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ABSTRACT

Molecular tunnel junctions involve studying the behaviour of a single

molecule sandwiched between metal leads. When a molecule makes con-

tact with electrodes, it becomes open to the environment which can

heavily influence its properties, such as electronegativity and electron

transport. While the most common computational approaches remain to

be single particle approximations, in this thesis it is shown that a more

explicit treatment of electron interactions can be required. By studying

an open atomic chain junction, it is found that including electron corre-

lations corrects the strong lead-molecule interaction seen by the ∆SCF

approximation, and has an impact on junction I − V properties. The

need for an accurate description of electronegativity is highlighted by

studying a correlated model of hexatriene-di-thiol with a systematically

varied correlation parameter and comparing the results to various elec-

tronic structure treatments. The results indicating an overestimation of

the band gap and underestimation of charge transfer in the Hartree-Fock

regime is equivalent to not treating electron-electron correlations. While

in the opposite limit, over-compensating for electron-electron interaction

leads to underestimated band gap and too high an electron current as

seen in DFT/LDA treatment. It is emphasised in this thesis that cor-
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recting electronegativity is equivalent to maximising the overlap of the

approximate density matrix to the exact reduced density matrix found at

the exact many-body solution. In this work, the complex absorbing po-

tential (CAP) formalism which allows for the inclusion metal electrodes

into explicit wavefunction many-body formalisms is further developed.

The CAP methodology is applied to study the electron state lifetimes

and shifts as the junction is made open.
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OVERVIEW

Microchip components are undergoing constant scaling down to nanome-

tre dimensions in accordance with Moore’s law [1]. The molecular and

electron transport properties of circuit components change, as quantum

mechanical effects play an important role. A way of investigating such

properties is by considering single molecule junctions.

In such junctions, a molecule of interest is sandwiched between two

metal clusters which are comparable to interconnects in conventional

systems. The metal-molecule interface is formed and molecular behaviour

changes [2, 3]. It is desirable to understand this interface chemistry,

which influences band alignment and charge transfer.

In this thesis, the properties of molecules in tunnel junctions are stud-

ied by considering electronegativity, electron state lifetimes and trans-

port. The electron lifetimes arise from the molecule interacting with

electrodes. This interface can be described exactly using electrode self-

energies, or approximated with a complex absorbing potential (CAP).

The CAPs method [4] is further developed to describe the coupling of

the device region to the environment by incorporating the potential into

Monte-Carlo configuration interaction (MCCI) formalism. Electronega-

tivity of different junctions at several levels of electronic structure treat-

ment is also discussed.
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Thesis Structure

Chapter 1

An overview of the current progress in the field of molecular electronics

is given. Several experimental and computational techniques are intro-

duced.

Chapter 2

This chapter outlines the foundations of the computational methods em-

ployed throughout the thesis and serves as a quick reference for the

reader.

Chapter 3

An introduction to open systems and quantum electron transport based

on non-equilibrium Green’s function (NEGF) is given. The CAPs method

as applied within this thesis is discussed.

Chapter 4

Quasiparticle energies and lifetimes are calculated for a gold chain model

and benzene-di-amine (BDA) containing junctions. The CAP method

within Monte-Carlo configuration interaction (MCCI) formalism is used

to investigate the effect of opening the system and electron correlations

on quasiparticle peak broadening and electronegativity.

Chapter 5

In this chapter, the effect of accurate description of electronegativity and

its influence on electron transport is discussed using a correlated model

and electronic structure treatments.
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Chapter 6

This chapter concludes the thesis outlining the main findings of the work.

Appendix A

This appendix contains a more in-depth look at non-Hermitian quantum

mechanics that occurs when the development of CAPs methodology is

taken further towards 3D electrodes. Several observations and sugges-

tions for future work are outlined.



1. INTRODUCTION

In 1974 Aviram and Ratner suggested the use of single molecules as com-

ponents in future electronics [5], stimulating a large body of experimental

and theoretical research and the field of molecular electronics itself. The

field of molecular electronics comprises fundamental issues concerning

the electronic response of molecules as parts of a mesoscopic structure

and a technology-facing area of science [6]. The core idea is to form a

molecular junction to replace common transistor components. That is,

to design the junction conceptually and experimentally in such a way

that it can act as a logic or memory device that can be incorporated

into the network of a chip. This idea presents a number of challenges

conceptually, experimentally and theoretically [3, 6–12]. Conceptually,

one needs to design the architecture of a logic or memory device where

a single molecule can provide an interconnect, a switch, a transistor or

a more complex function. Experimentally, a challenge is to build a sin-

gle molecule junction that is stable and can be reproduced a number of

times to form a self-assembled array of such junctions. Theoretical chal-

lenges are around an accurate description of the molecular region while

including large metallic electrodes that form interconnects to an active

device.
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Fig. 1.1: A scanning electron microscopy image of a mechanically con-
trollable break junction; the inset shows a computational model for the
junction. Figure from [17].

A molecular junction comprises metal electrodes and a molecule as

shown in Figure 1.1. The electrodes are usually either metallic, com-

monly gold, or a surface and a tip of a scanning tunnelling microscope

(STM). The molecule can be a saturated carbon chain (alkane), a conju-

gated chain (alkene), a single aromatic, or a network of such molecules. A

linker (anchor) molecule is a specially designed molecule that allows the

species of interest to bond to both metal electrodes. For gold contacts,

common linkers are thiol or amine based as they show strong binding

energies [13–21], while Au-C linkers have also been explored [22]. Typi-

cally thiols and carbon linkers bind covalently to the gold atoms [20, 21],

while amines form a donor-acceptor type bonds to under-coordinated

gold [13, 14].

Current work in molecular electronics is largely devoted towards study-

ing the conductance of a junction. After a junction is formed, a voltage

(V ) is applied and current (I) measurements are taken, and the differen-
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tial conductance g is determined as

g(V ) = δI(V )/δ(V ). (1.1)

For a simple junction where a device region is formed by a chain of atoms

such as depicted in Figure 1.2, quantised conductance is observed [23];

that is conductance exhibits steps near 3, 2, 1 or 0 quantum units. The

quantum unit of conductance is defined by

g0 = 2e2/h = (12.9kΩ)−1 (1.2)

where e is electron charge and h is Planck’s constant and indicates a single

conducting state with unity transmission. This quantised conductance

was predicted by Landauer [24] and his approach to electron transport

forms the basis of the modern transport theories. Quantised conduction

occurs when the contact size becomes comparable to the one electron

Fermi wavelength [25]. The wavelength for electrons in gold is only a few

Ångström, hence the appearance of quantised steps signals the formation

of an atomic scale contact between a STM tip and surface.

On the fundamental level, molecular junctions present an opportu-

nity to study the dynamics of a complex system and aid future tran-

sistor design when quantum mechanics is required. The computational

modelling process, much like experiment, focuses on the accurate mea-

surement of conductance. The first principles or ab-initio methods are

usually based on Density Functional Theory (DFT) in combination with
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Fig. 1.2: Electron microscope image of a linear chain of four gold atoms
(yellow coloured dots) forming a bridge between two gold films. Figure
from [26].

non-equilibrium Green’s function (NEGF) [8] and will be described in

Chapter 2. An advantage of modelling over experiment is that the junc-

tion geometry can be relaxed within commonly used formalisms to give an

idea of the bonding mechanisms and orbitals involved in the molecule-

metal interface, though the junctions are often idealised compared to

what is currently possible with laboratory based methods [6, 27].

In what follows, fabrication of molecular junctions is discussed, fo-

cusing on the two most common methods at the present time. Once

built, the junctions need to be analysed and this is usually carried out

with inelastic electron tunnelling spectroscopy (IETS) and recently tip-

enhanced Raman spectroscopy (TERS), both methods are discussed with

examples specifically relevant to theoretical modelling. One of the most
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interesting aspects of molecular electronics is functionalising the molec-

ular region to change its conductance, again this is done experimentally

with theoretical evidence to explain the results. Lastly, an overview of

theoretical modelling and its application to the field is presented.

1.1 Fabrication of Molecular Junctions

A molecular junction can be built using several techniques [20, 28, 29].

Electron current across a single molecule was first measured within me-

chanically controllable break junctions (MCBJ) using benzene-di-thiol

(BDT) [20]. This method remains in common use, see refs. [10, 17, 30]

and references therein. With recent developments in electron microscopy,

STM based methods to form a junction have become increasingly pop-

ular following the first demonstration of the method by Xu et al [28].

Electromigration is another recent method based on a principle similar

to MCBJ, however the mechanical force used to rupture the substrate is

replaced with electron wind forces [29, 31]. Once a junction is formed,

conductance is measured. There may be a range of molecular conforma-

tions in the gap between two electrodes and hence bonding patterns can

differ, so the electronic response represents the average behaviour over

an ensemble of individual molecules. The conductance measurements

are generally taken thousands of times with active junctions to provide

a reliable statistical result.
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1.1.1 Mechanically Controllable Break Junctions

Mechanically controllable break junctions (MCBJs) provide an accurate

way of forming a nano-scale band gap to facilitate the measurement of

conductance [20, 32, 33]. In a typical set-up, as in Figure 1.3 (left panel),

a metal wire is attached to a substrate which rests atop a metal rod. The

piezo-driven rod motion displaces the position of the wire on the sub-

strate. This technique gives great control over the size of the gap that is

being formed as the wire breaks and allows for multiple contact forma-

tions and deformations. The resulting contacts are atomically sharp [32].

To measure the conductance of a particular molecule, the contacts are

broken in the presence of the solution containing the adsorbing species.

As a result, the atomic contacts are coated with a self-assembled mono-

layer of the molecule of choice as shown in Figure 1.3 (right panel).

1.1.2 Scanning Tunnelling Microscopy Junctions

A more common way of producing single molecule junctions is to use a

substrate and STM tip [13, 20, 28]. The individual molecular junctions

are formed by repeatedly moving the STM tip in and out of contact with

a gold substrate in a solution of molecules of interest. During the initial

stage when the tip is pushed down and then pulled up, the conductance

decreases in a step like fashion at integer multiples of the conductance

quantum (as is the case for MCBJ), as illustrated in Figure 1.4a. At

a certain point when the tip is pulled further away from the substrate,

the atomic chain formed between the tip and the substrate breaks. This
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Fig. 1.3: A schematic diagram of a typical MCBJ process on the left:
(a) the bending beam; (b) the counter supports; (c) the gold wire used
to form contacts; (d) the piezo element (metallic rod) that will fracture
the wire; (e) vessel containing solution of molecules. In the right panel,
two tips of a molecular wire coated with a self-assembled mono-layer of
BDT are brought together until the onset of conductance. Figure from
ref. [20].

leads to a new set of peaks but of a different scale, as shown in Figure

1.4b. In the absence of molecules conductance below g0 is featureless and

smooth, as can be seen in Figure 1.4c.

The STM based techniques facilitate the study of the conductance

of molecules [16, 34, 35] as a function of their geometry [36, 37] and

substituents [38].

1.2 Characterisation Of Molecular Tunnel Junctions

Characterisation of molecular junctions is still in its early stages of de-

velopment, but the inelastic electron tunnelling spectroscopy (IETS)

technique has been used by some groups to yield interesting results,
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Fig. 1.4: A molecular junction formed by the STM tip method: (a) Step-
like conductance observed as gold atomic chains are formed by pulling
the STM tip further away from the surface, the steps correspond to
multiples of g0 (conductance quantum); (b) As the atomic chain is pulled
apart to the breaking point, bipyridine fills in the gap leading to step-
like conductance again but on a smaller scale; (c) A control experiment
where the atomic chain is broken in the absence of molecules that can
bind to both the surface and the tip, results in smooth conductance with
no steps observed. Figure from ref. [28].

as discussed in what follows. Recent progress in tip-enhanced Raman

spectroscopy (TERS) had led to the technique being applied to single

molecule junctions with a view of providing accurate information on junc-

tion geometry.
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1.2.1 Inelastic Electron Tunnelling Spectroscopy

IETS is a tool for studying adsorbates on metal surfaces by yielding an

accurate vibrational spectra. One of the first applications of IETS was

in metal-insulator-metal junctions [39]. In molecular electronics, IETS is

commonly used to identify the molecular species in the nanogap between

two metal contacts [10, 16, 17, 30, 31, 40, 41]. The device region can be

thought of as a barrier through which the electrons tunnel from the left

electrode to the right, depending on the chemical potentials of the met-

als. A bias voltage is applied which initiates electron tunnelling. Elastic

tunnelling occurs when the electron has the same initial energy upon en-

tering the barrier as upon emerging from it. Inelastic tunnelling occurs

when the electron is scattered or interacts with the vibronic states of the

device, this reduces its energy when it reaches the second metal electrode.

In Figure 1.5, the moving electronic charge interacts with the molecular

dipoles (electronic or vibronic) within the device region to induce exci-

tation of the insulator molecule. This results in the loss of energy of the

electron. Since the interaction of the electron with the molecular dipoles

of the device region has both long and short range effects, selection rules

are relaxed [42]. The applied voltage can be tailored to probe a particular

state. For molecular electronics this is usually done to probe the highest

occupied molecular orbital (HOMO) and lowest unoccupied molecular

orbital (LUMO) levels that are investigated.

While in this thesis the vibrational properties of molecules are not

studied, the results obtained from IETS indicate a strong coupling of
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Fig. 1.5: A schematic representation of IETS mechanism, where the
hatched regions represent the occupied states in metals (a) and (b). The
dashed arrow represents an elastic tunnelling regime, that is, electron
does not interact with the device. If the electron does interact with the
vibronic or electronic modes of the device region, it loses the energy corre-
sponding to those levels as ~ω0, and results in inelastic tunnelling shown
as a solid arrow. This can be achieved by applying a voltage V0 = ~ω0/e
across the junction. Figure ref. [39].

molecular and metallic states. The IETS method is one of the clearest

methods to date that provides information that single molecules are being

measured in molecular tunnel junction.

The most recent application of IETS came from Song et al where

conducting states of BDT were probed to demonstrate gating behaviour

of orbitals [40]. A gating voltage V was applied and the peaks of the IET

spectrum (Figure 1.6) were assigned using the previous measurements

obtained from Raman and infra-red (IR) spectroscopy as well as DFT

calculations.

The HOMO of BDT is close in energy to the metal Fermi level EF and

is strongly coupled to the external vibrations resulting in a resonantly

enhanced IET spectra [41]. Also, strong coupling has been observed
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Fig. 1.6: The IET spectra for BDT junction with applied voltage V on the
horizontal axis. The colour coded spectra correspond to the insets of the
junctions where the molecular HOMO can be seen to move closer to the
metal Fermi level as more negative voltages are applied. The dashed ver-
tical lines guide the eye to the peaks as they change with applied voltage,
which correspond to different vibrational modes of benzene. The value of
eVg,eff corresponds to an effective molecular orbital gating voltage, the
details of which are outlined in ref. [40] from where the figure is taken.

when the molecular orbitals are distributed around the bond directly

related to the vibrational modes. In the case of BDT this holds for

π − π orbitals. The result of gating by changing V , as shown in Figure

1.6, is that the benzene IET spectra is modified. As the applied gating

voltage becomes more negative and brings the HOMO closer to EF , the
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normalised amplitude (d2I/dV 2)/(dI/dV ) for some features increases by

more than a factor of 30 and peak shapes change. From this experimental

work, further evidence for the need to accurately predict the molecule-

metal interface is given.

1.2.2 Tip-Enhanced Raman Spectroscopy

Recent progress in TERS has led to the technique being applied to sin-

gle molecule junctions with a view of providing accurate information on

junction structure [43]. TERS builds on the same principle as surface-

enhanced Raman spectroscopy, but a single metal nanoparticle is used to

give an even greater electromagnetic field enhancement [44]. Due to the

small size of the probe, lateral resolution is improved down to 10 nm. The

technique is used in conjunction with STM, where Raman and conduc-

tance readings are taken as the junctions form between the surface and

STM tip. In Figure 1.7, the red contour illustrates the electromagnetic

field distribution, it can be seen that the molecule within the junction

experiences the strongest electromagnetic effect. This is a great advan-

tage of TERS compared to other techniques as molecular resolution is

obtained.

In the recent experiment of 4,4-bipyridine on a gold (111) surface [43],

Raman spectra were obtained by the means of “fishing-mode” where the

STM tip is brought close enough to the surface coated with molecules

to form a junction, then the current is measured as the “on” state. The

tip is then withdrawn until the junction is broken and the current in the

“off” state is obtained. The STM feedback loop is formed and brings
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Fig. 1.7: Diagram of the TERS set up illustrating the extent of electro-
magnetic field (red) as it is felt by the molecule in vicinity of the tip.
It is clear that the molecule bonded to the tip experiences the biggest
effect. Figure from ref. [43].

the tip back within the junction-forming distance to “fish” for another

molecule. The geometry characteristics are then obtained by considering

the Raman spectrum, Figure 1.8a, where peak splitting in the “on” state

is seen.

At low voltage, the two pyridine rings interact with the two electrodes

in a similar way. Increasing the voltage, the bonding on the drain side

will also increase, shown in Figure 1.8b, decreasing the Au-N bond from

2.35 Å to 2.15 Å [43]. The C-N bonds become weaker and the parallel C-

C bonds become stronger, hence the ring becomes deformed. The drain

ring results in a modified stretch frequency of 1631 cm−1 while the ring

bonded to the source remains at 1609 cm−1.

This work by Liu et al shows for the first time how voltage effects

the geometry of the junction while being able to assign the changes to

specific bonds. Shortly after, computational results by Mirjani et al [45]
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Fig. 1.8: Fishing-mode TERS spectra in (a) for 4,4-bipyridine junction
and its computational model representation in (b). The red curve in
panel (a) represents the average of all “on” states, while the “black”
curve corresponds to the “off” states. The top panel of (a) illustrates the
experimental results, and the bottom panel DFT results with B3LYP
exchange correlation functional. A clear peak splitting from 1609 cm−1

in the “off” state to 1609 cm−1 and 1631 cm−1 in the “on” state is seen.
Panel (b) illustrates the computational model used to explain the origin
of peak splitting. At high voltages, the drain bonded benzene ring is
seen to distort and result in a modified frequency of 1631 cm−1, while
the source bonded benzene remains at 1609 cm−1. The figure is taken
from ref. [43].

followed where DFT was used to predict Raman spectra of a collection

of charged and neutral molecules with different anchor groups.

1.3 Designing Single Molecule Junctions

Molecular junctions provide a unique opportunity to tailor the band gap

of the device region by means of shifting the positions of HOMO and
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LUMO levels with respect to the metal Fermi level using various anchor

molecules, chemical substituents and different molecular conformations.

The relative position of molecular energy levels to metal energy levels is

called band alignment and is seen to be the key quantity in molecular

electronics which can control electron transport of the junction [2, 46–

49]. In this section, the recent experimental and theoretical research that

has been successfull in altering conductance is presented.

1.3.1 Linker Groups

Perhaps the most important component of the molecular junction, bar

the molecule itself, is the linker (anchor) group. The linker molecule

determines the bonding, and in turn the conductance properties of the

device. The most common linker molecules for gold electrodes are amine

or thiol based. The bonding motifs of linker groups with the metallic sur-

face differ for thiols and amines. For example, thiol linkers conductance

can be sensitive to conformation by orders of magnitude [50]. Whereas

amines form a weaker but more selective bond [13]. The amine bond hy-

pothesis [13] is that the strongly basic amine group donates its lone pair

of electrons to an uncoordinated gold atom to form a Au-N bond. While

a thiol has been seen to bind covalently in a variety of ways, for example

top and three-fold hollow sites yielding a difference in conductance by

up to factors of two to ten [51]. The selective amine bonding results

in clearer conductance steps compared to thiols. More electronegative

anchor groups have also been used, such as cyano [45], and were seen to

significantly modify the position of the HOMO level.
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1.3.2 Molecular Substituents

In chemical terms, substituents can be divided into two main types: elec-

tron donating groups (EDGs) and electron withdrawing groups (EWGs).

Both groups can operate in two main ways by either resonance or in-

duction, the former effect being stronger. It was found that EDGs and

EWGs influence the position of the molecular HOMO and LUMO levels

and their alignment with the metal EF leading to the change in observed

conduction [38, 52].

In the study by Venkataraman et al [38], the gold-BDA-gold (benzene-

di-amine) junction used was substituted with a variety of substituents

from electron donating methyl and methoxy groups to the most electron

withdrawing fluorine and cyano groups. The substituents were added by

replacing hydrogen atoms on the benzene ring. EDGs are found to in-

crease conductance as they increase the energy of the HOMO (decreasing

ionisation potential (IP)). This is because EDGs have lone electron pairs

on them, for e.g. in methoxy, oxygen has a lone pair, that delocalises

into the π space of benzene, thereby raising the HOMO energy closer

to the metal work function. On the other hand, a very electronegative

halogen group removes electron density from the σ space of the benzene

and lowers the energy of the HOMO.

