of view, the mean fluid drift (or Stokes’ drift)
velocity can be characterised in terms of the mean Eulerian flow velocity and
the mean Lagrangian flow velocity whereby: Lagrange = Euler + Stokes.
Although the incorporation of Coriolis effects in the governing equations
threatens to further obfuscate the already intractable nonlinear water wave
problem, it transpires that the exact solution we analyse is amenable to
an analysis of its mean flow velocities and related mass transport since it
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assumes an explicit form in terms of Lagrangian variables.
In light of their scarcity, the existence of exact finite-amplitude solutions

to the water wave problem is remarkable in itself— for two-dimensional
gravity water waves the only known solution is Gerstner’s wave (Constantin,
2001; Gerstner, 1809; Henry, 2008a; Stuhlmeier, 2015). While exact solu-
tions in fluid dynamics are useful and important in their own right, in an
oceanographical context they have the potential to be regarded as robust and
reliable starting points to generate more physically realistic and observable
flows by way of asymptotic, or multiple scale, methods. Such an undertak-
ing promises to be technically challenging for the equatorial flows we con-
sider here, and for discussions on the potential mathematical generalisations
of exact solutions we defer to Constantin and Johnson (2016a,2017), Con-
stantin and Monismith (2017), Henry (2016,2017), Johnson (2018), Mollo-
Christensen (1978,1979) and Pollard (1970), and the references therein; an
interesting discussion regarding the oceanographical relevance of the exact
equatorial solutions being considered here can be found in Boyd (2018).
The exact solution we analyse was first constructed in Henry (2013), and
represents a generalised Gerstner-like solution of the GFD equations of the
type which were initially derived in Constantin (2012,2013,2014). With
the increase in structural complexity of the GFD governing equations, it is
startling that the exact and explicit three-dimensional solutions described
in Constantin (2012,2013,2014) and Henry (2013) exist, much less that they
generalise Gerstner’s wave (in the sense that, upon ignoring Coriolis terms,
solutions reduce to two-dimensional gravity waves).

The exact solution we discuss comprises a (weakly) three-dimensional
wave-like term which propagates periodically in the zonal direction with con-
stant phasespeed c > 0, and the wave is equatorially trapped, exhibiting a
strong exponential decay away from the Equator. A significant complicating
factor for the theoretical analysis undertaken in this paper, particularly with
regard to determining the mean Eulerian flow velocity and subsequently the
Stokes drift velocity, is the presence of a depth-invariant underlying zonal
current term in the solution presented in Henry (2013). This term assumes
a deceptively simple manifestation in the Lagrangian formulation of the so-
lution, yet it leads to significant complications, both mathematically and
physically, in the resulting fluid motion. This is perhaps not surprising
since the nonlinear passage from Lagrangian to Eulerian coordinates is a
delicate issue in general (Bennett, 2006; Bühler, 2009; Constantin, 2011;
Vallis, 2017). The incorporation of a depth-invariant underlying current in
the wave-field kinematics is important from the perspective of future prac-
tical considerations, especially with regard to the potential for representing
more physically realistic flows. This is particularly apposite since currents
play a vital role in modelling the ocean’s dynamics in the Equatorial region
(Boyd, 2018; Cushman-Roisin and Beckers, 2011; Gill, 1982; Izumo, 2005;
Johnson et al., 2001; Moum et al., 2011; Vallis, 2017).
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2 Governing equations

The fully-nonlinear, exact governing equations for geophysical fluid dynam-
ics on a rotating sphere, assuming the fluid is inviscid and incompressible
(which are reasonable assumptions for ocean waves), take the form of the
Euler equation

Du

Dt
+ 2Ω× u + Ω× (Ω× r) = −1

ρ
∇P + F, (1)

together with the mass conservation equation

∇ · u = 0. (2)

The earth is assumed to be a perfect sphere of radius R = 6378 km, with Ω
the angular velocity vector of the earth’s rotation (with Ω = 73×10−6 rad/s
the (constant) rotational speed). Here u = (u, v, w) is the fluid velocity field,
D/Dt is the Lagrangian (or material) derivative, F is the external body force
(in this model we assume F is solely gravitational), ρ is the water density
(assumed to be constant), and P is the pressure. The second term in (1) is
the Coriolis force, and the third term represents the centripetal force (which
is typically neglected, although cf. Constantin and Johnson (2016a) and
Henry (2016) for some interesting observations regarding the retention of
this term).