The experimental findings from ref. [38] have been confirmed by

computational modelling within the DFT formalism for both BDA [38]

and BDT [52] junctions. Despite different bonding geometries of BDA

and BDT, the conceptual findings of substituents effects are equally valid.
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1.3.3 Molecular Conformation

The conductance of molecular junctions can also be modified by changing

the conformation of the molecule [15, 16, 36, 46]. However, in experi-

mental studies when a junction is formed it consists of several molecular

conformations, so only the average conductance can be measured. Bond-

ing to the metal can occur at several sites, each site contributing a dif-

ferent conductance value. Theoretically, it is easier to form an idealised

molecular junction of a certain starting geometry and then to allow the

geometry to relax. Much like with the molecular substituents, conforma-

tion first affects the position of the HOMO and LUMO levels which in

turn modify conductance [46].

1.4 Computational Modelling

Computational modelling of single molecule junctions entails dealing with

open systems. Opening of a system is achieved by imposing boundary

conditions. The most common way of opening a junctions is to use a

Green’s function self-energy to describe the leads within a single-particle

formalism [3, 8]. When a molecule couples to a metal contact, several

processes occur [2, 3]: metal and molecular states interact (hybridisation

of molecular orbitals occurs), charge transfer from metal states to molec-

ular states takes place and the electronic structure of the molecule may

be changed. The convention is to consider the entire system as three

sub-systems: left lead, extended molecule (EM) or device and right lead

as illustrated in Figure 1.9
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Fig. 1.9: A schematic representation of a typical computational model
of a molecular tunnel junction. The source and drain are represented
by two large leads, the extended molecule (EM) can be seen to contains
parts of the lead called contacts as well as the molecule itself. Figure
from ref. [53].

Commonly, a single particle approximation, such as the Kohn-Sham

(KS) orbitals within DFT formalism (discussed in Chapter 2), is used to

treat the junction’s electronic structure. It is well known that there are

inherent errors using DFT orbital energies to model the energy gap and

alignment to the Fermi level due to self-interaction of electrons [48, 54–

58]. For example, DFT calculations place the HOMO level too close

to the metal Fermi energy in the case of amine linked junctions [15].

This results in conductance being about seven times larger than exper-

iment [14, 59]. Similary, it has been shown that DFT overestimated

electron current for BDT by up to a factor of 103 [34, 60]. Therefore,

electron-electron interactions need to be included beyond the use of KS

orbitals at least into the treatment of the extended molecule, while leav-

ing the leads described by single particle formalisms. Improvements

upon the standard DFT approach are achieved by including electron

self-interaction by using NEGF [2], however, as the use of KS orbitals
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remains a single-particle approach the errors are not completely elimi-

nated [55]. The critical point within this theory is the correct selection

of the self-energy approximation which would in turn lead to reliable

quasiparticle energies. Further improvement can only be achieved by us-

ing many-body theories which account for electron interactions explicitly.

Recent calculations based on many-body perturbation theory within the

GW approach have been demonstrated to correct level alignment errors

associated with KS-DFT and conventional NEGF-DFT approximations

[61–63], however, discrepancies with experimental conductance still exist.

The GW framework of DFT [64, 65] uses a Green’s function G approxi-

mation to self-energy which contains a large part of exchange energies and

some electron correlation. The dynamically screened Coulomb interac-

tion is W . However, one significant drawback of the GW approximation

is the failure to describe the multi-determinant behaviour. The configura-

tion interaction (CI) framework (discussed in Chapter 2) can provide an

accurate multi-reference treatment of electronic structure, conductance

from which has shown excellent experimental agreement [66–68]. Hence,

the need for a multi-determinant description [69] of tunnel junctions to

achieve accurate predictions for band alignment and electron transport

will be highlighted.



2. COMPUTATIONAL METHODS

The aim of electronic structure calculations is to solve the Schrödinger

equation to obtain the electronic ground and excited states energies and

wavefunctions. From the wavefunction all properties can be derived, such

as dipole moments, polarisability, etc. There are several approaches to

solving the Schrödinger equation. In this chapter, a brief conceptual

summary of the most common electronic structure techniques as they

are used in this thesis is given. Single determinant models are intro-

duced first: Hartree-Fock (HF) [70] and the Kohn-Sham form of Density

Functional Theory (DFT) [71]; followed by the many-body formalism

of configuration interaction (CI) and more specifically the Monte-Carlo

configuration interaction (MCCI) method [72–74]. We also discuss the

Møller-Plesset (MP) approximation as it is commonly used in quantum

chemical calculations and will be referred to in Chapter 5. A brief in-

troduction to the density matrix and Green’s function self-energy is also

given.
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2.1 The Molecular Hamiltonian

Usually, electronic structure calculations begin with a time-independent

Schrödinger equation

ĤtotΨ(r,R) = EΨ(r,R) (2.1)

where r are the electronic coordinates and R are the collective nuclear

positions. The molecular Hamiltonian Ĥtot consists of nuclear and elec-

tronic terms and interaction term coupling the electronic and nuclear

degrees of freedom

Ĥtot = T̂n + T̂e + V̂ne + V̂ee + V̂nn. (2.2)

The T̂n and V̂nn are nuclear kinetic and potential energies respectively,

dependent only on the nuclear coordinates R

T̂n + V̂nn = −
M∑
A=1

~2

2MA

52
A +

M∑
A=1

M∑
B>A

ZAZB
| RA −RB |

, (2.3)

T̂e and V̂ee only depend on the electron positions,

T̂e + V̂ee = −
N∑
i=1

~2

2me

52
i +

N∑
i=1

N∑
j>i

e2

4πε0

1

| ri − rj |
(2.4)

The V̂ne term depends on both the position of nuclei and electrons,

V̂ne =
M∑
A=1

N∑
i=1

ZAe
2

4πε0 | RA − ri |
. (2.5)
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where i, j in the above are the electron coordinate indices and A,B are

nuclear coordinate indices, ZA,B are nuclear charges, me is the mass of an

electron and MA is a nuclear mass, 52
i and 52

A are Laplacian operators

which involve differentiation with respect to the coordinates of the i’th

electron and A’th nucleus, respectively. There are several assumptions

used when constructing this Hamiltonian: gravity, nuclear forces and

non-electromagnetic forces are all ignored as they are weak compared to

the electromagnetic force. In the Born-Oppenheimer approximation, it

is assumed that the nuclei are stationary and the electrons move in the

mean field of the nuclei. That is, the motion of the nuclei and electrons

is decoupled. This type of Hamiltonian is used throughout this thesis.

The operators may be grouped based on the number of electron in-

dices:

ĥi = − ~2

2me

52
i −

M∑
A

ZA
| RA − ri |

, (2.6)

ĝij =
1

| ri − rj |
. (2.7)

The one-electron operator ĥi describes the motion of electron i in the field

of all the nuclei, and ĝij is a two-electron operator giving the electron-

electron repulsion. So, an electronic Hamiltonian can be written com-

pactly as

Ĥ =
N∑
i

ĥ(i) +
N∑
i

N∑
j>i

ĝ(i, j). (2.8)

The Schrödinger equation cannot be solved exactly for any Coulomb
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system that contains more than one electron. This is because the electron-

electron repulsion term is not separable; this term couples the electrons

together which repel each other while being attracted to the nucleus.

Hence, the motion of all the electrons are correlated. The correlation

energy and its calculation are discussed in more detail in Section 2.4. In

the work that follows atomic units (a.u.) (~ = me = e = 1) are used,

unless otherwise specified.

2.2 Slater Determinants

An atomic orbital (AO) is defined as the wavefunction for a single electron

in an atom. Molecular orbitals (MOs) are often expanded as a linear

combination of AOs. Since electrons have spin, they are defined within

coordinate space (spatial orbitals) or coordinate and spin space (spin

orbitals). A spin orbital, χ(x) consists of the two orthonormal functions

α (spin up) and β (spin down) as a wavefunction describes both the

spatial distribution and spin of an electron. Hence, for every spatial

orbital ψ, there are two spin orbitals

χ(x) =


ψ(r)α(ϕ)

or

ψ(r)β(ϕ)

, (2.9)

where r is the position vector of a single electron in space, ϕ is the

coordinate in spin space, and x is a spin and space coordinate.

Electrons obey the Pauli Exclusion principle which states that two
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fermions can not be simultaneously in the same quantum state. Hence,

an antisymmetric wavefunction for two electrons is written as

χ(x1,x2) = −χ(x2,x1), (2.10)

with the antisymmetry enforcing the Pauli exclusion principle.

The antisymmetric wavefunction for an N electron system can be

written as a determinant:

χ(x1,x2 . . .xN) = (N !)−1/2

χi(x1) χj(x1) . . . χk(x1)

χi(x2) χj(x2) . . . χk(x2)

...
...

...

χi(xN) χj(xN) . . . χk(xN)

(2.11)

where (N !)−1/2 is the normalisation factor when using orthonormal spin

orbitals. This is the so-called Slater determinant [75, 76]. Interchanging

the coordinates of two electrons is the same as interchanging two rows

of the determinant, and changes the sign of the determinant enforcing

the anti-symmetry requirement. The Slater determinant incorporates ex-

change correlation, that is the motion of electrons with parallel spins is

correlated, in that non-classical effects beyond electrostatics are intro-

duced. However, the electrons of opposite spins remain uncorrelated.

Slater determinants can also be used to express excited state wave-

functions. Let us consider the Schrödinger equation

HΨ0 = EΨ0, (2.12)



2. Computational Methods 25

Fig. 2.1: Excited Slater determinants, from l-r: ground state, S-type, S-
type, D-type, D-type, T-type, Q-type, denoting singles, doubles, tripes,
quadruples, respective. Figure from ref. [77].

let Ψ0 be N -electron determinant approximation to the ground state

wavefunction. The excited Slater determinants are defined as ΨS (Sin-

gle), which is a new Slater determinant different from Ψ0 in one spin

orbital, ΨD (Double) if two spin orbitals differ, and so on. In Figure 2.1

a collection of such determinants is illustrated.

The total number of excited determinants that can be generated de-

pends on the size of the basis set, the larger the basis, the larger the

number of virtual orbitals, and the greater the number of the Slater

determinants. The number of N-electron Slater determinants increases

combinatorially as the number of molecular orbitals (MOs) describing

excitations is increased.

2.3 Single Determinant Models

A Slater determinant can represent a set of non-interacting electrons

that serve as a first approximation to a set of interacting electrons. In

the following section, Hartree-Fock (HF) theory and the Kohn-Sham ap-
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proach to DFT will be introduced to understand how spin orbitals may

be employed and to understand their use as a single determinant approx-

imation to the N-electron wavefunction and charge density, respectively.

The use of orbitals in KS-DFT is a theoretical device to describe the

electron density. However, as will be discussed, the use of KS eigenval-

ues to describe electronic spectra equates to their use in a single particle

theory, or single determinant approximation.

2.3.1 Hartree-Fock Theory

The HF method seeks to approximately solve the Schrödinger equation by

assuming that the wavefunction can be approximated by a single Slater

determinant. The energy in a single normalised Slater determinant is,

E = 〈Ψ|Ĥe|Ψ〉 (2.13)

Having selected a trial wavefunction, |Ψ〉 = |χ1χ2 . . . χaχb . . . χN〉, the

HF equations can be derived using the variational principle. An equation

(2.1) for the electronic Hamiltonian is considered first,

Ĥe =
N∑
i

ĥ(i) +
N∑
i

N∑
j,j 6=i

ĝ(i, j).

The two-electron term gives rise to two contributions: a Coulomb inter-

action term and an exchange term. In an exact theory, the Coulomb

term is represented by the two-electron operator r−1
ij felt by electron 1

and associated with the instantaneous position of electron 2, however in
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the HF approximation it is an average term. A Coulomb operator is

defined as

Ĵb(1) =

∫
dx2 | χb(2) |2 r−1

12 (2.14)

as an average local potential at point x1 due to an electron in χb. The

exchange integral has no classical analogue and can be thought of as the

energy associated with exchanging two electrons of the same spin,

K̂b(1)χa(1) =

[∫
dx2 χ

∗
b(2)r−1

12 χa(2)

]
χb(1). (2.15)

The HF method is a constrained minimisation method, meaning the

total energy is minimised under the constraint that the MOs remain

orthogonal and normalised. The constraint condition is handled by La-

grange multipliers leading to an eigenvalue equation with the Fock oper-

ator as

f̂(1) = ĥ(1) +
∑
b

[
Ĵb(1)− K̂b(1)

]
. (2.16)

The Fock operator contains the one-electron energy operator describing

the kinetic energy of electrons and their attraction to the nuclei, while

the two-electron operator describes the repulsion of an electron in the

mean field of all other electrons. The energy operator is non-separable in

electron coordinates due to the Coulomb operator, and hence the solu-

tion to the HF differential equation cannot be a single (separable) Slater

determinant. Because the energy is described as an average repulsion

between an electron and all the other electrons distributed in orbitals,

the total energy cannot be exact.
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The variational principle states that the best wavefunction of this

functional form is the one which gives the lowest possible energy. The

expectation value for energy can be written as,

E = 〈Ψ|Ĥe|Ψ〉,

the energy, E is minimised with respect to the choice of the spin orbitals

χ; this leads to the HF equation which determines the optimal spin or-

bitals. Because the HF Hamiltonian operator is hermitian (H† = H),

the orbitals can be chosen to be orthonormal1.

This leads to a HF equation F̂ χHF = εχHF that is solved iteratively,

i.e. the results must eventually become self-consistent. The orbitals χHF

obtained in this way lead to the HF approximation to the ground state

wavefunction Ψ.

Introducing a basis set transforms the HF equations into the Roothaan

equations and leads to the wavefunction becoming a linear combination

of atomic orbitals (LCAO). For the work that follows in this thesis, it

is useful to express the Roothaan equations in matrix form [70]. Two

matrices are defined: an overlap matrix S and the Fock matrix F. The

overlap matrix has elements

Sµν =

∫
dr1 φ

∗
µ(1)φν(1), (2.17)

and is a Hermitian matrix. The finite set of K atomic basis functions

1 〈χi|χj〉 = δi,j , δi,j = Krönicker-delta function
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{φν} is assumed to be normalised, although not orthogonal to each other,

hence the magnitude of the diagonal elements is 0 ≤| S |≤ 1. Their

sign depends on the relative orientation and separation of the two basis

functions. The Fock matrix, F has elements

Fµν =

∫
dr1 φ

∗
µ(1)f(1)φν(1), (2.18)

and is also a Hermitian matrix representation of the Fock operator. The

integrated Hartree-Fock equations can be written as [70],

∑
ν

FµνCνi = εi
∑
ν

SµνCνi i = 1, 2, . . . , K, (2.19)

these are the Roothan equations, which are written as a matrix equation,

FC = SCε, (2.20)

where C is a square matrix of the expansion coefficients Cµi of χ, and ε is

a diagonal matrix of the orbital energies εi. The matrix representation of

the HF equations is the form that will be used in this thesis. The compu-

tational cost of the HF method increases as N3 (where N is the number

of AOs) due to the need to solve a matrix eigenvalue problem, hence mak-

ing it as time-consuming a calculation as KS-DFT (discussed next), but

less computationally heavy than MP2 and configuration interaction (CI)

which will be discussed in what follows.
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2.3.2 Kohn-Sham Density Functional Theory

Thomas-Fermi theory

Density Functional Theory (DFT) is based on Thomas-Fermi theory [78,

79], dating back to 1927. The original theory proposes to use the kinetic,

exchange and correlation energies for a homogeneous gas to construct

similar expressions for an inhomogeneous gas. This is an early outline

of the Local Density Approach (LDA) but unlike in modern DFT-LDA,

Thomas-Fermi LDA is applied also to the kinetic energy. It is assumed

that when the energy density is calculated locally in the inhomogeneous

system it will exhibit approximately the homogeneous gas behaviour.

In the 1930’s, the theory was extended by Dirac who formulated the

local approximation for exchange, leading to the energy functional2 in an

external potential Vext, [79]:

ETF [ρ] = C1

∫
d3r ρ(r)5/3 +

∫
d3r Vext(r)ρ(r)

+ C2

∫
d3r ρ(r)4/3 +

1

2

∫
d3rd3r′

ρ(r)ρ(r′)

| r− r′ |
(2.21)

where the first term is the local approximation to the kinetic energy with

C1 = 3
10

(3π2)2/3 = 2.871 a.u., the third term is the local exchange with

C2 = −3
4
( 3
π
)1/3 and the last term is the classical electrostatic (Hartree)

energy. Minimising this energy functional for all possible ρ(r), subject to

the constraint on the total number of electrons to be equal to the total

2 A functional is a prescription for producing a number from a function which in
turn depends on a set of variables. A function is a prescription which produces a
number from a set of variables.
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charge, leads to an approximation for the ground state energy.

The advantage of density based methods is that they are, in principle,

computationally less demanding compared to a wavefunction method

such as HF as discussed previously, and they explicitly include electron

correlations. This is because the electron density can be expressed as

ρ =
N∑
i=1

| χi |2, (2.22)

with an increased number of electrons, the charge density matrix has the

same number of variables. However in practice, there is no method yet

to solve for the density without the re-introduction of MOs.

In 1964, a proof by Hohenberg and Kohn [80] that the ground state

electronic energy is determined entirely by the electron density ρ gave

mathematical grounds to the ideas behind Thomas-Fermi theory. The

proof of the theorems is widely available in literature [79] and shall be

omitted in this thesis, suffice it to say that the theorems relate a func-

tional of the charge density to the ground state electronic energy.

A drawback to DFT is that the functional connecting the electron

density and ground state energy is not explicitly known. Much of the

work done in the DFT field is directed toward designing and improving

such approximate functionals.
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The Kohn-Sham Approximation to Density Functional Theory

The DFT formulation implemented in modern quantum chemistry pack-

ages is the theory formulated in Kohn-Sham (KS) orbitals [71] 3. This

leads to the computational effort being more demanding due to the re-

introduction of the orbitals.

The KS Ansatz can be used to show that the ground state den-

sity of the original interacting system is equal to that of some chosen

non-interacting system that can be considered exactly soluble with all

the difficult many-body terms incorporated into an exchange-correlation

functional of the density. The accuracy of the ground state energy

and density is determined by the approximation used to describe the

exchange-correlation functional. The solution for the KS ground state is

the minimisation with respect to either the density ρ(r, ϕ) or the effective

potential, Veff . The KS variational equation can be written as,

δEKS
δχ∗i (x)

=
δTS

δχ∗ ∗i (x)

+

[
δEext
δρ(x)

+
δEHartree
δρ(x)

+
δExc
δρ(x)

]
δρ(x)

δχ∗i (x)

= 0, (2.23)

where TS, the independent-particle kinetic energy, is explicitly expressed

as a functional of the orbitals but all the other terms are considered as

functionals of density. Hence the minimisation is with respect to the KS

3 In this thesis, when a reference to DFT, it is specifically to KS-DFT
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orbitals. The KS Schrödinger-like equation is

(HKS − εi)χi(x) = 0, (2.24)

where HKS is the KS Hamiltonian with eigenvalues εi and x are a com-

bined spin and space coordinate as before. The Hamiltonian consists of

two parts

HKS(x) = −1

2
52 +VKS(x), (2.25)

VKS(x) = Vext(x) +
δEHartree
δn(x)

+
δExc
δn(x)

= Vext(x) + VHartree(r) + Vxc(x), (2.26)

where attempting to describe the exchange-correlation functional Vxc(r)

is the subject of much work in the DFT field. The Kohn-Sham orbitals

are not strictly quasiparticles, but their energy eigenvalues are often used

to approximate properties of a system in a single particle picture. This

section is referred to when describing junctions in the DFT treatment

and implementing various exchange-correlation functionals in this work.

2.4 Configuration Interaction

For many chemical reactions and in the case of molecular junctions, a

more accurate determination of the energy or a multi-reference wave-

function is required. This is generally obtained by using many-electron

formalisms which treat correlation energy explicitly. While being com-

putationally demanding, the results contain significant information on
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the energy and the character of the many-electron wavefunction of the

system. Configuration interaction (CI) is one example of a many-electron

formalism and is the one used in this thesis.

The HF method generates solutions to the Schrödinger equation where

the electron-electron interaction is replaced by an average interaction. In

a sufficiently large basis set for atoms and molecules, HF can account for

99% of the exact energy. However in chemical reactions that require

an accurate description of the excited state or transition complexes, the

neglected 1% plays an important role. The correlation energy can be

defined as the difference between the HF energy and the exact energy:

Ecorr = Etotal − EHF . (2.27)

The first linear variational principle for many-body wavefunctions was

written by MacDonald in 1933 and became known as the superposition

of configurations or configuration interaction [81]

Ψ =
∑
i

ciΨi, (2.28)

where Ψ is the many-electron wavefunction. The N -electron basis Ψi are

Slater determinants, which are often called “spin-orbital configurations”,

or sums of Slater determinants which are known as configuration state

functions (CSFs) and have the same symmetry properties as Ψ.