Due to the complexity and intractability of the Euler equation (1) one
typically invokes oceanographical considerations in order to derive simpler
approximate models. The traditional β−plane model approximates the
earth’s curved surface (locally) by a tangent plane and is applicable when we
restrict our focus to regions of relatively small latitudinal variation (around
2◦ either side of the equator). In the context of modelling equatorial flows
the resulting (approximate) Euler equation takes the form

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px

vt + uvx + vvy + wvz + βyu = −1

ρ
Py

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g,

(3)

where β = 2Ω/R = 2.28 · 10−11 m−1s−1, and the origin of the {x, y, z}–
Cartesian coordinate reference frame is fixed at a point on the earth’s sur-
face at the equator, where the x-axis points horizontally due east (zonal),
the y-axis due north (meridional), and the z-axis points vertically upwards
perpendicular to the earth’s surface.

The equations (3) above are of the “traditional β-plane approximation”
form, which are ubiquitous in modelling equatorial flows. This formulation
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arises from neglecting terms in the Coriolis force which feature the vertical
velocity, and the vertical component of the Coriolis force. The approxi-
mation procedure which leads to (3) is not canonical, and there is quite
a wide-array of research literature proposing alternative ‘non-traditional’
approximations which address various inconsistencies that arise in the clas-
sical approach, cf. the discussions in Constantin and Johnson (2016a,2017),
Gerkema et al. (2008), Johnson (2018), Henry (2016,2017), Stewart and
Dellar (2010), and the references therein. The equation (2) is expressed
component-wise as

ux + vy + wz = 0, (4)

and for surface water waves the governing equations (3) and (4) are supple-
mented by the kinematic and dynamic surface boundary conditions

w = ηt + uηx + vηy on z = η(x, y, t), (5)

P = Patm on z = η(x, y, t), (6)

where Patm is the (constant) atmospheric pressure and η(x, y, t) is the free-
surface. Assuming the water to be infinitely deep, and converging with
depth to a uniform underlying zonal current, results in the condition

(u, v, w)→ (−c0, 0, 0) as z → −∞. (7)

If we wish to have no underlying depth-invariant current in the fluid flow we
simply choose c0 = 0, ensuring that there is no fluid motion at great depths.

3 Exact solution

The wave–current solution we analyse prescribes the Eulerian (reference
frame) coordinates of fluid particles (x(t), y(t), z(t)) in terms of the La-
grangian labelling variables (q, r, s): a Lagrangian formulation considers the
evolution in time of individual fluid particle motion (Bennett, 2006; Bühler,
2009; Constantin, 2011; Vallis, 2017). In Henry (2013) it was shown that
the system

x = q − c0t−
1

k
ek[r−f(s)] sin [k(q − ct)], (8a)

y = s, (8b)

z = r +
1

k
ek[r−f(s)] cos [k(q − ct)], (8c)

represents a solution of the β−plane governing equations (3) and (4), where
r ≤ r0 < 0 for a constant r0, and k is the wavenumber defined by k = 2π/L,
for L the (fixed) wavelength; field data examined in Moum et al. (2011)
highlights the importance of waves with relatively short wavelengths (in the
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range 150–250 m) for the dynamics of the upper-equatorial oceans. This
solution (8) prescribes a (weakly) three-dimensional eastward-propagating
steady geophysical wave in the presence of a constant underlying current of
magnitude |c0|. The wave-like term is periodic in the zonal direction and
it has a constant phasespeed c > 0. If c0 > 0 the underlying current is
adverse, while for c0 < 0 the current is following; c0 = 0 corresponds to no
underlying uniform current. Physically, the vanishing of the meridional com-
ponent of the Coriolis force at the Equator has the effect that the Equator
works as a (virtual) natural boundary, thereby facilitating azimuthal (zonal)
flow propagation. The solution (8) exists mathematically for Lagrangian la-
belling variables (q, r, s) ∈ (R, (−∞, r0), I), where the sign of the current
determines whether I is the real line R or a finite interval, as we discuss
below. In physical terms, since the β-plane approximation results under the
assumption that we are close to the equator we are a priori restricted to
latitudes in the region s ∈ [−s0, s0], where s0 =

√
c̃/β ≈ 250km is a typical

value for the equatorial radius of deformation (and c̃ is a characteristic geo-
physical wavespeed, cf. Cushman-Roisin and Beckers, 2011) corresponding
to (roughly) 2◦ latitude.