As the HF energy follows from a variational principle it is an upper

bound to the exact energy, hence the correlation energy is negative. Con-
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figuration interaction is a means to obtain the correlation energy. The

method consists of diagonalising an N -electron Hamiltonian in an N -

electron basis. Since the HF method determines the energetically “best”

one-determinant trial wavefunction, it is often used as a starting point

for CI. To improve on a single determinant HF wavefunction, the trial

wavefunction is written in a multi-determinant form. Because the start-

ing wavefunction is expanded to include more determinants, it is more

correct to think of the electron distribution not as orbitals but as an

electron density obtained from a many-electron wavefunction,

Ψ = c0ΨHF +
∑
i=1

ciΨi. (2.29)

In general, c0 is close to one for a molecular problem, unless the system

is multi-reference, that is several states are nearly degenerate and can

mix strongly in the overall wavefunction. The CI method calculates the

remaining coefficients ci. The starting point contains N electrons and K

basis functions with N/2 occupied spatial molecular orbitals for a closed

shell state and K−N/2 unoccupied (virtual) orbitals. There are typically

more virtual orbitals than occupied orbitals. The total CI wavefunction

is made up of excited Slater determinants. Subscripts indicate the exci-

tations Single (S), Double (D), triple (T), etc. as described in Section

2.2,

ΨCI = c0ΨHF +
∑
S

cSΨS+
∑
D

cDΨD+
∑
T

cTΨT +. . . =
∑
i=0

ciΨi. (2.30)
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A restriction is placed on the summation indices to ensure that a given

excitation is counted only once. CI is a variational technique, the energy

should be minimised under the constraint that the total CI wavefunction

is normalised. The expectation value of the many-body Hamiltonian

operator using the wavefunction Ansatz equation (2.30) is the CI energy,

E =
〈ΨCI |H|ΨCI〉
〈ΨCI |ΨCI〉

. (2.31)

The energy is minimised with respect to the coefficients ci, leading to a

matrix eigenvalue equation,

Hc = ScE, (2.32)

where the matrix elements of the many-electron Hamiltonian are 〈Ψi|H|Ψj〉.

The overlap matrix, Sij = 〈Ψi|Ψj〉 for orthonormal Slater determinants

will be unity. In general, one deals with non-orthogonal CSFs and the

overlap matrix elements are 〈Ψi|Ψj〉.

Since this is a many-particle method, as can be anticipated it is com-

putationally more demanding than single particle theories. The size of

the full CI space can be calculated using Weyl’s dimensional formula as

the number of CSFs,

M =
2S + 1

K + 1

(
K + 1

N/2− S

)(
K + 1

N/2 + S + 1

)
, (2.33)

where N is the number of electrons, K is the number of orbitals, and S is

the total spin. It becomes clear that even with the reduction of CI space
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due to spin constraints, the increase in the size of the wavefunction length

with an increasing number of electrons is dramatic. A full configuration

interaction (FCI) will give the exact energy within a given basis set,

however it is only feasible for few small systems, due to the size of the

resulting CI matrix.

The size of the CI calculation and the accuracy of the energy ob-

tained can be controlled by the size of an active space and by freezing

occupied orbitals. The active space can be defined as all the CSFs that

are available for the calculation, both occupied and virtual. The more

virtual states that are available, the more accurate the calculation will

be. Some occupied orbitals which are low in energy that will not be

easily excited can be frozen, limiting the CSFs just to the higher lying

occupied orbitals which will readily participate in the excitations into the

virtual orbitals. This is known as the “frozen core approximation” and

can significantly aid in limiting the size of the CI matrix. The correlation

of the core electrons contributes to the total energy as well, however it

can be essentially considered as a constant factor [74].

The implementation of CI used in this work is Monte-Carlo configu-

ration interaction (MCCI) [72–74, 82]. The MCCI formalism has several

advantages over direct CI and its applicability to the ground state energy

[72, 73, 83], electronic spectra and excited states in atoms and molecules

[82, 84–87] and for calculations of dissociation energies [88] as well as

large systems [89] has been demonstrated.

The main advantage of MCCI is how it selects the CSFs. Starting

from a set of CSFs (which initially may be a single CSF), then addi-
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tional CSFs are randomly generated relative to that trial vector with

no restriction on the interacting configuration subspace. The CI matrix

diagonalisation problem is solved on the subspace defined by the result-

ing expanded vector. This vector is then “pruned” by removing the

CSFs whose associated coefficient in the CI eigenvector has a magnitude

lower than a given coefficient threshold (cmin). This “pruned” vector

now serves as a trial vector for the generation of new random CSFs, and

this sequence is repeated until convergence in the energy and CI vec-

tor length is reached. The selection criteria can be lowered to include

more and more CSFs, approaching the exact energy and wavefunction.

A reference space consists of a set of strongly interacting CSFs, which are

usually quickly found. Each of these CSFs can then interact with a set of

single, double, and higher order excitations which may be selected later

in the process. The parameters that control the calculation are involved

in regulating the convergence behaviour of energy and the CI vector.

The convergence of MCCI relates to how many steps are necessary un-

til the wavefunction and energy satisfy given thresholds, illustrated in

Figure 2.2. This primarily depends on how good the initial vector was.

In the branching step the new configurations are generated. If only a

small amount of new configurations is generated, then the previous step

CI vector will be a good approximation to the current vector. However,

if a large number of new configurations is obtained, the the convergence

is slower. A small change in the magnitude of the coefficients speeds up

the convergence process.

In this thesis, a complex MCCI program is used which is the standard
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Fig. 2.2: Convergence behaviour of MCCI for the chain-BDA-chain junc-
tion studied in Chapter 4 for a fixed value of cmin of 8 × 10−4. The
total energy is seen to rapidly decrease (shown in black) as the number
of CSFs increases (shown in red). The small jumps seen in the CI vector
length curve correspond to the full pruning steps.

MCCI modified to treat the complex symmetric generalised eigenvalue

problem that arises when adding the complex absorbing potential (CAP)

(which is discussed in more detail in Chapter 3) as a one-body operator

to the many-electron Coulomb Hamiltonian [90]4. MCCI uses a Lanc-

zos method for matrix diagonalisation. The projection method outlined

in ref. [91] is introduced to solve the complex symmetric generalised

eigenvalue problem.

Further details on development of MCCI can be found in ref. [72–

74, 82, 85, 90, 92].

4 Algorithm modifications have been carried out by Mark Szepieniec.
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2.5 Density Matrix

We have mentioned that wavefunctions for molecules become more and

more complex as system sizes become larger and computational facilities

improve. The information on the single electron distribution is contained

within an electron density and spin density. In this section, the density

matrix is discussed, which is later referred to in Chapter 5.

The probability of finding an electron in volume element dr and with

spin between s and s+ ds (where ds is a spin element) is determined by

the density function [93],

ρ(x) =
nocc∑
i

| χi(x) |2, (2.34)

where as before χi is a spin orbital and x stands for space and spin coor-

dinates collectively, and nocc is the total number of occupied orbitals. For

a many electron system with a wavefunction Ψ(x1,x2, . . . ,xN), then the

probability of electron 1 being in space volume dx1 and other electrons

anywhere is,

ρ(x1) =

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x1,x2, . . . ,xN)dx2 . . . dxN , (2.35)

and the probability of finding any of the N electrons in dx1 is N times

the above equation, so the corresponding density function ρ1(x1) defined
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as [93],

ρ1(x1) = N

∫
Ψ(x1,x2, . . .xN−1,xN)Ψ∗(x1,x2, . . .xN−1,xN)dx2 . . . dxN ,

(2.36)

where x1 is a point at which the density is being evaluated as opposed

to an electron coordinate. As an example particularly illustrative to

electronic structure calculations, an energy operator that contains the

one-electron terms is considered

ĥ(i) = −1

2
52 (i) + V (i), (2.37)

for each electron i and the two-electron term for electron repulsion

ĝ(i, j) = 1/rij, (2.38)

for a pair of electrons i, j. Due to the symmetry of Ψ∗Ψ, each term of

the expectation value will contribute equally, so one can write N times

the result for the first electron to obtain the density function ρ(x1; x
′
1).

The expectation value of the one-electron operator 〈
∑

i ĥ(i)〉 is

N

∫
x′1=x1

ĥ(1)Ψ(x1,x2, . . . ,xN)Ψ∗(x′1,x2, . . .xN−1,xN)dx1dx2 . . . dxN

∣∣∣
x′1=x′1

,

(2.39)

where x′1 = x1 is true after ĥ(i) operates on functions of x1 only, but

before completing the integration, in this way the variables that are

primed are immune to the action of the operator. The right-hand side
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contains the density function ρ(x1; x
′
1) also known as reduced density

matrix (RDM) as only the x1 coordinate is used,

〈
∑
i

ĥ(i)〉 =

∫
x′=x

ĥ(1)ρ(x1; x
′
1) dx1. (2.40)

The expectation value of the two-electron operator can be expressed as

a pair function π, [93],

〈
∑
i,j

ĝ(i, j)〉 =

∫
x′1=x1

x′2=x2

ĝ(1, 2)π(x1,x2; x
′
1,x

′
2) dx1 dx2. (2.41)

Summing the expectation values for the operators ĥ(i) and ĝ(i) gives

an expression for the energy of the many-electron system as a collection

of terms with a classical interpretation for the distribution function of

electrons or pairs of electrons aside from the quantum mechanical expec-

tation value of kinetic energy.

E = −1

2

∫
x′1=x1

52ρ(x1; x
′
1) dx1 +

∫
x′1=x1

V̂ ρ(x1; x
′
1) dx1

+
1

2

∫
x′1=x1

x′2=x2

ĝ(1, 2)π(x1,x2; x
′
1,x

′
2) dx1dx2, (2.42)

because the energy involves only the one and two electron distributions

directly, it is in principle possible to obtain useful molecular properties for

any state of any system without detailed reference to the wavefunction.
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2.6 Møller-Plesset Perturbation Theory

Up to now methods based on the variational principle have been dis-

cussed. In this section, a perturbation technique common to quantum

chemistry calculations is discussed. The Møller-Plesset (MP) perturba-

tion theory is a method of adding correlation energy to the Hartree-

Fock equations by means of the Rayleigh-Schrödinger perturbation the-

ory, usually calculated to second-order. A zeroth-order Hamiltonian is

considered first,

Ĥ0|Ψ(0)
i 〉 = E

(0)
i |Ψ

(0)
i 〉, (2.43)

where the superscript (0) indicates zeroth-order to the i’th state (sub-

script). The perturbation V̂ is added giving a new perturbed Hamilto-

nian,

Ĥ = Ĥ0 + λV̂ , (2.44)

where at λ = 0 the zeroth-order energy is obtained.

The exact eigenvectors, and eigenvalues of Ĥ are expanded in a Taylor

series in λ,

E = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . (2.45)

|Ψi〉 = |Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ λ2|Ψ(2)
i 〉+ . . . , (2.46)

the E
(n)
i is the n’th order energy to the i’th state. The energies are

expressed in terms of the zeroth-order wavefunction |Ψ(0)
i 〉 to obtain the

first (MP1) and second (MP2) order energy corrections. Solving order
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by order in the expansion, [70], one obtains,

E
(0)
i = 〈Ψ(0)

i |Ĥ0|Ψ(0)
i 〉, (2.47)

E
(1)
i = 〈Ψ(0)

i |V̂ |Ψ
(0)
i 〉, (2.48)

E
(2)
i = 〈Ψ(0)

i |V̂ |Ψ
(1)
i 〉, (2.49)

the zeroth-order energy is just the Hartree-Fock total energy if |Ψ(0)
i 〉 is

expressed in HF orbitals and the first-order correction can be shown to

be zero by Brillouin’s theorem. Hence, the lowest contribution to the

correlation energy is in the second-order MP correction (MP2).

The unperturbed Hamiltonian can be written as a sum of one-particle

Hamiltonians

Ĥ0 =
∑
i

ĥ0(i) (2.50)

and similarly, the perturbation as the difference between Ĥ0 and the

exact Hamiltonian Ĥ is written as

V̂ = Ĥ − Ĥ0. (2.51)

Then the zeroth-order wavefunction is the HF wavefunction and zeroth-

order energy is the sum of the HF spin orbital energies of occupied or-

bitals {εi}. The convention used within this thesis is that i and j label

occupied orbitals, a and b are virtual orbitals and p, q are general HF

orbitals. Then, the second-order correction to ground state energy can
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be written as

E
(2)
i =

1

4

∑
ijab

| 〈ij || ab〉 |2

εi + εj − εa − εb
, (2.52)

and the second-order correlation energy correction to the HF energy is,

Ei = E
(0)
i + E

(2)
i

=
∑
i

εi +
1

4

∑
ijab

| 〈ij || ab〉 |2

εi + εj − εa − εb
, (2.53)

which typically contains 80-90% of the correlation energy [77]. The ex-

pressions for higher order energies may be derived, however they do not

contribute significantly more to the correlation energy of many molec-

ular systems and are computationally intensive to calculate. The MP2

method is one of the most commonly used post Hartree-Fock methods in

quantum chemistry.

2.7 Electron-Electron Self-Energy and Green’s Function

The Green’s function is one of the most powerful and useful techniques in

many-body theory. In Chapter 5, the Green’s function calculated ionisa-

tion potential (IP) and electron affinity (EA) are used and compared to

those obtained from an analytical model and electronic structure com-

putational packages. The application of Green’s function methods is

a very wide field, the discussion in this thesis is limited only to the

many-electron Green’s function of the Hartree-Fock (HF) theory and the

resulting self-energy.

It is known that the Hartree-Fock Green’s function, G0(E), has poles



2. Computational Methods 46

at the eigenvalues of the Hamiltonian that approximate the energy dif-

ferences between the N and (N ± 1)-particle systems, i.e. at the orbital

energies ε [70],

G0(E) = (EI− ε)−1. (2.54)

where ε is a diagonal matrix of the HF orbital energies and G0(E) has

poles at values of E for which the inverse (EI− ε)−1 does not exist.

If |ΨN
0 〉 is the HF wavefunction for the N -particle system, |ΨN−1

i 〉 is

an approximate wave function for the (N − 1)-electron system obtained

by removing an electron from a filled level i, |ΨN+1
a 〉 is an approximate

(N+1)-particle wave function formed from adding an electron to a virtual

state a, then the IP and EA are

− IP = εi = 〈ΨN
0 |H|ΨN

0 〉 − 〈ΨN−1
i |H|ΨN−1

i 〉 (2.55)

−EA = εa = 〈ΨN+1
a |H|ΨN+1

a 〉 − 〈ΨN
0 |H|ΨN

0 〉. (2.56)

The above IPs and EAs do not allow for orbital relaxation because |ΨN+1
a 〉

and |ΨN−1
i 〉 are not the HF wave functions of the (N + 1) and (N − 1)

particle systems respectively as they contain the spin orbitals of the N -

particle system. The exact IP or EA can be obtained by including the

relaxation energy of the (N−1) system ((N+1) for EA) and the difference

in correlation energies between the N and (N − 1) (or (N + 1)) systems

[70].

The many-body Green’s function, G(E) has poles at the exact energy

differences between the N and (N ± 1)-particle systems. It is reasonable
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to view the Hartree-Fock Green’s function as a single determinant ap-

proximation to the many-body Green’s function. Obtaining approxima-

tions for G(E) beyond G0(E) will lead to improvement in Koopmans5

IPs and EAs while retaining the one-particle treatment associated with

HF theory. To improve Koompans’ IPs and EAs an effective energy de-

pendent potential is introduced, called the electron-electron self-energy,

making the Green’s function an integral equation known as the Dyson

equation [70]

G(E) = G0(E) + G0(E)Σ(E)G(E), (2.57)

where Σ(E) is the matrix representation of the exact self-energy in a

HF basis. The Green’s function can be corrected by expanding equation

(2.57) in a perturbation expansion of self-energy

Σ(E) = Σ(2)(E) + Σ(3)(E) + . . . . (2.58)

In particular, the second-order correction is of interest, so the matrix

elements for Σ(2)(E) are [70]

Σ
(2)
ij (E) =

1

2

∑
ars

〈rs||ia〉〈ja||rs〉
E + εa − εr − εs

+
1

2

∑
abr

〈ab||ir〉〈jr||ab〉
E + εr − εa − εb

, (2.59)

where 〈rs||ia〉 = 〈rs | ia〉 − 〈rs | ai〉. So if the exact self-energy is

used, then the exact value of the many-body Green’s function can be

5 Koopmans’ theorem states that if one considers an N -particle system with an
added or subtracted electron, and assumes the MOs are identical for all systems, the
the energy difference between the N + 1 and N states corresponds to IP given by the
eigenvalue of the HOMO orbital and that of N + 1 and N states corresponds to EA
given by the eigenvalue of the LUMO orbital.
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obtained. However, there are approximations, such that at zero self-

energy the many-body Green’s function has the value of G0(E). As

such, the many-body Green’s function provides a way to generalise the

HF theory while retaining the single-particle picture by introducing an

energy-dependent self-energy, and this approach is also at the heart of

the GW approximation.

The Green’s function can also be related to the previously discussed

density matrix. It is achieved by integrating over a contour such as

Coulson contour which encloses the pole residues giving density matrix

elements rs

ρrs =
~

2πi

∮
Grs(E) dE. (2.60)

It is important to note that the second-order correction in self-energy is

similar to the second-order energy obtained with many-body perturba-

tion theory, equation (2.52) and can also be related to the RDM. This

will be used again in Chapter 5 where the calculation of IPs and EAs

using the Green’s function formalism and electronic structure computa-

tional packages is discussed.

2.8 Conclusion

The fundamental concepts employed in electronic structure theory cal-

culations with discussion specifically directed towards molecular tunnel

junctions as used in this thesis were outlined. In the chapters that follow,

there will be references to these treatments when describing the systems

studied.



3. QUANTUM ELECTRON TRANSPORT

The core work of this thesis focuses on properties of open quantum sys-

tems, specifically in molecular electronics. This chapter introduces the

concept of an open system and the implications of exposing a device to

the environment. This is followed by discussing electrode self-energies

which are complex entities used to account for semi-infinite leads. A

non-equilibrium Green’s function (NEGF) based transport method is

discussed, particularly with reference to the Transport in mesoscopic

systems (TiMeS) program used in this thesis. Finally, a method to ac-

count for semi-infinite leads using an ab-initio energy-independent com-

plex absorbing potential (CAP) derived from electrode self-energies is

described.

3.1 What is an Open System?

The discussion of open systems has been a popular topic in engineering

and other disciplines [94]. Their description from ab-initio methods is

challenging, as will be explained in the following. An open system can be

understood as a system that exchanges information with its environment,

for example in some chemical reactions, it is found that particles re-

arrange or destroy themselves and create stable atomic configurations,
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device ΣΣ

Fig. 3.1: Computational description of a junction: the device region is
described by DFT, HF or CI Hamiltonian and the leads are incorporated
via self-energies (Σ).

such as when a photon is absorbed, where there is an injection source and

an absorbing drain for electrons, or where there is a decay of an excited

level. In molecular electronics, an open quantum system is where a closed

region is coupled to semi-infinite leads and is driven from equilibrium.

To achieve this, a molecule is bonded to at least two reservoirs with

which it can exchange electrons so that non-equilibrium states can be

created and maintained. In a typical experimental set-up, the junction

consists of an organic molecule bonded between two metallic probes.

These probes can be a surface and a STM tip or two surfaces, etc. In

real world applications, this component could be integrated into a circuit

in a variety of ways making it a switching or memory device.

A typical molecular junction is illustrated in Figure 3.1. In molecular

electronics, the device region is generally described using DFT and NEGF

methods, though sophisticated many-body formalisms are more accurate

and is the route taken in this work. The metal electrodes are treated

within a single particle approximation using complex energy-dependent

self-energies Σ. The transmission is calculated on a finite device (or
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Fig. 3.2: Level broadening of a molecular energy level ε when coupling
to a metallic contact resulting in a broadened state of width γ which is
related to the life-time of the new state τ . Figure from ref. [96]

EM) region which incorporates fractions of both the right and left leads,

providing the boundary conditions on the surfaces of the leads. These

boundary conditions are found using Green’s function methods with self-

energies.

An isolated molecule has sharp infinite lifetime energy levels, while

the metallic lead is better described by a continuum of states, i.e. a

density of states. Upon coupling to the continuum, the discrete quantum

energy levels broaden with a lifetime τ and shift, as illustrated in Figure

3.2. The open system energy and wavefunction become complex-valued

properties on the device region [95]. Such a decaying state is an example

of a resonance, i.e. a broadened energy level with a finite lifetime,

ωi = ε− iγ/2 (3.1)

where ωi is known as the Siegert energy [97], ε is the resonance position

and γ the decay associated with the irreversible transition from the dis-

crete state to the continuum. The decay lifetime of the resonance can be
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obtained from its line width as

τ = ~/γ. (3.2)

While studying resonances can provide valuable information on the

state of the system such as transport properties, decay lifetimes and

strength of coupling to electrodes, calculating their properties is not triv-

ial. A decaying wavefunction (Siegert state) is not square-integrable, i.e.

the wavefunction is non-normalisable, so a Gaussian basis set expansion

cannot be used to describe them [98]. That is, with conventional basis-

set-dependant methods it is not feasible to describe both bound and con-

tinuum states simultaneously because a decaying state diverges at large

distances. A complete ab-initio description of such systems is, there-

fore, generally difficult. Partitioning methods which divide the space

into closed and open environments are one of ways to overcome the issue

and are described in ref. [95]. Another way of achieving this is by using

a CAP [99, 100], which is discussed in Section 3.3.

3.2 Electron Transport Through Mesoscopic Systems

A general transport problem comprises of two bulk electrodes and a de-

vice as illustrated in Figure 3.1. The two leads are described using two

chemical potentials, µL for the left (L) lead and µR for the right (R)

lead which control electron exchange with the device. When there is no

applied bias, µL = µR, the junction is in thermodynamic equilibrium and

there is no current flow.
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contact

lead
unit cell

lead

Fig. 3.3: The terminology used when talking about the lead structures.

From an electronic structure viewpoint, the system is seen to have

an infinite size Hamiltonian, H, which is not easily treated. A solution

is to assume that the lead structures are perfectly crystalline and have

a regular periodic structure with a unit cell repeating in the direction of

transport, allowing them to be readily described using self-energies. The

problem is formulated in matrix notation.

3.2.1 Lead-Device Hamiltonian Structure

We begin the discussion of lead and device Hamiltonians by defining the

terminology used. A typical junction is shown in Figure 3.3. A lead

defines a large semi-infinite structure that is locally in equilibrium, it

can be periodic and described using unit cells. A unit cell of a lead

is defined as the smallest repeated unit that repeats in the direction of

transport. A contact is the part of the lead that is bonded to the linker

molecule of the device. A principal layer (PL) is composed of unit cells

and chosen such that only the nearest PLs interact, that is, PL 1 and 3

have negligible interaction, i.e. all interaction matrix elements between
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non-neighbouring PLs are zero or very close to it. For example, consider

a tight-binding system of a chain of N atoms in the device region. Then,

one atom forms a PL. Similarly, in a system of N atoms with Ni basis

functions per atom in each PL, the Hamiltonian matrix representing this

PL is of dimension,

N =
Natoms∑

i

N i
atoms ×N i

orbitals, (3.3)

the total number of basis functions per region of interest, the size of the

Hamiltonian matrix is N × N . This can be applied to any Hamilto-

nian to determine its dimension. The entire system is described by the

Hamiltonian H given by,

H =



. . . . . . . . . . .

. . 0 H†1 H0 HLD 0 . . . .

. . . 0 HDL HD HDR 0 . . .

. . . . 0 HRD H0 H1 0 . .

. . . . . 0 H†1 H0 H1 0 .

. . . . . . . . . . .


, (3.4)

where the matrix H0 is the Hamiltonian for the unit cells of the left (L)

and right (R) leads (which are described here for symmetrical electrodes

but a simple generalisation allows them to be different). The interactions

between two unit cells is described by a matrix H1 of the size N × N .

The matrices HDL = H†LD and HDR = H†RD are of the size N ×M and

are the interaction matrices between the EM region and the leads. These
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can be rectangular matrices, hence the dimension N×M . These matrices

are incorporated into the EM matrix and are used for determining the

surface Green’s function g and self-energy Σ, hence the need to include

lead components into the device region description. The surface Green’s

function contains all the information about the electronic structure of

the device-lead interface at equilibrium.

3.2.2 Electrode Self-Energies

In the present context, the self-energies are used to describe the effect of

a semi-infinite lead. The elements of the self-energy matrix Σ contain

information about the chemical coupling of the individual PL orbitals

with the device. It is important that at this point one differentiates

between the electron-electron self-energy discussed in Section 2.7 and the

lead-device interaction. The electron-electron self-energy can be thought

of as a correlation energy correction to a HF operator, whereas presently

the discussion is of the treatment of the interaction of an electron with

the environment of the leads within a single electron approximation.

The derivation of the Green’s function and self-energy is explained

in ref. [3]. Here, the results are summarised and their relevance to

subsequent work presented in this thesis is highlighted.

Let the device interact with one lead, for simplicity,

 HD HDR

H†RD HR

 , (3.5)
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where HR is a large matrix compared to HD and represents the leads.

The overall Green’s function can be partitioned to,

 GD GDR

GRD GR

 =

 (E + i0+)I−HD −τ

−τ † (E + i0+)I−HR


−1

. (3.6)

We solve for the device Green’s function GD,

 GD GDR

GRD GR


 (E + i0+)I−HD −τ

−τ † (E + i0+)I−HR

 = I. (3.7)

GD is sought as the aim is to include the infinite leads and to describe

their effect on the device region while reducing the dimensions of the

problem to be solved numerically. Then,

[(E + i0+)I−HD]GD − τ †GDR = 1 (3.8)

−τGD + GDR[(E + i0+)I−HR] = 0. (3.9)

Re-arranging for GD,

GDR = τGD[(E + i0+)I−HR]−1, (3.10)[
(E + i0+)I−HD

]
GD − 1 = τ †GDR, (3.11)

= τ †τG[(E + i0+)I−HR]−1 (3.12)

⇒ GD = [(E + i0+)I−HD − τ †τ [(E + i0+)I−HR]−1]. (3.13)
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Alternatively, one can write,

GD = [(E + i0+)I−HD −Σ]−1 ≡ [EI−HD −Σ]−1, (3.14)

where the self-energy Σ is given by

Σ = τgRτ
† gR = [(E + i0+)I−HR]−1, (3.15)

and gR is a surface Green’s function. From this, it is noted that self-

energy is energy dependent. It accounts for the periodic boundary con-

ditions often used in the construction of the lead regions and for the

interaction of the lead with the device region [101].

3.2.3 TiMeS Mesoscopic Electron Transport

TiMeS is a software package used to calculate electron transmission

through tunnel junctions by using NEGF and scattering matrix methods

[101–103]. The input consists of Hamiltonians expressed in a localised

basis resulting in that no specific geometry data is read into the program.

The electrodes Hamiltonian as described in Section 3.2.1 is approximated

by a continuum of free or quasi-free states incorporated into the calcula-

tion via the self-energy correction as discussed in Section 3.2.2.

The transmission function can be calculated from the knowledge of

the molecular energy levels and the nature and the geometry of the con-

tacts. One can see this by expressing the Green’s function matrix of the

full problem G−1 = G−1
D + ΣL + ΣR, in terms of the bare device Green
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function GD and the self-energy correction ΣL,R due to the presence of

the leads.

The TiMeS approach is based on three steps: incorporating the leads

via the surface Green’s function self-energy, constructing the coupling

matrix between the surface of the two leads and the scattering region,

GD, then the scattering matrix is extracted from G [102].

The potential drop occurs only over the EM region and there is no

change to the electronic structure of the lead reservoirs as they are as-

sumed to be in local thermodynamic equilibrium. The leads are not

affected by either the voltage drop or coupling to the device due to their

large structure and electrostatic screening. Therefore, one only needs to

concentrate on the device region and the electrodes are treated by ΣL

and ΣR. We calculate the retarded self-energies, Σr
L,R, from the retarded

surface Green’s function, grL,R, on the PL directly attached to the device

and is used in the evaluation of the lead self-energies.

Σr
L(E) =

[
(E + i0+)SDL −HDL

]
grL(E)

×
[
(E + i0+)SLD −HLD

]
(3.16)

Σr
R(E) =

[
(E + i0+)SDR −HDR

]
grR(E)

×
[
(E + i0+)SRD −HRD

]
. (3.17)

Since self-energy is energy dependent, the Green’s function is evaluated

iteratively. The device retarded Green’s function can the be calculated

as,

grD =
[
(E + i0+)SD −HD −Σr

L(E)−Σr
R(E)

]−1
. (3.18)
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The scattering wavefunction can be obtained by constructing the eigen-

states from grD and a scattering matrix containing transmission coeffi-

cients as derived in ref. [102]. TiMeS is used to calculate quasiparticle

energies and electron transport in Chapters 4 and 5. A modified ver-

sion of TiMeS is used to extract self-energies when constructing a CAP

introduced in the next section.

3.3 Complex Absorbing Potentials

3.3.1 Introduction

It has been mentioned in this thesis that, the electronic interaction of a

molecule making contact with electrodes is determined by the coupling

of discrete molecular states to the continuum electrode density of states.

This interaction can be described exactly using the energy-dependent

self-energy. While widely accepted, this concept is difficult to implement

in the correlated many-body framework as there is no immediate corre-

sponding quantities to single-electron self-energies within CI formalisms.

That is, relating the electron reservoirs to the device region becomes

non-trivial. Essentially, a method is needed to describe electrode-device

interaction independently of single particle energies.

If one considers H, the matrix representation of the many-electron

Hamiltonian in a CSF basis, S is the overlap matrix (metric) for the

CSF basis, E is the many-electron energy and ~c is the vector of the
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expansion coefficients or “CI vector”,

H~c = S~cE. (3.19)

The matrix elements of H and S are constructed from one- and two-

electron integrals defined in the single particle basis used to construct

the CSFs. However, in this treatment of the many-electron problem no

reference is made to single particle or quasiparticle energies. Hence the

inclusion of continuum states (electrodes) via an energy-dependent self-

energy is not evident.

There are two ways to transmit the information contained within

self-energies which is to use either the formally exact smooth exterior

scaling (SES) or an energy-independent CAP. The SES method [104],

which despite being exact is cumbersome to implement for our intended

use with configuration interaction. The idea of SES is to rotate the

wavefunction into the complex plane making it square-integrable. SES

involves construction and knowledge of an analytic continuation of the

scattering potential, which maybe difficult to obtain or may not exist.

The idea of the CAP is to introduce an absorbing boundary condition

in the exterior region of the molecular scattering target, i.e. outside

the device region which absorbs outgoing wavefunctions. It was first

introduced by Kosloff and Kosloff [105] in time-dependent wavepacket

propagation. Since then, CAPs have been used to include leads into

a many-particle formalism using self-energies [4, 90]; and the converse,

Driscoll et al [106] used CAPs as a more efficient way to derive self-
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energies.

The CAP concept is a more suitable solution for use with CI. Just

like SES, it makes all wave-functions square-integrable and likewise has

been extensively studied [95, 99, 100, 107, 108].

3.3.2 CAP Methodology

A previously published method for an ab-initio CAP generation was de-

veloped for a tight-binding chain model1 [4]. The goal of the following

section is to generalise this approach and make it more applicable towards

realistic systems. While the detail of the CAP construction is outlined in

ref. [4], here the essential points are covered and the modifications carried

out to apply the method to more general electronic structure treatments

are developed. A closed system Hermitian Hamiltonian defined by HD

and bound states |χi〉 with sharp energies εi is considered

HD | χi〉 = εi | χi〉, (3.20)

〈χj | HD = εj〈χj |, (3.21)

〈χj | χi〉 = δij. (3.22)

Let the two electrodes be described by known left ΣL(ω) and right ΣR(ω)

self-energies for a complex eigenvalue ω. For a tight-binding model these

can be evaluated analytically via a Green’s function approach. To deter-

1 A tight-binding model can be thought of as electrons being under such a large
potential that they spend most of their time bound to ionic cores, i.e. the opposite
to a free electron model. As a result, interaction of an electron in an atomic orbital
within the tight-binding approach is very limited.
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mine the self-energies for more realistic systems, a modified version of the

TiMeS program [101] is used. These self-energies are evaluated on the

lead PL region of the system and are added to to the device Hamiltonian

HD accordingly to yield the complex eigenvalue problem

[HD + λΣL(ωλi ) + λΣR(ωλi )]|Uλ
i 〉 = ωλi |Uλ

i 〉, (3.23)

〈V λ
i |[HD + λΣL(ωλi ) + λΣR(ωλi )] = 〈V λ

i |ωλi , (3.24)

where the parameter λ is introduced to allow for an adiabatic coupling

between the electrode states and the extended device region “molecular

states”. At λ = 0, the states on the extended device region are obtained

as described by eigenvectors |χi〉, that may be chosen real, and real eigen-

values εi. As λ is increased, the device region and the electrode single

particle states begin to couple until at λ = 1 the Siegert resonances ωi

[97], right eigenvectors |Ui〉, and left eigenvectors 〈Vi| are obtained de-

scribing the open system. The introduction of the adiabatic coupling of

the self-energies permits to “label” the molecular states and to follow

their evolution as the system is opened. This holds if the evolution of

the eigenvalues follow a smooth trajectory2. This will be discussed in

Appendix A, that the adiabatic hypothesis does not always hold. The

adiabatic coupling allows the calculation of an ab-initio CAP by selecting

those eigenvalues that correspond to the uncoupled device region states.

At λ = 1, the real part of ωi gives the energy of the i ’th resonance in-

cluding the shift from the original eigenvalue with the imaginary part

2 A trajectory of the real part of the eigenvalue describes the evolution of the real
eigenvalue as it shifts when the system is opened with increasing λ.
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giving the broadening.

The goal is to build an energy-independent complex potential W =

WL + WR from the corresponding right and left self-energies, such that

the Hamiltonian HD + W has the eigenvalues equivalent to using the

explicit self-energies. Such a Hamiltonian is not readily constructed for

each ωi, as a Hamiltonian HD + ΣL(ωi) + ΣR(ωi) with its own set of

complex eigenvalues is used. The set of non-Hermitian operators that

are of interest, do not have biorthogonal vectors obeying the traditional

definition of the inner product, equation (3.22), that is 〈Vi|Uj〉 6= δij. The

current and previous version of CAPs construction consider formalisms

that yield eigenvalues which approximate ωi and eigenvectors that ap-

proximate 〈Vi| and |Ui〉 while satisfying biorthogonality. Given such a

set of approximate eigenvectors, the CAP is written as

W =
∑
i

|U ′i〉ωi〈V ′i | −HD, (3.25)

which for biorthogonal |U ′i〉 and 〈V ′i | will give by construction an operator

HD + W with correct eigenvalues and approximate eigenvectors.

In practice, the problem is formulated in a real basis of the device

region, so the CAP is built accordingly by using

W = S0XωX† −HD, (3.26)

where S0 is the overlap for the atomic basis used to describe the system,

X is the matrix of the eigenvectors of the Hamiltonian HD, and ω is the
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diagonal matrix of the eigenvalues ωi calculated at λ = 1. Since the self-

energy is a property of the electrode only for properly defined electrodes

and device regions, the CAPs are generated on a single PL of the lead,

and then transformed to the molecular orbital basis of the device region,

which contains a lead PL on either side.

3.4 Conclusion

In this chapter, the concept of open systems and electron transport

through them has been introduced. A method to generate a CAP for

a tight-binding model has been generalised further to be applied to chain

systems described by HF or DFT Hamiltonians, or for systems where the

energy level spacing is such that there is no curve crossings, i.e. eigen-

value trajectories are smooth, as the system is opened. While previously

the self-energy was analytically evaluated, it is now obtained from the

electron transport code TiMeS and is evaluated on the lead area only.

Inclusion of the overlap matrix enables the use of non-orthogonal orbitals

as required for application in quantum chemistry.

This prescription for constructing a CAP is applied to a model sys-

tem consisting of an extended molecule model using atomic chains for

the electrodes and molecular regions as described in Chapter 4 to study

the effect of correlations and excitation on energy level alignments. In

addition, this new methodology is applied to a BDA junction using two

gold chain electrodes to study the effect of opening the system on junc-

tion electronegativity while explicitly treating electron correlations. A
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proposition to generalise the method further to 3D systems such as metal

clusters as electrode models is discussed in Appendix A and several ob-

servations are made there.



4. QUASIPARTICLE ENERGIES AND LIFETIMES IN A

MOLECULAR TUNNEL JUNCTION

In this chapter, the methods of CAPs and MCCI are applied to study the

effect of metal electrodes on electronegativity and quasiparticle spectrum

of two molecular junctions [90].

4.1 Introduction

In Chapter 1 the importance of band alignment for accurate predictions

of electron transport was highlighted. Now the shift of the molecular

HOMO and LUMO levels as electrodes are introduced is discussed. In

addition, the junction IP and EA energies and how they change as the

system is opened are also studied. The MCCI and CAPs methods are

used to obtain quasiparticle excitation spectra of a molecular junction.

A quasiparticle can be defined as a “low-energy excitation that acts like

weakly interacting electrons” [79], or just as an electron surrounded by

its polarisation cloud treated together. Using quasiparticles is a useful

way to describe strongly interacting systems in terms of weakly inter-

acting quasiparticles. An accurate quasiparticle spectrum can describe

processes such as electron addition and removal, i.e. EA and IP energies.
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Atomic gold chains as model electrodes for a molecular junction are

used. Experimentally, atomic chains can be fabricated by single atom

deposition onto a surface [109], using a STM tip [110] or by the MCBJ

technique. Atomic nanowires are of fundamental interest as they exhibit

known properties, such as quantised conduction. Technologically, they

could potentially play the role of interconnects as minimisation to molec-

ular level occurs. One of the first theoretical studies of atomic chains is

by Lang [111] where the electrodes were treated as jellium (i.e. constant

electron density) and were treated within the DFT/LDA formalism.

Since then, improvements in quantum transport calculations have

been made through combining DFT with NEGF [2] and recently an in-

creased interest in the GW approximation for molecular electronics has

been seen. The NEGF/DFT formalism implies single determinant or

quasiparticle treatment due to the use of KS orbitals. In GW the elec-

tron self-energy is approximated using a perturbation expansion with

respect to quasiparticle interactions, it is expressed as a product of the

single-particle Green’s function G and the screened interaction W . Like

DFT-NEGF, DFT-GW also implies a quasiparticle description. Alterna-

tively to DFT methods, one can use CI and calculate transport through

correlated scattering [66].

The impact of lead excitations as they couple to the molecular re-

gion is also explicitly considered, as these have been shown to play an

important role in electron transport [112]. In the work of Galperin et al

an interacting two level analytical model was used, where free electron

reservoirs were described by the NEGF formalism. The energy transfer
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interaction that occurs during excitation/de-excitation of the molecule

(device) accompanied by electron-hole pair annihilation/creation in the

metal leads. The authors find that such energy transfer can have a sig-

nificant effect on electron current, hence suggesting that lead excitations

play an important role in electron transport and in general cannot be

disregarded [112].

A tunnel junction consisting of a gold chain and BDA is also consid-

ered in this chapter. The effect of adding metallic character to a molecule

is known to modify its electronic structure and result in molecule-metal

states hybridisation, which influences band alignment. Recently, BDA

in gaseous phase was studied using the GW approach and the spectra

was compared to experimental results [62, 113]. A significant improve-

ment on DFT results was reported. However, the GW approach being

a perturbation approach cannot deal with multi-determinant states as

has been demonstrated by Pavlyukh and Hübner using a multi-reference

ground state of the C2 molecule [114].

4.2 Method

4.2.1 Model Set-Up

The atomic chain model studied is built from three atomic gold chains

with inter-atomic spacing of 0.28 nm based on atomic gold chains on

nickel surfaces studied experimentally in ref. [109]. The central device

region is formed by 20 atoms with each explicit lead region being sym-

metric and consisting of 24 atoms. The width of the gap between the
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Fig. 4.1: Extended device region studied which incorporates a 12 atom
portion of the leads on either side of the 20 atom molecule. The left and
right leads are described by a CAP derived from self-energy.

leads and the device controls the strength of the molecule-electrode cou-

pling; varying the spacing allows for different couplings to be studied,

Figure 4.1.

The gold atoms are described by a single 6s electron and a 68-electron

effective core potential [115] yielding a single half-filled one-dimensional

band. The Fock and overlap matrices in the Hartree-Fock (HF) approx-

imation are calculated using the Turbomole [116] programme package.

These matrices are used to calculate electron transmission in the ab-

sence of electron correlations with the Green’s function based approach

implemented within TiMeS [101]. The one- and two-electron integrals

from the HF calculations are generated using a modified version of Tur-

bomole and then used to construct the Hamiltonian matrix elements used

as input for MCCI.

Benzene-di-amine junction model

The three BDA-based systems are described within DFT with the PBE

Generalized Gradient Approach (GGA) exchange correlation functional
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Fig. 4.2: The three systems studied are (a) BDA, (b) Au-BDA-Au and
(c) chain-BDA-chain, where N = 12 indicates the twelve atom gold chain
electrodes. The atom colour scheme is: Au is yellow, Nitrogen is blue,
Carbon is grey and Hydrogen is white.