If we follow a “fixed” particle as the fluid motion evolves (that is, we
fix the (q, r, s)−parameters) then particle trajectories are given by closed
circles in a coordinate system moving with the underlying mean flow (which
we take to be fixed if c0 = 0). If c0 6= 0, then particles experience a net drift
in the direction of c0 and accordingly we expect there to be a non-zero mean
Lagrangian velocity, as depicted in figure 1. It is interesting to note that, as
opposed to the typical Eulerian framework, Lagrangian labelling variables
do not necessarily represent the initial position of the particle they define;
for instance, the parameters in (8) relate to the centre of the circle described
by the particle motion.

(a) No underlying current: c0 = 0 (b) Depth-invariant current c0 6= 0

Figure 1: Depiction of the evolution of fixed fluid particles as prescribed by (8).

One of the pivotal steps in proving that the motion prescribed by (8)
satisfies the Euler equation (3) is the construction of a suitable pressure
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distribution function. It transpires that the appropriate choice is given by

P = ργ

(
e2ξ

2k
− r +

c0
c
f(s)

)
+ Patm − ρg

(
e2kr0

2k
− r0

)
. (9)

The function f(s) determines the meridional decay of the particle oscillations
away from the equator and must be given by

f(s) =
cβ

2γ
s2, (10)

where γ = 2Ωc0 + g is a “modified gravity” term: we make the physical
assumption that γ > 0, since g/2Ω ≈ 6.7 × 104 m s−1. At fixed-latitudes
y = s, we let r(s) < r0 denote the unique solution of the equation

e
2k[r(s)− cβ

2γ
s2]

2k
− r(s) +

c0β

2γ
s2 − e2kr0

2k
+ r0 = 0. (11)

The free-surface z = η(x, s, t) at this latitude is then implicitly prescribed
by setting r = r(s) in (8c). For a given current c0, in order that a unique
solution of (11) exists it is necessary that

c0 < ce2kr0 . (12)

For c0 ≤ 0, (11) has a solution for all s ∈ R, whereas for c0 > 0 we observe
from (12) that (11) can only be solved for a restricted range of values of
s ∈ I, where the size of I depends on the current’s magnitude. We note
that for wavelengths in the range 150 − 250m, condition (12) holds at the
equator for all physically reasonable values of the underlying current c0,
as we describe in Remark 3 below. Examining the forms of relations (9)
and (11) we see that the surface dynamic boundary condition (6) holds by
construction. Furthermore, the structure of the solution (8), coupled with
this prescription method for the free-surface z = η(x, y, t), ensures that the
kinematic surface condition (5) also holds: all particles originating on the
wave surface will remain at the surface for all time. The form of (10) ensures
that the wave is Equatorially trapped, exhibiting a strong exponential decay
away from the Equator. The steepness of the resulting wave profile, defined
to be half the amplitude multiplied by the wavenumber, can be expressed
as

τ(s) = ek(r−f(s)),

which is maximised by the value τ0 = ekr0 attained at the equator. To
illustrate typical values of the maximum steepness we take r0 = −20m, for
example; this then gives us a value of τ0 = 0.43 for a wavelength of L =
150m, whereas for wavelengths of L = 250m we have τ0 = 0.6. Furthermore,
at each fixed-latitude y = s in a coordinate system moving with the mean

7



flow (which we take to be fixed if c0 = 0), the free-surface is an inverted
trochoid (cf. Constantin, 2011) and particle trajectories take the form of
closed circles as depicted in figure 2. In the limiting case r0 → 0 the free-
surface approaches a cycloid at the equator (s = 0), exhibiting the associated
singular cusps at the crests (Constantin, 2011).

Figure 2: Depiction of the equatorially-trapped trochoidal free-surface wave

One appreciable benefit of working in the Lagrangian framework is that
fluid kinematics can often be described with relative ease and, in our case,
explicitly since the solution (8) is prescribed explicitly in the Lagrangian
formulation. The velocity field is calculated directly from (8) to get

u(q, r, s; t) =
Dx

Dt
= cek(r−f(s)) cos k(q − ct)− c0, (13a)

v(q, r, s; t) =
Dy

Dt
= 0, (13b)

w(q, r, s; t) =
Dz

Dt
= cek(r−f(s)) sin k(q − ct). (13c)

Regarding the flow prescribed by (13), equatorial field data (see Johnson et
al., 2001) confirms the fact that meridional speeds near the Equator are much
smaller than the zonal speeds, and neglecting them, as the prescribed fluid
motion (8) and (13) does, therefore has an insignificant dynamical effect.
Accordingly, wave patterns of the type predicted by our considerations are
relevant to the dynamics of the ocean in the equatorial Pacific. The flow
prescribed by (8) and (13) is rotational, as is expected for geophysical water
waves, with the (weakly) three-dimensional vorticity computed as

ω =

(
−skc

2β

g

eξ sin θ

1− e2ξ
,− 2kce2ξ

1− e2ξ
, s
kc2β

g

eξ cos θ − e2ξ

1− e2ξ

)
,

where we denote ξ = k (r − f(s)), θ = k(q − ct). As a by-product of the
derivation of (9) we obtain the dispersion relation for the wave phase-speed,

c =

√
Ω2 + kγ − Ω

k
=

√
Ω2 + k(2Ωc0 + g)− Ω

k
> 0, (14)
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which details the effect that the rotational and current terms have on the
wavespeed; setting Ω = c0 = 0 recovers the dispersion relation c =

√
g/k

for Gerstner (and deep-water gravity) waves.

Remark 1 We note that the dispersion relation (14) gives a wavespeed
c ≈ 15 m s−1 for a wave of length L = 150m, whereas c ≈ 19.7 m s−1 for
waves of length 250m. In particular, for these values the right-hand side
of relation (12) is 2.8 m s−1, and 7.2 m s−1, respectively. Bearing in mind
that equatorial currents typically have a magnitude less than 1 m s−1 (Gill,
1982), it follows that we expect condition (12) to hold at the equator for
physically reasonable values of the underlying current c0.

4 Stokes drift

The Stokes drift (or mean Stokes flow velocity), which is the difference be-
tween the mean Lagrangian and Eulerian velocities (Longuet-Higgins, 1953,
1969), is eastwards in the absence of the current (c0 = 0). Indeed, it was
shown in Constantin and Germain (2013) that in this setting the mean La-
grangian velocity is zero and the mean Eulerian velocity flows westwards.
It is perhaps not surprising that the situation is far more complex with the
incorporation of a constant underlying current, in particular with regard to
determining the mean Eulerian velocity, as we now describe. Throughout
the following considerations we fix the latitude by setting s = s∗, and we
note that at fixed latitudes s = s∗ the crest and trough levels of the wave
surface profile are prescribed in terms of the Lagrangian parameters by

z±(s∗) = r0(s∗)±
1

k
ek[r0(s∗)−f(s∗)].

4.1 Mean Lagrangian velocity

The mean Lagrangian flow velocity, also known as the mass-transport ve-
locity (Longuet-Higgins, 1969), at a point in the fluid domain is the mean
velocity over a wave period of a marked fluid particle which originates at
that point. For flows prescribed by (8) the wave–averaged zonal velocity is

〈u〉L =
1

T

∫ T

0
u(q − ct, s∗, r)dt =

ceξ

T

∫ T

0
cos [k(q − ct)] dt− 1

T

∫ T

0
c0 dt = −c0.

(15)
Hence, depending on the sign of c0, the mean Lagrangian flow velocity is
either westwards or eastwards; when c0 = 0 the mean Lagrangian velocity
is zero. The expression for the mean Lagrangian velocity is independent of
both the latitude s∗, and the location from where the fluid parcel originates.
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4.2 Mean Eulerian velocity