[117]. The nitrogen and carbon atoms are treated with a triple-ζ po-

larised basis sets, while split-valence basis are used to describe hydrogen

atoms. A single BDA molecule is relaxed and forms the building block

for the other junctions. Two gold contact atoms described by 8 elec-

trons with a split valence polarised basis and a corresponding 60 electron

core potential [116] are bonded to BDA and relaxed, this junction is re-

ferred to as Au-BDA-Au. The chain-BDA-chain junction is formed by

attaching the 12 atom gold chain electrodes with 0.28 nm inter-atomic

spacing to both contact atoms to form right and left electrodes. The

three systems are illustrated in Figure 4.2. The many-particle basis for

MCCI were prepared using a modified version of Turbomole. For the

Au-BDA-Au model, the energy range for the KS orbitals to be included

as excitations for the CI calculation was 5.45 eV above HOMO and 4.12
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eV for chain-BDA-chain junction, while a larger range of 6.40 eV above

the HOMO was used for BDA. The MCCI calculations were carried out

with a coefficient threshold (cmin) of 8× 10−4.

4.2.2 Complex Absorbing Potentials

The CAP is constructed following the method outlined in Chapter 3. The

device region is given by an explicit model that includes the molecule as

well as a region that defines the bonding of the molecular region to the

electrodes, recall, that this is referred to as the extended molecule (EM)

or “device”. The portion of the electrodes not explicitly included into

the EM is then described by single-electron self-energies which are used

to construct the energy independent CAP.

The adiabatic hypothesis is followed when building the CAP with

bare Hamiltonian eigenvalues εi at λ = 0 perturbed towards the complex

broadened resonances ωi at λ = 1. The real part of ωi includes the shift

from the original position of εi as illustrated in Figure 4.3a. The imag-

inary component can be related to the lifetime of the new state, as the

system is opened and is shown in Figure 4.3b. It is noted that both the

real and imaginary eigenvalue trajectories follow smooth curves. While

there are crossing points in the imaginary plane, because the trajecto-

ries are smooth, the adiabatic hypothesis holds. The CAP is constructed

within the real basis of the extended device region as described in Section

3.3.1.

Two CAPs are constructed: one in real HF basis to be used with the

chain model and one in DFT basis to be used with chain-BDA-chain,
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thus demonstrating the applicability of the approach within different

single particle approximations for molecular tunnel junctions.
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(a) The trajectories of the real component of ωi depicting the shift
in the eigenvalue from it’s original state at λ = 0 towards the broad
resonance at λ = 1
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(b) The extent of state broadening as the system is being opened at the
final broadened state and life-time achieved at λ = 1 by following the
imaginary component ωi.

Fig. 4.3: Adiabatic generation of complex resonances for the gold chain
model with HF formalism. Note that opening the system in the weak cou-
pling limit does not cause a large shift in the resonance positions, whereas
the imaginary part of the eigenvalue introduces broadening. Energies are
expressed in Hartrees.
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4.2.3 Verification of the CAP

To verify the CAP constructed using the method described in Chapter

3, the energy level shifts and broadening are calculated and compared

against those obtained directly using self-energies within the TiMeS pro-

gram. This is done using the chain model described in the HF basis.

The TiMeS approach uses explicit self-energies to describe the elec-

trodes and calculates the Green’s function which is then implemented

within the scattering matrix formalism to generate the electron trans-

mission, as was discussed in Section 3.2.3. The resulting HF quasipar-

ticle spectrum gives energy shifts and broadenings which serve as the

reference point for the subsequent calculations, both when replacing self-

energy using CAPs and when correlations are introduced.

The transport calculation is then repeated but using the CAP in place

of self-energy in the definition of the Green’s function G and spectral

densities ΛL,R leading to the following:

W = WL + WR, (4.1)

G−1 = [ES− (HD + W)], (4.2)

ΛL,R = i
(
WL,R −W†

L,R

)
. (4.3)

The transmission is then calculated as,

T = Tr
[
ΛLGΛRG†

]
, (4.4)

where the CAP plays the role of the self-energy for incorporating the
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leads. The resulting comparison obtained is shown in Figure 4.4. The

good agreement between the CAP and self-energy based transmission is

clearly seen especially in the energy gap of interest around the HOMO-

LUMO molecular levels.

It is useful to examine if transmission can be approximated as Lorentzian

peaks. If so, then the quasiparticle energies that will be calculated as the

difference between many-electron energy states at a later stage can be

used to generate Lorentzian transmission resonances. This will provide a

way to compare the complex quasiparticle states to the Green’s function

transmissions. To establish whether this comparison can be made, the

complex eigenvalues ωi obtained from the CAP using equations (3.23)

and (3.24) with λ = 1 and with the CAP replacing ΣL(ωi) and ΣR(ωi)

are used,

f(ε;ωi) =
(γ/2)2

(ε−Re(ωi))2 + (γ/2)2
, (4.5)

where γ = 2Im(ωi) is the width of the Lorentzian peak and is inversely

proportional to the lifetime of the quasiparticle state. In Figure 4.5, the

Lorentzian resonances are compared to the ones calculated using explicit

self-energies from the Green’s function for the chain model with weak

molecule-lead coupling of 0.45 nm lead-device separation.

The Green’s function resonances (shown in black) derived from a

complex-valued HF problem can be thought of as Koopmans’ resonances,

and will be referred to as such in this chapter. The Lorentzian resonances

derived from HD+W (shown in red) display a very good agreement with

the Koopmans peaks, both in terms of the resonance peak position and
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broadening. The inset of Figure 4.5 illustrates in detail the region around

the HF HOMO showing that the resonances from the Green’s function

transmission and those derived from the CAPs agree to an accuracy that

is more than sufficient for the subsequent application in this work.

Fig. 4.4: Electron transmission through the chain junction obtained using
self-energies and Green’s function formalism (black) and transmission
using a CAP (red). The lead-molecule separation is 0.45 nm in panel (a)
and 0.40 nm in panel (b).
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Fig. 4.5: Comparison of Green’s function transmission (black) and
Lorentzian broadened complex eigenvalues obtained from solving HD +
W (red) for the chain junction with 0.45 nm lead-device separation. The
shift in the position of the HOMO level relative to the HF value (dashed
black line) is illustrated in the inset.

4.2.4 Complex Symmetric CI Approximation

All CI calculations were performed using the complex version of MCCI

[90] as described in Section 2.4. The use of MCCI in this work enables the

study of the evolution of quasiparticle energies as electron correlations are

introduced. This is achieved by starting with a single determinant pic-

ture (we will further discuss the use of single determinant approximation

and electron correlation in Chapter 5) and then systematically increas-

ing electron correlation, by varying the parameter cmin which controls the

threshold of included CI expansion coefficient values. At a lower value

of cmin, more CSFs are included in the calculation leading to improving

the description of correlation energy.
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In the analysis for the chain model, several approximations for the CI

wavefunction expansion are used. The first approximation is the “singles

approximation” based on a singles expansions of the CI vector,

|Ψ0〉+ |ΨS〉 =

(
1 +

∑
i,a

cai â
†
aai

)
|Ψ0〉 (4.6)

with |Ψ0〉 as the HF reference state, |ΨS〉 consists of singly excited CSFs.

The index i labels occupied orbitals, a labels virtual, cai is the CI coef-

ficient for a singly excited CSF, and â† and â are creation and annihi-

lation operators, respectively. This form of the wavefunction allows for

the investigation of the effect of optimising the single particle orbitals1.

To better explain this, one can consider Thouless’ theorem [118] which

states that any N -particle determinant |ΨA〉 which is not orthogonal to

|ΨB〉 can be written in the form

|ΨA〉 = exp

(∑
i,a

cai â
†âi

)
|ΨB〉. (4.7)

The exponential operator acts as a rotation to the single particle basis.

For appropriately chosen coefficients cai , |ΨA〉 can be written as the single

particle determinant which optimises the energy. If the weight of the HF

reference state |Ψ0〉 is large in the singles wavefunction in equation (4.6),

then the expansion coefficients cai will be small. Then equation (4.6)

becomes an approximation to the Thouless form equation (4.7), accurate

to first order in the cai .

1 We recall that in the HF formalism the orbitals are optimised by minimising the
energy in a Slater determinant approximation to the wavefunction.



4. Quasiparticle Energies and Lifetimes in a Molecular Tunnel Junction 79

The difference between the N and (N + 1) many-particle states, and

the N and (N − 1) states, yields the EA, and IP energies, respectively,

ωEA = ΩN+1 − ΩN , (4.8)

ωIP = ΩN − ΩN−1, (4.9)

where ΩN is the N -electron state energy and ΩN+1, ΩN−1 are (N+1) and

(N − 1)-electron state energies. These can be thought of as charging the

molecule by adding or subtracting electrons from the ground state. In

this work, the focus is on the IP and EA of the explicit device region as

these can be related to the quality of an electronic structure description of

transport [119], which will be shown more explicitly in Chapter 5 where

different electronic structure theory formalisms are used to investigate

transport properties of a molecular tunnel junction.

The energies obtained from Koopmans’ theorem do not account for

orbital relaxation: the theorem assumes that the spin orbitals in the

(N ± 1)-electron single determinant states are identical with those of the

N -electron single determinant state. That is, the relaxation of the spin

orbitals in (N ± 1)-electron states is neglected and the spin orbitals of

the N -electron single determinant state are not the optimum orbitals for

either (N + 1)- or (N − 1)-electron states. Hence, sometimes Koopmans

approximation is referred to as a “frozen orbitals” approximation. The

neglect of orbital relaxation typically results in too positive of an IP and

too negative of an EA. Since Koopmans’ theorem is a single determinant

approach, electron correlations are also neglected.
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Another formalism that is often used at the single determinant level is

∆SCF (self-consistent field (SCF)) where the energy difference between

separate SCF calculations on the molecule and cation (anion) is taken,

hence the name ∆SCF. The ∆SCF method accounts for orbital relax-

ation, however the total energy tends to be too high as again electron

correlations are not included. A proper inclusion of correlation energy

would lower the value of the ground state energy more than cation state.

Hence, the ∆SCF approximation tends to underestimate the IP. Then,

the Koopmans and ∆SCF values generally bracket the true IP and EA

energies.

Let us consider the transmission spectra in Figure 4.4, the resonance

peaks correspond to N -particle single determinant HF states broadened

by opening the system using self-energies. Hence, the HOMO state cor-

responds to the IP for the extended molecule region, excluding the effects

of orbital relaxation of the other single electron states that occurs when

an electron is removed. Similarly, the LUMO level corresponds to the EA

value on the molecular region, with all the orbitals frozen as an electron

is added. So one can think of the HOMO and LUMO levels in Figure

4.4 as Koopmans IP and EA in a single determinant picture. Using a

many-electron framework and including all single excitations into the CI

wavefunction, means letting all other electrons relax on the EM region,

as the charge state is changed by either adding or subtracting electrons.

From Thouless’ theorem, it can be deduced that the CI singles ener-

gies ΩN+1 and ΩN−1 are approximations to optimised single determinant

energies with orbital relaxations included for the device region. Hence
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equations (4.8) and (4.9) correspond to ∆SCF EA and IP values.

For chain-BDA-chain model that is studied, the IP and EA values

obtained from the MCCI calculations when excitations beyond CI sin-

gles are included and compare to DFT/PBE charge states. These peaks

are also compared to the equivalent values obtained when the junction

is opened by introducing the CAP. Hence, this approach provides a

way to study what role electron correlations and environment play on

electronegativity.

4.3 Quasiparticle States and Life-times

In these calculations, two types of CI singles approximations are consid-

ered. In molecular singles, only one-electron excitations involving orbitals

localised on the molecular region are allowed. The molecular orbitals

were chosen by comparing the eigenvalues of HD + W to those obtained

with the Green’s function electron transport method, as Green’s func-

tion peaks correspond to molecular states. In the second approximation,

referred to as extended device excitations, all singles excitations whether

arising from the device or leads are allowed. Two cmin values used are

0.003 and 0.001 and the calculations are repeated for the molecular ex-

citations, referred to as the CI(0.003)-molecule and CI(0.001)-molecule.

For the device approximation only the threshold of 0.003 is used and

will be referred to as CI(0.003)-device. It is estimated that with the

present CI treatment, over 90% of total correlation energy is obtained

for the weakly coupled case of 0.45 nm lead-device separation. This is
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calculated using the method outlined in ref. [83].

The electron transmission peaks in Figure 4.5 correspond to reso-

nances associated with the single particle energies. For a valid com-

parison, the quasiparticle energies ωi taken as energy differences be-

tween many-electron single determinant HF states obtained from solving

HD + W are used. Since the molecular Hamiltonian is coupled to the

leads via the CAP, the many-electron energies are also complex and

contain the energy shift and finite lifetime. The resonance lifetime is

calculated as τ = ~/γ where γ = 2Im(ω). The effect of systematically

increasing correlations on these resonant energies is studied next.

4.3.1 Molecular Excitations

In this Section, only excitations from the MOs localised on the molecular

region are considered. The weaker coupling case is defined to be the

0.45 nm separation between the electrodes and molecular region. As

can be seen in Figure 4.5 opening the system by introducing the leads

via CAPs shifts the HOMO level by 32 meV from the HF HOMO level

and introduces state broadening with a lifetime of approximately 223 fs.

Including molecular singles, allows for orbital relaxation in the charged

states and attempt to correct for the over-estimation of the band gap

that is typical of HF.

The result of the ∆SCF calculations is illustrated in Figures 4.6a

for the HOMO and 4.6b for the LUMO, where the energy shifts and

broadenings are seen. The HOMO peak shifts upward in energy by 288

meV and the LUMO peak shifts downward in energy by 260 meV from
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the Koopmans positions. This is accompanied by a significant decrease

in the electron lifetimes relative to Koopmans values with the HOMO

lifetime reducing to 59 fs and LUMO to 17 fs. The shorter lifetimes

reflect increased coupling between molecular and lead states.

The CI calculations are first carried out at the threshold of 0.003,

resulting in a shift of the HOMO peak downward and the LUMO peak

upward, increasing the band gap relative to the ∆SCF calculation, as

shown in Figures 4.6a and 4.6b. The cmin coefficient is lowered to 0.001

increasing the correlations, which narrows the band gap by slightly shift-

ing both levels back in the opposite direction.

These findings are consistent with the literature: Koopmans EA and

IP are underestimated [70] and ∆SCF overestimates the band gap [120].

The introduction of correlations energies serves to renormalise the band

gap with the HOMO and LUMO states being bracketed by the Koopmans

and ∆SCF values. The added correlations do not seem to affect the

resonant broadening to a great extent beyond that seen in the ∆SCF

approximation. It can be concluded, that in the weakly coupled case the

molecular region behaves similar to an isolated molecule with additional

features of small energy state shifts and lifetime broadening due to the

inclusion of the electrodes.
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(a) HOMO quasiparticle peaks.

(b) LUMO quasiparticle peaks.

Fig. 4.6: HOMO and LUMO energy states for the weakly coupled system
(0.45 nm lead-device separation). The excitations are restricted to the
orbitals localised on the molecular region. The approximations used are:
Koopmans (black), ∆SCF (red) and the MCCI results with cmin of 0.003
(blue) and 0.001 (green). Density of states of the lead is shown in panel
(b) for both figures.
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In the stronger coupling case the molecule-lead separation is reduced

to 0.40 nm. The same calculations as above were repeated with the re-

sults summarised in Figures 4.7a and 4.7b. As before, the ∆SCF approx-

imation narrows the band gap and the level broadening is significantly

greater compared to the Koopmans band gap. The HOMO state lifetime

decreases to 17 fs in ∆SCF from 71 fs in Koopmans approximation, while

the LUMO decreases to 7 fs from 26 fs. Similarly as for the weak cou-

pling regime, the resonance lifetimes are not significantly changed when

electron correlations are introduced, but the peak positions do shift. As a

result, the band gap is also renormalised with increased correlations and

the correlated resonances are bracketed by the Koopmans and ∆SCF

values, as was the case for a weakly coupled system.
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(a) HOMO quasiparticle peaks.

(b) LUMO quasiparticle peaks.

Fig. 4.7: Quasiparticle HOMO and LUMO levels for the 0.40 nm sepa-
rated system, calculated using molecular orbitals localised on the molec-
ular region only. Koopmans approximation is in black, ∆SCF is red,
and CI resonances with cmin 0.003 in blue and 0.001 in green. Panel (b)
shows the density of states on the lead.
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4.3.2 Extended device excitations

In this section, the effect of including lead excitations is studied. Previous

work using an interacting two-level model by Galperin et al predicted

that the coupling of electrode excitations to the molecular excitations

can significantly alter the electron transport through a junction [112].

This section considers whether the same is true for atomic chains. The

results of ∆SCF and CI calculations are illustrated in Figure 4.8 for

both cases considered in this work. As before, the ∆SCF approximation

narrows the energy gap with respect to the Koopmans values. However,

the energy shift is much larger than with MOs localised on the molecular

region as discussed in the previous section. There is also a significant

increase in resonant broadening for the ∆SCF calculation, especially for

the stronger coupling case.

For the weakly coupled case, the HOMO state lifetime decreases from

the Koopmans estimate of 223 fs to 18 fs from the ∆SCF approximation.

While the width of the LUMO does not change much from the Koop-

mans lifetime of 121 fs to the ∆SCF lifetime of 85 fs. The introduction

of electron correlations renormalises the band gap as was the case for

molecular only excitations.

Notably, the correlated resonances are no longer bracketed by ∆SCF

and Koopmans peaks. Introduction of correlations broadens the LUMO

peak significantly more than the HOMO level. While the HOMO reso-

nance remains approximately the same when correlations are included as

with ∆SCF, the LUMO lifetime decreases from 121 fs to 21 fs.
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The resonance behaviour in the stronger coupled case is qualitatively

different compared to the previous cases as illustrated in Figure 4.8b. The

band gap is reduced more significantly than in the weaker coupled sys-

tem. The broadening and position of HOMO is approximately the same

for both weakly and strongly coupled systems. However, the LUMO level

is much broader than that for the junction with 0.45 nm lead-molecule

gap. The LUMO lifetime is approximately 2 fs. One can recall that

studying LUMO is equivalent to studying EA within Koopmans approx-

imation, that is an (N + 1)-electron state within the ∆SCF framework is

considered. A closer look at the CSFs included in the CI-singles vector

reveals that the the (N + 1) state is multi-referenced, that is more than

one CSF is strongly contributing to the overall wavefunction. One of the

CSFs has an additional electron in the molecule’s LUMO state, whereas

the other contains an extra electron in a lead orbital. This explains why

the state broadening is larger: the electrode and molecule regions are

strongly coupled through the multi-reference character of the state.

Introducing electron correlations has a different effect on the strongly

coupled system than the weakly coupled one. The position and broaden-

ing of the HOMO level remains approximately unchanged for ∆SCF and

MCCI calculations, compared to the noticeable shift seen in the weakly

coupled case. The inclusion of electron correlations decouples the LUMO

level and results in a single dominant CSF in the CI vector. This is also

reflected in the resonance being less broad reducing to a lifetime of ap-

proximately 7 fs. The resonance shifts upwards by approximately 1 eV,

a much larger shift than found in the earlier approximations.
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These results illustrate that including electrode excitations signifi-

cantly changes the behaviour of HOMO and LUMO levels. It is expected

that this will have a strong effect on electron transport, which is consid-

ered next.

Fig. 4.8: The position of quasiparticle HOMO and LUMO peaks for
the (a) 0.45 nm and (b) 0.40 lead-device separation junctions with the
inclusion of lead excitations. The density of states of the leads is plotted
in (c).



4. Quasiparticle Energies and Lifetimes in a Molecular Tunnel Junction 90

4.3.3 Electron Transport

The effect of the above treatments on conductance for a strongly cou-

pled junction with 0.40 nm molecule-lead separation is illustrated in this

section. The Landauer formalism is used. The left lead states are filled

up to the chemical potential µL, and the right lead states are filled up

to µR. In equilibrium, the two chemical potentials are equal and there is

no current flow. Applying the bias voltage, V , shifts the chemical poten-

tials and the current flows. The Landauer expression for the steady-state

current through the device region for applied bias V is

I(V ) =
2e

h

∫ +∞

−∞
T (E, V )[f(E + µL)− f(E − µR)]dE, (4.10)

where f is the Fermi distribution function and T (E, V ) is the transmis-

sion probability for electrons from the left to the right lead with energy E

and at a voltage difference V = (µL − µR)/e, where e is electron charge.

The Landauer approach is known for its lack of self-consistency. However,

in their recent work Ke et al [121] have shown that non-self-consistent

approaches can qualitatively reproduce I − V characteristics obtained

with self-consistent schemes for a chain of carbon and aluminium atoms

as molecular regions sandwiched between aluminium electrodes. Their

device was described within DFT, while the electrodes were included us-

ing an NEGF approach. In the treatment presented in this chapter, the

orbital relaxation of both neutral and charged states is included, except

for the case of the Koopmans’ values.

Figure 4.9 presents the I −V curves for the strongly coupled system.
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It is noted, that the broad extended device LUMO state observed in the

∆SCF approximation results in strong early onset of conductances as

illustrated in Figure 4.9a. This is in contrast to the Koopmans’ current

which is very low as HF overestimates the size of the band gap and con-

duction states do not enter the bias window at low voltages. A similar

trend is observed when correlated resonances are used, shown in Figure

4.9b. The extended device current is larger than when only molecular

type excitations are included, which is in agreement with the model cal-

culations by Galperin et al.

It is noted that the correlated HOMO and LUMO widths are similar

for the molecule localised orbitals and complete device excitations. This

leads to less of a difference between transmission CI(0.003)-molecule and

CI(0.003)-device as shown in Figure 4.9. Introducing electron correla-

tions narrows the LUMO state compared to the ∆SCF case shown in

Figure 4.8b and shifts it higher in energy, resulting in a smaller conduc-

tance onset.
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Fig. 4.9: I − V characteristics for the 0.40 nm separated junction. In
panel (a) the current from both molecule (black solid line) and device
(red solid line) localised orbitals with the ∆SCF approximation is plotted
in conjunction with the molecule only Koopmans current (black dashed
line). Panel (b) illustrates the CI spectra compared to Koopmans trans-
mission. The equilibrium Fermi energy was chosen to lie in the middle of
the band gap of the leads at -4.42 eV, and the electrochemical potentials
in the electrodes are taken to move apart symmetrically as voltage is
applied.
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4.4 Effect of Metal Electrodes on Junction

Electronegativity

In this section, the BDA, Au-BDA-Au and chain-BDA-chain systems

are studied using DFT and KS orbitals, as outlined in Section 4.2.1, to

investigate the effect of electron correlations and environment on tunnel

junction electronegativity.

4.4.1 Electronic Spectra

The influence of introducing metal electrodes on electronic spectra of

BDA by considering molecular DFT/PBE HOMO and LUMO levels is

summarised in Figure 4.10 and Table 4.1. The molecular HOMO and

LUMO were identified by considering Mulliken analysis2: the highest oc-

cupied state with a dominant molecular character was chosen as HOMO,

and similarly for the molecular LUMO.

BDA Au-BDA-Au chain-BDA-chain
LUMO -0.78 -1.88 -2.49
HOMO -4.07 -7.13 -7.50

Band gap 3.29 5.25 5.01

Tab. 4.1: A summary of molecular HOMO, LUMO and band gap val-
ues in eV for the three BDA based systems described within DFT/PBE
formalism.

2 The Mulliken population for a given atom A is defined as Dpop =
K∑
µ∈A

K∑
ν
ρµνSµν ,

where ρµνSµν is an off-diagonal element representing the number of electrons shared
by AOs µ and ν with ρ being the density matrix and S is the overlap matrix. The
contributions from all AOs on atom A are summed up to give the total number of
electrons on A. In Mulliken population analysis, the contribution of basis functions
from two atoms is divided equally [77, 122].
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It is noted that a significant decrease of 3 eV in the position of the

molecular HOMO energy as single gold atom contacts are bonded to the

amine linkers. Bonding of atomic chain electrodes decreases the HOMO

energy further from the Au-BDA-Au value of -7.12 eV to -7.50 eV for

the chain-BDA-chain. This change of 0.37 eV in the position of HOMO

level is due to attaching semi-infinite leads, and is substantially less than

the effect of forming a chemical bond. A decrease of approximately 1 eV

in the position of the LUMO is seen when gold contacts are added to the

free BDA molecule, with a further decrease of 0.61 eV upon addition of

atomic chain electrodes.

It has been found in Section 4.3 that the position of transmission res-

onances and their broadening, i.e. molecular HOMO and LUMO states

plays an important role in the description of electron current, where a too

large Koopmans band gap resulted in too weak a current onset, and on

the contrary ∆SCF values overestimate electron transport. Figure 4.10

demonstrates that the shift in the position of the molecular band gap is

largely due to the chemical bonding to metal atoms. Next, the effect of

electronegativity is studied using junction IP and EA levels, different to

the molecular entities used in the above.

Electronegativity is studied as the difference between many-body N -

and (N +1)-electron states for EA and N and (N −1)-electron states for

IP as in equations (4.8) and (4.9), respectively. For the DFT treatment,

IP and EA are calculated as differences between total energies for the

charged states, i.e. DFT-∆SCF. In the MCCI calculations, excitations

originating from both the molecule localised orbitals and lead orbitals
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Fig. 4.10: The DFT energy of molecular HOMO and LUMO states is
followed as metal electrodes are introduced. A significant shift in the
energy of the HOMO is noted going from BDA to Au-BDA-Au, indicating
strong coupling between the molecular and metal states, while further
addition of contacts decreases the energy levels further.

were allowed, since the importance of lead excitations has been demon-

strated in this work and in ref. [112]. The IP and EA values in Figure

4.11 and Table 4.2 are for the entire junction, which is what would be ob-

tained experimentally. The molecular tunnel junction’s electronegativity

is studied as these determine the polarisability of the system. As will be

discussed in Chapter 5, an improved treatment of the junction’s polaris-

ability leads to an improved RDM and improved transport description.

It is known that DFT/PBE underestimates the band gap due to the

presence of self-interaction errors [55]. This is corrected by explicitly

introducing electron correlations within MCCI treatment for all three

systems as illustrated in Figure 4.11. The IP energy obtained for BDA

with MCCI of -6.95 eV agrees well with the experimental result from
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BDA Au-BDA-Au chain-BDA-chain
DFT/PBE

EA 1.78 -2.12 -4.24
IP -6.71 -6.11 -5.41

MCCI
EA 4.15 0.53 -2.79
IP -6.95 -6.37 -5.31

Tab. 4.2: A summary of junction electronegativity values in eV for DFT
and MCCI treatments of the three systems.

ultraviolet photoelectron spectroscopy (UPS) of -7.34 eV [123], while

GW treatment by Strange et al [62] resulted in the energy of -6.2 eV

with the use of a double-ζ basis set.

The EA of BDA is large and positive at 1.78 eV in DFT and with an

even higher value of 4.15 eV from MCCI, which indicates that BDA does

not easily form an anion state. Adding metallic character, lowers EA

to -2.12 eV for Au-BDA-Au and -4.24 eV for chain-BDA-chain within

DFT, meaning the affinity for an added electron is increased. The drop

in MCCI calculated energy for EA is pronounced, with a decrease of 3.62

eV going from BDA to Au-BDA-Au, and a further decrease of 3.32 eV for

chain-BDA-chain. A steady increase in the position of the IP level is seen,

as the system becomes more metallic. In this work, it is found that DFT

and CI treatments give a good agreement for the junction IP levels: for

a free BDA molecule the difference between DFT and MCCI IP peaks

is 0.24 eV, similarly for Au-BDA-Au the difference is 0.26 eV and for

chain-BDA-chain the difference is 0.10 eV. As can be seen from Figures

4.10 and 4.11, although the molecular LUMO couples strongly with the
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Fig. 4.11: IP (solid filled symbols) and EA (hatched symbols) energies for
the three systems considered. As expected, DFT/PBE (shown in green
circles) underestimates the band gap, while CI treatment (red diamonds)
re-normalises it.

electrodes and lowers in energy, it is the much more lower lying hybridised

molecule-electrode states that govern the junction electronegativity and

hence polarisability.

The effect of opening the BDA junction by including chain electrodes

using CAPs is considered next. As illustrated in Figure 4.11, no no-

ticeable shift in the position of IP and EA values is seen compared to a

closed junction, thus indicating that opening a system does not introduce

a significant energy shift, the primary effect of opening the system is to

introduce a finite state lifetime as illustrated in Figure 4.12.

As can be seen in Figure 4.11, a significant disagreement in the EA

values of DFT and MCCI are observed. To understand this further,

the CSF expansion of the CI vector for chain-BDA-chain open to the
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Fig. 4.12: The relative position of IP and EA levels for chain-BDA-chain
junction. The dashed line peaks are the result of MCCI calculations
where electron correlations are considered but the system remains closed.
In solid lines the MCCI-CAP results are shown where the system is open
and the influence of the electrodes is seen in the shift and broadening of
the peaks.

environment by including CAPs is considered.

4.4.2 Multi-Reference Character of Tunnel Junctions

A single particle approximation assumes that a system can be described

by a single determinant. This is true in the limit of weak coupling

and negligible electron correlations, as will be discussed in Chapter 5.

In Table 4.3, a summary of top contributing CSF coefficients from the

MCCI calculations for the three BDA-based systems is given. The single-

reference nature of the BDA molecule is noted, while bonding to metal
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N (N + 1) (N − 1)
BDA 0.97 0.97 0.97

Au-BDA-Au 0.67, 0.67, 0.34 0.95, 0.14, 0.12 0.93, 0.40, 0.14
Chain-BDA-Chain

Closed: 0.56, 0.55, 0.35 0.82, 0.15, 0.13 0.79, 0.19, 0.14
Open: 0.57, 0.55, 0.34 0.82, 0.15, 0.12 0.80, 0.18, 0.14

Tab. 4.3: Summary of the top three contributing CSF coefficients for sin-
gle BDA molecule, Au-BDA-Au and chain-BDA-chain for theN -, (N+1)-
and (N − 1)-electron states. Note, that BDA remains single-reference,
whereas upon addition of the metal a multi-reference character is ob-
served.

atoms is seen to introduce a multi-reference character, especially in the

ground state for both Au-BDA-Au and chain-BDA-chain. This can be

attributed to a strong metal-molecule hybridisation that is seen for metal

containing junctions.

The ground state for chain-BDA-chain is multi-referenced for both

closed (MCCI calculation) and open (MCCI+CAP treatment) systems.

While the multi-referenced character for the (N+1)- and (N−1)-electron

states is somewhat less pronounced.

As can be seen from Table 4.3 several CSFs of the CI vector expan-

sion contribute to the description of the N -electron state of the open

chain-BDA-chain system. One of the configurations (0.57) is that of a

vacant junction HOMO level and a filled in LUMO level which could

be due to the narrow junction band gap, as adding metallic character

enhances screening and narrows the gap. While the second most con-

tributing CSF (0.55) is that of a filled in junction HOMO. For the

open chain-BDA-chain (N + 1)-electron state, the leading CSF (0.82)
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is that of the (N + 1)-electron state itself, that is a single electron in

the junction LUMO orbital. The junction HOMO and LUMO levels for

the chain-BDA-chain system are metallic in character as was calculated

from Mulliken population analysis. The multi-reference nature of the re-

sulting states suggests they cannot be treated using a single-determinant

approach and require an explicit CI description.

To confirm that the system’s multi-reference character is not an arte-

fact of the single particle basis set employed, the idempotency of the

density matrix is calculated. The relationship between density matrix

and electron correlations is studied further in Chapter 5. A density ma-

trix is expressed in terms of orbitals as discussed in Section 2.5

ρ(x′,x) =
∑
p,q

ρpqψp(x)ψ∗q (x
′), (4.11)

with p and q labelling general states. When diagonalised, the eigen-

values ρii refer to the orbital occupation numbers. If a wavefunction

can be described by a single determinant, the density matrix is said to

be idempotent ρ = ρ2. Hence, calculation of idempotency of a density

matrix can serve as a measure of the degree of correlation of a system.

The larger the difference between ρ and ρ2, the more non-idempotent is

the matrix and the more correlated is the system. For the open chain-

BDA-chain system the non-idempotency is 0.039 for the N -electron state,

while the BDA non-idempotency value for the same state is 0.017. The

higher non-idempotency of the chain-BDA-chain N -electron state can be

related to the top three CSFs being significant contributors to the wave-
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function description, thus making the system highly multi-determinant.

The calculated non-idempotency values can be thought of as the amount

of correlation per one active electron (i.e. frozen orbitals are neglected).

Hence, it is correct to characterise the junction as a multi-reference sys-

tem.

4.5 Conclusion

In this chapter, the impact of electronic structure treatment on quasipar-

ticle energies and lifetimes for two different models described in HF and

DFT bases was studied. A correct description of molecule-lead coupling

will lead towards a better description of electron transport. The quasi-

particle states were related to electron EA and IP values, which in turn

can be related to the junction electronegativity. In Chapter 5, a further

discussion of how accurate prediction of electronegativity contributes to-

wards a better description of electron transport.

The work in this chapter validates the CAPs formalism extended be-

yond a tight-binding chain model as discussed in Chapter 3. The use of

CAPs enabled a systematic inclusion of metal electrodes into CI calcu-

lations to study both the effect of a lead and correlation energy on the

electronic spectrum of the device region. An excellent agreement between

the CAPs and self-energy based transmissions was obtained showing that

electrodes can be accounted for with the use of this energy-independent

potential. The use of the CAP in the current study enabled the investiga-

tion of quasiparticle lifetimes within an explicit correlated wavefunction



4. Quasiparticle Energies and Lifetimes in a Molecular Tunnel Junction 102

method.

The two coupling regimes studied for the chain model showed a simi-

lar behaviour when only molecular excitations are included, however in-

cluding the leads resulted in significantly different behaviour. Including

only molecular excitations yields quasiparticle values qualitatively simi-

lar to that of an isolated molecule, similar to findings for linear chains

[124]. However, including the leads caused the wavefunction to be multi-

referenced resulting in a much broader LUMO state, which then decou-

ples when correlations are introduced. It is noted that the quasiparticle

states are heavily influenced by electron correlations and the coupling

strength, implying that detailed treatments of the electronic structure

are necessary to accurately model charge transport.

The effect of electron correlations and environment were investigated

using BDA based junctions described with DFT orbitals. The molecular

HOMO and LUMO levels have been seen to significantly shift as BDA was

bonded to metal. A large shift in the position of the HOMO when gold

contacts are introduced highlights that the change in the level position

is largely due to the chemical bonding. A further decrease in energy of

the HOMO is noticed as the system is made open by bonding to semi-

infinite leads shows the influence of the environment on the molecular

energy states.

The junction electronegativity has also been studied within DFT and

CI formalisms. The junction IP was shown to be well described by both

DFT with the PBE exchange correlation potential and MCCI. Less of

an agreement is seen in the description of the EA state, with correlated
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resonances being significantly higher in energy compared to their DFT

counterparts. Opening the chain-BDA-chain junction by introducing the

CAP did not result in a significant shift in the position of the IP and EA

values compared to the correlated treatment of the closed junction. This

indicates that the majority of electron correlation energy is due to the

chemical bonding of the junction and not to the extended environment.

A further investigation of the nature of the CI vectors involved in

metal bonded BDA systems revealed multi-reference behaviour is ob-

served. Similar to the strongly coupled case in the chain model, multi-

reference behaviour was seen for the Au-BDA-Au and chain-BDA-chain

junctions, while single BDA molecule can be described as a single-reference

state. This is because strong interaction between molecular and metal

states exists and lead excitations heavily influence the system as was

shown in the calculations of the gold atomic chain model presented in

this work. This is particularly evident when considering the N -electron

state of the open chain-BDA-chain model, where the filled in HOMO

has approximately as equal a contribution as a vacant HOMO and filled

in LUMO levels. It is of note, that these are the junction HOMO and

LUMO levels and are metallic in character. We find that the multi-

reference behaviour is not due to the choice of basis sets as was shown

by considering the idempotency of the density matrix. The need for

multi-determinant treatment of junctions has been raised by Geskin and

co-workers [69]. In their study, the authors used a collection of organic

donor-acceptor molecules within CI descriptions to study electron trans-

fer in weakly coupled system. The findings pointed towards the need
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to explicitly describe many-body effects and the deficiencies of standard

DFT techniques. The work in this chapter points that multi-reference

states are clearly present when treating electron tunnel junctions and an

accurate description of such states can be achieved with many-body for-

malisms. In particular, this chapter has shown that the DFT treatment

significantly underestimates the position of the junction EA states which

are found to have a multi-reference character when described within CI.



5. ELECTRONEGATIVITY AND TRANSPORT IN

MOLECULAR TUNNEL JUNCTIONS

5.1 Introduction

Electronegativity can be thought of as increasing or decreasing the sys-

tem’s affinity for electrons. When designing a molecular tunnel junction,

the electronegativity of the molecule can be modified by using EDGs or

EWGs, as discussed in Section 1.3. In what follows, electronegativity is

shown to control charge transfer, energy level alignment, and electron

currents in a single molecule tunnel junction, all of which are described

through the density matrix (introduced in Section 2.5) [119]. The Mul-

liken electronegativity is given as IP+EA
2

and is a useful measure of charge

transfer, which determines molecular level alignments relative to electron

reservoir energies [46, 47]. The accurate prediction of the energy level

alignment between the molecule and the electrode is essential for accurate

predictions of current-voltage characteristics [2].

In Section 1.4, the importance of inclusion of electron correlations into

the description of electronic structure of junctions has been mentioned.

In this chapter, correlation corrections to independent particle models are

considered and conditions on the one-electron Green’s function and re-
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duced density matrix for calculations of currents within non-equilibrium

theories are related. Correlation corrections are shown to correspond to

improving IPs and EAs on a molecular junction. One can think of IP

and EA as description of HOMO and LUMO levels and consequently

the band gap. By considering the effect of correlations on IP and EA,

electron transport can be discussed in terms of electronegativity, i.e. the

impact of electronegativity on charge transfer, level alignment and cur-

rent magnitudes.

In what follows, a model of hexa-1,3,5-triene-1,6-dithiol (referred to

as hexatriene in this chapter) bonded between two electrodes is studied.

In an analytical model a parameter is used to increase electron-electron

correlation while examining its effect on electronegativity and electron

transport. The obtained results for current-voltage (I − V ) curves are

then compared to explicit electronic structure treatments for the same

junction.

5.2 One-electron RDM and Green’s Function

In Section 2.5 an introduction to reduced density matrices (RDMs) was

given, where it was noted that any one-body quantity can be obtained

from the one-electron RDM. The electron current density can be calcu-

lated from the RDM [66, 94] as

J(r) =
1

2i
[5r −5r′ ] ρ(r, r′) |r′=r (5.1)
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with J being the current density, r and r′ are position vectors, and ρ

the one-electron RDM. Current density is a one-electron operator, so

to obtain an accurate prediction for current, an accurate prediction of

the one-electron RDM is needed. Alternatively, advanced (superscript a)

and retarded (superscript r) Green’s functions Ga,r can be used and an

application of Landauer-type formula [3, 125, 126] determines electron

current:

I =
2e

h

∫
dE [fL(E;µL)− fR(E;µR)]Tr [ΛL(ε)Ga(E)ΛR(E)ΥGr(E)] ,

(5.2)

with electron energy E, spectral densities1 ΛL,R, energy distribution fL,R

with µL,R as chemical potentials in the left and right electron reservoirs,

and Υ is the correction due to the correlations weighted by the spectral

density of the electrodes and electron-electron spectral density on the

molecule [125, 126]. In Section 2.7 it was shown that Green’s function

can be related to the RDM via integration over a Coulson contour as

ρ(r, r′) =
1

2π

∮
dE G(r, r′;E). (5.3)

It is known that the RDM obtained from a many-electron wavefunction

corrected to second-order in electron correlation is equivalent to the re-

duced density matrix arising from correcting IPs and EAs in the Green’s

function to second-order in the electron self-energy [127].

The perturbation expansion to correct the HF density matrix leads

1 Spectral density can be thought of as a generalisation of the density distribution
of states.
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to the first-order correction from HF orbitals vanishing [128] giving the

density matrix correct to second-order as,

ρ ≈ ρ(0) + λ2ρ(2). (5.4)

The RDM may be represented as an infinite expansion over single electron

states ψ

ρ(r, r′) =
∑
pq

ρpqψ
∗
q (r
′)ψp(r), (5.5)

where p and q denote general states. The density matrix coefficients may

be calculated using a perturbation expansion of a many-body wavefunc-

tion [127].

The poles of the Green’s function correspond to IPs and EAs and

can also be thought of as transmission resonances. It has also been

mentioned, that introducing electron-electron correlation to the Hartree-

Fock Green’s function will improve the prediction of IPs and EAs. Hence,

it can be assumed that if an independent particle picture is chosen to

optimise IPs and EAs, then the prediction of currents from the Green’s

function approach, equation (5.2), will also be improved. In this context,

a model for transport is measured in terms of reproducing the correct

molecular electronegativity.

The Green’s function corrected in second-order self-energy as studied
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in ref. [127] leads to the following approximation,

[
G(2)(E)

]−1

pq
=

[
G(0)(E)

]−1

pq
+ Σ(2)(E)pq

= (E − εp)δpq

− 1

2

∑
iab

〈ab||pi〉〈qi||ab〉
E + εi − εa − εb

− 1

2

∑
ija

〈ij||pa〉〈qa||ij〉
E + εa − εi − εj

, (5.6)

where i and j label occupied states, a and b label virtual states, p and

q label general states, and the lowest order Koopmans’ IPs and EAs ob-

tained from the diagonal elements of G(E). The improvement of Koop-

mans’ IPs and EAs is achieved via the second-order correction in electron

self-energy as shown in Section 2.7 and ref. [127]. Within this approxi-

mation, it is also possible to determine the density matrix directly from

equation (5.3) which will coincide exactly with the density matrix cor-

rected to second-order in electron correlation [127, 128]. This means that

both approaches will lead to the same prediction of electron currents, as

identical one-electron RDMs will predict identical currents.