Fixing a point in space at a depth beneath the wave-trough level, the mean
Eulerian flow velocity is the average of the Eulerian fluid velocity (over a
wave-period) at that point. For the velocity field (13) the mean Eulerian
flow velocity is given by the mean of the horizontal velocity. Letting z =
z−(s∗) denote the vertical position of the wave trough level, we fix a depth
z = z0 < z−(s∗). The equation

z0 = R+
1

k
eξ(R) cos θ (16)

then induces a functional relationship between the erstwhile independent
variables r and q, which we denote by r = R(q−ct; s∗, z0). For a given fixed-
depth z0, the maximal and minimal values achieved by R are determined
implicitly by the relations

z0 = R± 1

k
eξ(R),

where the positive (negative) sign corresponds to the minimal (maximal)
value of R, respectively. Following a number of computations it transpires
that the mean Eulerian velocity takes the form

〈u〉E(s∗, z0) = − c
L

∫ L

0
e2ξ(R(q))dq − c0

L

∫ L

0

1− e2ξ(R(q))

1 + eξ(R(q)) cos (k [q − ct])
dq.

(17)
It is clear from the above expression that a non-zero depth invariant current
c0 adds significant complications in computing the mean Eulerian veloc-
ity (17): in particular the sign (and hence direction) of the mean Eulerian
velocity is not easily discernible from the above expression in general. Never-
theless, depending on the size and direction of the current c0, the inequalities∫ L

0

1− e2ξ

1 + eξ
dq ≤

∫ L

0

1− e2ξ

1 + eξ cos θ
dq ≤

∫ L

0

1− e2ξ

1− eξ
dq (18)

lead to estimates which can be employed to determine the direction of the
mean Eulerian velocity.

For an adverse underlying current, c0 > 0, we note that condition (12)
provides the restriction 0 < c0 < ce2kr0 < c. Since ξ ≤ kR < kr0 < 0, for all
latitudes s and depths z0 < z−(s), we deduce that the mean Eulerian flow
velocity must lie in the range

〈u〉E(s, z0) ∈
(
−c1− e3kr0

1− ekr0
, 0

)
. (19)

That the mean Eulerian flow is westward for an adverse current is not sur-
prising, since in the absence of the current the mean Eulerian flow is west-
wards, cf. Constantin and Germain (2013).
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For the case of a following underlying current, c0 ≤ 0, the influence
that the underlying current has on the mean Eulerian flow in (17) is even
more difficult to ascertain, and it is not possible to determine its effect
directly. Nevertheless, we deduce from (17) that the mean Eulerian velocity
is westwards, that is 〈u〉E(s∗, z0) < 0, if

c0 > −c min
q∈[0,L]

e2k(R(q;z0)−f(s∗))
(
1− ek(R(q;z0)−f(s∗))

)
1− e2k(R(q;z0)−f(s∗))

, (20)

and the mean Eulerian flow (17) is eastwards, 〈u〉E(s∗, z0) > 0, if

c0 < −c max
q∈[0,L]

e2k(R(q;z0)−f(s∗))
(
1 + ek(R(q;z0)−f(s∗))

)
1− e2k(R(q;z0)−f(s∗))

. (21)

These expressions, while admittedly convoluted in appearance, are never-
theless in a form which should be prove amenable to numerical computation
for given data values. In the absence of an underlying current (c0 = 0) con-
dition (20) always holds and so the resulting mean Eulerian velocity is in
the westerly direction, as first observed in Constantin and Germain (2013).

4.3 Stokes drift

The Stokes drift (or mean Stokes) velocity US(z0) is defined by the relation

〈u〉L(z0) = 〈u〉E(z0) + US(z0),

and for the flow defined by (8) it takes the form

US = 〈u〉L − 〈u〉E

=
c

L

∫ L

0
e2ξ(R(q))dq +

c0
L

∫ L

0

1− e2ξ(R(q))

1 + eξ(R(q)) cos (k [q − ct])
dq − c0. (22)

For an adverse current, c0 ≥ 0, it follows immediately from (22) and (12)
that

US =
1

L

∫ L

0

(
ce2ξ(R(q)) − c0

)
dq +

c0
L

∫ L

0

1− e2ξ(R(q))

1 + eξ(R(q)) cos (k [q − ct])
dq > 0.

Therefore for c0 ≥ 0 the Stokes drift is eastwards throughout the fluid do-
main. In the case of a following current, c0 < 0, the expression for Stokes
drift (22) is not easily discerned, in general, from direct inspection (although
it is expected that expression (22) will prove responsive to numerical ap-
proaches). Nevertheless, if the magnitude of the current is such that (21)
holds then we can conclude that the Stokes drift is westwards.

11



5 Mass flux

Since the Lagrangian velocity is the wave-averaged velocity of a marked
particle, it is sometimes called the mass-transport velocity. For a non-zero
underlying current, c0 6= 0, it is clear that the total mass flux induced by (8)
below the free-surface wave past a point x = x0, which is fixed in Eulerian
coordinates, will be infinite. Of greater interest is the consideration of the
mass-flux past a point x0 which is fixed in a frame moving with speed c0:
this is equivalent to considering the situation c0 = 0 in (8). The total mass-
transport beneath the surface wave is given by the integral

m(x0 − ct, s) =

∫ η(x0−ct,s)

−∞
u(x0 − ct, s, z)dz. (23)

In order to cast (23) in terms of the Lagrangian labelling variables we induce
a functional relationship between q and the variables r, t, denoted by q =
γ(r, t; s∗), by way of fixing x = x0 in the expression

x0 = q − 1

k
eξ sin θ.

Differentiating the above expression with respect to r gives

0 = γr − eξ sin θ − γreξ cos θ,

and so
dz

dr
= 1 + eξ cos θ − γreξ sin θ =

1− e2ξ

1− eξ cos θ
,

where we have used the relation

γr =
eξ sin θ

1− eξ cos θ
.

Therefore we have

m(x0 − ct, s) =

∫ r0

−∞
(ceξ cos θ)

dz

dr
dr

=

∫ r0

−∞
(ceξ cos θ)

1− e2ξ

1− eξ cos θ
dr.

(24)

Although the integral in (24) is over an infinite range, this is balanced by
the fact that terms involving ξ decay exponentially as r → −∞. It follows
from (8a) (with c0 = 0) that the function γ is T−periodic, and furthermore
differentiating (8a) with respect to t yields

γt =
−ceξ cos θ

1− eξ cos θ
. (25)
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Combining (24) and (25) we observe that the mass flux is given by

m(x0 − ct, s) =

∫ r0

−∞
−γt(1− e2ξ)dr,

and since γ is T−periodic it follows immediately that the average of the
mass flux over a period T is zero. In the case where c0 is non-zero we may
still deduce mass-flow properties in a finite region near the free-surface. If
the magnitude of the current c0 is such that

|c0| ≤ cek(r̃(s∗)−f(s∗)), (26)

where the value r̃(s∗) < r0(s∗) denotes some streamline beneath the surface,
then the expression

m̃(x0 − ct, s) =

∫ r0

r̃
(−c0 + ceξ cos θ)

1− e2ξ

1− eξ cos θ
dr, (27)

implies that the mass flux between r̃ and r0 is positive at the crest and
negative at the trough. Therefore, for currents sufficiently small that (26)
holds, and in regions close to the surface between r̃ and r0, at the crest the
mass flux (27) is forward and at the trough the mass flux goes backward,
matching the properties of the flows observed in Constantin and Germain
(2013) and Longuet-Higgins (1969) and depicted in Figure 3 below. We
note that, using the reference value c0 = 1 m s−1 (which corresponds to
the maximal typical equatorial current magnitude, cf. Gill (1984)) and the
physical values discussed in Remark 1, we infer that condition (26) holds for
r̃(s∗) ' −64m in the case of waves of length 150m, whereas for wavelengths
of 250m condition (26) holds for r̃(s∗) ' −118m.

Figure 3: Behaviour of the mass-flux between the free-surface r = r0(s∗) and
streamline r = r̃(s∗)
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The behaviour is markedly different in the case where c0 < −cek(r̃(s∗)−f(s∗)).
Here the mass-flux between r̃ and r0 (given by (27)) at the crest is forwards,
as expected, however at the trough the mass-flux is also forwards: this
anomalous behaviour is explained solely by the presence of the constant
underlying current.

6 Discussions

The above considerations outline how we can employ a mathematical ap-
proach to determine drift properties which are induced by water waves, and
wave–current interactions, in the equatorial region. While the exact solution
(8) we have analysed is an idealised flow, from a physical perspective, it is
clear from the discussions that the wave–current interactions prescribed by
this solution possess some of the structure observed in field data for equato-
rial flows, at least in the region which is suitably described by the traditional
β−plane approximation (around 2◦ each side of the equator).