A way to select an independent particle model for electron transport

is to select a set of single particle states yielding an approximate den-

sity matrix with maximal overlap to the exact reduced density matrix

[129]. The single electron states that diagonalise the RDM are natural

orbitals (NOs) [130], and their eigenvalues ρii are known as natural oc-

cupations. To approximate the exact RDM in equation (5.5), the best
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finite expansion ρ̃ is found to minimise the least squares error,

∫
| ρ− ρ̃ |2 drdr′ = min, (5.7)

which is satisfied by including n NOs with the largest occupancies into

the expansion of equation (5.5) [128].

One can consider the coupling between density matrix coefficients by

partitioning the density matrix ,

ρ =

 ρij ρia

ρai ρab

 , (5.8)

using the same index as before for labelling states: (ij) denotes occupied-

occupied coupling, (ab) unoccupied-unoccupied and (ia) occupied-unoccu-

pied state interactions, with occupations referring to the zeroth-order

wavefunction. The NOs to second-order in electron correlation are given

by the eigenfunctions of equation (5.8). Then to build the best single par-

ticle approximation, an occupied single Slater determinant of the first N

NOs is constructed. Numerically it was shown that a single Slater de-

terminant composed of the largest occupation number of NOs can lead

to essentially the same results as many-body treatment for tunnelling

through a weakly correlated system such as alkanes [129]. In this case,

the density matrix is idempotent, i.e. ρ2 = ρ, since only the first N

occupations are equal to one and the rest are zero (single determinant

approximation). If the coupling between the occupied and unoccupied

states becomes stronger (correlation increased), i.e. ρia and ρai in equa-
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tion (5.8) increases, then the idempotency condition no longer holds and

the single particle approximation is no longer useful as a zeroth-order

many-body wavefunction. This has been demonstrated in Chapter 4,

where for a strongly coupled system of gold atomic chains and metal

coupled BDA, multi-reference behaviour was seen.

So for weak to moderate correlations, the Green’s function corrected

to second-order in self-energy can achieve improved IPs and EAs. But

as natural occupancies in the zeroth-order wavefunction become much

less than unity, a perturbation expansion about an independent particle

model loses its applicability even when including higher order corrections.

This means that the IPs and EAs will be no longer correctly treated. This

is especially true for multi-determinant ground states [114] or in strongly

correlated electron transport [61, 131, 132].

The above concepts are illustrated using an analytical model where

electron-electron correlation is increased by using a numerical parameter.

The obtained results are then compared to treating the same junction

but using electronic structure theories such as HF and DFT.

5.3 Correlated Analytical Model

In this section, a correlated model is introduced to demonstrate the effect

of over- and underestimation of electronegativity on electron transport. A

hexatriene molecule bonded between two metal electrodes is considered.
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A model Hamiltonian used is

Ĥ = −γL
∑
n<−3

(ĉ†nĉn−1 + h.c.)

+
∑
n<−3

(εL + VL)ĉ†nĉn − γLM(ĉ†−4b̂−3 + h.c.)

+
+3∑

n=−3

(εM + Vn)b̂†nb̂n

− γM(b̂†−3b̂−2 + b̂†−1b̂1 + b̂†2b̂3 + h.c.)− ΓM(b̂†−2b̂−1 + b̂†−2b̂−1 + h.c.)

− γMR(b̂†+3ĉ+4 + h.c.) +
∑
n>+3

(εR + VR)ĉ†nĉn

− γR
∑
n>+3

(ĉ†nĉn+1 + h.c.), (5.9)

where h.c. stands for “Hermitian conjugate”. The hexatriene molecule is

modelled as six central sites labelled −3,−2,−1, 1, 2, 3 (there is no 0 site)

with electron creation operator b̂† and electron annihilation operator b̂.

The alternating single and double bonds are represented by ΓM and γM ,

respectively, and the on-site energy is εM . While the hexatriene-electrode

coupling is determined by γL = γR. The electron reservoirs (leads) extend

to the left and to the right of the molecule and are described ĉ† and ĉ

electron creation, annihilation operators, respectively. The on-site energy

for the lead region is εR/L for the right (R) and left (L) reservoirs. The

voltage applied across the junction is VL 6= VR in the reservoirs and the

voltage drop Vn across the molecular region is scaled linearly between the

values of VL and VR.

The eigenstates of the molecular Hamiltonian are found with the

electron-electron self-energy, while the exact electrode self-energies are
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introduced to describe the molecule coupling to the electrodes.2

The resulting single electron states are taken as the expansion func-

tions for the correlated version which is obtained from Ĥ0 → Ĥ0 + ν̂,

where ν̂ is the pairwise interactions. Current-voltage characteristics are

calculated using equation (5.2). A simplified form of self-energy is used

such that the interaction matrix elements in equation (5.6) are approxi-

mated as 〈pq||rs〉 ≈ U .

In Figure 5.1 the current-voltage (I−V ) characteristics are presented.

The independent particle model or uncorrelated model occurs for U = 0

(labelled as “no Σ(2) correction”). Increasing U is equivalent to increasing

the electron correlations on the molecular region. At U = 0, currents at

low voltages are much lower than when the Σ(2) correction is allowed to

improve the IPs and EAs. So the highest lying occupied states are too

low, corresponding to high IPs and the lowest lying unoccupied single

electron states are too high, giving too low EAs with respect to the

Fermi level. Under these conditions neither occupied nor unoccupied

states enter the voltage bias window at low voltages.

Increasing the U parameter, the highest occupied states near the

Fermi level enter the bias window at low voltages, while the lower unoc-

cupied states enter at higher voltages. This sequence of introducing the

states is due to the relative position of the Fermi level in this system,

that is, the Fermi level is closer in energy to the occupied states. That is,

introducing correlations on the molecular region shifts up the occupied

2 It is important to distinguish between electron-electron self-energy which is a
correction term to the HF Hamiltonian described in Section 2.7 and the electrode
self-energy which describes the effect of a semi-infinite lead, Section 3.2
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Fig. 5.1: Current-voltage characteristics for the model Hamiltonian.
Electronegativity is modified by varying U , with values labelled within
the figure. Inset: I − V characteristics with current displayed on a loga-
rithmic scale.

levels relative the Fermi level leading to reduced IP values. Similarly,

with increased correlation the lowest lying unoccupied states are lowered

in energy leading to the lower EA values. Increasing correlations via U

keeps reducing IPs and increasing EAs values eventually leading to an

underestimated band gap and large current magnitudes. In Figure 5.2

the observed trend for HOMO-LUMO gap as a function of increasing

U is shown. It is clear that as correlations are increased, the band gap

narrows.

The discussion is taken a step further and electronic structure treat-

ment is applied to this chain-hexatriene-chain junction as an intermediate

step before studying a more realistic system. The results for the HOMO-

LUMO gap for the molecular region are given in Figure 5.3, illustrating
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Fig. 5.2: HOMO-LUMO gap for the correlated model defined by equa-
tion (5.9) as a function of electron-electron self-energy as varied through
interaction parameter U . The reduction in the gap demonstrates the
effect of electron correlation on molecular electronegativity.

that the electronegativity on the molecular region changes as different

treatments are applied. From this, it is noted that for a large HOMO-

LUMO gap or weak electronegativity, charge transfer is small. For small

HOMO-LUMO gap, typical of GGA and LDA, the charge transfer is over-

estimated as illustrated in Figure 5.3. While hybrid functionals correct

charge transfer to some extent, this correction is not systematic [133].

5.4 Electronic Structure Theory Results

In this section, the electron transport calculations are carried out for a

gold-hexatriene-gold tunnel junction shown in Figure 5.4, using DFT and

HF treatments for electronic structure. The relationship between differ-
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Fig. 5.3: Charge transfer versus HOMO-LUMO energy gap and elec-
tronegativity for hexatriene-dithiol bonded to two linear gold chains.
Calculations have been performed with the Turbomole [116] program
package. The auc-cc-pVDZ basis set was used for all carbon atoms [134]
and all the other atoms were treated with split valence polarised basis,
including a 60 electron effective core potential for the gold atoms [116].

ent electronic structure treatments and the analytical model system with

increasing correlation outlined in the previous section can be compared.

The electronic structure calculations are performed with Fock matrices

built from the Turbomole [116] package using HF and DFT.

The Turbomole split valence polarised Gaussian basis were used for

all atoms on the hexatriene-dithiol molecule. In the gold leads, the three

gold atoms in each electrode which bond to the sulphur atoms are also

treated with a split valence/polarised basis set in conjunction with a sixty

electron effective core potential [116]. All other gold atoms are treated
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Fig. 5.4: Hexatriene bonded to two gold contacts. The last two planes
of the contacts were used to model periodic infinite leads.

with a modified 6s orbital basis set used with a 68 electron effective core

potential [115].

Calculations have been performed using HF, DFT with a hybrid

exchange-correlation functional (DFT/hybrid), GGA (DFT/GGA), and

Local Density Approach (DFT/LDA). In DFT the exact correlation and

exchange functionals are not known, however approximations exist, such

as hybrid functionals, GGA and local density approach, which are used

in these calculations. The B3LYP hybrid functional, so called after Becke

for the exchange approximation part, and Lee, Yang and Parr for cor-

relation, is combined with the exact energy from HF theory. Three pa-

rameters define the hybrid function, hence B3LYP [135], specifying how

much mixing of the exact exchange is chosen. The Perdew, Burke, Ernz-

erhof GGA functional [117] which improves the description of the local

spin density by using the gradient approach is used. For DFT/LDA, the

Perdew-Wang (PW) functional [136] is used, where an analytical rep-

resentation of correlation energy was proposed for a uniform electron

gas. A full geometry relaxation is performed on the junction for each
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Fig. 5.5: Comparison of electron transmission calculated from different
electron structure treatments for the hexatriene-dithiol molecular junc-
tion: (a) DFT/LDA, (b) DFT/GGA, (c) DFT/hybrid and (d) HF. The
Fermi energy (dashed red line) is taken to be the HOMO energy in the
leads.

electronic treatment.

Electron transport is calculated using the Green’s function approach

implemented within the TiMeS scattering program [101], using the junc-

tion Hamiltonians in an atomic orbital basis as extracted from a modified

version of Turbomole [116]. The resulting electron transmission as a func-
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tion of energy is given in Figure 5.5. As can be seen, the overestimation

of electronegativity within the LDA results in a narrow band gap around

the Fermi level yielding a higher density of states with the energy range

in the transport window. This is similar to having a high correlation

regime, that is a large U parameter in terms of the analytical model cal-

culation. On the other hand, the underestimation of electronegativity

within the HF approximation results in a low density of states around

the Fermi level and within the voltage bias window of a few volts. A

comparison can be drawn between the HF band gap and that obtained

at U = 0.

The current-voltage characteristics are plotted in Figure 5.6 for the

hexatriene tunnel junction. Comparing to Figure 5.1, it can be no-

ticed that at the highest value of U and DFT/LDA are comparable,

both methods underestimate the band gap and overestimate the trans-

port properties. Similarly, in the single-determinant picture, U = 0, the

current-voltage curve is comparable to the HF treatment with too small

of an electronegativity, too little charge transfer between the molecule

and electrodes. The GGA and hybrid approximations tend to lie be-

tween the extremes of the LDA and HF approximations, as can be seen

in Figure 5.6. Similar findings in the context of the effect of differing

exchange-correlation treatments on electron currents have been reported

by Thygesen [56] within the context of GW studies. This work focused

on the role of improving the electronegativity to improve the overlap to

the exact RDM as shown in Section 5.1.
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Fig. 5.6: Current-voltage characteristics for the electronic structure cal-
culations of hexatriene bonded between two gold contacts; the colors
correspond green-DFT/LDA, red-DFT/GGA, blue-DFT/hybrid, black-
HF. Inset: I − V characteristics with current displayed on a logarithmic
scale.

5.5 Conclusion

In this chapter, the effect of a correct description of electronegativity

on electron current has been studied. Correcting electronegativity is

equivalent to maximising overlap to the exact density matrix. The true

value of electronegativity is found at the exact density matrix and many-

body solution. Improving the description for the IP and EA levels with

the methods outlined in Section 5.2 will lead to improved prediction of

electron current for medium and weak correlations. This is characteristic
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of the electron currents obtained with DFT/GGA and DFT/hybrid. Poor

correction for electron correlations results in an overestimated band gap

and too low an electron current as was shown to be the case for HF.

While overestimating this interaction leads to too narrow a band gap and

a large electron current as seen with DFT/LDA treatment. The ability

to improve electron transport, within this context, is hence understood

as the ability to improve the description of IP and EA levels.

In the case of strong electron-electron correlations, off-diagonal terms

of the density matrix in equation (5.8) become important. It then be-

comes inadequate to use single particle approximations to predict elec-

tronegativity and perturbation corrections about a single reference state

fail, thus complicating treatment of molecular junctions with Green’s

function methods. This is also a key limitation of the GW approach, as

it can not describe multi-reference states explicitly.

Overall, the correct description of electronegativity is improved by

explicit treatment of electron correlations which can be achieved within

many-body treatments such as CI. The improvement in treating elec-

tronegativity will lead to an improved description of the one-electron

RDM, and thus to a better description of currents in molecular tunnel

junctions.



6. CONCLUSION AND REMARKS

In this thesis, the molecule-metal interface that is formed in single molecule

junctions was studied. Electronic structure of a molecule in a junction is

different to free species: molecular levels broaden with a lifetime τ and

shift from their original positions. The aim of this thesis was to describe

and understand the behaviour of such resonances.

The method of CAPs was further developed and enabled the study

of electron lifetimes in a junction (Section 3.3.2). The essence of the

CAP method is to transmit the information within energy-dependent self-

energies to an energy-independent potential, hence the better the CAP

mimics the self-energy, the better the approximation. This was validated

using an atomic chain model, yielding an excellent agreement between the

two methods with varying molecule-electrode coupling, especially in the

HOMO-LUMO region of the junctions (demonstrated in Section 4.2.3).

Further, the method was used on junctions described within a HF and

DFT basis to demonstrate its applicability.

Incorporating CAPs into MCCI as a one-electron operator enabled

the study of electron state lifetimes in Chapter 4. Considering atomic

gold chain junctions, it was found that lead excitations play a signifi-

cant role in the description of electronegativity and electron transport.
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Including excitations originating from orbitals localised on the molecule

only resulted in the electronic spectra qualitatively similar to an isolated

molecule. A much broader LUMO state was seen when lead excitations

were added within single particle approximation. This state then de-

coupled upon inclusion of electron correlations, but the resulting energy

levels are a complicated consequence of electrode coupling and electron

correlation. Similarly, it was seen that a free BDA molecule can be ap-

proximately described by a single determinant, while bonding metal elec-

trodes resulted in a strong metal-molecule interaction and multi-reference

behaviour within the CI approach.

The electron transport resulting from different electronic structure

treatments was studied in Chapter 5, pointing out that an underesti-

mated band gap such as for DFT leads to the conducting states entering

the bias window at too low voltages and overestimation of electron cur-

rent. On the contrary, not including electron correlation corrections as

is the case for HF results in an overestimated band gap and too low an

electron current. To improve the description of electronegativity means

to maximise the overlap of an approximate RDM to the exact density

matrix. This conclusion can be achieved via a second-order correction in

self-energy to the Green’s function methods, or second-order density ma-

trix corrections. However, these approximations are only valid in a weak

to moderate correlations regime. For strongly correlated systems the off-

diagonal interaction elements of the density matrix become important

and can only be described by multi-determinant many-body theories. In

this work, it has been shown that the use of single-particle methods is not
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suitable in the limit of a strong coupling regime (i.e. a strong electron-

electron interaction). Hence, an explicit treatment of electronegativity

achieved through many-body formalisms will lead to a better description

of electron correlations and electron transport.



APPENDIX



A. COMPLEX ABSORBING POTENTIALS FOR 3D

ELECTRODES

In this appendix1, the future generalisation needed to apply the CAPs

method to 3D electrodes is discussed. In particular, non-Hermitian quan-

tum dynamics are discussed in a greater detail, followed by what causes

failure in adiabatic method when evaluating complex eigenvalues in cer-

tain systems. In these cases, the adiabatic method for generating a CAP

used in this thesis fails, although the general formalism for building the

CAP from the open system eigenvalues and eigenvectors remains valid.

A proposed solution is provided in the last section of this appendix for

constructing CAPs in more general systems.

A.1 Non-Hermitian Quantum Mechanics

In Chapter 3 open systems were discussed in relation to molecular elec-

tronics. The CAPs method deals with open systems leading to a non-

Hermitian quantum mechanical description. This means that many meth-

ods used to describe Hermitian Hamiltonians may not apply or be special

cases of a more general non-Hermitian approach. Properties of Hermitian

Hamiltonians are considered first, then the difference in the behaviour of

1 Here, atomic units (a.u.) are used, that is energy is measured in Hartrees.
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the eigenvectors and eigenvalues as the system is exposed to the environ-

ment is examined.

Before going on to discuss non-Hermitian Hamiltonians, it is useful

to consider a symmetric Hermitian time-independent matrix Schrödinger

equation [104],

Ĥ|Uj〉 = εj|Uj〉, (A.1)

where |Uj〉 is a right-hand vector. For a symmetric Hermitian Hamilto-

nian, one can write Ĥ = Ĥ†, then taking the conjugate transpose of the

above gives,

〈Ui|Ĥ = 〈Ui|εi, (A.2)

from which the scalar product can be written as

〈Ui|Uj〉 = δij. (A.3)

Since the Hamiltonian is symmetric, the eigenvalues of Ĥ and ĤT are

equal.

Now a symmetric non-Hermitian Hamiltonian as used in CAP gen-

eration is considered. Since the Hamiltonian is non-Hermitian, then

Ĥ 6= Ĥ†, but it is symmetric yielding Ĥ = ĤT . Starting with equa-

tion (A.1) and taking Hermitian adjoint will not yield the same result as

above due non-Hermiticity of the Hamiltonian, instead one has,

(Ĥ|Uj〉)T = (εj|Uj〉)T (A.4)
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with eigenvalues of Ĥ and ĤT being equal, one can write the left-hand

vectors as,

〈U∗i |Ĥ = 〈U∗i |εi, (A.5)

which yields the generalised scalar product, the so-called c-product [137,

138], defined as

〈U∗i |Uj〉 = δij. (A.6)

For ease of notation, 〈V | is used for the left-hand vectors and |U〉 is used

for the right-hand vectors.

The next section will deal with the particular behaviour of non-

Hermitian operator’s eigenvalues and eigenvectors.

A.2 Complex Resonances and Exceptional Points

It has been seen in Section 3.1 that a resonance encompasses a shift from

the starting position in the real part and broadening in the imaginary

part of an eigenvalue. If a system with a dense energy spectrum couples

to the continuum via some coupling constant, then at some values of

that coupling parameter the vectors become ill-defined. These points are

exceptional points (EPs) and are generally defined as singularities within

the eigenvalue space. The EPs are also called crossing point (CP) because

the eigenvalues can cross: in imaginary space, when the widths overlap

or real space where the trajectories shift. Changes in level repulsion and

small changes in width pass into width bifurcation and level clustering

[139]. Since in this work only the crossing of eigenvalues is considered,
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the terms EP and CP are used interchangeably.

EPs determine the spectroscopic properties of realistic quantum sys-

tems in the regime of overlapping resonances [140], that is, almost all

systems under realistic conditions where level broadening is similar to

level spacing, γ ≈ ∆ε.

The concept of crossing points is not unique to the field of open

quantum systems, but is also prominent in other fields and often under

different names, for e.g. in scattering theory EPs are observed as double

poles of the S-matrix [141]. To best understand the occurrence of EPs, a

model used by Rotter and Sadreev consisting of two quantum dots (QDs)

attached to two reservoirs and a device region between them as illustrated

in Figure A.1 [142] is studied.

Fig. A.1: A model system used to study the behaviour of crossing points:
two single energy level QDs connected to the device region which could
be a wire or a molecule and to two semi-infinite reservoirs. Figure from
ref. [142].

The model that is used in this thesis for comparison consists of three

lead unit cells, the center unit cell will be considered a device region with

Hamiltonian HD; and the QD is comparable to a lead unit cell (H0) that

denotes a lead; the reservoirs having the same role in both models. For

simplicity, it is assumed the interaction between the device and QD is

symmetric. A major difference between the model from ref. [142] and
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the one used in this thesis, is that the interaction between the device

region and the leads in this work is described by matrices as oppose to

scalar parameters. The bare Hamiltonian is then [142],

HB =


ε1 u 0

u εD u

0 u ε1

 , (A.7)

where u is the coupling between the QD and the device.