With this in mind, and with regard to their relevance in future mathe-
matical investigations of oceanographical phenomena, we reiterate the asser-
tion that exact solutions represent a robust and reliable foundation on which
to potentially construct more physically realistic and observable flows, and
it is hoped that the above presentation has expounded how a careful the-
oretical treatment can elucidate the delicate physical processes underlying
fluid motions, which otherwise evade alternative, more applied, research ap-
proaches. The robustness and adaptability of exact Gerstner-like solutions
in describing Equatorial water waves is further exemplified by the fact that
such solutions exist for non-traditional β−plane governing equations, which
retain centripetal forces (cf. Henry (2016)), and incorporate the geometry
of the earth’s curvature (cf. Henry (2017)), respectively.

This paper has focussed on surface wave flows, but we remark that ex-
act and explicit Langrangian solutions representing Equatorially-trapped
internal waves were constructed in Constantin (2013,2014), with underly-
ing currents incorporated in Kluczek (2017), Rodŕıguez-Sanjurjo (2017) and
Rodŕıguez-Sanjurjo and Kluczek (2017); these papers contain a mathemati-
cally analogous analysis of the mean-flow properties yielding physically quite
different results.

Additionally, we remark that while geophysical processes which occur in
the equatorial region are particularly fascinating from an oceanographical
point of view, it would be interesting, and very useful, to seek exact and ex-
plicit solutions which exist at mid-latitudes. In Pollard (1970), a nonlinear
geophysical wave solution was constructed which can exists at mid-latitudes,
and recently in Constantin and Monismith (2017) the authors accommodate
a depth-invariant current into this solution. From the perspective whereby
exact solutions may help us gain insight into the structure of the GFD gov-
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erning equations, it is remarkable that the presence of the underlying current
in Constantin and Monismith (2017) serves to generate a new slow-mode
representing an inertial Gerstner wave, which is a fundamentally nonlinear
phenomenon in which very small free surface deflections are manifestations
of an energetic current. This striking, newly-derived wave solution serves to
further illustrate the power, and relevance, of pursuing theoretical investiga-
tions in oceanographical studies. This work has yet to be investigated from
the viewpoint of the Stokes’ drift phenomena, and an interesting extension
would be to try to construct Pollard-like internal wave solutions.

Finally, potential future investigations of Stokes’ drift might include an
element of continuous stratification into the fluid prescription. Stratification
is ubiquitous in geophysical fluid dynamics, and particularly so for equatorial
dynamics where there is a pronounced thermocline. The thermocline is most
commonly represented as an interface separating two homogeneous fluid lay-
ers possessing a discrete (yet small) jump in densities. It is noteworthy that
wave propagation on the thermocline may be modelled by the internal wave
solutions mentioned above. In relation to continuously stratified fluids, note
that variable density may be accommodated in the fluid model presented in
this paper in the absence of an underlying current (c0 = 0). This is effected
through introducing an additional equation of motion,

ρt + uρx + vρy + wρz = 0,

which must be satisfied to ensure conservation of mass. Prescribing the
density function by

ρ(r, s) = F

(
e2ξ

2k
− r
)
, (28)

where F : (0,∞)→ (0,∞) is continuously differentiable and non-decreasing,
the analogue of the pressure function (9) is given, where F ′ = F and F(0) =
0, by

P = gF
(
e2ξ

2k
− r
)

+ Patm − gF
(
e2kr0

2k
− r0

)
.

The incorporation of continuous stratification promises to greatly complicate
issues relating to mass-transport, in particular, the description of which has
profound implications for attaining a detailed understanding of the oceano-
graphical processes underlying geophysical fluid dynamics.

Acknowledgements

The author would like to thank the referees for their helpful comments and
suggestions. The author acknowledges the support of the Science Founda-
tion Ireland (SFI) grant 13/CDA/2117, and also acknowledges the support
received during his stay at the ESI, Vienna during the programme “Mathe-
matical Aspects of Physical Oceanography”, in 2018.

15



References

Andrews, D. G. and McIntyre, M. E., 1978. An exact theory of waves on a La-
grangian mean flow. J. Fluid Mech. 89, 609–646.

Bennett A. 2006 Lagrangian fluid dynamics, Cambridge University Press, Cam-
bridge.

Boyd J. P. 2018. Dynamics of the Equatorial Ocean, Springer, Berlin.

Bühler, O. 2009 Waves and Mean Flows. Cambridge University Press, Cambridge.

Constantin A. 2001 On the deep water wave motion J. Phys. A 34, 1405–1417.

Constantin A. 2006 The trajectories of particles in Stokes waves, Invent. Math.
166, 523–535.

Constantin A. 2011 Nonlinear Water Waves with Applications to Wave-Current
Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics,
Vol. 81, SIAM, Philadelphia.

Constantin, A. 2012. Particle trajectories in extreme Stokes waves, IMA J. Appl.
Math. 77, 293–307.

Constantin, A. 2012 An exact solution for equatorially trapped waves, J. Geophys.
Res.: Oceans 117 C05029.

Constantin A. 2013 Some three-dimensional nonlinear Equatorial flows, J. Phys.
Oceanogr. 43, 165–175.

Constantin A. 2014 Some nonlinear, Equatorially trapped, nonhydrostatic internal
geophysical waves, J. Phys. Oceanogr. 44, 781–789.

Constantin, A., Ehrnström, M. and Villari, G. 2008. Particle trajectories in linear
deep-water waves. Nonlinear Anal. Real World Appl. 9, 1336–1344.

Constantin A. and Germain P. 2013 Instability of some Equatorially trapped waves,
J. Geophys. Res.: Oceans 118, 2802–2810.

Constantin A. and Johnson R. S. 2015 The dynamics of waves interacting with the
Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn. 109, 311–358.

Constantin A. and Johnson R. S. 2016 An exact, steady, purely azimuthal equatorial
flow with a free surface, J. Phys. Oceanogr. 46, 1935–1945.

Constantin A. and Johnson R. S. 2016 Current and future prospects for the ap-
plication of systematic theoretical methods to the study of problems in physical
oceanography Phys. Lett. A 380 3007–3012.

Constantin A. and Johnson R. S. 2017 A nonlinear, three-dimensional model for
ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent
and thermocline, Phys. Fluids 29 056604.

Constantin A. and Monismith S.G. 2017 Gerstner waves in the presence of mean
currents and rotation J. Fluid Mech. 820 511–528.

16



Constantin, A. and Villari, G. 2008. Particle trajectories in linear water waves. J.
Math. Fluid Mech. 10, 1–18.

Cushman-Roisin B. and Beckers J.-M. 2011 Introduction to Geophysical Fluid Dy-
namics: Physical and Numerical Aspects, Academic, Waltham, Mass..

Fedorov A. V. and Brown J. N. 2009 Equatorial waves, in Encyclopedia of Ocean
Sciences, edited by J. Steele, pp. 3679–3695, Academic, San Diego, Calif..

Gerkema T., Zimmerman J.T.F., Maas L.R.M. and van Haren H. 2008. Geophys-
ical and astrophysical fluid dynamics beyond the traditional approximation. Rev.
Geophys. 46, RG2004.

Gerstner, F. 1809. Theorie der Wellen samt einer daraus abgeleiteten Theorie der
Deichprofile. Ann. Phys. 2, 412–445.

Gill A. 1982 Atmosphere-ocean dynamics, Academic Press, New York.

Henry, D. 2006. The trajectories of particles in deep-water Stokes waves, Int. Math.
Res. Not. 13. Art. ID 23405.

Henry D. 2008 On Gerstner’s water wave, J. Nonl. Math. Phys. 15, 87–95.

Henry D. 2008 On the deep-water Stokes flow, Int. Math. Res. Not. 22, Art. 071.

Henry D. 2013 An exact solution for equatorial geophysical water waves with an
underlying current, Eur. J. Mech. B Fluids 38, 18–21.

Henry D. 2016 Equatorially trapped nonlinear water waves in a β−plane approxi-
mation with centripetal forces, J. Fluid Mech. 804 R1.

Henry D. 2017 A modified equatorial β−plane approximation modelling nonlinear
wave-current interactions, J. Diff. Eq. 263 2554-2566.
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Rodŕıguez-Sanjurjo A. 2017 Internal equatorial water waves and wave–current in-
teractions in the f−plane. Monatsh. Math. DOI 10.1007/s00605-017-1052-z.
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