Opening a system is achieved by incorporating a self-energy in both

models. A varying parameter ν is introduced to control the strength of

this coupling in Rotter and Sadreev’s model, which can be compared to

λ used in the adiabatic coupling method. The solution of the resulting

Schrödinger equation is outlined in ref. [142], which leads towards iden-

tification of the crossing and diabolic points. Below the relevant findings

are outlined:

1. The points of eigenvalue coalescence for a real (closed) system occur

when u = 0. This leads to diabolic points (DPs) which are not

meaningful for a realistic system that interacts with its surrounding

and will not be discussed here.

2. For an open system, coalescence of two or more eigenvalues occurs

when the states become degenerate. Both coupling parameters u

and ν are not zero, thus the system has a realistic character, that

is, it interacts with the surrounding. This occurs at different values

of u and ν for various systems.
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The EPs are accompanied by a shift in the phase of the wavefunctions

which become linearly dependant as the norm of the eigenvector diverges.

For example, if ψk is an eigenvector of H, it can be written as:

ψk =
∑

aklψ
B
l , (A.8)

where ψBl is the wavefunction of the bare Hamiltonian HB. If the wave-

function is normalised, then
∑

l(akl)
2 = 1 and the c-product normalisa-

tion condition is met. However, at the points of coalescence | akl |= ∞,

that is the coefficients of the wavefunction normalised using the c-product

diverge [140].

Bearing the QD-device-QD system in mind, with eigenvalues z1,3 and

eigenvector components a, b, Rotter and Sadreev [142] obtain the dia-

grams in Figure A.2

The phase shift that is seen at the CP does not appear suddenly but

is a gradual effect [139]. The phase change by an angle β is connected

to the wavefunction rotation through this angle and the loss of phase

rigidity [140], defined as in [143]

rλ =
〈ψ∗λ|ψλ〉
〈ψλ|ψλ〉

=
1

(Re(ψλ))2 + (Im(ψλ))2
=

1

Aλ
. (A.9)

In approaching an EP, the wavefunction’s norm diverges 〈ψλ|ψλ〉 ≡ Aλ →

∞. In a physical sense [140], phase rigidity measures the overlap between

a resonance state with one of the scattering states. Some states decouple,

that is become sharp single particle states, to a certain extent from the

environment, as other states couple to the environment.
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Fig. A.2: An evolution of eigenvalues z1,3 and eigenvector components
a, b for QD-device-QD system as described in ref. [142]. The behaviour
of z1 (solid lines) and z3 (dashed lines) showing a crossing point in the
real plane in (a) while the eigenvalues avoid cross in the corresponding
imaginary plane (b). The components of the eigenvector a (dashed lines)
and b (solid lines) are seen to diverge at the critical point in (c), this
is accompanied by a phase shift of the maximum of π/4 at the critical
point itself (d). Figure from ref. [142]

To measure the phase change, one needs to define the phase of a

starting vector and the open system vector, the difference between these

two phases will lead to a jump at the EP [140]. The phase difference is

calculated between the phase of ψB, i.e. the wavefunction of the bare

Hamiltonian HB and the current state ψ. If the phases of the original

vectors are fixed, then | β − βB |= ±π/4 at the CP. The phases of

the wavefunctions vary on approach of the EP, with only the π/4 jump
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occurring exactly at the CP [139].

In their review of complex absorbing potentials, Santra and Ceder-

baum also observe the existence of critical points [95]. They illustrate

the coalescence using a 2× 2 model Hamiltonian in a similar fashion as

discussed above based on Rotter and Sadreev’s QD-Device-QD system.

Next, the method of generating the CAPs is explained. This involves

non-Hermitian mechanics and demonstrates that exceptional points are

encountered in general when considering CAPs for electrodes with a

dense set of states.

A.3 CAPs for 3D Electrodes

In this section, the development of CAPs concept is taken further and

the possibilities to generalise the method to be applicable to general 3D

systems is discussed. This is done by considering the algorithm first and

then studying the eigenvalue behaviour of a test metal cluster.

A.3.1 Definition of Variables

Since self-energy is a property of a lead, the CAP is also calculated on

the lead region. Before the CAP generation algorithm is explained, a

summary of the variables used is given in Table A.1.

As in Section 3.3, vectors U and V with eigenvalues ωi result from

solving equations 3.23 and 3.24, while X and εi are those of the bare

Hamiltonian at λ = 0.
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Variable Description
λ adiabatic coupling constant that varies from λ = 0 to λ = 1
m number of intervals between λ = 0 and λ = 1
δλ one interval λ/m
λm value of λ at the m’th step
λm−1 value of λ at the (m− 1)’th step
JOpt index at which best overlap of Uλm and Uλm−1 is achieved

Tab. A.1: A summary of variables used in describing the CAPs algorithm.

A.3.2 Algorithm

The adiabatic coupling of a closed region (device) to that of the contin-

uum states (electrodes) relies on the idea that, provided the adiabatic

steps are small enough, the trajectory of eigenvalues will be smooth.

This is the basis for the current CAP method. Let us assume the cal-

culation is defined to have m steps between λ = 0 and λ = 1, then let

λm = mδλ and λm−1 = (m − 1)δλ. For each λm, the new Hamiltonian

H0 + λmΣL + λmΣR is evaluated leading to a new matrix of complex

eigenvalues, ωλm and corresponding left and right eigenvectors Uλm and

Vλm . Figure A.3 outlines the steps in the algorithm.

The process of calculating the eigenvalue ωλm and the eigenvectors

|Uλm〉, 〈Vλm| is initiated by obtaining two sets of ωλm shown in Figure

A.3a. First, the expectation value of the new operator, 〈ωexpm〉 is evalu-

ated using the vectors from previous iteration

〈ωexpm〉 =
Vλm−1 [H0 + ΣL(ωλm−1) + ΣR(ωλm−1)]Uλm−1

Vλm−1S0Uλm−1

, (A.10)

assuming that Uλm approaches Uλm−1 adiabatically, the above expectation

value will be a good initial guess for the eigenvalues of the current step.
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Secondly, the matrix of eigenvalues ωλm is obtained from solving H0 +

λmΣL(ωexpm) + λmΣR(ωexpm). The difference between 〈ωexpm〉 and each

value ωλm is calculated, if there is an eigenvalue that matches 〈ωexpm〉

within a specified tolerance (stated as “Tol” in Figure A.3b), it is chosen.

Otherwise, one solves for a suitable ωi self-consistently as shown in Figure

A.3b.

Within the self-consistent loop for finding the best matching eigen-

value to 〈ωexpm〉, the algorithm searches for the vector that most closely

resembles the Uλm−1 (or Vλm−1) state. Let a measure of the overlap

Sλmλm−1 between vectors the m’th and (m−1)’th iterations be calculated

as,

Sλmλm−1 =

[[
[VλmS0Vλm−1 ][UλmS0Uλm−1 ]

[VλmS0Vλm ][UλmS0Uλm ]

]
×
[

[VλmS0Vλm−1 ][UλmS0Uλm−1 ]

[VλmS0Vλm ][UλmS0Uλm ]

]∗]3/2 (A.11)

with the maximum value of Sλmλm−1 ≈ 1 corresponding to the best

matching index (JOpt in the flow chart Figure A.3) and consequently the

correct eigenvalue and set of right and left eigenvectors for the m’th step.

If Uλm and Uλm−1 are similar, then the value of
UλmS0Uλm−1

UλmS0Uλm
will be close

to 1. Similarly for Vλm and Vλm−1 . The factor of 3/2 is a heuristic factor

that amplifies the deviation from unity for numerical purposes. The self-

consistent procedure, Figure A.3b is repeated until convergence is reached

and the closest eigenvalue obtained. The algorithm then continues on

to the next index and value of λ. Upon reaching λ = 1, a complete

array of new complex energies and vectors is obtained, Figure A.3c. The
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construction of the CAP is in practice done using the final eigenvalues

ωi obtained at λ = 1 but using the initial real eigenvectors from λ = 0,

that is,

W = S0XωX† −H0, (A.12)

with S0 a diagonal metric. The reason why this approximation is used

is to express the CAP in the real MO basis, facilitating its use in the

subsequent CI calculations. The dimensions of W are the same as of the

lead region Hamiltonian H0 on which it was calculated.

As has been shown in Section A.1, at an EP two or more eigenvectors

may become linearly dependant. That is, it is no longer possible to

choose just one Uλm or Vλm that corresponds well to Uλm−1 or Vλm−1 .

This condition is investigated further next.
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Do J = ... Count through Eigenvalues of H0

Enter UVF.f90 with
H0 = Bare Hamiltonian
S0 = Bare Overlap

X = Eigenvectors of H0
Eval(J) = J'th eigenvalue of H0

Do λ = ... Increment λ steps 

0=JOpt

U0=U JOpt

V0=V JOpt
First step, Jopt = J

Call TiMeS get:
H=H00

Calculate expectation value:

k=
U0HV0

U0S0V0

Calculate TiMeS eigenvalue:

H0kDiagonalize and Sort :
,U,V

If (MinVal(Abs(     )) < Tol) Then−k

k=0

Do L = 1,LMax  Try to converge within Lmax iterations

Calculate TiMeS eigenvalue at   :

H0k:
,U,V
Diagonalize and Sort

Calculate the biggest overlap between U0, V0 and U, V
Take the eigenvalue corresponding to that index.

If (           > Tol) Then JOpt−k k=JOpt

k

End If

Check for degeneracy

End Do

Calculate the overlap S_j of X(J) and U(JOpt), V(JOpt)

End Do

Exit UVF.f90 with 

U = Complex Eigenvector
V = Complex Eigenvector
ω = Complex Eigenvalue

S_j = Overlap to X(J)
Jopt = final index

All at λ = 1

Do J loop is inside Main.f90

a

b

c

Fig. A.3: Flow chart of building a CAP as is implemented in the current
version of algorithm. (a) initiation of algorithm and evaluation of two
sets of complex eigenvalues, (b) self-consistent calculation of eigenvalues,
(c) final eigenvalues and eigenvectors are obtained.



A. Complex Absorbing Potentials for 3D Electrodes 138

Behaviour at Exceptional Points

The origin and behaviour of EPs have been discussed in Section A.2. Here

the numerical consequences of encountering an EP within the CAPs ap-

proach are highlighted. A lead unit cell of sixteen gold atoms arranged

into alternating 10 and 6 atom planes is considered and is shown schemat-

ically in Figure A.3.2. Three such unit cells are taken so that to obtain

inter-cell interaction matrices H1L and H1R. The atoms are treated with

a modified 6s orbital basis set used with a 68 electron effective core po-

tential [115], and HF orbitals are used.

Fig. A.4: A schematic representation of a region on which the CAP is
calculated. The left WL and right WR matrices are calculated separately
and summed together to give the overall CAP.

The size of the H0 matrix is determined by the number of atoms and

basis orbitals present,

N =

Ntotal∑
i

N i
atoms ×N i

orbitals
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thus leading to a 16× 16 matrix and 16 eigenvalues. The complex eigen-

value problem, equations (3.23) and (3.24) are solved until the corre-

sponding ωi value is obtained at λ = 1, as outlined in Section A.3. The

Hamiltonian H0 is not sparse due to the fact that each atom interacts

with a large number of other atoms in a cell.

At certain values of λm, the ill-defined behaviour of eigenvectors is

seen which inhibit convergence of the self-consistent loop. This behaviour

is shown to indicate approaching an EP [95, 140]. Three occupied energy

states in close proximity of each other as in Table A.2 are considered.

Eigenvalue # Value (H)
5 -0.2400
6 -0.2393
7 -0.2261

Tab. A.2: Three occupied energy states of a 16 atom lead unit cell that
are used to demonstrate crossing points. Eigenvalues 5 and 6 can be
thought of as nearly degenerate.

The calculation is initiated at the 7’th eigenvalue, ε7, and its evolu-

tion, as a function of m steps from λ = 0 to λ = 1 as the system is

opened is followed. In Figure A.5, it is clearly seen that a sudden change

in both real and imaginary components of ω7 occur. To investigate this

further, the calculation was repeated, changing m to see if the sudden

jump occurred regardless of the interval size, as illustrated in Figure A.5.

It is clear that a shift in eigenvalues is seen in approximately the same

region, independent of m. It is believed this is a signature of an EP

being approached and consequently, characteristic irregular behaviour of

the eigenvectors should be observed [95, 140].
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This is investigated further by keeping λm stationary at a fixed value

just before the energy jump and studying the behaviour of the self-

consistent loop.

The self-consistent loop is allowed to have 1000 cycles to reach a con-

vergence tolerance of 10−2 as the evolution of ε7 towards ω7 is followed. In

this context, a cycle is defined as one evaluation of the self-consistent rou-

tine in Figure A.3b, where “Lmax” corresponds to the maximum num-

ber of cycles, i.e. 1000. In Figures A.6a and A.7 oscillations in reso-

nance components are seen. This is due to different indices controlled by

Sλmλm−1 in equation (A.11) being chosen, which indicates a mixing of

vectors at this point in the adiabatic evolution of the eigenvalue. Since

the vectors are becoming linearly dependent as the EP is approached,

it means that more than one vector can be picked to match Uλm−1 (or

Vλm−1) which means that vectors are no longer even approximately or-

thogonal and, hence, are mixing. This is illustrated in Figure A.8a. It is

clear that the points of eigenvalue oscillations coincide with the change

of index of a newly picked eigenvector. This is because at a certain given

self-consistent cycle, several linearly dependent vectors produce a good

match to Uλm−1 (or Vλm−1). In Figure A.8b the irregular behaviour of

Sλmλm−1 is plotted. In an ideal adiabatic scenario the value of Sλmλm−1

will remain close to one to allow for a smooth evolution from εi to ωi.

Instead, it is observed that two other indices U5 and U6 interact with U7,

thus indicating that Sλmλm−1 6= 1 for any single eigenvector. This mixing

of eigenvectors and eigenvalues is difficult to resolve and highlights the

ill-defined behaviour of an EP.
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(a)

(b)

Fig. A.5: The energy shifts in the real (a) and imaginary (b) components
of ω7 with varying λ. The jump occurs approximately at the same point
for the smaller intervals of m = 200 and m = 1000.
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(a) Behaviour of the real component of the complex resonance ω7 at one single
stationary λm point. The x axis gives the number of self-consistent iterations
allowed to obtain convergence.

(b) Close-up of the oscillations region with a dashed lined used to indicate the
behaviour.

Fig. A.6: Behaviour of the real component of ω7 at a single λm point.
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Fig. A.7: Behaviour of the imaginary component of the complex reso-
nance ω7 at one single λm point. Similar oscillations for the real compo-
nent are observed at the same self-consistent iteration values.



A. Complex Absorbing Potentials for 3D Electrodes 144

(a) Change of original eigenvalue index, JOpt, is observed at the same points
where both real and imaginary components of ω7 resonance oscillate.

(b) Behaviour of the real component of energy superimposed with the varying
values of Sλmλm−1 indicating that oscillating behaviour of energy corresponds to
the points of linear dependence of eigenvectors.

Fig. A.8: Oscillating behaviour of ω7 complex resonance for a fixed λm
value.
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A.4 Conclusion

In this appendix the challenges in constructing a CAP for 3D electrodes

with densely packed energy levels was highlighted. The adiabatic cou-

pling method fails to describe the behaviour of the eigenvalues and eigen-

vectors of such systems and a new methodology is needed to identify the

correct energy and corresponding states of the open system needed to

define the CAP.

Another approach that it is thought should overcome some of the

discussed challenges is a grid method. Instead of assuming adiabatic

behaviour, this method will divide the eigenvalue space into an equally

spaced grid. The essence of the grid method is to avoid evaluating the

H0+ΣL+ΣR Hamiltonian at each eigenvalue of H0 but instead at the grid

points. This means that the eigenvalues which could potentially become

EPs will be avoided. The grid range must extend beyond the minimum

and maximum values of εi to allow for the shift and broadening of the

final complex resonance ωi. The knowledge of how the system might

potentially behave is required a priori to determine the size of the grid.

At each grid point, the eigenvalue will be calculated self-consistently and

stored. If convergence cannot be reached within the self-consistent rou-

tine, then this eigenvalue can be discarded, thus taking out points from

the grid. It should be noted that the resulting CAP matrix W should

be of the same dimensions as the bare Hamiltonian H0 of a lead unit

cell, therefore a method should be developed to have the same number

of final complex energies ωi as there was starting eigenvalues εi to avoid
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rectangular matrices. Another point to consider is the construction of

the CAP: currently due to the adiabatic coupling the final resonances ωi

could be related to the initial energy states εi and their corresponding

vectors X, however in the grid method this will not be the case. As

the adiabatic approximation breaks down, the correlation between the

states of the closed and open systems is lost. Hence the CAP needs to be

constructed using the complex basis U and V of ωi of the open system.
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a.u. atomic units

AO atomic orbital

BDA benzene-di-amine

BDT benzene-di-thiol

CAP complex absorbing potential

CI configuration interaction

CP crossing point

CSF configuration state function

DFT Density Functional Theory

DP diabolic point

EA electron affinity

EDG electron donating group

EM extended molecule

EP exceptional point

EWG electron withdrawing group

FCI full configuration interaction

GGA Generalized Gradient Approach
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HF Hartree-Fock

HOMO highest occupied molecular orbital

IETS inelastic electron tunnelling spectroscopy

IP ionisation potential

IR infra-red

KS Kohn-Sham

LCAO linear combination of atomic orbitals

LDA Local Density Approach

LUMO lowest unoccupied molecular orbital

MCBJ mechanically controllable break junctions

MCCI Monte-Carlo configuration interaction

MO molecular orbital

MP Møller-Plesset

NEGF non-equilibrium Green’s function

NO natural orbital

PL principal layer

QD quantum dot

RDM reduced density matrix

SCF self-consistent field

SES smooth exterior scaling

STM scanning tunnelling microscope

TERS tip-enhanced Raman spectroscopy
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TiMeS Transport in mesoscopic systems

UPS ultraviolet photoelectron spectroscopy
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[114] Y. Pavlyukh and W. Hübner. Configuration interaction approach

for the computation of the electronic self-energy. Phys. Rev. B,

75(20):205129, 2007.

[115] P. Fuentealba, H. Stoll, L. von Szentpaly, P. Schwerdtfeger, and

H. Preuss. On the reliability of semi-empirical pseudopotentials:

simulation of Hartree-Fock and Dirac-Fock results. J. Phys. B,

16(11):L323, 1983.

[116] R. Ahlrichs, M. Bar, M. Haser, H. Horn, and C. Kolmel. Electronic-

structure calculations on workstation computers - The program

system Turbomole. Chem. Phys. Lett., 162(3):165–169, 1989.

[117] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient

approximation made simple. Phys. Rev. Lett., 77(18):3865–3868,

1996.

[118] D. J. Thouless. Stability conditions and nuclear rotations in the

Hartree-Fock theory. Nuc. Phys., 21:225–232, 1960.

[119] I. Yeriskin, S. McDermott, R. J. Bartlett, G. Fagas, and J. C.

Greer. Electronegativity and electron currents in molecular tunnel

junctions. J. Phys. Chem. C, 114(48):20564–20568, 2010.

[120] J. P. Lowe and K. A. Peterson. Quantum Chemistry. Elsevier, 3rd

edition, 2006.

[121] S. H. Ke, H. U. Baranger, and W. Yang. Electron trans-

port through molecules: Self-consistent and non-self-consistent ap-

proaches. Phys. Rev. B, 70(8):085410, 2004.

[122] R. S. Mulliken. Electronic population analysis on LCAOMO molec-

ular wave functions. I. J. Chem. Phys., 23:1833, 195.



BIBLIOGRAPHY 163

[123] D. E. Cabelli, A. H. Cowley, and M. J. S. Dewar. UPE studies of

conjugation involving Group 5A elements. 1. Phenylphosphines. J.

Am. Chem. Soc., 103(12):3286–3289, 1981.

[124] F. Goyer and M. Ernzerhof. Correlation effects in molecular con-

ductors. J. Chem. Phys., 134(17):174101, 2011.

[125] Y. Meir and N. S. Wingreen. Landauer formula for the cur-

rent through an interacting electron region. Phys. Rev. Lett.,

68(16):2512–2515, 1992.

[126] A. Ferretti, A. Calzolari, R. Di Felice, and F. Manghi. First-

principles theoretical description of electronic transport including

electron-electron correlation. Phys. Rev. B, 72(12):125114, 2005.

[127] B. T. Pickup and O. Goscinski. Direct calculation of ionization

energies: I. Closed shells. Mol. Phys., 26(4):1013–1035, 1973.

[128] E. R. Davidson. Properties and uses of natural orbitals. Rev. Mod.

Phys., 44(3):451–464, 1972.

[129] G. Fagas, P. Delaney, and J. C. Greer. Independent particle de-

scriptions of tunneling using the many-body quantum transport

approach. Phys. Rev. B, 73(24):241314, 2006.
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